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Abstract
Many real-world robotic scenarios require performing task planning to decide courses of actions to be executed by (possibly
heterogeneous) robots. A classical centralized planning approach has to find a solution inside a search space that contains
every possible combination of robots and goals. This leads to inefficient solutions that do not scale well. Multi-Agent
Planning (MAP) provides a new way to solve this kind of tasks efficiently. Previous works on MAP have proposed to
factorize the problem to decrease the planning effort i.e. dividing the goals among the agents (robots). However, these
techniques do not scale when the number of agents and goals grow. Also, in most real world scenarios with big maps, goals
might not be reached by every robot so it has a computational cost associated. In this paper we propose a combination of
robotics and planning techniques to alleviate and boost the computation of the goal assignment process. We use Actuation
Maps (AMs). Given a map, AMs can determine the regions each agent can actuate on. Thus, specific information can be
extracted to know which goals can be tackled by each agent, as well as cheaply estimating the cost of using each agent
to achieve every goal. Experiments show that when information extracted from AMs is provided to a multi-agent planning
algorithm, the goal assignment is significantly faster, speeding-up the planning process considerably. Experiments also show
that this approach greatly outperforms classical centralized planning.

Keywords Multi agent planning · Actuation maps · Goal allocation · Robotics · Distributed planning · Path planning

1 Introduction

Real-world robotic scenarios, in which a set of robots need
to solve a certain amount of tasks, usually require the com-
bination of path-planning and motion-planning techniques.
An example of this type of scenarios is the coverage prob-
lem, which consists of distributing the space among the set
of robots, so that each one explores a certain region of the
environment. The coverage problem planning task is to find
a route for each robot so that all the feasible space is covered
by the robots’ actuators, while minimizing the execution
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time. Vacuum cleaning robots can be potential candidates
for this problem. We assume that we have a team of het-
erogeneous robots with different sizes. While the smallest
robot can reach more areas, a bigger robot cleans a wider
area while traveling a smaller distance. Nevertheless, other
similar problems can also be solved with our contributed
technique e.g. heterogeneous robots executing surveillance
tasks, cooperative mapping of the environment or search
and rescue tasks. As long as there exist (1) some naviga-
tion graph where we can extract information to help the
planner; and (2) agents with similar or different capabilities,
it will be a potential domain to solve with our approach.
We have encoded our problem as a Multi-Agent Planning
(MAP) task. Automated planning is the field of Artificial
Intelligence which deals with the computation of plans. A
plan is a sequence of actions that, if executed in order from
the initial state, reaches another state where all the feasible
goals are achieved.

The problem is modeled with the standard PDDL lan-
guage [14]. For that purpose, we use a discrete represen-
tation of the map, e.g., a 2D grid of waypoints, which is
8-connected regarding robot motion. This means robots can
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move horizontally, vertically and diagonally in the grid of
waypoints. Robots can move from one waypoint to another
as long as they are grid neighbors and do not collide with
obstacles. Moreover, robots can actuate other waypoints if
their distance to the robot’s current position is less than
their actuation radius. Here we consider actuation as a robot
performing an operation that results in some change to the
environment. However, the actuation capabilities could be
modeled not only as the operations where a robot changes its
surrounding, but also as any perception-like operation. The
planning problem to solve would be equivalent if the overall
goal is, for instance, to clean all reachable space or to mea-
sure the temperature everywhere. Our framework allows to
solve planning problems where sensing operations need to
be executed at specific waypoint locations, such as mapping
the Wi-Fi signal strength in buildings, taking measurements
of temperature and humidity on a set of pre-defined loca-
tions such as a computer cluster and server sites, inspecting
some regions or even executing some surveillance tasks. For
vacuum cleaning robots, the actuation is performed through
the robot’s actuator that cleans the floor. Cleaning a specific
waypoint location can be seen as the robot accomplishing
a specific cleaning operation, which is an actuation goal.
Thus the coverage problem would represent a set of robots
moving through a map and accomplishing multiple actua-
tion goals. To accomplish those goals, the robots would have
to execute multiple cleaning operations, i.e. actuating on
all available waypoints on the environment with the objec-
tive of cleaning all reachable regions of the environment. In
the cleaning case, the actuation capabilities of each robot
depend on the specific actuator each robot uses. In general,
for each robot and domain a different actuation model can
be considered. For example, the actuation radius can either
be smaller than the robot’s footprint, equal to the robot’s
footprint, or extend further than the robot’s footprint. An
example of the last case is a mobile manipulator, where
an arm can be extended and actuate on regions beyond the
robot’s range in terms of its shape and footprint. In this
paper, for simplicity we only focus on two cases. First, cir-
cular robots where the actuation range is smaller or equal
to the robot footprint’s radius, and second, any-shape robots
whose actuation range is the same as its footprint.

We expect the planner to output a plan that accomplishes
all the feasible actuation goals, by moving the robots to all
the reachable locations from where they can actuate the goal
waypoints. Given the robot heterogeneity, some goals might
only be feasible for a subset of the robots.

From a MAP point of view, the multi-robot problem
we propose forces us to deal with two issues regarding
the performance of the planning process: (1) the size of
the search space grows with the number of waypoints and
goals; and (2) some goals are not feasible for some robots.
On one hand, real-world scenarios are big enough to make

almost impossible for a planner to solve this problem in
a reasonable amount of time by just assigning all goals
to all agents (following a centralized planning approach).
On the other hand, some Multi-Agent planners invoke a
goal-allocation phase before starting to plan to decrease the
effort of computing individual plans [4, 24]. During goal
allocation, a relaxed plan is computed per goal and robot to
either return an estimated cost or to identify unfeasibility.
This process would be repeated multiple times, concretely
|Agents| × |Goals| resulting in a huge loss of computation
time, especially when exploring all of the search space to
identify unfeasible goals.

Therefore, we contribute a methodology that uses Actu-
ation Maps (AMs) to extract path-planning related informa-
tion. That information is used to later boost the performance
of a multi-agent planner. In concrete, we use these maps
as a preprocessing step to speed-up the goal assignment
phase. AMs are built only once before the planning pro-
cess, one per robot, at a very low cost in comparison to the
impact on time savings observed later in goal assignment.
The AMs, from the robot-dependent reachability maps [27],
not only determine the feasibility of each pair robot-goal
but also allow us to efficiently compute an estimated cost
of achieving that goal. As a result, the planner receives the
estimated cost information as input, and saves time by sim-
plifying the goal allocation computation, directly assigning
goals to robots.

In our previous work, we showed that combining a pre-
processing operation with MAP could bring huge savings on
planning time [29]. More specifically, we used AMs to esti-
mate the cost of each robot when actuating each goal way-
point. Then, we introduced those estimations into the goal
assignment phase to distribute the goals among the robots
and plan individual paths that together solved the coverage
problem.

In this paper, we extend that approach with various
contributions:

– Introduction of collision avoidance, with a replanning
phase solving the conflicts between the individual paths
of each robot.

– Generalization of robot shape models, from circular
only to any-shape, updating both the AMs and the
information extraction to generate the PDDL problem.

– Evaluation of four different configurations of our
approach against two centralized planners and three
multi-agent planners.

– Description of the overall planning architecture, now
organized into four modules, and detailed explanation
of the preprocessing step.

– Description of the type of planning instances in the
coverage problem where our approach has the greatest
impact.

J Intell Robot Syst (2020) 98:165–190166



– Description of the Goal Allocation process and the
deletion of unfeasible goals.

– Description of the MAP algorithm - including a new
version that detects and solves interactions among
agents.

This paper is structured as follows: in Section 2 we
describe the kind of problems for which our approach has
been designed, and we include some planning formaliza-
tions. Then, on Section 3 we describe the coverage problem
we want to solve. On Section 4, we present our con-
tributed planning approach with pre-computed knowledge.
Section 5 explains in detail the preprocessing step, which
is our main contribution. After that, Section 6 contains the
description of the MAP algorithm. On Section 7 we briefly
extend our approach to MAP problems that involve inter-
actions between robots. Then, on Section 8, we extend the
formalization of circular robots to any-shape robots. On
Section 9 we show illustrative experimental results of our
algorithm on different scenarios. Finally, we discuss the
related work and we present our conclusions and directions
for future work.

2 General Problem Formulation

Our approach can be easily applied to any robotic problem
that involves at least the following elements:

– a map of the environment;
– a set of potential goals, such as cleaning actuation

goals, to be executed by a set of agents over the
environment;

– a way to model that scenario into a PDDL domain and
problem.

The map can be modeled in different ways. In this
work, we start with an image representing the world’s
floor plan. From that image, we extract a navigation graph
over a grid of waypoints, which is used to generate the
PDDL problem. However, from the floor plan we can also
extract additional information related to the environment,
which is accomplished through the process of building the
AMs.

The set of potential goals can vary depending on the
problem to solve. In this paper we are focusing on the
coverage problem and as a result it is enough for the robots
to move through the environment. On alternative problems,
the goals could be: looking for objects, opening doors or
achieving some clients’ orders through the environment.

The potential of our approach relies on the ability to
extract information from the map related to the goals to be
achieved. The aim is to transform that information into a set
of estimation costs that can speed up the planning process.

For the coverage problem, we compute the estimated cost as
the distance from the robots to each of the waypoints. Again,
on alternative problems, the estimated cost could be related
to the distance to a required object, the dangerousness
or reliability of a path, or the features of a robot, such
has maximum velocity or the existence of manipulation
capabilities.

In order to transform this kind of problems into PDDL
we have to model (1) a domain; (2) a problem; and compute
(3) a set of estimated costs. The domain and problem are a
lifted representation in predicate logic of the planning task.
However, most of the planners always perform a grounding
transformation from the domain and problem to generate
the planning task. The aim of solving a planning task is to
find a plan that reaches the goals specified on the task while
minimizing some cost.

Definition 1 (Planning Task (Single Agent)) A single-agent
classical planning task [12] is a tuple � = 〈F, A, I, G〉,
where F is a set of propositions, A is a set of instantiated
actions, I ⊆F is an initial state, and G⊆F is a set of goals.

Each action a ∈ A is described by (1) a set of
preconditions (pre(a)) that represent literals that must be
true in a state to execute the action; (2) and a set of effects
(eff(a)), which are literals that are expected to be added
(add(a) effects) or removed (del(a) effects) from the state
after the execution of the action. The definition of each
action might also include a cost function, C(a) (the default
cost is one). The solution of a planning task is a plan, which
is a sequence of actions π = (a1, . . . , an) that, if executed
in order from the initial state, reaches a state where all the
goals in G are satisfied.

As we are working with multiple agents, we consider
a MAP formalization where a set of m agents, � =
{φ1, . . . , φm}, has to solve the given task.

Definition 2 Multi-Agent Planning task. The MAP task is
formed by a set of planning subtasks, one for each agent,
M = {�1, . . . , �m} where M refers to the MAP task. Each
planning subtask �i includes only the facts, actions, goals
and initial state related to the agent φi .

Last, we define the estimated cost per agent and goal.

Definition 3 Estimated cost per agent and goal (EC). EC =
{(g, φi, c) | g ∈ G, φi ∈ �, c = C(g, φi)} such that the C

function represents the cost for an agent φi to reach the goal
position g from the agent’s initial state. If a goal cannot be
reached by an agent, c will be ∞.

Usually, these estimated costs are computed to divide the
goals among the agents before the planning process starts. In
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Listing 1 Action Navigate in
PDDL

planning, c is obtained with a heuristic function. However,
in our approach, the C function is given by the AMs.
Even though MAP is domain-independent, our function to
compute the estimated cost is domain-dependent and should
be set up differently on each domain, though it would be
very similar to the one we propose here for most of the
related robotic domains.

3 The Coverage ProblemDescription

In this Section we consider heterogeneous teams of robots
that actuate in a 2D environment, where the world is
represented by a 2D image that can be downsampled to a
2D grid of waypoints. The Actuation Map gives information
about the actuation capabilities of each robot, as a function
of robot size and initial position [27].

At first, we assume that robots are circular and thus
the only robot feature is its size, with 2D grid positions
being rotation-invariant. Other shapes can also be trivially
considered in our approach by extending the PDDL domain
file to take into consideration robot orientation as well. This
aspect is further explained in Section 8.

As it was previously said, we modeled the domain and
problem using PDDL. The domain has two types of objects:
robots, which act as agents; and waypoints, which represent
positions in the discretized world.

The planning task of the coverage problem consists on
finding a sequence of navigation and actuation actions for
each robot so that all actuation goals are covered by any of
the robots’ actuators, while minimizing the execution time.
An actuation goal refers to the atomic action of marking a
waypoint as “actuated”. Going back to the vacuum cleaning
example, the actuation goal represents the objective of
cleaning a certain waypoint position. For the coverage
problem, the feasible actuation goals are waypoints that are
reachable to some agent (in terms of actuation reachability).
In alternative problems, the actuation goal of the coverage
problem can be replaced by other types of goals.

Therefore, the set G is a list of waypoints to actuate on
(positions that need to be covered). The PDDL domain we
created has four predicates:

– At (robot, waypoint): defines the robot position;
– Connected (robot, waypoint, waypoint):

establishes the navigation connectivity between way-
points, specified for each robot, and given the robot

heterogeneity, some connections might be traversable
by some robots and not by others;

– Actuated (waypoint): indicates which way-
points were already actuated; this predicate is used to
specify goals;

– Actuable (robot, waypoint, waypoint):
shows which waypoints can be actuated by a robot
when located on a different waypoint location.

For the coverage problem, robots have to actuate every
waypoint in G (as long as the goal is feasible). The
waypoints, when connected, generate a navigation graph for
a certain robot. The three actions that are defined in the
domain are called navigate (Listing 1), actuate-on
(Listing 2) and actuate-other (Listing 3). The action
actuate-on is used to actuate the current position of the
robot. The third action is employed to mark a waypoint
as actuated if the waypoint is identified as actuable
from the robot’s current location i.e. the waypoint is located
inside the robot’s actuation radius on the real environment.
Actions navigate and actuate-/on/other can be
executed by an agent when it is placed on a waypoint. Both
actuate-on and actuate-other have as effect the
predicate actuated.

In order to generate a PDDL problem, the waypoints’
grid resolution is defined in advance using a discretization
step. After that, a navigation graph and a set of actuable
waypoints are defined for each robot, taking into account
their physical characteristics. All this information is
generated on the preprocessing step, further explained in
Section 5.

4 Architecture

As it was previously said, this work combines Actuation
Maps (AMs) with Multi-Agent Planning (MAP). The
contributed architecture can be seen in Fig. 1. It has been
divided into four modules and receives as input the map of
the environment, the general knowledge related to the task

Listing 2 Action Actuate-on in PDDL
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Listing 3 Action Actuate-other
in PDDL

to solve and the features of the set of robots. The aim of each
module is described below.

1. Actuation Maps module: it is in charge of generating the
AMs for each given robot. It also extracts the map fea-
tures that can potentially alleviate the planning process
(e.g. estimation costs), and it generates the planning
problem in PDDL. It is explained on Section 5.2.

2. Multi-Agent Planning Task Generation module: once
the outputs from the prior module and the domain
are received as input, the goal assignment process is
launched. This module is in charge of dividing the goals
among the agents following some goal-strategy. Then,
a set of domain and problem is generated for each
agent, which is known as factorization. It is explained
on Section 5.3.

3. Multi-Agent Planning Algorithm module: the individ-
ual planning process and the merging phase are run on
this module. It is explained on Section 6.

4. Conflicts solver module: if any interactions need to be
solved, this module employs a plan-reuse-planner to fix
them. It is explained on Section 7.

The following subsections explain the essential informa-
tion regarding both components of our contribution: AMs

and MAP. We introduce here the base work needed to later
explain the preprocessing step and the MAP algorithm.

4.1 ActuationMaps

Our system receives as input the Environment map which
represents a 2D environment (e.g. building floor plan) and
m Robot models with the agents’ features. There is a third
input provided by the user that refers to the General knowl-
edge of the environment (i.e. tasks to solve). These three
inputs represent the input information described in Fig. 1.

We briefly summarize here the process of building the
AMs [27]. We assume there is an occupancy grid map,
i.e., a gray-scale image representing the environment. In
this image each pixel has a value with the probability of
the corresponding world position being occupied by an
obstacle. This occupancy grid map is first transformed into
a binary image of free and obstacle pixels, using a fixed
threshold. An example of the resulting black and white
image is shown in Fig. 2a.

We define G as the set with all pixel positions from the
input binary image. The input image is a visual representa-
tion of M, the set with the obstacle pixel positions, where
white represents free space and black represents obstacles.

Fig. 1 Complete architecture
that combines actuation maps
and multi-agent planning

Multi-Agent Planning

Task Generation
Actuation Maps
(Feature Extraction)

If any 
conflicts

arise

Multi-Agent Planning

Algorithm
Conflicts solver

 (Plan-Reuse Planner)

Environment 

Map

Features

Robot1

Features

Robot2

Features

Robotm
...

Input information

2 1

3 4
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Fig. 2 Simulated map and two
heterogeneous robots with
different sizes in (a); colored
regions represent the navigable
space, Li (r0

i ), for 2 robots with
different sizes, depending on
size and initial position of robots

We define the structuring element as an image that repre-
sents the robot shape. Assuming first the circular robot case,
we represent the robot with Ri , the set with pixel positions
from a circle with radius equal to the robot size. The mor-
phological operation dilation on the obstacle setM byRi is:

M ⊕ Ri =
⋃

r∈Ri

Mr (1)

where Mr is the translation of M by vector r.
The visual output of applying this dilation operation to a

map of obstacles is the inflation of obstacles by the robot
size. The free configuration space, Cf ree, is then defined as:

Cf ree
i = {p ∈ G | p /∈ M ⊕ Ri} (2)

where G is the grid set with all the pixel positions. The free
configuration space represents the feasible positions for the
robot center, but does not give any information about the
regions that can be actuated by the robot.

In order to determine which regions of the environment
are actuable, the partial morphological closing opera-
tion is used. Morphological closing is a dilation operation
followed by a morphological erosion. Because dilation and
erosion are dual operations, the morphological closing of
obstacles (erosion applied to the image with inflated obsta-
cles) is equivalent to the dilation of free configuration space.

However, the morphological closing cannot be used to
determine the actuation capabilities, because it does not
consider which points are reachable from the initial robot
position, and different initial positions do change the overall
reachability in terms of actuation. The partial morphological
closing was introduced in order to consider the initial robot
position when determining the actuation capabilities. In
order to use the partial morphological closing, the algorithm
needs to find the navigable regions first. The set of navigable
regions from a starting robot point r0

i is always a subset of

Cf ree
i .

Li (r0
i ) = {p ∈ G | p connected to r0

i ∧ p ∈ Cf ree
i } (3)

The navigable set Li (r0
i ) is the set of points that are

connected to the initial position r0
i through a path of

adjacent cells in the free configuration space.

In Fig. 2 we show a simulated map with 2 robots with
different sizes, and the respective navigable space.

Finally, by applying the the second dilation operation of
the morphological closing to the navigable set (subset of
Cf ree) instead of applying it to the free configuration space,
we obtain the partial morphological closing operation. The
actuation space is thus the dilation of the navigable space.
The structuring element for this second operation is the
one that models the actuation capabilities, T , which dilates
the navigable space according with the actuation model. If
instead the structuring element R is used again, that would
be equivalent to assuming an actuating ability completely
coincident with the entire robot footprint.

Ai (r0
i ) = Li (r0

i ) ⊕ Ti (4)

While the actuation space, Ai (r0
i ), is the set containing

all the waypoints that can be actuated by a robot, its
representation as an image, as shown in Fig. 3, is the
Actuation Map. We also use the term Actuation Map to refer
to the overall technique to determine actuation capabilities
of robots. In the figures below we show the actuation map,
obtained after applying the partial morphological closing
operation to the original map. The actuation map can be
used as a visual representation to show what the robot can
actuate from any point reachable from its initial position,
and we use them to visually represent in figures the sets
corresponding to each robot’s actuation space.

As an example, we can consider again the vacuum
cleaning robot case. The configuration space represents
the possible center positions for the robot; the actuation
space A represents the regions the robot can clean; and
the non-actuable regions are positions that the robot cannot
clean. For circular vacuum cleaning robots, corners of the
environment are non-actuable regions they cannot clean due
to the robot’s circular shape.

4.2 Multi-Agent Planning

When multiple agents are involved (e.g. robots, workers,
drivers) we talk about Multi-Agent Planning (MAP) [34].
MAP computes a plan for/by a set of agents that jointly
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Fig. 3 Colored regions in (b)
and (c) represent actuation
spaces for respective robots, i.e.
the points in the environment
that each robot can actuate,
depending on their size and
initial position shown in (a); the
actuation capability in this
example is completely
coincident with the entire robot
footprint, i.e., the actuation
range is equal to the robot radius

solve a planning problem. Usually, MAP tasks have to deal
with some coordination issues among agents or the shar-
ing of resources. From the perspective of MAP, planning
domains exhibit a coupling level that ranges from loosely-
coupled to tightly-coupled, depending on the degree of
interaction between agents plans [7]. Agents on loosely-
coupled domains barely interact with each other. Tightly-
coupled domains have a considerable level of interac-
tion among agents. This implies solving interactions while
planning (agents’ communication) or afterwards (conflict
solving). Our domain is loosely-coupled, as agents barely
interact with each other. However, there might be colli-
sions that are not detected by the planner. A different
approach involving collision-detection is further explained
on Section 7.

In Multi-Agent Planning two main approaches have been
commonly used: centralized and distributed. The centralized
approach involves a master agent which knows everything
about the agents and the environment. The master agent sees
the rest of agents as resources and is also responsible for
coordinating and solving the interactions that might arise
during the planning process. On the distributed approach
each agent builds its own plan synchronously with the rest
of the agents. Depending on the amount of communication
allowed among the agents, they will need to share their
information during the planning process or they have
to later merge their plans and solve the conflicts that
might have arisen. Our MAP algorithm follows the latter,
using plan merging [13, 25] to build the solution plan
after the individual planning process. Thus, no cost of
communication is involved and there is no implementation
inside the algorithm regarding communication.

5 Preprocessing

The contributed preprocessing step is shown in Fig. 4. This
is the point where both techniques, AMs and MAP, are com-
bined and complement each other. Section 5.1 describes the
discretization process, downsampling the waypoint density
from the original pixel grid. Section 5.2 describes the

generation of goals, the detection of unfeasible regions and
the computation of estimated costs. Section 5.3 describes
the process of generating the MAP task and how the task is
factorized (divided) in subtasks.

5.1 Discretization

For the planning problem, it is possible to consider each
individual pixel as a waypoint. However, that approach
results in a high density of points that would make the
planning problem excessively complex. Moreover, there is
some redundancy in having points that are too close to each
other, as their difference is not significant in terms of the
environment size and localization accuracy.

Therefore, we reduced the set of locations from all pixels
to a smaller set of locations. We considered again waypoints
distributed into a grid, but now the grid-size is greater than
one pixel. The reduced grid of waypoints is obtained using
a downsampling rate sr , such as the number of waypoints
in each direction in the new grid is sr times less than the
number of waypoints in the original grid of pixels.

After downsampling, we can find the connectivity
between points to construct the navigation graph of each
robot, shown in Fig. 5a. It is also possible to find which
waypoints can be actuated from other waypoints using the
distance between them, as shown in Fig. 5b, by considering
the maximum actuation radius.

The problem of such discretization is the change in
the actuation space topology. Adjusting the position of
waypoints could allow a better representation of the
topology of the environment, but the multi-robot nature of
the problem compromises that solution. In order to deal
with multiple robots with different configuration spaces, for
each agent, we independently adjust the waypoint position
-temporarily- in a hidden manner invisible to the other
agents. When discretizing each robot’s configuration space,
we might consider a waypoint as belonging to the free
configuration space even if it is strictly outside it, as we
assume an error margin to compensate for the discretization
error. Nevertheless, we still maintain the original waypoint
position in further steps, such as determining actuation
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Fig. 4 Preprocessing stage
before the planning process
starts. First, inputs are processed
in order to generate the AM for
each agent. Then, a
discretization is applied to
generate all the required
information for planning such as
the navigation graph for the
PDDL problem, and the list of
estimated costs. Once this
information has been generated,
GA starts and the MAP problem
is divided into subproblems with
specific goals assigned to each
individual problem
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feasibility of that waypoint, and for visualization purposes
as well. When determining the navigation graph of each
robot, an unreachable waypoint position might be moved

to the closest point in the configuration space, if the
adjustment is under a given margin δ. As stated previously,
the adjustment is always temporary to the construction of

Fig. 5 In a we have an example of the free configuration space, with
the discretization waypoints shown as green dots. The blue lines repre-
sent the connectivity between waypoints in the navigation graph of the
robot. Using parameters δ and α it is possible to maintain the topology

of the free configuration space by allowing points in the navigation
graph that were originally unfeasible for the robot. In b, the actuation
map of the same robot, and the respective actuation graph represented
with yellow lines
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the connectivity graph of each robot. After the navigation
connectivity is tested, the waypoint position resets to its
default grid position for the next steps, such as determing
the actuation feasibility, and the navigation and actuation
graphs of other robots.

Moreover, when determining the connectivity of way-
points for the navigation graph, only the eight grid neigh-
bors are considered. A∗ is then used to determine the real
distance between waypoints (e.g., around obstacles), and
connectivity is only considered if the real distance is at most
a factor of α = 1.2 the straight line distance between them.

Finally, all waypoints that belong to the robot actuation
map should be connected to some waypoint of its navigable
graph. If that is not the case after the previous steps, we
connect the isolated waypoints to the closest navigable
vertex in line of sight, even if their distance is greater than
the maximum actuation distance, again to compensate for
the discretization error. Therefore, while the planner may
return an actuate action to cover waypoint A from the
navigable waypoint B in the discretized world, a real robot
would have to move closer from the waypoint B to waypoint
A in order to actuate the latter.

The grid density is chosen manually in order to adjust
the level of discretization. As for the α and δ parameters,
they were tuned empirically such as the free space
topology is still maintained even while using lower density
discretization of the environment. By trial and error, we
found empirically that α = 1.2 works for all the tested
scenarios. As for the δ parameter, we set it to always
start with a value of 3 pixels, then build the discretized
model and verify if it is valid, i.e., if all the waypoints
belonging to the actuation map become feasible for the
respective robot in terms of the discretized representation.
If not, we increment the parameter until a topologically
consistent representation is found (number of feasible goals
equals number of waypoints inside actuation map). Even
though this fine-tuning methodology seems sensitive to
the robot heterogeneity, the truth is that the final δ value
depends on the size of the bigger robot, because the
correct discretization of the configuration space is more
sensitive to the δ parameter for bigger robots. Through
experimentation, we found out that if a certain value
of the δ parameter works well for the biggest robot,
it always produces the correct discretization for smaller
robots. Moreover, we also observed that δ = 4 pixels
worked well for all the different and very diverse maps we
tested in our experiments with circular robots, only failing
for the any-shape experiments where the configuration
space discretization is more sensitive to the possible robot
orientation. For the any-shape robot experiments, we found
that δ = 6 pixels was enough to obtain good a discretization
for all the environments tested. The consistency of the δ

parameter over different environment maps shows that these

parameters can be map-independent to a certain extent, with
most of the work being easily automated.

5.2 Extracting Cost Information from Actuation
Maps

The downsampling rate sr was set manually, depending on
the resolution one wants for the grid of waypoints. If the
original pixel resolution would be used, the resulting grid
of waypoints G′ would contain all pixels and it would be
equivalent to G. Otherwise the set G′ represents the grid
waypoint positions after downsampling.

Using the concept of AMs it is possible to very easily
find UG, the list of unfeasible goals per agent:

UG = {g ∈ G′, φi ∈ � | g �∈ Ai (r0
i )} (5)

The positions in the actuation space Ai (r0
i ) are feasible

actuation goals for agent φi . The information from the UG

list can speed-up goal assignment by avoiding computation
related to unfeasible goals, but it does not provide any
information about the cost for each robot to accomplish a
feasible actuation goal.

For that purpose, we present the following extension.
We build the navigable space Li in an iterative procedure,
from the starting position r0

i . In the first iteration we have
L0

i (r
0
i ) ← {r0

i }, and then the following rule applies:

Lj
i (r

0
i ) = {p ∈ G | ∃q ∈ Lj−1

i (r0
i ) : p neighbor of q

∧p ∈ Cf ree
i ∧ p �∈ La

i (r
0
i ) ∀a < j} (6)

When using this recursive rule to build the navigable
space, we guarantee that any point in the set Lj

i (r
0
i ) is

exactly at distance j from the initial position r0
i . Because

we want to build the complete actuation space, the iterative
computation of Eq. 6 stops when all pixels have been
expanded at least once.

Furthermore, if we build the actuation space sets with the
intermediate navigable sets Lj

i (r
0
i ),

Aj
i (r

0
i ) = Lj

i (r
0
i ) ⊕ Ti (7)

then the intermediate actuation set Aj
i (r

0
i ) represents the

points that can be actuated by the robot from positions
whose distance to r0

i is j . The actuation space defined in the
previous Section can also be alternatively defined as

Ai (r0
i ) = {p ∈ G | ∃a : p ∈ Aa

i (r
0
i )} (8)

The actuation cost is defined for g ∈ Ai (r0
i ):

ACi (r0
i , g) = min{j | g ∈ Aj

i (r
0
i )} + 1 (9)

The actuation cost ACi (r0
i , g) represents, for each g ∈

Ai (r0
i ), the minimum number of actions needed for the

robot to actuate the grid waypoint g if starting from the
initial position r0

i , measured in the pixel-based grid G. In
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Eq. 9, the minimum j∗ represents the minimum distance
(i.e., minimum number of navigate actions) needed to travel
from r0

i to some point from where g can be actuated. The
added one in Eq. 9 accounts for the one actuate action
needed to actuate g, after the j∗ navigate actions needed to
reach a place from where the robot can actuate g.

Thus, the cost function C presented previously in
Section 2 is defined in Eq. 10, where sr is the downsampling
rate. The division by sr transforms the estimated cost of
actions measured in the pixel-based grid G, ACi (r0

i , g),
to the respective cost value in the downsampled grid of
waypoints G′. The ceil function rounds up the result of the
division to the smallest integral value that is not less than
ACi (r0

i , g)/sr . The cost function C is domain-dependent
and works for the coverage problem. If a different problem
is given as input, the cost function should be redefined.

C(g, φi) = ceil
(
ACi (r0

i , g)/sr

)
(10)

Finally, the Estimated Cost per Goal-Agent list EC is
defined in Eq. 11.

EC ={〈g, φi, c〉 | g∈G′∧φi ∈�∧g∈Ai (r0
i )∧c=C(g, φi)}

(11)

5.3 Multi-Agent Planning Task Generation

Once the discretization of maps has been performed, we
have all the information needed to generate the MAP task
M, which is formed by a domain (received as input) and a
problem (generated through the discretization). The inputs
to the Goal Assignment (GA) phase are (1) the PDDL
domain; (2) the PDDL problem; (3) the list of estimated
costs where c is computed as the number of steps for an
agent to reach the goal position g from its initial position;
and (4) the list of unfeasible goals UG = {g ∈ G, φi ∈
� | C(g, φi) = ∞}. The cost of navigating between two
neighbor grid waypoints is 1 unit. As long as EC is provided,
UG is not used inside the MAP algorithm. The case when
EC is not provided is later explained in this Section.

In Multi-Agent systems, in order to perform task
allocation [8, 18] some strategy has to be determined or
implemented, as the aim it is to divide the MAP task in
subtasks to alleviate the planning process afterwards. In
addition, a goal-assignment strategy (GAS) needs to be
chosen to define the way goals are assigned to agents by the
system.

In our approach we took the Load-Balance (LB) strategy

previously defined in [2], that first calculates k = �|G|
|�| �,

which represents the average number of goals per agent.
Then, it assigns each goal g ∈ G to the agent φi ∈ � that
achieves g with the least cost. This strategy avoids, if

possible, assigning more goals than k to each agent. The LB
assignment strategy is used when minimizing the maximum
number of actions per agent (makespan). As a second
option, we also took the Best-Cost (BC) strategy also
defined before in [2], which simply assigns each goal to the
agent that can achieve it with the least cost. The BC strategy
is used when minimizing the total number of actions over
all robots (plan length).

As in [2], only when the information about estimated
cost per pair robot-goal is not available for some reason,
our MAP algorithm would perform GA computing a relaxed
plan using the FF heuristic [19]. This is not a contribution
of the paper itself, as it was already in [24]. However, in
that work, when a goal was unfeasible for every agent, it
was assigned to all of them. In our approach, when the
goal has been identified as unfeasible by all agents, the
relaxed plan is not computed for that pair robot-goal and
the goal is not included into the M task. This behavior is
not common in classical deterministic Automated Planning,
as planners expect that the problem does not contain any
unfeasible goal. As our approach separates goal allocation
from planning, we can easily deal with unfeasible goals.
This small contribution gives us more flexibility when
working for real environments, as it is better to obtain a
plan that solves 95% of the goals than just failing during
planning. To plan using soft-goals [23] or working on
oversubscription planning [17, 31] would have been other
ways to deal with unfeasibility, but they are out of the scope
of this work. In summary, there are two contributions to
the GA process: (1) the detection and deletion of unfeasible
goals is a contribution that helps not only on skipping
the computation of those relaxed plans but also avoids the
planning process to fail; and (2) to use information from
AMs, as the algorithm receives and processes the estimated
costs from the AMs to skip the computation of the relaxed
plans.

The first step is to allocate the feasible goals to the agents.
This step uses the information of estimated costs received
from AMs. Goal assignment phase (GA) returns as output
(1) a subset of �′ agents, �′ = {φ′

1, . . . , φ
′
n}, that will be

the only ones who will plan to solve the problem; and (2) a
new MAP task M ′ = {�1, . . . , �n}. As a result, a specific
PDDL domain and problem will be generated for each
φ′

i agent which only includes the goals each agent has to
achieve. As it previously mentioned, if a goal is unfeasible
for all the �′ agents, the MAP algorithm will discard it
from the new MAP task M ′, so that the process of planning
will not fail. The output of this process is a pair (domain,
problem) for each agent as in Fig. 4 after the Factorization
step and in Eq. 12.

M ′ = 〈�1, ..., �n〉 =
{
〈D1, P1〉, 〈D2, P2〉, ..., 〈Dn, Pn〉

}

(12)
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Fig. 6 High level description of
the MAP algorithm. Inputs:
MAP task (M ′), Single-Agent
Planner (SAP ). Output:
resulting plan (π ) or no solution

6 TheMulti-Agent Planning Algorithm

In order to solve the MAP task we use the distributed
phase of a previous work of the authors [24]. Our algorithm
receives as input a MAP task, which consists of a PDDL
domain and problem files (Fig. 6) for each agent in φ′

i ∈ �′.
On the first step, each agent builds its plan individually
(line 1). Then the agents’ plans are merged by a simple
concatenation of plans in one resulting plan (line 2). If
the merged plan is valid, we parallelize the plan (line 4)
generated by the merging step.

Parallelization is performed in two steps: converting the
input total-order plan into a partial-order one by a similar
algorithm to [35]; and parallelizing this partial-order plan
by ordering actions in the first time step that satisfies all
ordering constraints in the partial-order plan. The main
advantage of parallelization is to be able to return a plan
in which on each time step, more than one action can
be executed at the same time, taking advantage of having
multiple robots in the environment as well. As the domain
does not have any interactions, there is no need to fix the
plan regarding interactions.

To set up the algorithm, an off-the-shelf planner had
to be chosen. The advantage of this MAP algorithm is
that any state-of-the-art planner can be easily included on
the distributed planning phase without further code modi-
fication. Our configuration employs LAMA-UNIT-COST as
SAP . LAMA-UNIT-COST corresponds to the first search that
LAMA performs, using greedy-best-first with unit costs for
actions [30]. The merged plan is validated using VAL [20],
the validator from the International Planning Competition
(IPC).1 On Fig. 7 we show a solution example obtained from
the MAP algorithm. It corresponds to the scenario called
Corridor-High later on the experiments.

7 Dealing with Interactions

Real-world robotics environments might imply to deal
with potential interactions among robots (at the very least)

1http://icaps-conference.org/index.php/main/competitions

e.g. collisions, sharing a resource, or cooperation. On the
previous description of the coverage problem we did not
explicitly consider any kind of interactions. Our idea was (1)
to test first the scalability of the MAP algorithm; and (2) to
generate, as fast as possible, a valid solution. Robots might
occasionally collide at some specific step of the solution
plan. However, that collision could be easily resolved during
execution by forcing one of the robots to wait until the
other robot has left the conflict zone. Then, the stopped
robot will continue executing the rest of its plan. On the
other hand, there is a subarea of Automated Planning called
Planning by Reuse that has been widely employed in areas
such as Case-Based Planning [6], or replanning when plan
execution fails [15]. Usually, planners that perform plan
repair receive three inputs: a domain, a problem and a plan
to be fixed. Examples of this kind of planners are LPG-
ADAPT [15] or ERRT-PLAN [5]. Therefore, an improvement
of our approach is to detect and fix potential collisions right
after the individual planning process using an off-the-shelf
plan reuse planner. This new feature makes our architecture
more robust when executing the solution plan in a real
environment. Thus, we slightly changed our PDDL domain
to track the collisions by adding a new predicate called
occupied.

– Occupied (waypoint): indicates that there is a
robot on that waypoint.

That predicate is set as a new precondition of the
navigate action described in Listing 3. This allows the
agent to only traverse a connection if the destination way-
point is not occupied by a robot. The predicate occupied
in combination with the parallelization algorithm avoids two
situations: (1) Two robots cannot be on the same waypoint
at the same plan step. (2) As we build a parallel plan, neither
of them can swap positions during the same plan step. The
reason is that in order to move robot1 to y from z, y should be
not occupied first. Same happens to z for robot2. Thus, both
actions are mutually exclusive and the parallelization algo-
rithm does not allow both actions to be performed together.
One of the robots would need to move somewhere else first.

The new version of our MAP algorithm is described in
Fig. 8. As the MAP algorithm starts with the individual
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Fig. 7 These figures represent the Corridor scenario used in the exper-
iments. The waypoint discretization is shown in (a). The resulting path
for each robot is shown in (b) to (e), after solving the planning problem

using load balance as goal-strategy. Path 1 belongs to the smallest
robot. Path 4, to the biggest one

planning phase, no collisions will be detected at that point
(line 1). After concatenation, the solution plan is validated
by VAL (line 3). The validator will detect, if any, mutex
actions related to occupied positions as explained above. If
so, the plan will be invalid. As a result, the M ′ task and the
invalid plan are sent to the plan reuse planner (line 6). When
the plan is fixed, the parallelization step is applied (line 7).
Finally, the MAP algorithm runs VAL again (line 8). If the
plan is valid, it is returned as the solution. The configuration
of our algorithm is the same as the previous version - the
Single-Agent Planner is LAMA-UNIT-COST. The plan reuse
planner is LPG-ADAPT.

8 Extending the Approach to Any-Shape
Robots

For the case of non-circular robot footprints (Fig. 9), given
the robot model is not rotation invariant, we need to
discretize orientation as well. We use a world representation
that is composed of multiple layers, where each layer

represents one orientation. We then using the partial
morphological closing operation on each layer, and with that
approach we determine individually for each orientation the
corresponding actuation space [28].

First, the algorithm needs images to model both the
robot and its actuation capabilities. Both are parametrized
by images that can be rotated and scaled to represent any
robot. As input, it is also necessary to give the center of the
robot and actuation in terms of their model images, and their
relative position.

Here we assume a quantization of the orientation given
by nθ layers. Using the input image for the robot model, we
rotate it by θj = 2jπ/nθ , where 0 ≤ j < nθ , in order to
build a model of the robot for each possible orientation, as
shown in Fig. 10. The variable j is used as a layer index.

In terms of morphological operations, we consider two
structuring elements, R and T , to represent the robot and
actuation models respectively. After rotating them, we get
R(θj ) and T (θj ), with 0 ≤ j < nθ .

Using the structuring element for the robot model, we
again apply morphological operations to determine the

Listing 4 Action Navigate that
now checks occupied positions
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Fig. 8 MAP algorithm that also
includes the plan-reuse phase.
Inputs: MAP task (M ′),
Single-Agent Planner (SAP ),
Plan-reuse planner (R). Output:
resulting plan (π ) or no solution

free configuration space, now for each possible quantized
orientation, dilating the map using a different robot shape
model for each layer. We use a circular representation for
the layered orientation, where the next layer after layer
j = nθ − 1 is layer with index 0.

Cf ree(θj ) = {p ∈ G | p /∈ M ⊕ R(θj )} ∀0 ≤ j < nθ

(13)

In order to model a robot that navigates through
waypoints, we need to establish the type of connectivity
between points in different layers, such as it is equivalent to
the type of motion the robot actually has. As an example,
using the connectivity graph from Fig. 11, where one point
is connected to all its neighbors in the same layer, and
the respective positions in adjacent layers, is equivalent to
considering an omnidirectional model of navigation.

Given the connectivity model, it is then possible to
find all points in any layer of the configuration space that
connect with the starting robot location r0

i , obtaining the
navigable sets Li (r0

i , θj ), for 0 ≤ j ≤ nθ layers. The
initial orientation is still coded on r0

i , and the navigable set

Fig. 9 Environment and robot models used to test the extended
approach to any-shape robots

Li (r0
i , θj ), represents layer j of the navigation space, which

has orientation θj . We show on Fig. 12 different layers of
the navigation space for two different robots.

For the any-shape robots, a multi-layer representation is
used to determine the Actuation Map, representing different
orientations. However, in terms of accomplishing goals, we
assume it is irrelevant the orientation from which a robot
actuates on a waypoint position.

Therefore, while on the rotation-invariant scenario the
domain was discretized in a series of 2D waypoints, for
the any-shape case there are two types of waypoints:
the 3D waypoints representing (x, y, θ) position, and the
2D waypoints representing (x, y) positions invariant to
orientation.

The navigability graph now becomes a graph of 3D
waypoints connected to each other, modeling the motion
capabilities of robots in the world in terms of both rotation
and translation, individually or combined, as exemplified
for different orientation layers on Fig. 13.

We then use a second dilation operation to the navigable
space in each layer to obtain the actuation space for
each orientation. The structuring element for this second
operation is the one that models the actuation capabilities,
T , which dilates the space according with the actuation
model. If instead the structuring element R is used again,
that would be equivalent to assuming an actuating ability
completely coincident with the entire footprint. Thus the
actuation space for each layer is given by

A(r0
i , θj ) = Li (r0

i , θj ) ⊕ T (θj ) (14)

The actuation space gives the actuation capabilities
for each orientation for a given robot shape and starting
position. So, if a point belongs to A(r0

i , θj ), then it can be
actuated by the robot. We show in Fig. 12 the navigable and
actuation spaces for different layers, given the robots and
map shown in Fig. 9.

After determining the actuation space for each layer, we
can obtain the overall actuation map in a rotation-invariant
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Fig. 10 Example of an image
representing the robot footprint,
rotated for three different
angles, and used as structuring
element in the morphological
operations applied to the
respective orientation layers;
robot center shown in red

representation by projecting the multiple layers into one
single 2D image.

P(r0
i ) =

⋃

θj

A(r0
i , θj ) (15)

P(r0
i ) has the same kind of representation we had with

the circular robot, where the actuation map is a single 2D
image not depending on the orientation.

The actuation graph is now a graph of 3D waypoints
connected to 2D waypoints, representing the actuation of a
rotation-independent position in the projected 2D actuation
map, from a 3D robot waypoint location, also shown
in Fig. 13. The predicates on the PDDL problem are
represented as follows:

– Connected (robot, 3Dwaypoint, 3Dwaypoint)
– Actuable (robot, 3Dwaypoint, 2Dwaypoint)

For each 2D waypoint in the circular robot scenario,
there is now nθ 3D waypoints in the same (x, y) position,
representing the different orientations a robot can have on
the same 2D waypoint. As we show in Fig. 14, the two
graphs are constructed independently of the initial position,
allowing very easily to change the starting location of any
robot and solve a different instance of the same problem.
Thus, there were no modifications in the modeling of the

PDDL problem. The 3D to 2D representation is transparent
to the planning process.

The navigate action moves through 3D waypoints,
and the actuate action makes 2D waypoints have the
actuated predicate. The list of goals to solve the prob-
lem is still given by a list of 2D waypoints that cover all
the space. Thus for the same map, the coverage problem is
still the same in terms of goal waypoints and its model-
lization, but now we plan for robots to move through the
environment and actuate goal positions from some planned
orientation. The PDDL domain did not need any further
modifications.

If we project the multiple layers of the graphs in a 2D
image, we can analyze which waypoints are navigable in
terms of the robot motion, and which ones are only feasible
through an actuation action. As we show in Fig. 15, some of
the waypoints are not feasible by any of the robots, and all
the feasible waypoints lie inside the Actuation Space (grey
region of the images).

9 Experiments and Results

In this Section we show the results of the experiments that
were designed to test the impact of the preprocessing on
two different versions of our algorithm, MAP. First, on the

Fig. 11 Three adjancent layers
of the discretized orientation,
showing in blue the neighbor
points of a central orange dot,
representing the
connectivity/motion model
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Fig. 12 Navigable and
Actuation Space for 2
non-circular robots with
different sizes, for the scenario
shown in Fig. 9

following Section we describe the five scenarios designed to
run the experiments. Then, on Section 9.2 the experiments
on the coverage problem are analyzed. These results were

partially included on the previous version of the paper [29].
Finally, on Section 9.3 we show the results on the coverage
problem including collision detection.
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Fig. 13 The connected and
actuable graphs shown in
blue and yellow, respectively; as
shown for each layer, the yellow
actuation graph connects 3D
waypoints to the original 2D
green waypoints, and the blue
connectivity graph connects 3D
waypoints not only to neighbors
in the same layer, but also in
adjacent layers

9.1 Simulation Description

Here we describe in detail the scenarios used for running the
experiments. We designed five different scenarios, shown
in Fig. 16, each one with two levels of waypoint density
(H, the higher, and L, the lower density). The scenarios are
designed for circular robots except for the last one (called
Rooms) that is designed for any-shape robots.

– Mutual Exclusive: three wide parallel horizontal halls,
connected between them by two narrow vertical halls;

3 robots move within the horizontal sections, one in
each, and their actuation reachabilities are mutually
exclusive.

– Maze: maze-like scenario with narrow halls and
passages with different sizes, resulting in bigger robots
not reaching some parts of the maze, or needing to
traverse bigger paths to arrive to the same locations as
smaller robots.

– Corridor: four wide sections with openings of different
sizes connecting them; the opening decreases from the
top to the bottom, with all 4 robots being able to actuate

Fig. 14 The discretized graphs constructed are independent of the ini-
tial robot positions, allowing to run the problem from different initial
positions; the white regions (navigable space, dependent on initial

position) are covered by the graphs, but some black regions (if grey in
the respective configuration space, independent of initial position) are
also covered by the constructed graphs
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Fig. 15 All goal waypoints are
shown as spheres on top of the
Actuation Map: green represent
unfeasible waypoints, in red the
ones covered by the
connected graph, and in blue
the ones only covered by the
actuable graph; for the
smaller robot 1, the two graphs
are the same

in the top region, to only 1 being able to reach the
bottom.

– Extremities: wide open section with three halls depart-
ing to different directions, where all 4 robots actuate; at
the end of each hall there is a room that can be accessed
through an opening, with only one robot reaching
the extremity connected with the smallest opening,
to three reaching the one connected with the biggest
opening.

– Rooms: simple floorplan environment with some room-
like spaces connected through passages of different
sizes as well, used to test the non-circular robot case
where they can traverse the passages using only certain
orientations.

Furthermore, in Table 1 we present the size of each map
image, and the number agents and feasible and unfeasible
goals for each scenario. We present in Table 1 the grid size

Fig. 16 Maps of the five
scenarios used in the
experiments. Grey regions
represent out-of-reach regions
which cannot contain goal
waypoints. They are unfeasible
for all the robots. Robots are
represented with blue circles
positioned in the region of their
starting position
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Table 1 Number of agents, feasible and unfeasible goals and
respective grid size for each problem

Scenario Agents Feasible Unfeasible Grid size

CorridorH 4 819 118 49x19

CorridorL 4 384 92 33x13

ExtremeH 4 1993 1325 51x63

ExtremeL 4 896 589 34x42

MutExH 3 499 513 45x21

MutExL 3 223 242 30x14

MazeH 3 1389 154 38x38

MazeL 3 672 100 25x25

Rooms2r 2 192 52 13x13

Rooms10r 10 192 52 13x13

Extreme10r 10 1442 589 34x42

Maze10r 10 672 100 25x25

RoomsH* 2 835 182 28x28

RoomsL* 2 131 61 13x13

Scenarios are designed for circular robots except for those marked with
(*), where robots are any-shape

in terms of the down-sampled grid of waypoints. The orig-
inal image had a pixel size approximately 10 times bigger,
with a pixel resolution corresponding to 10cm. Therefore,
the maps we tested represent environments with a size
always bigger than 300 square meters.

We have generated two problems per scenario, one of
them with low density of waypoints (which we identify
as L in tables) and the other one with a higher density of
waypoints (H). We have also designed versions of Maze,
Extremities and Rooms for 10 robots in order to test the
behavior of the planners in crowded scenarios. Rooms2r is
a similar version of RoomsL but for circular robots.

For the experiments on this Section, the actuation model
is always considered to be equal to the robot footprint. The
Actuation Map determination was developed in C++.

9.2 Experiments on the Coverage Problem

In this Section, we show some experiments that test the
impact of the preprocessing in our approach. As it was
previously said, we have modeled five different scenarios
that include up to four agents with different sizes, and thus
different actuation capabilities. Planning results are shown
using as metrics the time in seconds, the length of the
resulting plan and the makespan. In non-temporal domains,
we refer as makespan the length of the parallel plan (number
of execution steps, where several actions can be executed
at the same execution step). Given that we are dealing with
MAP tasks that almost have no interactions, it is expected
that agents can execute their actions in parallel whenever
possible.

Four different configurations of our approach have been
set up:

– MAP-LB-EC with estimated-cost information (EC). EC
refers to the configuration that combines AMs and
MAP using the Load-Balance strategy (LB).

– MAP-BC-EC with estimated-cost information (EC), also
combining AMs and MAP but using instead the Best-
cost strategy (BC).

– MAP-LB, same as before but without EC information.
– MAP-BC same as before but without EC information.

As it was mentioned in Section 5.3, the LB strategy
helps to minimize the makespan metric. The BC strategy
focuses on minimizing the plan length metric. We also run
the problems without the preprocessing stage in order to
evaluate our impact in terms of computation time and plan
quality.

Furthermore, the following state-of-the-art planners have
been chosen as a comparison baseline:

– LAMA [30], centralized planer and winner of IPC 2011.
– YAHSP [36], a greedy centralized planner and winner of

the Agile track of IPC 2014.
– ADP [9], a multi-agent planner that performs a

decomposition of the domain by following three
indicators: (1) dependencies are reduced, (2) goals
can be achieved independently and (3) coordination
between agents is minimized. The aim is to find the
most suitable agentification i.e. identify the agents, in
order to divide the problem among the agents.

– SIW [26], a multi-agent planner that factorizes the
problem into subproblems solving one atomic goal at a
time until all atomic goals are achieved jointly.

– CMAP [3], a multi-agent planner that employs a
centralized approach to solve the problem.

The three multi-agent planners that have been chosen
participated on the 1st Competition of Distributed and
Multi-agent Planners (CoDMAP2) and obtained good
results on the final classification.

Neither of these five planners perform a goal allocation
phase separated from the planning process. Thus, we had
to test them using equivalent PDDL problems that do not
contain unfeasible goals. Also, in order to fairly compare
the results of the makespan metric, we had to apply our
parallelization algorithm to the resulting plans of ADP and
SIW, as they only return the sequential plan.

Before discussing the results on the tables we need to
clarify that a maximum of two hours was given to each
planner to solve each scenario. YAHSP results do not appear
in the tables because it could not solve any of the scenarios.

2http://agents.fel.cvut.cz/codmap/
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The maximum time spent on the preprocessing for any
scenario was 170 milliseconds, for the Extremities problem
with 4 robots. We included the preprocessing times (to
generate the AMs) in the GA column of Table 2, and in
the total time in Tables 3 and 6. Hardware used for running
the planner was IntelXeon 3,4GHz QuadCore 32GB RAM.
AMs were computed using a 2.5GHz DualCore 6GB
RAM. Table 2 is shown to prove the remarkable impact
that information from Actuation Maps (AMs) has in
combination with MAP. Goal assignment (GA) times in
Table 2 are minimal (MAP-LB-EC) in comparison with the
ones of MAP-LB, where it needs to compute the relaxed
plans for every goal-agent pair. Even though the individual
planning and parallelization time for MAP-LB-EC is similar
to MAP-LB, the time gains in GA completely dominate
the overall planning time. Before running any problem,
MAP performs a MAP compilation of the original problem
to generate each agent’s individual problem after goals
are assigned (M’ task). Usually this transformation takes
seconds and it is included in GA time. However, we
observed that given the size and complexity of any-shape
scenarios (RoomsH and RoomsL), the compilation time
increases considerably and becomes more than half of the
time spent on solving the task. This phenomenom is marked
with + in column Total time from Table 2.

Regarding time results in Table 3, MAP-LB-EC is
generally faster if all total times are summed up except
in Maze. Also, the impact of combining information from
AMs with MAP can be easily appreciated if columns
from MAP-LB-EC and MAP-LB are compared. The same

happens with BC configurations. Our two configurations
MAP-LB-EC and MAP-BC-EC solved every problem. There
is an exception in RoomsH, in which the parallel plan
of both solutions could not be obtained in the remaining
time before the 7200 seconds were reached. In general,
the easiest scenario to be solved using planning is the
Mutual Exclusive (MutExH, MutExL) because it is designed
for each robot to traverse a mutual exclusive subset of
waypoints. This is the reason why time results are very
similar among all planners except for MAP-LB and MAP-
BC where the planner needs to compute the relaxed plans
for each pair robot-goal. However, CMAP had some trouble
during planning in the high density scenario. The circular
robot version of Rooms (Rooms2r) is also very easy to
solve, even though the number of goals is higher than the
any-shape version (RoomsL). If times from Rooms2r and
RoomsL are compared, the complexity of just changing from
circular to any-shape robots can be empirically appreciated.
ADP reached the memory limit in Maze when planning the
solutions before the two hours limit. Even though ADP is a
multi-agent planner, the effort of computing plans in big-
size environments when all goals are assigned to all agents
is very big. LAMA has the same issue as ADP because of its
centralized approach (Maze, Extremities, RoomsH). From
the set of planners that we chose to compare our approach,
SIW is the one that obtains the best results.

Table 4 shows the results regarding the plans’ length
and Table 5 the results regarding makespan. We have used
the words timeout to indicate that a planner consumed the
alloted time and could not return a solution, memlimit to

Table 2 Detailed time results in
seconds for the MAP algorithm
using the Load Balance
strategy with and without
estimated cost information

Time (s)

MAP-LB-EC MAP-LB

Scenario Total GA Planning Parallel Total GA Planning Parallel

CorridorH 88.07 0.90 68.34 18.83 1748.38 1672.46 58.83 17.09

CorridorL 13.37 0.29 10.54 2.54 484.48 179.19 303.28 2.01

ExtremH 639.54 4.53 427.91 207.10 timeout

ExtremL 86.78 1.22 64.11 21.45 5491.00 5377.80 84.64 28.56

MutExH 10.59 0.44 7.36 2.79 1276.18 1265.62 7,78 2.78

MutExL 2.10 0.11 1.64 0.35 103.40 100.72 2.31 0.37

MazeH 1200.37 0.69 944.21 255.47 timeout

MazeL 1179.21 0.24 1152.71 26.26 882.93 603.78 240.3 38.85

Rooms2r 0.19 0.05 0.05 0.09 8.31 5.70 1.85 0.76

Rooms10r 4.70 0.19 4.17 0.34 40.54 36.34 3.84 0.36

Extreme10r 93.79 2.97 68.89 21.93 timeout

Maze10r 36.37 0.81 28.74 6.82 2121.11 2070.49 39.6 11.02

RoomsH 6180.37+ 9.85 1022.19 1922.87 timeout

RoomsL 448.63+ 2.31 2.54 95.05 timeout

From left to right total time, goal assignment time, individual planning time and parallelization time. Symbol
+ indicates that the MAP compilation time is very high
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Table 3 Total time results in seconds

Total Time (s)

Scenario MAP-LB-EC MAP-LB MAP-BC-EC MAP-BC SIW ADP CMAP LAMA

CorridorH 88.07 1748.38 304.91 1791.85 129.71 484.48 1761.82 95.45

CorridorL 13.37 484.48 33.78 203.00 10.98 85.97 187.57 22.74

ExtremH 639.54 timeout 642.04 timeout 1923.32* 439.58* timeout timeout

ExtremL 86.78 5491.00 82.51 5547.00 156.71 402.15 91.24 72.07

MutExH 10.59 1276.18 10.55 1277.47 11.65 6.15 1277.89 6.93

MutExL 2.1 103.40 2.09 97.27 0.81 0.89 96.38 1.06

MazeH 1200.37 timeout 2718.96 timeout 429.87 memlimit 2575.24 2005.42

MazeL 1179.21 882.93 161.03 1213.26 37.92 memlimit timeout 334.8

Rooms2r 0.19 8.31 2.64 8.42 0.77 2.24 7.32 1.54

Rooms10r 4.7 40.54 4.18 36.06 2.26 2.04 34.21 2.55

Extreme10r 93.79 timeout 98.44 timeout 258.72 169.68 timeout 76.56

Maze10r 36.37 2121.11 29.63 2110.11 61.95 20.04 2099.74 29.7

RoomsH 6180.37* timeout 6120.28* timeout timeout timeout timeout timeout

RoomsL 448.63 timeout 447.56 timeout 286.34 140.1 timeout 132.02

From left to right MAP with estimated-cost information in Load-balance (LB-EC); MAP without estimated cost information in LB; MAP with
estimated cost information in Best-cost (BC-EC); MAP without estimated cost information in BC; ADP, SIW and CMAP are other multi-agent
planners and LAMA is a centralized planner. Symbol * indicates that the planner solved the problem but parallelization over-passed the alloted
time (7200s)

Bold values represent which is the configuration that obtained the best score per scenario

indicate that the planner’s memory limit was reached before
timeout and parallel to indicate that the planner solved the
problem but the parallelization algorithm could not return
a solution in the remaining time to reach 7200s (SIW,
ADP in ExtemeH; MAP-LB-EC, MAP-BC-EC in RoomsH).

The best configurations overall regarding plan length are
MAP-BC-EC and SIW. Moreover, MAP-LB-EC configuration
is generally the best for reducing makespan. Configurations
MAP-LB or SIW also obtain good results in specific
scenarios. This issue can be explained by the discretization

Table 4 Plan length: from left
to right MAP with
estimated-cost information in
Load-balance (MAP-LB-EC);
MAP without estimated cost
information in LB; MAP with
estimated-cost in Best-Cost
(MAP-BC-EC); MAP without
estimated cost information in
BC; SIW, ADP, CMAP and
LAMA

Plan length

MAP-LB-EC MAP-LB MAP-BC-EC MAP-BC SIW ADP CMAP LAMA

CorridorH 1511 1512 1653 1556 1543 3545 1541 1471

CorridorL 727 692 784 791 699 627 746 748

ExtremH 3830 timeout 3830 timeout 3580* 8687* timeout timeout

ExtremL 1715 1850 1715 1786 1627 2848 1659 1546

MutExH 658 658 658 658 758 773 658 658

MutExL 301 301 301 301 306 302 301 301

MazeH 3358 timeout 3004 timeout 2570 memlimit 1353 2686

MazeL 1599 1387 1434 1441 1236 memlimit timeout 1345

Rooms2r 142 333 313 315 303 398 302 319

Rooms10r 292 344 287 286 266 318 268 268

Extreme10r 1604 timeout 1627 timeout 1534 2692 timeout 1612

Maze10r 1480 1852 1308 1261 1202 1452 1224 1253

RoomsH 1403* timeout 1337* timeout timeout timeout timeout timeout

RoomsL 370 timeout 336 timeout 366 627 timeout 370

Symbol * indicates that the planner solved the problem but parallelization over-passed the alloted time
(7200s)
Bold values represent which is the configuration that obtained the best score per scenario
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Table 5 Makespan: from left to
right MAP with estimated-cost
information in Load-balance
(MAP-LB-EC); MAP without
estimated cost information in
LB; MAP with estimated-cost
in Best-Cost (MAP-BC-EC);
MAP without estimated cost
information in BC; SIW, ADP,
CMAP and LAMA

Makespan

MAP-LB-EC MAP-LB MAP-BC-EC MAP-BC SIW ADP CMAP LAMA

CorridorH 609 583 1353 862 973 1699 717 698

CorridorL 298 256 657 601 265 1073 444 452

ExtremH 905 timeout 905 timeout parallel parallel timeout timeout

ExtremL 376 702 376 1091 450 1378 564 484

MutExH 117 117 117 117 149 155 117 117

MutExL 58 58 58 58 64 58 58 58

MazeH 1631 timeout 1631 timeout 1941 memlimit timeout 1369

MazeL 696 993 1035 1384 837 memlimit 1288 1217

Rooms2r 22 262 264 271 214 342 212 237

Rooms10r 47 55 57 54 59 73 67 67

Extreme10r 258 timeout 258 timeout 214 816 timeout 552

Maze10r 246 367 213 246 212 288 221 243

RoomsH parallel timeout parallel timeout timeout timeout timeout timeout

RoomsL 240 timeout 242 timeout 180 510 timeout 177

Bold values represent which is the configuration that obtained the best score per scenario

errors from Eq. 9, which are greater when the downsampling
rate is bigger. When allocating goals, the estimation costs
are the only guide for the MAP algorithm. The consequence
of having slightly inaccurate cost estimates results in the
allocation of some goals to different agents than the ones
that the estimated costs from the relaxation of plans would
suggest. However, this issue does not have a big impact on
makespan and plan length results.

From the set of planners chosen to compare our approach,
SIW obtains the best performance on time, plan length and
makespan. SIW is able to solve most of the scenarios due
to its serialization of goals. The importance of factorizing
a MAP problem is a conclusion that can be extracted after
observing Tables 4 and 5, as the planners that do not perform
factorization (LAMA, ADP, CMAP, YAHSP) have to solve
bigger and more complex tasks.

Regarding our configurations, MAP-BC-EC and MAP-LB-
EC perform better in general than equivalent configurations
without estimation costs. On the other hand, the lower the
number of agents used to plan, the harder the planning task.
Total time in BC is usually worse than in LB configurations
on scenarios with higher density of waypoints and multiple
robots to plan (CorridorH, MazeH). However, when
scenarios are narrowed such as Extremities or Maze, the
opposite effect can be given. When using less agents, the
task is easier to solve.

9.3 Experiments Detecting Potential Collisions

In this Section we show the results obtained on the same
scenarios as in the previous Section but using instead the
PDDL domain that detects collisions described in Section 7.

In Tables 6 and 7, we refer to MAP&R-LB-EC as running
the Fig. 8 using the LB strategy. MAP&R-BC-EC runs the
BC strategy instead. We have also compared our approach
against the same set of planners as in Section 9.2. The
maximum time for each planner to solve each scenario is
two hours. YAHSP results are not shown in the tables as it
was not able to solve any problem.

The aim of this experiment is to analyze the impact
of detecting and fixing collisions on makespan and time
metrics. Plan length is not relevant on this experiment, as the
difficulty relies on the planner’s ability to manage several
agents and collision avoidance at the same time. That is a
feature that directly affects the makespan result.

Regarding time results in Table 6, it can be seen that the
number of problems solved decreases considerably. Also,
time results have increased in all planners. This is due to
the collision avoidance effect. On one hand, centralized
approaches can deal with it more easily, as the master
agent has the whole control of the agents. However, it is
still facing the same issue as in the previous experiments:
the tasks are harder to solve and now the search space is
bigger.

Our approach is halfway between the centralized and
the distributed approach. The first part of our algorithm
is distributed while the plan-reuse phase is centralized.
Thus, the success of our algorithm depends on the number
of collisions and the difficulty of solving them. LPG-
ADAPT focus first on reutilizing the greater possible number
of the actions from the invalid plan. When a collision is
detected, LPG-ADAPT will search for a valid action on the
part of the search space that is closer to the invalid action
and its current planning state. This causes LPG-ADAPT to
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Table 6 Time in seconds from
left to right MAP with
estimated-cost information in
Load-balance (MAP&R-LB-
EC); MAP with estimated-cost
in Best-Cost (MAP&R-BC-EC);
SIW, ADP, CMAP and LAMA

Total Time (s)

MAP&R-LB-EC MAP&R-BC-EC SIW ADP CMAP LAMA

CorridorH timeout timeout 263.82 timeout timeout 293.11

CorridorL 73.57 81.51 50.64 193.54 202.16 53.24

ExtremH timeout timeout timeout timeout timeout timeout

ExtremL timeout timeout 752.5 timeout timeout timeout

MutExH timeout timeout 7.61 9.01 1328.77 70.08

MutExL 3.25 3.35 1.35 1.06 104.45 3.25

MazeH timeout timeout 986.17 memlimit timeout timeout

MazeL timeout timeout 67.34 memlimit 945.04 timeout

Rooms2r 4.78 4.71 1.5 5.85 8.47 2.24

Rooms10r 7.11 7.12 4.86 3.51 40.42 9.62

Extreme10r timeout timeout timeout timeout timeout timeout

Maze10r 406.75 timeout 466.03 memlimit 2196.02 560.40

RoomsH timeout timeout timeout timeout timeout timeout

RoomsL 3406.21 3092.80 timeout timeout timeout timeout

iteratively explore the search space starting from a very
concrete section. The exploration distance will be increased
as long as the valid action is still not found. This approach
works well if the collision requires a small change to be
fixed i.e. it only affects to a couple of navigation steps - the
solution can be found near the search space of the action and
current state. But if the way to avoid the collision affects to a
bigger part of the plan i.e. robots have to move back several
waypoints and change path directions; LPG-ADAPT might
get lost on the search space, as it will try to search first on
the space closer to the invalid action and the solution might
be far away from there. Thus, timeout will be reached before
a solution is found. Scenarios not solved by our approaches

on Table 6 fail for that reason. On the other hand, Multi-
Agent centralized approaches as SIW solve more problems.
Next paragraphs contain a discussion on this aspect. We
analyze why this particular situation is given with SIW even
though MAP centralized approaches are generally worse in
performance on big scenarios.

SIW only solves one atomic goal at a time (serialization),
which means that goals are not assigned to agents in the
first step of the algorithm. The process is interleaved with
search. Thus, only one estimation is computed per iteration
and current positions of the agents are updated after each
goal is reached. Agents work individually but coordination
(and thus, collisions) are checked after each iteration. The

Table 7 Makespan: from left to
right MAP with estimated-cost
information in Load-balance
(MAP&R-LB-EC); MAP with
estimated-cost in Best-Cost
(MAP&R-BC-EC); SIW, ADP,
CMAP and LAMA

Makespan

MAP&R-LB-EC MAP&R-BC-EC SIW ADP CMAP LAMA

CorridorH timeout timeout 1289 timeout timeout 847

CorridorL 801 806 490 1378 452 424

ExtremH timeout timeout timeout timeout timeout timeout

ExtremL timeout timeout 704 timeout timeout timeout

MutExH timeout timeout 158 211 131 135

MutExL 87 87 80 80 101 95

MazeH timeout timeout 1061 memlimit timeout timeout

MazeL timeout 1481 758 memlimit 1139 timeout

Rooms2r 293 293 189 465 228 250

Rooms10r 61 61 61 107 77 54

Extreme10r timeout timeout timeout timeout timeout timeout

Maze10r 293 timeout 432 memlimit 221 282

RoomsH timeout timeout timeout timeout timeout timeout

RoomsL 250 250 timeout timeout timeout timeout
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centralized approach followed by SIW is very efficient
on the coverage problem. Collisions can be fully avoided
because of solving first only one goal at a time and then
updating robots’ positions. Thus, the algorithm obtains good
results in number of problems solved and time. However,
when the size of the problem increases, as in the any-shape
scenarios, SIW has more difficulties to solve the problem
in time. This scenario penalizes SIW because the search
space is huge in comparison with circular robot scenarios.
Planning one goal at a time following a centralized approach
now becomes a worse choice. SIW has to usually deal with
the following situation when collisions are given: a set of
goals has been reached and the next goal on the list cannot
be achieved unless the previous part of the plan is partially
modified. In any-shape scenarios this aspect takes more time
to fix given the size of the search space.

Regarding our approach, even though we obtain estima-
tion costs through AMs, they are not as effective in guidance
as SIW ’s serialization. The estimation of costs is provided
to our approach at the beginning. If agents have to modify
their route due to collisions, their estimations and assign-
ment of goals might not be as useful as in the beginning. It
can even penalize the agent’s performance. Also, if an agent
needs to change its route several times, it could mean that
the original assignment of goals is completely useless. Also,
plan reuse planners are not efficiently prepared to perform
an extensive search. They would rather prefer to reutilize
actions from previous plans, which in the coverage problem
results in generating redundant actions around the planning
task. We have tried different features of LPG-ADAPT (low
memory, speed mode, increasing different fixed constants...)
to check if its performance could be improved but neither of
them helped.

Regarding makespan results from Table 7, MAP&R-LB-
EC and SIW are the two planners that obtain the best results -
they also solve most of the problems. Although the RoomsL
scenario might seem easier to solve by just looking at
Table 1. However, as it works for any-shape robots, the
grid of waypoints is bigger and harder to navigate from the
planning point of view. The search space is very big and thus
centralized approaches are especially penalized. The reason
of failing on the Extremities and Maze scenarios is due to
the changes on the robots’ paths caused by the collision
avoidance or the topology of the scenario. Those scenarios
contain narrower areas and large halls where only some
robots can reach the end. Thus, robots might spend a lot
of time looking for the correct path while at the same time
avoiding the rest of the agents.

As a final conclusion, we would like to discuss the overall
performance of our contribution. MAP-LB-EC and MAP-BC-
EC clearly complement each other on the set of proposed
scenarios. This is an advantage, as the algorithm can be eas-
ily adapted to different situations and environments. It is

true that we lost some performance on collisions, but we
have empirically shown that it is also related to the topol-
ogy of the scenario and the coverage problem itself. The
unexpected advantage of SIW in the experiments detect-
ing collisions has also been addressed and analyzed. The
serialization of goals and the nature of the coverage problem
where interactions are given occasionally, makes any cen-
tralized (Multi-agent or Single-agent) planner to behave
well. LAMA is closer to SIW and our approaches in that
sense, and it is not even a MAP algorithm. We also want
to put in value the scalability of our approach. Through
the experiments we have proved that we can successfully
deal with different topologies, number of agents, agent’s ori-
entation, huge planning tasks, unfeasible goals, independent
goal-assignment and pre-processed estimation costs. State-
of-the-art planners are not used to satisfy all these features
at the same time.

10 RelatedWork

Multi-Agent Planning (MAP) is an active topic within
the planning community as shown by the organization of
the 1st CoDMAP3 and the wide range of planners that
participated [32]. The planners vary from fully distributed to
centralized among other features. Our approach uses first a
distributed planner and if plan reuse is needed, a centralized
phase.

A MAP approach that uses a preprocessing step is
the automated agent decomposition for multi-robot task
planning [10]. In that work there is a preprocessing step,
prior to actual search, that exploits decompositions of the
problem in domains with a lower level of interaction,
boosting the final performance. ADP [9] is also related to
that work. Our approach factorizes the problem regarding
goals and agents involved, creating independent subtasks for
each agent before starting to plan.

The methodology that uses morphological operations
in order to build the AMs was previously introduced
by [27]. Moreover, it has recently been shown that
similar transformation can be used to obtain Actuation and
Visibility Maps for any-shape robots as well [28].

Earlier in 1997, Ambite and Knoblock [1] worked in
a post-processing technique which rewrites some planning
rules and local search techniques to make efficient the
planning process. Thus, they obtained a low-cost plan for
problems that were hard to solve from the point of view of
planning.

Another similar problem is the Team Orienteering Prob-
lem, where robots maximize the number of covered way-
points visited, with constraints on the total travel time of

3http://agents.fel.cvut.cz/codmap/
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each robot. In order to solve this problem and optimize the
overall planning time, an algorithm was proposed that uses
a three-tier graph, interleaving the search for optimal way-
point assignment, ordering of the waypoints and also con-
sidering feasible paths between waypoints while avoiding
obstacles [33]. This algorithm guarantees optimal solutions,
while in our work we focus on sub-optimal planning for
multi-robot teams.

Another relevant planning problem in robotics is
inspection, which searches for robot paths that can perceive
a set of sensing targets. Neural network approaches have
been proposed [11], and again a preprocessing method was
used, answering visibility queries efficiently both in 2D
and 3D scenarios [21]. Here the queries ask for visibility
from specific positions. In our work we preprocess the
environment to find the overall actuation capabilities of the
robot from any reachable position.

There are similar environments to our problem defined in
previous planning domains. One it is called VisitAll, whose
aim is to visit all the waypoints presented in the problem by
just navigating through them. It was used for the first time on
7th IPC.4 In our domain we added an actuation action (with
an associated actuation range), which was not considered in
the VisitAll domain. Another similar problem is the Rovers
domain, but in this case each agent (rover) can execute a
bigger set of actions when it is placed on a waypoint. Some
other examples were mentioned in the Introduction.

When robots with many degrees of freedom execute
successive motions in the same environment, it usually
requires many complex planning instances. By applying a
preprocessing technique, it is possible to improve efficiency
of path planning for those robots [22]

Finally, a very common robotic application, coverage
path planning, has been widely studied [16]. However,
the many cell decomposition-based strategies still do not
objectively consider heterogeneity and thus we do not
exactly know how it creates different feasible tasks for each
robot when assigning goals.

11 Conclusions and FutureWork

In this paper we showed how to combine information from
Actuation Maps (AMs) with Multi-Agent Planning (MAP)
to solve a multi-robot path planning problem more effi-
ciently skipping the computation of estimated cost during
planning. We used AMs in a preprocessing step to deter-
mine the feasibility of pairs robot-goal and to extract an
estimated cost. That cost is used later to avoid the com-
putation of relaxed plans during Goal-Assignment. The
environment map was discretized into a grid of waypoints.

4http://www.plg.inf.uc3m.es/ipc2011-deterministic

The goals were distributed thanks to a goal-allocation algo-
rithm and unfeasible goals identified and discarded from
the planning task. Then, the planning task was factorized
for each robot. They generate their individual paths that
result in a maximal space coverage in terms of actuation.
We also proposed a new version of the MAP algorithm that
is able to fix agents’ interactions after the individual plan-
ning phase. On the experiments we have designed a total
of eight scenarios, seven for circular robots and one for
any-shape robots, which is another contribution to the paper.

Our approach greatly reduces the GA time, and because
GA is one of the bottlenecks of MAP, we were able to
also reduce the overall planning time when preprocessed
information was provided to the MAP algorithm. The gains
in performance depend greatly on the topology of the
environment and the characteristics of each robot.

Experiments also show that when solving big size
multi-agent problems using planning, it is very helpful to
first factorize the problem into subtasks. Thus, the total
planning time will be smaller than when trying to solve
the whole problem at once. Also, factorization is essential
when working on problems that explicitly involve agents’
interactions. Experiments on collision avoidance show the
importance of task factorization and the topology of the
scenario in order to successfully fix collisions.

As future work, we would like to extend the preprocess-
ing technique to other domains and consider different -robot
or agent- models. Our approach can be easily extended to
path planning tasks or real-time strategy videogames. We
gave some examples of the former such as surveillance tasks
or search and rescue tasks. The latter domain could be inter-
esting when designing bots that play automatically. Our
approach could improve the player/bot performance when
extracting information from the map to decide which goals
are more relevant to achieve first. We also want to improve
the performance of fixing interactions. Plan reuse works
well when collisions only affect to a couple of actions. For
biggest plan modifications plan-reuse is not enough.

We would also like to study in the future the possibility of
using plan-reuse in order to deal with dynamic environment
during plan execution. For the case of changes during plan
execution, we would also need to create a technique to
efficiency update the PDDL problem file according to the
changes detected in the environment regarding obstacles.
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