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Abstract
For more than six decades, improving the strength and ductility of industrially important ma-
terials has been in the focus of research. Besides economic reasons, safety issues have driven
research and development in this field. For the purpose of safety, it is imperative to under-
stand the failure behaviour of ductile materials, as ductile materials are commonly used in
protective structures. It is well known that major failure mode for ductile materials is through
void nucleation, growth and void coalescence. In structural ductile materials voids nucleate
at inclusions and second-phase particles by decohesion of the particle–matrix interface or by
particle cracking. The presence of voids can have drastic implications at the macroscopic level
including strong material softening and incipient fracture.

Significant efforts have been made over the years to describe the plastic behavior of isotropic and
anisotropic ductile materials. Numerous investigations, in the last decades, have been dedicated
to the study of ductile failure, leading to a deeper knowledge on the factors influencing the
ductile process. This doctoral thesis contributes to the understanding of the key role played by
material anisotropy and stress state on the growth of voids in single crystals, bi-crystals and
polycrystals using numerical and experimental methods.

Using a numerical approach, void growth and morphology evolution in fcc single crystals and
bi-crystals are investigated using crystal plasticity finite element method. For that purpose,
representative volume element of single crystals and bi-crystals are considered in the analysis.
Fully periodic boundary conditions are prescribed in the representative volume element and
macroscopic stress triaxiality and Lode parameter are kept constant during the whole deforma-
tion process. Simulations are performed to study the implications of triaxiality, Lode parameter
and crystallographic orientation on slip mechanism, hardening and hence void evolution. In the
bi-crystal case, a void at the grain boundary is considered in the analysis. Grain boundary is
assumed initially perpendicular/coaxial with the straight sides of the cell. Three different pairs
of crystal orientations characterized as hard-hard, soft-soft and soft-hard has been employed for
modelling the mechanical response of the bi-crystal. The impact of void presence and its growth
on the heterogeneity of lattice rotation and resulting grain fragmentation in neighbouring areas
is analysed and discussed.

On the other hand and using an experimental approach, void growth behaviour in pure Alu-
minium polycrystals with pre-drilled holes are investigated in this work. By varying the hole
diameter and position of the holes, three different types of specimens are defined and consid-
ered for investigation. Using in-situ tensile test coupled with scanning electron microscope, uni
axial tensile tests are performed at constant low strain rate. The specimens are analysed with
the help of EBSD, DIC and high resolution SEM images. Interrelation between hole diameter,
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distance between holes, local orientation of the grains and grain size on void growth and final
failure of the material are analysed and discussed

Keywords: Crystal plasticity, single crystals, bi-crystals, polycrystals, finite element calcula-
tions, stress triaxiality, Lode parameter, anisotropy, porosity, SEM, In-Situ tensile test.
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Part I

General introduction and basic
concepts of crystal plasticity
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1
General introduction

With the focus on reducing carbon emission, resulting environmental guidelines has be-
come a top priority for automobile and space industry. This has resulted in a more stringent
requirement for improved fuel economy and emission. Weight reduction is the most effective
way for achieving fuel economy, hence a new trend in automobile and aerospace industry is to
use lighter materials, without compromising the strength and durability of the components.
Due to a favourable strength-to-density ratio, which could be translated into fuel economy
and efficiency, light weight materials (i.e. aluminum and its alloys) are increasingly used in
the automotive, aviation and space industries for the fabrication of skins and other structural
elements. However, compared to denser metals (i.e. steel), the use of light weight materials
has been restricted by its poor ductility at room temperature and spot weld difficulties. Ad-
ditionally light weight materials are prone to ductile failure by accumulation and evolution
of microscopic voids. The complete potential of these light weight materials can be unleashed
only by thoroughly understanding its ductile and failure behaviour.

The main reason for ductile damage of metals are nucleation, growth and coalescence
of micro-voids. The first studies of void behavior of ductile metals studies date back to 1960
with the work of Rogers (1960), Beachem (1963) and Gurland and Plateau (1963). Numerical
insights into studying of voids were pioneered by McClintock (1968) and Rice and Tracey
(1969). For next five decades, numerous work has been performed by various researchers in
order to understand void growth and coalescence in ductile metals. This problem is analyzed
via experimental, analytical and numerical approach considering both isotropic and anisotropic
material modeling. Some of these works provide a general background to this doctoral thesis.

1.1 Research background and objectives
Studying the origin and behaviour of voids in different materials has been a major topic

of interest in the last six decades by virtue of its importance to understand its effects on the
material failure. Voids are observed in many materials, ranging from metals (Rogers, 1960),
biological tissues (Pishchalnikov et al., 2003) to polymers (Gent and Lindley, 1959; Huang
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(a) (b)

Figure 1.1: Illustration of various void nucleation sites: (a) Void growth within an inclusion colony
in quenched and tempered steel (Hancock and Mackenzie, 1976); (b) Nucleation of spherical voids at
grain boundary and grain boundary triple point (Meyers et al., 1986)

and Kinloch, 1992). It was observed by (Bauer and Wilsdorf, 1974) that even pure materials
develop voids in order to accommodate the applied deformation.

The main reason for ductile damage of metals are nucleation, growth and coalescence
of micro-voids as reported by Rogers (1960); Gurland and Plateau (1963); Beachem (1963).
A theoretical study of growth of cylindrical voids in an ideally plastic material (i.e., without
hardening) has been performed by McClintock (1968). Similar investigation has been performed
by Rice and Tracey (1969) to determine the relationship between the growth of an initially
spherical void and the stress triaxiality. Significance of void interaction under plane strain con-
dition has been reported by Needleman (1972). To study the effect of porosity on deformation
and fracture behaviour of titanium alloys Bourcier et al. (1986) performed experimental and
analytical studies. To understand size effect on void growth, Liu et al. (2003) performed ana-
lytical studies by extending the work of Rice and Tracey. Li and Steinmann (2006) unveiled the
effect of void size and shape on deformation behaviour of a material containing micro-voids,
by performing studies on different type of spheroidal voids in an axisymmetric spheroidal unit
cell.

Numerical studies on plane strain void cells under uni-axial deformation were studied
by Andersson (1977). Tvergaard (1979) extended this study by using an elastic-plastic solid
matrix and studied the effect of micro-voids during ductile failure of the material. Li and
Howard (1983) and Chen et al. (1983) performed finite element analysis on an elasto-plastic
matrix containing a spherical void to understand void growth and ductile failure behaviour.
Koplik and Needleman (1988) presented a numerical solution to predict the influence of an

4



1.1 Research background and objectives

array of voids in an axisymmetric cell model. Similarly Hom and McMeeking (1989) performed
3D finite element analysis to investigate void evolution in a cell with a cubic array of voids.
Further and in order to understand void size effect Tvergaard and Needleman (1997) used a
non local damage model. Using plane strain analysis Tvergaard and Hutchinson (2002) studied
the behaviour of voids located ahead of a crack tip, whereas Tvergaard and Niordson (2004)
performed axisymmetric non local elastic-plastic analysis. The effect of secondary void popula-
tion on ductile fracture is studied by Hütter et al. (2014) and Zybell et al. (2014) under plane
strain condition.

1.1.1 Void growth in single crystal and polycrystals

It is well known that void nucleation in polycrystalline ductile materials occurs mainly at
second-phase particles by interfacial decohesion or particle fracture (Puttick, 1959). As showed
by Hull and Rimmer (1959), grain boundary and triple points acts as preferred locations for
void nucleation as seen in figure 1.1. In single crystals, void nucleation may take place by irradi-
ation or quenching or by clustering of vacancies produced during plastic deformation as noted
by (Cawthorne and Fulton, 1967). For polycrystals the process of void nucleation, growth and
coalescence is different to single crystals as reported by Bauer and Wilsdorf (1974); Lyles Jr
and Wilsdorf (1975). Voids nucleated at grain boundaries, cracking of second phase or cluster-
ing of vacancies are generally micron or submicron-sized (Goods and Brown, 1983; Thompson,
1987). Nemat-Nasser and Hori (1987) studied void growth or collapse in a crystalline solid
undergoing large deformation. Using 2D plane strain formulation with an idealized two slip
system configuration O’regan et al. (1997) performed crystal plasticity based studies to inves-
tigate micro-void growth and coalescence in single crystals. Similarly Orsini and Zikry (2001)
performed 3D crystal plasticity based analysis to understand void growth and interaction in
copper single crystal plates. By using dislocation based crystal plasticity theory, Ohashi (2005)
studied spherical micro-void growth in single crystals. Li and Guo (2002) performed FE based
study to investigate the void growth and coalescence at the interface in a bi-material system.
Crystal plasticity based finite element simulation on two dimensional unit cell with one and
two voids has been studied by (Kysar et al., 2005; Potirniche et al., 2006a). Liu et al. (2007a)
investigated the effect of crystal orientation on void growth and coalescence in face centered cu-
bic (FCC) single crystals. To understand micro-void growth under biaxial loading Huang et al.
(2007) used discrete dislocation dynamics based theory. Similarly Segurado and Llorca (2009)
performed discrete dislocation dynamics based simulations in 2D framework to understand
void size effect in single crystals. By performing 3D crystal plasticity simulations, Yerra et al.
(2010a) investigated void growth and coalescence in body centered cubic (BCC) single crystals.
They reported that void growth rate depends strongly on the initial orientation of the crystal
and also proposed a model to predict the onset of void coalescence. Liu et al. (2012) investi-
gated void coalescence in a single crystal and bi-crystal using 3D crystal plasticity framework.
Carroll et al. (2013) performed experimental statistical analysis of stress projection factors in
BCC tantalum and reported that Schmid factors are suitable for room temperature. Tensile
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deformation in tantalum as long as grain neighbor effects are accounted for. Hosokawa et al.
(2013) studied the onset of void coalescence in uniaxial tension by continuous X-ray tomogra-
phy. Similarly Landron et al. (2013) investigated void coalescence in a dual phase steel using
X-ray tomography. Both studies suggested that the coalescence models developed by Thoma-
son (1985) and later extended by Pardoen and Hutchinson (2000) provide accurate predictions
of coalescence strain. Srivastava and Needleman (2013) and Srivastava and Needleman (2015a)
studied void growth in creeping single crystals and showed the effect of inter-ligament dis-
tance between voids on void shape evolution. Kysar and Gan (2005) studied the deformation
state around a cylindrical void in a single crystal matrix using anisotropic slip line theory.
Nemcko et al. (2016) studied the effect of void volume fraction on void growth and linkage in
commercially pure magnesium by using X-ray micro-tomography and reported that there is a
critical strain required to initiate fracture in these boundaries. Pushkareva et al. (2016) stud-
ied void growth in commercially pure titanium using X-ray tomography and crystal plasticity
based simulations. They observed that void growth depends on grain orientation more than
inter void spacing and material strength. In the work of Asim et al. (2017) numerical studies
has been performed by using both local and non-local crystal plasticity constitutive models,
providing insights into the relationship between void growth, initial porosity, initial void size,
plastic anisotropy and local/non local size effects.

Within this context, this doctoral thesis aims at providing new insights into void growth
in single crystals and bi-crystals using numerical finite element calculations with controlled
loading conditions following up with experimental studies of void growth in polycrystals.

1.2 Contents and original contributions
The main contents and original contributions of this thesis are detailed here. First, we

present in Chapter 2 in Part I, based on the textbook by Roters et al. (2011), the fundamental
concepts and equations of nonlinear solid mechanics and crystal plasticity, essential to under-
stand the problems addressed. Then, the main contributions of this investigation are reported
in Parts II and III of this manuscript.

Part II composed of Chapters 3, 4 and 5 is dedicated to the Numerical modelling of
void growth in single crystals and bi-crystals:

• In Chapter 3, based on the crystal plasticity model described in Chapter 2, we have
performed 3D unit cell finite element calculations to address the role of anisotropy, stress
triaxiality and Lode parameter on the response of FCC single crystals without voids.
Six different crystal orientations and three different Lode parameters are studied in this
chapter. Results obtained provide important and relevant conclusions to be used for
studying porous single crystals and bi-crystals.

• In Chapter 4, we have performed 3D unit cell finite element calculations for porous
FCC single crystals, following the approach used in Chapter 3. In this chapter we studied
the role of crystal anisotropy and stress state on void evolution. We have used four
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different crystal orientations, four different stress triaxiality values and three different
Lode parameters. The outcome of this study gave insight into factors affecting void growth
in porous single crystals.

• In Chapter 5, based on a published paper (Dakshinamurthy et al., 2021), void growth
and morphology evolution in FCC bi-crystals are investigated using crystal plasticity fi-
nite element method. For that purpose, representative volume element of bi-crystals with
a void at the grain boundary is considered. Three different pairs of crystal orientations
characterized as hard-hard, soft-soft and soft-hard has been employed for modelling the
mechanical response of the bi-crystal. Simulations are performed to study the implica-
tions of triaxiality, Lode parameter and crystallographic orientation on slip mechanism,
hardening and hence void evolution. The impact of void presence and its growth on the
heterogeneity of lattice rotation and resulting grain fragmentation in neighbouring areas
is also analysed and discussed.

Part III is composed of Chapter 6, that is dedicated to Experimental investigation
of void growth in metallic sheets containing holes:

• In Chapter 6, we performed uniaxial in-situ tensile tests, coupled with scanning electron
microscope to study the void growth behaviour in pure Aluminium tensile specimens with
pre-drilled holes. By varying the hole diameter, distance between the holes and arrange-
ment of holes, three different types of specimens were considered. With the help of EBSD,
DIC and high resolution SEM images, the relationship between local microstructure and
void growth are analysed and discussed.

• Finally, some conclusions about the work presented are provided in Chapter 7, where
some ideas for future work are also discussed.
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This chapter summarizes the fundamental concepts and equations necessary for building
constitutive models for crystal plasticity (CP) simulations at different length scales. All the
numerical simulations presented in this work are based on a crystal plasticity model built
via the Finite Element solver ABAQUS using a user subroutine UMAT. The contents of this
chapter are primarily based on the textbook by Roters et al. (2011). We start by introduction
of continuum mechanics in section 2.1. Later and in section 2.2 the mechanical behaviour of the
body under consideration is described based on a crystal plasticity model that is formulated
in a continuum mechanics framework.

2.1 Continuum Mechanics
Continuum mechanics is a combination of mathematical principles common to all media,

that generally ignores size and shape of materials and frequency of atomic vibrations. Contin-
uum mechanics considers that the field values of a body are equal to the averaged values of each
particle in time. By making this assumption we can express the field variables as continuous
functions in both space and time. Continuum mechanics is used to describe the flow behaviour
of a body under prescribed boundary conditions like displacement, traction or temperature. In
continuum mechanics and in order to find a legitimate solution for describing the behaviour of
a material, conditions of compatibility between strains and displacements, equations of equi-
librium (static or dynamic), and stress–strain relations or material constitutive law has to be
fulfilled.

In subsection 2.1.1, we present different configurations of a body under load bound-
ary conditions. Later on and with the help of these configurations, stress measure and strain
measure are derived in subsection 2.1.1.4 and subsection 2.1.1.7 respectively. Further in subsec-
tion 2.1.2 condition for compatibility is presented. Similarly equilibrium condition is discussed
in subsection 2.1.3. The constitutive model used in this work is presented in section 2.2.

2.1.1 Kinematics

A correct definition of bodies and configuration is necessary to model materials in different
frames. Let body B be a composition of multiple number of material points. The body occupies
the region B0 in reference configuration and Bt in current or deformed configuration. Vector
x, where x ∈ B0 defines the material point in reference configuration and vector X where,
X ∈ Bt in deformed configuration as shown in figure 2.1. There are many coordinate system
basis available to define each configuration. In this work Cartesian coordinate system is used
as a common coordinate system for both reference and current configuration. This helps in
skipping explicit notation for each configuration.

Deformation of a body can be described either in reference or current configuration. In
general there are two different description for representing deformation of a body: Lagrangian
and Eulerian description. In Lagrangian description each particle belongs to the current spatial
location. In Eulerian description the spatial location itself belongs to the particle. In general
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Figure 2.1: Configurations of a continuum body. B0 is the space occupied by the undeformed body.
Mapping X (X, t) maps it to the deformed configuration B. Figure adopted from Roters et al. (2011)

and in solid mechanics, it is convenient to use Lagrangian description. Therefore it is necessary
to introduce a deformation map that can connect points in reference configuration to points in
current configuration.

2.1.1.1 Displacement field

For a material body occupying the space B0 at time t0, if there is a change in the
configuration of the body by a motion X (t), then it occupies the space Bt at time t. During
this motion we observe a change in position of material points from X to x. The displacement
vector can be denoted by equation 2.1

u(x, t) = X(x, t) − x (2.1)

Displacement vector is function of x and t that maps material points between current
and reference configuration.

2.1.1.2 Deformation gradient

Like displacement vector, deformation gradient tensor maps all elements dX radiating
from X in the reference configuration as they deform to dx in deformed configuration. The
inverse of deformation gradient maps a vector from deformed configuration to reference con-
figuration. It is denoted by F and is a second order tensor. Taking into account the relations:

x + dx = x(X) + ∂x
∂X

dX + ..... (2.2)
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Figure 2.2: A schematic showing decomposition of deformation into pure rotation followed by pure
stretch or pure stretch followed by pure rotation. Figure adopted from Roters et al. (2011)

dx = ∂x
∂X

dX (2.3)

by using equations 2.1 and 2.3, the deformation gradient can be obtained as:

F = dx
dX

= ▽ X = I + ∂u
∂X

(2.4)

where ∂u
∂X is defined as displacement gradient and I is the second order unit tensor.

Similarly, the inverse of deformation gradient is given by equation 2.5:

F−1 = dX
dx

= ▽ X −1 (2.5)

The determinant of deformation gradient is called Jacobian J and it gives the measure
of volume change associated with deformation. If dV and dV0 are volumes before and after
deformation then J is given by equation 2.6.

J = dV

dV0
= detF (2.6)

2.1.1.3 Polar decomposition of the deformation gradient

The deformation gradient F can be decomposed to a pure rotation and stretch, which is
commonly termed as polar decomposition. Depending on which one of transformation comes
first, the polar decomposition can be applied in two ways as follows (see figure 2.2):
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F = RU = VR (2.7)

where R is an orthogonal tensor, and U and V are symmetric right and left stretch tensor
respectively. It should be noted that rotation component does not contribute to shape change of
the body, hence will have zero contribution to strain as should be discussed later. Stretch com-
ponent contribute only to shape change and hence strain. With the help of polar decomposition
we can validate particular strain measures.

2.1.1.4 Measure of strain

Apart from deformation gradient, deformation of the body can also be expressed in terms
of displacement gradient ∂u

∂X as shown by equation 2.8:

F = ∂x
∂X

= ∂(X + u)
∂X

= I + ∂u
∂X

(2.8)

By definition, a strain tensor is a tensor describing the locations of two points of a body
after deformation with respect to their location before deformation. The length of the deformed
element can be expressed as (Eq. 2.9):

dxT .dx = (F.dX)T (F.dX) = dXT .(FT F). dX (2.9)

Subsequently the change in the length of the element can written as (Eq. 2.10):

dxT .dx − dXT .dX = dXT .(2E0).dX (2.10)

where E0 = 1
2(FT F − I) = 1

2(C − I) is the Green-Lagrange strain tensor. Since it depends
only on the right Cauchy-Green deformation tensor C = FT F, E0 is defined completely in the
reference configuration.

Similarly:

dxT .dx − dXT .dX = dxT .(2Et).dx (2.11)

where Et = 1
2(I − F−T F−1) = 1

2(I − C−1) is the Almansi strain tensor defined in the current
configuration. Both Green-Lagrange and Almansi strain tensors are applicable to finite strain
framework.

For small strain formulation Green-Lagrange and Almansi strains can be linearized to
obtain the strain tensor called Cauchy strain tensor ε, given by equation 2.12 in Einstein
convection:

εij = 1
2(ui,j + uj,i) (2.12)

whereas in index notation it is given by equation 2.13:

ε = 1
2(▽u + ▽uT ) (2.13)
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Figure 2.3: Multiplicative decomposition of the total deformation gradient F. The plastic deformation
gradient Fp relates the reference and plastic intermediate configuration. Finally Fe maps to the current
configuration. Figure recreated from Roters et al. (2011)

2.1.1.5 Velocity gradient

It is known that material points in reference configuration do not move with time, where
as material points in current configuration move at velocity v. This velocity can be calculated
using displacement vector (u) of a material point:

v = d

dt
u = u̇ = ẋ − Ẋ = ẋ (2.14)

Relative motion of two material points in current configuration can be obtained by taking
spatial gradient of material velocity field. This is termed as velocity gradient and is given by

L = ∂v
∂x

= ▽ v (2.15)

and is related to deformation as:

Ldx = ∂v
∂x

dx = d

dt
FdX = ḞdX = ḞF−1dx (2.16)

From Eq. 2.16, we obtain the relationship between velocity gradient and deformation
gradient:

L = ḞF−1 (2.17)

The velocity gradient L can be divided into a symmetric part D and a skew-symmetric
part W which are termed as stretch rate tensor and spin tensor respectively:

L = Lsym + Lskew = 1
2(L + LT ) + 1

2(L − LT ) = D + W (2.18)

2.1.1.6 Multiplicative decomposition of deformation

The path of material point X in a body B ∈ R3 takes to reach the current configu-
ration x = X (X), which depends mainly on material behaviour. In small strain framework,
we use additive decomposition of total strain (ε) as ε = εe + εp, where εe is elastic strain
and εp is inelastic or plastic strain. Inelastic strains has many contributions from crystal be-
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Figure 2.4: Graphical interpretation of Cauchy, first Piola Kirchhoff and second Piola Kirchhoff
stresses. Reference configuration is defined as white rectangle, while current configuration is defined
as deformed grey area. Figure recreated from Roters et al. (2011)

haviours like dislocation glide, phase transformation, twinning, etc. In this work we will focus
on dislocation glide as major inelastic strain contributor. Since in this work we are using large
strain formulation for modelling material behavior, more focus will be laid on that. In large
strain formulation, multiplicative decomposition of deformation gradient is used as shown in
equation 2.19:

F = FeFp (2.19)

where Fe is the elastic part of deformation gradient. Fe helps in mapping material points
from intermediate configuration to current configuration. Fp is the plastic part of deformation
gradient, which maps material point from reference configuration to an imaginary intermediate
configuration as shown in figure 2.3. As mentioned earlier, in this work only dislocation glide
will contribute to plastic deformation. The intermediate configuration posses the same lattice
orientation as reference configuration. Velocity gradient can be obtained in terms of deformation
gradient by additive decomposition of total velocity gradient as shown in equation 2.20:

L = ḞF−1 = ∂FeFp

∂t
Fp

−1Fe
−1 (2.20)

2.1.1.7 Measure of stress

Stress is defined as the force per acting area on the material. As there are different
measures for strains in different configurations, measure for stresses are also different depending
on configuration in which force and area are defined as shown in figure 2.4.

Stress = lim
△A→0

△F

△A
(2.21)

If we consider both forces and area in current configuration, then we have Cauchy stress σ.
This is also called true stress and is a second order tensor defined by the equation:

σ = lim
△A→0

△f

△A
(2.22)
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Another definition of stress is the first Piola Kirchhoff stress P, in which force is defined
in current configuration, whereas area is defined in the reference configuration. This stress is
again a second order tensor which is not essentially a symmetric tensor:

P = lim
△A0→0

△f

△A0
(2.23)

If both force and area are defined in reference configuration then the stress is called Second
Piola Kirchhoff stress. This tensor is a symmetric second order tensor given by equation 2.24:

S = lim
△A0→0

△F

△A0
(2.24)

A schematic illustration of these three stress measures are given in figure 2.4. These three
stress measures are related to each other by equation 2.25:

σ = 1
J

PFT = 1
J

FSFT (2.25)

In plastic intermediate configuration, the second Piola Kirchhoff stress S is related to
Mandel stress T by the equation 2.26:

T = Fe
T FeS (2.26)

2.1.2 Compatibility conditions

Certain mathematical conditions are necessary to ensure that a continuum body does
not develop gaps or overlaps and not violate basic assumption of continuous medium. A body
is called a compatible body if it deforms without developing gaps or overlaps. Compatibility
conditions determine whether a particular deformation is permissible. In large strain formula-
tion, a body is said compatible if strain field originates from a curl free deformation gradient
∇ × F = 0 i.e., curl F= 0

2.1.3 Boundary value problem and static equilibrium

In this work boundary value problem addresses a system of coupled mechanical partial
differential equations. This involves solving partial differential equation of static mechanical
equilibrium.

For a system in static equilibrium, no forces acting on the body can force parts of it to
change their position. If the components of Cauchy stress tensor in every material point satisfies
the condition σji,i = 0 then the body is in static equilibrium. In large strain formulation similar
condition is given by ∇ · P = 0.
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2.2 Elasto-plastic behaviour in crystalline materials

2.2.1 Introduction

In crystalline materials, the properties of the material are directly related to the underly-
ing crystalline structure. For crystalline materials, atoms are arranged in a periodic array over
large atomic distances.

Metals normally have relatively simple crystalline structures, i.e., a small group of atoms
form a repetitive pattern which can be conveniently divided into small entities known as unit
cells. A unit cell is chosen to represent the symmetry of the crystal structure. Therefore, a unit
cell is a basic building block of the crystal structure.

Three relatively simple crystal structures are found for most of the metals: Face Centered
Cubic (FCC) unit cells, Body Centered Cubic (BCC) unit cells and Hexagonal Close Packed
(HCP) unit cells. Unit cell structures determine some of the properties of metals. For example,
FCC structures are more likely to be ductile than BCC or HCP.

The crystal structure found for many metals has a unit cell of cubic geometry, with atoms
located at each corner and centers of all the cube faces. This structure is called Face Centered
Cubic (FCC) crystal structure. Some of the commonly used metals like aluminum, copper, gold
and silver have FCC crystal structure. Figure 2.5 shows a model for the FCC unit cell, where
the small circles represent the atom centers.

Figure 2.5: Crystal structure for metals that has cubic geometry unit cell

Body Centered Cubic (BCC) crystal structures also has cubic unit cells with atoms lo-
cated at all eight corners and a single atom located at the center of cube. Figure 2.5 shows
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2.2 Elasto-plastic behaviour in crystalline materials

Figure 2.6: Pictorial representation of different crystal planes in a cubic unit cell

the crystal structure of BCC unit cells. Some of the metals that exhibit BCC structure are
chromium, iron or tungsten.

Apart from cubic symmetry, some metals also exhibit non cubic symmetry, like hexagonal
symmetry. These structures are termed as Hexagonal Close Packed (HCP) structures. The top
and bottom faces of the hexagonal unit cell consists of six atoms that form regular hexagons
and surround a single atom located in the center. Another plane that provides three additional
atoms to the unit cell is situated between the top and the bottom planes. Hexagonal Close
Packed (HCP) metals include titanium, zirconium and magnesium.

For understanding crystalline materials, it becomes necessary to specify a particular point,
a crystallographic direction and a crystallographic plane of atoms. A crystallographic direction
is defined as a line between two points, or a vector. Basically three indices are used for repre-
senting the projections of the vector. They are characterized by enclosing the indices in square
brackets [uvw]. u, v, w are integers corresponding to the projections of the vector along x, y

and z axes respectively. Commonly used directions in cubic crystallographic system are [100],
[110] and [111].

Crystallographic planes are also defined in a similar manner, with the unit cell as the
basis. Crystallographic planes are specified by three Miller indices as (hkl). Plane examples in
a cubic crystallographic system are (100), (110) and (111) and are drawn in a FCC unit cell
as shown in figure 2.6. Any two planes parallel to each other are equivalent and have identical
indices.

Single crystal materials are characterized by a periodic and repeated arrangement of
cells extended throughout the entirety of the specimen without interruption. All unit cells
interlock in the same way and have the same orientation. Similarly polycrystalline materials
are composed of collections of many small single crystals or grains. These grains have random
crystallographic orientations and exists some atomic mismatch within the region where two
grains meet. This area is called grain boundary.
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Figure 2.7: Elastic and plastic deformation in a cell. Figure adopted from Roters et al. (2011)

2.2.2 Elastic and plastic deformation of crystals

In a crystal lattice, the atoms are arranged in the three dimensions and the atoms are
held together by atomic bonding. Deformation of crystal lattices, because of the changes in
the positions of atoms, are crucial for understanding the behavior of systems defined on larger
length scales. Continuum mechanics are very useful for describing elastic and plastic effects on
the mesoscopic and/or macroscopic scales.

2.2.2.1 Elastic deformation

When a definite force is applied on a crystal lattice, the atoms start moving around.
When the atoms in a crystal lattice are forcefully displaced without changing their neighbouring
atoms, we say the crystal has deformed elastically. In stress free configuration, the atoms are
pulled back to its original position because of the bonding between atoms.

2.2.2.2 Plastic deformation

If the movement of atoms is high exceeding a threshold limit of atomic bonding, then the
atoms cannot come back to its original position and a permanent deformation is generated.
Plastic deformation takes place by a process of slip on certain crystal planes under the action of
a shear stress. The lowest stress to displace the atoms permanently from its original position is
called as yield stress. Figure 2.7 shows a scheme of different types of deformation (elastic, plastic
and elasto-plastic). Normally plastic deformation relaxes stress in the system by allowing the
crystal shape change in stress free configuration.

Theoretically, the stress needed to deform plastically a perfect crystalline structure is
much higher than the measured force. The existence of dislocations, twinning and transforma-
tion mechanisms produces plastic deformation of crystals at stresses well below the theoretical
shear strength of a perfect crystal.

2.2.2.3 Dislocations

Dislocations are defined as 1D line of defects in the lattice that can move under shear
stress. Plastic deformation occurs when atoms start moving by forming new bonds and breaking
old bonds. Less energy is required to break a single bond as compared to the energy required
to break all bonds on the entire plane of atoms at once. Dislocations are said to be carriers of
plastic deformation as they contribute to crystalline material deformation.
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Figure 2.8: Undistorted lattice compared to a lattice with an edge and screw dislocation. Figure adopted
from Roters et al. (2011)

Figure 2.9: Representation of {111} family of slip planes in an FCC single crystal unit cell.Figure
adopted from Roters et al. (2011)

Dislocations are characterized by two vectors namely tangential vector and burger vector.
Tangential vector (s) describes the line of dislocation, whereas burger vector (b), describes the
length and direction of dislocation. Based on these two vectors (s and b) dislocations are
distinguished into two types, edge dislocation and screw dislocation as shown in figure 2.8.

1. Edge dislocation: in edge dislocation, burger vector is perpendicular to the line direction
as shown in figure 2.8. This dislocation will create an additional (in-plane) layer of atoms
due to asymmetrical nature of edge dislocation. The stress field around edge dislocation
is complex.

2. Screw dislocation: in screw dislocation, burger vector is parallel to the line of dislocation.
By cutting the plane through the crystal and slipping one side by a lattice vector, we can
construct a screw dislocation as shown in figure 2.8. Stress field around screw dislocation
is simpler compared to edge dislocation.

In a crystalline structure, dislocation movement is restricted only to certain paths. The
path of dislocation movement constitute a slip system. Each slip system contains a slip plane
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Figure 2.10: Schmid factor: Resolved shear stress on slip plane and movement of dislocation on slip
plane. Figure adopted from Roters et al. (2011)

and a slip direction. A slip plane is a plane with the closest package of atoms and a slip
direction is a densely packed direction within a slip plane. Minimum energy is required for
the movement of dislocations in the slip system, hence it is always preferred for dislocation
movement. Normally, edge dislocations slips only in a single plane whereas screw dislocations
may slip in the direction of any plane. Depending on the structure of a crystal, different densely
packed planes are available. For FCC crystal structure, planes are {111} (the notation {111} in
curly brackets is used for all the family of planes that are equivalent to (111) by the symmetry
of the lattice) and densely packed direction is <110> (the family of crystal directions that are
equivalent to the direction [110 ] is notated as <110>) . For FCC crystal structure there are
12 slip systems and four 111 planes as shown in figure 2.9. Within each plane there are three
independent <110> directions as shown in table 2.1:

Table 2.1: Slip systems {m̃α, ñα} of the FCC crystal structure

α ñα m̃α α ñα m̃α

1 (111) [1̄01] 7 (1̄11) [01̄1]
2 (111) [01̄1] 8 (1̄11) [101]
3 (111) (11̄0] 9 (1̄11) [110]
4 (11̄1) [1̄01] 10 (111̄) [1̄10]
5 (11̄1) [011] 11 (111̄) [101]
6 (11̄1) [110] 12 (111̄) [011]

2.2.2.4 Slip activity in single crystals

Slip system activity arises from the movement of edge, screw, or mixed dislocations in
response to shear stresses applied along a slip plane and a slip direction. Even though an applied
stress may be pure tensile/compressive, shear components exists along a slip plane that is other
than perpendicular or parallel to the stress axis. These are termed as resolved shear stresses.
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The magnitude of resolved shear stress depends not only on the applied stress, but also
on the orientation of both slip plane and slip direction as shown in figure 2.10. It can be shown
that for a applied stress σ, the resolved shear stress τR can be written as

τR = σ cosΨ cosλ (2.27)

where Ψ represents the angle between the tensile axis and the slip-plane normal, and λ the
angle between the slip direction and the tensile axis. The quantity cosΨ cosλ is called the
Schmid factor.

It is well known that a single crystal has a number of different slip systems that can be
operative at the same time. Therefore, the resolved shear stress normally differs for each one
because of the relative orientation of each axis to the stress is different.

In response to the applied tensile or compressive stress, slip in a single crystal commences
on the most favorable oriented slip system when the resolved shear stress reaches a critical
value, termed critical resolved shear stress. Critical resolved shear stress (τcrss) represents the
minimum shear stress required to initiate slip, and is a property of the material that determines
when yielding occurs. Single crystals starts yielding when τR = τcrss. The magnitude of the
applied stress required to initiate yielding (σy) is given by equation 2.28 when σ = σy and
cosΨ cosλ = (cosΨ cosλ)max.

σy = τcrss

(cosΨ cosλ)max

(2.28)

During deformation of crystals, the dislocations accumulate, interact with one another and
serve as pinning points or obstacles that significantly impede their motion. Because dislocation
motion is hindered, plastic deformation cannot occur at normal stresses. On this basis, an
increase in dislocation density leads to an increase in the yield strength of the material and the
subsequent decrease in ductility. The resistance to dislocation-formation manifests as material
strengthening or work hardening.

2.2.3 Large strain elastoplastic model

In this point the proposed constitutive model used in this work is presented. First main
results of kinematics problem are given followed by a summary of the constitutive equations.

2.2.3.1 Kinematics

The kinematics for elasto-plastic crystal behavior is defined within the finite deformation
framework. According to this framework, the deformation gradient tensor is written as the
product of the elastic and plastic part as discussed in section 2.1.1.6:

F = FeFp (2.29)
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Figure 2.11: Generalised elasto-viscoplastic calculation loop. Figure adopted from Roters et al. (2011)

Based on the multiplicative decomposition of deformation gradient F, we can derive
velocity gradient L. L is decomposed additively into elastic Le and plastic Lp velocity gradients
as given by equation 2.30:

L = Le + Lp = FeFe
−1 + Lp (2.30)

Plastic velocity gradient Lp depends on the underlying microstructure, represented by
variable ζ and stress state S as shown in equation 2.31:

Lp = f(S, ζ) (2.31)

where ζ depends on the kind of plasticity model used and S is the second Piola Kirchhoff
stress given by equation 2.32:

S = C
2 (Fe

T Fe − I) (2.32)

being C the elastic IVth order stiffness tensor.
The rate of plastic deformation Ḟp is defined as:

Ḟp = LpFp (2.33)

The set of nonlinear equations previously presented needs to be solved iteratively, as all
the parameters are dependent on each other. The idea of the iterative process is to start by
guessing any one of the component and find the remaining components by following the loop
as shown in figure 2.11, until predicted values converges for given guessed values.
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2.2.3.2 Constitutive model for an FCC single crystal

In this work, it is assumed that the plastic deformation occurs by dislocation glide on
slip systems, therefore the evolution of the plastic part follows the equation

Ḟp =
 NS∑

α=1
γ̇αM̃α

Fp , M̃α = m̃α ⊗ ñα (2.34)

M̃α being a Schmid tensor where the slip directions m̃α and planes ñα are specified in the
intermediate configuration. It should be noted that the plastic deformation described by Eq.2.34
is volume preserving, det Fp = 1, since m̃α · ñα = 0. The current orientation of crystallographic
directions and planes can be found using the elastic part of the deformation gradient as follows

n(t)α = (FeT )−1ñα , m(t)α = Fem̃α . (2.35)

Because the face centred cubic (fcc) crystal structure is considered in the study, the
dislocations glide happens on the {111} planes in ⟨110⟩ directions. For the NS = 12 slip
systems, the slip planes and directions are listed in Table 2.1.

The shear rate γ̇α on a given slip system α is related the stress state by the phenomeno-
logical visco-plastic type power law (Asaro and Needleman, 1985)

γ̇α = γ̇0

∣∣∣∣τα

τ̂α

∣∣∣∣p1

sign(τα). (2.36)

with the resolved shear stress
τα = T̃ · M̃α (2.37)

where the parameter γ̇0 is the reference shear rate, p1 is the inverse of the strain rate sensitivity
parameter and T̃ is the Mandel stress. When the elastic strains are small as compared to the
inelastic ones, the Mandel stress can be approximated by the IInd Piola-Kirchhoff stress pushed
forward to the intermediate configuration S̃, namely:

T̃ = (FeTFe)︸ ︷︷ ︸
≈I

S̃ ≈ FpSFpT (2.38)

The stress tensor S̃ is calculated with help of the hyperelastic law assuming the Kirchhoff-
type function of free energy density per unit volume in the reference configuration

S̃ = ∂Ψ
∂Ee = C · Ee where Ee =

[1
2
(
FeTFe − I

)]
(2.39)

with C the elastic IVth order stiffness tensor.
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The critical resolved shear stress τ̂α, obeys the following evolution rule (Kalidindi et al.,
1992)

˙̂τα = h0

NS∑
β=1

qαβ

(
1 − τ̂β

τ̂s

)p2

|γ̇β| (2.40)

where h0 is the initial hardening rate, τ̂s the saturation resistance, p2 the hardening expo-
nent and qαβ the cross hardening coefficient matrix. The model parameters for elasticity and
plasticity used in Chapters 3, 4 and 5 are given in Table 2.2.

The constitutive equations mentioned above are implemented into a user subroutine
UMAT in ABAQUS/Standard (2019). The implementation of the crystal plasticity model fol-
lows the time integration procedure with the consistent material tangent operator presented
by Meissonnier et al. (2001) and is described in detail in appendix B and C. In particular, the
evolution equation (2.34) is integrated using the expansion of tensor exponent into the Taylor
series.

Fp = exp
 NS∑

α=1
∆γαM̃α

Fp0 ≈

I +
NS∑
α=1

∆γαM̃α

Fp0 (2.41)

Table 2.2: Material parameters for crystal plasticity model (Han et al., 2013; Kalidindi et al., 1992)

Parameter Notation Value
Reference shear rate γ̇0 (s−1) 0.001

Inverse of strain rate sensitivity p1 20
Initial critical resolved shear stress τ̂0 (MPa) 20
Initial strain hardening modulus h0 (MPa) 180

Saturated critical resolved shear stress τ̂s (MPa) 117
Strain hardening exponent p2 2.25
Self-hardening coefficient qαβ (α = β) 1

Latent hardening coefficient qαβ (α ̸= β) 1.4
Elastic constants

c11 (GPa) 199
c12 (GPa) 136
c44 (GPa) 105

2.2.3.3 Measure of macroscopic stresses and strains in this work

Following a general homogenization approach, the definition of equivalent stresses and
strains considered in this work is as shown by the equations below. Macroscopic Cauchy stress
σij components are related to the microscopic Cauchy stresses σ̄ij through the relations:

σij = 1
Vcell

∫
Vcell

σ̄ij dVcell (2.42)
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where Vcell denotes the volume of cell. The definition of macroscopic equivalent stress σeqv,
triaxiality T and Lode parameter L are given by:

σeqv =
√

3
2 σ′

ijσ′
ij; T = σh

σeqv
; L = 2σ2−σ1−σ3

σ1−σ3
(2.43)

with

σ′
ij = σij − σhδij; σh = σii

3 (2.44)

and σ1, σ2 and σ3 the principal macroscopic true stress components. Following Srivastava and
Needleman (2015b), an equivalent strain is calculated based on the following numerical volume
average of local logarithmic strain ε̄ij, namely:

⟨εij⟩ = 1
Vmatrix

∫
Vmatrix

ε̄ijdVmatrix (2.45)

where Vmatrix denotes the volume of the cell excluding the void. It must be stressed that, in
general, this volume averaged value ⟨εij⟩ is not equal to the macroscopic logarithmic strain as
long as deformation is non-uniform. The definition of the equivalent strain is then proposed as
follows:

εeqv =
√

2
3 ⟨ε′

ij⟩ ⟨ε′
ij⟩ where ⟨ε′

ij⟩ = ⟨εij⟩ − εhδij ; εh = ⟨εii⟩
3 (2.46)

This value is used only for the purpose of graphical presentation of results and remains
common through out this thesis.
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Numerical study of single crystals without voids: effect of Orientation

3.1 Introduction
In the previous section, a brief overview of important aspects of crystalline plasticity,

constitutive equations and its implementation in the continuum framework has been given. In
this section, our attention is focused on how micromechanical features included in continuum
analysis of large strain plasticity of single crystals reproduces slip phenomenons, crystal rotation
and texture.

It is well known that in single crystals, the yield stress for uni-axial tension varies de-
pending on the loading direction (Asaro, 1983) as shown in figure 3.1. For the purpose of
understanding the single crystal response considering more complex loading conditions, 6 dif-
ferent orientations are analyzed in this chapter. For each of these orientations numerical tests
are performed at different triaxialities and Lode parameters considering a representative unit
cell. Based on the obtained results, the orientations will be categorized as soft and hard ori-
entations. The obtained results will act as a road map for our future studies of porous single
crystals and bi-crystals.

Figure 3.1: Critical yield stress for uniaxial tension in different direction along crystal axis for a FCC
unit cell single crystal.

Orientations in terms of miller indices and respective Euler angles used in this section
are given in table 3.1. Orientations in terms of miller indices represents the direction cosines
in crystal coordinate system. Orientation in the matrix is constructed by using the direction
cosines. First row represents miller index parallel to specimen X direction and last row repre-
sents miller index parallel to specimen Z direction. In orientation 1 and as example, specimen
cell X axis is parallel to [100] and Z axis is parallel to [001]. The method used for calculating
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Euler angles from miller indices is well documented and a brief explanation is given considering
some examples in Appendix E.

Table 3.1: Orientation of single crystal matrix for different RVE’s in terms of Euler angles. The Euler
angles are defined with respect to global axis(X,Y,Z)

RVE Bunge euler angles (◦) Crystallographic orientation on global
(ϕ1, Φ, ϕ2) coordinates X-Z

O1 (0,0,0) [100] -[001]
O2 (0,45,0) [100] -[011]
O3 (45,0,0) [110] -[001]
O4 (45,54.73,0) [11̄0] -[111]
O5 (0,45,54.73) [111] -[11̄0]
O6 (45,35.26,90) [11̄1] -[1̄12]

3.2 Representative volume element

Figure 3.2: Cell used for studying the behavior of the single crystal.Pole figures representing the initial
orientations studied in this work.

For studying the effect of orientation in a single crystal, the representative volume element
used in this work consist of a cubic cell as shown in figure 3.2. The complete cell is discretized
into 1000 C3D8R elements. Initially, the unit cell is aligned such that the edges of the unit
cell are parallel to the global XY Z axes. The notation adopted here denotes each orientation
by the crystallographic directions, aligned with the main loading direction. The main loading
direction is parallel to the X axis and the secondary loading direction is parallel to Z or Y
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axis depending on the selected Lode parameter. A dimensionless equivalent strain rate ϵ̇0/ γ̇0

in the range (100 − 150) is ensured in all simulations.
As previously mentioned, six crystallographic orientations are used in this study. Orien-

tations are given in terms of the Bunge Euler angles and crystallographic planes parallel to
each loading direction are as shown in table 3.1. Pole figures for the orientations considered
are shown in figure 3.2. For simplicity, each 6 orientations will be henceforth called O1 - O6
as shown in table 3.1. The material of the unit cell is modelled as a single crystal using the
rate dependent crystal plasticity constitutive relations discussed in section 2.2.3.2. Material
parameters are given in table 2.2. The plastic parameters of the material analyzed in this work
correspond to annealed OFHC copper (Kalidindi et al., 1992). Three dimensional finite element
calculations are carried out on the cell under different loading conditions. Different triaxiality
and Lode parameters are applied to the cell following the method developed in Appendix D.
Periodic boundary conditions, as explained in Appendix D are applied to the cell.

3.3 Results and discussion

3.3.1 Effect of orientation on stress strain curve

The effect of the orientation on the response of a single crystal is analyzed in this section.
Results in the form of stress strain curves and deformed cell shape are presented for each of
the 6 orientations studied.

Figure 3.3a shows the σeqv − ϵeqv relation for different Lode parameters on the single
crystal cell. As it is well known that there is no effects of hydrostatic components of stress
tensor on the Schmid criterion, only one triaxiality is considered in this case (T = 1/3). For
a given triaxiality, the response of the single crystal is characterized by the value of the yield
stress. The orientation is considered harder for a given Lode parameter if the yield stress curve
is higher, and softer is the yield stress curve is lower. As shown in the figure, for O1, the value
of the yield stress is higher for L = −1, 1 and lower for L = 0. We can therefore say that O1
orientation has a harder response for L = 1, −1 and a softer response for L = 0.

For orientation 2 (O2), specimen cell X axis is parallel to [100] and Z axis is parallel to
[011]. Figure 3.3b shows the σeqv − ϵeqv relation for different Lode parameters. As seen in the
figure, the equivalent yield stress is higher for L = −1, closely followed by L = 1 and lower for
L = 0. For O2, we can say that L = −1, 1 gives harder response if compared to L = 0.

Orientation 3 (O3) is similar to O2, but here specimen X axis is parallel to [110] and
[001] is parallel to specimen Z axis (opposite to O2). The response of the single crystal cell for
different Lode parameters is as shown in figure 3.3c. For L = 1, we obtain the hardest response,
followed by L = −1 and softer response for L = 0. The response of O2 and O3 for L = 1 and
L = −1 are completely opposite to each other, i.e., the response of O2 for L = 1 is the same as
the response of O3 for L = −1. Similarly, the response of O2 for L = −1 is the same as L = 1
for O3. The response of O2 and O3 is the same for L = 0.
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3.3 Results and discussion

(a) O1 (b) O2

(c) O3 (d) O4

(e) O5 (f) O6

Figure 3.3: Equivalent stress - Equivalent strain for single crystals at different Lode parameters and
crystal orientations.

For orientation 4 (O4), specimen cell X direction is parallel to [110] and Z direction is
parallel to [111]. Coordinate planes normal to < 111 > crystallographic orientation does not
posses any symmetry as in the case of < 100 >, < 110 >, and periodic boundary conditions
will allow the cell to deform along non principal directions. As we can see from figure 3.3d, the
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response of the cell for L = 1 is harder and for L = −1, 0 is softer. L = −1 has slightly higher
equivalent yield stress compared to L = 0.

For O5, specimen X direction is parallel to [111] and Z direction is parallel to [011]. As
in the case of O4, there is no crystal symmetry along <111> and periodic boundary conditions
applied along the faces will allow the cell to deform along non principal directions. Figure 3.3e
shows the response of the cell considering different Lode values. L = −1 produces the hardest
response followed by L = 0 and softer response is observed for L = 1. The response of O4
and O5 are opposite to each other for L = 1 and L = −1. Orientation O4 at L = 1 has the
same response as orientation O5 for L = −1. Similarly orientation O4 at L = −1 has the same
response as orientation O5 at L = 1.

For O6, [-112] is parallel to X direction and [1-11] is parallel to Z direction. As shown in
figure 3.3f the plot of σeqv − ϵeqv shows the difference in the yield stress behavior for all 3 Lode
parameters. L = 1 gives the hardest response followed by L = 0 and L = −1 gives the softest
response.

3.3.2 Effect of orientation on deformed cell shape

When the loading is applied along a specific crystallographic direction, single crystals
exhibit specific deformation modes. For O1 and when triaxiality and Lode parameter are pre-
scribed in the cell following the method developed in Appendix D, the cell deforms only along
the principal loading axes. This is because of the crystal symmetry, i.e., reflection planes nor-
mal to < 100 >. Single crystals with O1 orientation gives an isotropic response. By using
the definition of Lp it is observed that non diagonal components of Lp are zero and hence we
observe deformation only along the principal directions. From the deformed cell, we can see
that crystal undergoes uniform expansion/contraction along the faces of the cell and the cell
shape remains a rectangular prism during the whole deformation process. The deformed cell
shapes for O2 and O3 looks similar to the case of O1, because of the crystal symmetry along
< 110 >.

For O4, O5 and O6, because of the orientation of the single crystal, we observe some
non-zero off-diagonal terms in Lp. Due to Lp non diagonal terms, we observe non principal
deformation of cell accommodating rotations. Because of periodic boundary conditions applied
in the external surfaces of the cell, the cell is allowed to move freely in non principal directions.
By allowing shear deformations in the cell, we make sure that non principal stresses are zero,
hence triaxiality and Lode parameters and the response of the cell remains completely homo-
geneous. Depending on the orientation, we observe different off diagonal component values for
O4, O5 and O6.

For O4, as we can see from figure 3.4, the cell for different Lode parameters deform in
directions other than principal directions, i.e., cell has shearing deformation. For O5 and O6
orientations, the cell deformation behaviour is similar to O4. For brevity these figures are not
presented in this thesis.
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(a) L=0 (b) L=1

(c) L=-1

Figure 3.4: Deformed cell shapes for O4 orientations at different Lode parameters at εeqv = 0.6%.

3.4 Summary and conclusions
The main purpose of the study in this section is to categorize crystals based on their

orientation for a given loading condition as soft and hard crystals. In order to simplify the
observations, new plots of stress strain curves σeqv − ϵeqv are presented in figures 3.5. Here we
have commonized the plots based on Lode parameters, so that we can compare all orientations
in the same figure. Stress-strain curves for different orientations are represented for L = −1, 0
and 1. This will help us to clearly define hard and soft orientation for a given Lode value.

In figure 3.5, different colours represents different orientations: blue for O1, green for O2,
red for O3, cyan for O4, magenta for O5 and black for O6. For L = −1, as shown in figure 3.5a,
O5 and O6 orientations produces the hardest response, followed by O4 orientation and softer
response is observed for O1, O2 and O3. For L = 1, as shown in figure 3.5b, O4 orientation
produces the hardest response, followed by O5 orientation, afterwards by O6 orientation and
softer response is observed for O1, O2 and O3 orientations. Similarly, for L = 0, as shown
in figure 3.5c the hardest response is obtained for O4 orientation, followed by O5 and O6
orientation respectively and the softest response is observed for O1, O2, O3.

In this section, we analyzed the effect of Lode parameter on each orientation and for
a given orientation and Lode parameter, we observed a hard and soft response of the single
crystal. It is clear from the figures that for anisotropic orientations O4, O5, O6, we observe
harder response as compared to O1, O2, O3, which produces softer response irrespective of
Lode parameter.

Based on these results, in the following sections we will consider only four orientations
instead of the six orientations presented here, two hard orientations and two soft orientations,
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(a) L=-1 (b) L=1

(c) L=0

Figure 3.5: Equivalent stress - Equivalent strain for single crystals for different Lode parameters and
different crystal orientations.The presented curves are the same for all triaxiality values considered.

to characterize the soft and hard crystal behavior irrespective of the Lode parameter and
triaxiality value analized. For hard orientations we will select O4 and O6 orientations, whereas
for soft orientations we will select O1 and O2 orientations. Based on the observation of deformed
cell shapes, it is important to clear that, and in order to allow cells to deform freely in shear
directions, that simulations performed in future sections will be subjected to periodic boundary
conditions irrespective of the crystal orientation considered.

In future chapters, we will use the results and observations from this section as a base to
understand the effect of orientation, triaxiality and Lode parameter on void and cell behavior
in single crystals and bi-crystals with a void inside.
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4.1 Introduction

4.1 Introduction
The prediction of damage and fracture in ductile materials is essential to ensure structural

integrity and failure mitigation in several advanced engineering applications such as high-speed
machining (Chen et al., 2011), projectile penetration (Nahshon and Hutchinson, 2008), ballistic
impact on armor steels (McDonald et al., 2019) or crack propagation (Besson, 2010a) among
others.

Ductile fracture in structural materials has been subject of many studies over the past
decades and is known to occur by void nucleation, growth and final coalescence of voids. The
voids in the ductile material either pre-exists toda2014true or nucleate at material inclusions
due to de-cohesion of the matrix–particle interface or particle cracking (Maire et al., 2011;
Segurado and LLorca, 2005).

During the past decades, numerous micromechanics based models have been developed
to capture the evolution of ductile damage (Gurson, 1977a; Tvergaard, 1981; Tvergaard and
Needleman, 1984; Duva and Hutchinson, 1984; Gologanu et al., 1997, 2001). All the above
mentioned models concern matrix materials with isotropic behavior.

Rolled plates, extruded profiles, and other formed structural components typically exhibit
plastic anisotropy as reported in several experimental studies (Benzerga et al., 2004a; Fourmeau
et al., 2013a; Khadyko et al., 2014). Important efforts have been also made over the years to
describe the plastic behavior of anisotropic ductile materials considering orthotropic matrix
material obeying the Hill (1948) anisotropic yield criterion (Benzerga et al., 2004a,b; Monchiet
et al., 2008; Morin et al., 2015) or using continuum crystal plasticity models (Orsini and Zikry,
2001; Potirniche et al., 2006b; Liu et al., 2007b; Yerra et al., 2010a; Han et al., 2013; Lebensohn
and Cazacu, 2012).

Finite element void cell computations have been widely used to investigate the behaviour
of porous ductile solids (Koplik and Needleman, 1988; Tvergaard, 1982, 1990; Worswick and
Pick, 1990). Following the unit cell approach, several studies have already been performed
to address void growth in single crystals using classical crystal plasticity constitutive models
within a rate dependent formulation (see Srivastava and Needleman (2013, 2015b); Yerra et al.
(2010a)). Further Segurado and Llorca (2009) performed discrete dislocation simulations in or-
der to treat explicitly the interaction between dislocations, crystal orientation and void growth
in a more physical way. Most of these works have given a detailed view of the behaviour of the
voids in both isotropic and anisotropic matrix.

For isotropic materials, the effect of triaxiality and Lode parameter can be analyzed in 3D
cell simulations under prescribed loading conditions where the principal directions of the loading
are aligned with the axes of the cell and the void. However, for anisotropic matrix materials,
the response of the cell also depends on the orientation of the anisotropy axes. Recently, Dæhli
et al. (2017) performed 3D unit-cell analyses imposing the external stress state of the cubic
cell (macroscopic triaxiality and Lode parameter) and considering that the matrix material
is governed by the anisotropic yield criterion Yld2004-18p (Barlat et al., 2005). The material
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orthotropy directions were imposed to be collinear with the prescribed loading conditions and
with the edges of the cell. Later, Hosseini et al. (2022) devised a novel strategy to perform unit
cell calculations with a matrix material modeled using the macroscopic Yld2004-18 anisotropic
yield criterion with prescribed misalignment between loading and material axes and, at the
same time, macroscopic stress triaxiality and Lode parameter controlled to be constant during
loading.

The main objective in this section is to investigate the effect of triaxiality, Lode parameter
and crystal orientation on void growth. This analysis will be achieved using 3D finite element
calculations considering periodic boundary conditions and constant (prescribed) values of stress
triaxiality and Lode parameters. Material orthotropy directions will be collinear with the pre-
scribed loading conditions. FCC single crystal will be described with the constitutive relations
given in section 2.2.3.2. Material parameters are given in table 2.2. The obtained results from
this work will be used for comparison with results of bi-crystals which will be presented in next
chapter 5.

4.2 Representative volume element
Three dimensional finite element calculations are carried out to model the response of

voids under different triaxial loading conditions (different triaxiality and Lode parameters) and
different matrix orientations using a 3D cubic cell model. The 3D cubic cell contains a spherical
void with initial radius R0 at its center. The initial volume of the cubic cell is V cell

0 = L3
0 and the

initial volume of the spherical void V void = (4/3)πR3
0 so that the initial void volume fraction,

defined as the ratio between the initial volume of the void and the initial volume of the cell,
is f0 = V void

0 /V cell
0 = 4πR3

0/3L3
0= 0.0044. Cross-section of the cell with the void is as shown

in figure 4.1. For controlling triaxiality and Lode parameter values, the procedure described
in appendix D is followed. For both symmetric and non symmetric orientations, fully periodic
boundary conditions are applied to the cell as described in appendix D.

Figure 4.1: Cell containing a initially spherical void at its center and pole figures representing the
initial orientations studied in this section.
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4.2 Representative volume element

The unit cell considered here has been meshed using ABAQUS/CAE environment with
reduced integration first order brick elements designated as C3D8R. The effect of mesh on the
response of the cell was analized. Four different meshes were created for the cell, basically adding
more number of elements around the void. Evolution of void volume fraction and stress strain
response were used as criterion for selecting mesh size. Finally a mesh with 86000 elements
is considered as optimal choice with respect to convergence and simulation time. It should be
noted that special care has been taken to keep most of the elements in the cell to be cubical.

Initially, the unit cell is aligned such that the edges of the unit cell are parallel to the
global XY Z axes. The notation adopted here denotes each orientation by the crystallographic
directions, aligned with the main loading direction. The main loading direction is parallel to
the X axis and the secondary loading direction is parallel to Z or Y axis depending on the
selected Lode parameter. A dimensionless equivalent strain rate ϵ̇0/ γ̇0 in the range (100−150)
is ensured in all simulations.

For studying the response of porous single crystals for different loading conditions, we
have chosen 4 values of triaxiality (T = 0, 1/3, 2/3, 1) and 3 values of Lode parameters (L = 1,
0, −1). Some of the combinations of triaxiality and Lode parameters analyzed corresponds to
general loading scenarios used in experiments and simple loading conditions, like T = 1/3,
L = −1 (uniaxial tension), T = 2/3, L = 1 (biaxial tension) and T = 0, L = 0 (pure shear
stress).

Four different orientations are considered for studying porous single crystal response: two
soft orientations (O1 and O2) and two hard orientations (O4 and 06) following the observations
made from the study of single crystals without voids. The initial pole figures of the orientations
considered here are shown in figure 4.1.

For O1 and O2 orientations, there exist a crystal reflection symmetry about the coordinate
planes normal to <100> and <110>. The cell faces remain straight during deformation and
determine the current volume of the cell is straight forward. The volume of the void can be
calculated ad the difference between the volume of the cell and the volume of the matrix
(current sum of the volume of all the elements in the cell).

For non symmetric orientations (O4, O6), the initially straight sides of the unit cell (along
which fully periodic conditions are applied) becomes curved during deformation process and is
not straight forward to calculate the current volume of cell. In order to overcome this problem,
a different approach is adopted for calculating the volume of the void. The 3D (X, Y , Z)
coordinates of all the nodes on the surface of the void (initially spherical) is extracted from
the finite element calculations for all the time steps. By using these coordinates, void volume
is calculated at each time increment with the help of convex hull algorithms as described in
appendix F. With this approach, we can directly calculate the volume of the void at any given
point in the simulations.
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4.3 Results and discussion
In this section, results of porous single crystals for orientations O1, O2, O4, O6 are

presented for different triaxialities and Lode parameters.
For O1 orientation, void growth and void shape evolution remain symmetric in all 3 prin-

cipal directions. Figure 4.2a shows the normalized void volume fraction (f/f0)-equivalent strain
(εeqv) evolution for Lode = −1. In this figure different colours represents different triaxialities.
Black colour represents T = 1, red colour represents T = 2/3, blue colour represents T = 1/3
and green colour represents T = 0. As seen in the figure, void volume fraction increases mono-
tonically for T = 1 and T = 2/3. For T = 1 void volume fraction increases almost 6 times
the initial void volume fraction (f0) at εeqv=0.8, whereas for T = 2/3, void volume fraction
increases 3 times f0 at εeqv = 0.8. For T = 1/3, void volume fraction increases slightly above
the initial void volume fraction and is negligible if compared to T = 1 and 2/3. For T = 0,
void volume fraction decreases below f0 but we do not observe void collapse at any value of
equivalent strain.

(a) L=-1 (b) L=1

(c) L=0

Figure 4.2: Normalized void volume fraction -Equivalent strain evolution for O1 orientation at different
triaxialities and Lode parameters.
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For L = 1 and as shown in Fig. 4.2b, we observe void growth for T = 1 and T = 2/3.
However, void growth is less significant if compared to L = −1 case. For T = 1, void volume
fraction grows almost four times the initial void volume fraction for εeqv ≈ 0.8 and for T = 2/3,
void volume fraction growth is 1.5 times the initial void volume fraction at εeqv ≈ 0.4. For
T = 1/3, even we observe small void growth in the initial stages of deformation, void volume
fraction starts dropping in the later stages and for εeqv > 0.5, void volume drops below f0. For
T = 0, void volume fraction starts dropping below f0 from the initial stages of deformation
and larger drop is observed as compared to L = −1 case. Void volume fraction becomes less
than half f0 at εeqv = 0.6.

Similarly, for L = 0, void growth is observed for T = 1 and T = 2/3 (see Fig.4.2c). For
T = 1, void volume fraction grows almost 1.8 the initial void volume fraction when εeqv = 0.6,
whereas for T = 2/3, void volume fraction growth is 1.2 times the initial void volume fraction
for εeqv = 0.6. For T = 1/3, 0 we observe void volume fraction dropping below the initial void
volume fraction. As L = 1 and L = −1 cases, for T = 1/3, 0 we do not observe void collapse.

For O1 orientation, for T = 1 and T = 2/3 and among all the Lode parameters considered,
void volume fraction growth is higher for L = −1, followed by L = 1 and lower in L = 0 case.
For T = 1/3 and T = 0, void volume fraction decrease is more significant for L = 1, followed
by L = −1 and less significant in L = 0 case. The trends observed for O1 shows that void
growth is favourable for L = −1 and void shrinkage is favourable for L = 1 case.

For O2 orientation, we have crystal symmetry along <110>. As O1 orientation, O2 orien-
tation is considered in this work as soft orientation. Normalized void volume fraction-equivalent
strain evolution for different triaxialities and Lode parameters are analyzed in Figs. 4.3. In
Fig.4.3a and for L = −1, a significant increase in void volume fraction is observed for high
values of triaxiality. For T = 1, void volume fraction grows six times the initial void volume frac-
tion when εeqv = 0.8. For T = 2/3, void volume fraction grows three times f0 when εeqv = 0.8.
For low triaxialities like T = 1/3, we observe a small amount of void volume fraction growth,
whereas for T = 0 negative void volume fraction growth is observed as shown in figure 4.3a.

The trend of higher void growth at high triaxiality and lesser void growth at low triaxiality
is also observed for L = 1 in Fig.4.3b and L = 0 in Fig.4.3c. However, for both L = 1 and L = 0
values, the total void volume fraction growth is very low if compared to L = −1. For L = 1, 0,
the void volume fraction for T = 1 and T = 2/3 is below 1.3 times the initial void volume
fraction when εeqv = 0.6. For T = 1/3 and T = 0, a negligible change in void volume fraction
is observed. The effect of Lode parameter is more evident for O2 orientation if compared to
O1 orientation.

For O4 orientation, unlike O1 and O2 orientations, we do not have any crystal symmetry.
Because of the anisotropic nature of the matrix orientation and the applied periodic boundary
conditions, the cell undergoes shear deformations. This behavior majorly influences on the way
void shape evolves and the rate at which void evolves.

As shown in figure 4.4a, for O4 and L = −1 and as previously observed for O1 and
O2 orientations, void volume fraction increases for high triaxiality values (T = 1, 2/3) and
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(a) L=-1 (b) L=1

(c) L=0

Figure 4.3: Normalized void volume fraction- Equivalent strain evolution for O2 orientation at different
triaxialities and Lode parameters.

void volume fraction decreases below the initial void volume fraction for low triaxiality values
(T = 1/3, 0). For T = 1, void volume fraction grows almost 5 times the initial void volume
fraction at εeqv=0.6. For T = 2/3, void volume fraction grows nearly two times the initial void
volume fraction at εeqv=0.8. For triaxiality T = 1/3, void volume fraction growth is observed
initially (till εeqv = 0.2), but during the later stages of deformation, void volume fraction starts
dropping and it drops below f0 at εeqv = 0.45. For T = 0, void volume fraction starts dropping
below the initial void volume fraction from the early stages of deformation, and void volume
fraction reduces to half the initial void volume fraction when εeqv = 0.65.

Figure 4.4b shows the response of the cell when the matrix has O4 orientation and Lode
parameter L = 1. For T = 1, void volume fraction grows almost 4 times f0 at εeqv = 0.8,
whereas for T = 2/3, void volume fraction grows initially till εeqv = 0.2, but starts dropping
in the later stages of deformation and void volume fraction decreases below the initial void
volume fraction for εeqv = 0.6. For T = 2/3, the behaviour of void volume fraction evolution at
L = 1 is different from L = −1. For L = −1 we see void volume fraction increasing from the
whole deformation history, whereas for L = 1 we see void volume fraction decreasing during the
later stages of deformation (εeqv > 0.2). For T = 1/3, 0, we see void volume fraction decreasing
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(a) L=-1 (b) L=1

(c) L=0

Figure 4.4: Normalized void volume fraction- Equivalent strain evolution for O4 orientation at different
triaxialities and Lode parameters.

below the initial void volume fraction from the early stages of deformation. For T = 1/3, void
volume fraction increases initially till εeqv = 0.1, but starts dropping below the initial void
volume fraction and we observe void collapse for εeqv ≈ 0.7. Void is considered collapsed when
the surface of the void comes in contact and simulation is stopped at this point. For T = 0,
void volume fraction drops below the initial void volume fraction from the beginning and void
collapses at εeqv = 0.6.

Figure 4.4c shows the response of the cell considering O4 orientation and L = 0. For
T = 1, void volume fraction grows almost 5 times the initial void volume fraction at εeqv = 0.5
and void volume fraction growth rate is higher if compared to L = −1, 1 cases. For T = 2/3,
void volume fraction grows almost twice the initial void volume fraction at εeqv = 0.5, and
the rate of void volume fraction growth is higher than L = −1, 1 cases. For low triaxialities
(T = 1/3, 0), void volume fraction drops below the initial void volume and we observe void
collapse.

For O4 orientation, the analyzed results show that the Lode parameter affects the response
of the void for all triaxiality values considered. For high triaxialities, void volume fraction
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growth is faster for L = 0, followed by L = −1 and least for L = 1 case. For low triaxiality
values, void volume fraction drops bellow f0 and void collapses for L = 1 and L = 0 cases.

(a) L=-1 (b) L=1

(c) L=0

Figure 4.5: Normalized void volume fraction- Equivalent strain evolution for O6 orientation at different
triaxialities and Lode parameters.

For O6 orientation and because of the anisotropy of the matrix, the cell deforms with
shear components. Figure 4.5a shows the response of the cell with O6 orientation for Lode
parameter L = −1. For T = 1 and as seen in the figure, void volume fraction grows almost
six times the initial void volume fraction at εeqv = 0.35 and f grows at a very high rate.
For T = 2/3, void volume fraction grows almost 5 times the initial void volume fraction at
εeqv ≈ 0.6 with a growth rate that is slower than T = 1 case. For T = 1/3, void volume fraction
grows initially, but at later stages of deformation (εeqv = 0.5), void volume fraction growth
saturates. For T = 0, void volume fraction decreases below the initial void volume fraction and
even in this case, after the initial drop of f , void volume fraction growth saturates and we do
not observe void collapse.

For L = 1 and as shown in Fig 4.5b void volume fraction grows almost 2 times the initial
void volume fraction for T = 1 and εeqv = 0.8. For T = 2/3, void volume fraction grows at
low rate initially, and after εeqv = 0.3 void volume fraction growth saturates. For T = 1/3, 0
void void volume fraction decreases below the initial void volume fraction (from εeq = 0.35
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at T = 1/3 and from εeq = 0 at T = 0) and after the initial drop in void volume fraction, f

saturates and we do not observe void collapse.
Figure 4.5c shows the response of the cell for O6 orientation and Lode parameter L = 0.

For T = 1, void volume fraction increases almost five times the initial void volume fraction at
εeq = 0.5. For T = 2/3, void volume fraction grows more than two times the initial void volume
fraction at εeq = 0.6. For T = 1/3, void volume fraction grows initially, and for εeqv > 0.2 void
volume fraction decreases. For T = 0 and during the initial stages of deformation, there is
neither void growth nor decrease in void volume fraction, as void volume doesn’t change until
εeqv = 0.2. For higher strains (εeqv > 0.2) void volume fraction decreases below the initial void
volume fraction, and no void collapse is observed.

As shown in Figs. 4.5 and for O6 orientation, at high triaxiality values (T = 1, 2/3) void
volume fraction growth rate is higher for L = −1, followed by L = 0 and least for L = 1 case.
For low triaxiality values ( T = 1/3 and T = 0), void volume fraction evolution is very similar
for L = −1, L = 1 and L = 0 cases.

Previous results clearly show that void volume fraction growth is dependent on both
triaxiality and Lode parameter values. In Figs. 4.6, 4.7 and 4.8 we will compare the influence
of orientation on void volume fraction growth at different triaxialities for a prescribed Lode
parameter values. The results analyzed now are the same as the previous ones, but represented
in a different way to interpret the effect of orientation better.

In Figs. 4.6 results for O1, O2, O4 and O6 orientations are presented for T =
1, 2/3, 1/3, 0 and Lode parameter L = −1. Different colours represents different orienta-
tions. Black color represents O6, red color represents O4, blue color represents O2 and green
color represents O1. Figure 4.6a shows void volume fraction-equivalent strain evolution for dif-
ferent orientations at T = 1. The magnitude of void volume fraction growth reached in the
simulations (close to 6 times the initial void volume fraction) is almost the same for all the
orientations considered, but the rate at which void volume fraction grows is higher for O6
(maximum growth at εeqv = 0.35), followed by O4, O2 and least for O1 orientation (with a
growth of 6 times the initial void volume fraction at εeqv = 0.8). The difference in void volume
fraction growth rate for O1, O2, O4 is small if compared to O6.

Figure 4.6b shows void volume fraction-equivalent strain evolution for T = 2/3. As shown
in the figure, the amount of void volume fraction growth in O6 is higher if compared to other
orientations. Compared to O6, a lower void volume fraction growth is observed by O1 and
O2 orientations which has nearly the same void volume fraction evolution. Least void volume
fraction growth is observed for O4 orientation.

For T = 1/3 and as shown in figure 4.6c the amount of void volume fraction growth
and the rate of void volume fraction growth is higher for O6 orientation if compared to other
orientations. For O4 orientation, void volume fraction growth is observed during the initial
stages of deformation at a rate higher than O1 and O2 orientations. However, as the deformation
proceeds, we observe void volume fraction dropping below the initial void volume fraction. For
O1 and O2 orientations, void volume fraction growth is almost the same.
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(a) T=1 (b) T=2/3

(c) T=1/3 (d) T=0

Figure 4.6: Normalized void volume fraction-Equivalent strain evolution for different orientations at
L = −1 and T = 1, 2/3, 1/3 and 0.

As shown in figure 4.6d for T = 0 and from the initial stages of deformation, void
volume fraction decreases below f0 for all orientations. At the initial values of εeqv, the rate at
which void volume fraction decreases is higher for O1 and O2 orientations followed by O6 and
O4 orientations respectivelly. However, as the deformation progresses and for εeqv > 0.1 void
volume fraction for O4 orientation decreases faster than O1, O2 and O6 orientations.

The surface of the void comes in contact earlier for O2 orientation and simulations are
stopped at this point, whereas for O4 orientation, void volume fraction decreases further below
f0 and reduces to almost 0.4f0. Until εeqv ≈ 0.6, the rate of decrease of void volume frac-
tion is smaller for O6 orientation if compared with the other orientations considered. For O6
orientation, the value of void volume fraction is f = 0.6f0 for εeqv = 0.8.

Figure 4.7 shows void volume fraction evolution for Lode parameter L = 1 considering
various triaxialities (T = 1, 2/3, 1/3, 0). At T = 1, the amount of void volume fraction growth
is higher for O1 and O4, followed by O6 and least for O2 orientation as shown in figure 4.7a.
Void growth is higher for O4 orientation until εeqv = 0.55. For further deformation, the rate of
void volume fraction growth increases for O1 orientation and dominates over O4. Void volume
fraction growth rate is lower for O2, as void grows slowly from the beginning till the end.
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(a) T=1 (b) T=2/3

(c) T=1/3 (d) T=0

Figure 4.7: Normalized void volume fraction-Equivalent strain evolution for different orientations at
L = 1 and T = 1, 2/3, 1/3, 0.

For T = 2/3, as shown in figure 4.7b, void volume fraction growth is observed for O1
and O2 orientation. For O4 orientation, void growth is observed only in the initial stages
of deformation. For O4 and during later stages of deformation, void volume fraction starts
decreasing and drops below the initial void volume fraction. The rate of void growth is higher
for O4 orientation until εeqv = 0.18 is reached. For higher strains void growth rate is higher for
O1 orientation, followed by O2 and least in O6 and O4 case.

At T = 1/3 and for O1, O4, O6 orientations, void volume fraction growth is observed
initially, but during later stages of deformation, void volume fraction starts dropping below the
initial void volume fraction, as shown in figure 4.7c. Void volume fraction starts dropping earlier
for O4 orientation, followed by O6 orientation and finally in O1 orientation case. Void volume
fraction decrease is higher for O4 orientation as void volume nearly becomes zero, whereas for
O6 orientation, after dropping below the initial void volume fraction, growth saturates as we do
not see any change in void volume. For O2 orientation, void volume fraction remains constant
throughout the whole simulation.

At T = 0, void volume fraction decreases for all the orientations considered. Void volume
fraction drops faster for O4, followed by O1, O6 and least for O2 case as shown in figure 4.7d.
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The amount of void volume fraction drop is higher for O4 orientation as void volume fraction
almost reduces to zero and we observe void collapse. As in the case of T = 1/3, void volume
fraction for O2 orientation doesn’t change appreciably and we observe a saturation in void
volume fraction.

(a) T=1 (b) T=2/3

(c) T=1/3 (d) T=0

Figure 4.8: Normalized void volume fraction-Equivalent strain evolution for different orientations at
L = 0 and T = 1, 2/3, 1/3, 0

At L = 0, the evolution of void volume fraction for T = 1 and different orientations are
shown in figure 4.8a. As observed in the figure, the amount of void volume fraction growth
and the rate of void volume fraction growth is higher for O4 and O6 orientations, and both
orientations behave similarly throughout the whole simulation. O1 follows O4 and O6 in the
amount of void volume fraction growth. Least void volume fraction growth is observed for O2
orientation.

Similarly for T = 2/3, void volume fraction growth rate and the amount of void volume
fraction growth is higher for O4 and O6 orientation, followed by O1 and O2 orientation as
shown in figure 4.8b.

For T = 1/3, void volume fraction growth is observed during the initial stages of defor-
mation for O4 and O6 orientation. During the initial stages of deformation, the amount of void
volume fraction and void volume fraction growth rate is higher for O4 orientation, followed
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by O6 orientation and least for O1 and O2 orientations. After the initial growth, we observe
void volume fraction decreasing for O1, O4 and O6 orientations. For O1 and O4 orientation
void volume fraction decreases below f0 as shown in figure 4.8c. Void volume fraction drop is
higher for O4 orientation, followed by O6 orientation. Even though we observe a decrease in
void volume fraction for O6 orientation, f never drops below f0.

For T = 0, void volume fraction drops below the initial void volume fraction for all
the orientations as shown in figure 4.8d. The amount of void volume fraction drop is higher
for O4 orientation, followed by O6 orientation and lower for O2 orientation. Void surfaces
comes in contact earlier for O6 orientation and later for O4 orientation, even though void
volume fraction for O4 drops well below O6 orientation. This can be attributed to the effect of
secondary orientation and rotation of the cell because of the matrix anisotropy.

For all Lode parameters considered and among all orientations, the general tendency
for void volume fraction growth is higher for O6 orientation at high triaxialities, whereas the
tendency for void collapse is higher for O4 orientation at low triaxialities.

4.4 Summary and conclusions
3D finite element calculations are carried out in this chapter with the aim of analysing

the response of voids in FCC single crystals. The effect of crystal orientation on void evolution
is analyzed for different orientations using representative cells subjected to different loading
conditions. Unit cells consisting of cubic cells with a initial spherical void with f0 = 0.0044 are
considered. Fully periodic boundary conditions with controlled triaxiality and Lode parameter
are applied to the cells. Four different orientations are studied: O1, O2, O4 and O6. Out of
these four orientations, two are soft orientations (O1, O2) and two hard orientations (O4, O6).
Four different triaxialities (T = 0, 1, 1/3, 2/3) and three Lode parameters (L = 0, 1, −1) are
prescribed in the cells with a strictly specified orientation of loading directions with respect to
the initial crystal orientation, and a dimensionless equivalent strain rate ϵ̇0/ γ̇0 in the range
(100 − 150).

For any given orientation and triaxiality, void volume fraction growth is higher for Lode
parameter L = −1, followed by L = 0 and finally by L = 1. For a given orientation, void
volume fraction growth is always higher for L = −1 and T = 1 case and least void volume
fraction growth is observed for L = 1 and T = 0 case.

At L = −1 void volume fraction growth is higher for O6 orientation followed by O4
orientation and lower void volume fraction growth is observed for O1 and O2 orientations.
Similar behaviour is observed for L = 0. However, for L = 1 we observe higher void volume
fraction growth for O4 orientation, followed by O1 orientation and lower void volume fraction
growth is observed for O2 and O6 orientations.

The obtained results show that irrespective of the orientation and Lode parameter con-
sidered, void volume fraction growth is always higher for higher triaxialities (T = 1, 2/3). For
lower triaxialities (T = 1/3, 0) void growth is always lesser and in some cases and as deforma-
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tion proceeds we observe void volume fraction bellow f0 and void collapse. This behavior (slow
porosity growth for low and moderate triaxiality level and fast porosity growth for high triaxi-
ality level) is well known and has been reported previously for FCC crystals by Srivastava and
Needleman (2013) and Yerra et al. (2010a). Similarly, at low and moderate triaxiality levels,
Lode parameter has a significant influence on void behaviour.

In general void volume fraction growth is higher for harder orientations (O6 and O4) if
compared to soft orientations (O1 and O2). This trend is attributed to the behavior of the
anisotropic matrix. These results are used for comparison with bi-crystal results which will be
discussed in detail in next chapter 5.
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5.1 Introduction
One of the common challenges to overcome when using advanced metals and alloys in

engineering applications is their insufficient ductility (Fourmeau et al., 2013b; Basu et al.,
2017). Strengthening of materials is usually achieved by introduction of precipitates, second
phase particles or new grain boundaries while at the same time these additions are possible
sites of damage/fracture initiation (Yerra et al., 2010b). Predominant mechanisms of ductile
failure in polycrystaline metals are nucleation, growth and coalescence of micro-voids (small
scale voids) (Benzerga and Besson, 2001). Accounting for these mechanisms in modelling, a
family of macroscopic approximations were proposed, namely prominent models like Gurson-
types models (Gurson, 1977b; Tvergaard and Needleman, 1984), their extension in later works
by taking into account many aspects such as void shape, size, volume fraction and distribution
of voids, as well as distinct features of the constitutive model of a virgin material such as strain
and kinematic hardening, viscoplasticity and plastic anisotropy. For respective contributions
see extensive review by Besson (2010b). Such type of approach was also used to formulate the
micro-scale Gurson-type yield condition for single crystal (Han et al., 2013; Paux et al., 2015).
In the case of Han et al. (2013) such condition is the result of micromechanical analysis based
on variational estimates due to de Botton and Ponte Castañeda (1995). Note that, there are
number of papers in which such variational approach is directly applied to estimate the yield
surface of single crystal with voids (Mbiakop et al., 2015; Song and Castañeda, 2017).

On the micro-scale, two failure modes have been found to be operational in parallel:
cleavage and dimple fracture (Papaefthymiou et al., 2006). Studies of Kadkhodapour et al.
(2011a,b); Lani et al. (2007); Furnémont et al. (2007) have reported different types of dam-
age mechanisms based on their experimental work with the help of SEM and light optical
microscopy. By experimental observations, nucleation of voids is related to the fracture and
decohesion of second phase particles or other precipitates. The next steps in understanding
the failure process are intergranular fracture along high angle boundary (HAB) and microvoid-
induced transgranular fracture. For example, such observations have been made for aluminium
alloys AA7XXX subjected to the solution treatment along the processing route, which resulted
in partial recrystallization (Dorward and Beerntsen, 1995; Deshpande et al., 1998). For such
alloys it was observed that precipitates are often grouped along HABs which promotes inter-
granular fracture along them. Importance of HAB as a possible location of void growth has been
also confirmed by molecular dynamics simulations (Bringa et al., 2010). Additionally, as seen
in Morere et al. (2000), concentration of precipitates is also observed along subgrain bound-
aries, characterized by a low misorientation angle, together with associated intersubgranular
failure. It is also worth to note that the effect of crystal orientation and the grain boundary was
observed under shock loading conditions for copper bi-crystal by Perez-Bergquist et al. (2011).
They observed formation of voids both at the grain boundary and within each crystal, with
the number and shape of voids highly dependent on the crystallographic orientation. Although

56



5.2 Representative volume element

this type of loading is beyond the scope of this paper, these experiments confirm the role of
crystal anisotropy and grain boundaries in the failure of crystalline material.

Although there is quite a lot numerical studies of single crystals with voids, (O’Regan
et al., 1997; Potirniche et al., 2006b; Yerra et al., 2010b; Srivastava and Needleman, 2015b;
Selvarajou et al., 2019) very few numerical studies have been dedicated to the studies on void
in bi-crystals. One can mention earlier works by Liu et al. (2009) in which the fcc bi-crystal
under uniaxial tension was investigated to assess the effect of boundary inclination and the
crystallographic orientation and misorientation on the void growth and the plastic deformation
distribution around the voids. Liu et al. (2007b, 2010) studied mechanisms of coalescence of
voids located at adjacent grains in bi-crystal unit cell using finite element calculations. Recently,
Jeong et al. (2018) considered the unit cells with a void inside a grain, at a grain boundary and
at a triple junction. The effect of crystal orientation on the flow strength and growth rate of the
void was discussed under prescribed boundary conditions for constant stress triaxialities. Even
though studies mentioned above shed light on the behaviour of void at boundary on bi-crystals,
there are still open questions, like the effect of neighbouring grain orientation on void shape,
the effect of stress state on void growth or void collapse behaviour among others.

Appreciating the important role of a grain boundary on void behaviour, as noted by
Deshpande et al. (1998); Bringa et al. (2010); Morere et al. (2000), the main purpose of the
current work is to study the factors affecting void growth and morphology evolution in bi-
crystals, such as stress triaxiality and Lode parameter and the relative orientation between
grains, focusing specifically on voids originating in high angle grain boundaries. The response
of bi-crystals containing a void at the grain boundary are also compared with the response of
a single crystal with a void.

5.2 Representative volume element
Three dimensional finite element calculations are carried out to model the response of

voids, located at the grain boundary of a bi-crystal, under triaxial loading conditions using a
unit cell model. The unit cell is modelled as an fcc single crystal with the 12 potentially active
slip systems taken to be {111} ⟨110⟩ (table 2.1). Finite element analyses are carried out using
a rate dependent crystal plasticity constitutive relation in the large deformation framework
given in section 2.2.3.2. Material parameters used for calculations are given in Table 2.2. The
plastic parameters of the material analyzed in this work correspond to annealed OFHC copper
(Kalidindi et al., 1992).

For bi-crystals with a void, figure 5.1 shows FE mesh and the 3 RVEs used in the present
study with their respective initial pole figures. The projection of misorientation axis is also
marked in the pole figure. Representative unit cells used for studying the behaviour of a void
in bi-crystal cases consists of a cube with a void at the center, divided into two equal parts,
each half having half spherical void with f0 = 0.0022, as shown in figure 5.1. The initial void
volume fraction is selected to be small, so that we can study the void shape changes and its
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Figure 5.1: Different bi-crystal RVEs and respective pole figures representing the orientations used for
studying the effect of matrix orientation on the void behaviour. Blue colour represents orientations in
half cell 1, green colour represents orientation in half cell 2 and red colour represents the projection
of misorientation axis

evolution at large deformations. Void volume fraction is calculated as f0 = Vvoid/Vcell, where
Vcell is the initial volume of the cell and Vvoid is the initial volume of the void. The complete
matrix-void zone is discretized into 90000 C3D8R elements. Finite element mesh and number
of elements in the mesh are the same as for the single crystal case. Depending on the cases
to be studied, different crystallographic orientations are assigned to each half of the bi-crystal
matrix.

Initially, unit cells are aligned such that the edges of the unit cell are parallel to the global
XY Z axes. In the case of the bi-crystal cell, interface (grain boundary) between the two halves
of the unit cell is perpendicular to the global X axis. The notation adopted here denotes each
orientation by the crystallographic directions, aligned with the main loading direction. The
main loading direction is parallel to the X axis and the secondary loading direction is parallel
to Z or Y axis depending on the selected Lode parameter. From the study presented in the
chapter of single crystals without voids, we categorized the crystal orientations into hard and
soft orientations. For a given Lode parameter, the orientation with higher values of equivalent
stress are considered as hard orientations and orientations with lower values of equivalent stress
are considered as soft orientations. In reference to classical crystal plasticity studies, it can be
said that soft (resp. hard) orientations are such which have high (resp. low) Schmid-like factor
under given loading conditions.

In this chapter four values of stress triaxiality (T = 0, 1/3, 2/3, 1) and three values
of Lode parameter (L = 0, 1, −1) with fully periodic boundary conditions (as explained in
Appendix D) are considered. Some of the combinations of triaxiality and Lode parameters
analyzed corresponds to general loading scenarios used in experiments and simple loading
conditions, like T = 1/3, L = −1 (uniaxial tension), T = 2/3, L = 1 (biaxial tension) and
T = 0, L = 0 (pure shear stress). Since anisotropic material model is assumed in each case
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orientation of principal stress axes is explicitly specified with respect to material anisotropy
axes. It should be underlined that in the considered examples dependence of the void growth on
the Lode parameter cannot be studied separately from the effect of plastic anisotropy. Finally,
as our material model is rate dependent, a value of ε̇eqv/γ̇0 in the range (100 − 150) is also
assured in all the simulations performed in this work.

5.3 Results and Discussion
Analytical studies on the void growth in an anisotropic rigid-plastic matrix described

by the quadratic criterion performed by Benzerga and Besson (2001) for spherical voids, and
continued by Keralavarma and Benzerga (2010) and Keralavarma et al. (2020) for ellipsoidal
voids, revealed that this growth is governed by the formula:

ḟ

f(1 − f) ∼ 3
h

1
σ̃2

eq(N) sinh
(3

h

σm

σ1

)
(5.1)

in which σ̃eq(N) depends on the matrix plastic anisotropy, changing with the loading directions
N with respect to the main anisotropy axes, σm is the mean stress, σ1 the yield stress in the
selected direction, while h is the so-called net anisotropy invariant calculated as a single value
for a given material. Accordingly an exponential void growth is affected by the triaxiality T

and h, while stress direction N modifies mainly the proportionality coefficient through σ̃2
eq. In

analogy to this study Paux et al. (2015) proposed an approximate condition for the voided
single crystal described by the non-quadratic regularized Schmid law, bearing mathematical
similarities with the power-law rate-dependent model studied here. Authors have assessed the
coefficient κ ∼ 1/h as equal to 0.506 for the fcc crystals, so it can be assumed as constant here.
Therefore, qualitatively, mainly the dependencies on triaxiality and the plastic anisotropy are
expected to be observed in the present analysis. Nevertheless, as it will be shown, they are
additionally modified by the fact that the void is located at the bi-crystal boundary and not in
the homogeneous matrix. At this moment such additional dependencies can be analyzed only
numerically.

In this section results from different numerical simulations are presented. We will focus
on the joint effect of stress state (T, L) and matrix crystallographic orientations (i.e. material
anisotropy) on void volume fraction evolution and void morphology. We will compare results
from single crystals with bi-crystals and results from different bi-crystal RVEs. In this work
results of single crystal are used as reference values to compare with bi-crystals. Calculations of
single crystals with voids are performed for four different crystallographic orientations O1, O2,
O4, O6, 3 Lode parameters (L = −1, 0, 1) and 4 values of triaxialities (T = 0, 1/3, 2/3, 1).
Based on the previous studies on the void growth in fcc single crystals (Srivastava and Needle-
man, 2015b) at this low moderate and high triaxiality level, porosity growth is expected to
be rather slow, void shape change significant and Lode parameter to have an important influ-
ence on void behavior in this respect. It should be added that for the advanced regime of the
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considered processes the changing shape of a void and a unit cell may additionally affect the
dependencies observed in the calculations (Keralavarma and Benzerga, 2010)

5.3.1 Void growth in a bi-crystal

For studying the effect of grain orientation on the void growth in bi-crystals, three different
representative volume elements (RVE) representing three different microstructures are created.
The difference between each RVE are the crystallographic orientation assigned to the matrix of
each half cell. Different orientations are assigned for half cell 1 and half cell 2, such that three
different bi-crystal RVEs are formed. The orientations sets for the simulations of bi-crystals are
selected from the cell calculations of single crystals without voids for different Lode parameters.
By using the hard and soft orientations data, three different RVEs of bi-crystals representing;
1.soft-soft; 2. hard-hard; 3. soft-hard are created.

Orientations used for soft-soft RVE are O1 and O2 for half cell 1 and half cell 2, respec-
tively. Similarly for hard-hard RVE, orientations used are O6 and O4 for half cell 1 and half
cell 2, respectively. For soft-hard case, the orientations considered are O1 and O4 for half cell
1 and half cell 2. It can be verified that for all three cases the grain boundary between two
halves of bi-crystal is a high angle boundary. The misorientation angle and misorientation axis
specified by the common crystallographic direction of two orientations is for soft-hard 56.6◦

and ⟨0.590, −0.769, 0.245⟩, for hard-hard is 35.6◦ and ⟨0.598, 0.800, 0.046⟩, while for soft-soft
is 45◦ and ⟨100⟩. Note that for soft-soft bi-crystal the grain boundary is a twist boundary for
which its unit normal is coaxial with misorientation axis. In the remaining two cases these two
vectors are inclined with respect to each other.

For bi-crystals without voids, figs. 5.2a and 5.2b represent equivalent stress- equivalent
strain curves for soft-hard orientation when different Lode parameter values (L = −1 and
L = 1) are prescribed in the whole cell. Green lines represent stress-strain relations for (soft)
half cell 1 and red lines represent stress strain relation for (hard) half cell 2. Blue lines represent
stress -strain curves when the whole bi-crystal is considered. The presented curves are the same
for any triaxiality value. For comparison purposes, equivalent strain is calculated in all the cases
considering the volume of the whole cell. Note that due to imposed periodic boundary condition
analyzed bicrystal without a void represent the behaviour of the laminate with alternating
layers with O1 (soft) and O4 (hard) crystallographic orientation. Thus the predicted stress
and strain fields within each half cell are uniform, however, considerably different from each
other and from the overall behaviour. For L = 1, fig. 5.2c presents stress-strain curves for
soft-soft orientation. For L = −1, fig. 5.2d shows stress-strain relations for the hard-hard case.
For L = −1 and L = 0, for the soft-soft bi-crystal case, stress-strain curves overlaps for both
half cells and the full cell. For L = 1 and L = 0, stress-strain curves for hard-hard bi-crystal
are similar as for L = −1 . These last cases are not shown in the document for the sake of
brevity.
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(a) Soft-hard bi-crystal, L=-1 (b) Soft-hard bi-crystal, L=1

(c) Soft-soft bi-crystal, L=1 (d) Hard-hard bi-crystal, L=-1

Figure 5.2: Equivalent stress - equivalent strain in half cell 1, half cell 2 and the whole bi-crystal without
void for soft-hard, soft-soft and hard-hard orientation for different Lode parameters. The presented
curves are the same when any value of triaxiality is prescribed in the whole cell.

5.3.1.1 Void growth in a soft-soft bi-crystal.

First we will present some results related to soft-soft bi-crystal RVE. This RVE has O1
orientation for half cell 1 and O2 orientation for half cell 2. Evolution of void volume fraction
f with respect to the equivalent strain εeqv for Lode parameter L = −1 is shown in figure 5.3a
for different triaxialities (T ). Continuous lines represent void volume fraction evolution in half
cell 1 and dotted lines in half cell 2 and different colours represents different triaxiality values.
For triaxility T = 1, T = 2/3 and T = 1/3, we can see that void volume fraction f increases
with εeqv in both half cell 1 and half cell 2, whereas for triaxiality T = 0, void volume fraction
decreases below f0 in both half cell 1 and half cell 2. This behaviour of void volume decreasing
below f0 was also observed for porous single crystal by Srivastava and Needleman (2015b).
In the case of low triaxialities, simulations are terminated when the outer surface of the voids
comes in contact with each other. In general void grows faster at high and moderate triaxialities
(T = 1, 2/3) compared to low triaxialities (T = 1/3, 0). This trend has been previously observed
by Srivastava and Needleman (2015b); Yerra et al. (2010b), Srivastava and Needleman (2013)
for porous single crystals. Comparing void volume fraction evolution between the two half cells,
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we observe that difference in void volume evolution between two half cells is hardly noticeable.
This results from the fact that for this case direction X of major stress σ1 ̸= σ2 = σ3 coincides
with the same crystallographic direction [001] in both half cells.

As seen from figure 5.3b, for Lode parameter L = 1, void grows slower than for L = −1
(note that the vertical axis of both figures has different scale). We can see differences in void
growth behaviour of half cell 1 and half cell 2 for all triaxialities considered. In this case direction
Z of a minor stress σ3 ̸= σ1 = σ2 varies between both half cells (see table 2.1). As seen in Fig.
5.2c the stress response in two half cells is then different, so the level of equivalent stress in half
cell 1 is lower than in half cell 2. Following relation (Eq. 5.1), void grows faster in half cell 1
(continuous lines) compared with void growth in half cell 2 (dotted lines) at high and moderate
triaxialities (T = 1, 2/3). However, at low triaxialities (T = 0, 1/3) void volume in half cell 1
decreases faster as compared to void in half cell 2. To find a source of such behaviour the local
triaxialities have been calculated for the Cauchy stress averaged over each half cell separately.
It has been found that the local triaxiality in half cell 1 for the case T = 0 is negative and
equal to −0.2, while for half cell 2 it is higher and equal to 0.23. Similarly, respective values for
the case T = 1/3 are 0.22 and 0.44, correspondingly. For the remaining cases local triaxialities
per half cell are approximately equal to the macroscopic ones. All the values are collected in
the table 5.3.

For Lode parameter L = 0, the behaviour of the void in both half cell 1 and half cell 2 are
similar to the case of Lode parameter L = 1, hence plot of f −εeqv is not presented. Among the
Lode parameters considered, void growth rate is in general higher for Lode parameter L = −1,
followed by L = 0 and L = 1.
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5.3.1.2 Void growth in a hard-hard bi-crystal.

(a) L=-1 (b) L=1

Figure 5.3: Void volume evolution at different stress triaxialities and Lode parameters for the soft-soft
bi-crystal. Matrix orientation of half cell 1 is O1 and half cell 2 is O2.

(a) L=-1 (b) L=1

Figure 5.4: Void volume evolution at different stress triaxialities and Lode parameters for the hard-
hard bi-crystal. Matrix orientation of half cell 1 is O6 and half cell 2 is O4.

For hard-hard bi-crystal RVE, half cell 1 has orientation O6 and half cell 2 has orienta-
tion O4. Similarly to previous comparison, void volume fraction evolution for different Lode
parameters and triaxialities are plotted in figures 5.4.

For Lode parameter L = −1, void growth in half cell 1 is quite similar to void growth in
half cell 2 for triaxiality (T = 0, 1/3, 1). For triaxiality T = 2/3, we observe a different void
growth behaviour in both half cells. Void in half cell 1 grows faster compared with void in half
cell 2.
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For Lode parameter L = 1, we can see distinction in void growth between half cell 1 and
half cell 2 at high and moderate triaxialities (T = 1, 2/3), as void in half cell 2 grows faster than
void in half cell 1. For the remaining triaxialities (T = 0, 1/3), there is no significant difference
in the void growth in two half cells. Similarly to the soft-soft bicrystal, when calculating local
triaxilities per each half cell it has been found that the local triaxilities in half cell 2 are higher
than in half cell 1.

For L = 0, the difference in void growth in half cell 1 and half cell 2 is small. Void in half
cell 1 grows faster than void in half cell 2. Plots are not presented for L = 0 for brevity. As
in the case of soft-soft bi-crystal RVE, void growth rate is higher for Lode parameter L = −1,
followed by L = 0 and finally by L = 1.

5.3.1.3 Void growth in a soft-hard bi-crystal.

(a) T=0 (b) T=1/3

(c) T=2/3 (d) T=1

Figure 5.5: Void volume evolution at different stress triaxialities and Lode parameters for the soft-hard
bi-crystal. Matrix orientation of half cell 1 is O1 and in half cell 2 is O4.
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For soft-hard bi-crystals, half cell 1 has orientation O1 (soft) and half cell 2 has orientation
O4 (hard). Evolution of f versus εeqv for half cell 1 and half cell 2 for different values of T

and L are given in figures 5.5. The way results are presented in figures 5.5 are different as in
previous sections to clearly show the changes occurring at low triaxialities (T = 0, 1/3), as the
amount of void growth is small compared to high and moderate triaxialities (T = 1, 2/3).

For T = 0, as we can see from figure 5.5a, void volume fraction in both half cell 1
and half cell 2 decreases below the initial void volume fraction f0. For half cell 1, void volume
fraction increases slightly in the early stages of deformation, but starts dropping as deformation
progresses, whereas void volume fraction f in half cell 2 drops faster than f in half cell 1 for all
Lode parameters. Among the 3 Lode parameters considered, void volume fraction drops faster
for L = 1, followed by L = 0 and least for L = −1 in both half cells.

Considering T = 1/3, as shown in figure 5.5b, at L = −1, we can see that the volume of
the void in half cell 1 increases, whereas in half cell 2, void volume fraction grows slightly up
until εeqv = 0.2, but later on the void volume fraction decreases. For L = 0, void volume fraction
in half cell 1 increases up to εeqv = 0.3, but for εeqv greater than 0.3 it starts decreasing, and
during the final stages of deformation, void volume decreases below the initial value f0 = 0.0022.
For void in half cell 2 even though we see a slight increase in f until εeqv = 0.2, at higher εeqv

void volume starts decreasing below f0. For L = 1, void in half cell 1 and void in half cell 2
behaves similarly to the case of L = 0.

The behaviour of the void in half cell 1 is similar for both triaxialities T = 2/3, 1, as
shown in figures 5.5c and 5.5d as we observe void growth. For void in half cell 2, we observe
void growth for T = 1 and L = −1, 0, 1, but for T = 2/3 void growth is very small and
gradually during the course of deformation, we observe void growth saturation (i.e. no change
in f) for L = 0 and L = −1. For T = 2/3, 1, void in half cell 1 grows faster than void in half
cell 2 irrespective of Lode parameters. In general void grows faster for L = −1, followed by
L = 0 and L = 1.

The difference in the behaviour of the void in both half cells are significant. For high and
moderate triaxialities, the effect of Lode parameter is more prominent for void in half cell 1
(soft) compared to void in half cell 2 (hard). For all triaxialities and Lode parameters values
considered, f always grows faster (or shrinks slower) in half cell 1 (soft orientation) compared
with half cell 2 (hard orientation). This general trend is following the formula (Eq. 5.1) since
the level of equivalent stress is much higher in the half cell 2 than in half cell 1, as seen in
Figs. 5.2a,5.2b. Additionally, when calculating the average triaxialities per each half cell we
have found almost two times higher values in half cell 1 (soft) than in half cell 2 (hard). The
values are included in table 5.2.

5.3.2 Deformed Void shape in a bi-crystal

In this section, we will present results on the influence of matrix orientation and stress
state on void shapes and accumulated shear distribution γ = ∑

α

∫ t
0 |γ̇α| dt on void shape

evolution in different bi-crystal RVEs.
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(a) T=0

(b) T=1

Figure 5.6: Deformed void shape and distribution of accumulated shear γ for soft-hard bi-crystal at
stress triaxiality T = 0, 1 and equivalent strain εeqv = 0.45 for L = 0, 1, −1.

5.3.2.1 Deformed void shape in a soft-hard bi-crystal

For soft-hard bi-crystal, at triaxiality T = 0, figure 5.6a shows the cross section of the
deformed cell in two different planes (XY and XZ) at εeqv = 0.45 and the contours showing
distribution of the accumulated shear γ for Lode parameters L = 0, 1, −1. As can be clearly
seen from the plots, the distribution of γ and void shape in half cell 1 and half cell 2 are
different for all the Lode parameters considered. For L = 0, the deformed cross-section of the
cell along XY plane shows the void evolving into an ellipsoid on both half cells with the major
axis of ellipsoid along X axis (direction of the maximum applied stress). Looking at deformed
cross section along XZ plane, we see the void in half cell 2 flattening into an elliptical crack
like shape, with its major axis along X axis and the crack like surface arising from collapsing
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of void located away from the grain boundary, whereas void shape in half cell 1 is an oblate
ellipsoid. The accumulated shear values are higher in half cell 2 compared with half cell 1 and
the highest values of the accumulated shear is observed near the collapsed void surface in half
cell 2, with a maximum value of 4.71.

From the deformed cell cross-section along XY axis, for L = 1, we see the void shape
in both half cell 1 and half cell 2 to be circular at εeqv = 0.45. As in the case of L = 0, the
void in half cell 2 collapses into a crack in XZ plane, with its tip along X axis and away from
the grain boundary, whereas for void in half cell 1, the void evolves into an oblate ellipsoid.
The value of the accumulated shear is higher in half cell 2 as compared to half cell 1 with a
maximum value of 3.24.

For L = −1, the void shape in both half cell 1 and half cell 2 are very similar, and void
evolves into an ellipsoid with the major axis along X. At εeqv = 0.45, we do not see void
collapsing, but at higher strains void tend to collapse in both half cell 1 and half cell 2. Unlike
L = 0, 1, for L = −1, void tends to collapse along Y axis and void radius evolves in the order
Rx > Rz > Ry. Similar to the cases of L = 0, 1, the values of accumulated shear is higher in
half cell 2. For the 3 Lode parameters analysed, the values of accumulated shear is higher for
L = −1, followed by L = 0 and least by L = 1.

Similar analysis has been performed for T = 1 at Lode parameters L = 0, 1, −1 as shown
in figure 5.6b. As we discuss previously from figure 5.5d, at T = 1 void growth is observed for
all Lode parameters and the shape of the voids in both half cell 1 and half cell 2 are ellipsoid
in all the cases, but there is a clear difference in the amount of growth within each half cell,
as well as the void growth along each principal loading direction. Void radius is different along
each direction and can be characterized as follows: for εeqv = 0.45 and for L = 0, void radius
is of the order Rx > Ry > Rz and for L = 1, order is Rx = Ry > Rz. Finally for L = −1 void
radius is of order Rx > Rz > Ry. Accumulated shear values are higher in half cell 2 compared
to half cell 1 and the value of the accumulated shear is higher for L = −1, followed by L = 0
and least in L = 1.

5.3.2.2 Deformed void shape in a hard-hard bi-crystal

In this section we will study void shape and accumulated shear distribution γ in the hard-
hard bi-crystal, where the matrix orientation for half cell 1 is O6 and for half cell 2 is O4. Figure
5.7 shows the cross section of the deformed cell in XY and XZ planes, for L = 0, 1, −1 and
T = 0 when εeqv = 0.45. For a hard-hard bi-crystal, we observe that the whole cell is deforming
in such a way that it bends around the grain boundary. Such behaviour is understood when
observing deformation of a respective bicrystal without a void for which in addition to axial
deformation also shearing in opposite directions in two half cells is found. This shearing in
XZ plane is also seen in Fig. 5.7. This is because of the anisotropic nature of the cell and
the incompatibility between both half cells when hard-hard crystals comes in contact. This
deformation behaviour of the cell has a huge influence on the way the void shape evolves. For
L = 0, void shows elliptical shape with the major axis along X axis of the cell on both XY and

67



Numerical study of void growth at the grain boundaries in bi-crystals

Figure 5.7: Deformed void shape and distribution of accumulated shear γ for a hard-hard bi-crystal at
stress triaxiality T = 0 and equivalent strain εeqv = 0.45 for L = 0, 1, −1

XZ plane. Void shape is not symmetric along X axis of the cell and void radius along Z axis is
higher in the upper part of the cell compared to the lower part along the grain boundary. The
trend for void collapsing is clearly evident from the shape of the void. Void tends to collapse
in half cell 2 faster than in half cell 1.

Similarly, for L = 1 and along XY plane, we observe void shape being circular and along
XZ plane void shape is irregular and it is unsymmetrical along X axis. Similar to the case of
L = 0, void radius on the upper part of the cell in Z axis is higher than void radius in the
lower part of the cell and void growth is observed along X and Y axis, whereas void collapse
along Z axis. Finally for L = −1, void shape is elliptical in both half cells and in both XY

and XZ planes. Void radius evolution is of the order Rx > Rz > Ry and void tend to collapse
along Y axis.

The location of the maximum value of accumulated shear is close to the void in half
cell 2 for all 3 Lode parameters considered, and away from void we observe a homogeneous
distribution of accumulated shear and similar values in both half cell 1 and half cell 2. At
εeqv = 0.45 and T = 0, the maximum γ is found in L = 1 and has the value 4.42.

For T = 1 (results not shown here) and all Lode parameters considered, we observe
elliptical void shapes in both XY and XZ planes. Void shape is similar in both half cells and
the accumulated shear distribution is similar to the case T = 0.
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5.3.3 Effect of neighbouring grain orientation

(a) soft-hard, soft-soft and single crystal with orientation O1

(b) soft-hard, hard-hard and single crystal with orientation 04

Figure 5.8: Soft-hard, soft-soft, hard-hard bi-crystal and single crystal RVEs used for studying the
effect of neighbouring grain orientation on the void behaviour. Blue colour represents orientations in
half cell 1 and green colour represents orientation in half cell 2.

In this section, three different comparisons are made to study the effect of neighbouring
grain orientation on void growth, 1. a matrix with hard orientation neighbour, 2. a matrix
with soft orientation neighbour, and 3. neighbour grain with the same orientation (i.e., single
crystal). For that end, first we will compare void evolution in half cell 1 of the soft-hard
bi-crystal and soft-soft bi-crystal. As shown in figure 5.8a, soft-hard bi-crystal and soft-soft bi-
crystal has the same orientation for half cell 1 i.e., O1, but orientation of half cell 2 in soft-soft
bi-crystal and soft-hard bi-crystal is different. Second, we will show results of void evolution in
half cell 2 of hard-hard bi-crystal and soft-hard bi-crystal. For hard-hard bi-crystal and soft-
hard bi-crystal orientation of half cell 2 is the same (i.e., O4 orientation), but orientation of
half cell 1 in hard-hard bi-crystal and in soft-hard bi-crystal is different (see figure.5.8b).

Similarly, void behaviour is compared between half cell in a bi-crystal and half cell in a
single crystal. The orientation of the single crystal is the same as half cell in the bi-crystal. For
the case of the soft-hard bi-crystal, void in half cell 1 is compared with void in single crystal
with the same orientation, i.e., O1, whereas for void in half cell 2 comparison is made with void
in single crystal with the same orientation i.e., O4. By comparing the void behaviour in these
cases, we can better understand the effect of neighbouring grain orientation on void behaviour
and its morphology.
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5.3.3.1 Void growth in soft-hard, soft-soft bi-crystals and single crystal

(a) L=-1 (b) L=1

(c) L=-1 (d) L=1

Figure 5.9: Comparison of void volume fraction-equivalent strain evolution for half cell 1 in soft-hard,
soft-soft bi-crystals and in a single crystal with the same orientation as half cell 1 at different stress
triaxialities T = 0, 1/3, 2/3, 1 and Lode parameters L = 1, −1.

In the case of soft-hard bi-crystal, soft-soft bi-crystal and single crystal, we will compare
the effect of hard, soft and identical neighbouring matrix, respectively, on the void evolution
in a soft matrix (half cell 1 is always O1 orientation). Figures 5.9 show void volume fraction-
equivalent strain at different triaxialities and Lode parameters L = −1, 1. Figures 5.9a and 5.9b
shows void volume evolution in half cell 1 for soft-soft and soft-hard bi-crystals. Figures 5.9c
and 5.9d show void evolution in half cell 1 of soft-hard bi-crystal and of a single crystal. Single
crystal calculations are performed for the full cell, but for comparison with bi-crystals, only
half of the cell is taken into account.
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For Lode parameter L = −1, void in half cell 1 of soft-hard bi-crystal (continuous lines)
grows faster than in soft-soft bi-crystal (dotted lines) for triaxialities T = 1, 2/3 as shown
in figure 5.9a. For triaxiality T = 1/3, void volume fraction in soft-hard bi-crystal increases
slowly, whereas for soft-soft bi-crystal, void stops growing (i.e. void volume saturates after
initial growth). For triaxiality T = 0, void volume fraction in both bi-crystals drop below f0

from the beginning, and void in soft-soft bi-crystal drops faster than in soft-hard bi-crystal.
For L = 1 and T = 1, 2/3, as we can see from figure 5.9b, void in half cell 1 of soft-

hard bi-crystal grows faster than void of soft-soft bi-crystal and the difference in void volume
evolution between both bi-crystals is smaller compared to L = −1. For T = 1/3, the amount
of void growth in both bi-crystals is very less and void volume fraction in soft-hard bi-crystal
is higher than in soft-soft bi-crystal. For T = 0, void volume in both bi-crystals drops below
the initial volume f0, dropping faster in soft-soft bi-crystal than in soft-hard bi-crystal.

Void evolution in half cell 1 for soft-hard bi-crystal and single crystal is presented in
figures 5.9c, 5.9d. For L = −1 and for all triaxialities considered, void growth in half cell 1 in
a soft-hard bi-crystal is higher than void growth in a single crystal. Interestingly, for L = −1,

if we compare the void volume evolution of single crystal with half cell 1 of soft-soft bi-crystal
shown previously in figure 5.9a, we observe that the response of the void is the same for both
cases at all triaxialities considered. This is explained by the same reason as almost the same
response in two half cells seen in Fig. 5.3a.

For L = 1 and T = 1 we observe that void growth in half cell 1 of soft-hard bi-crystal is
much higher than void growth in a single crystal. For T = 2/3, 1/3, void growth in half cell 1
of soft-hard bi-crystal is higher than the single crystal case, but the difference in value of f is
not as big as for T = 1. For T = 0, void volume fraction decreases below f0 for both cases and
void in half cell 1 of soft-hard bi-crystal drops slightly faster than void in single crystal. For
L = 1 void behaviour in half cell 1 of soft-soft bi-crystal is closer to the void behaviour of the
single crystal case.

The observed variation in the void growth for O1 orientation placed in these 3 different
configurations for a given Lode parameter can be correlated with the hierarchy of an average
triaxiality in the corresponding half cell 1 demonstrated in table 5.2 and 5.3. Note that for a
single crystal case its value is equal to the imposed triaxiality.
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5.3.3.2 Void growth in soft-hard, hard-hard bi-crystals and single crystal

(a) L=-1 (b) L=1

(c) L=-1 (d) L=1

Figure 5.10: Comparison of void volume evolution-equivalent strain for half cell 2 in soft-hard, hard-
hard bi-crystals and and single crystal with the same orientation as half cell 2 at different stress
triaxialities T = 0, 1/3, 2/3, 1 and Lode parameters L = 1, −1.

In this section, the behaviour of the void in half cell 2 of a soft-hard bi-crystal is compared
with the behaviour of the void in half cell 2 of hard-hard bi-crystal and single crystal with O4
orientation. The effect of a softer, harder and identical neighbouring matrix on the evolution of
a void located in a hard matrix (half cell 2 is always O4 orientation) is compared and discussed.

Figures 5.10a and 5.10b show void volume fraction evolution with equivalent strain for
voids of half cell 2 in a soft-hard (continuous lines) and in a hard-hard bi-crystal (dotted lines).
For Lode parameter L = −1, void volume fraction in half cell 2 of a hard-hard bi-crystal grows
faster than half cell 2 in a soft-hard bi-crystal for triaxialities T = 1, 2/3, 1/3. The difference
in void volume fraction evolution of both bi-crystals is less remarkable for T = 1/3 than for
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T = 2/3, 1. For T = 0, void volume fraction for both bi-crystals drop below initial void volume
fraction f0 and void volume fraction of half cell 2 in soft-hard bi-crystal drops faster than half
cell 2 in hard-hard bi-crystal. As we can see from the figure, void grows faster when the half
cell has hard neighbour compared to soft neighbour.

Figure 5.11: Cross section showing deformed void shape and accumulated shear γ for a (soft) single
crystal, a (hard) single crystal, soft-hard bi-crystal, soft-soft bi-crystal and hard-hard bi-crystal for
T = 0, L = 1 and εeqv = 0.45. The soft orientation in half cell 1 is always O1 and the hard orientation
in half cell 2 is always O4 for configurations containing soft or hard component, respectively (see figure
5.8a and 5.8b).

Figure 5.10b shows void volume fraction evolution for Lode parameter L = 1. For T = 1,
void volume fraction in both bi-crystals initially increases at the same rate, but at εeqv > 0.15
void volume in a hard-hard bi-crystal increases faster than in a soft-hard bi-crystal. For T =
2/3, we observe contrasting void behaviour in both bi-crystals: as f of a hard-hard bi-crystal
gradually increases at constant rate, f of a soft-hard bi-crystal start decreasing below initial
void volume fraction f0. For T = 1/3 and T = 0, void volume fraction decreases in both
bi-crystals below initial void volume fraction f0, dropping faster in half cell 2 of a soft-hard
bi-crystal than in a hard-hard bi-crystal.

Similarly, figures 5.10c and 5.10d show comparisons of half cell 2 void evolution for soft-
hard bi-crystal (continuous lines) and for a single crystal with the same orientation as half
cell 2 (dotted lines). Single crystal calculations are performed considering the full cell, but for
comparison with bi-crystals, only the behaviour of half cell is considered. For L = −1 and
comparing soft-hard bi-crystal with a (hard) single crystal, we observe that, at T = 1, 2/3,
void growth in the single crystal is higher than in the soft-hard bi-crystal. At T = 1/3, 0, void
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evolution f in the soft-hard bi-crystal is very similar to the single crystal case. For L = 1 and at
T = 1, void growth in the single crystal is higher than in the soft-hard bi-crystal. For T = 2/3,
we observe void growing in different way compared to other cases, as void volume fraction in
both soft-hard bi-crystal and single crystal increases initially, but starts decreasing during final
stages of deformation and void in single crystal drops faster than in soft-hard bi-crystal. For
T = 1/3, 0 void volume decreases below initial void volume fraction for both cases and void
volume fraction in single crystal drops faster than void in soft-hard bi-crystal.

Overall, for L = −1 , 1 and at T = 1, void growth is higher in a hard-hard bi-crystal,
followed by a (hard) single crystal and finally by a soft-hard bi-crystal. For T = 1 and L = −1,
void evolution growing faster for orientation O4 than orientation O1 were also found by Ling
et al. (2016) for a voided single crystal. At T = 2/3, f is higher in a hard-hard bi-crystal and
the void behaviour of a soft-hard and a (hard) single crystal has similar trend. At T = 1/3, 0,
void volume fraction decreases faster in a single crystal, followed by a soft-hard bi-crystal and
finally by a hard-hard bi-crystal. The tendency for void collapse is higher in the single crystal
case. For all triaxialities tested, the behaviour of the hard-hard bi-crystal is in general closer
to the response of the single crystal case.

The calculated average triaxialities per each half cell included in table 5.1 and 5.2 conform
with the exposed tendencies. An additional role in shaping the void evolution is played by the
specific deformation of a unit cell in the case of the hard-hard bi-crystal as demonstrated in
the next section.
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5.3.4 Effect of neighbouring grain orientation on the deformed
void shape.

Figure 5.12: Distribution of misorientation angle with respect to the initial orientation for soft-hard
bi-crystal for T = 0, L = 1 and equivalent strain 0.45, Pole figures 111 at the bottom present the
spread of the current crystal orientations for each Gauss point in the cell (pole figure on the left is a
density plot, pole figure on the right-discrete point plot.

It is clearly evident from the results presented in the previous section that void growth
is affected by neighbouring grain orientation and, depending on the Lode parameter and tri-
axiality values, the behaviour of the void is either closer to a single crystal or its respective
bi-crystal counterpart. In this section, the effect of neighbouring grain orientation on the void
shape is presented and discussed. As in the previous section, the cases that are going to be
compared are:

1. Void in half cell 1 in a soft-hard bi-crystal, void in half cell 1 in a soft-soft bi-crystal and
in a single crystal with the same orientation as half cell 1 (O1).

2. Void in half cell 2 in a soft-hard bi-crystal, void in half cell 2 in a hard-hard bi-crystal
and in a single crystal with the same orientation as half cell 2 (O4).

As noted by Srivastava and Needleman (2013), Srivastava and Needleman (2015b),
changes in void shape in a initially spherical void are more significant at low triaxialities than
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at moderate or high triaxiality values. We now focus on studying the influence of neighbouring
grain orientation on the deformed void shape. We choose to present only one case here, i.e.,
triaxiality value T = 0 and L = 1 as a representative example. Deformed void shapes are
compared in different RVEs at εeq = 0.45.

Fig. 5.11 shows the deformed void shape in single crystals with O1 and O4 orientation
respectively, soft-soft, soft-hard and hard-hard bi-crystals. By comparing deformed void shape
in half cell 1 (left-half) in a soft-hard bi-crystal and in a single crystal with O1 orientation,
we observe that void in half cell 1 is ellipsoidal in both RVEs at both XY and XZ planes,
with void radius in order Rx ≈ Ry > Rz. In the soft-soft bi-crystal case, we observe that
void within half cell 1 is also ellipsoidal but the order of void radius is Rx > Ry > Rz. In a
soft-hard bi-crystal void shape in half cell 2 (right-half) is quite similar to the void shape in a
single crystal with O4 orientation in both XY and XZ planes. As we see from figure 5.11 for
the aforementioned RVEs, void tends to collapse into a "crack like" shape along X direction,
and void radius for both RVEs are in order Rx ≈ Ry > Rz. For a hard-hard bi-crystal, void
evolves into irregular shape before collapsing along XZ plane, but void collapse occurs at rate
slower than for single crystal. By comparing accumulated shear in half cell 1 among soft-hard,
soft-soft and single crystal RVE, the maximum value of accumulated shear is observed in single
crystal with O1 orientation (soft orientation) in the vicinity of the void in XZ plane. Similarly
comparing accumulated shear in half cell 2 among soft-hard, hard-hard and single crystal RVE,
the maximum value of γ is obtained in single crystal with O4 orientation (hard orientation) in
XZ plane. Overall, for T = 0, L = 1 and at εeq = 0.45, γ values are higher in (hard) single
crystal, followed by hard-hard bi-crystal, soft-hard bi-crystal, (soft) single crystal and finally
soft-soft bi-crystal.

Figure 5.13: Distribution of misorientation angle with respect to the initial orientation for soft-hard
bi-crystal for T = 0, L = −1 and equivalent strain 0.45. Pole figures (111) at the bottom present the
spread of the current crystal orientations for each Gauss point in the cell (pole figure on the left is a
density plot, pole figure on the right-discrete point plot.)
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Figure 5.14: Distribution of misorientation angle with respect to the initial orientation for hard-hard
bi-crystal for T = 0, L = 1 and equivalent strain 0.45, Pole figures 111 at the bottom present the
spread of the current crystal orientations for each Gauss point in the cell (pole figure on the left is a
density plot, pole figure on the right-discrete point plot.)

Figure 5.12, presents the influence of void on the heterogeneity of lattice rotation in
the soft-hard bi-crystal, at T = 0 and L = 1. Let us stress that initially all elements within
each half cell have the same orientation. While for a bi-crystal without a void, lattice rotates
uniformly within each half cell (results are confirmed by calculations, but not presented here
for brevity), strong variation is observed when the voids are present at the grain boundary.
What is not obvious at first is that heterogeneity is more pronounced within hard half cell as
initially homogeneous orientation in half cell is fragmented into two distinct orientations after
deformation, as visible in the left pole figure. This is probably caused by the fact that different
set of slip systems are operating in the top and bottom part of the half cell and the lattice is
rotating in opposite directions in these two parts. Note that the largest misorientation angle
(> 45o) is observed close to the void boundary, where the void is distorted most. Figure 5.13
presents analogical results for the same bi-crystal but for L = −1 and T = 0. Here, also the
larger misorientation angles are found in the hard half cell. Note that in both cases observed,
differences in misorientation angles between elements belonging to the hard half cell are often
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higher than 15o, which suggests appearance of new high angle boundaries and possibility of
grain refinement. Smaller differences in misorientation angles in two half cells are observed for
hard-hard bi-crystal in figure 5.14. Nevertheless, also in this case the presence of void leads to
the non-uniform lattice rotation leading to an increase of a lattice curvature.

Table 5.1: Average local Triaxiality and Lode parameter for each half cell of hard-hard voided bi-crystal

Applied global T and L Local T and L (half cell 1) Local T and L (half cell 2)
T = 0, L = −1 T = 0, L = −1 T = 0, L = −0.8
T = 0, L = 0 T = 0, L = 0 T = 0, L = 0
T = 0, L = 1 T = −0.2, L = 1 T = 0.23, L = 1

T = 0.33, L = −1 T = 0.33, L = −1 T = 0.33, L = −1
T = 0.33, L = 0 T = 0.33, L = 0 T = 0.3, L = 0
T = 0.33, L = 1 T = 0.22, L = 1 T = 0.4, L = 1

T = 0.66, L = −1 T = 0.66, L = −1 T = 0.66, L = −1
T = 0.66, L = 0 T = 0.66, L = 0 T = 0.66, L = 0
T = 0.66, L = 1 T = 0.53, L = 1 T = 0.72, L = 1
T = 1, L = −1 T = 1, L = −1 T = 1, L = −0.86
T = 1, L = 0 T = 1, L = 0.1 T = 1, L = −0.1
T = 1, L = 1 T = 1, L = 1 T = 1, L = 1

Table 5.2: Average local Triaxiality and Lode parameter for each half cell of soft-hard voided bi-crystal

Applied global T and L Local T and L (half cell 1) Local T and L (half cell 2)
T = 0, L = −1 T = 0, L = −1, T = 0, L = −0.8
T = 0, L = 0 T = 0, L = 0 T = 0, L = 0
T = 0, L = 1 T = 0, L = 1 T = 0, L = 1

T = 0.33, L = −1 T = 0.64, L = −1 T = 0.14, L = −1
T = 0.33, L = 0 T = 0.6, L = 0 T = 0.3, L = 0
T = 0.33, L = 1 T = 0.48, L = 1 T = 0.22, L = 1

T = 0.66, L = −1 T = 0.85, L = −1 T = 0.5, L = −1
T = 0.66, L = 0 T = 1, L = 0 T = 0.4, L = 0
T = 0.66, L = 1 T = 0.86, L = 1 T = 0.51, L = 1
T = 1, L = −1 T = 1.43, L = −1 T = 0.65, L = −0.86
T = 1, L = 0 T = 1.61, L = 0.1 T = 0.62, L = −0.1
T = 1, L = 1 T = 1.3, L = 1 T = 0.78, L = 1

5.4 Summary and conclusions
Three-dimensional finite element cell calculations are carried out with the aim of analysing

the response of voids at the grain boundary of a bi-crystal RVE. The effect of crystal orientation
on porosity evolution are studied for three different cases: soft-hard, soft-soft and hard-hard
RVEs subjected to different loading conditions. Unit cells consisting of cubic cells divided in
two halves with a spherical void at the grain boundary with total void volume fraction in the
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Table 5.3: Average local Triaxiality and Lode parameter for each half cell of soft-soft voided bi-crystal

Applied global T and L Local T and L (half cell 1) Local T and L (half cell 2)
T = 0, L = −1 T = 0, L = −1 T = 0, L = −0.8
T = 0, L = 0 T = 0, L = 0 T = 0, L = 0
T = 0, L = 1 T = −0.2, L = 1 T = 0.23, L = 1

T = 0.33, L = −1 T = 0.33, L = −1 T = 0.33, L = −1
T = 0.33, L = 0 T = 0.33, L = 0 T = 0.3, L = 0
T = 0.33, L = 1 T = 0.22, L = 1 T = 0.4, L = 1

T = 0.66, L = −1 T = 0.66, L = −1 T = 0.66, L = −1
T = 0.66, L = 0 T = 0.66, L = 0 T = 0.66, L = 0
T = 0.66, L = 1 T = 0.66, L = 1 T = 0.66, L = 1
T = 1, L = −1 T = 1, L = −1 T = 1, L = −0.86
T = 1, L = 0 T = 1, L = −0.11 T = 1, L = 0.11
T = 1, L = 1 T = 1, L = 1 T = 1, L = 1

cell f0 = 0.0044 and volume of void in each half cell f0 = 0.0022 are analysed. The responses
of bi-crystal RVEs are studied for four stress triaxiality values: T = 0, 1/3, 2/3, 1, three Lode
parameters L = −1, 0, 1 with a strictly specified orientation of loading directions with respect
to the initial bi-crystal orientation, and a dimensionless equivalent strain rate ε̇eqv/γ̇0 in the
range (100 – 150). For a given Lode parameter, the orientation with higher values of equivalent
stress are considered as hard orientations and orientations with lower values of equivalent stress
are considered as soft orientations.

The evolution of void volume fraction strongly depends on the overall stress triaxiality
and more specifically on the triaxiality for the stress averaged over each half cell for all bi-
crystal RVEs considered. When the level of strain increases the Lode value of macroscopic
loading importantly modifies this dependencies. Moreover the Lode value has a prominent
effect on the evolving shape of void, which especially seen at low triaxialities. Even though
all bi-crystal RVEs considered have high angle grain boundaries, significant difference in void
growth between the two half cells occurs specially for soft-hard bi-crystal case. The different
behaviour of the void evolution in each half cell can be attributed to the difference in the
strength (soft-hard) between the two initial orientations (O1 and O4) and the incompatibility
between the two half cells. In the soft-hard bi-crystal case, at high triaxialities, void grows
faster in softer crystal compared to harder crystal counterpart, whereas at low triaxialities,
void tends to collapse faster in harder half cell compared to neighbouring softer crystal. Void
growth is higher for higher triaxialities and void growth is faster for L = −1, followed by L = 0
and L = 1.

Void shape evolution in bi-crystals depends on triaxiality, Lode parameter and initial
orientation of each grain. At high triaxialities, void tends to evolve into spherical/ ellipsoidal
shapes irrespective of Lode parameter and grain orientation. At low triaxialities, void shape
is greatly affected by the initial bi-crystal orientation with respect to the assumed loading
conditions specified by the Lode parameter as the void tend to evolve into ellipsoidal shapes
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for soft-half cells, and into crack like shapes for hard-half cells. Void shape in half cell 2 of
soft-hard bi-crystal looks more similar to hard (O4) single crystal, rather than half cell 2 of
hard-hard bi-crystal. Void shape in half cell 1 of soft-hard bi-crystal, half cell 1 of soft-soft
bi-crystal and soft single crystal looks similar.

If the volume and morphology of voids with the same matrix orientation, but different
neighbouring cell orientation are compared we observe that void tend to behave like the single
crystal case (same orientation as bi-crystal half cell) if the difference in strength between two
half’s of the bi-crystal is small, i.e., in the cases soft-soft and hard-hard. When the difference
in strength between the two half cells is higher (i.e., soft-hard) void behaviour tend to move
away from the respective single crystal behaviour.

At high triaxialities, the profound effect the orientation of the neighbouring grain has
on the evolution of the void volume becomes even more important than the orientation of the
grain itself. Irrespective of Lode value, for void in half cell 1 of soft-soft, soft-hard bi-crystals
and soft (O1) single crystal, void growth is faster in the soft grain when the neighbouring grain
has hard orientation. For void in half cell 2 of soft-hard, hard-hard bi-crystal and hard (O4)
single crystal, void grows faster in the hard grain if the counterpart has hard orientation.

Slip system activity also depends on triaxiality, Lode parameter and initial crystal ori-
entation and far away from the void becomes similar to a fully dense crystal under the same
imposed loading conditions. Depending on crystal orientation we have different Schmid factors,
which in turn leads to different slip activity. Higher the value of stress triaxiality, higher will
be the amount of slip activity, and hence higher plastic deformation in the matrix around the
void, leading to higher void growth. For a soft-hard bi-crystal, at high triaxiality, the maximum
value of accumulated shear occurs around the void in the softer part, and away from the void,
slip activity in the harder part is higher. At low triaxiality, slip system activity is significantly
higher in the harder part and the maximum value of accumulated shear is observed around the
void also in the harder part, irrespective of Lode value. Moreover, in soft-hard bi-crystal the
heterogeneity of slip activity, especially within the harder crystal increases leading to a non-
uniform lattice rotation and consequently grain fragmentation. Slip activities dependence on
Lode parameter is clearly evident from our studies. Slip activity is higher for L = −1, followed
by L = 0 and least for L = 1, irrespective of triaxiality value. For hard-hard and soft-soft
bi-crystals, slip activity away from the void is similar in both half cells and around the void
maximum slip activity occurs.
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6.1 General introduction
The challenge to predict ductility remains a difficult task even with advancement in

numerical modelling and experimental techniques. Ductile process is extensively studied in the
literature. It is known that ductile failure consists of three parts: nucleation (Goods and Brown,
1983; Maire et al., 2008), growth (Puttick, 1959; McClintock, 1968; Rice and Tracey, 1969;
Gurson, 1977b) and coalescence (Needleman, 1984; Thompson, 1987; Pardoen and Hutchinson,
2000; Gologanu et al., 2001) of voids during plastic deformation. It is esential to include all three
stages to have a comprehensive understanding of ductile failure process. The theory containing
all three stages of ductile failure is very difficult to derive and is also difficult to asses the validity
of the models through experiments. The main reason behind this is the lack of systematic
experimental ways for observing and studying void coalescence. Non availability of quantitative
experimental results is due to the stochastic nature of fracture, which makes capturing of the
coalescence event very difficult. Furthermore, it is challenging to analyse coalescence between
few voids, as the number of voids intervening during final failure is normally very high.

To overcome these challenges, different researches adopted a strategy of using fabricated
material for experimental studies. For example Buffiere et al. (1999) studied aluminium matrix
reinforced with zirconia particles and Gammage et al. (2004) tested aluminium matrix rein-
forced with alumina sphere particles by controlling the number of reinforced particles, thereby
controlling the number of holes being nucleated. Magnusen et al. (1988) developed fabricated
model materials with pre-existing holes and studied coalescence event in detail. By positioning
the holes in a controlled manner, fixing its size (diameter of hole from 0.8 to 1.2 mm) and
number of holes, Magnusen et al. (1988) simplified the microstructure by removing the nu-
cleation problem. Further following the same approach, Weck and Wilkinson (2008) studied
void coalescence in Al-Mg alloys by using model materials containing holes of micro dimension.
In there study, they compared experimental results with McClintock (1968)’s model for void
growth and coalescence. Moreover Nemcko et al. (2016); Nemcko and Wilkinson (2016) studied
the significance of local microstructure on void growth and linkage in magnesium.

Studies presented earlier included testing of 2D model materials, with pre-drilled holes
in gauge section of thin sheet tensile specimens. Weck et al. (2008); Hosokawa et al. (2012,
2013) studied 3D model materials with voids embedded in the specimens and by using x-ray
tomography, they observed void growth and linkage in these model materials.

Investigations involving x-ray tomography, provides a non destructive way studying in-
ternal process as they happen. The application of x-ray tomography has been recently used
by Maire et al. (2011); Toda et al. (2011); Seo et al. (2015) for studying fracture, predom-
inantly investigating the effect of matrix properties and nucleation of voids. Lhuissier et al.
(2013) used x-ray tomography to study the nucleation of cavities and its interaction with par-
ticles in wrought AZ31 magnesium alloy. Pushkareva et al. (2016) studied fracture process in
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pure titanium. Using model materials with voids in the interior of the samples, they performed
x-ray tomography to record void growth in 3D during in-situ straining. They reported that
grain orientation plays the most important role on void growth than inter-void spacing and
material strength.

In this doctoral thesis, we have used experimental specimens, similar to the ones described
in Magnusen et al. (1988) and Weck and Wilkinson (2008), with pre-drilled holes located both
within the grains and grain boundaries in a high purity polycrystalline aluminum. The holes are
drilled in the gauge section of the samples, oriented at 90◦ and 45◦ with respect to the tensile
axis with configurations shown in figure 6.1. By varying the hole diameter and position of the
holes, three different types of specimens are defined. The influence of local microstructure, hole
size, hole distance and hole orientation on void evolution and void interaction will be studied
in detail.

6.2 Material and configuration of the samples
The material used to prepare experimental specimens is high purity Aluminum foils

(99.9995%). The tensile specimens used in this work are dog bone shaped, with gauge length
equal to 12mm and gauge width equal to 6mm as shown in figure 6.1. The initial thickness of
the tensile specimen is 1mm. Three different specimen configuration are produced with holes
of different sizes and patterns:

1. Specimen pattern 1: tensile specimen with hole diameter ϕ = 1mm placed along the line
of the loading axis.

2. Specimen pattern 2: tensile specimen with hole diameter ϕ = 0.5mm placed along the
line of the loading axis.

3. Specimen pattern 3: tensile specimen with hole diameter ϕ = 0.5mm, with angle between
adjacent holes and loading axis being close to 45◦

For all the three specimen configurations, the base, length, thickness, gauge length and
gauge width dimensions are the same (see figure 6.1). Tensile specimen 1 contains five holes
with diameter of each hole equal to 1 mm, distance between holes is 1.5 mm and the distance
of the center of the holes to the edge is 3 mm. It is important to note that there are more
than 0.5 mm of specimen free of holes of each side of the gauge enabling a better control of
the samples, by allowing local microstructure to play its part. The holes are placed in the same
line as the tensile loading axis.

Specimen 2 contains eight holes with diameter of each hole equal to 0.5 mm. The distance
between the center of two consecutive holes is 1 mm and the distance to the edge is 3 mm.
The holes are placed in the same line as the tensile loading axis.

Specimen 3 configuration contains 7 holes with diameter of the holes equal to 0.5 mm.
The distance between the center of each consecutive hole is 1 mm horizontally and 1 mm
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Figure 6.1: Tensile specimens with 3 different configurations

vertically. The distance from the edge of the specimen to the line of upper holes is 2 mm. Holes
are placed in a pattern that forms an angle of 45◦ with the loading axis as shown in figure 6.1.

By changing the hole orientation, hole radius and number of holes in the specimens, a
systematic comparison is conducted in this work to study the influence of relative position of
the holes on failure behaviour. Specifically, by comparing specimen pattern 1 and specimen
pattern 2, we will analyze the influence of the initial hole diameter on hole shape evolution,
local microstructure evolution and final failure. Similarly, by comparing specimen pattern 2
and specimen pattern 3, we will analyze the influence of angular orientation of hole on hole
shape evolution, local microstructure and final failure of the material.

6.3 Experimental procedure
By using the experimental technique, EBSD (Electron Backscatter Diffraction) before

the start of tensile testing, orientation in terms of Euler angles in all the grains are obtained.
This information will be used for calculating the misorientation between grains, the active slip
systems, the Schmid factors in each grain and to predict which slip system is active and how
favourable is the grain to deform (hard or soft orientations). The in-situ tensile testing of spec-
imens are performed at room temperature by using tensile stage mounted inside SEM. Tensile
testing was carried out within the chamber of a Scanning Electron Microscope (SEM) and high
resolution images of specimens was captured during the process of loading at regular intervals.
These images acquired at high magnifications reveals slip traces and finer details associated
with the microstructure of the polycrystal and its evolution during loading. Additionally using
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Total samples With EBSD With DIC
Pattern 1 2 2 -
Pattern 2 1 1 1
Pattern 3 2 2 1

Table 6.1: Tensile specimens and experimental procedures applied.

Digital Image Correlation (DIC) during the tensile loading, strain distribution was also mon-
itored in areas close to the holes. Finally by combining the experimentally obtained data and
computationally calculated information (like Schmid factors, active slip planes) the effect of the
heterogeneous microstructure on deformation behaviour can be analyzed for all the specimens.

6.4 Specimen preparation
In the gauge length of the specimen, various drilled hole configurations were produced

by electro discharge machining, for which the holes run through the thickness of the tensile
specimen. After making holes in the tensile specimen, the samples are annealed at 200 degrees
for 2 hrs to remove residual stresses from the heat affected zones around the holes.

Preparing samples for EBSD process (Electron Backscatter Diffraction) is one of the most
important task in any experiment, as the quality of experimental data depends on the smooth-
ness of the surfaces. The surface of the specimens obtained from electro discharge machining
are irregular and not smooth. For smoothing the surface, different processes can be used such
as mechanical polishing, electro polishing or chemical etching.

The specimens used in this study are made of pure Aluminium. For such soft material,
mechanical polishing has to be performed very carefully to minimize the risk of removing
too much material in order to prevent significant changes in the thickness of the specimen.
For the present study the samples are first mechanically polished with 1200 and 4000 grit
silicon carbide papers with de-ionized water. By doing it we ensure that the surfaces of all
the specimens are similar, despite their initial condition and previous treatment. This process
is followed by smooth polishing with diamond colloidal particles starting from 9 µm grit and
followed by 3 µm and 1µm grit. Finally the specimens are electro polished resulting in good
surfaces for EBSD technique.

Electron Backscatter Diffraction (EBSD) scans are used to identify the crystal orientation
and microstructure of the samples. EBSD scans are able to develop crystal orientation maps
scanning the electron beam over the specimen and measuring the diffraction pattern at each
point. In the orientation maps, a grain is defined as the region of the sample, where the crystal
orientation is the same considering certain orientation angle tolerance. The maps are processed
to show the position of all the grains and grain boundaries.

Orientation maps determined by EBSD, as any other experimental technique, are affected
by measurement errors. These errors mostly occur due to a bad calibration of the EBSD
system. Deviations from the true orientation due to noisy Kikuchi pattern or tolerances of the
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indexing algorithm will also induce errors. Errors can be significantly reduced using de-noising
techniques (Hielscher et al., 2019).

In this work, the EBSD data are cleaned up using Matlab (MATLAB, 2010) scripts with
the help of MTEX (Bachmann et al., 2010). Grain reconstruction is defined as the subdivision
of the specimen into regions of similar orientation. The grain reconstruction method that is
used in MTEX is based on the definition of high angle grain boundaries, which are assumed
at the Mittelsenkrechten between neighbouring measurements, whenever their misorientation
angle exceeds a certain threshold. According to this idea grains are regions surrounded by
grain boundaries. For grain reconstruction, there are different choices of how to deal with the
unindexed regions. In this work, we assign the unindexed pixels into the surrounding grains.
Afterwards, orientation of the grain is averaged, such that the misorientation within a grain
does not exceed a given tolerance.

After performing EBSD, specimens are prepared for in-situ tensile testing. For the sam-
ples where Digital Image Correlation (DIC) is used, see table 6.1, surfaces are coated with
diamond particles of size 3 µm-5 µm that provides image contrast enhancement. By measuring
the movement of the particles on the surface of the specimen, it is possible to measure the
distribution of local strains in the surface of the sample.

For all the specimens, tensile tests are conducted using an in-situ tensile machine of a
maximum load cell of 1 kN and mounted within the SEM chamber. The imposed displacement
rate to the specimens is constant and has a value of 10µm/s.

6.5 Tensile Specimen Pattern 1
In this section, results of specimen pattern 1 that contains five holes, with diameter of

each hole = 1 mm are going to be presented. The holes are created such that they are inline
with the loading axis as shown in figure 6.1. In order to better understand the influence of the
local microstructure on the evolution and interaction of holes, two different samples are tested
for this pattern. Both specimens are made of the same material, but they are different in terms
of local microstructure. For both specimens, EBSD is performed before the tensile testing. In-
situ tensile tests are developed and observations related to the evolution of the holes are made
using SEM. Finally, results related to both samples are analysed looking at the EBSD maps,
the deformation of the holes, the Schmid factors and active slip systems in each grain.

6.5.1 Sample 1

In this section, we will analyze the behaviour of sample 1, subjected to uniaxial tensile
loading. With the help of EBSD, we can clearly differentiate between different grains based on
their orientation. The orientation of the grains are marked with different colors representing
their proximity to different planes (111, 101, 001) of a FCC crystal lattice following the inverse
pole figure notation along the z axis [001] as shown in figure 6.2. The grain profiles obtained
by EBSD of both front and back face of the sample 1 (flattened geometry representation) are
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Figure 6.2: (a) Tensile specimen of sample 1, mounted on tensile machine inside the SEM chamber.
(b) Initial EBSD scan of sample 1 (only for the region marked around the holes)

Figure 6.3: Initial EBSD of the front and back faces of sample 1. Holes and grains are numbered for
convenience.

shown in figure 6.3. To differentiate between the grains and to aid the visualization of the
orientations, in this case a 10◦ misorientation measure is used to illustrate the grain boundary
profiles. It can be observed that grains shape and size on both front and back surface are not
the same. Orientation distribution is also different, suggesting that grains are not perfectly
columnar through the thickness. By looking at the contrast in the size, shape and orientation
of each grain on front and back surface, a highly heterogeneous behaviour is expected of the
specimen.

In this sample, most of the grains occupy a texture component in the vicinity of the
twisted cube orientation (shown as example in figure 6.4). That is, most of the grains align
their [0 0 1] directions parallel to the normal surface, and are also slightly rotated about this
[0 0 1] axis. This texture provides the possibility to study different kinds of grain boundaries,
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Figure 6.4: Representation of cubic and non cubic orientation for FCC crystals

Figure 6.5: SEM images of the specimen showing the evolution of slip traces and the growth the of the
holes at different global strains εglobal (equation 6.1)

taking into account distinctions between slip in cube versus non-cube orientations (figure 6.4
shows the representation for cube and non-cube orientations). It can also be observed that the
holes are sharing boundaries with at least 2 grains. Further, by calculating the misorientation
between each grain, it is found that most of the grain boundaries are high angle boundaries
(50 − 60◦). This makes sample 1 a very interesting specimen for studying the evolution of holes
at grain boundaries and for analyzing the effect of grain orientation on hole shape evolution.

6.5.1.1 Hole shape evolution and final failure of the specimen

In this section, results of hole shape evolution during tensile test are presented. Figure 6.5
shows hole shape evolution at different global strains. The images are captured during test-
ing. From these high resolution SEM images the behaviour and growth of each hole and its
surroundings in sample 1 can be analysed at different global strains (defined by equation 6.1).

εglobal = ∆L

L0
; ∆L = total elongation; L0 = original length (6.1)

As observed in figure 6.5, hole 1 and hole 2 evolves into an elliptical shape, with major
axis of the ellipse being parallel to the horizontal axis of the specimen. The ellipticity of hole
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Figure 6.6: Initial EBSD of the front face of sample 1 considering all possible slip systems. Slip system
projections are based on the orientation of each grain.

2 is in this case less clear than in hole 1. Deformation of hole 2 above and below the major
axis is different. Hole growth is lower for the region above the major axis, than for the region
below as observed from figure 6.5 at εglobal = 5.00%. This observation can be attributed to
the heterogeneity of the material, caused by the presence of multiple grains around hole 2.
Hole 2 is sharing boundary with 2 grains (front face) and 3 grains (back face), all of them
with different orientations and different Schmid factors and slip system activity as it would be
discussed later. The maximum growth is observed in hole 1 and hole 2. Before the final failure,
hole 3, 4 and 5 haven’t evolved enough to provide a clear evidence of an irregular hole shape,
but shows a glimpse of irregularity in its evolved shape. Final failure is observed through hole
1, starting from the bottom surface of the hole and cutting the specimen into two halves. The
side of fracture is perpendicular to the loading axis.

In this case, high resolution SEM images of the specimen during loading revels the pres-
ence of slip traces as shown in figure 6.5 for ε = 2.26, 4.04 and 5.0%. A slip line is defined as
a straight line resulting from the intersection of an active slip plane with the surface of the
sample. The slip lines are observed in Scanning Electron Microscopy as steps or white leads on
the surface of the specimen.

By analyzing the Scanning Electron Microscopy images of sample 1 given in Fig 6.5, it
is observed that the grains surrounding hole 1 and hole 2 have more intensive slip traces than
any other grain. Away from hole 1 and hole 2, slip lines does not appear very evidently. By
comparing the experimentally observed slip planes with the computed slip traces in each grain,
it will be possible to find out the slip system activity around the holes in the specimen. Also,
with the help of the computed Schmid factors, we can confirm the likelihood of the slip system
activity.

6.5.1.2 Maximum Schmid factors and active slip systems

Based on the orientation of each grain, for a given load, slip system is considered active if
it has higher Schmid factor. It is interesting to mention that in uniaxial tension, the ideal cube
oriented grain deformed along a <100> direction has eight active slip systems with Schmid
factors of 0.41 and four with value 0. For the non cubic orientations, as the ones considered in
this case, one or two slip systems will be normally dominant with high Schmid factor values,
controlling the deformation process in the grain.
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Slip System Slip Plane Slip Direction
1 (111) [01-1]
2 (111) [-101]
3 (111) [1-10]
4 (11-1) [101]
5 (11-1) [011]
6 (11-1) [01-1]
7 (-111) [101]
8 (-111) [110]
9 (-111) [-101]
10 (1-11) [110]
11 (1-11) [011]
12 (1-11) [0-1-1]

Table 6.2: Definition of the slip systems considered. Different colours represents different slip planes
with its respective slip directions.

From the orientation of the grains obtained from EBSD scans, the slip trace directions and
Schmid factors can be numerically computed for each grain, assuming uniaxial tension along
the loading direction. The slip systems adopted in this work for FCC single crystal are listed
in table 6.2. Four different FCC slip planes (each having three slip directions) are considered
and marked with different colours: green, yellow, blue and magenta. The computed slip traces
of the four slip planes are according to their 111 plane and are shown in table 6.2.

Figure 6.6, shows all the slip planes in each grain on the front surface of the specimen.
The planes are represented in different colours following the different colour coding given in
table 6.2. Figure 6.7 shows the maximum Schmid factor of each grain and the trace of the slip
planes (blue line) in combination with the slip direction (red line) for which the Schmid factor
is maximum for ε = 2.26%. As seen in the figure, numerically calculated active slip lines and
experimentally observed slip lines matches well.

Front Surface
Slip

System
Grain

2
Grain

3
Grain

4
Grain

5
Grain

6
1 0.23 0.20 -0.20 0.008 0.26
2 -0.27 -0.41 -0.23 -0.019 .063
3 0.044 0.20 0.43 0.010 -0.33
4 0.14 0.39 0.17 0.43 -0.36
5 0.052 0.33 0.16 0.037 -0.08
6 -0.08 -0.05 -0.007 -0.39 0.27
7 -0.33 -0.24 0.22 -0.37 0.48
8 -0.024 -0.21 -0.46 -0.039 -0.14
9 -0.36 -0.46 -0.23 -0.41 0.33

10 0.19 -0.14 -0.39 -0.057 -0.12
11 -0.17 0.139 0.36 0.028 -0.35
12 0.019 -0.009 -0.03 -0.028 -0.48

Back Surface
Grain

2
Grain

3
Grain

4
Grain

5
Grain

6
-0.11 0.24 0.12 -0.13 0.07
-0.17 0.016 -0.02 -0.06 -0.33
0.29 -0.26 -0.10 0.19 0.26
0.18 -0.43 -0.48 -0.11 0.48
0.13 -0.15 -0.28 -0.08 0.33
-0.04 0.27 0.19 0.029 -0.15
0.27 0.47 -0.35 0.40 -0.14
-0.49 -0.17 -0.17 -0.43 -0.34
-0.22 0.29 -0.178 -0.03 -0.48
-0.46 0.04 0.133 -0.29 -0.34
0.25 -0.39 -0.41 0.049 0.26
-0.20 -0.43 -0.27 -0.24 -0.08

Table 6.3: Schmid factor in each slip system for different grains in the front and back surface of sample
1.
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Figure 6.7: Distribution of the Maximum Schmid factor, numerically computed active slip system and
experimentally observed slip lines on the front surface of specimen for ε = 2.26%

In order to have a better understanding of slip system activity, table 6.3 presents the
Schmid factors corresponding to uniaxial stress for all 12 slip systems inside the grains 2, 3, 4,
5, 6. These grains are placed around holes 1 and 2, and are the ones with higher slip activity.
As observed in table 6.3, the difference in the maximum value of Schmid factors for all the
grains is significant, indicating that the grains should all have different hardening/softening
behaviour. From both the front and back surface of the specimen, most of the grains have a
maximum Schmid factor in the range (0.43 − 0.49).

From the front surface, in grain 6, multiple slip systems are active and two slip systems
has a Schmid value of 0.48. The slip systems are number 7 and 12. Its trace on the surface
is a straight line marked with blue and red colours respectively as shown in figure 6.7, which
happens to closely matches the slip lines observed experimentally. Similarly, for grain number
4, multiple slip systems are active with Schmid factors greater than 0.3, but only two slip
systems dominates: number 3 and number 8. The maximum Schmid values are equal to 0.43
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and 0.46 respectively and are marked by straight lines with blue and red colours. The traces
of these 2 slip systems also matches well with the experimentally observed slip planes.

For the back surface of the sample, for the region of interest (area around hole 1 and
2), the values of Schmid factor for grain numbers 2, 3, 4, 5, 6 for all the slip systems are also
provided in table 6.3. The grains have similar behaviour as in the front surface. The orientation
of each grain is different and the calculated maximum Schmid factor is also different with values
ranging from 0.43 to 0.48. Because of the way the specimens were mounted inside the chamber,
SEM images could not be acquired for the back surface of the sample.

Based on Schmid factor and slip system activity, it can be said that grain 2 is not
favourable for deformation (hard grain), whereas grain 3 and 4 seems to be the most favourable
for deformation (soft grains). These contrasting behaviours of grains around hole 1 is respon-
sible for inducing necking and subsequent failure of the specimen.

No major slip bands are observed in the region between two holes and very less or no
interaction between holes are found in the specimen. The grain orientation and microstructural
heterogeneity is therefore the main cause of promoting failure in the sample.

6.5.2 Sample 2

Similar to the study conducted for sample 1, now we will analyse sample 2, which is
similar to sample 1 in terms of number of holes and hole diameter, but different in terms of
microstructure. Like sample 1, the grain profiles obtained by EBSD of the front face of sample 2
is given in figure 6.8. The inverse pole figure also is presented in figure 6.8 and shows that most
of the grains are oriented in non cubic orientations, therefore heterogeneous grain deformation
response is expected similar to sample 1.

Figure 6.9 shows all the possible slip planes in the grains of the front surface of the
specimen. Four planes are represented in different colours following the criterion given in table
6.2. As sample 1, holes are named from 1 to 5 and grains from 1 to 12 for convenience and
descriptive purpose. As seen in the figure, there are multiples holes (number 2, 3, 4, 5) which
are located at grain boundaries, i.e. sharing boundary with at least two grains. Nevertheless,
hole 1 is located within a single grain (grain number 2). Similar to previous section, hole shape
evolution and slip system analysis are presented for sample 2.

6.5.2.1 Hole shape evolution and final failure of the specimen

Figure 6.10 shows SEM images of the sample during the tensile test. It is observed that
hole 1 grows faster compared with the other holes and evolves into a regular elliptical shape.
Even though other holes shows growth, it is not as large as hole 1 and also most of the holes
tend to evolve into irregular shapes. Final failure occurs in the vicinity of hole 1 at a global
strain of ε = 5.35%.

The deformation of hole number 2 is higher on the left side if compared to the right
side, as a consequence of the presence of grain 2 on the left side. Grain 2 is more prone to be
deformed (softer) than other grains as we will discuss later. For holes 3 and 4, the deformation
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of the upper halves is higher if compared to the lower halves. For hole number 5, which is
surrounded by 3 grains, the deformation on the right side is higher if compared to the left side,
again because of the presence in that side of the hole of grain number 9 that is a soft grain.

Figure 6.8: (a) Sample 2 within the SEM chamber. (b) Initial EBSD scan of the front face of sample
2

Figure 6.9: Initial EBSD of the front face of sample 2, considering all possible slip planes. Holes and
grains are numbered for convenience.

6.5.2.2 Maximum Schmid factors and active slip systems

By analyzing figure 6.11, where the map of maximum Schmid factors is given for the front
surface of sample 2, we observe that the maximum Schmid values varies from 0.3 to 0.5. The
grain where we observe necking before final failure (grain 2) has a maximum Schmid factor
close to 0.5. This high value of Schmid factor means that grain 2 is rather favourable to be
deformed (soft grain). The maximum Schmid factor of the neighbouring grain is 0.33 (grain
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Figure 6.10: SEM images of sample 2 at different overall strains.

number 5). This low value of Schmid factor means that grain 5 is less favourable to be deformed
than grain 2 (harder grain).

Hole 1 grows faster than other holes and is located within a soft grain with a neighbouring
grain that has a hard orientation. This soft-hard set of grains creates the optimal conditions
for higher deformation of hole 1 compared to the other holes.

Slip band formation (active slip plane and direction) in the front surface of the specimen
is numerically calculated and is also given in Fig. 6.11. For the grain containing hole 1, slip
trace calculated numerically matches well with experimentally observed slip lines and is along
this plane where we observe the final failure of the specimen. The remaining holes (numbers
2, 3, 4 and 5) share boundary with at least 2 grains, each grain having different Schmid factor
and slip system activity. This nature (hard-soft) of grains allows them to deform differently
and hence holes evolve into irregular shapes.

As in sample 1, no significant slip bands were observed in the region between two holes
showing no significant interaction between the holes. As in previous sample, the grain orienta-
tion and the grain heterogeneity are the main reason for the failure of the specimen.

6.6 Tensile Specimen Pattern 2

6.6.1 Sample 1

Following a similar approach as the one made for specimen pattern 1, in this section,
we will analyse a new specimen pattern. The dimensions of the specimen remain the same as
in the previous case, but the hole diameter and the number of holes of the specimen will be
different. Apart from EDSD and slip trace analysis and in order to have a better understanding
of the configuration, the digital image correlation (DIC) technique will be used to measure local
strains on the specimen.

The tensile specimen (pattern 2) has smaller holes that pattern 1, placed in the same line
as the tensile loading axis as shown in figure 6.1. The number of holes in this specimen are 8.
The distance between holes is equal to 1.0 mm and hole diameter is 0.5 mm. Microstructural
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Figure 6.11: Distribution of the Maximum Schmid factor and active slip system on the front surface
of sample 2

Figure 6.12: a) Sample of specimen with pattern 2 within the SEM chamber. (b) Initial EBSD scan of
the front face of the sample

behaviour, hole shape evolution and possible interaction between holes will be analyzed for this
specimen.

Figure 6.12 shows the undeformed specimen mounted on the tensile stage inside the SEM
chamber. EBSD scan was carried out in the front surface of the sample before performing the
tensile test experiment. The initial grain orientation map and the inverse pole figure is also
presented in figure 6.12. In EBSD image (figure 6.13), holes are marked with numbers from
1 to 8 and grains with numbers from 1 to 7 for identification purpose. As observed from the
image, holes 1, 2, 3, 4 and 5 are located on a single grain meanwhile holes 6, 7 and 8 share
borders with two or three grains respectively. Grain 1, 2, 3 have perfectly cubic orientations,
whereas remaining grains have non cubic orientations.

6.6.1.1 Hole shape evolution and final failure of the specimen

Figure 6.14 shows SEM images at different applied global strains. High resolution SEM
images are captured only for the area defined between holes 2-7. As observed in the images,
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Figure 6.13: Initial EBSD of the front surface of the sample considering all possible slip planes in the
grains. Holes and grains are numbered for convenience.

Figure 6.14: SEM images of specimen showing evolution of slip traces and growth of holes at different
global strains εglobal (Eqs. 6.1).

the magnitude of growth and deformation in each hole is different. As can be seen also in the
SEM images, holes 4, 5, 6 and 7 evolve into elliptical shapes and we observe holes 4, 5 and
6 evolving as oblate ellipses with the major axis inclined a certain angle with respect to the
loading axis. Holes starts deforming into irregular shapes from global strain of ε = 4.1% and
finally cracks starts to appear from hole 6 at global strain of ε = 6.7%, which results in the final
failure of the specimen. Apart from the holes 4, 5, 6 and 7, the rest of the holes haven’t evolved
significantly. Hole 7 is the second most deformed hole, whereas hole 1 is the least deformed
hole. Based on this observation analysis related to holes 1, 2, 3 and 8 and surrounded grains
are not considered in this study.

6.6.1.2 Maximum Schmid factors and active slip systems

Now we will analyse the slip system activity in each grain surrounding the holes. Unlike
previous section, high resolution images of slip lines cannot be obtained from SEM for this
specimen because of the Digital Image Correlation particles covering the surface that obscure
results. Therefore slip line analysis will be performed for this specimen only based on the
numerically calculated slip traces. Figure 6.13 shows all possible slip planes on the different
grains in the sample. Slip planes are projected on the initial microstructure of the sample and
slip trace formation (active slip plane and active slip direction) are computed for each grain
based on the maximum Schmid factor. Figure 6.15 shows the maximum Schmid factor in all of
the grains. As seen in the figure, maximum Schmid factor ranges from 0.3−0.49. In figure 6.15,
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also active slip plane and active slip direction are represented by lines with colors blue and red
respectively.

Focusing on the grains surrounding holes 4, 5 and 6, by looking at the grain structure
and orientation, we can interpret the hole shape evolution and deformation behaviour of the
sample. Hole 4 is located in grain 5, whereas hole 5 is located in grain 6 and hole 6 is located at
the grain boundary of grains 6 and 7. Orientation of grains 5, 6 and 7 are different and hence
the slip system activity in each grain is also different. Grains 5, 6 and 7 all have maximum
Schmid factor higher than 0.4, but in grain 6 we have a slip system with maximum Schmid
factor 0.48, which is more favourable for deformation. As we see from figure 6.14 holes tend to
rotate along the grains slip planes. For hole 6 which is located between 2 grains, the shape of
the deformed hole is different on each side of the grain boundary. Final failure initiates from
hole 6, which is located at the grain boundary between grain 6 which is a soft grain and grain
7 which is a hard grain. By looking at the specimen failure in figure 6.14 d, it can be said that
there is a very high possibility of crack initiating at the grain boundary, that further propagates
along this grain boundary promoting the final failure of the specimen.

It can be observed that there is no interaction between holes. The specimen microstructure
(grain size, shape, orientation and active slip systems) will be most likely the leading cause of
hole shape evolution, hole rotation and final fracture of the sample.

Figure 6.15: Distribution of the Maximum Schmid factor and active slip system on the front surface
of the sample

6.6.1.3 Digital Image Correlation analysis

Next we will look into the distribution of the local strains in the specimen. The magnitude
of local strains also will shed light on the deformation behaviour of the holes and grains around
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them. For analyzing the local strains, we will make use of Digital Image Correlation technique.
Digital Image Correlation (DIC) is an experimental approach that allows the investigation of
the non-uniform distribution of strains at the grain scale in the polycrystals analyzed.

Figure 6.16: Strain fields Exx and Eyy calculated with digital image correlation at different global
strains in the area between holes 3 and 6 of the specimen.

Results pertaining to DIC of the specimen are presented in this section. Experimental
measures of local strains in both x (Exx) and y (Eyy) directions is as shown in figure 6.16 at
different global strain values of ε. Local strains are defined following equations 6.2, 6.3, 6.4. For
DIC images, only the area between holes 3 and 6 is taken into account. At global deformation
ε = 1.5% two bands of larger local axial strain Exx emanate from the holes and travel to
top-right and bottom-left corners of the specimen. As the specimen deforms, for ε = 4.1%, the
local axial strain Exx in these two bands increases approximately to values of 58% with strong
strain localization (Exx ≈ 122%) observed around hole 6. Strain localization is also observed
around holes 4 and 5, however, the magnitude of Exx is much lower than the one observed
around hole 6.
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Figure 6.16 also shows Eyy maps for ε = 1.5% and ε = 4.1%. As expected, Eyy values are
mainly negative and small in comparison with Exx (compressive deformation in y direction).
Localization bands around the holes, arising at an angle close to ±45◦ is also observed for the
specimen for Eyy . It is interesting to remark that for strain fields Exx and Eyy in the ligament
region between the holes, local strains are small if compared to the strains in the localization
bands. In the region away from the holes, no major strain localization sites are observed, not
even close to the boundaries of the grains.

Figure 6.17 shows the profile of magnitude of strain distribution Exx and Eyy measured
along a straight line (between holes 3 and 6). The high peaks in strains appears close to the
location of the holes. As we move away from the holes, the magnitude of strain is not so
high for Exx, whereas for Eyy the magnitude of strain is low close to the location of the holes
and high away from the location of the holes. It can also be observed that Exx is tensile in
nature, whereas Eyy is compressive. We observe valleys in ligament zones between the holes
that makes evident that there is no interaction between holes. Distribution of strain is very
high in coordinates close to holes 5 and 6.

Figure 6.17: Distribution of local strain (a) Exx and (b) Eyy around holes 3 to 6. Red line represents
local strain at εglobal = 1.5% and blue line represents local strain at εglobal = 4.1%. Local strains are
calculated along the line just above the holes as shown in the scheme. Peaks in Exx plots refers to
location near the holes.

6.7 Tensile Specimen Pattern 3
Now we will study another specimen (specimen pattern 3), that has the same hole diam-

eter as specimen pattern 2, but the number of holes and spacing between holes are different.
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In tensile specimen pattern 3, a total of 7 holes are created within the gauge section, with
each hole diameter being 0.5mm placed at ±45◦ from the adjacent holes and the loading axis
as shown in figure 6.1.

For this specimen pattern, two different samples are analysed, both with different mi-
crostructure. For both specimens in-situ tensile test, EDSB and slip trace analysis are per-
formed. Additionally for one of the specimens Digital Image Correlation is also performed.

6.7.1 Sample 1

Figure 6.18: a) Specimen pattern 3 (sample 1) within the SEM chamber covered with particles for
DIC. (b) Initial EBSD scan of the front surface of sample 1

Figure 6.19: Initial EBSD of the front surface of the sample, with all possible slip planes projection.

In this section we will study and analyse sample 1 of specimen pattern 3, for which we
will perform EBSD, slip trace and digital image correlation analysis.

The initial EBSD scan of the front surface of sample 1 is shown in figure 6.19. This figure
shows grain shape, size and orientation and are colored following the inverse pole figure. Both
holes and grains are numbered from 1 to 7 for convenience. As seen in figure 6.19, based on
the orientation, the grains of the sample have a cube texture predominantly twisted. That is,
most of the grain orientations are slightly rotated about [0 0 1] axis. Also most of the grain
boundaries are low angle grain boundaries with misorientation angles ranging between 5 − 10◦.

102



6.7 Tensile Specimen Pattern 3

Holes number 3, 4, 5 and 6 are located within a single grain, whereas holes 1, 2 and 7 share
boundary with two grains.

6.7.1.1 Hole shape evolution and final failure of the specimen

Figure 6.20: SEM images of specimen showing evolution of slip traces and growth of holes at different
global strains εglobal(Eq. 6.1).

From high resolution SEM images, the evolution of holes in sample 1 at different global
strains are presented in figure 6.20. As is observed from the images, holes start to evolve with
different deformation rates and some of them become irregular in shape. Most of them evolve
into almost elliptical shapes with major axis of the ellipse being parallel to the horizontal axis
of the specimen. Among all the holes, hole number 2 is the most grown/deformed followed by
hole number 3. The lowest hole growth/deformation is achieved by hole number 5. At the early
stages of global deformation, all the holes start evolving into elliptical shapes, but for global
strain level higher (ε ≥ 4.16%), different hole shapes begin to appear. In this way, left and
right sides of hole number 2 (between grains 2 and 3) reach very different shapes as loading
progresses. As observed in the figure, in the left side of the hole, deformation and growth is
much greater than in the right side. For hole number 7 (between grains 4, 6 and 7), the part
of the hole on the left side tends to close, whereas the part on the right side still maintains
its elliptical shape. Similar trend is observed for hole number 1 (between grains 1 and 2). For
hole number 3 (within grain 3), for ε = 5.95%, we observe higher growth/ deformation on
the lower half of the hole if compared with the upper half. The remaining holes number 4, 5
and 6 (within single grains) evolve into fairly regular elliptical shapes during tensile testing.
Interaction between neighboring holes does not occur, neither for adjacent holes located at an
angle of 0◦ with respect to the loading axis nor for the case in which they form 45◦. Final failure
starts around hole 2 and there is no clear indication of failure starting between two holes. Final
failure interrupts the plastic growth of the holes and causes rapid fracture of the sample.

6.7.1.2 Maximum Schmid factors and active slip systems

In this sample, high resolution images of slip lines can not be obtained from Scanning
Electron Microscopy technique because of the DIC particles covering the surface that obscure
images. Due to this, slip line analysis will be performed only with the information calculated
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Figure 6.21: Distribution of the maximum Schmid factor and the active slip system in the front surface
of sample 1.

numerically. From EBSD scans, the slip trace directions and Schmid factors are computed
for each grain assuming uniaxial tension along x direction. Figure 6.19 shows all the possible
slip planes in the grains of the front surface of the sample. All the 4 slip planes are colored
according to the data given in table 6.2. The maximum Schmid factor criterion were used to
predict the active slip system from the specimen. Figure 6.21 shows the maximum value of
Schmid factor within each grain and the trace of the slip planes in combination with the slip
direction for which the Schmid factor is maximum. Slip planes are indicated with blue lines and
slip direction with red arrows. By analysing the maximum value of Schmid factor, it is observed
that values vary from of 0.32 to 0.5 with most of the grains having maximum Schmid factors in
the range (0.45−0.48). The different slip activity for all the grains is significant, indicating that
the grains should all have different hardening/softening behaviour. As previously mentioned,
hole number 2 is the most deformed hole and final fracture occurred around it. It is therefore
interesting to provide a detailed analysis for the grains placed around hole 2 (grains number
2 and 3). Grain 2 and 3 have different values for maximum Schmid factor, 0.47 for grain 2
belonging to slip system 2 and 0.44 in slip system 4 of grain 3. Since both grains have different
slip systems, different deformation behaviour is expected in these 2 grains.

In order to have a in-depth look into grains around hole 2, the Schmid factors corre-
sponding to uniaxial stress for all 12 f.c.c slip systems are presented in table 6.4 for grains
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number 2 and 3. As we can see, in grain number 2 multiple slip systems (2, 3, 4, 5, 9) are
active. For grain 2, the traces of all possible slip planes are marked with different colors as
shown in Figure 6.19 and following the criteria given in table 6.2 : green for slip plane (111),
yellow for slip plane (11-1), blue for slip plane (-111) and magenta for slip plane (1-11). Slip
system number 2 belongs to (111) and has the maximum Schmid factor (0.47). Its trace on the
surface corresponds with a straight line marked with green colour. Similarly, for grain number
3, multiple slip systems are active. Slip system number 4 is the one with highest Schmid factor
(0.44) belonging to (11-1) plane, closely followed by slip system number 7 (0.41) belonging to
(-111) plane. In grain number 3, these two slip systems dominates the deformation process and
are marked in Fig.6.19 by the yellow and blue straight lines respectively. Differences in active
slip systems can cause differences in deformation behaviour, hence an incompatibility arises
between these 2 grains. This incompatibility will have a direct influence on the deformation
behaviour of the hole located at the boundary between these 2 grains. The hole evolves with
different magnitude and shape on either side of the grain boundary and promotes failure along
the grain boundary.

Holes number 4, 5 and 6 are located within the single grain number 4, being grain num-
ber 4 the biggest grain in the sample. By analyzing grain 4 it is found to have non-cubic grain
orientation with a maximum Schmid factor (0.46). In grain number 4, there exists 3 slip system
with Schmid value greater than 0.4 (see table 6.4) in slip systems number 2, 5 and 11 respec-
tively. Grain 4 is also favorable for deformation, that is the reason behind substantial growth
and shape of holes 4, 5 and 6. By analysing remaining grains, it is observed that most of them
has at least 1 favourable slip system. A more detailed analysis of these remaining grains is not
included in the document for the sake of conciseness. Grain number 2 is the most active grain
with multiple active slip systems and the highest Schmid factor value. Grain 2 has therefore
the most favourable conditions for deformation, acting as a soft grain surrounded by relatively
hard grains. This grain will dominate deformation and failure process.

Computational slip bands are observed between holes inclined at 45◦ in the sample.
However, no slip bands formation is shown between the holes located along x axis which means
that the holes where placed too far for any interaction to occur. DIC results shown in next
section will confirm this sample behavior.

6.7.1.3 Digital Image Correlation analysis

Digital image correlation analysis is also performed for this sample, in order to quantify
the heterogeneous strain field of the material and the strain localization near the holes. Results
pertaining to DIC of the specimen are presented in this section. Experimental measures of
local strains in both x (Exx) and y (Eyy) directions is as shown in figure 6.22 at different global
strain values ε = 1.5% and 3.8%. Local strains are defined following equations 6.2, 6.3, 6.4 and
global strain is defined in equation 6.1.

As seen in the figure, at the global strain value ε = 1.5% hot spots begin to form around
the holes and strain starts localizing within several localized deformation bands, forming angles
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Front Surface
Slip

System
Grain

2
Grain

3
Grain

4
1 0.166 -0.07 0.02
2 -0.47 -0.002 -0.41
3 0.30 0.07 0.38
4 0.39 -0.44 0.26
5 0.44 -0.26 0.46
6 0.04 0.18 0.21
7 -0.14 0.41 -0.007
8 -0.28 -0.24 -0.2
9 -0.42 0.17 -0.2

10 0.25 0.022 -0.25
11 0.27 -0.33 0.43
12 0.019 -0.31 0.18

Table 6.4: Schmid factor in each slip system for different grains of sample 1

of approx. 45◦ with respect to the loading axis. The magnitude of the local strain in x direction
(Exx) is higher if compared to y direction and Eyy values are mainly negative (compressive
deformation of the sample in y direction). It is important to remark that at ε = 1.5%, strain
values in the ligament region between holes in x direction are low if compared to ±45◦ direction.
As the deformation progresses (ε = 3.8%) strain localization starts increasing around hole
number 2, where the final failure happened. It is interesting to note that, even though there
is strain localization between the holes placed in 45◦ direction, there is no interaction between
them.

As shown in Fig 6.22, the area with highest values of local strain (most deformed area)
mainly corresponds to grain 2 location. As previously mentioned, a major reason for high values
of deformation is attributed to high Schmid factors and multiple active slip systems exhibited
by grain number 2. After high local deformations, failure is promoted in the specimen in the
vicinity of this area.

6.7.2 Sample 2

In this section, results of specimen sample 2 will be presented. For this sample and as in
previous case, holes are arranged at ±45◦ to each other with the same hole diameter and spacing
as in sample 1. Figure 6.23 shows the initial position of the sample in the SEM chamber and
the EBSD orientation map. In the EBSD image, holes and grains are numbered for convenience
as shown in figure 6.24. From the EBSD images, we can observe that most of the holes are
sharing boundary with at least 2 grains. As seen in figure 6.24, hole 1, 5 and 6 are located at
the grain boundary and share boundary with 2 grains, whereas holes 2, 3 and 4 share boundary
with at least 3 grains. Hole 7 is placed within a single grain.

6.7.2.1 Hole shape evolution and final failure of the specimen

Figure 6.25 shows the evolution of holes at different stages of global deformation. In
this specimen, since there are no particles for conducting DIC, we can clearly observe the slip
system activity (slip traces) on the surface providing information on the activated slip system
and then qualitatively assess the level of strain heterogeneity.
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Figure 6.22: Strain fields Exx and Eyy calculated with digital image correlation at different global
strains

As we can see from the SEM images, as deformation proceeds, holes evolve into different
shapes and sizes. Before failure, hole 3 expands into an elliptical shape with more hole growth
on the left side compared to the right side. As seen in figure 6.24 hole 3 shares boundary with
3 grains. Because of different orientations in each grain, deformation related to each adjacent
area is different making the hole deforming with irregular shape. Necking takes place around
holes 2 and 3. Final failure occurs at hole 3.

6.7.2.2 Maximum Schmid factors and active slip systems

In order to examine the active slip system activity, visual observations of the slip lines on
the specimen surface are compared with the computed distribution of slip traces in the sample.
With the help of the computed maximum Schmid factors, the likelihood of the slip system
activity is also confirmed.

Figure 6.26 a, shows the maximum Schmid factor value in each grain and figure 6.26 b
represents the trace of the slip planes (blue line) in combination with the slip direction (red
line) for which the Schmid factor is maximum. The maximum Schmid factor in the grains vary
from of 0.34 − 0.48, with most of the grains having at least one slip system with maximum
Schmid factor in the range 0.45-0.48. The analysis of grain numbers 3, 5, 6 and 8 provide an in

107



Metallic sheets containing holes subjected to uniaxial tension: in-situ observation of hole
evolution

Figure 6.23: a) Specimen pattern 3 (sample 2) within the SEM chamber. (b) Initial EBSD scan of the
front surface of sample 2

Figure 6.24: Initial EBSD of the sample with all possible slip planes projections.

depth look at the region around holes 2 and 3, area where necking and final failure happens.
To this end, table 6.5 presents the Schmid factors corresponding to uniaxial stress for all 12
f.c.c slip systems inside grains 3, 5, 6 and 8. Hole 2 is surrounded by grains number 3, 5 and 6
and hole 3 by grains number 5, 6 and 8.

Front Surface
Slip

System
Grain

3
Grain

5
Grain

6
Grain

8
1 0.19 -0.01 -0.005 0.21
2 0.02 -0.004 -0.04 -0.49
3 -0.22 0.02 0.05 0.28
4 -0.40 -0.25 0.37 0.31
5 -0.16 -0.15 0.15 0.47
6 0.24 0.10 -0.21 0.16
7 0.48 0.46 0.07 -0.11
8 -0.21 -0.36 -0.34 -0.22
9 0.26 0.097 -0.26 -0.33

10 -0.08 -0.20 -0.45 -0.20
11 -0.35 -0.14 0.16 0.26
12 -0.43 -0.34 -0.29 0.06

Table 6.5: Schmid factor in each slip system for different grains of sample 2

As previously mentioned, hole 2 is enclosed by grains number 3, 5 and 6. For grain number
3, 3 slip systems have Schmid factor values above 0.4 (4, 7 and 12). Of them all, slip system
number 7 is the one with highest Schmid factor (0.48) and acts as the dominating slip system.
For grain number 5, 3 slip systems are active (7, 8 and 12), and the highest Schmid factor
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Figure 6.25: SEM images of specimen showing evolution of slip traces and growth of holes at different
global strains εglobal(Eq.6.1).

(0.46) corresponds to slip system number 7. For grain number 6, 3 slip systems are active (4, 8
and 10). Slip system number 10 has the highest Schmid value (0.45) and acts as the dominating
one.

Hole 3 is in turn surrounded by grain numbers 5, 6 and 8. Grain 5 and 6 were discussed
before for hole number 2. For grain number 8 and as seen in the table, multiple slip systems are
active (2, 4, 5 and 9). The slip system with the highest Schimd value (0.49) is the slip system
number 2.

Slip planes that are visible on the surface of the sample are marked at global strain 4.16%
in figure 6.27. As seen in the figure, the experimental and the numerical slip system are fairly
consistent in most of the grains and matches well. With different slip orientations controlling
the plasticity behaviour in different grains, hole evolving into different shapes on each side of
the grain is therefore obvious.

By looking at the slip system activity around hole 3, we see that all 3 grains surrounding
the hole have different active slip system. The grain on the top left of hole 3 (grain number 5)
has a slip plane which is inclined at an angle close to 45◦ counter clockwise with respect to the
loading axis and a slip direction projecting inwards. For grain that is located at the bottom
left of the hole (grain number 6), the trace of the slip plane is inclined by an angle close to 45◦

counter clockwise with respect to the loading axis and the slip direction is projected outwards.
Finally for the grain on the right side of the hole 3 (grain number 8), active slip system is
inclined by an angle close to 25◦ counter clockwise and the slip direction is projected inwards.

Hole 2 also evolves into a irregular shape. Slip planes and slip directions on all the grains
surrounding hole 2 are different and leads its heterogeneous evolution. On the specimen surface
we observe 2 slip system crossing the region in the lower part of hole 2, with one slip trace
matching with the computed one. The additional slip trace is expected to be originated from
the hole deformation.
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Figure 6.26: Distribution of the maximum Schmid factor and the active slip system in the front surface
of sample 2.

As in previous cases, even in this specimen it is the local microstructure that dominates
the deformation and no coalescence between holes takes place. Even though there is some
interaction between holes, it is not the major factor in deciding the final failure of the sample.

6.8 Summary and conclusions
Tensile samples of polycrystalline aluminum, with predrilled holes with different patterns,

were analyzed in this work similar to the ones described in Weck and Wilkinson (2008) work.
The role of hole size, hole distance and hole position in contrast to microstructural heterogeneity
were studied in detail in order to find the most relevant features that causes local deformation
and final failure of the specimens. By using EBSD, orientation in terms of Euler Angles in all
the grains are obtained in the specimens. Misorientation between crystals, active slip systems
and maximum Schmid factors were computed numerically in order to predict which slip system
is active and how favourable is the grain to deform. With the help of SEM, specimen images
are acquired at high magnifications revealing slip traces and finer details associated with the
microstructure of the polycrystal and its evolution during loading. In some specimens, the strain
field is also monitored using DIC technique. Qualitative comparisons between experiments and
numerical data have been provided in each case. It is clear from results presented in previous
sections that microstructure have an important effect on void evolution and final failure. Tensile
growth of holes were observed during the experiments, but it was difficult to draw a relationship
between rate of growth of holes and its position relative to the notch. For a given sample
evolution of holes were not uniform (like in isotropic materials). Some holes expanded, some
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Figure 6.27: a) Slip planes visible on the surface of the specimen at global strain 4.16%, b) Slip system
for which the Schmid factor is maximum

holes contracted and some holes showed negligible or no growth from the beginning of the
deformation. Based on this observation it is very difficult to determine hole interaction or
linkage.

By looking at the grains surrounding the hole and analysing the EBSD data, we observe
that local crystallographic orientation controls the hole deformation. Hole growth seems easier
and higher in soft grains (characterized by high Schmid factor). On the other hand, growth
of holes is lesser and difficult in hard grains (characterized by low Schmid factor). For holes
located on the grain boundary (between at least two grains), hole growth and shape varied
on each side of the grain boundary based on hard or soft grain behavior. Hole growth will
be higher on the soft side of grain boundary playing compatibility between grains and slip
system activity a mayor role in the shape and size of the hole and final failure of the sample.
When there is no compatibility between two grains, we observe that failure occurs at grain
boundary, resulting in crack propagation and hence final failure. This trend is also observed in
our numerical work (Dakshinamurthy et al., 2021) and previous studies of (Raabe et al., 2001;
Zhao et al., 2008), that showed that the initial grain orientation was the major contributor in
plastic heterogeneous response in polycrystals.

In this work, interaction between holes were not clearly evident for holes oriented at 90◦

with respect to loading axis. Even DIC did not show any major strain localization between
holes. For holes oriented at 45 ◦, strain localization was observed between holes. However, there
were no hole linkage during the experiments and it was difficult to observe coalescence. In this
study, no inter-void ligament failure is observed in any sample and the size of the hole and
spacing between holes it would appear not to be sufficient to promote the interaction between
adjacent holes. As shown by Weck and Wilkinson (2008), the closer the holes, the higher the
possibility of intervoid ligament, the earlier coalescence and the lower failure strain of the whole
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sample. If the distance between holes is larger, holes has to deform/ grow more to interact with
their neighbours and to promote ligament failure.

The results presented here evidently suggest that initial texture as well as microstructure
needs to be considered for modelling deformation and failure in Aluminium. Further work is
required to include a parametric study to understand the relation between hole spacing and
coalescence, thereby implement these results into a damage model along with crystal plasticity
finite element simulations. Further plan needs to be devised for studying holes at grain boundary
with emphasis on hard and soft grains on either sides of the holes.
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7
Concluding remarks and future works

In this doctoral thesis we have investigated the role of anisotropy, stress triaxiality and
Lode parameter on void growth in FCC single crystals, bicrystals and polycrystals. To address
these issues we have adopted two approaches: a. we have performed finite element calculations
on unit cells containing spherical voids (Part II); b. we have performed in-situ tensile tests
on tensile specimens with pre-drilled holes of different diameters (Part III). The key findings
of this doctoral thesis are summarized here. Some interesting issues are suggested for future
researches.

7.1 Concluding remarks
Part II : Numerical modelling of void growth in single crystals and bi-crystals. In this

part we have analysed unit cells with voids under different stress states.

• In chapter 3, we have investigated the effect of crystal orientation on cell deformation
and stress-strain behavior of single crystals without voids subjected to different stress
states. Using crystal plasticity finite element approach, 3D unit cell calculations for six
different crystallographic orientations are performed under controlled stress state (fixed
triaxiality and Lode parameter). The effect of Lode parameter is clearly evident for each
crystallographic orientation. No effect of triaxiality was observed for all the orientations
considered in this study. Symmetric orientations (O1, O2, O3) showed softer response
as compared to non-symmetric orientations (O4, O5, O6) irrespective of Lode parameter
considered. The results are consistent with all existing literature.

• In chapter 4, we have investigated the effect of crystal orientation on void growth and
cell deformation behaviour of porous single crystals subjected to different stress states.
Similar to chapter 3, crystal plasticity finite element calculations of a unit cell containing
a spherical void at its center is considered. For studying the behaviour of the void, four
different orientations are considered: two symmetric orientations (O1, O2) which shows
soft response and two non-symmetric orientations (O4, O6) which shows hard response.
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Numerical results showed that void growth depends on triaxiality and Lode parameter
irrespective of crystal orientation. Void growth is higher and quicker for high triaxialities.
Similarly void growth is higher for Lode parameter L = −1.

• In chapter 5, we have investigated the response of a void at the grain boundary of FCC bi-
crystals subjected to different stress states and different neighbouring grain orientation.
Three different cases of unit cells are studied: soft-hard RVE, soft-soft RVE and hard-hard
RVE. Crystal plasticity finite element calculations are performed for these three RVEs
under four different stress triaxialities and three different Lode parameters. Numerical
results showed that the evolution of the void strongly depends on the local triaxiality
of a crystal in the bi-crystal. Void growth is higher for higher triaxialities. Significant
differences in void growth between the two half cells occurs specially for soft-hard bi-
crystal case. In soft-hard bi-crystal RVE, the different behaviour of the void evolution in
each half cell can be attributed to the difference in the strength between the two initial
orientations and the incompatibility between the two half cells. In the soft-hard bi-crystal
case, at high triaxialities, void grows faster in softer crystal compared to harder crystal
counter-part, whereas at low triaxialities, void tends to collapse faster in harder half
cell compared to neighbouring softer crystal. Void shape evolution is also dependent on
triaxiality and Lode parameter values. Slip system activity also depends on triaxiality,
Lode parameter and initial crystal orientation and far away from the void becomes similar
to a fully dense crystal under the same imposed loading conditions. In soft-hard bi-crystal
RVE, the heterogeneity of slip activity, especially within the harder crystal, is significantly
higher leading to a non-uniform lattice rotation and consequently grain fragmentation.

Part III : Experimental investigation of void growth in metallic sheets containing holes. In this
part we performed uniaxial in-situ tensile test, coupled with scanning electron microscope to
study the void growth behaviour in pure Aluminium tensile specimens with pre-drilled holes.

• In chapter 6, by varying the hole diameter, distance between the holes and arrangement
of holes, three different types of specimens were analyzed. Results using EBSD, DIC and
high resolution SEM images showed that, for a given sample, evolution of holes were not
uniform (like in isotropic materials). Some holes expanded, some holes contracted and
some holes showed negligible or no growth from the beginning of the deformation. There
were no hole linkage during the experiments and it was difficult to observe coalescence.
Evolution of holes was significantly influenced by initial orientation of grain embedding
the hole. Local microstructure dictated the final failure of the polycrystal.

7.2 Future works
Interesting issues that could be addressed in future research are listed below:

• The crystal plasticity model used in the present study is standard. Observed dependen-
cies can be modified when enhanced strain gradient formulations (Wulfinghoff et al.,
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2013; Stupkiewicz and Petryk, 2016; Ling et al., 2018), which introduce size effects, are
applied. For example, as recently demonstrated by Ling et al. (2018) using the reduced
micromorphic finite strain crystal plasticity model, the void growth is slow down and the
void coalescence delayed when the void size is small as compared to the intrinsic length
scale of the material. It happens due to the modification of accumulated shear field close
to the void. Similarly, the strain gradient formulation may help to account for the grain
boundary effect on the resistance to plastic flow, as demonstrated by Wulfinghoff et al.
(2013). This may affect the results obtained in the context of bicrystal. Therefore, in the
future more advanced crystal plasticity formulations can be considered for the analysis
of the grain boundary effect on the void growth.

• In this thesis, focus was laid on cells with spherical voids at its center. This work can
be extended to other void shapes (spheroid and ellipsoid). Also in this work spherical
axis are always aligned to principal loading axis. Voids that are inclined at some angle
to principal loading axis should be analyzed in the future.

• To complement numerical results presented in this work and in order to extract definite
conclusions, more numerical simulations should be developed and experimental campaigns
focus on studying the evolution of intergranular voids in fcc bi-crystals should be designed
and conducted in the future.
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Mathematical fundamentals
Scalar, vector and tensor fields are the mathematical tools necessary
for constituting equations in continuum mechanics. In this appendix
we provide essential concepts on basics of tensor algebra and tensor
calculus necessary to follow mathematical equations used in this
manuscript. Content presented in this appendix are adopted from
Holzapfel (2000).

Contents
A.1 Index notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Algebra of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.3 Algebra of tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4 High-order tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.5 Eigenvalues and eigenvectors of second-order tensors . . . . . . . . . . . . . 139

A.6 Gradients and related operators . . . . . . . . . . . . . . . . . . . . . . . . 140

A.7 Divergence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Following standard notations, scalars are represented by lowercase Greek letters, vectors
by lowercase bold-face Latin letters, third-order tensors by uppercase bold-face calligraphic
letters and fourth-order tensors by uppercase blackboard Latin letters.

α, β, γ, . . . (scalars)
a, b, c, . . . (vectors)
A, B, C, . . . (second-order tensors)
A , B, C , . . . (third-order tensors)
A,B,C, . . . (fourth-order tensors)

A.1 Index notation
To carry out mathematical operations easily in computational mechanics we need a basis

for all tensor and vector quantities. To this end, we introduce a right-handed and orthonormal
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system {e1, e2, e3} having the properties:

e1 · e2 = e2 · e3 = e1 · e3 = 0
e1 · e1 = e2 · e2 = e3 · e3 = 1
e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2

(A.1)

where e1, e2 and e3 are three unit vectors and (·) denotes the dot product and (×) refers to
the cross product (see section A.2 below).

In the three-dimensional Euclidean space, a vector u can be written as a linear combina-
tion of e1, e2 and e3 as:

u = u1e1 + u2e2 + u3e3 (A.2)

where u1, u2 and u3 are the Cartesian components of u such that:

u1 = u · e1, u2 = u · e2, u3 = u · e3 (A.3)

By adopting the summation convention, Eq. (A.2) is equivalently written in index nota-
tion as:

u = uiei, (sum over i = 1, 2, 3) (A.4)

In index notation, Eqs. (A.1)1 and (A.1)2 define the Kronecker delta, δij, of the form:

ei · ej = δij ≡

1, if i = j

0, if i ̸= j
(A.5)

A.2 Algebra of vectors
Dot product. Let u and v be two nonzero vectors. The dot product of u and v also

called scalar or inner product produces a scalar. It reads:

u · v = |u| |v| cos (θ) (A.6)

where θ is the angle between u and v. The quantity |u| is the magnitude or length of u defined
by:

|u| =
√

u · u (A.7)

The previous relations are written in index notation as:

u · v = u1v1 + u2v2 + u3v3 (A.8)
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|u|2 = u2
1 + u2

2 + u2
3 (A.9)

The dot product has the following properties:

u · v = v · u
u · o = 0
u · (αv + βw) = α (u · v) + β (u · w)

(A.10)

where o stands for the unique zero vector.
Cross product. Also called vector product, the cross product of u and v yields a new

vector defined by:

u × v = |u| |v| sin (θ) n (A.11)

where n is unit vector such that the orthonormal system {u, v, n} is right-handed.
In index notation, the cross product is of the form:

u × v = det


e1 e2 e3

u1 u2 u3

v1 v2 v3

 = εijkuivjek (A.12)

where εijk is the permutation or alternating or Levi-Civita symbol defined by:

εijk =


1, for even permutations of (i, j, k) (i.e. 123, 231, 312)

−1, for odd permutations of (i, j, k) (i.e. 132, 213, 321)

0, if there is a repeated index

(A.13)

with the properties εijk = εjki = εkij, εijk = −εikj and εijk = −εjik.
Note that the cross product is not commutative in contrast with the dot product which

is commutative. Some properties of the cross product are:

u × v = −v × u
u × v = o means u and v are linearly dependent
(αu) × v = u × (αv) = α (u × v)

(A.14)

Triple scalar product. The volume V of a parallelepiped formed by a right-handed
triad u, v, w is called tripled scalar or box product. It is expressed in index notation as:

V = (u × v) · w = εijkuivjwk = det


u1 v1 w1

u2 v2 w2

u3 v3 w3

 (A.15)

If the u, v, w are linearly dependent then V has zero value.
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Triple vector product. It is the product u × (v × w) defined as:

u × (v × w) = (u · w) v − (u · v) w (A.16)

Similarly, we have that:

(u × v) × w = (u · w) v − (v · w) u (A.17)

Generally, the triple vector is not associative, that is, u × (v × w) ̸= (u × v) × w

A.3 Algebra of tensors
A linear operator A that acts on a vector u to generate a vector v can be seen as second-

order tensor:

v = Au (A.18)

Tensor product. Also referred to as direct or matrix product or dyad. The tensor
product of u and v denoted by u ⊗ v is a second-order tensor that transforms linearly w into
a vector with the direction of u as follows:

(u ⊗ v) w = (v · w) u (A.19)

The tensor product is, in general, not commutative, that is, u ⊗ v ̸= v ⊗ u. Moreover we
have the following properties:

(u ⊗ v) (αw + x) = α (u ⊗ v) w + (u ⊗ v) x
(αu + βv) ⊗ w = α (u ⊗ w) + β (v ⊗ w)
(u ⊗ v) (w ⊗ x) = (v · w) u ⊗ x = u ⊗ x (v · w)
A (u ⊗ v) = (Au) ⊗ v

(A.20)

Any second-order tensor A can be represented by a linear combination of dyads formed
by the basis {ei} as:

A = Aijei ⊗ ej (A.21)

Aij which represent the Cartesian components of A with respect to {ei} are written in
matrix notation as:

[A] =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (A.22)
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For all nonzero vectors v, if v ·Av ⩾ 0 then A is said to be a positive semi-definite tensor
and if v · Av > 0 then A is said to be a positive definite tensor. In the case where v · Av ⩽ 0,
A is called negative semi-definite tensor and if v · Av < 0, A is called negative definite tensor.

The Cartesian components of u ⊗ v with respect to {ei} are defined by:

(u ⊗ v)ij = uivj =


u1

u2

u3

 [v1 v2 v3

]
=


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 (A.23)

The identity tensor I is defined by:

u = Iu (A.24)

for all vectors u.
The Cartesian components of the unit tensor I are:

I = δijei ⊗ ej = ej ⊗ ej (A.25)

Dot product. AB which denotes the dot product of two second-order tensors A and B
yields a second-order tensor according to the following relation for all vectors u:

(AB) u = A (Bu) (A.26)

Generally, AB ̸= BA and Au ̸= uA which are the dot products of second-order tensors
are not commutative. The components of AB with respect to {ei} are as follows:

(AB)ij = AikBkj = Ai1B1j + Ai2B2j + Ai3B3j (A.27)

Transpose of a tensor. For all vectors u and v, the transpose AT of a second-order
tensor A follow the rule:

v · ATu = u · Av = Av · u (A.28)

and has the following properties:
(
AT

)T
= A

(αA + βB)T = αAT + βBT

(AB)T = BTAT

(u ⊗ v)T = v ⊗ u

(A.29)
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The Cartesian components of AT with respect to {ei} are defined by:

(
AT

)
ij

= Aji (A.30)

Trace and contraction. The trace trA which denotes the trace of a tensor A reads:

trA = Aii = A11 + A22 + A33 (A.31)

The properties of the trace are:

tr
(
AT

)
= trA

tr (AB) = tr (BA)
tr (A + B) = trA + trB
tr (αA) = αtrA

(A.32)

A double contraction of two tensors A and B is defined by:

A : B = tr
(
ATB

)
= tr

(
BTA

)
(A.33)

= tr
(
ABT

)
= tr

(
BAT

)
(A.34)

The properties of the double contraction are:

A : B = B : A
I : A = trA = A : I
A : (BC) =

(
BTA

)
: C =

(
ACT

)
: B

A : (u ⊗ v) = u · Av = (u ⊗ v) : A
(u ⊗ v) : (w ⊗ x) = (u · w) (v · x)
(ei ⊗ ej) : (ek ⊗ el) = (ei · ek) : (ej · el) = δikδjl

(A.35)

The norm of a tensor A is a scalar denoted by |A| and defined as:

|A| = (A : A)1/2 = (AijAij)1/2 ⩾ 0 (A.36)

Determinant and inverse of a tensor. The determinant of a tensor A is a scalar
defined by:

det A = det [A] = det


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (A.37)
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with the following properties:

det (AB) = det A det B
det

(
AT

)
= det A

(A.38)

If det A = 0 then the tensor A is said to be singular. A nonsingular tensor A, that is,
det A ̸= 0, is invertible according to the following rule:

AA−1 = I = A−1A (A.39)

where the tensor A−1 is a unique inverse of the tensor A.
For all invertible tensors A and B, we have the following properties:

(AB)−1 = B−1A−1

(A−1)−1 = A
(A−1)T =

(
AT

)−1

A−2 = A−1A−1

det (A−1) = (det A)−1

(A.40)

Orthogonal tensor. For all vectors u and v, an orthogonal tensor Q fulfills the following
requirement:

Qu · Qv = u · v (A.41)

If Q is an orthogonal tensor, we have that QTQ = QQT = I leading to QT = Q−1.
Additionally, we have that det

(
QTQ

)
= (det Q)2 with det Q = ±1. Q is said to be proper

(improper) orthogonal corresponding to rotation (reflection) if det Q = +1(−1), respectively.
Symmetric and skew tensors. Every tensor A can be separated into a symmetric

tensor S and a skew or antisymmetric tensor W such that:

S = 1
2
(
A + AT

)
= ST

W = 1
2
(
A − AT

)
= −WT

(A.42)

In matrix notation, S and W read:

[S] =


S11 S12 S13

S12 S22 S23

S13 S23 S33

 (A.43)
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[W] =


0 W12 W13

−W12 0 W23

−W13 −W23 0

 (A.44)

For all tensors B, we have the following properties:

S : B = S : BT = S : 1
2
(
B + BT

)
W : B = −W : BT = W : 1

2
(
B − BT

)
S : W = 0

(A.45)

Spherical and deviatoric tensors. Any tensor A can be separated into its spherical
part and its deviatoric part as follows:

A = αI + devA (A.46)

where α = 1
3trA = 1

3 (I : A). αI is called spherical tensor and devA is called deviatoric tensor
or deviator of A. The trace of devA is always zero, that is, tr (devA) = 0.

A.4 High-order tensors
Any tensor of order or rank n is of the form:

Ai1i2...inei1 ⊗ ei2 ⊗ · · · ⊗ ein (A.47)

with 3n components Ai1i2...in . In particular, a tensor of order zero is scalar with 30 = 1 compo-
nent and a tensor of order one is a vector with 31 = 3 components.

Tensor of order three. According to Eq. (A.47), any tensor of order three is of the
form:

A = Aijkei ⊗ ej ⊗ ek (A.48)

with 33 = 27 components Aijk defined by:

Aijk = (ei ⊗ ej) : A ek (A.49)

A double contraction of a tensor of order three A and a tensor of order two B yields a
vector according to the following relation:

A : B = AijkBjkei (A.50)
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Tensor of order four. According to Eq. (A.47), any tensor of order four is of the form:

A = Aijklei ⊗ ej ⊗ ek ⊗ el (A.51)

with 34 = 81 components Aijkl defined by:

Aijkl = (ei ⊗ ej) : A : (ek ⊗ el) (A.52)

A double contraction of a fourth-order tensor A and a second-order tensor B yields a
second-order tensor according to the following relation:

A : B = AijklBklei ⊗ ej (A.53)

Fourth-order unit tensors I and Ī are such that:

A = I : A (A.54)
AT = Ī : A (A.55)

(A.56)

for any second-order tensor A. I and Ī read:

I = δikδjlei ⊗ ej ⊗ ek ⊗ el = ei ⊗ ej ⊗ ei ⊗ ej (A.57)
Ī = δilδjkei ⊗ ej ⊗ ek ⊗ el = ei ⊗ ej ⊗ ej ⊗ ei (A.58)

(A.59)

where (I)ijkl = δikδjl and
(
Ī
)

ijkl
= δilδjk represent the Cartesian components.

A.5 Eigenvalues and eigenvectors of second-order
tensors

Eigenvalues or principal values λi and eigenvectors or principal directions n̂i (nonzero
vectors) of a second-order tensor A satisfy the requirement:

An̂i = λin̂i, (i = 1, 2, 3; no summation) (A.60)

Note that all eigenvalues λi of a positive definite symmetric tensor A are real and positive.
Additionally, the set of eigenvectors of a symmetric tensor A form an orthonormal basis {n̂i}.

The previous relation can be rewritten as:

(A − λiI) n̂i = o, (i = 1, 2, 3; no summation) (A.61)
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Principal scalar invariants. According to Eq. (A.61), since n̂i ̸= o, we have the fol-
lowing relation:

det (A − λiI) = λ3 − I1λ
2 + I2λ − I3 = 0 (A.62)

known as the characteristic polynomial or equation whose solutions are the eigenvalues λi, i =
1, 2, 3.

In Eq. (A.62), Ii (A) , i = 1, 2, 3 are the so-called principal scalar invariants of A given
by:

I1 (A) = Aii = trA
I2 (A) = 1

2 (AiiAjj − AjiAij) = 1
2
[
(trA)2 − tr (A2)

]
= trA−1 det A

I3 (A) = εijkA1iA2jA3k = det A

(A.63)

Spectral decomposition of a tensor. Also referred to as eigendecomposition, the
spectral decomposition is the representation of a symmetric tensor A by its eigenvalues λi, i =
1, 2, 3 and its eigenvectors forming an orthonormal basis {n̂i} as follows:

A =
3∑

i=1
λin̂i ⊗ n̂i (A.64)

The components Aij of A with respect to the orthonormal basis {n̂i} are defined by:

Aij = λjδij (A.65)

written in matrix notation as:

[A] =


λ1 0 0
0 λ2 0
0 0 λ3

 (A.66)

Hence Eq. (A.63) can be rewritten as:

I1 (A) = λ1 + λ2 + λ3

I2 (A) = λ1λ2 + λ2λ3 + λ3λ1

I3 (A) = λ1λ2λ3

(A.67)

A.6 Gradients and related operators
In the following, we consider a scalar field Φ (x), a vector field u (x) and a tensor field

A (x) that assign a scalar, vector and tensor to each material point x of a body, respectively.
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Gradient of a scalar field. The gradient or derivative of a scalar field Φ (x) is expressed
as:

gradΦ = ∇Φ = ∂Φ
∂xi

ei = ∂Φ
∂x1

e1 + ∂Φ
∂x2

e2 + ∂Φ
∂x3

e3 (A.68)

where the operator ∇ = ∂

∂xi

ei is called Nabla operator.
The dot product, cross product and tensor product of the Nabla operator with a smooth

vector or tensor field (•) are:

∇ · (•) = ∂(•)
∂xi

· ei

∇ × (•) = ei × ∂(•)
∂xi

∇ ⊗ (•) = ∂(•)
∂xi

⊗ ei

(A.69)

Divergence of a vector field. The dot product of the vector operator ∇ with a smooth
vector field u (x) yields a scalar field called divergence of u:

divu = ∇ · u = ∂uj

∂xi

ej · ei = ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
(A.70)

The vector field u (x) is said to be divergence-free or solenoidal if divu = 0.
Curl of a vector field. The cross product of the vector operator ∇ with a smooth

vector field u (x) yields a vector field called curl or rotation of u:

curlu = ∇ × u = ∂uj

∂xi

ei × ej = εijk
∂uj

∂xi

ek (A.71)

or

curlu =
(

∂u3

∂x2
− ∂u2

∂x3

)
e1 +

(
∂u1

∂x3
− ∂u3

∂x1

)
e2 +

(
∂u2

∂x1
− ∂u1

∂x2

)
e3 (A.72)

The vector field u (x) is said to be curl-free or irrotational or conservative if curlu = 0.
Furthermore, it can be shown that:

curl gradΦ = o
div curlu = 0

(A.73)

Gradient of a vector field. The tensor product of the vector operator ∇ with a smooth
vector field u (x) yields a second-order tensor field called gradient or derivative of u:

gradu = ∇ ⊗ u = ∂ui

∂xj

ei ⊗ ej (A.74)
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with Cartesian components (gradu)ij = ∂ui

∂xj

written in matrix notation as:

[gradu] =



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

 (A.75)

It can be proved that tr(gradu) = divu.
Divergence and gradient of a second-order tensor field. The dot product and the

tensor product of the vector operator ∇ with a smooth tensor field A (x) yield the divergence,
divA, and the gradient or derivative, gradA, of A, respectively:

divA = ∇ · A = ∂Aij

∂xj

ei

gradA = ∇ ⊗ A = ∂Aij

∂xk

ei ⊗ ej ⊗ ek

(A.76)

Laplacian and Hessian. The Laplacian operator or simply Laplacian denoted by ∇2

or ∆ is defined as:

∇2 (•) = ∇ · ∇ (•) = ∂2 (•)
∂x2

i

= ∂2 (•)
∂x2

1
+ ∂2 (•)

∂x2
2

+ ∂2 (•)
∂x2

3
(A.77)

The Laplacian of a scalar field Φ yields another scalar field.
The Hessian denoted by ∇∇ is defined as:

∇∇ (•) = ∇ ⊗ ∇ (•) = ∂2 (•)
∂xi∂xj

ei ⊗ ej (A.78)

A.7 Divergence theorem
Let us consider any smooth vector field u (x) and tensor field A (x) defined on a re-

gion with volume v and boundary surface s. The divergence theorem also known as Gauss’s
divergence theorem transform a surface integral into a volume integral as follows:

∫
s
u · nds =

∫
v

divudv or
∫

s
uinids =

∫
v

∂ui

∂xi

dv (A.79)

∫
s
Ands =

∫
v

divAdv or
∫

s
Aijnjds =

∫
v

∂Aij

∂xj

dv (A.80)

where n is the outward unit normal field acting along the surface s, dv and ds are infinitesimal
volume and surface elements at x, respectively.
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Numerical integration algorithm
In this appendix, we present the numerical algorithm used to im-
plement the constitutive equations presented in Chapter 2 (see Sec-
tion 2.2.3.1) into the finite element code ABAQUS/Standard (2019)
through a user subroutine UMAT.

In this appendix, time integration of crystal plasticity equations presented in section
2.2.3.1 is performed following the backward Euler implicit integration scheme presented in
work of Cruzado et al. (2017) for the computation of ∆γα

t+∆t:

∆γα
t+∆t = γ̇α

t+∆t(∆γα
t+∆t) ∆t (B.1)

where γ̇α
t+∆t is given by :

γ̇α = γ0

∣∣∣∣∣τα

τα
c

∣∣∣∣∣
1/m

sgn(τα) (B.2)

By using Newton-Raphson approach, the resolution of the implicit problem for calculation
of γ̇α

t+∆t is performed defining:

Rα = ∆γα
t+∆t − γ̇α

t+∆t(∆γα
t+∆t)∆t (B.3)

where Rα is the residual of shear rate on each slip system α.
By using first order Taylor expansion of above equation, we obtain:

Rα(k) + ∂Rα(k)

∂∆γ
α(k)
t+∆t

δ∆γ
α(k)
t+∆t = 0 (B.4)

A new value of δ∆γ
α(k)
t+∆t is calculated as

δ∆γ
α(k)
t+∆t = −Rα(k)

 ∂Rα(k)

∂∆γ
α(k)
t+∆t

−1

(B.5)

And using this value of δ∆γ
α(k)
t+∆t, the new value of ∆γ in iteration k + 1 is given by:

∆γ
α(k+1)
t+∆t = ∆γ

α(k)
t+∆t + δ∆γ

α(k)
t+∆t (B.6)
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This process is carried out until residual Rα becomes less than a given value.
Solving previous equations using Newton-Raphson, requires the derivative of functions

∂Rα(k)

∂∆γ
β(k)
t+∆t

, and hence ∂γ̇
α(k)
t+∆t

(∆γ
α(k)
t+∆t

)

∂∆γ
β(k)
t+∆t

.

∂Rα(k)

∂∆γ
β(k)
t+∆t

= δαβ −

∂γ̇
α(k)
t+∆t(∆γ

α(k)
t+∆t)

∂∆γ
β(k)
t+∆t

∆t ; δαβ =

1 if α = β

0 otherwise
(B.7)

The derivative of this functions decides the stability and accuracy of the solution.
From now on and in order to simplify the notation, ∆γ

β(k)
t+∆t is represented as γ̇α(∆γα).

γ̇α(∆γα) is calculated as shown below:

∂γ̇α(∆γα)
∂∆γβ

= ∂γ̇α

∂τα

∂τα

∂∆γβ
+ ∂γ̇α

∂τc
α

∂τc
α

∂∆γβ
(B.8)

Since γ̇α depends on τα and τα
c , each derivative are calculated separately.

The dependence of γ̇α on τα and other terms can be represented as :
γ̇α ⇒ τα ⇒ S ⇒ Fe ⇒ Lp ⇒ ∆γα

by using previous relations, the derivative of ∆γα can be calculated as explained below:
The first derivative of ∆γα with respect to τα and τα

c is calculated as:

∂γ̇α(∆γα)
∂∆γβ

=
[

n γ̇0

τα
c

∣∣∣∣∣τα

τα
c

∣∣∣∣∣
n−1

sgn(τα)
][∂τα

∂S
: ∂S

∂Ee

: ∂Ee

∂∆γβ

]
+
[

−1
τα

c

][
∂τα

c

∂∆γβ

] (B.9)

Now each term in the above equation is solved separately. First ∆γα is given w.r.t to the
second Piola stress, later w.r.t to Fe, and finally w.r.t to Lp.

τα is related to second Piola stress S by :

τα = Sij (mα
i ⊗ nα

j ) (i, j = 1, 2, 3) (B.10)

∆γα is given in terms of second Piola stress as :

γ̇α = γ̇0

∣∣∣∣∣S : (mα ⊗ nα)
τα

c

∣∣∣∣∣
n

sgn(τα) (B.11)

The second Piola stress S is written in terms of the green Lagrange strain Ee:

Sij = Cijkl Eejk (B.12)

and the Green Lagrange strain Ee is given in terms of Fe as:

Ee = 1
2(FT

e Fe − I) (B.13)
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Fe is written in terms of Fp and Lp as:

Fe = FF−1
p0 (I −

nslip∑
α=1

∆γα (mα
i ⊗ nα

j ) (B.14)

Fe = Fe0(I −
nslip∑
α=1

∆γα (mα
i ⊗ nα

j )) (B.15)

∆γα in terms of Fe is given by :

γ̇α = γ̇0

∣∣∣∣∣∣
[
C : 1

2

(
FT

e Fe − I
)]

: (mα ⊗ nα)
τα

c

∣∣∣∣∣∣
n

sgn(τα) (B.16)

with

FT
e Fe =

FT F−T
p

(
I −

nslip∑
α

∆γα(mα ⊗ nα)
)T (

I −
nslip∑

α

∆γα(mα ⊗ nα
))

FF−1
p

 (B.17)

The Newton Raphson solution can be obtained by solving and combining each differential
separately.

The algorithm for calculating
∂

(
FT

e Fe (i, j)
)

∂∆γα is presented below:

Algorithm 1:

Result:
∂

(
FT

e Fe (i, j)
)

∂∆γα

while i = 1, 3 ; do
while j = 1, 3 ; do

initialization
∂

(
FT

e Fe (i, j)
)

∂∆γα = 0
while k = 1, 3 ; do

∂(FT
e Fe(i, j))
∂∆γα

+ =
[[(

Fe0(k, 1 : 3) Smdα(k : 3, i) Fe(k, j))

+
(
Fe0(k, 1 : 3) Smdα(1 : 3, j) Fe(k, i))

]]

end
end

end

Now the algorithm for calculating ∂S(nslip, i, j)
∂∆γα is presented below:
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Algorithm 2: ∂S(nslip, i, j)
∂∆γα :

while is = 1, nslip ; do
while i = 1, 3 ; do

while j = 1, 3 ; do

initialization
∂

(
FT

e Fe (is,i,j)
)

∂∆γα = 0
while k = 1, 3 ; do

∂(FT
e Fe(is, i, j))

∂∆γα
+ =

[[(
Fe0(k, 1 : 3) Smdα(is, k : 3, i) Fe(k, j))

+
(
Fe0(k, 1 : 3) Smdα(is, 1 : 3, j) Fe(k, i))

]]

end
end

end
∂(Ee(is, :, :))

∂∆γα = −∂(FT
e Fe(is, :, :))

2∂∆γα

∂(S (is, :, :))
∂∆γα = C : ∂Ee (is, :, :)

∂∆γα

end

The algorithm for calculating ∂τ i

∂∆γj is presented below:

Algorithm 3:
Result: ∂τ i

∂∆γj

while is = 1, nslip ; do
while js = 1, nslip ; do

initialization ∂τ(i, j)
∂∆γ

= 0

∂τ(is, js)
∂∆γ

= ∂S (js, 1 : 3, 1 : 3)
∂∆γ

: Smd(is, 1 : 3, 1 : 3)

end
end
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Jacobian Matrix calculation
In this appendix, we present the numerical implementation of
the Jacobian matrix necessary to achieve quadratic conver-
gence of the global solution procedure within the finite element
solver ABAQUS/Standard (2019). Equations necessary for obtain-
ing Jacobian matrix and its related operations are adopted following
the work of Meissonnier et al. (2001).

In order to solve the non-linear behaviour of the material considering an implicit finite
element procedure, the Newton-Raphson method has been adopted here. For a successful im-
plementation, the proper Jacobian needs to be established, which should be consistent with the
time integration procedure used for the constitutive modelling. For the fully implicit backward
Euler integration scheme used in this work, analytical Jacobian in the form of dσ

dε
is presented

in the section below.
Starting from the definition of Second-Piola stress, the derivative of σ with respect to ε

is obtained. Second Piola stress is split into Str
ij trial stress and Scal calculated stress as shown

below:

Sij = Str
ij −

nslip∑
α=1

∆γαKα
ij (C.1)

Trial Second Piola stress Str
ij is the linear part of the stress with Schmid matrix, given by:

Str
ij = Cijkl

2 (A − I)kl (C.2)

Kα
ij = Cijkl

2 (A Smdα + SmdαTA)kl (C.3)

with constant Aij defined by:

Aij = F−T
pn

FT FF−1
pn

(C.4)

Fp = Fpn(I +
nslip∑
α=1

∆γαSmdα) (C.5)

For solving dσ
dε

, first we need to solve ∂Fp

∂E and ∂S
∂E . The ∂Fp

∂E term has the form:
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∂Fp

∂E
=

nslip∑
α=1

(FpnSmdα) ⊗ ∂∆γα

∂E
(C.6)

with ∂∆γα

∂E given by the equation shown below:

∂∆γα

∂E
= ∂∆γα

∂S
: ∂S

∂E︸︷︷︸
calculated

+∂∆γα

∂τα
c

: ∂τα
c

∂E︸ ︷︷ ︸
neglected

(C.7)

For the calculation of ∂∆γα

∂E , we need to obtain ∂S
∂E and ∂τα

c

∂E︸ ︷︷ ︸. Here only the differential of

S w.r.t to E is calculated and the derivative of τα
c w.r.t to E is neglected in order to simplify

the calculations.
Now, by using the definition of S, its derivative w.r.t E is calculated as shown below:

∂S
∂E

= ∂Str

∂E
−

 nslip∑
α=1

∂∆γα

∂E
Kα

ij +
nslip∑
α=1

∆γα ∂Kα
ij

∂E

 (C.8)

Since the expression of S depends on the value of ∆γα, which intern depends on S:

∂S
∂E

=
∂Str

∂E
−

nslip∑
α=1

∆γα ∂Kα
ij

∂E

−
nslip∑
α=1

∂∆γα

∂E︸ ︷︷ ︸
(∂∆γα

∂S : ∂S
∂E)

Kα
ij (C.9)

we end up with the expression ∂S
∂E on both left hand side and right hand side of the

equation:
∂S
∂E

=
∂Str

∂E
−

nslip∑
α=1

∆γα ∂Kα
ij

∂E

−
nslip∑
α=1

(∂∆γα

∂S
: ∂S

∂E
)Kα

ij (C.10)

Now by rearranging terms, we get:

∂S
∂E

=
∂Str

∂E
−

nslip∑
α=1

∆γα ∂Kα
ij

∂E

−
nslip∑
α=1

(∂∆γα

∂S
⊗ Kα

ij) : ∂S
∂E

(C.11)

∂S
∂E

+
nslip∑
α=1

(∂∆γα

∂S
⊗ Kα

ij) : ∂S
∂E

=
∂Str

∂E
−

nslip∑
α=1

∆γα ∂Kα
ij

∂E

 (C.12)

I +
nslip∑
α=1

(∂∆γα

∂S
⊗ Kα

ij) : I

 ∂S
∂E

=
∂Str

∂E
−

nslip∑
α=1

∆γα ∂Kα
ij

∂E

 (C.13)

∂S
∂E

=
I +

nslip∑
α=1

(∂∆γα

∂S
⊗ Kα

ij) : I

−1 ∂Str

∂E
−

nslip∑
α=1

∆γα ∂Kα
ij

∂E

 (C.14)

Now to complete the calculations of ∂S
∂E , we need to calculate ∂Str

∂E and ∂Kα

∂E .
By using the definition of Str we get ∂Str

∂E as
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∂Str

∂E
= C : (F−1

pn
⊗F−1

pn
) (C.15)

Finally ∂Kα

∂E can be calculated as:

∂Kα

∂E
= C :

[
(F−T

pn
⊗(F−1

pn
Smdα)T + (F−1

pn
Smdα)T ⊗F−T

pn

]
(C.16)

With equations C.15 and C.16 in equation C.14 we are able to find the final expression
for ∂S

∂E

For computing the tangent stiffness matrix, ABAQUS/Standard (2019) requires an up-
dated Cauchy stress tensor and an updated material Jacobian using the Jaumann rate of the
Cauchy stress. Meissonnier et al. (2001) showed that it is possible to define the Jaumann rate
of the Cauchy stress as

CJC = 1
J

[
F ⊗F : ∂S

∂E
: F ⊗F

]
+ I⊗σT + σ⊗I − 1

J
σ ⊗ I (C.17)

where ⊗, ⊗ are defined as lower dyadic and upper dyadic products as defined in Meissonnier
et al. (2001).

By substituting ∂S
∂E in equation C.17 and following suitable operations we can calculate

the consistent tangent matrix required by ABAQUS/Standard (2019).
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Prescribed boundary conditions
In this appendix, we present a brief description of the boundary con-
ditions applied for the unit cells. Fully periodic boundary conditions
and controlled stress state are applied for all cell calculations in
Chapter 3, Chapter 4 and Chapter 5. Multi point constrain (MPC),
which is implemented as a subroutine in ABAQUS/Standard (2019)
is presented with necessary equations to maintain constant stress
triaxiality and Lode parameter in the unit cell. All equations nec-
essary for implementing periodic boundary conditions in the unit
cell are also detailed here.

Figure D.1: Periodic boundary conditions applied to the 3D cell.

Boundary conditions applied for a representative volume element is described in detail
in this appendix. In the undeformed cell, the edges of the cell are aligned along the coordinate
axes (X, Y, Z), and the origin of the reference coordinate system corresponds to the node a6
(see Figure D.1). The faces of the cell are initially straight and the nodes on the opposite faces
are connected in order to obtain a periodic response from the cell. Apart from the periodic
response, in the present work, constant values of stress triaxiality and Lode parameter are
applied to the cell. The procedure to prescribe loading to keep constant values of macroscopic
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Prescribed boundary conditions

stress triaxiality and Lode parameter throughout the deformation history follows the work of
Vadillo et al. (2016).

D.1 Defining multipoint constraints
If the ratio of principal macroscopic true stress R and Q are defined in the form:

R = σ2

σ1
; Q = σ3

σ1
; (D.1)

triaxiality T and Lode parameter L (Eq. (2.43)) can be written as:

T =
√

2(R + Q + 1)
3
√

(1 − R2) + (1 − Q2) + (R2 − Q2)
; L = 2R − Q − 1

1 − Q
(D.2)

Since the macroscopic principal true stresses (σ1, σ2, σ3) and the normal components of
macroscopic strain rate in the basis of stress principal directions (ε̇11, ε̇22, ε̇33) are equal to the
volume average values in a cell (Hill (1967)), the total rate of deformation work in the whole
cell Ẇ can be written as:

Ẇ = V σ1ε̇11 + V σ2ε̇22 + V σ3ε̇33 (D.3)

Ẇ can be also expressed in terms of the transformed rates of deformation and forces, as:

Ẇ = V σ(I)ε̇(I) + V σ(II)ε̇(II) + V σ(III)ε̇(III) (D.4)

considering the transformation

(D.5)


ε̇(I)

ε̇(II)

ε̇(III)

 = N


ε̇11

ε̇22

ε̇33

 ;


σ(I)

σ(II)

σ(III)

 = N


σ1

σ2

σ3

 ; with N =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ;

and:

A11 = 1√
1 + R2 + Q2 ; A12 = R√

1 + R2 + Q2 ; A13 = Q√
1 + R2 + Q2

A21 = − R√
1 + R2

; A22 = 1√
1 + R2

; A23 = 0. (D.6)

A31 = Q√
(1 + R2) (1 + R2 + Q2)

; A32 = RQ√
(1 + R2) (1 + R2 + Q2)

A33 = − (1 + R2)√
(1 + R2) (1 + R2 + Q2)
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D.2 Defining periodic boundary conditions

If in the transformed coordinate system, the three imposed incremental boundary conditions
are prescribed as stress uniaxial:

σ(II) = 0; σ(III) = 0; ε̇(I) = ε̇dummy (D.7)

the three prescribed boundary conditions in 1,2,3 directions, using N−1 relations are therefore:

Rσ1 − σ2 = 0; Qσ1 − σ3 = 0; ε̇11 + Rε̇22 + Qε̇33 = ε̇dummy

√
1 + R2 + Q2 (D.8)

Values of ε̇11, ε̇22, ε̇33 and hence stress states (T and L) can be controlled in the cell by fix-
ing properly values R and Q and prescribing incremental strain on an added dummy node. The
multi-point constraints given in equations D.6, D.8 are implemented into ABAQUS/Standard
(2019) via a user defined subroutine MPC.

D.2 Defining periodic boundary conditions
Due to the anisotropy of the problem, and in order to determine a proper deformation

behavior of the cell, periodic boundary conditions should be adopted in the external surfaces
of the cell in all three directions. In this work, the general ideas of the implementation of
periodic boundary conditions into a Finite Element solver as given in Segurado et al. (2002) is
adopted. For the implementation of periodic boundary conditions, it is necessary to couple the
displacements of opposite external nodes, on which an average macroscopic strain is allowed.

For simplicity and easy implementation, nodes on the surfaces of the cell are catego-
rized into 3 different groups: corner nodes, edge nodes and surface nodes (see figure D.1 for
nomenclature details).

The node a2 is connected to the dummy node by the MPC subroutine, through which
the average strains are applied to the system. This means that any deformation that is applied
to the cell through the MPC has to be applied only connecting a2 to the added dummy node.
In order to prescribe displacements in the outer surfaces which ensure periodicity:

uk+
i − uk−

i = Eij∆xj; i, j = 1, 2, 3; ∆xj = xk+
j − xk−

j ; t+ − t− = 0; t = σ.n (D.9)

being Eij the macroscopic strain tensor and xj the position vector, the following set of rela-
tions should be applied to the external nodes of the cell in order to avoid constraint linkages.
These conditions are implemented in ABAQUS/Standard (2019) by the use of the command
*Equation .

1. For nodes on the faces of the cell:

uT op(x, y, z) − uBottom(x, y, z) = ua5(x, y, z) − ua8(x, y, z)
uRear(x, y, z) − uF ront(x, y, z) = ua8(x, y, z) − ua4(x, y, z)
uLeft(x, y, z) − uRight(x, y, z) = ua8(x, y, z) − ua7(x, y, z)
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Prescribed boundary conditions

2. For nodes on the edges of the cell:

ue7(x, y, z) − ue3(x, y, z) = ua8(x, y, z) − ua4(x, y, z)
ue3(x, y, z) − ue1(x, y, z) = ua5(x, y, z) − ua8(x, y, z)
ue1(x, y, z) − ue5(x, y, z) = ua4(x, y, z) − ua8(x, y, z)

ue12(x, y, z) − ue11(x, y, z) = ua8(x, y, z) − ua7(x, y, z)
ue11(x, y, z) − ue10(x, y, z) = ua5(x, y, z) − ua8(x, y, z)
ue10(x, y, z) − ue9(x, y, z) = ua7(x, y, z) − ua8(x, y, z)

ue8(x, y, z) − ue4(x, y, z) = ua8(x, y, z) − ua4(x, y, z)
ue4(x, y, z) − ue2(x, y, z) = ua8(x, y, z) − ua7(x, y, z)
ue2(x, y, z) − ue6(x, y, z) = ua4(x, y, z) − ua8(x, y, z)

3. For nodes on the corner of the cell:

ua6
x = ua7

x ; ua3
x = ua2

x ; ua7
x = ua3

x ; ua1
x = ua4

x ;
ua3

y = ua4
y ; ua1

y = ua2
y ; ua5

y = ua1
y ; ua6

y = ua5
y ;

ua1
z = ua4

z ; ua4
z = ua2

z ; ua7
z = ua6

z ; ua3
z = ua2

z ;
ua8

x,y,z = 0; ua4
x,y = 0;
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Euler angles and Orientation matrix
In this appendix, we discuss a simple technique to find all possible
Euler angles from a rotation matrix. Euler angles with Bunge con-
vention are commonly used for describing the orientations of each
crystal.

E.1 Introduction
Crystallographic orientation can be referred as the position of a grain/ crystal with re-

spect to a reference position. In three-dimension we require three independent variables or a
crystallographic plane which comprises two independent variables.

E.2 Euler angle

Figure E.1: Diagram showing rotation through the Euler angles ϕ1, Φ, ϕ2, describing the rotation
between the specimen and crystal axes

A well known method for expressing crystallographic orientation is by using Euler angles.
The Euler angles refer to three rotations that, when performed in the correct sequence, trans-
form the specimen coordinate system onto the crystal coordinate system as shown in figure E.1.
The most common notation for expressing Euler angles was formulated by Bunge (Bunge, 1965;
Esling and Bunge., 1982) .
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Euler angles and Orientation matrix

For example, going from a sample reference basis (x, y, z) to a sample rotated basis
(x1, y1, z1) three subsequent rotations are necessary, and are referred by notation ϕ1, Φ, ϕ2

respectively. The rotations can be summed up as follows:

(x, y, z) z axis−−−→
ϕ1

(u, v, w) u axis−−−→
Φ

(u, w, z1) z1axis−−−→
ϕ1

(x1, y1, z1)

Where the range of ϕ1 ∈ (0, 2π), Φ ∈ (0, π), ϕ2 ∈ (0, 2π).
Having specified the three rotations, now we can build the rotation matrix g with respect to
the three Euler angles:

g(ϕ1, Φ, ϕ2) = g3(ϕ2)g2(Φ)g1(ϕ1)

g1(ϕ1) =


cos(ϕ1) sin(ϕ1) 0
-sin(ϕ1) cos(ϕ1) 0

0 0 1



g2(Φ) =


1 0 0
0 cos(Φ) sin(Φ)
0 -sin(Φ) cos(Φ)



g3(ϕ2) =


cos(ϕ2) sin(ϕ2) 0
-sin(ϕ2) cos(ϕ2) 0

0 0 1


g(ϕ1, Φ, ϕ2) =

cos(ϕ1)cos(ϕ2) − sin(ϕ1)sin(ϕ2)cos(Φ) sin(ϕ1)cos(ϕ2) + cos(ϕ1)sin(ϕ2)cos(Φ) sin(ϕ2)sin(Φ)
−cos(ϕ1)sin(ϕ2) − sin(ϕ1)cos(ϕ2)cos(Φ) −sin(ϕ1)sin(ϕ2) + cos(ϕ1)cos(ϕ2)cos(Φ) cos(ϕ2)sin(Φ)

sin(ϕ1)sin(Φ) −cos(ϕ1)sin(Φ) cos(Φ)


By using orientation matrix g, we can calculate Euler angles if we know direction cosine

(crystal plane normal (hkl) and direction [uvw] ) or vice versa.

E.3 Calculating Euler angles from Orientation matrix
For calculating Euler angles from direction cosines, first we have to build orientation

matrix g following the procedure mentioned below:

n̂ = (h,k,l)√
h2+k2+l2

b̂ = (u,v,w)√
u2+v2+w2

t̂ = n̂ × b̂
| n̂ × b̂ |
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E.3 Calculating Euler angles from Orientation matrix

gij = Crystal

Sample
b1 t1 n1

b2 t2 n2

b3 t3 n3



gij = Crystal

RD TD ND
b1 t1 n1

b2 t2 n2

b3 t3 n3

 (E.1)

once the g matrix is constructed, we can calculate the Euler angles by two ways:
First one is by directly using miller indices:

cosΦ = l√
h2 + k2 + l2

(E.2)

sinϕ1 = w√
u2 + v2 + w2

√
h2 + k2 + l2
√

h2 + k2
(E.3)

cosϕ2 = k√
h2 + k2

(E.4)

Another way of calculating Euler angles from g matrix is by using the formulation:

cosΦ = g33 (E.5)

tanϕ1 = −g31

g32
(E.6)

tanϕ2 = g13

g23
(E.7)

E.3.1 Sample1 : Euler angle calculation from direction cosines

Figure E.2: Diagram showing crystal in global reference plane with ND, TD, RD.

In this section, an example is presented of how to calculate Euler angles from direction
cosines. Figure E.2 shows an example of Crystal orientation in which (011) plane is oriented
towards the ND and the [001] inside the (011) plane is along the RD.
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Euler angles and Orientation matrix

Now we will first construct g matrix as shown in equation E.1 with miller indices. The g
matrix for the above case is :

g =


1 0 b

0 1√
2

1√
2

0 − 1√
2

1√
2


Following equations E.5, E.6 ,E.7, we find that Euler angles are : Φ = 45◦; ϕ1 = 0◦; ϕ2 =

0◦.
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Calculating void volume in RVE
In this appendix, we present convex hull algorithm in order to cal-
culate void volume during deformation of the representative unit
cell. Void volume calculation will be used for both single crystals
and bi-crystals analysis.

F.1 Void volume calculation for symmetric/isotropic
orientations

Figure F.1: Representation of cell volume before and after deformation in isotropic orientations

In symmetric/isotropic orientations, void volume is calculated as the difference between
the volume of the cell and the volume of the matrix, i.e., Vv = Vcell − Vmatrix, where Vcell is the
current volume of the cell and Vmatrix is the current volume of the matrix (current sum of the
volume of all the elements in the cell). Vcell is calculated as (ax +dx) · (ay +dy) · (az +dz), where
ax, ay, az are the initial width of the cell in x, y, z directions and dx, dy, dz are the displacements
applied at each increment in respective directions as shown in figure F.1. For symmetric ori-
entations (O1, O2) there exist a crystal reflection symmetry about coordinate planes normal
to <100> and <110> and also cell faces remain straight through out the deformation, hence
calculating void volume fraction evolution is straight forward using the method mentioned
above.
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Calculating void volume in RVE

F.2 Void volume calculation for non-symmetric/
anisotropic orientation

For non symmetric orientations (O4, O6), the initially straight sides of the unit cell (along
which fully periodic conditions are applied) becomes curved during loading. The cell faces will
not be straight during deformation that makes void volume calculation difficult. To overcome
the problem of calculating void volume, the convex-hull algorithm approach has been adopted
in this work.

F.2.1 Convex-hull algorithm

In this work, the 3D (x, y, z) coordinates of all the nodes on the surface of the void
(initially spherical) are extracted from the finite element calculations for all the time steps
using ABAQUS/Standard (2019). By using these coordinates, void volume is calculated at each
time increment with the help of convex hull algorithm. With this approach, we can directly
calculate the volume of the void at any given time in the simulations.

Figure F.2: Representation of convex hull formation around a given set of points.

The convex hull of a set of points is defined as the smallest convex polygon that encloses
all of the points in the set. Here convex means that the polygon has no corner that is bent
inwards. Figure F.2 shows an illustration of convex and non convex edges. Left side figure
shows convex corners and right side figure shows a non convex side (coloured red). Given a set
of points, finding a convex polygon that encloses all the points is not straight forward.

Any algorithm used to find the convex hull of a set of points, basically should find the
subset of points that lie on the convex hull, along with the order in which these points are
encountered when going around the convex hull.
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F.2 Void volume calculation for non-symmetric/ anisotropic orientation

The basic principle behind working of algorithm is to go around the sorted array consisting
of coordinates of all the points and determining if the points lie on the surface/convex hull.
For every 3 set of points we encounter, we check if they form a convex or a concave corner.We
ignore the corners that are concave, as the middle point of this set cannot lie on the convex hull.
By this way we remove the points that does not belong to the convex hull. The measurement
of whether corner bending can be calculated by the cross product and if the product turns
out to be positive then the corner is bending inwards and if its negative then the bending is
outwards. Looking at figure F.2, which shows set of points having a convex corner, we keep the
middle point out of these three points and by following same procedure for all the points we
can find the convex hull of given set of points.

Once the outer surface of the points is calculated with convex hull, we can calculate its
volume (3D) or area (2D) by integration of the small regions. MATLAB (2010) and Python
(2021) have existing libraries for finding convex hull of a set of points and also to calculate
area (2D) or volume (3D). In this work python libraries are used extensively for calculating
the convex hull and hence the volume of a set of points. With the help of convex hull, we can
directly calculate the volume of a void at any given point in the simulations even when cell
faces get irregular shapes.
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Digital Image Correlation technique
In this appendix, we present a brief description of Digital Image
Correlation technique (DIC) extensively used in chapter 6. DIC is
used for measuring strains on the surface of the specimen. Defini-
tion of strains and how strains are calculated are presented in this
appendix.

G.1 Introduction

Figure G.1: Representation of digital image correlation process0

Measurement of surface deformation and strains of specimens during testing is an impor-
tant part of the experimental study made in this work. Non-interferometric optical techniques
such as grid method and DIC have grown in the current days in order to extract this informa-
tion. Digital image correlation (often referred as "DIC") is a powerful flexible tool for measuring
surface deformation in solid mechanics and extracting displacement and strain fields as shown
in figure G.1. Because of its simplicity in experimental setup, specimen preparation, wide range
of measurement sensitivity and resolution, DIC is widely used these days (Pan et al., 2009).
Apart from these advantages DIC can be easily coupled with optical microscopy, Scanning
electron microscope (SEM) and Scanning tunneling microscope (STM). In the present study
DIC is coupled with SEM to realize micro-scale deformation measurements.

G.2 Principle of DIC
The basic concept of measurement in DIC is tracking a group of pixels (called subsets)

in initial and deformed image, through temporal matching and correlation functions. A subset

0Picture taken from https://www.smart-piv.com/en/products/strainmaster/2d-stereo-dic/index.php, ac-
cessed 10th june 2022.
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Digital Image Correlation technique

Figure G.2: Pictorial representation of principle and basic terminologies of DIC. Figure recreated
from (Pan et al., 2009)

is a collection of group of pixels carrying a unique gray value information for deformation
measurement. The distance between two subset centers are called step size. The representation
of subsets and step size are shown in figure G.2. The shape functions of subset are superimposed
to the reference subset for deformed shape of the subset in the deformed image. Interpolation
functions are used for the deformed position of subset that are not at the integer location,
therefore a proper interpolation function is necessary to obtain grey intensity value at non
integer location. Subset interpolation functions transforms data from pixel coordinate of subset
to the coordinates of deformed image. A first order interpolation function sample is given by
equation: U(x, y)

V (x, y)

 =
u

v

+
∂u

∂x
∂u
∂y

∂v
∂x

∂v
∂y

△x

△y

 (G.1)

where u and v are displacements in 2D plane, and U , V represents the amount of change in
displacement of the pixel in x and y directions respectively. Based on these displacements we
can calculate strains (Exx,Eyy, Exy) using the equations below:

Exx = 1
2

2∂u

∂x
+
(

∂u

∂x

)2

+
(

∂v

∂x

)2
 (G.2)

Eyy = 1
2

2∂u

∂y
+
(

∂u

∂y

)2

+
(

∂v

∂y

)2
 (G.3)

Exy = 1
2

(
∂u

∂y
+ ∂v

∂x
+ ∂u

∂x

∂u

∂y
+ ∂v

∂x

∂v

∂y

)
(G.4)

The definition for correlation function C should match the similarity between the subset
in the undeformed and deformed images.

C =
∫

△A(F (x, y))(G(x′ + U, y′ + V ))dA[∫
△A[F (x, y)]2dA

∫
△A[G(x′ + U, y′ + V )]2dA

] 1
2

(G.5)
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G.2 Principle of DIC

Where F (x, y) is the pixel intensity or grey scale value at a point (x, y) in undeformed
configuration, G(x′ + U, y′ + v) is the grey scale value at point (x′, y′) in the deformed image.
A represents the outer surface of the selected Subset

Finally unknown displacement and strain parameters
(

u, v, ∂u
∂x

, ∂u
∂y

, ∂v
∂x

, ∂v
∂y

)
are deter-

mined by minimizing the correlation function using Newton-Raphson method.

G.2.1 Major steps involved in DIC

1. Preparation of specimen

2. Capturing images of planar specimen surface at different stages of loading

3. Post-processing of acquired images using scripts/softwares to obtain strain field

The specimen surface should have grey intensity distribution, that deforms along with
specimen surface. Normally speckle pattern can be natural texture of specimen or artificially
made black and white paint. In this work we have used diamond colloidal particles (made of
synthetic diamond) of different size (3mm to 9µm) for creating grey white scale. The particles
are sprayed uniformly on the surface of the specimen to create speckle pattern. Images of the
specimen are taken during tensile testing and these high resolution images are used for post-
processing. In this work strain measurements are obtained by performing post-processing in
Ncorr (Blaber et al., 2015) tool, which is a open-source 2D DIC MATLAB software.
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