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ABSTRACT

Nature often serves as a reference for the design and development of sustainable solutions in numer-

ous different fields. The recent development of small-scale robotic vehicles, as Micro-Air Vehicles

(MAVs), is not an exception, and has had an increasingly important impact on society, proposing new

alternatives in areas as surveillance or planetary exploration. Trying to mimic the flight of insects

and small birds, these devices try to offer more efficient designs and with higher manoeuvrability

abilities than the already existing designs. It happens similar with robotic swimmers, with many

different existing prototypes. Indeed, it is even possible to find designs of bioinspired small-scale

wind turbines based on auto-rotating seeds looking for a more efficient energy harvesting. Besides,

in order to develop sustainable designs, increasing their lifetime and reducing the maintenance costs

are crucial factors. Depending on the device to design, different methodologies may be followed in

order to achieve these two goals while meeting the design requirements. One clear example can be

found in the development of wind turbines. Their blades must be designed to withstand not only

maximum loads and stresses but also the fatigue caused by the fluctuations around the load required

to operate correctly. Reducing fatigue issues by limiting the amplitude of those fluctuations using

passive or active control is a viable option to improve their lifetime.

The aim of this dissertation is to contribute to the understanding of the underlying physics in

biolocomotion. To this end, direct numerical simulations of different examples and problems at low

Reynolds number, Re, have been performed using an existing fluid-structure interaction (FSI) solver.

This FSI solver relies on the coupling of an incompressible-flow solver with robotic algorithms for the

computation of the dynamics of a system of connected rigid bodies. The particularities of this solver

are detailed in the thesis.

The second part of the thesis includes the analysis of these examples and problems mentioned

above. More in detail, the aerodynamic and aeroelastic behaviour of airfoils and wings at Re = 1000

in various conditions and environments has been analysed.

Natural flyers and swimmers are immersed in turbulent and gusty environments which affect

their aerodynamic behaviour. The first problem that has been studied is that of the unsteady response

of airfoils impacted by vortical gusts. This first example focuses on how the impact of viscous vortices

of different size and intensity on two-dimensional airfoils modify their response. Although in a

simplified framework, this analysis allows to gather relevant information about the aerodynamic

performance of the airfoils. This aerodynamic response is seen to be self-similar, and the work

proposes a semi-empirical model to determine the temporal evolution of the lifting forces based on
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an integral definition of the vertical velocity induced by the gust, which can be known a priori.

The target of the second problem is to analyse the load that can be mitigated in airfoils undergoing

oscillations in the angle of attack using passive-pitching trailing edge flaps. This corresponds, for

example, to a simplification of the problem of load mitigation in small-scale wind turbines. The

use of passive-pitching trailing edge flaps is a strategy that has recently been recently proposed for

large-scale wind turbines. Here, we investigate the validity of this strategy on a completely different

scenario. Contrary to what happens in experiments at higher Reynolds numbers, whose results

match the predictions of a quasi-steady linear model when the kinematics are within the range of

applicability of this model, the load mitigation obtained in this work differs from the values of this

theory. The load mitigated is larger or smaller than the predicted values depending on the amplitude

of the oscillations in the angle of attack. However, the results of this work show that an increase in

the length of the flap while the chord of the airfoil is kept constant leads to an equal change in the

reduction of load, in line with the predictions of the quasi-steady model. The development of vortical

structures is clearly affected by the flap when it is sufficiently large, which also involves changes in the

dynamics of the flap and the forces seen by the airfoil. The repercussion that several of the variables

defining the parametric space have on the aerodynamic behaviour of the foil and the dynamics of

the flap are analysed. This allows to gather more information for an appropriate selection of those

variables.

Finally, the third and fourth problems involve the study of the effects of spanwise flexibility on

both isolated wings and pairs of wings arranged in horizontal tandem undergoing flapping motions.

The wings are considered to be rectangular flat plates, and the spanwise flexibility is modelled

discretizing these flat plates in a finite number of rigid sub-bodies that are connected using torsional

springs. The wings are considered to be rigid in the chordwise direction. Isolated spanwise-flexible

wings find an optimal propulsive performance when a fluid-structural resonance occurs. At this

flexibility, the time-averaged thrust is maximum and twice the value yielded by the rigid case, and

the increment in efficiency is around a 15%. Flexibility and the generation of forces are coupled, such

that the structural response modifies the development of the vortical structures generated by the

motion of the wing, and vice versa. The optimal performance comes from a combination of larger

effective angles of attack, properly timed with the pitching motion such that the projection of the

forces is maximum, with a delayed development of the vortical structures. Besides, while aspect

ratio effects are important for rigid wings, this effect becomes small when compared to flexibility

effects when the wings become flexible enough. In fact, while the increase in thrust coefficient for

rigid wings with aspect ratio 4 is 1.2 times larger than that provided by rigid wings with aspect ratio

equal to 2, the value of this coefficient for resonant wings is twice the value yielded by rigid wings

of aspect ratio 4. While forewings of the tandem systems are found to behave similarly to isolated

wings, the aeroelastic response of the hindwings is substantially affected by the interaction with the

vortices developed and shed by the forewings. This wake capture effect modifies the flexibility at

which an optimal propulsive behaviour is obtained. This wake capture effect is analysed through
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an estimation of the effective angle of attack seen by both forewings and hindwings, linking the

optimal behaviour with the maximisation of the effective angle of attack at the right instants. Based

on the obtained results, a proof-of-concept study has been carried out analysing the aerodynamic

performance of tandem systems made of wings with different flexibility, which suggests that the

latter could outperform systems of equally flexible wings.

Key words: Unsteady aerodynamics, fluid-structure interaction, biolocomotion, gusts, load mitiga-

tion, resonance, flexible wings, aeroelasticity, low Reynolds number, direct numerical simulations
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RESUMEN

La naturaleza sirve habitualmente de referencia para el diseño y desarrollo de soluciones sostenibles

en numerosos campos diferentes. El reciente desarrollo de vehículos robóticos de pequeña escala,

como Micro Vehículos Aéreos (MAVs, en inglés), no es una excepción y ha tenido un impacto cada

vez más importante en la sociedad, proponiendo nuevas alternativas en áreas cómo vigilancia o

exploración planetaria. Tratando de imitar el vuelo de insectos y pequeños pájaros, estos dispositivos

pretenden ofrecer diseños más eficientes y con mayor maniobrabilidad que los diseños ya existentes.

Ocurre de manera similar con robots nadadores, contando con muchos prototipos diferentes. In-

cluso existen, por ejemplo, diseños de turbinas eólicas de pequeña escala bioinspiradas en semillas

auto-rotantes, buscando una extracción de energía más eficiente. Además, para desarrollar diseños

sostenibles, incrementar su tiempo de vida y reducir sus costes de mantenimiento son ideas clave.

Dependiendo del dispositivo a diseñar, se pueden seguir diferentes metodologías para alcanzar estas

dos metas a la par que se cumplen con los requisitos de diseño. Un claro ejemplo puede encontrarse

en el desarrollo de turbinas eólicas. Sus palas deben ser diseñadas para soportar no solo cargas

y tensiones máximas sino también la fatiga causada por las fluctuaciones alrededor de la carga

requerida para operar correctamente. Reducir los problemas asociados a fatiga limitando la amplitud

de estas fluctuaciones usando control activo o pasivo es una manera de incrementar su vida útil.

El objetivo de esta disertación es contribuir al entendimiento de la física bajo la locomoción

de vehículos inspirados en la naturaleza. Con este fin, se han realizado simulaciones numéricas

directas de diferentes ejemplos y problemas a bajo número de Reynolds, Re, utilizando un solver de

interacción fluido-estructura (FSI). El solver FSI se basa en el acople de un solver fluido para flujo

incompresible ya existente con algoritmos robóticos para el cómputo de la dinámica de sistemas de

cuerpos rígidos conectados. Las particularidades de este solver se detallan en la tesis.

La segunda parte de la tesis incluye el análisis de estos ejemplos y problemas mencionados

anteriormente. Más en detalle, se ha analizado el comportamiento aerodinámico y aeroelástico de

perfiles y alas a Re = 1000 en varias condiciones y ambientes.

Animales que vuelan y nadan están inmersos en ambientes turbulentos y racheados que afectan a

su comportamiento aerodinámico. El primer problema que ha sido estudiado es el de la respuesta no

estacionaria de perfiles que son impactados por ráfagas tipo vórtice. Este primer ejemplo se centra en

cómo el impacto de vórtices viscosos de diferente tamaño e intensidad en perfiles bidimensionales

modifican su respuesta. Aunque en un marco simplificado, este análisis permite extraer información

relevante sobre el comportamiento aerodinámico de estos perfiles. Esta respuesta aerodinámica
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se ha visto que es semejante, y se propone un modelo semi-empírico para determinar la evolución

temporal de las fuerzas de sustentación basándose en una definición integral de la velocidad vertical

inducida por la ráfaga, la cuál puede ser conocida a priori.

El objetivo del segundo problema es analizar la carga que es posible mitigar en perfiles utilizando

flaps pasivos-rotantes de borde de salida en perfiles que experimentan oscilaciones en el ángulo

de ataque. Esto se corresponde con una simplificación del problema de mitigación de cargas en

turbinas eólicas de pequeña escala. El uso de flaps pasivos-rotantes de borde de salida es análoga

a la estrategia que se ha propuesto recientemente para turbinas eólicas de gran escala. Aquí se

investiga la validez de esta estrategia en un escenario completamente diferente. Al contrario de

lo que ocurre en experimentos a mayor número de Reynolds, cuyos resultados coinciden con las

predicciones de un modelo lineal cuasi-estacionario cuando la cinemática del problema está bajo

el rango de aplicabilidad del modelo, la mitigación de carga obtenida en este trabajo difiere de los

valores proporcionados por esta teoría. La carga mitigada es mayor o menor que los valores predichos

dependiendo de la amplitud de las oscilaciones en el ángulo de ataque. Sin embargo, los resultados

de este trabajo muestran que un incremento en la longitud del flap manteniendo fija la cuerda del

perfil lleva a un incremento igual en la reducción de carga, en línea con las predicciones del modelo

cuasi-estacionario. El desarrollo de estructuras vorticales se ve claramente afectadas por el flap

cuando es suficientemente grande, lo cual implica cambios en la dinámica del flap y en las fuerzas

vistas por el perfil. Se analiza también la repercusión que tienen varias de las variables que definen el

espacio paramétrico en el comportamiento aerodinámico del perfil y en la dinámica del flap. Esto

permite obtener información relevante de cara a una selección apropiada de estas variables.

Finalmente, el tercer y cuarto problema estudian los efectos de la flexibilidad en la dirección de la

envergadura tanto en alas aisladas como en pares de alas dispuestas en tandem horizontal mientras

realizan movimientos de batida. Las alas se consideran placas planas rectangulares, y la flexibilidad

en la dirección de la envergadura se modela discretizando estas placas planas en un número finito

de sub-cuerpos rígidos que se conectan a través de muelles de torsión. Las alas se consideran rígidas

en la dirección de la cuerda. Alas aisladas flexibles en la dirección de la envergadura encuentran un

óptimo en el comportamiento propulsivo cuando ocurre una resonancia fluido-estructural. A esta

flexibilidad, el promedio temporal del empuje es máximo, siendo el doble que el valor dado por alas

rígidas, y el incremento de la eficiencia es de alrededor del 15%. La flexibilidad y la generación de

fuerzas están acopladas, de tal forma que la respuesta estructural modifica el desarrollo de estructuras

vorticales generadas por el movimiento del ala, y viceversa. El comportamiento óptimo proviene de

una combinación de mayores ángulos de ataque efectivos, sincronizados convenientemente con

el movimiento de rotación de tal forma que la proyección de fuerzas es máxima, con un desarrollo

retrasado de estas estructuras vorticales. Además, mientras que los efectos de relación de aspecto son

importantes para alas rígidas, estos efectos son pequeños comparados con los efectos de flexibilidad

cuando las alas son suficientemente flexibles. De hecho, mientras que el incremento en el coeficiente

de empuje para alas rígidas con relación de aspecto 4 es 1.2 veces mayor que aquel dado por alas
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rígidas con relación de aspecto 2, el valor de este coeficiente de empuje para alas resonantes es dos

veces superior al proporcionado por alas rígidas de relación de aspecto 4. Mientras se ha visto que

las alas delanteras de los sistemas de alas en tandem se comportan de manera similar a las aisladas,

la respuesta aeroelástica de las alas traseras se ve sustancialmente afectada por la interacción con los

vórtices desarrollados y desprendidos por el ala delantera. Este efecto de captura de estela modifica

la flexibilidad a la cual se obtiene un comportamiento propulsivo óptimo. Este efecto de captura

de estela se analiza a través de una estimación del ángulo de ataque efectivo visto tanto por alas

delanteras como traseras, conectando el comportamiento óptimo con la maximización del ángulo de

ataque efectivo en los instantes requeridos. Dados estos resultados, se ha llevado a cabo un estudio

preliminar analizando el comportamiento aerodinámico de sistemas en tandem compuestos por

alas con diferente flexibilidad, los cuales sugieren que éstos podrían mejorar el comportamiento

aerodinámico de sistemas hechos por alas igualmente flexibles.

Palabras clave: Aerodinámica no estacionaria, interacción fluido-estructura, biolocomoción, ráfa-

gas, mitigación de cargas, resonancia, alas flexibles, aeroelasticidad, bajo número de Reynolds,

simulaciones numéricas directas
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1
INTRODUCTION

Animal kingdom has fascinated the human being for hundreds, thousands or even millions of years

for many different reasons. Evolution has lead all organisms to change through natural selection,

making them suitable to survive in and adapt to the changing environment they are immersed in.

These changes have also affected animal locomotion, as most animals rely on it for survival (Hosoi &

Lauga, 2010), shaping them in a way such that they are able to perform efficiently the needed tasks to

survive. Many examples can be easily found. Regarding fish, in particular those that depend on their

agility to survive, they are able to reverse direction without slowing down and using a turning radius

up to 30% of their body length, in striking contrast with ships, which need to reduce their speed by a

50% with a turning radius 10 times larger than those of fish (Triantafyllou & Triantafyllou, 1995). In

sustained swimming mode, the swimming time of fish can long at least 200 min without any sign of

fatigue (Nikora et al., 2003). Other examples of astonishing figures in locomotion are those shown

by many flying animals. Compared to a Lookheed YF-12, which is one of the few aircraft that is able

to exceed Mach 3.0 and travels approximately 34 body lengths per second, a European Starling is

capable of flying at 120 body lengths per second. Another example is that of a Barn Swallow, which

has a roll rate of about 5,000◦/s, compared to that of aerobatic aircraft, which is around 720◦/s (Shyy

et al., 2013).

Based on their excellent performance, numerous animals have been selected in the last decades

to be the reference for the design of many robotic devices, whose goal is to improve the efficiency

and develop more sustainable vehicles while still being to perform the duties they are devoted to.

Starting with RoboTuna (Triantafyllou & Triantafyllou, 1995), which was probably the first functional

swimming robot, many different examples of robotic fish (J. Liu et al., 2005; Katzschmann et al., 2016;

Raj & Thakur, 2016) or amphibious (Crespi & Ijspeert, 2008; Manfredi et al., 2013) can be found in the

literature.
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In a similar fashion, flapping wing Micro Air Vehicles (FWMAVs) can also be found, resembling the

flight of insects and birds. Contrary to fixed wing or rotary wing MAVs, which find their aerodynamic

performance degraded at low Reynolds numbers (Pines & Bohorquez, 2006), the flight of FWMAVs

rely on the same unconventional lifting mechanisms as insects and birds, namely delayed stall with

Leading Edge Vortex (LEV) generation, rapid pitch up, wake recapture and clap and fling (Sane,

2003), which allow them to enhance their efficiency and performance. Examples of robotic fliers

include, among many others, the DelFly (De Croon et al., 2009), the Nano Hummingbird (Keennon

et al., 2012), the Colibri (Roshanbin et al., 2017) or the Robird (Folkertsma et al., 2017), which have

evolved or presented different designs with time to achieve either a better performance or to perform

different missions.

Yet, the efficiency and performance of these robotic devices are far from those reached by the

animals (Haider et al., 2021). The main reason explaining this fact is the lack of knowledge of reliable

models for the force generation covering the vast parametric space in terms of geometry and material

properties of the devices or the kinematics to be followed in order to perform a given manoeuver,

among others. For example, there are qualitative explanations to ensure that attached LEVs increase

the force generation providing additional normal force (Dickinson et al., 1999). However, these LEVs

are three-dimensional structures that interact with the devices in different ways depending on their

location, intensity and shape, which are complex to be predict a priori, leading to the absence of

robust models to quantify the increase in additional lift.

Looking for reliable models, if the focus is put on a particular geometry or kinematics, the results

might be difficult to be extended to other configurations. Conversely, the analysis of the fundamental

effects of the material properties might apply generally. In fact, it is well known that flexibility, if

properly selected, may enhance the aero-hydrodynamic performance of these devices. There are

many works in the last two decades addressing the effects of flexibility on the propulsive performance

and the aero-hydroelastic response of the wings or fins (Hamamoto et al. (2007), Heathcote et

al. (2008), Alben (2012), Quinn et al. (2014), Moore (2015), Yeh & Alexeev (2016), Arora et al. (2018),

Shahzad et al. (2018), and K. Liu et al. (2022) among many others). Despite the advances in the

understanding of chordwise, spanwise and isotropic flexibility, the knowledge of the mechanisms

playing a role on the aero-hydroelastic response is still limited. The state of the flow and the structural

response are coupled, resulting in a complex configuration whose behaviour is very difficult to

compute accurately with cost-effective tools. Further understanding of the relevance of the different

mechanisms on the optimal performance may eventually lead to robust reduced-order models

applicable to general configurations.

Additional complexity and uncertainty may be linked to the gusty and turbulent environments

where the animals and robotic vehicles move through, which also alter their aero-hydrodynamic

behaviour. Differently to large-scale aircraft, the size and intensity of the disturbances in the flow

are of the order of magnitude of the size of the devices and the travelling speed, usually resulting in

massive flow separation, changing completely their response and making the available tools based on
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potential flow invalid for these configurations. Active or passive control techniques are then needed

to meet the aero-hydrodynamic requirements and mitigate the loads that can affect the structure,

similar to fish and birds that change their shape through muscular activity or through passive flow

control as for example that provided by feathers in owls and others (van Oorschot et al., 2020).

On the other hand, individuals can also enhance its performance by properly interacting with the

perturbed environment. Numerous examples can be found in nature, as the flock of birds (Hummel,

1983) or the school of fish (Weihs, 1973), where the individuals interact with the surrounding fluid

that is perturbed by the rest of individuals. Another particular example can be seen on the wing-wing

interaction found in dragonflies (Bomphrey et al., 2016).

Finally, the technological limitations in the manufacturing of the devices might also hinder the

achievement of the expected efficiency.

All the aforementioned problems may be summed up in fluid-structure interaction (FSI) prob-

lems. Experiments can provide results at a relatively low cost, but are not able to provide the state

of the flow, i.e. flow velocity and pressure, at each time instant. This can be overcome performing

numerical simulations, where the amount of data that can be acquired from these numerical sim-

ulations is high in both time and space. However, as the dynamics of the bodies and the fluid are

coupled, leading to highly non-linear problems, they are complex to solve numerically and they

come at the expense of high computational cost.

With the work presented in this thesis, we aim to contribute to the current understanding of the

underlying physics in different FSI problems, in order to pave the way for future work.

1.1 Objectives

The main objective of this dissertation is to contribute to the understanding of the underlying

physics of flying and swimming animals in both laminar and gusty environments following simplified

configurations, which eventually will aid in the development of more sustainable and long-lasting

efficient vehicles. To achieve this aim, three objectives are defined.

• The first objective is to analyse the response of travelling bodies to isolated vortical gusts, in

order to better understand the aero-hydrodynamic performance of these bodies when they are

immersed in perturbed environments.

• The second objective is to study the load that can be mitigated in airfoils using passive trailing-

edge flaps, characterising the fluid-structure interaction problem and, in particular, the aero-

dynamic performance of those airfoils.

• The third and last objective is to analyse numerically the role of spanwise flexibility, resonance

and wake capture on the optimal propulsive performance of both isolated wings and pairs of

flapping wings arranged in tandem configuration.



4 1.2 - THESIS STRUCTURE

1.2 Thesis structure

The present document is divided in chapters. In chapters 1 and 2, the thesis is introduced and

the numerical methodology used to carry out the studies in this dissertation is presented. Chapter

3 investigates the aerodynamic behaviour of airfoils when impacted by vortical gusts. The load

mitigation on heaving airfoils using passive pitching trailing-edge flaps is addressed in chapter

4. Chapters 5 and 6 involve the analysis of the relevance of fluid-structure resonance on optimal

performance of spanwise flexible wings when they are both isolated and arranged in horizontal

tandem configuration. Lastly, the main contributions and highlights of the thesis, together with

future lines of work are described in chapter 7.



REFERENCES

Alben, S. 2012. Flapping propulsion using a fin ray. J. Fluid Mech. 705:149–164.

Arora, N., Kang, C.-K., Shyy, W. & Gupta, A. 2018. Analysis of passive flexion in propelling a plunging

plate using a torsion spring model. J. Fluid Mech. 857:562–604.

Bomphrey, R. J., Nakata, T., Henningsson, P. & Lin, H. T. 2016. Flight of the dragonflies and damselflies.

Philosophical Transactions of the Royal Society B: Biological Sciences 371 (1704): 20150389.

Crespi, A. & Ijspeert, A. J. 2008. Online optimization of swimming and crawling in an amphibious

snake robot. IEEE Transactions on robotics 24 (1): 75–87.

De Croon, G. C. H. E. et al. 2009. Design, aerodynamics, and vision-based control of the DelFly. Int. J.

Micro Air Veh. 1 (2): 71–97.

Dickinson, M. H., Lehmann, F.O. & Sane, S. P. 1999. Wing rotation and the aerodynamic basis of insect

flight. Science 284 (5422): 1954–1960.

Folkertsma, G. A. et al. 2017. Robird: a robotic bird of prey. IEEE robotics & automation magazine 24

(3): 22–29.

Haider, N., Shahzad, A., Mumtaz Q., Muhammad N. & A. S., Syed I. 2021. Recent progress in flapping

wings for micro aerial vehicle applications. Proc. Inst. Mech. Eng., Part C 235 (2): 245–264.

Hamamoto, M., Ohta, Y., Hara, K. & Hisada, T. 2007. Application of fluid–structure interaction analysis

to flapping flight of insects with deformable wings. Adv. Robotics 21 (1-2): 1–21.

Heathcote, S., Wang, Z. & Gursul, I. 2008. Effect of spanwise flexibility on flapping wing propulsion. J.

Fluids Struct. 24 (2): 183–199.

Hosoi, A. E. & Lauga, E. 2010. Mechanical aspects of biological locomotion. Exp. Mech. 50 (9): 1259–

1261.

Hummel, D. 1983. Aerodynamic aspects of formation flight in birds. J. Theor. Biol. 104 (3): 321–347.

Katzschmann, R. K., Marchese, A. D. & Rus, D. 2016. Hydraulic autonomous soft robotic fish for 3D

swimming. In Experimental Robotics, 405–420. Springer.

5



6 REFERENCES

Keennon, M., Klingebiel, K. & Won, H. 2012. Development of the nano hummingbird: A tailless

flapping wing micro air vehicle. In 50th AIAA aerospace sciences meeting including the new

horizons forum and aerospace exposition, 588.

Liu, J., Dukes, I. & Hu, H. 2005. Novel mechatronics design for a robotic fish. In 2005 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 807–812. IEEE.

Liu, K., Liu, X. & Huang, H. 2022. Scaling the self-propulsive performance of pitching and heaving

flexible plates. J. Fluid Mech. 936.

Manfredi, L. et al. 2013. A bioinspired autonomous swimming robot as a tool for studying goal-

directed locomotion. Biol. Cybern. 107 (5): 513–527.

Moore, M. N. J. 2015. Torsional spring is the optimal flexibility arrangement for thrust production of

a flapping wing. Phys. Fluids 27 (9): 091701.

Nikora, V. I. et al. 2003. Effects of fish size, time-to-fatigue and turbulence on swimming performance:

a case study of Galaxias maculatus. J. Fish Biol. 63 (6): 1365–1382.

Pines, D. J. & Bohorquez, F. 2006. Challenges facing future micro-air-vehicle development. J. Aircr. 43

(2): 290–305.

Quinn, D. B., Lauder, G. V. & Smits, A. J. 2014. Scaling the propulsive performance of heaving flexible

panels. J. Fluid Mech. 738:250–267.

Raj, A. & Thakur, A. 2016. Fish-inspired robots: design, sensing, actuation, and autonomya review of

research. Bioinspir. Biomim. 11 (3): 031001.

Roshanbin, A., Altartouri, H., Karásek, M. & Preumont, A. 2017. COLIBRI: A hovering flapping twin-

wing robot. Int. J. Micro Air Veh. 9 (4): 270–282.

Sane, S. P. 2003. The aerodynamics of insect flight. J. Exp. Biol. 206 (23): 4191–4208.

Shahzad, A., Tian, F. B., Young, J. & Lai, J. C. S. 2018. Effects of flexibility on the hovering performance

of flapping wings with different shapes and aspect ratios. J. Fluids Struct. 81:69–96.

Shyy, W., Aono, H., Kang, C. K. & Liu, H. 2013. An introduction to flapping wing aerodynamics. Vol. 37.

Cambridge University Press.

Triantafyllou, M. S. & Triantafyllou, G. S. 1995. An efficient swimming machine. Scientific American

272 (3): 64–70.

van Oorschot, B. K., Choroszucha, R. & Tobalske, B. W. 2020. Passive aeroelastic deflection of avian

primary feathers. Bioinsp. & Biomim. 15 (5): 056008.

Weihs, D. 1973. Hydromechanics of fish schooling. Nature 241 (5387): 290–291.



REFERENCES 7

Yeh, P. D. & Alexeev, A. 2016. Effect of aspect ratio in free-swimming plunging flexible plates. Comput.

Fluids 124:220–225.





C
H

A
P

T
E

R

2
NUMERICAL METHODOLOGY

This chapter is devoted to introduce and describe the general numerical methods used to solve the

problems considered in chapters 3 to 6, which will include a section describing its own numerical

set-up. First, the general equations that govern the motion of bodies immersed in a flow are stated.

Then, the methodology to model the presence of these bodies in the fluid is introduced. Afterwards,

the approach followed to account for the interaction between multi-body systems and the fluid is

presented. Finally, the in-house fluid-structure interaction (FSI) solver used to analyse the problems

considered in this dissertation is described.

2.1 Governing equations

Let us consider the general problem of several rigid bodies immersed in a fluid, as depicted in

figure 2.1. Under the assumptions of incompressible and Newtonian fluid, suitable for the problems

considered in the following chapters,the flow is governed by the Navier-Stokes equations:

∇·u = 0,(2.1a)

∂u

∂t
+ (u ·∇)u =− 1

ρ
∇p +ν∇2u,(2.1b)

where u is the velocity of the flow, p is the pressure, and ρ,ν are the density and the kinematic

viscosity of the fluid, respectively. As the Navier-Stokes equations are being solved for a viscous fluid,

a no-slip boundary condition needs to be imposed at the surface of the bodies:

(2.2) u = U∂Γi (x) ∀x ∈ ∂Γi , ∀i ∈ B ,

where U∂Γi (x) is the velocity at a point x of the interface ∂Γi between the fluid and a body Γi , and

B = {1, ..., NB } is the set of bodies, where NB is the total number of bodies. The value of U∂Γi (x) can be

9
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Figure 2.1: Sketch of a set of bodies, Γi , immersed in a surrounding fluid whose domain is Ω f ,
describing the general problem.

either prescribed or given by the dynamics of the body due to the interaction with the fluid and the

rest of the bodies immersed in it.

In the latter scenario, together with equations (2.1), other structural equations linking the motion

of the bodies with the forces acting have to be solved. To model the fluid-structure interaction of solid

bodies immersed in a fluid, two main approaches can be followed depending on the formulation

used: monolithic and partitioned (non-monolithic) approaches (Kim & Choi, 2019). Monolithic

formulations combine fluid and structural equations in a single mathematical framework. This leads

to a single system of equations that solves the entire problem. While the accuracy of these solvers is

often higher than those following non-monolithic partitioned formulations, it usually requires the

use of iterative solvers, which may lead to a large increase in the needed computational resources.

Contrary, partitioned formulations are such that fluid and structure are solved separately, with the

boundary condition (2.2) acting as a mean to ensure compatibility at the interface of both fluid and

structural problems. They are usually better conditioned than monolithic formulations, although

in certain scenarios, as those where the ratio between the density of fluid and solid is very close to

1, may present very poor convergence. In this work, a partitioned non-monolithic formulation is

used to solve the problems described in chapters 3 to 6. Section 2.4 provides further details about its

implementation.

2.2 Modelling the presence of bodies in fluid: the Immersed Boundary

Method

A common fact among the problems presented in the following chapters is the presence of moving

bodies immersed in a surrounding fluid. In order to consider the presence of these bodies immersed

in the fluid, different approaches available in the literature can be followed to impose fluid-solid

interfaces. One of the proposed ways to tackle the problem is to solve the Navier-Stokes equations
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Figure 2.2: Sketch of the discretization used in the immersed boundary method for the fluid, Ω f , and
solid, ∂Γ, domains.

in the fluid domain, which is discretized such that the fluid mesh fits the bodies, imposing directly

the boundary condition of no-slip at the fluid-solid interface. This requires re-meshing to the new

position of the moving bodies, increasing substantially the cost of the computations. These are the

so-called body-conformal mesh methods (Haeri & Shrimpton, 2012). An example of this technique is

the Arbitrary Lagrangian-Eulerian (ALE) formulation (Hirt et al., 1974; Takashi & Hughes, 1992; Hu

et al., 2001; Souli & Benson, 2013).

On the other hand, the other available approach is to solve the Navier-Stokes equations on a fixed

grid, adding the contribution of the presence of the bodies through source terms. Methods following

this approach are known as fixed-mesh methods, and within them, we can find the Immersed

Boundary Method (IBM), avoiding the need of re-meshing the fluid domain. Numerous examples can

be found in the literature (Mittal & Iaccarino, 2005; Uhlmann, 2005; Pinelli et al., 2010), suggesting

the feasibility of this technique to reproduce the presence and motion of solids in a fluid.

The idea of the IBMs is to discretize the fluid domain, denoted with Ω f , using a Cartesian grid

where equation (2.1) is solved. On the other hand, the surface ∂Γi of a solid is discretized in an

arbitrary number of Lagrangian force points Li = {1, . . . ,ni }. Each Lagrangian point has an associated

volume ∆i , j . This idea is sketched in figure 2.2. The main idea of the IBM is then to add a forcing term

fIBM to the right-hand side of equation (2.1b), such that the no-slip boundary condition (eq. 2.2) can

be satisfied at the Lagrangian force points.

2.3 Interaction of a multi-body system of rigid bodies

When imposing the boundary condition at the interface of the bodies using equation (2.2), the velocity

U∂Γi might not be prescribed, as mentioned in section 2.1. Instead, for a general problem where the

motion of the bodies is given by the fluid-structure interaction, the value of U∂Γi is unknown a priori.

Let us consider the problem of many rigid bodies forming the multi-body system (MBS) con-

nected among them using kinematic constraints -joints-, and subject to hydrodynamic forces and

torques exerted by the surrounding fluid where they are immersed. To exemplify the problem, a
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Figure 2.3: Sketch of the problem of two multi-body systems (MBS1 and MBS2), each conformed by
several rigid bodies connected among themselves arbitrarily.

sketch of a pair of multi-body systems is shown in figure 2.3, where bodies Γ1,Γ2,Γ3 conform MBS1

and Γ4,Γ5,Γ6,Γ7 conform MBS2. Both MBS are linked to a reference fixed inertial base.

To describe the dynamics of a single body in three dimensions (3D), the so-called Newton-Euler

equations are needed, which are six scalar equations:

mU̇G = Fext(2.3a)

IGΩ̇+Ω× IGΩ= MG ,ext(2.3b)

where m and IG represent the mass and the inertia tensor of the body, the linear and angular velocities

of the body are UG and Ω, respectively, and Fext and MG ,ext are the external force and moment acting

on the body. The magnitudes that are computed with respect to the center of mass of the body are

denoted with the subscript G . Equation (2.3b) is only valid if it is expressed in a body-fixed reference

frame.

To fully describe the dynamics of a given MBS, a total of 6×NB equations are needed. Nevertheless,

the joints connecting the bodies act as constraints for their relative motion. Hence, the number of

degrees of freedom (Ndo f ) is reduced, and so the number of equations required to model the MBS.

This results in a system of ordinary differential equations (ODEs). To find these equations, different

approaches can be used (Greenwood, 2003). In this work, the system of ODEs for a MBS are written

following the approach in Featherstone (2014):

(2.4) H(q)q̈+c(q, q̇) = ξ+ξh ,

where q is the vector of generalized coordinates, describing the instantaneous configuration of the

MBS in the Ndo f -dimensional space, H is the joint space or generalized inertia matrix, c is the

generalized bias force, that accounts for Coriolis, centripetal and gravity forces, ξ is the vector of

generalized forces and torques, considering, for example, for springs and/or dampers in the joints,
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and ξh is the vector of generalized hydrodynamic forces and torques due to the surrounding fluid.

Although omitted, both H and c also depend on the inertia properties of the bodies.

2.4 In-house FSI solver: TUCANMB

The in-house FSI code TUCANMB used to solve the problems in this thesis was first introduced and

developed as TUCAN by Moriche (2017), only as a flow solver, with improvements shown in Gonzalo

(2018). Afterwards, the implementation of the multi-body solver module and the coupling to the

fluid solver was performed in Arranz et al. (2022b), giving rise to TUCANMB. Therefore, only a brief

and overall description of the code is provided here. This way, the reader is referred to the previously

mentioned works for a more detailed picture.

2.4.1 Flow solver

The approach to solve equation (2.1) in TUCAN/TUCANMB is based on the numerical method

proposed in Uhlmann (2005). It uses an IBM to model the presence of the bodies in the fluid, and

relies on a projection method to enforce continuity. Time integration is performed using a three-stage,

low-storage Runge-Kutta method. The linear terms are treated implicitly while non-linear terms

are treated explicitly. A staggered grid is used for the spatial discretization. The spatial derivatives

are computed using second-order, centered finite differences. The discretized equations at a kth

Runge-Kutta sub-step are:

ũ = uk−1 +∆t
(
2αkν∇2uk−1 −2αkρ

−1∇pk−1 −γk [(u ·∇)u]k−1 −ζk [(u ·∇)u]k−2
)

,(2.5a)

Ũ
(
Xi , j

)= ∑
i∈B

∑
j∈Li

ũ(x)δh
(
x−Xi , j

)
∆3

eu,(2.5b)

Fk
IBM

(
Xi , j

)= Ud
∂Γi

(
Xi , j

)− Ũ
(
Xi , j

)
∆t

,(2.5c)

fk
IBM = ∑

i∈B

∑
j∈Li

Fk
IBM

(
Xi , j

)
δh

(
x−Xi , j

)
∆Vi , j ,(2.5d)

∇2u∗− u∗

αkν∆t
=− 1

ναk

(
ũ

∆t
+ fk

IBM

)
+∇2uk−1,(2.5e)

∇2φk = ∇·u∗

2αk∆t
,(2.5f)

uk = u∗−2αk∆t∇φk ,(2.5g)

pk = pk−1 +ρ
(
φk −αkν∆t∇2φk

)
.(2.5h)

The value of the coefficients αk ,γk ,ζk of the k sub-step are selected to be those given in Rai & Moin

(1991). ũ is an estimate of the velocity used to compute the forcing term fIBM that appears in equations

(2.5b −d), while u∗ is an intermediate velocity. The variable ∆eu is the spacing of the eulerian grid.

On the other hand, φ is the pseudo-pressure, and has no physical meaning.
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The forcing term fIBM needs of several steps to be computed. Once the estimate of the velocity, ũ,

is obtained, it is interpolated to the Lagrangian forcing points Xi , j in equation (2.5b). In combination

with the desired velocity at each Lagrangian point, U d
∂Γi

, a Lagrangian forcing term in this set of

Lagrangian points is computed using equation (2.5c). The forcing term fIBM in the Eulerian grid is

then obtained after the spreading operation in equation (2.5d). The interpolations performed in

equations (2.5b,d) are performed using δh , the regularized delta function proposed in Peskin (2002).

2.4.2 Multi-body solver

Multi body systems were introduced in section 2.3, where the dynamics of a MBS can be expressed

with equation (2.4). The time integration of this equation yields the generalized velocities q̇ of the

degrees of freedom of the MBS. Integrating again, it is possible to obtain the generalized coordinates

q at a time t .

In a general sense, it is reasonable to assume that the kinematics of certain degrees of freedom

will be prescribed, while others will be unknown. This way, it is possible to express the generalized co-

ordinates as q = [qT
u qT

p ]T , where the kinematics of the prescribed degrees of freedom are introduced

through qp . In a similar fashion, it is possible to introduce

H =
[

Hu Hup

Hpu Hp

]
, c =

[
cu

cp

]
, ξ=

[
ξu

ξp

]
, ξh =

[
ξh,u

ξh,p

]
.(2.6)

This way, it is possible to obtain a reduced system for the generalized accelerations only of the

unknown degrees of freedom that has the form

(2.7) Hu(q)q̈u = ξu +ξu,h −c∗u(q, q̇),

where c∗u(q, q̇) = cu −Hup q̈p depends on all the degrees of freedom, both prescribed and unknown.

The time discretization of equation (2.7) uses the same scheme used for the convective terms of

equation (2.1),

(2.8) q̇k
u = q̇k−1

u +∆t
(
γk

[
H−1

u

(
ξu −c∗u

)]k−1 +ζk
[
H−1

u

(
ξu −c∗u

)]k−2 + [
H−1

u

]k−1
ξk

h,u

)
.

The computation of the generalized coordinates is performed implicitly as

(2.9) qk
u = qk−1

u +∆tαk

(
q̇k

u − q̇k−1
u

)
,

in a similar fashion as done for the viscous terms of equation (2.5).

To compute the matrices H and c, the Rigid Body Dynamics Library (RBDL) developed by Felis

(2017) has been used. In particular, the matrix H has been computed using the Composite Rigid-

Body Algorithm (CRBA), while the generalized bias force c has been computed using the Recursive

Newton-Euler Algorithm (RNEA) (Featherstone, 2014; Felis, 2017).
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[
q, q̇

]k−1 [
q, q̇

]kEq. 2.8 and 2.9

Eq. 2.5
[
u, p

]k−1 [
u, p

]k

[X, U∂Γ]k−1
F

ξh Multi-body space

Fluid space

Figure 2.4: Diagram sketching the coupling between the fluid and multi-body solvers for a Runge
Kutta substep k.

2.4.3 Coupling

The coupling between the fluid and the multi-body solvers is sketched in figure 2.4. To advance from

a state known at a Runge-Kutta substep k −1 to a substep k, the algorithm followed is described

hereafter:

1. The position and velocity of the Lagrangian points Xk−1
i , j and Uk−1

∂Γi

(
Xi , j

)
are computed using

the generalized coordinates and velocities qk−1, q̇k−1.

2. Using the position and velocity of the Lagrangian points, equation (2.5c) is used to compute

the lagrangian forcing term Fk
IBM. After the spreading operation, equation (2.5d), the forcing

term at the Eulerian grid, fk
IBM, is obtained.

3. Using fk
IBM, the state of the fluid can be advanced to substep k solving the remaining steps of

equation (2.5), i.e., the velocity, uk , and pressure, pk , fields are obtained.

4. The generalized external forces, ξh , are obtained mapping the hydrodynamic forces and

moments acting on the bodies, F and M respectively, which are computed from Fk
IBM as

shown below. With ξh , equation (2.8) is solved to obtain q̇k .

5. Finally, qk is obtained using equation (2.9). After solving this equation, the state of the MBS is

determined for the RK substep k.

The terms Xk−1
i , j and Uk−1

∂Γi

(
Xi , j

)
are treated explicitly, while, on the other hand, the generalized external

forces ξh represents an integrated state between k−1 and k. These two considerations lead to a weak

coupling between fluid and structural systems. This means that fluid and structural states at the end

of a substep k might not be fully compatible (Uhlmann, 2005).
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The hydrodynamic forces and moments acting on the bodies, Fi and Mi , are computed as in

Uhlmann (2005):

Fi =−ρ
∑

j∈Li

FIBM
(
Xi , j

)
∆V j︸ ︷︷ ︸

Pi

+ ρ

ρi
mi ẍG ,i ,(2.10a)

Mi =−ρ
∑

j∈Li

(
Xi , j −xi

)×F
(
Xi , j

)
∆V j︸ ︷︷ ︸

Qi

+ρ

∫
∂Γ1

(x−xi )×u dx,(2.10b)

where mi ,ρi , ẍG ,i are the mass, density and acceleration of the centre of gravity of the body Γi . The

last term of equation (2.10b) is the angular momentum of the fluid inside Γi , and should be integrated

numerically. However, this term has been approximated in this work assuming rigid-body motion of

the fluid inside the body Γi for efficiency reasons. Then, the contribution of the last term in each of

the equations 2.10(a,b) can be directly included in H and c building them using an effective density(
ρi −ρ

)
(Uhlmann, 2005; Arranz et al., 2022b). This way, a limit on the density ratio exists when using

the present approach, approximately ρi /ρ ≤ 1.2, making the study of buoyant bodies impossible.

The terms P,Q are those constituting ξh after performing the mapping mentioned in step 4.

2.4.4 Main features and details of TUCAN/TUCANMB

As said before, TUCAN and TUCANMB have been previously developed. Here we highlight the main

details and features of the solvers. The reader is referred to Moriche (2017) and Gonzalo (2018) for a

more detailed overview of TUCAN, and to Arranz et al. (2022b) for TUCANMB.

TUCAN/TUCANMB can be used to perform both two- and three-dimensional simulations. The

discretization of the staggered grid can be performed in a non-uniform way, controlled using a stretch

factor. While 2D simulations are performed in a rectangular computational domain, 3D ones are

performed in a rectangular prism. Dirichlet, Neumann and periodic boundary conditions can be

imposed in any of the boundaries of the computational domain. Additionally, in simulations where

an inflow is imposed at any of the boundaries, an advective boundary condition given by

(2.11) ∂t u+uc∂x u = 0,

can be imposed at the opposite boundary, allowing the fluid to leave the computational domain

avoiding reflections, where uc is a convective velocity.

TUCAN/TUCANMB can operate in both single-processor and parallel processing. Parallelization

is performed using a block domain decomposition. The grid corresponding to the Eulerian space,

i.e., flow domain, is split into a number NP of smaller blocks that are assigned to an equal number of

processors, where the size of the blocks is comparable such that the workload on each processor is

similar. The processors only have information about the flow sub-domain assigned to them. This

way, the blocks communicate among themselves using Message Passing Interface (MPI).
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In TUCAN, there are three/four linear systems to be solved at each substep, namely a Helmholtz

problem (equation 2.5e) for each velocity component, and a Poisson problem (equation 2.5 f ) for the

pseudo-pressure. In order to solve these linear systems in parallel, the library used is HYPRE, which

provides a number of preconditioners for high performance computing. A biconjugate gradient

stabilized solver (BiCGSTAB) preconditioned with a parallel semicoarsening multigrid solver (PFMG)

is used to solve the Poisson equation. On the other hand, a preconditioned conjugate solver (PCG) is

used to solve each Helmholtz equation for each of the velocity components.

TUCAN/TUCANMB uses the HDF5 library, Hierarchical Data Format version 5, for Input/Output

(I/O) tasks. HDF5 is designed for parallel, collective I/O handling the MPI standard, allowing for a

efficient performance for complex data management.

TUCAN and TUCANMB have both been extensively validated. For TUCAN, validation cases can

be found in 2D in (Moriche, 2017), while for 3D, they can be found in (Gonzalo, 2018), for fixed

and moving bodies. Besides, it has been employed in many different configurations, for external

aerodynamic problems (Gonzalo et al., 2018; Arranz et al., 2018b; Jurado et al., 2022) and cardiac

flows (García-Villalba et al., 2021), among others. TUCANMB presents validation cases in Arranz

et al. (2022b), and has been employed in other works as Arranz et al. (2022a).
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ANALYSIS OF VORTICAL GUST IMPACT ON AIRFOILS AT LOW REYNOLDS

NUMBER

The contents of this chapter are fully included in:

Journal of Fluids and Structures (2020), vol. 99, 103138.

Abstract

The response of a NACA0012 airfoil impacted by vortical gusts is investigated performing Direct

Numerical Simulations of the two-dimensional incompressible flow. Taylor vortices of different

diameter and intensity located at different vertical separations with respect to the airfoil are deployed

in the free stream. These vortices, which are characterized by its compact distribution of vorticity, are

advected downstream to interact with the airfoil, set at a fixed angle of attack. For the low Reynolds

number used in these simulations (Re = 1000), the effect of the different parameters defining the

vortical gust and the impact is characterized. It is found that the change in the time evolution of

the variation of the lift coefficient with respect to the steady state, ∆Cl (t), is fairly independent on

the angle of attack, at least in the range of α considered in this study. Furthermore, it is found that

the time at which the peak in ∆Cl is produced scales with the diameter of the viscous core of the

vortex and the free-stream velocity, D/U∞. On the other hand, the maximum value of ∆Cl is roughly

proportional to the non-dimensional vortex circulation, but varies non-linearly with the vertical

distance between the vortex and the airfoil. This dependency can be captured by scaling ∆Cl with the

relative intensity of the vertical velocity induced over the airfoil and the free-stream velocity (wh/U∞),

where the former is defined as a integral of the vortex velocity profile over the chord of the airfoil.

Using this scaling, the profiles of ∆Cl (tU∞/D)/(wh/U∞) collapse over a single curve for the different

21
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vortex intensities, sizes and vertical separations considered in the present study, specially during

the initial evolution of the vortical gust impact. The self-similar profile of ∆Cl (tU∞/D)/(wh/U∞) is

found to depend on the velocity profile of the vortex (i.e., Taylor vortices versus Lamb-Oseen vortices).

However, the peak aerodynamic force and the time to peak aerodynamic force seem to scale with

D/U∞ and wh/U∞ irrespective of the velocity profile of the vortex, suggesting that our definition of

wh is sufficiently robust.

3.1 Introduction

Unsteady aerodynamics, and in particular the unsteady response of airfoils to gusts, has been

thoroughly studied in the frame of potential flow. The literature in the topic is vast, including classical

(Küssner, 1936; Press & Mazelsky, 1954; Horlock, 1968) and more recent works (Tang & Dowell, 2002;

Raveh & Zaide, 2006; Corkery & Babinsky, 2019), among many others. In general, the applications

of potential theory to the gust response of an airfoil is a simplification of the problem that requires

several assumptions, including a sufficiently high Reynolds number, attached flow over the airfoil

and considering the gust as a small perturbation compared to the free stream. The conditions that

allow these assumptions are easily satisfied in most conventional aircraft, but they are not easily

satisfied for Micro Air Vehicles (MAVs).

According to Mueller & DeLaurier (2003), MAVs are small aerial vehicles with characteristic

wing span of the order of 15 cm and cruise speeds of 1-10 m/s. Using Kolmogorov’s scaling for an

equilibrium turbulent flow, it is easy to show that in a typical atmospheric boundary layer the velocity

fluctuations associated with a length scale of the order of O(0.1) m are of the order of O(1) m/s.

This results in a gust velocity comparable to the cruise speed of the MAV, invalidating the small

perturbation hypothesis and often resulting in massive separated flow over the wing of the MAV.

Moreover, the typical Reynolds number of conventional aircraft is Re =U∞c/ν∼ 106 −108 (where c

is the characteristic chord of the wing, U∞ is the free-stream velocity and ν is the kinematic viscosity

of air), while the Reynolds numbers for MAVs are usually much smaller, Re ∼ 103 −105.

The difference in the velocity and length ratios (i.e, between the gust and the vehicle) of conven-

tional aircraft and MAVs has consequences in terms of the applicability of the different gust models

that can be found in the literature. For a conventional aircraft a typical gust consists of a small velocity

perturbation (longitudinal or transverse) occurring over a length scale much larger than the airfoil

chord. These gusts can be modelled by an appropriate surge, plunge or pitching motion of the airfoil,

since the velocity perturbation is felt (roughly) at the same time over the whole airfoil. Examples of

recent studies of this type of gust at moderate to low Reynolds numbers include Perrotta & Jones

(2018) and Moriche et al. (2019), among others. The results show that the gust produces a transient

increase in the aerodynamic forces associated to the changes in the effective angle of attack of the

plate, followed by an opposite sign extremum of smaller amplitude associated to the deceleration of

the flow displaced by the plunge motion of the airfoil.
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For MAVs, the small size of the vehicle results in a localized gust, where the characteristic length

of the velocity perturbation is of the same order of magnitude (or even smaller) than the chord of

the airfoil. Most experimental and numerical realization of these types of gusts are based on either

airfoils/wings passing over a vertical jet (i.e, localized transverse gusts as in Perrotta & Jones, 2017;

Biler et al., 2019; Leung et al., 2018; Corkery et al., 2018), or airfoils/wings encountering a localized

vortex in the free-stream (i.e., vortical gusts as in Hufstedler & McKeon, 2019; Barnes & Visbal, 2018a;

Zehner et al., 2018; Alaminos-Quesada & Fernández-Feria, 2017; Peng & Gregory, 2015; Nguyen et al.,

2018; Barnes & Visbal, 2018b; Chen & Jaworski, 2020). The results of the localized transverse gusts

are very similar to the plunge maneouvers discussed earlier when the jet width is sufficiently large

(Leung et al., 2018; Corkery et al., 2018). For narrower jets, the initial evolution and the maximum

lift coefficient are still similar to those observed in the plunge maneouvers, but the interaction of

the leading edge vortex with the trailing shear layer of the jet results in a different recovery of the

aerodynamic forces.

Note that plunge maneouvers and localized transverse gusts (jets) are inherently different to

the vortical gusts, since in the latter the vortex intensity is modified by the interaction with the

airfoil. Also, the vertical velocity induced by the vortex on the airfoil changes sign as the vortex

moves downstream, resulting in two extrema of opposite sign on the lift coefficient with comparable

intensities. The results of Barnes & Visbal (2018a), Peng & Gregory (2015), and Nguyen et al. (2018) at

moderate Reynolds numbers (Re ∼ 103 −104) show that the times and intensities of these extrema

depend on the intensity, size and vertical displacement of the vortex with respect to the airfoil. Similar

conclusions are offered by Alaminos-Quesada & Fernández-Feria (2017), who propose a potential

model to predict the lift force produced by a vortical gust. The model shows a moderately good

agreement with the experimental results when the vertical distance between the vortex and the

airfoil is sufficiently large, failing to predict head-on collisions. The potential model predicts that the

enhancement of the aerodynamic forces is proportional to the vortex circulation and to the relative

velocity between the vortex and the airfoil, producing a maximum force when the vortex trajectory

bifurcates from passing above to below the airfoil.

It should be noted that the vortices generated in the experiment of Alaminos-Quesada & Fernández-

Feria (2017) have viscous cores much smaller than the airfoil chord, so that the non-linear interactions

between the airfoil and the incoming vortex are restricted to the trajectory of the vortex. On the

other hand, the experiments of Hufstedler & McKeon (2019) and Peng & Gregory (2015) and the

numerical simulations of Barnes & Visbal (2018a), Zehner et al. (2018), and Nguyen et al. (2018) have

larger viscous cores, of the order of 0.1 - 0.5 chords. Larger viscous cores allow for stronger non-linear

interactions between the vortex and the airfoil, specially for near head-on collisions, where the airfoil

splits the vortex, disturbing the upper and lower boundary layer over the airfoil (Barnes & Visbal,

2018a).

A second important difference between the aforementioned studies is the velocity profile of the

vortical gust. While Alaminos-Quesada & Fernández-Feria (2017) and Zehner et al. (2018) report
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vortical gusts with potential-like vortices (i.e., with circumferential velocities decaying as the inverse

of the distance to the vortical core), Nguyen et al. (2018) and Barnes & Visbal (2018a, 2018b) use

Taylor vortices. The slower decay of the circumferential velocity of the former allow larger-scale

interaction between the vortical gust and the airfoil, which potentially can affect the trajectory of the

vortex and the maximum aerodynamic forces produced during the interaction.

The purpose of the present study is to analyze the aerodynamic performance of airfoils in the

presence of large vortical gusts at low Reynolds numbers, of the order of Re ∼ 103. The vortex sizes

and characteristic velocities considered in this study are of the order of the free-stream velocity and

the airfoil chord, respectively. As a consequence, the study corresponds to the flight regime of the

smaller MAVs, which has not been covered in previous studies. The effect of the vortex size, intensity

and vertical displacements will be analyzed, as well as the effect of decay rate of the circumferential

velocity of the vortex. To that end, Taylor vortices and Lamb-Oseen vortices will be used to model

vortical gusts. These two type of vortex models have very different profiles of circumferential velocity,

and both have been used in the literature to model numerically vortical gusts (i.e., Lamb-Oseen

vortices in Zehner et al., 2018, Taylor vortices in Nguyen et al., 2018; Barnes & Visbal, 2018a, 2018b).

The paper is organized as follows. The details of the numerical method are described in section

3.2. In section 3.3, the results for Taylor-vortex gusts impact on a NACA0012 are presented, where

the response of the airfoil is characterized in terms of flow and forces. We extend the analysis to the

rest of the cases in the database (Taylor and Lamb-Oseen vortices) and compare the obtained results

with those provided by the potential theory. To end with the section, a semi-empiric model for the

aerodynamic response of the airfoil is developed. Finally, conclusions are presented in section 3.4.

3.2 Numerical Method

The two-dimensional Navier-Stokes equations for an incompressible flow are solved using Direct

Numerical Simulation (DNS) to evaluate the performance of a NACA0012 airfoil at angle of attack α

when it encounters a vortical gust. The Reynolds number based on the airfoil chord c and the free

stream velocity U∞ is Re = cU∞/ν= 1000, where ν is the kinematic viscosity of the fluid. Different

velocities and sizes are considered for the vortical gust, which is modeled with a viscous vortex as

discussed below.

The DNS is performed using TUCAN, a finite differences code with an immersed boundary

method. For the temporal discretization, TUCAN uses a three-stages semi-implicit low-storage Runge-

Kutta scheme. The spatial derivatives are approximated by centered finite differences in a staggered

grid. The implementation of the immersed boundary method is the direct forcing proposed by

Uhlmann (2005), using a regularized delta with a 3-point stencil. TUCAN has already been extensively

validated, both for 2D (Moriche et al., 2016, 2017) and 3D (Gonzalo et al., 2018; Arranz et al., 2018a;

Arranz et al., 2018b) configurations. More details about the implementation of TUCAN in 2D can be

found in Moriche (2017).
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Inflow Outflow

Free Slip

Free Slip

Figure 3.1: (a) Sketch of the computational domain. Grey zone represents the location of the airfoil in
the x direction. (b) Sketch for the initial condition with the vortical gust.

The simulations have been performed in the computational domain sketched in figure 3.1(a),

with dimensions 19c ×8c in the streamwise and vertical directions, respectively. As shown in the

figure, the airfoil is located roughly in the middle of the computational domain, leaving enough space

upstream to place the viscous vortex that models the gust, and enough space downstream to properly

develop the wake. The origin of the reference system is located at the leading edge of the airfoil. The

free stream condition is modeled with an inflow velocity at the inlet boundary (left), while the outflow

has been modeled with an advective boundary condition (∂u/∂t +U∞∂u/∂x = 0) at the outlet (right).

Free slip boundary conditions are imposed in the horizontal boundaries (top and bottom).

The spatial resolution used for this study is 128 points per chord, which was selected after a grid

refinement study. This spatial resolution yields a total of 2432×1024 grid points in the streamwise

and vertical directions, respectively. The temporal resolution is chosen such that C F L ≤ 0.25.

The vortical gust is modelled as viscous vortex, initially placed in the free stream at x0 =−4c (i.e.

4 chords upstream of the leading edge) and z0 = h, as shown in figure 3.1(b). Two different vortex

models are considered in the present study. Most cases presented here use finite Taylor vortices,

like the ones used in Barnes & Visbal (2018a) and Nguyen et al. (2018). They have a characteristic

diameter D , a characteristic circumferential velocity vθm , and a circumferential velocity distribution

given by

vθ =−vθm
2r

D
exp

(−2r 2

D2

)
,(3.1)

r =
√

(x −x0)2 + (z − z0)2 .(3.2)

This velocity profile is plotted in figure 3.2, together with the corresponding distribution of vorticity. It

can be observed that the circumferential velocity is maximum at r /D = 1/2, where the circulation be-

comes Γ= Γvθmax
=πexp{−1/2}vθmD . Besides, the vorticity distribution changes sign at r /D = 1/

p
2 .

At this radius the circulation of the viscous vortex is maximum, and equal to Γmax = 2πexp{−1}vθmD .

The present study also includes a few cases with Lamb-Oseen vortices. The rationale for this is to

evaluate the effect that the vortex velocity profile has on the aerodynamic forces developed in the
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a) b)

Figure 3.2: (a) Normalized vorticity, ωD/vθm , for viscous vortices: Taylor vortex (eq. 3.2) at the
left, Lamb-Oseen vortex (eq. 3.3) with Γ = Γvθmax

= πexp{−1/2}vθmD at the right. (b) Normalized
circumferential velocity profiles of viscous and potential vortices. : Taylor vortex. : Lamb-
Oseen vortex with Γ = Γvθmax

. : Potential vortex with Γ = Γvθmax
. : Potential vortex with

Γ= Γmax = 2πexp{−1}vθmD .

airfoil. Lamb-Oseen vortices have

(3.3) vθ =
Γ

2πr

[
1−exp

−4r 2

D2

]
,

whose center will be initially located at x0 =−6c . These simulations are run in a larger computational

domain, with the inlet plane located at −12c. The vorticity and velocity profiles of this vortices

are compared to Taylor vortices in figure 3.2, showing a similar viscous core but a much slower

decay of the circumferential velocity. Indeed, at r & D the velocity of the Lamb-Oseen vortices is

indistinguishable from that of potential vortices with comparable circulation, as shown in the figure.

3.3 Results

The effect that a vortical gust (with a given vθ profile) has on the aerodynamic forces on a given airfoil

depends on 4 parameters: the angle of attack of the airfoil (α), the size (D) and intensity (vθm) of the

vortex, and its vertical location (h) with respect to the leading edge of the airfoil. The influence of

these parameters is analyzed with a parametric study, considering all combinations of 3 values for

each parameter:

vθm/U∞ = 0.1, 0.3, 1.0(3.4)

D/c = 0.5, 1.0, 2.0(3.5)

h/c = 0.0, 0.5, 1.0(3.6)

α= 0◦, 8◦, −8◦.(3.7)
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This results in a database of 81 simulations, for Taylor vortices, with a few additional cases using

Lamb-Oseen vortices, available at http://aero.uc3m.es/cfd.html. In the following, these cases

are labeled as AaZzDdVv , where a represents the angle of attack α, z is the nondimensional initial

vertical position of the vortical gust h/c , d stands for the diameter of the core of the vortex normalized

with the chord D/c , and v is the circumferential velocity of the vortex normalized with the freestream

velocity vθm/U∞. For example, A0Z0D1V1 stands the case were the airfoil with angle of attack α= 0◦

is impacted by a vortex with intensity vθm/U∞ = 1 and size D/c = 1, initially located at a vertical

distance h/c = 0 with respect to the leading edge of the airfoil.

Note that, unless explicitly stated, the results presented in this section correspond to Taylor

vortices.

3.3.1 Effects on Cl and Cd

We first describe the evolution of the flow around the airfoil during the impact of the vortical gust,

prior to analyze the effect on the aerodynamic forces (i.e, lift and drag coefficients). Figure 3.3 shows

the instantaneous vorticity field around the airfoil at several times. The time reference (t = 0) is taken

as the time when the center of the vortical gust would have reached the leading edge of the airfoil

(x = 0) if the airfoil were not present. Positive/negative vorticity (i.e., clockwise/counterclockwise)

is represented in red/blue colors in the figure. The green line upstream of the airfoil shows an

instantaneous streamline arriving to a point located 0.1c upstream of the leading edge of the airfoil,

and serves as an indicator for the effective angle of attack of the airfoil. The figure also includes

contours of the Lambda-2 vortex identification method of Jeong & Hussain (1995), using a threshold

λ2 =−0.25U 2∞/c2 ≈−4×10−4ω2
max.

Figures 3.3(a) and (b) show that as the vortical gust approaches the airfoil, it induces a positive

effective angle of attack. This increase in the effective angle of attack results in the formation of a

Leading Edge Vortex (LEV) in the upper surface of the airfoil, which travels downstream over the

surface of the airfoil (figure 3.3c,d and e). At the same time, the boundary layer in the lower surface

of the airfoil becomes thinner, and the stagnation point at the leading edge of the airfoil moves

towards the lower surface. As the vortical gust moves around the airfoil, the effective angle of attack

changes sign, the stagnation point in the leading edge shifts towards the upper surface, and the

boundary layer in the lower surface becomes thicker. By the time the vortical gust leaves the airfoil

(figure 3.3 f ), the LEVs formed in the upper surface and vortices generated in the separation of the

lower-surface boundary layer are being shed into the wake, straining the remains of the vortical gust.

It is interesting to note that the flow evolution depicted in figure 3.3 is qualitatively similar to that

shown in Nguyen et al. (2018) and Peng & Gregory (2017) and Barnes & Visbal (2018a) at much higher

Reynolds numbers. Also, similar flow structures are observed in the cases run with Lamb-Oseen

vortices, as discussed later in section 3.3.2 (see figure 3.13).

The vorticity fields and effective angle of attack shown in figure 3.3 is consistent with the expected

time evolution of the aerodynamic forces on the airfoil. This is confirmed in figure 3.4, which shows
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a) b)

c) d)

e) f)

Figure 3.3: Vorticity contours for A0Z0D1V1 at (a) tU∞/c =−2, (b) tU∞/c =−0.3, (c) tU∞/c = 0, (d)
tU∞/c = 0.2, (e) tU∞/c = 0.7, ( f ) tU∞/c = 2.2. The green line corresponds to the streamline arriving
at (x, z) = (−0.1c,0). The black line corresponds to λ2 =−0.25U 2∞/c2.
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a) b) c)

Figure 3.4: Temporal evolution of (a) lift and (b) drag forces, and (c) effective angle of attack for
A0Z0D1. Symbols correspond to: N: vθm/U∞ = 0.1. �: vθm/U∞ = 0.3. •: vθm/U∞ = 1.0.

the time evolution of the lift coefficient Cl , the drag coefficient Cd and the effective angle of attack

αe for case A0Z0D1V1. The effective angle of attack is defined somewhat arbitrarily as the angle

between the chord of the airfoil and the direction of the velocity vector at a position 0.1c upstream of

its leading edge (i.e., same point used to defined the green streamlines shown in figure 3.3). Note that

αe only represents the local orientation of the flow with respect to the airfoil in the vicinity of the

leading edge.

The time evolution of Cl and αe (figure 3.4a and c) shows positive peaks for t < 0 as the vortical

gust approaches the leading edge, and a negative peaks for t > 0 as the gust sweeps the airfoil.

Note that the positive peak of Cl is larger in absolute value than the negative peak, consistent

with the intensity of the peaks in the αe and the absence of a strong LEV in the lower surface of the

airfoil, as discussed in the previous paragraph. This weaker Cl ,mi n can be partly explained by the

additional suction force produced by the LEV in the upper surface (observable in the pressure fields,

not shown here), which partially counteracts the expected negative lift while it remains over the

airfoil (i.e., for 0 < t . c/U∞).

This counteracting effect is absent during the initial interaction between the vortical gust and the

airfoil (i.e., t < 0), when the boundary layer on the lower surface of the airfoil has not developed an

LEV.

The evolution of the drag coefficient is shown in figure 3.4(b), with two minima for Cd occurring

nearly at the time instants where Cl is either maximum or minimum. Inspection of the pressure fields

(not shown here) suggests that these drag-reduction events are due to the suction peaks generated at

the leading edge when the effective angle of attack is either maximum or minimum (see αe in figure

3.4(c) and flow visualizations in figures 3.3b and e). Similar reductions in drag have been reported in

pitching-heaving motion (Moriche et al., 2017), and flapping motion (Gonzalo et al., 2018).

Figure 3.4 also includes the time histories of Cl , Cd and αe for cases with decreasing intensity of

the vortical gust (i.e, decreasing vθm). The corresponding vorticity visualizations are provided in the
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a) b)

Figure 3.5: Vorticity contours for A0Z0D1V03 at (a) tU∞/c =−0.3, (b) tU∞/c = 0.7. The green line
corresponds to the streamline arriving at (x, z) = (−0.1c,0). The black line corresponds to λ2 =
−0.25U 2∞/c2.

Supplementary Material S1, S2 and S3. It can be observed that the behaviour is qualitatively the same

irrespective of vθm : maximum (Cl ,αe ) and minimum Cd around tU∞/c =−0.3, minimum (Cl ,αe )

and a second minimum Cd around tU∞/c = 0.7, slow recovery afterwards. From a quantitative

point of view, the absolute value of the peaks of Cl , Cd and αe increases monotonically with vθm ,

suggesting that stronger vortical gusts results in larger effective angles of attack, and consequently

larger aerodynamic forces. The changes in αe and in the force coefficients also have a footprint in

the vortical structures of the flow. Figure 3.3 shows that the vortical gust with vθm = 0.3U∞ yields

weaker vorticity perturbations in the boundary layers around the airfoil, and a strongly reduced

vortex shedding into the wake.

The absence of strong LEVs could explain the similar amplitude of the maximum and minimum

values of Cl and αe for case A0Z0D1V03. Recall the previous discussion about the effect of the

upper surface LEV on the negative peak of Cl for t > 0. Applied to case A0Z0D1V03, it would imply

that Cl depends on the instantaneous angle of attack induced by the vortical gust, and not on the

instantaneous positions of the LEVs (which are too weak to have an impact on Cl ). From this point of

view, the response of case A0Z0D1V03 is more linear, or quasi-steady.

The effect of the size of the vortical gust on the histories of Cl , Cd and αe is evaluated in figure 3.6,

where cases with α= 0◦, h/c = 0, vθm/U∞ = 1 and D/c = 0.5, 1 and 2 are shown. The corresponding

vorticity visualizations are provided in the Supplementary Material S4, S1 and S5. It can be observed

that the size of the vortical gust has an impact on both the temporal extent and the intensity of the

interaction. For the largest vortical gust, the effect on the aerodynamic forces and effective angle

of attack is felt earlier and last longer, the intensity of the resulting aerodynamic forces is larger

(specially for the Cl ), and the relaxation to the steady state is more complex, with alternating peaks of

small amplitude in Cl for t & 3.

The fact that the absolute value of the peaks of Cl and Cd increase monotonically with D , together

with the effect of vθm discussed in figure 3.4, suggests that the important parameter in terms of

predicting the intensity of these peaks is the circulation of the vortical gust, as suggested by the



3 - ANALYSIS OF VORTICAL GUST IMPACT ON AIRFOILS AT LOW REYNOLDS NUMBER 31
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Figure 3.6: Temporal evolution of (a) lift and (b) drag forces, and (c) effective angle of attack for
A0Z0V1. Linetypes correspond to: : D/c = 0.5. : D/c = 1.0. : D/c = 2.0.

potential theory model developed by Alaminos-Quesada & Fernández-Feria (2017). The results in

figures 3.4 and 3.6 also suggests that the relationship between Cl and αe might not be independent

on the gust intensity: increasing vθm/U∞ from 0.1 to 0.3 yields a 2-fold increase in Cl ,max and αe,max

(figure 3.4), but increasing D/c from 0.5 to 2 yields a 2-fold increase in Cl ,max and a 1.5-fold increase

in αe,max (figure 3.6). These issues will be investigated further in sections 3.3.2 and 3.3.3.

Next, the effect of the vertical distance (h) between the airfoil and the vortical gust is analyzed,

keeping the size and intensity of the latter constant. The corresponding histories of Cl , Cd and αe are

shown in figure 3.7. The corresponding vorticity visualizations are provided in the Supplementary

Material S1, S6 and S7. As h increases, the maximum values of Cl and αe decreases monotonically,

with essentially no variation on the time of the peaks. It is interesting to note that, while the negative

peaks of αe vary monotonously with h the same is not true for the negative peaks of Cl . Indeed, the

strongest negative Cl is observed for the case with h/c = 0.5.

The non-monotonous behaviour of the negative peak of Cl with h can be explained comparing

the flow visualizations of cases A0Z0D1V1 and A0Z05D1V1, shown in figures 3.3 and 3.8, respectively.

The most striking difference between the vorticity fields of both cases at tU∞/c = 0.7 (figures 3.3e

and 3.8b) is the position of the LEV developed on the upper surface of the airfoil, which is still over

the airfoil for the case with h = 0 but downstream of the trailing edge for the case with h/c = 0.5. This

difference is caused by the streamwise velocities induced by the vortical gust on the upper surface

of the airfoil when h/c = 0.5, which advect the LEV faster downstream. As it can be observed in the

pressure fields shown in figure 3.9(a), the low pressure region associated to the LEV in case A0Z0D1V1

is producing a positive contribution to Cl , and hence reducing the absolute value of the negative

Cl peak at tU∞/c = 0.7. For case A0Z05D1V1 (figure 3.9b), the LEV and its associated low pressure

region are downstream of the airfoil, and do not affect much the aerodynamic forces.

In terms of the effect of h on the drag of the airfoil, figure 3.7(b) shows that increasing h results
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Figure 3.7: Temporal evolution of (a) lift and (b) drag forces, and (c) effective angle of attack for
A0D1V1. Line colors correspond to: : h/c = 0.0. : h/c = 0.5. : h/c = 1.0.

a) b)

Figure 3.8: Vorticity contours for A0Z05D1V1 at (a) tU∞/c =−0.3, (b) tU∞/c = 0.7. The green line
corresponds to the streamline arriving at (x, z) = (−0.1c,0). The black line corresponds to λ2 =
−0.25U 2∞/c2.

a) b)

Figure 3.9: Pressure contours at tU∞/c = 0.7 for (a) A0Z0D1V1, (b) A0Z05D1V1.
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a) b) c)

Figure 3.10: Temporal evolution of (a) lift and (b) drag forces, and (c) effective angle of attack for
Z0D1V1. Line colors correspond to different angles of attack. : α = −8◦. : α = 0◦. :
α= 8◦.

in weaker drag-reduction with respect to static values (i.e., higher values of Cd throughout the

gust). Indeed, for h/c = 1 drag is increased with respect to the steady state value during the whole

interaction with the vortical gust. This effect is probably the result of a decrease of the intensity of

the suction peak at the leading edge (due to the reduction in the effective angle of attack) combined

with an increase of the skin friction drag in the upper surface of the airfoil (due to the additional

horizontal velocity induced by the vortex on the airfoil).

Finally, the effect of the angle of attack on the response of the airfoil to the vortical gust is

evaluated in figures 3.10 and 3.11, where cases with h/c = 0, D/c = 1, vθm/U∞ = 1 and different

α’s are compared. The corresponding vorticity visualizations are provided in the Supplementary

Material S8, S1 and S9. In terms of the lift coefficient, figure 3.10(a) shows that as α increases, the

evolution of Cl (t ) is shifted upwards. Indeed, when the difference between the instantaneous Cl and

its static value is analyzed (i.e., ∆Cl , plotted in figure 3.11a), the effect of α on the absolute value of

the maximum and minimum peaks is very small, similar to previous observations in Hufstedler &

McKeon (2019) or Biler et al. (2019). The effect of α is more apparent on the evolution of ∆Cl in the

recovery phase, with stronger oscillations for α=−8◦ than for α= 0◦ or 8◦.

In terms of the drag coefficient, α affects both Cd and ∆Cd , as shown in figures 3.10(b) and

3.11(b). In any case, the effect of α on Cd or ∆Cd is . 0.3, same order of magnitude as the differences

in ∆Cl ,max that appear in figure 3.11(a). Indeed, the changes in ∆Cd due to α can be explained

taking into account the projection of the forces induced by the vortical gust along the x-direction.

As α increases, the lift force resulting from the generation of the LEV in the upper surface is tilted

backwards, resulting in an increased drag. On the contrary, for α=−8◦ this lift force is tilted forward,

yielding a force along the negative x-axis that results in a stronger drag decrease than when α= 0◦

(where the drag decrease is only due to the suction at the leading edge).
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a) b)

Figure 3.11: Temporal evolution of increments of (a) lift and (b) drag forces with respect to steady
state values, for Z0D1V1. Line colors correspond to different angles of attack. : α=−8◦. :
α= 0◦. : α= 8◦.

Lastly, the effect of the angle of attack of the airfoil in the effective angle of attack is shown in figure

3.10(c). First, the steady values of the αe (i.e, for tU∞/c .−2 and for tU∞/c & 4) are roughly 45%

larger than the value of the angle of attack of the airfoil, emphasizing the fact that αe characterizes

the direction of the flow close to the leading edge, and not the direction of the free-stream with

respect to the airfoil’s chord. Second, the maximum of αe is roughly insensitive to α, consistent with

the weak effect that α has on the ∆Cl in figure 3.11(a). The same is not true for the minimum of αe ,

which varies monotonously with α.

The analysis here presented is in agreement with the trends observed in previous studies at much

higher Reynolds numbers (Nguyen et al., 2018; Peng & Gregory, 2017; Barnes & Visbal, 2018a).

3.3.2 Comparison of viscous vortical gusts with potential flow theory.

From the point of view of modeling, it is interesting to evaluate to what extent the potential theory

is able to model the forces on the airfoil due to the vortical gust presented in 3.3.1. To that end, the

potential model described in Alaminos-Quesada & Fernández-Feria (2017) is applied to the present

configuration. This potential model uses Milne-Thomson circle’s theorem and conformal mapping,

modelling the vortical gust as a point vortex travelling downstream and interacting with a flat plate.

The circulation of the vortex remains constant during this interaction, while the bound circulation of

the flat plate varies. The trajectory of the vortex is given by a system of ODEs (which must be solved

numerically), and forces on the plate (i.e, its bound circulation) can be computed analytically once

the instantaneous location of the vortex is known.

It should be noted that the main differences between the assumptions of the potential theory

model and the conditions simulated here are the low-Reynolds number (Re = 1000 vs a virtually infi-

nite Reynolds number in the potential theory), the viscous nature of the vortex (with the differences

in the vθ profiles shown in figure 3.2), and the finite thickness of the airfoil vs an infinitely thin flat
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vθm/U∞ = 0.1 N D/c = 0.5 h/c = 0
vθm/U∞ = 0.3 � D/c = 1.0 h/c = 0.5
vθm/U∞ = 1.0 • D/c = 2.0 h/c = 1

Table 3.1: Linetypes and symbols used for Taylor vortices at α= 0◦.

plate. Additionally, the radius of the viscous vortex considered here is rvc ∼O(c), while the potential

theory relies on rvc /c ¿ 1.

Figure 3.12(a) shows the time evolution of ∆Cl for Taylor, Lamb-Oseen and potential vortices, for

cases with α= 0◦, vθm/U∞ = 1 and D/c = 1. Note that ∆Cl is plotted versus the streamwise position of

the vortical gust with respect to the leading edge of the airfoil, which for the present viscous vortices

(Taylor and Lamb-Oseen) is just Xl (t ) = tU∞. Also, the circulation of the Taylor vortex is estimated at

the radius of maximum vθ (as done in Alaminos-Quesada & Fernández-Feria (2017) when comparing

the potential model with the experimental results), resulting in Γ= Γvθmax
= vθmDπexp(−1/2). If we

focus on the first positive peak in ∆Cl , it can be observed that there is no clear agreement between the

viscous and potential cases. However, both Taylor and Lamb-Oseen vortices show similar behavior

when the vortex is close to the airfoil, at least in terms of the time to maximum ∆Cl and in the

transition from ∆Cl > 0 to ∆Cl < 0. Indeed, the instantaneous vorticity fields of Taylor and Lamb-

Oseen vortices for case A0Z0D1V1 (see figure 3.13) show that similar vortical structures are formed

during the interaction between the viscous vortices and the airfoil. It is possible to see that both

vorticity and the effective angle of attack for Lamb-Oseen cases are lower, justifying the lower value

for the peaks in ∆Cl compared with Taylor vortices in figure 3.12(a). Note also that the effect of the

Lamb-Oseen and potential vortices on the ∆Cl of the airfoil is evident when the vortices are relatively

far from the airfoil, while the effect of the Taylor vortex is only felt at distances of the order of D . Finally,

the potential theory predicts a negative peak of ∆Cl that increases in magnitude monotonously with

h/c, while in the case of the viscous vortical gust this variation is not monotonous, due to the effect

of h/c on the advection velocity of the LEV generated in the upper surface (discussed in section 3.3.1).

Similar results are obtained for other values of D and vθm .

The poor performance of the potential model to predict ∆Cl ,max in the present case contrasts

with the relatively good agreement reported in Alaminos-Quesada & Fernández-Feria (2017) between

experiments and the potential theory for h . c and small angles of attack. The comparison between

potential, Taylor and Lamb-Oseen vortices suggests that the reason for the present mismatch is

related to the differences in the vθ profile of viscous and potential vortices at small r , i.e. within the

viscous core of the vortex. Indeed, the experiments agreeing with the potential model in Alaminos-

Quesada & Fernández-Feria (2017) were performed at a larger Reynolds number (Re ≈ 24000),

resulting in smaller viscous cores than those considered here: the reported value of the radius to

maximum circumferential velocity in the experiments is rvc = 0.07c, while the present vortical

gusts have rvc = D/2 = [0.25−1]c. As a consequence, we conjecture that the viscous cores of the

vortices in the experiments of Alaminos-Quesada & Fernández-Feria (2017) are weakly affected by
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a)

Figure 3.12: (a) Evolution of ∆Cl with the streamwise position of the vortical gust (Xl (t )/c), for Taylor
( ), Lamb-Oseen (�), and Potential vortices ( ). All cases have α= 0◦, D/c = 1, vθm/U∞ = 1
and Γ = Γvθmax

. The line color indicates the value of h/c, as in table 3.1: : h/c = 0.0. :
h/c = 1.0. (b) Variation of ∆Cl ,max with the non-dimensional circulation, at α= 0◦. Taylor vortices are
coded to indicate D/c and h/c , using the linetypes and colors specified in table 3.1. Dotted lines with
open circles correspond to results from the potential model, colored with h/c (as in table 3.1). The
solid green line on the top is ∆Cl ,max = Γ/(U∞c).

the interaction with the airfoil, analogous to the constant circulation vortices of the potential model.

On the other hand, in the present simulations the vortical gusts are modified in the interaction with

the airfoil, provided they are strong enough. This can be observed in the λ2 contours presented in

figures 3.3, 3.8 and 3.13. Weaker vortical gusts seem less affected by the airfoil, like case A0Z0D1V03

(see figure 3.5).

Besides these differences, the DNS results show that ∆Cl ,max is roughly proportional to the

circulation of the vortical gust, as predicted by the potential model. This is shown in figure 3.12(b),

where all cases with α= 0◦ are presented. The line types and symbols used in the figure for the Taylor

vortices are reported in table 3.1. The results of the potential model for h/c = 0,0.5 and 1 are also

included in the figure with open symbols. It can be observed that for viscous vortical gusts at given

values of Γ/(U∞c) and h/c = 0, the resulting ∆Cl ,max varies up to a factor of 2 when D/c varies from

0.5 to 2. This variability, which is not captured by the potential model, becomes greater as h increases.

3.3.3 A semi-empirical model for lift response to viscous vortical gusts

Based on the results presented in the previous sections, it is clear that for the viscous vortical gusts

considered in the present study the resulting ∆Cl (t) depends on the intensity of the vortical gust

(i.e., its circulation), the vertical distance to the airfoil and the size of the vortical gust. Note that

the potential model does not include the latter, but assumes that rvc ¿ c. As a consequence, the

potential model is flawed when the radius of the viscous core of the vortex is not much smaller than

the airfoil chord.
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e) f)

Figure 3.13: Vorticity fields for Taylor Vortex (left) and Lamb-Oseen Vortex (right) with A0Z0D1V1 at
tU∞/c =−0.3 (top), tU∞/c = 0.2 (mid) and tU∞/c = 0.7 (bottom). The green line corresponds to the
streamline arriving at (x, z) = (−0.1c,0). The black line corresponds to λ2 =−0.25U 2∞/c2.
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Figure 3.14: Maximum ∆Cl as a function of the maximum effective angle of attack αe,max induced
by the vortex on the airfoil in logarithmic scale. (a) Taylor vortices for α = 0◦. Lines and colors as
indicated in table 3.1. (b) Taylor vortices for different angles of attack ( : α= 8◦; : α= 0◦;

: α=−8◦). Green ( ) and purple ( ) lines correspond to fittings (a) using only cases with
α= 0◦ and (b) using cases with α=−8◦,0◦,8◦.

Previous works on transverse gusts (Moriche et al., 2019; Perrotta & Jones, 2017) have shown

that the peak values of the lift coefficient due to the gust (i.e., ∆Cl ,max) are roughly proportional to

the maximum effective angle of attack, defined as the ratio between the maximum vertical velocity

of the gust over the free-stream velocity. Similar observations where made by Gonzalo et al. (2018)

when comparing heaving and flapping wings. Hence, it seems reasonable to test how well does αe,max

characterizes ∆Cl ,max in the present configurations, even if the effective angle of attack in transverse

gusts is global (i.e, it is felt by the whole airfoil) while the definition of αe (t) used here is local (i.e.,

only represents the flow direction near the leading edge).

This test is performed in figure 3.14, where ∆Cl ,max is plotted as a function of αe,max. Figure 3.14(a)

only shows results for α= 0◦, while figure 3.14(b) shows results for α=−8◦,0◦ and 8◦. The solid lines

in both panels correspond to linear fits for ∆Cl ,max(αe,max), with R2 = 0.8895,R2
ad j usted = 0.8851, and

RMSE = 0.217 for figure 3.14(a) and R2 = 0.8871,R2
ad j usted = 0.8856, and RMSE = 0.2097 for figure

3.14(b). Even if the linearity between ∆Cl ,max and αe,max approximately holds, there is considerable

variation at a given αe,max depending on the values of D/c, h/c and α (i.e., a factor of two or more).

Indeed, similar fits can be obtained for sin(αe,max), without any significant improvement over the

results presented in figure 3.14. This variability was already anticipated in section 3.3, and it might be

related to the local character of αe,max discussed above. Also, it is important to note that αe,max is not

a parameter that is known a priori: it is a result of a (relatively costly) DNS simulation, and hence has

a limited value in terms of a predictive model for vortical gusts.

In the remaining of this section we propose an alternative empirical model, that overcomes the

limitations of the potential model and the scaling of ∆Cl ,max with αe,max. This empirical model is

based on scaling the lift coefficient with an averaged effective angle of attack that can be estimated
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a priori (i.e., without solving a DNS), and on normalizing the time over which ∆Cl peaks with the

size of the vortical gust. These two parameters (averaged effective angle of attack and proper time

scale) completely characterize the effect of the vortical gust on the aerodynamic forces on the airfoil,

capturing the influence of vθm , D and h.

First of all, the results presented in section 3.3 suggest that the time at which ∆Cl peaks (namely,

tmax) depends mostly on the diameter of the viscous vortex (see figure 3.6), with little effect of vθm

(i.e., figure 3.4), h (i.e., figure 3.7) and α (i.e., figure 3.10). This idea is also supported by the results

of the potential model, since the ∆Cl of the potential vortices (with D → 0) peak at Xl (t )/c = 0 (i.e.,

tU∞/c = 0), as shown in figure 3.12(a). Figure 3.15(a) shows the time to peak as a function of D/c

for all the cases in the present database, including Taylor and Lamb-Oseen vortices. Remember that

t = 0 corresponds to the time at which the center of the viscous vortex would reach the position of the

leading edge of the airfoil, if the airfoil were not present. The figure shows that tmax is approximately

a linear function of D/c. Indeed, the agreement of the data from Taylor vortices to linear regression

lines (computed independently for each value of α) is reasonably good for most of the data. The

regression lines for α = 0◦ and 8◦ coincide (red and green dashed lines), whereas the regression

line for α = −8◦ (in blue dashed line) is slightly different. Most of the outliers at D/c = 1 seem to

correspond to α=−8◦. The linear fit between tmax and D/c also seems to work reasonably well for

the Lamb-Oseen vortices when h/c = 0 and 0.5 (black and blue diamonds in figure 3.15(a) collapsing

on top of each other), but not for the Lamb-Oseen vortex at h/c = 1 (red diamond on figure 3.15a).

Figure 3.15(b) shows tmax versus the circulation of the vortical gusts for Taylor and Lamb-Oseen

vortices with α= 0◦. The data for the Taylor vortices appear clustered in horizontal lines, each line

corresponding to a value of D/c, although with some scatter for cases with Γ/(U∞c)& 2. The Lamb-

Oseen vortices have D/c = 1, and consequently we can observe that they fall close to the Taylor

vortices with D/c = 1, at least for h/c = 0 and 0.5. Again, the Lamb-Oseen vortex with h/c = 1 presents

a different behaviour, with a value of tmax closer to the largest Taylor vortices (D/c = 2).

Figure 3.15(a) also shows a linear regression line to the whole database (black dashed line), which

corresponds to

(3.8) tmaxU∞/c =−0.4033D/c +0.06997,

with R2 = 0.9718, R2
ad j usted = 0.9714 and RMSE = 0.0427.

The second piece of the alternative empirical model proposed here is the averaged effective angle

of attack. Unlike αe (t ) defined in section 3.3, the idea is to provide an effective angle of attack that can

be computed a priori and that captures the global effect of the vortical gust on the airfoil. Hence, we

choose to work with the spatial average of the vertical velocity induced by the vortex over the airfoil

chord, namely wh . This average is computed when the vortical gust is at xmax, which corresponds to

the the streamwise position where ∆Cl peaks. For the Taylor vortex, this results in

(3.9) wh = 1

c

∫ c

0
vθm

2(x −xmax)

D
exp

(
− 2r 2

D2

)
dx,
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a) b)

Figure 3.15: (a) Time for maximum ∆Cl , as a function of the diameter of the viscous gust. Taylor
vortices are represented by empty circles, colors indicating the angle of attack ( : α= 8◦; :
α= 0◦; : α=−8◦). Dashed lines correspond to the linear regressions for each angle of attack.
(b) Time for maximum ∆Cl , as a function of the circulation of the vortex, for α= 0◦. Taylor vortices
are represented with the lines and symbols reported in table 3.1, and their circulation is defined as
Γ= Γvθ,max . In both panels, Lamb-Oseen vortices are represented with diamonds colored with h/c (�:
h/c = 0.0; �: h/c = 0.5; �: h/c = 1.0).

where r =
√

(x −xmax)2 +h2 and xmax ≈U∞tmax. The latter assumes a constant advection velocity

of the vortical gust at velocity U∞, and requires estimating tmax using equation (3.8). Note that wh

depends on the vortex intensity, size and vertical displacement of the vortical gust, and can be

estimated a priori, without running a simulation or performing an experiment.

Figure 3.16 shows ∆Cl ,max as a function of wh/U∞ in logarithmic (a,b) and linear scales (c,d),

for α= 0◦ (a,c) and α=−8◦,0◦,8◦ (b,d). The figures also include a linear regression curve (in cyan)

given by

(3.10) ∆Clmax = 4.076 ·wh/U∞−0.00317.

This curve has been obtained fitting all Taylor vortices, resulting in a linear regression with R2 =

0.9748, R2
ad j usted = 0.9744 and RMSE=0.0991, which has a smaller scatter than ∆Cl ,max versus αe,max

in figure 3.14.

Figure 3.16 shows that equation (3.10) adjust the Taylor vortices moderately well at all α. The

small deviations observed for wh/U∞ . 10−2 correspond to small vortices (D/c = 0.5) relatively far

from the airfoil (h/c ≥ 0.5), as it can be observed in 3.16(a) for the α= 0◦ case. On the other hand, the

small deviations observed for the largest values of wh correspond to cases with vθm =U∞, as it can

be observed in figure 3.16(c) for case α= 0◦.

It is worth noting that the main trends observed in figure 3.16 are observed for other a priori

estimations of the effective angle of attack of the airfoil, like the velocity induced by the vortex at

x = c/4 (not shown). However, the scatter of the results is smaller for the integral definition of wh

given in equation (3.9).
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Figure 3.16: Maximum ∆Cl as a function of the averaged vertical velocity induced by the vortex on
the airfoil, wh/U∞. (a,b) in logarithmic scale, and (c,d) in linear scale. (a,c) Taylor vortices for α= 0◦.
Lines and colors as indicated in table 3.1. (b,d) Taylor vortices for different angles of attack ( :
α = 8◦; : α = 0◦; : α = −8◦). In all panels the cyan line ( ) corresponds to equation
(3.10).

The relative good fit provided by equations (3.8) and (3.10), together with the similar shapes of

the time evolutions of Cl (t ) shown in figures 3.4, 3.6, 3.7 and 3.10, raises the question of whether it

is possible to obtain a self-similar evolution for ∆Cl . To that end, we compute ensemble averages

of ∆Cl /(wh/U∞) as a function of tU∞/D1 for the cases with Taylor vortices and wh/U∞ > 0.01.

These are shown in figure 3.17(a), together with the corresponding medians and the 10% and 90%

percentiles, for all Taylor vortices irrespective of the angle of attack.

Inspection of figure 3.17(a) shows that mean and median coincide until the peak in ∆Cl is reached,

meaning that the statistical distribution is symmetric. Besides, the 10% and 90% percentile curves

remain close to the mean value. In that sense, it is possible to conclude that the initial response of

NACA0012 airfoils to Taylor vortices is self-similar. After ∆Cl ,max is reached, mean and median begin

to deviate from each other, while the distance between the 10% and 90% percentiles increases. This

1Note that this is equivalent to t/tmax, since tmax is proportional to D/U∞.
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Figure 3.17: Evolution of ∆Cl /(wh/U∞) as a function of tU∞/D. (a) Mean ( ), median ( ),
10% and 90% percentiles (shaded areas) obtained from all cases with Taylor vortices. (b) Mean
value for Taylor vortices ( ), compared to instantaneous evolutions for Lamb-Oseen vortices (�:
h/c = 0.0; �: h/c = 0.5; �: h/c = 1.0).

suggest that the self-similar scaling is less valid for t > 0, mainly due to the non-linear interactions

between Taylor vortex, LEVs and the boundary layers of the airfoil.

Figure 3.17(b) compares the self-similar evolution of ∆Cl /(wh/U∞) of the Taylor vortices (given

by its mean value) to the evolutions of ∆Cl /(wh/U∞) of the three Lamb-Oseen vortices considered in

this work. For the latter, wh is estimated using the velocity profile given in equation (3.3), and the

expression for tmax given in equation (3.8). Overall, Taylor and Lamb-Oseen evolutions do not agree,

with the latter showing a much slower build up of ∆Cl /(wh/U∞) for t < 0. This is consistent with

the slower decay of the circumferential velocity profiles of Lamb-Oseen vortices, which would result

in stronger long-distance interactions than in Taylor vortices. Besides these differences, it is worth

noting that the peak values of ∆Cl /(wh/U∞) for Taylor and Lamb-Oseen vortices agree reasonably

well (i.e., approximately within the 10% and 90% percentiles of Taylor vortices, as shown in figure

3.17a). The Lamb-Oseen vortices with h/c = 0.5 and h/c = 0 collapse on top of each other during the

initial evolution of the gust (t < 0), but show significant differences in the evolution for t > 0. The

Lamb-Oseen vortex with h/c = 1 has a significantly different evolution, peaking at earlier times than

h/c = 0.5 and 0. This suggests that, provided with the necessary DNS data, a self-similar evolution for

∆Cl /(wh/U∞) could also be computed for Lamb-Oseen vortices, albeit with a different shape as that

obtained for Taylor vortices.

3.4 Conclusions

The effect that vortical (viscous) gusts have on the aerodynamic forces of a NACA0012 airfoil has been

analyzed using direct numerical simulations at low Reynolds number (Re = 1000). The Reynolds

number considered here is consistent with the range of vortex diameters chosen for the study

(D/c = 0.5−2), corresponding to viscous cores with sizes comparable to the airfoil chord. A large
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database is presented and discussed, with 81 simulations of Taylor vortices (varying the size D,

maximum circumferential velocity vθm , vertical distance of the vortical gust h, and angle of attack of

the airfoil α) and 3 additional simulations for Lamb-Oseen vortices.

In agreement with previous works at higher Reynolds numbers, a negative (counter-clockwise)

vortical gust produces and initial increase in the lift coefficient as it approaches the airfoil (t < 0),

followed by a negative perturbation in Cl as it sweeps the airfoil and interacts with the airfoil wake

(t > 0). The angle of attack seems to have a small effect on the perturbation of the aerodynamic force,

so that the change in the lift coefficient ∆Cl remains fairly independent on the angle of attack. The

intensity of the initial positive perturbation of ∆Cl increases with the size (D) and intensity of the

vortical gust (vθm), and decreases when the vertical displacement (h) of the vortical gust with respect

of the airfoil increases. The behaviour of the negative peak of ∆Cl at t > 0 is not monotonous with the

vertical displacement of the vortex, due to the interactions between the vortical gust and the Leading

Edge Vortex (LEV) developed during the initial interaction of the gust and the airfoil.

The interactions of the airfoil with Taylor and Lamb-Oseen vortices are qualitatively similar.

However, due to the slower decay of the velocity profiles induced by the latter, the effect of Lamb-

Oseen vortices is felt in the aerodynamic forces of the airfoil at larger distances than for Taylor

vortices. As a consequence, head-on Lamb-Oseen vortices (h/c = 0) have a progressive effect on the

airfoil that results in somewhat weaker LEVs and lower peaks of ∆Cl compared to Taylor vortices. On

the other hand, when h/c ∼ 1.0, Lamb-Oseen vortices have a stronger effect on the aerodynamic

response of the airfoil than Taylor vortices.

Special attention has been paid to the characterization of the peak value in the lift coefficient

perturbation (∆Cl ,max) with the parameters of the gust. Contrary to potential models, where ∆Cl ,max

depends only on the vortex circulation (Γ∝ Dvθm) for a fixed vertical displacement (h), the present

data show that ∆Cl for a viscous gust at a fixed h is not a linear function of the circulation of the gust

(i.e., vθmD), but has an explicit dependency on D . However, by defining and averaged vertical velocity

induced by the vortical gust (wh), we have been able to show empirically that ∆Cl ,max ≈ 4wh/U∞
for all viscous vortices considered here (Taylor and Lamb-Oseen). By definition, wh depends on the

intensity, size, velocity profile and vertical displacement of the gust. Moreover, it can be estimated a

priori, without having to run a simulation or a experiment: only the velocity profile of the vortical

gust is needed.

Finally, the scaling of ∆Cl ,max with wh can also be applied to the initial development of ∆Cl (t),

resulting in a single function ∆Cl /(wh/U∞) = f (tU∞/D) characterizing the growth of ∆Cl for a given

vortical gust velocity profile. Note that in the previous expression, wh and tU∞/D capture the effect

of the intensity (vθm), size (D) and vertical distance (h) on the perturbation of the lift coefficient.

The effect of the velocity profile of the viscous vortical gust (i.e., Taylor vortex, Lamb-Oseen vortex,

etc.) is captured in the shape of the function f (tU∞/D). This result is particularly interesting, and its

extension to higher Reynolds numbers, airfoil geometries and to other models for vortical gusts is

left for future works.
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4
LOAD MITIGATION ON HEAVING AIRFOILS USING PASSIVE TRAILING-EDGE

FLAPS

Abstract

The load that can be mitigated using a passive-pitching trailing edge flap on NACA0012 airfoils

at a Reynolds number Re = 1000 subjected to oscillations in the angle of attack is analysed. For

this purpose, Direct Numerical Simulations of the two-dimensional incompressible flow have been

performed. The validity of a quasi-steady model to predict the load mitigation using passive pitching

flaps, previously proposed in the literature is questioned here. The model predicts a load mitigation

proportional to the flap-to-chord length ratio a/c . The results obtained in this study generally deviate

from the predictions of the model. The discrepancies cannot be explained only through the sole effect

of inertia. Instead, the non-linearities in the aerodynamics or a combination of them and inertia are

likely to be the responsibles of these deviations. However, the differences in load mitigation with

respect to the model are limited. The results show that the increment in the reduction in fluctuations

∆RF is proportional to the increment in ∆a/c , which is in line with the predictions of the quasi-steady

theory. For a given kinematics, the deviation from the actual value of RF is a constant, independent

of the value of a/c. On the other hand, the quasi-steady model fails in the prediction of the flap

deflections obtained in this work. The effect that the inertia of the flap and the preload of the torsional

spring have on the load mitigation are analysed for further investigation on the applicability of the

passive control device.

47
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4.1 Introduction

Small-scale bioinspired robotic vehicles have attracted the attention of the scientific community

over the last decades. For example, flapping-wing micro air vehicles (MAVs), mimicking the flight

of natural fliers as birds or insects, have shown potential to outperform the classical fixed-wing

configurations in terms of efficiency due to their unconventional force-generating mechanisms

(Haider et al., 2021). They fly in unsteady turbulent flows where, contrary to large-scale aircraft,

the disturbances in the gusty environment are of the order of magnitude of the incoming velocity

(Martínez-Muriel & Flores, 2020). Other small-scale devices, as micro wind turbines inspired in

seeds (the maple seed, see Holden et al., 2015, or the Petrea Volubilis seed, see Gaitan-Aroca et al.,

2020), have shown the feasibility of these devices and the possibility of achieving a more efficient

performance.

The disturbances in the gusty environment affect the aerodynamic performance of these bioin-

spired devices. These disturbances cause cyclic or chaotic loads on the small-scale vehicles and

turbines, which are detrimental from the point of view of structural fatigue. This limits the service

life of the wind turbines and increases their cost-effectiveness of maintenance (Han et al., 2016). In

case the amplitude of these loads is large enough, they can even lead to the complete failure of the

structure. Ideally, the design of these devices should be such that they incorporate means to mitigate

the unnecessary oscillations around the load required to operate appropriately without modifying it.

Natural fliers and swimmers employ control surfaces to mitigate the effect of unsteadiness in the

flow. Kestrels, for example, can hover in strong gusty wind and keep the eyes in a fixed position with

respect to an earth-fixed reference system with extreme accuracy (Videler et al., 1983) by activating

their musculature. Besides, it is well known that wings and fins are compliant structures, which do

not only react actively as shown before, but also passively (Wootton, 1992). In fact, flexibility effects

are well known to stabilise or enhance the flight of birds and insects or the swim of fish (Marais et al.,

2012; Senda et al., 2012; Addo-Akoto et al., 2021). In striking contrast with this sophisticated use of

passive and active control surfaces, our understanding of unsteady load alleviation is still limited.

To mitigate the loads and to control the aeroelastic response of wind turbine blades, Active

Flow Control (AFC) techniques can be applied (Johnson et al., 2010). It requires a combination of

sensors, actuators and control systems which may go up to local level (Lackner & Kuik, 2010), further

increase the complexity of the system, not only in terms of control but also in terms of structure and

maintenance perspectives. Solutions based on AFC have been already applied. For example, full span

active pitch is a solution used on the majority of (large-scale) horizontal axis wind turbines (HAWTs).

However, it has a limited bandwidth in space and time that allows for a reaction only to relatively

large and slow turbulent oscillations (Navalkar et al., 2016).

A solution to overcome these limitations is the use of passive devices, based on a simpler im-

plementation. For example, Bottasso et al. (2016a) explored the load alleviation capabilities of an

articulated tip device in HAWTs, suggesting that passive solutions can perform nearly as well as the

active ones at a reduced complexity. The use of passive flaps located at the trailing edge of the blades
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and their effect on load mitigation was also investigated in Bottasso et al. (2016b), showing the ability

to attenuate vibrations in a broad frequency range, reducing the fatigue damage, hence increasing

the lifetime, without affecting noticeably the power production.

Further progress on passive control strategies has been made by Arredondo-Galeana et al. (2021),

proposing a two-dimensional, linear, quasi-steady model to predict the load mitigation that can be

achieved by means of a passive-pitching trailing edge flap. The outcome of the model predicts a

mitigation that is linearly proportional to the flap-to-chord length ratio a/c, meaning that a fully

passive-pitching foil could mitigate completely the loads coming from oscillations in the angle of

attack seen by the airfoil. They also perform experiments at Reynolds number Re = 50,000 for airfoils

with flap located at the 75% of the chord to confirm the validity of the proposed theory.

It is worth mentioning that the typical Reynolds number of HAWTs is O (106 − 107). At these

values of the Reynolds number, assuming attached inviscid and irrotational flow, and assuming

thin airfoil, quasi-steady potential flow theories may apply. However, small-scale devices depart

from the hypotheses which the quasi-steady theory is based on. For example, viscous effects are

more important, and there is usually massive flow separation, leading to huge deviations from the

assumptions of the quasi-steady model. On the other hand, the validity of the theory was only proven

for one flap-to-chord length ratio, leaving open the question of whether the results were extensible

to larger flaps.

Here, we perform Direct Numerical Simulations of the 2D incompressible flow around airfoils

incorporating passive-pitching trailing edge flaps at Re = 1000 following a setup similar to the one

proposed in Arredondo-Galeana et al. (2021). We analyse the effect of the flap-to-chord length ratio

on the load mitigation that is achieved for airfoils undergoing oscillations in the angle of attack.

Besides, we extend the parametric space examined in Arredondo-Galeana et al. (2021), considering

not only more intense kinematics, but also analysing the effect of other variables as the inertia or the

preload of the torsional spring.

The chapter is organised following the next structure: Section 4.2 describes the load mitigation

strategy proposed in Arredondo-Galeana et al. (2021) and used in this study. The fluid-structure

interaction problem is defined in section 4.3 together with the methodology followed to solve it. In

section 4.4, we investigate the validity of the quasi-steady model. The results of the simulations are

presented, where the response of the airfoil is characterised in terms of flow, forces and dynamics of

the flap. Finally, conclusions are shown in section 4.5.

4.2 Theoretical model

The proposed model is based on the following idea: assuming attached flow, a rigid symmetric airfoil

free to rotate (an angle θ′) around its leading edge would align with the incoming flow after a change

in its direction, as shown in figure 4.1(a), leading to zero lift force. As a certain lift is needed to operate

any wind turbine, there must be a moment Ms that opposes the hydrodynamic pitching moment Mh
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(a) (b)

Figure 4.1: (a) Sketch of a rigid airfoil pitching around its leading edge, aligning with the incoming
flow. (b) Sketch of a flapped airfoil to qualitatively describe the problem of load mitigation using a
passive-pitching trailing edge flap, together with the main parameters defining it.

acting on the pitching axis of the airfoil, such that the required net lift is obtained when the airfoil is

set to a given angle of attack α. This moment Ms can be provided by a highly flexible torsional spring,

which, if highly preloaded (i.e. θp À θ′), has a virtually constant moment

(4.1) Ms = ks(θp ±θ′) ≈ ksθp

that would ensure Ms =−Mh . Consider now the instantaneous change in the angle of attack α′. Using

linear thin airfoil theory, this increment in the angle of attack results in a increment in lift ∆L1 = 2πα′

and an increment in the hydrodynamic pitching moment ∆Mh =−∆L1xAC , where xAC is the position

of the aerodynamic center measured from the leading edge. This increase in moment will lead to a

counterclockwise (CCW) re-pitch of the airfoil by an angle θ′ < 0, which leads to an additional change

in lift ∆L2 = 2πθ′, modifying ∆Mh . As stated in equation (4.1), the moment delivered by the spring is

constant, such that

(4.2) Ms =−(Mh +∆Mh),

which leads to ∆Mh = 0, implying that α′ =−θ′, and the load of the airfoil remains unchanged.

Let us now address the load mitigation that can be obtained using passive-pitching trailing edge

flaps. To predict the load that can be mitigated on a rigid airfoil when is subjected to oscillations in

the angle of attack, a linear, quasi-steady (QS) panel method, based on the potential flow hypotheses

is used. The load is intended to be mitigated attaching a passive-pitching trailing-edge (TE) flap

to the foil, hinged at a position xp measured from the leading edge, as depicted in figure 4.1(b). In

the panel method, the rigid foil and the TE flap are considered to be two separate panels, which are

characterised by a circulation γ1 and γ2 respectively. After an increment in the angle of attack α′, the

circulation of the first panel becomes γ1 +∆γ1, while the circulation of the second panel remains

γ2 after a CCW deflection δQS of the flap. After some algebra, it is found that the flap deflection

only depends on the increment in the angle of attack and the position of the hinge following the

expression

(4.3) δQS =−α′
(
1− 2xp

3c

)
.

The instantaneous lift coefficient is equal to

(4.4) ∆C F
l = 2πα′ xp

c
,
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where the superscript F refers to the flexible (or flapped) cases. Normalising equation (4.4) by the

load increment in the rigid airfoil, i.e. ∆C R
l = 2πα′, it is possible to find the load relative to the rigid

case,

(4.5) ∆C∗
l = xp /c,

which leads to the instantaneous load reduction

(4.6) 1−∆C∗
l = 1−xp /c = a/c.

Given equation (4.6), the model predicts a linear relationship between the load reduction and the

flap-to-chord length ratio. For more details about the load mitigation strategy proposed here, the

reader is referred to Arredondo-Galeana et al. (2021).

4.3 Methodology

4.3.1 Problem definition

The problem of the load mitigation on a NACA0012 airfoil of chord c using a passive-pitching TE flap

hinged freely at a distance a measured from the trailing edge is considered here. The configuration

of the problem is very similar to that followed in the experiments shown in Arredondo-Galeana et

al. (2021), and a sketch is provided in figure 4.1(b). The load mitigation will be measured with respect

to the load provided by a rigid foil without flap (a/c = 0). The airfoils are immersed in an uniform

free-stream current of intensity U∞. The fluid is considered to be incompressible and Newtonian with

constant density ρ and dynamic viscosity µ, resulting in a Reynolds number Re = ρU∞c/µ= 1000.

The airfoil is initially set at a given angle of attack α. The oscillations in the angle of attack of amplitude

α′
0 are modelled by imposing a heaving motion that follows the law

(4.7) h(t ) = h0 cos(2π f t ),

where h0 is the heaving amplitude and f is the frequency of the imposed motion. We also define the

angular frequency as ω = 2π f , the period of oscillation as T = 1/ f , and the reduced frequency as

κ=π f c/U∞.

The flap is characterised by a density ρs and a volume V that is a function of the flap length,

yielding a total mass m = ρsV and a polar moment of inertia with respect to the centroid of the flap I .

As mentioned in section 4.2, we model the highly flexible torsional spring through the application of

a constant moment Ms at the hinge. This moment is computed such that the deflection of the flap is

zero in steady conditions, i.e., δeq = 0 for h0/c = 0. The constant moment to be applied depends on

the flap-to-chord length ratio a/c.

The parametric space covered in Arredondo-Galeana et al. (2021) to prove the validity of the

quasi-steady formulation only includes one value of the flap-to-chord length ratio, i.e. a/c = 0.25.

Here, different values of a/c are covered in order to prove the linear relationship between the load
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a/c ρ∗ h0/c α k

0 1.5 0.05 0◦ 0.1
0.25 5 0.15 5◦ 0.3
0.375 25 0.25 0.5
0.5 100 0.5
0.75

Table 4.1: Overview of the selected values for the variables defining the parametric space.

Figure 4.2: Sketch of the computational set-up and selected boundary conditions

reduction and the flap-to-chord length ratio. Besides, we select different reduced frequencies and

heaving amplitudes such that the obtained amplitudes of the oscillations in the angle of attack α′
0

are both comparable and larger than those considered in Arredondo-Galeana et al. (2021). Finally,

different density ratios ρ∗ = ρs/ρ are considered. The values of the variables considered in this work

characterising the kinematics and the material properties of the problem are shown in table 4.1.

4.3.2 Computational Set-up

The FSI problem is solved using TUCANMB, described in chapter 2. Direct numerical simulations

(DNS) of the flow are performed in a computational domain with dimensions 19c × 16c in the

streamwise and vertical directions respectively. The domain is defined by a uniform grid spacing

∆r = c/128. The time step is selected such that the C F L = Umax∆t/∆r number is lower than 0.1.

The size of the domain and both spatial and temporal resolution are defined based on the grid

sensitivity analysis presented in annex A. The origin of the reference system is located at the leading

edge of the airfoil. The free-stream inflow is modeled as a Dirichlet boundary condition at the inlet

boundary (x/c = −8), and the outflow has been modeled with an advective boundary condition

(∂u/∂t +U∞∂u/∂x = 0) at the outlet (x/c = 11). Free-slip boundary conditions are set at the lateral

boundaries. A sketch of the computational set-up is shown in figure 4.2.
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Case α κ h0/c ρ∗ Cl

a/c = 0 a/c = 0.25 a/c = 0.375 a/c = 0.5 a/c = 0.75

A1 5◦ 0.3 0.15 1.5 0.216 0.218 0.212 0.214 0.214
A2 5◦ 0.3 0.25 1.5 0.189 0.178 0.165 0.187 0.209
A3 5◦ 0.3 0.5 1.5 0.308 0.201 0.162 0.145 0.159
B3 5◦ 0.5 0.5 1.5 0.413 0.228 0.151 0.147 0.095

Table 4.2: Overview of simulations defining the cases A1, A2, A3, B3.

(a) (b) (c)

Figure 4.3: Temporal evolution of (a) lift coefficient Cl , (b) drag coefficient Cd and (c) flap deflection
δ of cases A1 with k = 0.3, h0/c = 0.15. Line colours correspond to : a/c = 0, : a/c = 0.25,

: a/c = 0.375, : a/c = 0.5, : a/c = 0.75.

Simulations are run for 4 cycles to ensure periodicity in both the forces and the flow in the vicinity

of the airfoil.

4.4 Results

This section is devoted to evaluate the validity of the load mitigation strategy presented in section 4.2

by analysing the obtained results for the problem stated in section 4.3.1. A large database has been

generated from many of the different combinations of the variables representing the parametric

space presented in table 4.1.

4.4.1 Effect of flap-to-chord length ratio under different kinematics

To provide a general description of the obtained results, a series of relevant cases, namely A1, A2,

A3 and B3, are first introduced. These cases are described in table 4.2. To analyse the effect of the

flap-to-chord length ratio, five different values of a/c are considered in each of the cases, namely

a/c = 0,0.25,0.375,0.5 and 0.75. The airfoils are initially set at α = 5◦. Different kinematics are

considered, and the density ratio of the flaps is set to ρ∗ = 1.5.

Starting with case A1, we show in figure 4.3(a,b,c) the temporal evolution of lift coefficient, Cl ,

drag coefficient, Cd , and flap deflection, δ, respectively, for different values of a/c. First, as seen
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in figure 4.3(a), the flapped airfoils (i.e. a/c 6= 0) present lower peak-to-peak amplitudes of the lift

coefficient compared to the rigid case (a/c = 0), which is the one yielding the maximum value of Cl .

Besides, the amplitude of the lift coefficient is smaller the larger the flap (larger a/c), as predicted by

equation (4.4). The temporal evolution of Cl appears to be close to sinusoidal for all a/c, showing

values above the mean lift coefficient, Cl , during most of the downstroke, which spans from t/T = 0

to t/T = 0.5, and vice versa during upstroke. The mean lift coefficient for all a/c is approximately

the same (see table 4.2), and the load mitigation appears to happen similarly during upstroke and

downstroke. The time instant at which the maximum value of Cl appears is approximately t/T ≈ 0.25,

i.e., mid-downstroke. The drag coefficient of the flapped cases is reduced during the downstroke when

compared to the evolution of the values reported by the rigid case, but increased during upstroke, as

shown in figure 4.3(b), leading to similar values in Cd . Please note that, while Cl approximately ranges

from -0.1 to 0.6, the values seen in Cd go from 0.11 to 0.14. The higher the value of a/c, the larger

the reduction of Cd is found during downstroke, contrary to what is seen during upstroke, where the

drag coefficient increases substantially. The subcase with a/c = 0.75 is the one showing the largest

value of drag coefficient. The temporal evolution of flap deflections for the flapped airfoils are shown

in figure 4.3(c). Negative values of δ correspond to CCW instantaneous deflections, which are mainly

found during downstroke, while all flaps report positive –clockwise (CW)– deflections during most of

the upstroke. The evolution of all flaps is qualitatively similar, with smaller amplitudes for larger flaps,

following a temporal evolution resembling a sinusoidal one. Cases with shorter flaps deviate from

this sinusoidal shape, where the maximum absolute deflection is obtained during downstroke and

is larger than the maximum deflection obtained during upstroke for all cases. Besides, the time at

which the absolute value of the maximum flap deflection changes with a/c . This maximum absolute

flap deflection |δ|max is found at t/T ≈ 0.35 for the a/c = 0.25 case, but t/T ≈ 0.285 for a/c = 0.75.

The value of the maximum flap deflection is |δ|max ≈ 11.5◦, found for the a/c = 0.25 subcase. This can

be compared to the value predicted by the QS model, where for the a/c = 0.25 subcase, the maximum

flap deflection is given by |δQS |max =α′
0/2 = 2.57◦.

Importantly, we see a difference when flap deflections are compared to the QS model: Looking at

equation (4.3), the lower the value of xp /c (i.e. larger a/c), the larger the value of δQS . Here, we see

the opposite trend –larger flaps oscillate with lower amplitude–. We will come back to this fact later

in section 4.4.2.

Consider now case A2, where the amplitude of the heaving motion has been increased with

respect to case A1 to h0/c = 0.25. Looking at the temporal evolution of Cl , Cd and δ in figures

4.4(a,b,c), a qualitative description similar to the one used to report case A1 can be provided here.

However, several differences between cases A1 and A2 can be spotted. On the first hand, the temporal

evolution of Cl is no longer symmetric, presenting oscillations during the upstroke, as seen in figure

4.4(a). These oscillations are stronger for the a/c = 0 case than for the rest of the subcases. The

evolution of the Cd is reasonably similar to that of the A1 cases, as shown in figure 4.4(b), reaching the

maximum value at t/T ≈ 0.4 in the a/c = 0 subcase, rather than at the beginning of the downstroke
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(a) (b) (c)

Figure 4.4: Temporal evolution of (a) lift coefficient Cl , (b) drag coefficient Cd and (c) flap deflection
δ of cases A2 with k = 0.3, h0/c = 0.25. Line colours correspond to : a/c = 0, : a/c = 0.25,

: a/c = 0.375, : a/c = 0.5, : a/c = 0.75.

as it happened in case A1. Flap deflections are asymmetric (δ< 0◦) in all cases, see figure 4.4(c), with

noticeable negative peaks for subcases with a/c = 0.25 and 0.375. In fact, the maximum absolute flap

deflection |δ|max is found to be close to 48◦ and is given by the subcase with a/c = 0.25.

The asymmetry in flap deflections is probably due to the interaction between the flap and

the separated boundary layers, as shown in figure 4.5. Vortical structures are identified using the

λ2 criterion (Jeong & Hussain, 1995). Green lines added in figure 4.5 are the contours given by

λ2 =−5U 2∞/c . While the boundary layer is attached on both surfaces of the foil at the beginning of the

downstroke, see figure 4.5(a), it starts to separate during early downstroke (figure 4.5b, t/T = 0.125).

Apparently due to a combination between the inertia of the flap and the separation of the boundary

layer, the flap pitches CCW. Maximum separation of the boundary layer is reached at a time instant

close to the end of the downstroke (figure 4.5d), very close to the instant when |δ|max is found. During

upstroke, the boundary layer gets closer to the top surface progressively, reattaching at t/T ≈ 0.7, see

figure 4.5( f , g ), while the boundary layer along the bottom surface remains attached. Oscillations in

the lift coefficient could also be attributed to this separation and subsequent reattachment during

the upstroke. Again, increasing the size of the flap make them be less prone to suffer larger and

asymmetric deflections, despite the fact that the density ratio is small in this case, ρ∗ = 1.5. This way,

inertia appears to have an impact on the response of the flap that should not be negligible.

Moving to case A3, i.e. increasing the amplitude to h0/c = 0.5, temporal evolutions of Cl , Cd and

δ qualitatively resemble those of case A2, see figure 4.6. However, it is possible to see in figure 4.6(a)

that the evolution of Cl is clearly not sinusoidal any longer. In fact, all subcases show a increase in the

lift coefficient with a slope dCl /d t approximately constant from t/T = 0 to a time instant between

t/T = 0.15 and 0.2. This is probably due to the larger vorticity production around the leading edge

of the foils caused by the increase in the heaving velocity. This constant slope dCl /d t is a function

of a/c, being larger for lower values of a/c. On the other hand, the value of the mean lift coefficient

changes with a/c, see table 4.2.

Consider now an increase in the reduced frequency to κ= 0.5, i.e. case B3, keeping h0/c = 0.5. The
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Figure 4.5: Vorticity, ωy c/U∞, contours for case A2, a/c = 0.25. Time instants correspond to (a)
t/T = 0, (b) t/T = 0.125, (c) t/T = 0.25, (d) t/T = 0.375, (e) t/T = 0.5, ( f ) t/T = 0.625, (g ) t/T = 0.75,
(h) t/T = 0.875. The green line corresponds to λ2 =−5U 2∞/c2.

lift coefficient increases during downstroke for cases with a/c ≤ 0.5, as seen in figure 4.7(a). However,

it remains approximately constant for the case with a/c = 0.75 up to t/T ≈ 0.3. The maximum value

of Cl is reached again for all cases approximately at mid-downstroke, and the largest value is yielded

by the rigid case as it happened for all cases with lower reduced frequency. Differently to cases with

κ= 0.3, the drag coefficient reports two clear peaks for most of the cases, see figure 4.7(b). This goes

accompanied by negative values of Cd during upstroke in all cases but a/c = 0.75. Besides, several

peaks appear in the temporal evolution of the flap deflection, rather than the only one that was

seen in cases with κ= 0.3. In these cases, a LEV is also developed and shed during upstroke. These

LEVs developed during the upstroke induce velocities on the flap, explaining the peaks appearing

at t/T ≈ 0.05. The peaks at t/T = 0.5 are due to the interaction with the LEV developed during the
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(a) (b) (c)

Figure 4.6: Temporal evolution of (a) lift coefficient Cl , (b) drag coefficient Cd and (c) flap deflection
δ of cases A3 with k = 0.3, h0/c = 0.5. Line colours correspond to : a/c = 0, : a/c = 0.25,

: a/c = 0.375, : a/c = 0.5, : a/c = 0.75.

(a) (b) (c)

Figure 4.7: Temporal evolution of (a) lift coefficient Cl , (b) drag coefficient Cd and (c) flap deflection
δ of cases B3 with k = 0.5, h0/c = 0.5. Line colours correspond to : a/c = 0, : a/c = 0.25,

: a/c = 0.375, : a/c = 0.5, : a/c = 0.75.

downstroke. This can be clearly seen in figure 4.8, which shows the evolution of the LEV developed

during the upstroke (in blue) at different time instants.

Hence, depending on the kinematics, the behaviour of force generation and flap deflections is

clearly influenced by the generation of vortical structures. At the same time and in a coupled way,

the flaps might also influence this generation of vortical structures. In order to clarify this statement,

vorticity fields for selected subcases at t/T = 0.25 shown in figure 4.9 at midstroke, i.e. t/T = 0.25.

The comparison between the LEV generated in the a/c = 0.75 subcase (see figure 4.9d) with those

generated in the rest of subcases (figure 4.9a,b,c), suggests that the passive flap, if large enough,

modifies the development of vortical structures around the foil. However, vortical structures are not

drastically modified for cases with short flaps.

Although the results for α= 0◦ are not shown here, similar comments apply to those cases, with

symmetric temporal evolutions of Cl and δ for all cases, and symmetric flow fields during downstroke

and upstroke.
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(a)

(b)

(c)

(d)

Figure 4.8: Vorticity, ωy c/U∞, contours for case B3, a/c = 0.25, at time instants (a) t/T = 0.875, (b)
t/T = 0.9375, (c) t/T = 1, (d) t/T = 0.0625. The green line corresponds to λ2 =−5U 2∞/c2.

(a)

(b)

(c)

(d)

Figure 4.9: Vorticity, ωy c/U∞, contours at t/T = 0.25 for case B3 with flap-to-chord length ratios (a)
a/c = 0, (b) a/c = 0.25, (c) a/c = 0.5, (d) a/c = 0.75. The green line corresponds to λ2 =−5U 2∞/c2.

To understand the mechanism by which the passive pitching flaps reduce the generation of forces,

we compare in figure 4.10 the chordwise distribution of pressure difference ∆Cp =C−
p −C+

p between

lower and upper surfaces of the airfoil of cases with α= 5◦, a/c = 0.25, κ= 0.3, at heaving amplitudes

h0/c = 0.15,0.25,0.5. C+
p and C−

p are, respectively, the pressure coefficients (i.e. Cp = 2(p −p∞)/ρU 2∞)

of the top and bottom surfaces of the airfoil. Besides, we include for comparison cases where the flap

is fixed, allowing to compare with the rigid cases. The chordwise ∆Cp distributions are shown for two

instants of the period, namely t/T = 0 and 0.25, which correspond to the beginning of downstroke

and mid-downstroke, respectively. Similar comments can be made for both time instants. The flap

modifies the pressure distributions along the entire airfoil, such that the force generation changes.

The changes in the distributions of ∆Cp of the flapped cases with respect to those reported by the
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(a) (b)

Figure 4.10: Instantaneous chordwise distributions of pressure coefficient difference ∆Cp along the
chord of the foil and flap at (a) t/T = 0 and (b) t/T = 0.25. heaving amplitudes h0/c = 0.15,0.25,0.5.
Line colours correspond to : fixed flap, : free flap. Line types correspond to : h0/c =
0.15, : h0/c = 0.25, : h0/c = 0.5.

(a) (b)

Figure 4.11: (a) Mean lift coefficient Cl for α= 5◦ cases and (b) reduction in fluctuations RF for all
cases. Circles and triangles correspond to k = 0.3 and k = 0.5, respectively. Colours correspond to

: a/c = 0, : a/c = 0.25, : a/c = 0.375, : a/c = 0.5, : a/c = 0.75. Empty and
filled markers correspond to α= 0◦ and α= 5◦.

rigid cases seen in figure 4.10(a,b) can be linked to a reduction of the effective angle of attack,

as suggested in Arredondo-Galeana et al. (2021). On the other hand, the values of ∆Cp found at

chordwise locations corresponding to those of the flap remain very close to 0 for freely-flapped cases

with h0 = 0.15 and 0.25.

After analysing the cases described in table 4.2, i.e. cases A1, A2, A3 and B3, two main observations

can be made. First, the load that is mitigated is higher the larger the value of a/c. Second, the load

mitigation is not always symmetric in both downstroke and upstroke: there are some cases yielding a

mean lift coefficient that is not the same as that reported by the rigid case (see table 4.2). In fact, Cl is

a function of both a/c and kinematics (κ,h0/c). The previous two comments can also be made for the

rest of the cases in the database. The dependence of the mean lift coefficient on the kinematics and

flap length for all cases in the database with α= 5◦, ρ∗ = 1.5, κ≥ 0.3, h0/c ≥ 0.15, is shown in figure

4.11(a). While for low heaving amplitudes, all cases report very similar values of Cl disregarding the
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reduced frequency, the values yielded by flapped foils clearly deviate from those given by rigid foils

in cases with κ= 0.3, h0/c = 0.5 and κ= 0.5, h0/c ≥ 0.25. In fact, these cases are those showing a clear

LEV development and shedding.

The load reduction for the experiments performed in Arredondo-Galeana et al. (2021) is defined

as RL = 1− C̃ F
l /C̃ R

l , where C̃l is the measured lift amplitude, and where the superscripts F,R refer to

flexible and rigid cases, respectively. C̃l is obtained in Arredondo-Galeana et al. (2021) computing

the Fourier coefficients of the first mode of the temporal evolution of Cl . In this work, due to the

fact that the obtained temporal evolution of the lift coefficient is not sinusoidal, and is asymmetric

during both upstroke and downstroke in many of the cases, computing the C̃l only in terms of the

first Fourier mode might not be accurate. Moreover, a definition of the load reduction only in terms of

the lift amplitudes appears to be insufficient in this work, due to the fact that the mean lift coefficient

is not the same for rigid and flexible cases. Hence, instead of considering the load reduction, we

define the reduction in fluctuations as

(4.8) RF = 1− RMS
(
Ĉ F

l

)
RMS

(
Ĉ R

l

) ,

where Ĉl is computed as Ĉl (t) = Cl (t)−Cl and is a function of time. This way, only fluctuations

of the lift coefficient around its mean value are considered. Despite the fact that the reduction in

fluctuations were also computed using the first Fourier mode and the results were found to be similar,

we find this definition of the reduction of fluctuations to be more suitable. Results for RF are shown

in figure 4.11(b). It is possible to see that the majority of the cases report reduction in the fluctuations

larger than the values predicted by the QS model (horizontal dashed lines, one for each value of a/c

considered here). This happens in contrast to what is found for experiments in Arredondo-Galeana

et al. (2021) at Re = 50000, where the obtained results match the QS model for low amplitudes of the

oscillations in the angle of attack (also modeled with a heaving motion), while failing for cases with

κ= 0.3, h0/c ≥ 0.15 or κ≥ 0.5. Here, the cases yielding values of RF lower than the predicted ones

are, in general terms, those with the most extreme kinematics, given by κ= 0.5, h0 = 0.5, which are

the cases where a clear LEV is generated. Arredondo-Galeana et al. (2021) linked the validity of the

quasi-steady model to predict the load mitigation to the formation of the LEV. Here, it is impossible

to claim validity of the model to predict the actual value of the reduction in fluctuations in any of

the cases, disregarding the kinematics and the possible subsequent development of a LEV. The

maximum difference found in the results when compared to the predictions of the QS model is

seen for the subcase with a/c = 0.375, α = 0, κ = 0.5, h0/c = 0.5, where the predicted value of the

reduction of the fluctuations is 0.375 but only a value of 0.22 is found. Not only that, if the focus

is put on case A1, which is the one with the least intense kinematics within the cases considered

in section 4.4.1, and where the model is supposed to work better based on the results shown in

Arredondo-Galeana et al. (2021), the errors are still large. Namely, A1 cases with a/c = 0.25,0.375 and

0.5 report an absolute difference in RF equal to 0.1 with respect to the predictions of the QS model.

Nevertheless, and despite the fact that the QS model is not able to predict accurately the value
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of RF , we do see a trend of this variable with a/c that resembles the proportionality proposed in

the model. Focusing on this particular A1 case, it is possible to see that subcase a/c = 0.25 reports

a reduction in fluctuations equal to RF = 0.345, which deviates almost 0.1 from the predictions.

However, moving from a/c = 0.25 to a/c = 0.5, the reduction in fluctuations is now RF = 0.597,

keeping this difference constant. Analogously, this happens generally for all cases considered in this

work, claiming that a variation in the flap-to-chord length ratio ∆a/c leads to an equal variation in

the reduction of fluctuations ∆RF , which allows to propose a modification of equation (4.6) in the

form

(4.9) RF = a/c +K

where K is a coefficient that depends only on kinematics and not on a/c, setting the difference be-

tween the expected value and the actual one. In order to set K , only a simulation with an intermediate

value of a/c should be needed to predict the value of RF for any value of a/c. This way, it is possible

to reduce the discrepancies with respect to the previously proposed model.

4.4.2 Flap dynamics

Based on the results shown in section 4.4.1, a tendency that was observed in all cases is that flaps

do not deflect as predicted by the quasi-steady model, with larger flap deflections for smaller flaps,

contrary to what was predicted by equation (4.3). This can be shown in figure 4.12(a), where the

maximum negative deflection (maximum CW deviation) δmn of the A1 cases is plotted as a function

of the location of the pivoting axis of the flap, xp /c, together with the values predicted by the QS

model (black line). Although not shown here, alternative models where the inertia of the flap is

considered, and based on linear quasi-steady aerodynamics, have been also explored to predict the

flap deflection. The results suggest that the sole effect of inertia is not responsible of these deviations.

This fact was also the result of the unsteady alternative model proposed in Arredondo-Galeana

et al. (2021). Hence, the changes in the dynamics of the flap could be attributed to the non-linearities

in the flow (i.e., thickness of boundary layer, separation or development and shedding of LEVs),

which are not considered in the QS models but known to be important in flows at low Reynolds

numbers. Additionally, results shown in section 4.4 for a given kinematics suggest that inertia effects

might still be relevant and cannot be completely discarded. Further exploration is needed to confirm

this hypothesis.

On the other hand, focusing on a/c = 0.25 subcases, the maximum deflections were found to

be larger than those predicted by equation (4.3), in contrast to the results provided by Arredondo-

Galeana et al. (2021) for Re = 50,000, where deviations are found for cases where the amplitude in

the oscillations of the angle of attack due to heaving are larger than approximately 9◦, and the rest of

the cases match the results predicted by the QS model. These discrepancies are attributed again to a

combination of non-linearities in the flow and inertia effects.
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(a) (b)

Figure 4.12: (a) Maximum negative deflection δmn as a function of the pivoting axis of the flap
xp /c. Symbols refer to the values of case A1. In black, δQS . (b) In black, expected fluctuations of
the flap deflections given by the QS model, DQS = RMS(δQS). Blue symbols refer to the obtained

fluctuations around the mean values of the flap deflections D = RMS(δ−δ), and the blue line is the
fitting D f = 9.25α′2

0 +0.39α′
0 +0.007.

However, in the limit of κ→ 0, h0/c → 0, the results at Re = 1000 should match the predictions

of the QS model, δQS . For a given kinematics, i.e., for a given pair of h0/c,k, we obtain a temporal

evolution of the oscillations in the angle of attack with amplitude α′
0. As the behaviour of the flap

becomes chaotic for large reduced frequencies and heaving amplitudes, we select to analyse the

behaviour of four cases with a/c = 0.25, namely κ= 0.1, h0/c = 0.05 and κ= 0.3, h0/c = 0.05,0.15 and

0.25. For each of these points in the parametric space, we compute the fluctuations in flap deflection

around their mean value D = RMS(δ−δ). The values of the pairs α′
0 −D obtained for the four cases

are plotted in blue symbols in figure 4.12(b). We also show the predicted values of δQS in black for the

range in α′
0 considered. Bear in mind that these values have been computed considering a/c = 0.25.

It is clear that, contrary to the linear growth of DQS , the quantity D increases non-linearly with α′
0.

We compute a parabolic fit (blue line in figure 4.12b) in the form D f (α′
0) = 9.25α′2

0 +0.39α′
0 +0.007,

with a value of R2 = 0.998, R2
ad j = 0.994 and RMSE = 0.009, where the subscript f denotes the fit. To

claim asymptotic convergence to the QS model, the slope of the fitting must coincide with that of the

QS model for α′
0 → 0, which for cases with a/c = 0.25 is

(4.10) lim
α′

0→0

∂DQS

∂α′
0

= 0.356.

The value of the coefficient of the fit that goes with the linear term is 0.39, very close to the expected

value of 0.356, and the independent term c is very close to 0, asymptotically tending to the quasi-

steady behaviour when α′
0 → 0. This way, it is found that flaps follow a quadratic evolution with the

amplitude of the oscillations in the angle of attack α′
0 instead of a linear one.
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(a) (b) (c)

Figure 4.13: Effect of the constant moment of the hinge on the temporal evolution of (a) lift coefficient
Cl , (b) drag coefficient Cd and (c) flap deflection δ of cases with k = 0.3. Line colours correspond to

: a/c = 0, : a/c = 0.25,δeq , : a/c = 0.25,δ0. Line types correspond to : h0/c = 0.25,
: h0/c = 0.5.

4.4.3 Effect of constant moment

In terms of applicability, a reduction in the mean lift coefficient may lead to deviations from the

design requirements of the device, despite the fact that the fluctuations in loads are mitigated. In

order to try to overcome this issue, we analyse the effect of the constant moment applied at the hinge,

which will lead to a change in the flap deflections.

Consider the subcases with a/c = 0.25 of A2 and A3, characterised by asymmetric flap deflections

(δ 6= 0). The mean lift coefficient Cl of the subcase of A2 is very close to the one given by the rigid foil

as shown in figure 4.11(a), despite the asymmetric flap deflections. On the other hand, the case of A3

reports a Cl ≈ 0.2, differing from that of the rigid one, which is Cl ≈ 0.31. The moment applied at the

hinge, while still constant, is now modified for these two cases such that the flap deflection averaged

over a cycle is approximately zero (δ̄= 0). These cases are denoted as δ0. The temporal evolution

of Cl , Cd and δ of the cases a/c = 0.25 of A2 and A3, for both δeq and δ0 alternatives, are shown in

figure 4.13. Besides, rigid cases of A2 and A3 are also added for reference. After the change in the

moment applied at the hinge, the value of the three variables under consideration in the δ0 subcases

are shifted upwards compared to the values given by the δeq subcases. The effect of the change in

the moment applied at the hinge is negligible in terms of the reduction of fluctuations, finding the

same value of RF in both δ0 and δeq scenarios. While the difference in Cl for the A3 case (h0/c = 0.5)

between rigid and flapped cases is now negligible due to this shift, the A2 flapped case also sees an

increment in Cl , leading it to be Cl = 0.275, compared to the mean lift coefficient obtained by the

rigid foil, Cl ≈ 0.19. This way, the value of the mean lift coefficient Cl changes with a change in the

constant moment applied. Hence, this analysis shows the impossibility to keep C F
l =C R

l for each of

the kinematics considered in this work using a single value of the constant moment applied at the

hinge. If needed, other alternatives should be looked into in order to satisfy this condition.
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(a) (b) (c)

(d) (e)

Figure 4.14: Temporal evolution of (a) lift coefficient Cl , (b) drag coefficient Cd and (c) flap deflection
δ of cases with k = 0.3, h0/c = 0.25. Colours correspond to : a/c = 0, : ρ∗ = 1.5, :
ρ∗ = 5, : ρ∗ = 25, : ρ∗ = 100.

4.4.4 Effect of inertia

We analyse now the effect of the inertia of the flap on its dynamics and the aerodynamic response of

the airfoil by modifying the density ratio. Consider now cases with same kinematics as A2 (κ= 0.3,

h0/c = 0.25) and a/c = 0.25, with flaps characterised by density ratios equal to ρ∗ = 1.5,5,25 and 100.

The temporal evolution of Cl , Cd , and δ for these cases is shown in figure 4.14(a,b,c). The a/c = 0

case is also included in red. There are no relevant changes in any of the measured quantities when

comparing the flaps with ρ∗ = 1.5 with ρ∗ = 5. When looking at the case with ρ∗ = 25, the evolution

of the lift coefficient is lagged during the first instants of the period with respect to ρ∗ ≤ 5 cases.

Moreover, a larger value of Cl is obtained when compared to ρ∗ ≤ 5 due to an increase in Cl within

the interval t/T ≈ 0.6−0.8. This is mainly due to the positive flap deflections that are found at the

same time interval. In fact, despite that the absolute value of the maximum flap deflection |δ|max is

reduced, the fluctuations of the flap deflection are increased. When the value of the density ratio is

increased to ρ∗ = 100, the temporal evolution of all variables changes substantially. The lift coefficient

presents two positive peaks compared to the only one seen for the rest of the cases. The two peaks

are the product of a positive balance between the oscillations in the angle of attack due to heaving

and the instantaneous shape of the airfoil that changes with the flap deflection. In fact, the second

peak in mainly caused by the large positive deflection of the flap during the first part of the upstroke.

The mean drag coefficient is a 65% larger than the one yielded by the rigid case.

Figures 4.14(d ,e) show the RMS values of the lift coefficient, Cl ,rms and the flap deflections, δrms,
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respectively. While the value of the RMS of the lift coefficient is reduced when increasing the density

ratio up to ρ∗ = 25, it peaks up when the density ratio is further increased to ρ∗ = 100. This non-

monotonic evolution of Cl ,rms with the density ratio contrasts with the monotonic evolution of δrms.

This highlights the relevance in the selection of the inertia of the flap in its response and dynamics.

On the other hand, as the effect of ρ∗ is negligible when the density ratio is increased or decreased

in the range of ρ∗ ∼O (101), this further suggests that the discrepancies with the QS model and the

experiments at larger Reynolds numbers cannot be explained only in terms of inertia.

4.5 Conclusions

The load that can be mitigated in airfoils at Re = 1000 by using a passive-pitching trailing-edge

flap has been analysed performing direct numerical simulations of the fluid-structure interaction

problem. In particular, we analyse the validity of the quasi-steady model proposed in Arredondo-

Galeana et al. (2021), where it is predicted that the load that can be mitigated is proportional to the

flap-to-chord length ratio a/c.

The Reynolds number considered in the study is consistent with that found for micro-air vehicles

and micro wind turbines. Different values of a/c were tested at different kinematics, varying other

quantities in the parametric space as the solid-to-fluid density ratio ρ∗, yielding a large database.

Depending on the amplitude of the oscillations in the angle of attack given by the different

kinematics, the temporal evolution of the forces and the flap deflections vary significantly when

a/c is modified. The lift coefficient fluctuations are reduced when increasing a/c, as well as the

flap deflections. The load mitigation that is obtained for the majority of the cases is close to the

values predicted by the quasi-steady model proposed in Arredondo-Galeana et al. (2021). Many of

the cases report a mitigation larger than the expected one, while the only ones showing a decrease

in the mitigation are those with the most intense kinematics, i.e. κ = 0.5, h0/c = 0.5, disregarding

the value of a/c. However, despite the deviations of the results with respect to the predicted values,

an increment in the flap-to-chord length ratio ∆a/c leads to an equal increment in the reduction of

fluctuations ∆RF , in line with the quasi-steady model.

The quasi-steady model is unable to predict the flap deflections obtained in this work. In fact,

the quasi-steady model predicts larger deflections for larger flaps (larger a/c, smaller xp /c) under

a given kinematics, while the flap deflections shown in section 4.4 behave in the opposite sense,

growing with xp /c under the same kinematics. On the other hand, for fixed values of a/c, it is seen

that the fluctuations of the flap deflections around their mean value increases quadratically with the

amplitude of the oscillations in the angle of attack, instead of the linear relationship found in the QS

model. We hypothesise that this fact is linked to the non-linearities in the flow, rather than inertia

effects, although they might play a non-negligible role.

Finally, both the effect of the inertia through a change in the density ratio, and that of the constant

moment at the hinge, on the dynamics of the airfoil have been investigated, showing the relevance of
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(a) (b)

Figure 4.15: Temporal evolution of (a) lift coefficient Cl and (b) flap deflection δ of cases with k = 0.3,
h0/c = 0.15.

the selection of both quantities in terms of the required performance.
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A.1 Grid and domain sensitivity analysis

A grid sensitivity study is performed to select the spatial and temporal resolution to be employed

in the simulations. The case A1 in table 4.2 with a/c = 0.25 is selected as the benchmark case.

Three different spatial resolutions ∆r are considered, c/86, c/128, c/156, and will be specified using

superscripts R, S and T , respectively. The bodies are discretised using the same eulerian resolution.

The temporal resolution is also modified such that the C F L =Umax∆t/∆r number is always below

0.1. The grid sensitivity on the root mean square of the lift coefficient Cl and flap deflection δ, namely

Cl ,rms and δrms is shown in figure 4.15. The relative changes in Cl ,rms when going from c/86 to c/128

are about 4%. When going from c/128 to c/196, relative changes become smaller than a 1%. Similar

relative changes are obtained for δrms. Besides, as the evolution of δrms is monotonic, it is possible to

compute a ground truth (GT ) using Richardson extrapolation, which is

(4.11) δGT
rms = δT

rms −
δS

rms −δT
rms

r p −1
= 6.62◦, with p = log

(
δR

rms −δS
rms

δS
rms −δT

rms

)
/log(r ),

where r =∆r R /∆r S = 1.5. Given the ground truth, it is possible to compute the relative errors on δrms

with respect to this ground truth using the different resolutions, computed as

(4.12) εi
δ =

|δi
rms −δGT

rms|
δGT

rms
,

and the values of the relative error are εδ = 0.15,0.02 and 0.003. Based on the obtained results, the

simulations are performed with a spatial resolution ∆r = c/128. The numerical uncertainty in the

flap deflection, computed as in Viola et al. (2013), is Uδ = 0.1833◦.
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(a) (b)

Figure 4.16: Temporal evolution of (a) lift coefficient Cl and (b) flap deflection δ of cases with k = 0.3,
h0/c = 0.15.

Besides, the effect of the domain size on the same quantities is also characterised. Three different

sizes are considered here: (15c ×12c), (19c ×16c), (23c ×20c). The results obtained for each of the

domain sizes are shown in figure 4.16. It is possible to see that the effect of the domain size is almost

negligible. As the analysis of the effect of resolution has been performed with a domain size (19c×16c),

the simulations are also performed using this domain.
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FLUID-STRUCTURE RESONANCE IN SPANWISE-FLEXIBLE FLAPPING WINGS

The contents of this chapter are currently under review in:

Journal of Fluid Mechanics

Abstract

We report direct numerical simulations of the flow around a spanwise-flexible wing in forward flight.

The simulations were performed at Re = 1000 for wings of aspect ratio 2 and 4 undergoing a heaving

and pitching motion at a Strouhal number Stc ≈ 0.5. We have varied the effective stiffness of the wing

Π1 while keeping the effective inertia constant, Π0 = 0.1. It has been found that there is an optimal

aerodynamic performance of the wing linked to a damped resonance phenomenon, that occurs

when the imposed frequency of oscillation approaches the first natural frequency of the structure

in the fluid, ωn, f /ω ≈ 1. In that situation, the time-averaged thrust is maximum, increasing by a

factor of 2 with respect to the rigid case with an increase in propulsive efficiency of about 15%. This

enhanced aerodynamic performance results from the combination of larger effective angles of attack

of the outboard wing sections and a delayed development of the leading edge vortex. With increasing

flexibility beyond the resonant frequency the aerodynamic performance drops significantly, both in

terms of thrust production and propulsive efficiency. The cause of this drop lies in the increasing

phase lag between the deflection of the wing and the heaving/pitching motion, which results in

weaker leading edge vortices, negative effective angles of attack in the outboard sections of the wing,

and drag generation in the first half of the stroke. Our results also show that flexible wings with the

same ωn, f /ω but different aspect ratio have the same aerodynamic performance, emphasizing the

importance of the structural properties of the wing on its aerodynamic performance.
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5.1 Introduction

Micro-air vehicles (MAVs) are becoming increasingly important in society, being demanded for

security services, protection, surveillance, etc. Among the different configurations being explored for

those vehicles, the greatest potential in terms of maneuverability and versatility is perhaps offered

by bioinspired configurations with flapping wings, similar to insects or small birds (Haider et al.,

2021; Shyy et al., 2013). These configurations are also the most complex from a technical point

of view, involving unsteady aerodynamic mechanisms (i.e., leading edge vortex (LEV), rotational

lift, wake capture and clap-and-fling) that have been described in the literature (Ellington, 1999;

Dickinson et al., 1999; Sane, 2003; Wang, 2005; Platzer et al., 2008). However, one aspect which is

not yet properly understood is the effect of wing flexibility, despite significant progress in recent

years. The current understanding is that the aerodynamic performance can be enhanced, provided

that the wing kinematics and the structural properties are adequately selected. Indeed, it has been

shown that there exists an optimal range of flexibility for propulsion (Shyy et al., 2010), and that wing

flexibility can reduce the energetic cost of flight for natural flyers (Reid et al., 2019).

Other effects have also been studied, like the influence of flexibility on the development and

evolution of coherent structures surrounding the wings (Gordnier et al., 2013). However, the accumu-

lated knowledge is not yet sufficient to significantly influence current MAV designs. In fact, Haider

et al. (2021) recently emphasized that the development of MAVs with flexible flapping wings has not

yet reached capabilities similar to those of natural flyers.

The main problem that hinders further progress is the complexity of the interactions between

flexible, flapping wings and the surrounding fluid. There are some studies that have tackled this

problem considering isotropic homogeneous wings (Hamamoto et al., 2007; Nakata & Liu, 2012;

Shahzad et al., 2018). Other authors have tried to make progress by simplifying the problem, con-

sidering chordwise or spanwise flexibility in a separate way. In fact, most of the available studies

consider chordwise flexibility only, like Alben (2012), Moored et al. (2012), Quinn et al. (2014), Olivier

& Dumas (2016), Yeh & Alexeev (2016), Hoover et al. (2018), Arora et al. (2018), and K. Liu et al. (2022).

The literature is vast and additional references can be found in recent reviews (Quinn & Lauder, 2022;

Wang et al., 2022).

The two key questions addressed in the literature of chordwise-flexible wings/airfoils are whether

there is a flexibility (or a range of flexibilities) that leads to optimal propulsive performance, and

what are the mechanisms that explain that optimal performance. While there is broad agreement on

an affirmative answer for the first question, the literature proposes two non-exclusive mechanisms

contributing to the answer to the second question. The first mechanism is a fluid-structure resonance,

which results in maximum deflections of the trailing edge of the chordwise-flexible wing (Michelin &

Llewellyn Smith, 2009; Paraz et al., 2016; Floryan & Rowley, 2018). The second mechanism is related

to the phase lag between actuation and deformation. When properly tuned, it can lead to an optimal

bending of the wing that projects the aerodynamic loads on the wing into the forward direction,

hence maximizing thrust (Ramananarivo et al., 2011; Zhu et al., 2014b). In this regard, it is important
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to recall that in damped harmonic oscillators, both structural and damping non-linearities affect

the phase lag between forcing and response at all frequencies (Nayfeh & Mook, 2008), resulting

in phase lags at resonance different from the 90◦ phase lag obtained in linear oscillators. Indeed,

Ramananarivo et al. (2011) attributed the enhanced propulsive performance of chordwise-flexible

wings to non-linear damping effects.

Obviously, the two mechanisms are not exclusive, and the optimal bending of a particular

wing/kinematic might occur at the resonant frequency. An example reconciling these two mech-

anisms is Goza et al. (2020), who observed resonant behavior leading to optimal performance in

numerical simulations of chordwise-flexible 2D airfoils over a wide range of flexibilities. For large

amplitudes of excitation, they reported that both resonance and non-linear effects played a role.

In particular, they observed that the peak in the structural response weakened and broadened in

frequency, a behavior that they attributed to added mass and non-linear effects, like flow separation

and non-linear vortex interaction. They also noted that this broader and weaker frequency response

for large amplitude oscillations is consistent with the non-linear damping effects of a non-linear

oscillator, linking in this form their results to those of Ramananarivo et al. (2011).

Comparatively, there are less studies analyzing the effect of spanwise flexibility, which are briefly

reviewed below. One of the first studies available in the literature was performed using a panel method

by Liu & Bose (1997). They showed that the propulsive efficiency of the planforms can be optimized

by controlling the tip-to-root relative motion. In a similar fashion, also using a potential flow model,

Zhu (2007) reported simulations studying the effect of spanwise flexibility on fluid-driven wings

with low effective inertia (Π0 ≈O (10−4)) and inertia-driven wings with a typical effective inertia of

insects (Π0 ≈O (10−1)). While fluid-driven flexible wings exhibited no enhancement in performance

with respect to rigid wings whichever the flexibility, thrust was greatly increased for inertia-driven

wings when increasing the flexibility up to an optimal value. A corresponding increase in propulsive

efficiency was not observed. This was followed by an influential experiment reported by Heathcote

et al. (2008). These authors studied spanwise flexible wings in heaving motion immersed on a free

stream in the range Re = 10000−30000, based on the incoming velocity. They found an increase in

thrust for a limited degree of flexibility, with little influence of the Reynolds number in the range

considered. The experiment of Heathcote et al. (2008) has been the subject of several numerical

simulations with various methods. For example Chimakurthi et al. (2009), Aono et al. (2009) and

Kang et al. (2011) employed Reynolds-Averaged Navier-Stokes (RANS) simulations with a non-linear

beam structural model, while Gordnier et al. (2013) used a high-order implicit Large Eddy Simulation

(LES) to model the flow. These numerical studies have shown a non-monotonic response of the mean

thrust with respect to the wing flexibility and a sudden loss of performance for very flexible wings.

Shyy et al. (2010) suggest that the poor aerodynamic performance of the very flexible wings is related

to the cumulative effect of the effective angle of attack and to the role of the tip to root relative motion,

with large phase lags for the very flexible wings. Gordnier et al. (2013) reported a detailed analysis

of the phenomena that drive the fluid-structure interaction, for a configuration corresponding to
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Heathcote et al. experiments. They showed that for the moderately flexible wings, higher effective

angles of attack result in the development of a stronger LEV. Due to the more rapid effective bend

up and down motion towards the tip of the wing the convection of the LEV is inhibited leading to a

superior aerodynamics performance. This further supports the idea that the phase lag between tip

and root motions is a key parameter in the fluid-structure interaction of spanwise flexible wings.

To the best of our knowledge, Kodali et al. (2017) is the first work that explicitly linked the

enhancement in aerodynamic performance with a resonance phenomenon when spanwise flexibility

is considered. However, this fluid-structure resonance can also be inferred from previous works,

like in Zhu (2007) and Qi et al. (2010). Kodali et al. (2017) reported a two-way coupled aeroelastic

model of a heaving, spanwise-flexible wing in forward flight. The aerodynamics was modelled

using 2D, unsteady potential flow, evaluated at each spanwise location, so that this represents a

high Reynolds number approximation. The structure was modelled using an Euler-Bernoulli beam

equation. The analysis was performed by changing the wing aspect-ratio while keeping constant the

remaining structural parameters, thus varying the natural frequency of the wing. They found the

optimal aerodynamic performance (defined in terms of energy requirements, not thrust production)

when the natural frequency matched the oscillation frequency, i.e. a resonance was observed as

already mentioned. They also found that the relative motion between the tip and root sections lagged

by roughly 90◦ for the optimal flexibility. A final observation was that the structural response was

governed by the first natural mode of the structure, with the remaining modes being barely excited.

Note, however, that the use of linear models for aerodynamics (i.e., potential aerodynamics) and

structure (i.e., Euler-Bernoulli beam eq.) somewhat limits the scope of the work of Kodali et al. (2017),

especially taking into account the aforementioned role of non-linearities in the aerodynamic perfor-

mance of chordwise-flexible airfoils/wings. These limitations are not present in other studies. For

instance, Zhu (2007) uses a potential aerodynamic model in combination with a non-linear structural

model, and Qi et al. (2010) uses a lattice Boltzmann flexible particle method (i.e., non-linear aero-

dynamic and structural models) at very a low Reynolds numbers (Re =O (102)). Interestingly, while

these three studies found optimal values for flexibility in the inertia-driven range (Π0 ≈ O (10−1))

consistent with a fluid-structural resonance, they show important differences in terms of mean

thrust coefficients, propulsive efficiencies, and phase lag between excitation and structural response

(i.e., wing tip displacement). The reasons for these discrepancies are not completely clear, given

the differences in the wing kinematics, flight conditions (forward flight vs hover flight), Reynolds

number, structural non-linearities, and fluid damping (linear vs non-linear, leading edge vortex

effects, viscous vs inviscid).

In view of the above, we aim to characterize the role of fluid-structure resonance in the en-

hancement of aerodynamic performance of spanwise flexible wings. In particular, we perform direct

numerical simulations of the incompressible flow around heaving and pitching flexible wings in

forward flight at Re = 1000. We consider rectangular wings with two different aspect ratios, and

several values of the effective stiffness. This will allow us to explore if the aspect ratio is important
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only as a structural parameter (i.e., changing the natural frequency of the structure, as in the study of

Kodali et al., 2017), or if it is also relevant in terms of the generation of aerodynamic loads. Our study

analyses a Reynolds number that is intermediate to those available in the literature, which are either

much lower (Qi et al., 2010) or much higher (Liu & Bose, 1997; Heathcote et al., 2008; Chimakurthi

et al., 2009; Aono et al., 2009; Kang et al., 2011; Gordnier et al., 2013). Contrary to previous works,

direct numerical simulations of the flow allow to represent in detail the surrounding fluid, allowing

a proper description of the non-linear and viscous character of the fluid damping at intermediate

Reynolds numbers.

The paper is structured as follows: Section 5.2 presents the problem definition, followed by the

numerical details of the algorithms used to solve the fluid-structure interaction problem. Section 5.3

shows the results of the simulations, characterizing the aerodynamic forces, the structural response

of the wing, and the mechanisms that explain the changes in the aerodynamic forces with the wing’s

flexibility. Finally, conclusions are presented in section 5.4.

5.2 Methodology

5.2.1 Problem definition

A finite wing in forward flight immersed in a uniform and steady free-stream of magnitude U∞ is

considered. The fluid has constant density and viscosity (ρ f and µ), resulting in a Reynolds number

based on the chord of the wing, c, and the free-stream velocity equal to Re = ρ f U∞c/µ= 1000. The

wing is a rectangular flat plate with finite aspect ratioA = b/c, where b is the span of the wing

and the dimensionless thickness is h∗
s = hs/c = 0.02. The wing is rigid in the chordwise direction

and flexible in the spanwise direction. To study the effect of the wing span, two aspect ratios are

considered,A= 2 and 4.

A heaving and pitching motion is imposed on the mid-span section of the wing. The rest of the

wing deforms passively. The kinematics is described by the following laws

h(t ) = h0 cos

(
2πt

T

)
,(5.1a)

θ(t ) = θ0 cos

(
2πt

T
+φhp

)
,(5.1b)

where h0 is the heaving amplitude, θ0 the pitching amplitude, φhp the phase difference between

heaving and pitching motions, and T the oscillation period. We also define the frequency of the

imposed motion as f = 1/T , the angular frequency as ω = 2π f , and the reduced frequency as

k =π f c/U∞. The Strouhal number based on the chord of the wing is defined as Stc = f c/U∞. The

pivoting axis for pitching is placed at the mid-chord, x/c = 0.5. The kinematic parameters shown

in table 5.1 have been selected to ensure positive thrust and relatively strong LEVs, with flapping

amplitude large enough to ensure non negligible non-linear effects. Incidentally, these parameters

yield optimal propulsive efficiency for a system of two airfoils arranged in horizontal tandem (see
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h0/c θ0 Stc k φhp

0.388c 26.19◦ 0.496 1.558 π/2

Table 5.1: Parameters of the kinematics imposed at the midsection of the wing

Ortega-Casanova & Fernández-Feria, 2019; Martínez-López, 2019 and Martínez-Muriel, 2023 for

details), which will be the subject of a follow-up study.

The material properties of the wing are varied to study the effect of spanwise flexibility. As

discussed in the following subsection, this is done by adjusting the first natural frequency of the wing

in vacuum,

(5.2)
ωn c

U∞
=β2

n

√
E∗h∗2

s

12ρ∗ ,

where βn is the first eigenvalue of the transcendental equation

(5.3) cos(βiA/2)cosh(βiA/2)+1 = 0,

as described in Kodali et al., 2017. In equation (5.2), E∗ = E/ρ f U 2∞ is the normalized Young’s modulus

and ρ∗ = ρs/ρ f , is the solid to fluid density ratio. Following Shyy et al., 2010, we define the effective

inertia and effective stiffness of the wings, respectively as

(5.4) Π0 = ρ∗h∗
s

(k

π

)2
, Π1 =

E∗h∗3
s

12
.

These two parameters, Π0 and Π1, serve to characterize the structural and inertia properties of the

wing.

In the present study, Π0 is kept constant while Π1 is varied to cover a wide range of frequency

ratios, ωn/ω, as shown in table 5.2. A density ratio ρ∗ = 20 is selected such that ρ∗h∗
s = 0.4 and a value

of Π0 = 0.0984 are obtained. This value is of the same order of magnitude of the effective inertia of

insects (Shyy et al., 2013; Jongerius & Lentink, 2010; Hamamoto et al., 2007; Ren et al., 2013) and birds

(Kodali et al., 2017). The range of the effective stiffness considered here, Π1 ∼ [O (10−1)−O (102)], is

comparable to that considered in previous studies (Fu et al., 2018). In addition, a rigid wing (Π1 →∞)

is also included in the study to provide a baseline for comparison.

5.2.2 Structural model

A lumped-torsional flexibility model is used to simulate the spanwise flexibility of the wing. The

wing is discretized into NB = 5A+1 rigid segments connected by torsional springs, as depicted in

figure 5.1(a). To avoid overlapping when the segments rotate relative to each other, the segments are

separated a distance e = hs when placed horizontally. Note that a similar approach was employed by

Arranz et al. (2022a) to simulate the chordwise flexibility of self-propelling plates.

Under this model, the wing can be considered as a multi-body system (MBS) of NB bodies with

1+NB degrees of freedom; namely, the vertical displacement (h), the pitching angle (θ), and the

relative rotation angles between each segment, φi , i = 1, . . . , NB −1 (see figure 5.1b).
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Id A ωn/ω ωn, f /ω Π1 Π1(2/A)4 Nomenclature c/∆r CT C rms
L ηp

1 4 ∞ ∞ ∞ ∞ Rigid 96 0.416 2.331 0.217
2 4 3.6 2.22 66.3 4.14 Intermediate 96 0.552 2.618 0.235
3 4 1.8 1.11 16.6 1.04 Optimal 96 0.844 3.272 0.248
4 4 1.2 0.74 7.4 0.46 Sub-optimal 96 0.129 1.707 0.066
5 4 0.7 0.44 2.7 0.17 Sub-optimal 2 56 -0.02 0.668 -0.024
6 2 ∞ ∞ ∞ ∞ Rigid 96 0.330 2.183 0.178
7 2 17.5 10.75 96.25 96.25 - 56 0.348 2.195 0.181
8 2 9.3 5.7 27.2 27.2 - 56 0.366 2.213 0.186
9 2 4.6 2.82 6.7 6.7 Intermediate 56 0.471 2.458 0.212
10 2 3.25 2 3.3 3.3 - 56 0.621 2.674 0.234
11 2 2.3 1.41 1.7 1.7 Optimal 96 0.734 2.995 0.237
12 2 1.6 0.99 0.83 0.83 Sub-optimal 56 0.216 2.086 0.099
13 2 0.65 0.4 0.13 0.13 - 56 -0.05 0.507 -0.065

Table 5.2: Overview of problem parameters and simulation results.A is the aspect ratio. ωn/ω
and ωn, f /ω are the ratios of natural frequency in vacuum and in fluid, respectively, to the angular
frequency of the flapping motion. Π1 is the effective stiffness. c/∆r is the grid resolution used in the
refined zone of the domain. CT , CL

rms and ηp are the time-averaged thrust coefficient, the RMS of
the lift coefficient, and the propulsive efficiency, respectively.

(a) (b)

Figure 5.1: (a) Sketch of the multibody model to qualitatively describe the spanwise flexibility of
a wing, where the system of bodies is connected via torsional springs. (b) Sketch of the degree of
freedom (φi ) between two consecutive segments.

For the sake of brevity, only a summary of the most representative aspects of the method are

presented here, further details can be found in Arranz et al. (2022b). The governing equations for the

MBS can be cast in the form:

(5.5) H(q)q̈+C (q, q̇) = ξ+ξh ,

where q = [h,θ,φ1, . . . ,φNB−1] is the vector of generalized coordinates, H is the generalized inertia

matrix, C is the generalized bias force vector, which include Coriolis and centrifugal accelerations,

ξ= [0,0,−Kφ1, . . . ,−KφNB−1], where K is the torsional spring constant, and ξh is the vector of hydro-

dynamic forces acting on the wing. In order to compute the generalized inertia matrix, H , and the

generalized bias force, C , the open-source Rigid Body Dynamics Library (RBDL) developed by Felis

(2017) is used. The H matrix is computed through the Composite Rigid-Body algorithm (CRBA), and
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the C vector is computed through the Recursive Newton-Euler algorithm (RNEA). The stiffness of

the torsional springs, K is adjusted solving an eigenvalue problem as done by Arora et al. (2018), so

that the first natural frequency of the MBS matches the first natural frequency of the corresponding

flexible structure in vacuum, ωn .

5.2.3 Flow Solver

The fluid solver employed in this work is TUCAN, a constant-density fluid solver that uses the

Immersed Boundary Method (IBM) proposed by Uhlmann (2005) to model the presence of the wing

in the flow. The three-dimensional Navier-Stokes equations for an incompressible flow modified for

the IBM are used to describe the fluid dynamics,

∇·u = 0,(5.6a)

∂u

∂t
+ (u ·∇)u =−∇p +ν∇2u+ fIBM,(5.6b)

u(x) = U∂Γ ∀x ∈ ∂Γ,(5.6c)

where u is the velocity field, p is the kinematic pressure (i.e., pressure over the fluid density ρ f ),

ν = µ/ρ f is the kinematic viscosity, and fIBM is the IBM forcing term that models the presence of

the wing. This forcing term ensures that the no-slip boundary condition (equation 5.6c) is satisfied

at the solid boundaries (i.e., on the surface of the wing segments), where U∂Γ is the velocity at the

segments’ surface. To compute the velocity at the wing surface, equation (5.5) is solved together

with equation (5.6). In particular, at every time step, the hydrodynamic forces are computed and

used to update the position and velocity of the segments according to equation (5.5). Then, the

new hydrodynamic forces are computed from equation (5.6), leading to a weak coupling between

both systems of equations. This might result in a small incompatibility between the flow field at the

wing surface and the wing’s velocity at the end of the time step, which in any case remains bounded

and negligible over the simulation time. The weak coupling between the equations is also known

to lead to stability problems for density ratios below 1.2 (Uhlmann, 2005). However, in the range of

parameters considered in this study no stability issues have been observed (Arranz et al., 2022b).

Two different meshes are required. First, a staggered Cartesian grid is used to discretize the

fluid variables, referred to as the Eulerian mesh. The spatial derivatives appearing in figure (5.6)

are approximated by centered finite differences in the staggered grid defined by the Eulerian mesh.

Second, the surface of the wing’s segments (∂Γ) is discretized with a Lagrangian mesh, that follows the

active/passive motion of the solid body within the fluid. The boundary condition on the wing surface

(i.e., equation 5.6c) is imposed on this Lagrangian mesh, which requires the use of discrete delta

functions to interpolate velocities and the IBM forcing term back and forth between the Lagrangian

and Eulerian meshes. A complete description of the fluid solver implemented in TUCAN can be

found in Moriche (2017).

TUCAN has already been successfully employed, both for 2D (Moriche et al., 2017; Martínez-

Muriel & Flores, 2020) and 3D aerodynamics problems (Moriche et al., 2016; Arranz et al., 2018b;
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Arranz et al., 2020; Moriche et al., 2021) and also for cardiac flows (García-Villalba et al., 2021; Gonzalo

et al., 2022).

5.2.4 Computational Set-up

Direct Numerical Simulations (DNS) of the problem described in section 5.2.1 are performed using

TUCAN. The time step is selected such that the CFL number is lower than 0.3. The simulations are

performed in a computational domain with dimensions 14c × 11c × 7c in the streamwise, spanwise

and vertical directions, respectively. A refined zone is defined roughly at the middle of the domain

with a uniform grid spacing in all directions, ∆r . Outside this refined region, a constant stretching of

1% is applied to the grid in all directions. The wings are located in the refined zone, which has a size

of (2c×Ly,r ×3c) where Ly,r = (A+1)c depends on the aspect ratio of the wing, leaving enough space

to the boundaries not to have spurious effects on this refined zone, and enough space downstream

to properly develop the wake. The origin of the reference system is located at the leading edge of the

mid-span section of the wing. The free stream condition is modeled with an inflow velocity at the inlet

boundary (x/c =−4.75), while the outflow has been modeled with an advective boundary condition

(∂u/∂t +U∞∂u/∂x = 0) at the outlet (x/c = 9.25). Free slip boundary conditions are imposed in the

lateral boundaries.

The simulations are started in a grid that uses a lower resolution of ∆r = c/56 in the refined

zone, which captures qualitatively the dynamics of the problem as shown in the Appendix B.2. These

simulations are run for 4 cycles. Then, for selected configurations (see table 5.2), two additional

cycles are run at a higher resolution, ∆r = c/96. This higher resolution is chosen based on the grid

refinement study performed by Arranz et al. (2020) for a similar problem at the same Reynolds

number. We have checked that the number of cycles run in all simulations are enough to ensure that

aerodynamic forces and the flow in the vicinity of the wing are periodic. The rigid segments that

represent the Lagrangian mesh are discretized using ∆l = c/96 irrespective of the resolution used for

the Eulerian grid.

Finally, note that the space between the segments, e, is larger than the Eulerian grid spacing,

allowing fluid to pass through these gaps. The effect of the gaps is negligible to the global evolution

of forces, as shown in Appendix B.1, although they leave a visible footprint in the flow structures as

will be shown below.

5.3 Results

5.3.1 Force coefficients

First, thrust and lift coefficients, CT and CL , respectively, for cases withA= 4, are presented as a

function of time in figure 5.2. These coefficients are defined as

(5.7) CT = −2F ·ex

ρ f U 2∞S
, CL = 2F ·ez

ρ f U 2∞S
,
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(a) (b)

Figure 5.2: Temporal evolution of (a) thrust coefficient, CT , and (b) lift coefficient, CL , ofA = 4
wings. Line colors correspond to: : 1 (Rigid). : 2 (Intermediate). : 3 (Optimal). : 4
(Sub-optimal). : 5 (Sub-optimal 2).

where F is the total aerodynamic force and ek is the unitary vector in the k-axis direction. Due to the

symmetry of upstroke and downstroke motions, the time-averaged value of the thrust coefficient

is different from 0 in general, while the mean value of the lift coefficient is 0. As expected, there

is a clear influence of the wing flexibility on the evolution of the forces. When moving from rigid

to more flexible wings (i.e. decreasing Π1), a non-monotonic behaviour of the maximum values of

both CT and CL is observed, in accordance with previous studies of heaving wings in forward flight

(Heathcote et al., 2008) and hovering wings (Qi et al., 2010). Focusing on CT , figure 5.2(a) shows that

its maximum value during the downstroke increases with the flexibility for cases 1, 2 and 3. Increasing

flexibility beyond case 3 results in a sudden drop in CT , as shown by cases 4 and 5. Moreover, the

time instant at which the peak in both force coefficients is produced depends on the flexibility. For

the rigid case CT peaks at t/T ≈ 0.15, prior to mid-downstroke. For case 3, the maximum occurs at

t/T ≈ 0.3, after the mid-downstroke. A similar behaviour can be observed in figure 5.2(b) for CL in

terms of maximum values and times. The temporal evolution of CT and CL for the cases withA= 2,

and their variation with the wing flexibility, are qualitatively similar to those shown in figure 5.2 for

A= 4, and are provided as the Supplementary Material.

Given the temporal evolution of the forces, we choose to characterize the aerodynamic perfor-

mance of the wings in terms of the mean thrust coefficient, CT , and the root-mean square (RMS) of

the lift coefficient, CL
rms. Note that we choose CL

rms instead of CL , since the latter is zero for the wing

kinematics considered here. Figure 5.3 shows the variation of CT and CL
rms with the effective stiffness

of the wing. The effect of the aspect ratio of the wing in CT and CL
rms is captured by re-scaling the

effective stiffness (horizontal axis on the top) with the factor (2/A)4, as proposed by Kang et al. (2011).

Figure 5.3 suggests that this re-scaling is able to collapse into a single curve the force coefficients of

the flexible cases withA= 4 and 2, at least for values of Π1(2/A)4 . 10.

Overall, figure 5.3 shows that the variability of CT and CL
rms with the wing’s effective stiffness
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(a) (b)

Figure 5.3: (a) Mean thrust coefficient CT and (b) RMS of lift coefficient CL
rms. Blue symbols,A= 2.

Red symbols,A= 4.

is qualitatively similar, presenting a monotonic increase from stiffer to more flexible cases (i.e.

decreasing Π1) until a peak is reached. Decreasing the effective stiffness beyond this point results in

a sudden drop of CT and CL
rms, as already anticipated when discussing the temporal evolution of

the coefficients.

Figure 5.3(a) also allows to analyze the effect ofA on the mean thrust coefficient. For the rigid

wings there is a factor of 1.25 between the CT ofA= 2 andA= 4. For the flexible wings, changing

theA implies changing the rescaled effective stiffness, i.e. moving along the top horizontal axis

of figure 5.3(a). In particular, a change ofA from 2 to 4 results in a shift of more than a decade (a

factor of 1/16). For the range of flexibilities near the peak, this yields a factor of up to 2.25 in CT . This

suggests that the effect ofA on the structural properties of flexible wings is dominant over its direct

effect on the generation of aerodynamic forces.

In the following, we loosely denote optimal cases for each aspect ratio those that correspond to

the peak in the aerodynamic performance. We denote sub-optimal cases those which are beyond the

sudden drop in performance (i.e. for smaller Π1 than the optimal cases). We denote intermediate

cases those between the rigid and the optimal cases. For reference, this terminology is included in

table 5.2. The stereotypical cases selected (somewhat arbitrarily) for analysis are: cases with id [1,

2, 3, 4] forA = 4 and [6, 9, 11, 12] forA = 2, denoting them as rigid, intermediate, optimal and

sub-optimal, respectively.

The aerodynamic force coefficients in figure 5.3 are also plotted as a function of the ratio of

natural frequency in fluid over the frequency of the motion, ωn, f /ω (see horizontal axis on the

bottom). The natural frequency in fluid is computed as in Moore (2015) and Arora et al. (2018),

(5.8)
ωn, f

ω
= ωn/ωp

1+ Ia
= β2

n

2π

√
Π1

Π0(1+ Ia)
= a

2π

√
Π1(2/A)4

Π0(1+ Ia)
,
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where the dimensionless parameter Ia represents the additional moment of inertia of the wing due to

the added mass term (Arora et al., 2018), and the solution to equation (5.3) has been expressed as β2
n =

a(2/A)2, with a equal to a positive constant. Since in the present study, Π0 and Ia are held constant

for all cases, equation (5.8) yields a linear relationship between log10(ωn, f /ω) and log10(Π1(2/A)4),

allowing the use of two horizontal axes in figure 5.3. Indeed, given the straightforward physical

interpretation of ωn, f /ω, in the following we will use this quantity to characterize the wing’s flexibility,

instead of Π1(2/A)4. Finally, the natural frequency in fluid given by eq. (5.8) approximates well that

obtained from a linear stability analysis of the coupled fluid-structure system (Goza et al., 2020).

For example, the value of ωn, f using eq. (5.8) for the cases with Π1 = 20 in Goza et al. (2020) is

ωn, f ≈ 6.1πU∞/c while the one obtained from the linear stability analysis is ωn, f ≈ 6.2πU∞/c.

The results in figure 5.3 show that the optimal flexibility is found for values of ωn, f /ω slightly

above 1 (see also table 5.2 for the precise values). For ωn, f /ω< 1 the drop in performance is observed,

for both wing aspect-ratios. Similar observations can be inferred from the works of Zhu et al. (2014b)

and Qi et al. (2010), although for different kinematics and Reynolds number.

We also analyze the effect of flexibility on the power requirements and the propulsive efficiency

of the wings. The propulsive efficiency of the wing is computed as

(5.9) ηp = CT

P
,

where P is the time-averaged non-dimensional input power of the wing. The instantaneous non-

dimensional input power is computed similarly as in Arranz et al. (2022a), by using the reaction

forces and moments on the segment whose motion is imposed. The reaction force on the vertical

direction is denoted Rz and the reaction pitching moment is denoted Rθ. Then, the instantaneous

non-dimensional power for the flexible wings is computed as

(5.10) P (t ) = 2

ρ f U 3∞S

(
max(Rz (t )ḣ(t ),0)+max(Rθ(t )θ̇(t ),0)

)
.

Note that the definition for the power is such that no extraction of energy from the fluid is considered

(Berman & Wang, 2007; Vejdani et al., 2018; Jurado et al., 2022).

Figure 5.4(a) shows the temporal evolution of the required input power for the four stereotypical

cases withA= 4. The peak power input for the intermediate and optimal cases withA= 4 is roughly

twice that for the rigid case. Thus, not surprisingly, producing more thrust requires more power to

move the wing. When comparing the intermediate and the rigid cases, the increase in power input

for the intermediate case occurs only during the first half of each stroke. For the optimal case, whose

thrust peak is delayed (see figure 5.2a), the increase in required power extends to 80% of each half

cycle. Note that although the peak thrust of the optimal case is about 50% higher than the peak

thrust of the intermediate case (see figure 5.2a), the peak power input for these two cases is not that

different. For the sub-optimal case, the power input drops significantly, reaching a level similar to the

rigid case.
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(a) (b)

Figure 5.4: (a) Power requirements forA= 4 cases. Line colors correspond to: : Rigid. :
Intermediate. : Optimal. : Sub-optimal. (b) Propulsive efficiency ηp for rigid, intermediate,
optimal and sub-optimal cases for both aspect ratios.

(a) (b) (c)

Figure 5.5: Deflection of the mid-chord line of the wing during the cycle. Only half wing is shown from
root (left) to tip (right). Solid (dashed) lines correspond to the downstroke (upstroke). The following
cases forA= 4 are shown: (a) Intermediate ( ). (b) Optimal ( ). (c) Sub-optimal ( ).

Figure 5.4(b) shows the propulsive efficiency for all cases considered (including both aspect

ratios) as a function of the frequency ratio. When comparing the optimal case with the rigid case we

observe a small increase in the efficiency (forA= 4, from η= 0.217 to 0.248, and for AR = 2, from

η= 0.177 to 0.237). The propulsive efficiency of intermediate and optimal cases are very similar, even

if the optimal cases has a net thrust coefficient that is approx. 45% larger in the optimal cases. Beyond

the optimal case the drop in efficiency is noticeable, analogous to the behaviour observed for CT and

CL
rms in figure 5.3. The differences between the propulsive efficiency of flexible wings withA= 2

and 4 are small, and only become significant in the limit of a rigid wing.

5.3.2 Structural response

As seen in the previous section, the optimal aerodynamic performance of the wings is reached when

the frequency of the imposed motion, ω, approaches the first natural frequency of the structure in the

fluid, ωn, f . This hints to the occurrence of a resonance phenomenon, which we try to characterize

now, starting with the analysis of the structural response. We first provide a qualitative view of the

wing deformation for three of the cases withA= 4. Figure 5.5 compares the deflection patterns of the

intermediate, optimal and sub-optimal cases. Each line in the figure corresponds to the projection of
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(a) (b)

Figure 5.6: Time evolution of (a) the mid-chord vertical position of the tip Zt i p and (b) the tip to root
vertical relative position Ztr , forA = 4. Rigid case, . Intermediate case, . Optimal case,

. Sub-optimal case, .

the instantaneous mid-chord line of the wing (i.e. the pivoting axis of the wing) in the (y, z) plane of

the inertial reference system displayed in figure 5.1. The networks of lines form envelopes, which

illustrate the differences among the cases. In the intermediate case the deviations with respect to

the rigid motion (i.e., horizontal lines) are small, resulting in an envelope with a mildly diverging

pattern from root to tip (figure 5.5a). With increasing flexibility, the tip-to-root deflections are more

pronounced and consequently the diverging pattern is accentuated (see figure 5.5b for the optimal

case). Note that the diverging pattern implies that the heaving amplitude of any section along the

span increases with respect to the heaving amplitude of the rigid case. In contrast, a further increase

of flexibility beyond the optimal case leads to even larger tip-to-root deflections, however the various

deflection lines form a convergent-divergent pattern (see figure 5.5c for the sub-optimal case). Thus,

for the sub-optimal case, despite a larger tip-to-root deflection, the heaving amplitude of any section

along the span decreases with respect to the heaving amplitude of the rigid case.

This effect can be seen in a more quantitative way in figure 5.6, that shows the temporal evolu-

tion of the vertical position (i.e., displacement) of the mid-chord tip, Zt i p (t ), (figure 5.6a), and the

temporal evolution of the mid-chord tip-to-root deflection, Ztr = Zt i p −h (figure 5.6b). As discussed

above, the tip displacement increases when the wing is made more flexible up to the optimal case.

A further increase in flexibility leads to a lower amplitude of Zt i p for the sub-optimal cases (figure

5.6a) although the tip-to-root deflection is larger (figure 5.6b). Furthermore, the time at which the

maximum tip displacement is found for flexible cases is delayed with respect to the rigid case. This

phase lag increases monotonically with the flexibility, in agreement with previous studies, as Heath-

cote et al. (2008), Kang et al. (2011), and Kodali et al. (2017) among many others. Following Kodali

et al. (2017), we may simplify the description assuming that Zt i p follows approximately a sinusoidal

law with amplitude, ht i p , and a phase lag with respect to the imposed heaving motion, φt i p , i.e.
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(a) (b)

(c)

Figure 5.7: (a) Semi-amplitude of the vertical position of the tip normalized with the heaving am-
plitude, ht i p /h0, as a function of the frequency ratio in fluid, ωn, f /ω. (b) Phase lag of the tip dis-
placement relative to the wing root φtip, as a function of the frequency ratio in fluid, ωn, f /ω. (c)

Time-averaged thrust coefficient CT as a function of the phase lag φtip.A= 2, blue symbols.A= 4,
red symbols.

Zt i p (t/T ) ≈ ht i p cos(2πt/T −φtip). With this definition, the phase lag can be computed as

(5.11) φtip =− tan−1
(

Zt i p (0.25)

Zt i p (0.5)

)
.

Note that similar values of φtip are obtained with more sophisticated definitions of the phase lag, like

for instance using Fourier transform of Zt i p (t ).

We analyze now these two quantities: the semi-amplitude of the mid-chord vertical position of

the tip, ht i p = max(Zt i p (t/T )), and the corresponding phase lag, φtip, as a function of the frequency

ratio in fluid, ωn, f /ω, for all cases in table 5.2. These quantities are shown in figures 5.7(a) and 5.7(b).

First, the amplitude increases as the frequency of oscillation approaches the resonant frequency,

reaching a ratio of tip-to-root amplitudes ht i p /h0 ≈ 1.5. This amplification factor is not very large. For

comparison, Kodali et al. (2017) report values of ht i p /h0 ≈ 10. Note that the values of h0/c considered

by Kodali et al. (2017) are significantly smaller than the present one, so that an amplification of 10

is not realizable in our configuration. The maximum amplitude in figure 5.7(a) is found for a value

of ωn, f /ω slightly beyond 1. Second, the shape of the phase lag plot is also rather standard with

a gradual transition from 0 to 180◦ occurring near the resonant frequency. For the optimal cases

(i.e., maximum CT as shown in figure 5.7c) a phase lag slightly less than 45◦ is found. This result is

consistent with the behavior reported by Qi et al. (2010) at lower Reynolds numbers, but not with
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Kodali et al. (2017) who found a phase lag of approximately 90◦ at resonance. These discrepancies in

amplification and phase lag are probably related to the linear/non-linear character of the system.

Kodali et al. (2017) uses a linear Euler-Bernoulli beam and a potential aerodynamic model, and

their results are consistent with a weakly-damped linear oscillator (with large amplification and a

phase shift of 90◦). Our results and Qi et al. (2010), based on a non-linear structure and non-linear

aerodynamics, are consistent with a non-linear damped oscillator, which exhibit phase shifts at

resonance different than 90◦.

Summarizing, the results presented in this section show that the optimum in propulsive perfor-

mance (CT and ηp ) reported in section 5.3.1 is linked to a fluid-structure resonance. However, as

discussed in the introduction, the resonant mechanism is not incompatible with a second mecha-

nism based on non-linearities tuning the phase lag between actuation and deformation to maximize

aerodynamic forces (i.e., as in Ramananarivo et al., 2011). In the next section, we will discuss the role

of this second mechanism, by analyzing how the wing deformation affects flow structures and force

generation.

5.3.3 Flow analysis

The optimal aerodynamic performance of the resonant wings with ωn, f /ω≈ 1 is linked to their larger

heaving amplitudes of the wing tip, shown in figure 5.5. Then, since the heaving amplitude varies

along the span, we analyze the sectional thrust coefficient at selected locations along the span to

assess this effect. The sectional force coefficient is defined as

(5.12) ct (y, t ) = −2f(y, t ) ·ex

ρ f U 2∞c
,

where f(y, t ) is the sectional aerodynamic force. Figure 5.8 shows the time evolution of ct at selected

spanwise locations, 2y/b = [0, 0.2, 0.6, 0.8]. The figure includes the rigid, intermediate, optimal and

sub-optimal cases withA= 4. Compared to the rigid case, the flexible wings with ωn, f /ω≥ 1 show

larger peak values of ct at all spanwise sections. For the intermediate case, ct only departs from the

rigid case values at around the mid-strokes. In the optimal case, ct shows more marked differences

with respect to the rigid case, with a delayed maximum with higher peak values. The closer to the tip,

the stronger this effect becomes (i.e. compare figures 5.8c and d , for 2y/b = 0.6 and 0.8, respectively).

The sub-optimal case presents two markedly different regions, the central part and the outboard

part. In the central part (2y/b = 0 and 0.2 in figures 5.8a and b), ct of the sub-optimal wing presents

a similar trend as the rest of the cases, although with somewhat lower values. In the outboard part

(2y/b = 0.6 and 0.8 in figures 5.8c and d), ct displays an out-of-phase behaviour, with negative values

of ct (i.e., drag) during the first half of the stroke. This behaviour occurs because the combined effect

of the bending deformation of the wing and the pitching motion are out of phase (see figures 5.6 and

5.7c), resulting in a counter-productive interaction and a reduced aerodynamic performance.

Indeed, it is important to note that when the total force is decomposed into contributions normal

and tangential to the wing surface, the normal contribution is dominant (not shown here). This



5 - FLUID-STRUCTURE RESONANCE IN SPANWISE-FLEXIBLE FLAPPING WINGS 87

(a) (b)

(c) (d)

Figure 5.8: Time evolution of sectional thrust coefficient ct forA= 4 wings. (a) 2y/b = 0. (b) 2y/b =
0.2. (c) 2y/b = 0.6. (d) 2y/b = 0.8. Rigid case, . Intermediate case, . Optimal case, .
Sub-optimal case, .

implies that the aerodynamic forces are mostly produced by pressure forces, and consequently the

pitching angle of the wing controls whether a given pressure difference between the upper and lower

surfaces of the wings produces thrust or drag. For the kinematics of the present study, suction in the

upper surface of the wing can only produce thrust during the downstroke, i.e. when the pitching

angle is negative.

In order to try to explain the larger sectional forces of the optimal case, we turn our attention to

the effective angle of attack of the wing, defined as

(5.13) αe (y, t ) = θ(t )− tan−1
( Uz,p (y)

U∞−Ux,p (y)

)
,

where Ux,p (y) and Uz,p (y) are the streamwise and vertical velocities of the mid-chord line, respec-

tively. Figure 5.9 shows αe as a function of the spanwise coordinate and time for the four cases of

A= 4. It is possible to see how larger values of the effective angles of attack are reached near the tips

as the wings become more flexible. The peak values near the tips appear delayed with respect to the

peak values at the mid-span. For the sub-optimal case (figure 5.9d), αe has opposite signs near the

wing tips than at the mid-span during most of the stroke, which explains the drag generation (i.e.

ct < 0) in figures 5.8(c) and (d).

As in previous works (Gordnier et al., 2013; Gonzalo et al., 2018), the effective angle of attack

helps explaining some of the features associated to the aerodynamic forces generated by the rigid
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(a) (b)

(c) (d)

Figure 5.9: Effective angle of attack, αe , as a function of the spanwise coordinate, 2y/b, and time, t/T ,
for cases withA= 4. (a) Rigid. (b) Intermediate. (c) Optimal. (d) Sub-optimal.

and flexible wings. However, it does not provide a complete picture. For example, in figure 5.8(d), the

peak value of ct for the optimal case occurs at t/T ≈ 0.3, while the peak value of αe in figure 5.9(c)

occurs at later times, closer to t/T ≈ 0.4. Moreover, by definition, αe of all cases is the same at the

mid-section (y = 0), yet figure 5.8(a) shows significant differences between the cases. The missing

piece is related to development of the leading edge vortex (LEV) on the suction surface of flapping

wings, and its role in the development of unsteady aerodynamic forces (Eldredge & Jones, 2019).

In order to characterize the effect of the wing flexibility on the development of the LEV, figure

5.10 provides flow visualizations of the rigid, optimal and sub-optimal cases withA= 4. Vortical

structures are visualized by iso-contours of Q, the second invariant of the velocity gradient tensor.

Three time instants during the wing’s downstroke are shown, namely during the initial phase of

downstroke, t/T = 1/8, the mid-downstroke, t/T = 2/8, and the end of the downstroke, t/T = 4/8.

For additional information, the Supplementary Material contains videos with the complete evolution

of the vortical structures of the four selected cases with AR = 4. Qualitatively similar evolutions are

observed for the wings with AR = 2.

At the beginning of the downstroke (t/T = 1/8), figure 5.10(a) shows that the three wings start to

develop an LEV. For the rigid wing, the LEV is uniform along the spanwise direction, covering the

whole span of the wing. For the wing with optimal flexibility the LEV is stronger near the mid-section

than near the wing tips, while for the sub-optimal case the LEV is only apparent in the central part

of the wing. As the wing moves down, the intensity of the LEVs grows while the LEV is advected

downstream (figure 5.10b). At the end of the downstroke (figure 5.10c), the LEVs generated by the

rigid, optimal and sub-optimal wings are very different. In the rigid case, the LEV is a quasi 2D

structure aligned with the spanwise direction, with a clear pattern of braid vortices. The spacing of

these braids coincides with the spacing of the gaps between the wing panels, although the effect
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Figure 5.10: Flow visualization using iso-surfaces of the second invariant of the velocity gradient
tensor, Q, for cases withA= 4. Left column, rigid case. Mid column, optimal case. Right column, sub-
optimal case. Top row (a), t/T = 1/8. Mid row (b), t/T = 2/8. Bottom row (c), t/T = 4/8. Transparent
iso-surfaces correspond to Q = 6ω2, where ω = 2π f . Filled iso-surfaces correspond to Q = 15ω2.
Iso-surfaces are coloured with the spanwise vorticity ωy . The arrows in panel (c) highlight the LEV
and TEV formed during the downstroke of the wing (LEV1 and TEV1), and the LEV formed during the
previous upstroke of the wing (LEV2).

of the gaps on the aerodynamic performance of the wing is rather small (see Appendix B.1). For

the optimal case, the LEV is inclined with respect to the spanwise direction, having moved further

downstream at the mid-span section than near the wing tips. The braids are also present, although

they seem to be less intense than over the rigid wing. For the sub-optimal case, the LEV generated in

the central part of the wing is mostly broken, and two new LEVs are starting to develop near the wing

tips. These tip LEVs are developing when the αe in figure 5.9(d) is beginning to grow, and just before

the pitching angle changes sign, which may explain the relatively large drag contributions near the

wing tips of the sub-optimal cases at the beginning of each stroke.
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ut

U∞

cp

Figure 5.11: (a,b,c,d) Velocity tangent to the wing computed as ut = ux cos(θ)−uz sin(θ). (e, f , g ,h)
Pressure coefficient cp = 2(p−p∞)/(ρU 2∞). Blue means suction. (a,c,e, g ) correspond to the spanwise
mid section, 2y/b = 0. (b,d , f ,h) correspond to the spanwise section at 2y/b = 0.6. Vertical black line
represents end of downstroke. The yellow dashed line is x/c = 0.1+ t/T .

Overall, we can extract two important ideas from figure 5.10 that help understand the aerody-

namic performance of these three cases. First, in the sub-optimal case the out-of-phase motion

of the tips prevents the development of coherent LEV vortices over the wing, resulting in lower

aerodynamic loads at all spanwise sections. Second, the LEV of the optimal case seems to have a

delayed development when compared to the LEV of the rigid wing. This fact is apparent when looking

in figure 5.10(c) at the coherence of the vortex LEV2 (i.e., the LEV shed in the previous upstroke of the

wing), which is only clearly visible for the optimal wing.

The differences in LEV development between optimal and rigid cases that have been shown

qualitatively in figure 5.10 are further explored now in a more quantitative manner. Figure 5.11 shows

the chordwise velocity component, ut , and the pressure coefficient, cp = 2(p −p∞)/(ρU 2∞), both

measured at a distance 3∆r from the upper surface of the wing. Both variables are plotted as a

function of the chordwise coordinate (x/c) and time, at two spanwise positions (i.e., mid-span and

2y/b = 0.6).

We first focus on the plots of ut (x, t ) (figure 5.11a-d). The oblique bands of negative (blue) ut (x, t )

correspond to the regions of counterflow generated below the LEV, and serve as an indication of the

chordwise position of the LEV. These bands have been highlighted in the figure with a yellow dashed
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line. The slope of this line represents the advection speed of the LEV, which is approximately equal

to c/T = 0.496U∞. The alternative positive/negative bands upstream of the LEV correspond to the

secondary vortices that form near the leading edge of the wing (Li et al., 2020). Figures 5.11(a) and (b)

show that the LEV of the rigid case moves downstream at roughly the same velocity at both spanwise

positions, 2y/b = 0 and 0.6. The LEV of the optimal case seems to form later than in the rigid case

(i.e., ut at t/T = 0 is less intense for the optimal case than for the rigid case). Moreover, the LEV of

the optimal case moves downstream more slowly during the downstroke at 2y/b = 0.6 (figure 5.11d)

than at the mid-span section (figure 5.11c), in agreement with the flow visualizations provided in

figure 5.10. Interestingly, the LEV of the rigid and optimal case roughly move at the same speed at the

mid-span section of the wing.

The delayed evolution of the LEV has an effect on the pressure distribution on the surface of the

flexible wings. For the rigid cases, the separation of the LEV occurs at about t/T ≈ 0.33 at all spanwise

locations, indicated in figures 5.11(e) and ( f ) by the change of the sign of cp in the region between

the leading edge of the wing and the LEV (i.e. below the yellow line). For the optimal case, the LEV

separation occurs at t/T ≈ 0.4 at the mid-span section (figure 5.11g ) and at t/T ≈ 0.46 at 2y/b = 0.6

(figure 5.11 f ). The pressure distribution of the rigid and optimal cases also differs downstream of

the LEV, although it is difficult to say if these differences are due to the evolution of the LEV itself,

or to the generation of a stronger trailing edge vortex in the optimal case (i.e., vortex TEV1 in figure

5.10c). In summary, the delayed development of the LEV in the optimal case most likely explains the

delayed peaks and higher maximum values of ct for the optimal case compared to the rigid case (see

figure 5.8), and the overall better aerodynamic performance of the optimal case.

5.4 Conclusions

We have presented direct numerical simulations of the flow around a spanwise-flexible wing in

forward flight. The simulations were performed at Re = 1000 for a wing undergoing a heaving and

pitching motion at a Strouhal number Stc ≈ 0.5. We have considered wings of two aspect ratios,

A= 2 and 4. For both cases we have varied the material properties of the wing, keeping constant

the effective inertia, Π0 = 0.1, and varying the effective stiffness Π1 in a broad range, including a

rigid wing for comparison (Π1 →∞). The structural model of the wing consisted of a series of rigid

segments joined by torsional springs whose stiffness was adjusted to match the natural frequencies

in vacuum of a corresponding Euler-Bernoulli beam.

It has been found that there is an optimal aerodynamic performance of the wing linked to a

fluid-structure resonance phenomenon, that occurs when the imposed frequency of oscillation

approaches the first natural frequency of the structure in the fluid, ωn, f /ω≈ 1. In that situation, the

time-averaged thrust is maximum, increasing by a factor of 2 with respect to the rigid case. The

associated increase in propulsive efficiency is milder, about 3-6% in absolute terms, since the increase

in thrust production is also linked to an increase in the required power to maintain the wing motion.
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With increasing flexibility beyond the optimal case, ωn, f /ω< 1, the aerodynamic performance drops

significantly, both in terms of thrust production and propulsive efficiency.

The effect of the aspect ratio in the aerodynamic performance of the flexible wings seems to be

limited to its effect on determining the natural frequency of the wing. Flexible wings with the same

ωn, f /ω but differentA have very similar aerodynamic performances in terms of averaged thrust

coefficients and propulsive efficiencies, suggesting that the aerodynamic benefits of the resonance

are dominant over the aerodynamic benefits associated to largerA. This does not preclude some

(weak)A effects on the amplitude and phase lag of the structural response.

In order to characterize the resonance phenomenon we have started by analyzing the structural

response of the wing. It has been found that for all cases considered, the mid-chord line of the wing

presents a bending pattern corresponding to the first bending mode of an Euler-Bernoulli beam.

This is not surprising, since there is a factor of about 10 between the natural frequencies of the first

and second modes of the wings considered in this study. Hence, the frequency ratios considered in

this work are still relatively far from the second mode. Thus, the drop in aerodynamic performance

cannot be attributed to the excitation of a second bending mode. Instead, the analysis of the wing tip

motion compared to the root motion has shown a pattern consistent with the response to periodic

forcing of a non-linear damped harmonic oscillator. Increasing the flexibility from ωn, f /ω > 1 to

ωn, f /ω < 1 results in increased tip-to-root deflections, with a sharp transition of the amplitudes

around ωn, f /ω≈ 1 and a gradual transition in the phase lag between the tip and root motions from 0

to 180◦. The fluid damping seems to be significant, since the amplitude of the tip displacement is

only ≈ 1.5 times larger than the amplitude of the heaving motion. The phase lag at the resonance is

φtip ≈ 45◦, far from the expected value for linear oscillators (i.e. φtip ≈ 90◦).

The reason why the structural resonance results in an enhanced aerodynamic performance

is twofold. First, the increased amplitude of motion of the outboard wing sections leads to larger

effective angles of attack. Second, the motion of the outboard wing sections is delayed with respect to

the motion of the mid-span section of the wing. This results in a delayed development of the leading

edge vortex, which together with the larger effective angles of attack explains the larger aerodynamic

load in the outboard sections of the optimal wing. This beneficial fluid-structure interaction holds

while the bending deformation and the pitching motion of the wing are synchronized. Indeed,

the outboard wing sections of the sub-optimal cases are out-of-phase, leading to drag generation

during the first half of each stroke. Overall, the coupling among deformation, force generation and

wing orientation (i.e., pitching angle) in our results is reminiscent of the streamlining arguments of

Ramananarivo et al. (2011) for chordwise-flexible wings, albeit the fundamental differences between

both configurations.

Compared to the existing literature on spanwise-flexible wings, our results suggest that the

differences between Kodali et al. (2017) and Zhu (2007) and Qi et al. (2010) can be explained by the

linear/non-linear character of the structural model. Our results are consistent with Qi et al. (2010),

even if the Reynolds number and flow configuration (forward flight vs hover) are different. This,
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(a) (b)

Figure 5.12: Time evolution of (a) thrust coefficient CT and (b) lift coefficient CL , for theA= 4 rigid
wing case. Model with gaps, . Model without gaps, .

together with the similarities with Zhu (2007) (non-linear structure, and linear aerodynamics) seem

to suggest a dominant role of structural non-linearities in determining the amplitude and phase shift

at resonance.
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B.1. Effect of gaps on aerodynamic performance

The flexible-wing model consists of several rigid segments joined with torsional springs. The segments

are separated by small gaps to avoid overlapping when the segments rotate with respect to each

other. In the rigid case there is no risk of overlapping so that the rigid case can be used to assess the

influence of the gaps on the aerodynamic performance of the wing. To this aim, we have performed

an additional simulation of a rigid wing without gaps, consisting of a a single segment of chord c and

aspect ratioA= 4.

Figure 5.12 shows the time evolution of thrust and lift coefficients during half a cycle for both

cases (i.e. rigid wing with gaps and rigid wing without gaps). It is possible to see that the gaps do

not significantly affect the temporal evolution of the force coefficients, where changes in CT are not

higher than 3%, while changes in CL are not higher than 0.7%.
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(a) (b)

Figure 5.13: Time evolution of (a) total force coefficient CF and (b) mid-chord vertical position of the
tip Zt i p . Solid lines, c/∆r = 96. Dashed lines, c/∆r = 56. Rigid case, . Intermediate case, .
Optimal case, . Sub-optimal case, .

B.2. Analysis of grid resolution

The nominal grid resolution used in the present work, c/∆r = 96, was selected based on a grid

refinement study performed in a previous study for a similar problem at the same Reynolds number

(Arranz et al., 2020). In order to generate additional data points at a lower computational cost, some

additional simulations were performed at a coarser grid resolution, c/∆r = 56, as reported in Table 5.2.

In this appendix we quantify the differences between the results obtained with both grid resolutions

for the rigid, intermediate, optimal and sub-optimal cases forA = 4. We proceed as in Gonzalo

et al. (2018, appendix A), analyzing the total force coefficient

(5.14) CF = 2|F|
ρ f U 2∞S

.

Figure 5.13 shows the time evolution of CF and Zt i p during the downstroke for the four cases

considered. Overall, the results obtained with the lower resolution grid compare reasonably well

with the results obtained with the nominal grid resolution. In order to provide a more quantitative

comparison, for both quantities (CF and Zt i p ) we compute the root mean square of the fluctuations

with respect to the mean for both grid resolutions and define the normalized differences

(5.15) εF =

∣∣∣C rms
F,56 −C rms

F,96

∣∣∣
C rms

F,96

, εZ =

∣∣∣Z rms
t i p,56 −Z rms

t i p,96

∣∣∣
Z rms

t i p,96

,

where the subscripts 56 and 96 indicate the corresponding grid resolution. The maximum value of εF

is found for the intermediate case, and it is smaller than 3%. The maximum value of εZ is found for

the sub-optimal case and is approximately equal to 5%. Since these differences are relatively small,

we conclude that it is reasonable to include the results obtained with the low resolution grid in Table

5.2 and Figures 5.3, 5.4b and 5.7.
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6
ON THE ROLE OF WAKE-CAPTURE AND RESONANCE IN SPANWISE-FLEXIBLE

FLAPPING WINGS IN TANDEM

The contents of this chapter have been submitted to:

Journal of Fluid Mechanics

Abstract

Direct numerical simulations of the flow around spanwise-flexible flapping wings in tandem are

reported. Wings of aspect ratio 2 and 4 in forward flight undergo heaving and pitching motion

following optimal 2D kinematics. The Reynolds number of the simulations is Re = 1000. The effect of

flexibility is explored by varying the effective stiffness of the wings, while the effective inertia is kept

constant. It is found that the aerodynamic performance and structural behavior of forewings are

dominated by a fluid-structural resonance. The maximum propulsive performance for the forewings

is obtained when the driving frequency approaches the first natural frequency of the structure,

ωn, f /ω ≈ 1, similarly to what is observed in isolated wings undergoing the same kinematics. On

the other hand, hindwings show optimal performance in a broad region near ωn, f /ω≈ 2, and their

aerodynamic performance seems to be dominated by wake capture and aerodynamic tailoring

effects. These effects are qualitatively analyzed by estimating the effective angle of attack of the

hindwings, which only requires information about the wake shed by the forewings. The aerodynamic

performance of the hindwings is dependent on the flexibility of the forewing, which impacts the

intensity of the vortices shed into the wake and the resulting effective angle of attack. The timing

between the effective angle of attack and the pitching motion of the hindwing controls the generation

of thrust (or drag) of each spanwise section of the hindwing. A preliminary study on the aerodynamic
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performance of systems made of wings with different flexibility suggests that they could outperform

tandem systems with equally flexible wings.

6.1 Introduction

The excellent aero-hydrodynamic performance achieved by flying and swimming animals has always

attracted the attention of the scientific community. In recent years, it has become possible to design

small, bioinspired robotic devices (De Croon et al., 2009; Raj & Thakur, 2016), such as flapping-wing

micro-air vehicles, resembling the flight of insects and small birds (Wood, 2008; Keennon et al., 2012).

However, the performance of these devices is still far from that of their natural counterparts (Haider

et al., 2021).

Among the latter, of particular interest for the present investigation are dragonflies and dam-

selflies, which are able to fly efficiently in many different flight modes, performing very rapid ma-

neuvers with large accelerations and small turning radius, exceeding the average capabilities of

other insects (Bomphrey et al., 2016; Sun et al., 2017). Dragonflies and damselflies have two pairs of

flexible wings arranged in horizontal tandem, and depending on the flight mode, each pair of wings

may be actuated differently (Sun et al., 2017). Around the wings and due to their motion, vortical

structures are often developed, leading to complex vortex-structure interactions (Salami et al., 2019).

The development of the vortical structures, their interaction with the wings, and the deformation and

force generated by the latter are all coupled, resulting in a highly complex fluid-structure interaction

(FSI) problem where the mechanisms driving the efficient flight are not well understood.

There is a vast literature on the aerodynamic performance of dragonflies (Salami et al., 2019).

Several authors have tried to capture and characterize the kinematics of dragonfly wings in controlled

environments (Wakeling & Ellington, 1997; Chen et al., 2013). Other authors have performed numeri-

cal computations (Li & Dong, 2017; Bode-Oke et al., 2018; Zou et al., 2019; Lai et al., 2020; Shumway

et al., 2020), or experiments (Zheng et al., 2015, 2016a; Hefler et al., 2018), in order to understand

better and characterize the different flight modes of dragonflies, looking at the surrounding fluid

flow and determining the aerodynamic forces. These studies are generally useful since they illustrate

the different ways in which the flexible wings interact with the flow to enhance the performance in

terms of force generation and/or propulsive efficiency. However, from these works, it is difficult to

extract general rules for design since it is usually not possible to identify the mechanisms driving the

optimal fluid-structure interaction.

Progress has also been made by studying simplified configurations, often not taking into ac-

count flexibility effects. Many studies have been carried out considering 2D foils (Broering & Lian,

2012; Lua et al., 2016; Shanmugam & Sohn, 2019; Bie & Li, 2022) or 3D rigid wings (Zheng et al.,

2016b; Nagai et al., 2019; Arranz et al., 2020; L. Peng et al., 2021; Jurado et al., 2022; Lagopoulos

et al., 2023) in horizontal tandem arrangement. These studies have shown that the aerodynamic

performance of the tandem system may be enhanced by selecting the proper wing kinematics. It has
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been observed that increased propulsive efficiency is achieved when the hindfoil benefits from hy-

drodynamic interactions with the vortices shed by the forefoil (Ortega-Casanova & Fernández-Feria,

2019; Martínez-López, 2019). The two key parameters which dictate this interaction are the distance

between the wings and the phase lag between their corresponding motions. However, the role of

wing flexibility in such interactions has been scarcely studied in the literature (Alaminos-Quesada &

Fernandez-Feria, 2021).

In fact, it is well known that wing flexibility may have a large influence on the aerodynamic

performance of isolated wings. Many studies have shown the benefits of flexibility on propulsion

(Shyy et al., 2010), also reducing the energetic requirements (Reid et al., 2019). Relevant works are

those of Alben (2012), Moored et al. (2012), Quinn et al. (2014), Moore (2015), and K. Liu et al. (2022)

among others. Two main mechanisms have been proposed in the literature to explain the optimal

performance of isolated airfoils and wings in different scenarios (chordwise and spanwise flexible

wings). The first mechanism is a fluid-structure resonance that results in maximum deflections

when the structure is excited at the natural frequency of the fluid-structure system (see, for exam-

ple, Floryan & Rowley (2018)). The second one is a streamlining/tailoring argument in which the

phase lag between actuation and deformation is properly tuned, leading to optimal bending and

projection of the aerodynamic forces into the direction of motion, maximizing thrust, as suggested

in Ramananarivo et al. (2011). These mechanisms are non-exclusive and have been reconciled in

the literature (Goza et al., 2020; Quinn & Lauder, 2022), suggesting that in some cases the optimal

bending may occur at the resonant frequency of the fluid-structure system. In fact, it has been shown

recently that the optimal propulsive performance of isolated spanwise-flexible flapping wings is

driven by a fluid-structure resonance (Martínez-Muriel et al., 2023), where the coupling between

deformation, force generation, and wing orientation is beneficial while the bending motion and the

pitching motion are synchronized.

The mechanisms discussed above are starting to be clarified for isolated wings. It is then unsur-

prising that the effects of wing flexibility on tandem systems are not yet understood. For example,

questions that remain unanswered are, among others: i) what is the role of fluid-structure reso-

nance in tandem systems; ii) to what extent the aerodynamic performance is modified/enhanced

by hydrodynamic interactions between the wake of the forewing and the hindwing, iii) what is the

interplay between fluid-structure resonance and the wake-hindwing hydrodynamic interactions, iv)

how different is then the aeroelastic response of the hindwing compared to the aeroelastic response

of the forewing. These are questions that go beyond what can be answered in a single study. Our

aim in the present work is, therefore, to contribute to the knowledge on the topic by studying a

simplified configuration that retains most of the ingredients that play a significant role. We simulate

numerically the forward flight of a pair of spanwise-flexible flapping wings in horizontal tandem

configuration. We vary the flexibility of the wings and this allows to study the aeroelastic response

and the aerodynamic performance of the wings both near and far away from resonance. Note that it

will also be possible to understand the differences with respect to the isolated case, since the latter
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Figure 6.1: Sketch of the kinematics followed by the midsection of the wings composing the tandem
system, which also corresponds to the kinematics followed by forefoil and hindfoil in the 2D problem.

has been previously studied for the same kinematics as the one considered here (Martínez-Muriel

et al., 2023).

The paper is structured as follows: the problem under consideration is introduced in section 6.2,

together with the methodology followed to solve it. The results of the 2D configuration which are

relevant for the discussion to follow are reported in section 6.3. In section 6.4, the main results of

the paper are reported. First, an overview of the performance of the tandem system is given. This

is followed by separate descriptions of the aeroelastic behavior of the forewing and the hindwing.

To finish the paper we explore the performance of systems made of wings with different flexibilities.

Conclusions are presented in section 6.5.

6.2 Methodology

6.2.1 Problem definition

We consider two equal wings in horizontal tandem configuration flying at a velocity U∞. The wings

are modeled as rectangular flat plates of chord c and span b with aspect ratioA= b/c and thickness

h∗
s = hs/c = 0.02. The wings are rigid in the chordwise direction, but flexible in the spanwise direction.

The flow is considered to be incompressible, and the Reynolds number based on the chord of the

wings and the free-stream velocity is Re =U∞c/ν= 1000. Two different aspect ratios are studied in

this analysis,A= 2 and 4.

A heaving and pitching motion is imposed on the mid-span section of each of the wings, while

the rest of the wing deforms passively. A sketch of the arrangement and kinematics of the wings is

shown in figure 6.1. The kinematics at the mid-span section is described by the laws

hi (t ) = h0 cos(2πt/T +φ f h,i ),(6.1a)

θi (t ) = θ0 cos(2πt/T +φ f h,i +φhp,i ),(6.1b)

where h0 is the heaving amplitude, θ0 the pitching amplitude, φ f h the phase difference between

the forewing and the hindwing, φhp the phase difference between heaving and pitching motions,

and T the oscillation period. We also define the frequency of the imposed motion as f = 1/T , the

angular frequency as ω = 2π f , the reduced frequency as k = π f c/U∞, and the Strouhal number
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i h0 θ0 Stc φ f h φhp

F (Forewing)
0.388 26.19◦ 0.496

0 π/2
H (Hindwing) 347.1◦ π/2

Table 6.1: Kinematic parameters of the imposed motion on the forewing (i = F ) and the hindwing
(i = H) of the 3D problem.

as Stc = f c/U∞. The subindex i refers to forewings (i = F ) or hindwings (i = H). The pivoting axis

for the pitching motion is placed at the mid-chord of each wing. The horizontal distance between

the pivoting axes of the wings is S = 1.5c. The value of the parameters defining the kinematics

are shown in table 6.1. These are the result of the optimization problem for maximum propulsive

efficiency of a system of horizontal tandem foils, performed in a similar way as in Ortega-Casanova &

Fernández-Feria (2019). The optimization is carried out using a conjugate direction method with a

Powell optimizer (see Martínez-López, 2019 for details).

To analyze the role of spanwise flexibility in tandem wings, we vary the material properties of

the wings, characterized by the first natural frequency of the spanwise bending of the wing, ωn . We

account for the added mass effect of the fluid as in Moore (2015), Arora et al. (2018), and Martínez-

Muriel et al. (2023), defining the natural frequency in fluid as

(6.2) ωn, f =
ωnp

1+ Ia
,

where Ia = 27π/128ρ∗h∗
s . Hence, the ratio of natural frequency in fluid, ωn, f over the frequency of

the imposed motion is

(6.3)
ωn, f

ω
= ωn/ωp

1+ Ia
= β2

n

2π

√
Π1

Π0(1+ Ia)
,

where βn is the first eigenvalue of the transcendental equation

(6.4) cos(βkA/2)cosh(βkA/2)+1 = 0,

as described in Kodali et al., 2017.The frequency ratio depends on the effective inertia and the

effective stiffness of the wings, defined respectively as

(6.5) Π0 = ρ∗h∗
s

(k

π

)2
, Π1 =

E∗h∗3
s

12
,

following Shyy et al., 2010. In these expressions, E∗ = E/ρ f U 2∞ is the normalized Young’s modulus

and ρ∗ = ρs/ρ f is the solid to fluid density ratio. A density ratio ρ∗ = 20 is selected such that the

resulting effective inertia (Π0 = 0.1) is of the same order of magnitude as such observed for dragonflies

and other insects (Hamamoto et al., 2007; Jongerius & Lentink, 2010; Shyy et al., 2010; Ren et al., 2013).

We choose to cover a range of Π1 ∼ [O (10−1)−O (102)] comparable to those analysed in previous

works (Fu et al., 2018). We also consider rigid wings (Π1 →∞), yielding the range of ωn, f /ω reported

in table 6.2.
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Id A Tandem ωn/ω ωn, f /ω Π1 Π1(2/A)4 Nomenclature c/∆r iso c/∆r tand

1 4 Yes ∞ ∞ ∞ ∞ Rigid 96 96
2 4 Yes 3.6 2.22 66.3 4.14 Intermediate 96 96
3 4 Yes 1.8 1.11 16.6 1.04 Resonant 96 96
4 4 Yes 1.2 0.74 7.4 0.46 Sub-optimal 96 56
6 2 Yes ∞ ∞ ∞ ∞ Rigid 96 96
7 2 No 17.5 10.75 96.25 96.25 - 56 -
8 2 No 9.3 5.7 27.2 27.2 - 56 -
9 2 Yes 4.6 2.82 6.7 6.7 Intermediate 56 56
10 2 Yes 3.25 2 3.3 3.3 - 56 96
11 2 Yes 2.3 1.41 1.7 1.7 Resonant 96 96
12 2 Yes 1.6 0.99 0.83 0.83 Sub-optimal 56 56

Table 6.2: Overview of problem parameters.A is the aspect ratio. ωn/ω and ωn, f /ω are the ratios
of natural frequency in vacuum and in fluid, respectively, to the angular frequency of the flapping
motion. Π1 is the effective stiffness. c/∆r iso and c/∆r tand are the grid resolutions used in the refined
zone of the domain for isolated and tandem cases, respectively. For all cases, simulations of the
isolated wing are available, as reported in Martínez-Muriel et al. (2023). The column Tandem indicates
the cases for which simulations of the tandem system have been performed.

6.2.2 Structural model

A lumped-torsional flexibility model is used to model the spanwise flexibility of the pair of wings

(Arora et al., 2018; Arranz et al., 2022b), as described in Martínez-Muriel et al. (2023) for isolated

wings. Each wing is discretized into NB = 5A+1 rigid segments, which are connected by torsional

springs, as depicted in figure 6.2(a). The distance between a rigid segment and the torsional spring is

e = hs/2 as it is shown in figure 6.2(b), such that there is no overlapping between the segments as they

move. The effect of the gaps on the aerodynamic performance of the wings is found to be negligible,

although they leave a footprint in the flow structures, as shown by Martínez-Muriel et al. (2023).

The rigidity of the torsional springs is set to match the desired natural frequency of the wing. The

resulting structural model for each wing is a system of NB connected rigid bodies with 1+NB degrees

of freedom, namely the vertical displacement, hi , the pitching angle, θi , and the relative rotation

angles between each segment, φi , j , j = 1, . . . , NB −1 (see figure 6.2b), where the index i represents

the wing.

6.2.3 Fluid-structure interaction solver

A summary of the most representative features of the Fluid-Structure Interaction (FSI) solver is briefly

described hereafter. For further details, the reader is referred to Arranz et al. (2022b).

The governing equations for the multi-body system (MBS) can be cast in the form:

(6.6) H(q)q̈+C (q, q̇) = ξ+ξh ,

where q is the vector of generalized coordinates, H is the generalized inertia matrix, C is the general-

ized bias force vector, which includes Coriolis and centrifugal accelerations, ξ is the vector of internal

forces/accelerations, and ξh is the vector of hydrodynamic forces acting on the wing.



6 - ON THE ROLE OF WAKE-CAPT. AND RESON. IN SPANWISE-FLEX. FLAPPING WINGS IN TANDEM 107

(a) (b)

Figure 6.2: (a) Sketch of the disposition of the wings and the multibody model to qualitatively describe
the spanwise flexibility of a wing, where the segments of the MBS are connected using torsional
springs. (b) Sketch of the degree of freedom (φi , j ) between two consecutive segments.

For this particular problem, q = [h1,θ1,φ1,1, . . . ,φ1,NB−1,h2,θ2,φ2,1, . . . ,φ2,NB−1], and

ξ= [0,0,−Kφ1,1, . . . ,−Kφ1,NB−1,0,0,−Kφ2,1, . . . ,−Kφ2,NB−1], where K is the torsional spring constant.

The generalized inertia matrix, H , and the generalized bias force, C , are computed using the Com-

posite Rigid-Body algorithm (CRBA) and the Recursive Newton-Euler algorithm (RNEA), respectively.

This is done using the open-source Rigid Body Dynamics Library (RBDL) developed by Felis (2017).

The in-house code TUCAN is employed in this work. It is a solver that uses the Immersed

Boundary Method (IBM) proposed by Uhlmann (2005) to model the presence of the wings in the flow.

The 3D Navier-Stokes equations for an incompressible flow, accounting for the modifications of the

IBM, are used to describe the fluid dynamics,

∇·u = 0,(6.7a)

∂u

∂t
+ (u ·∇)u =−∇p +ν∇2u+ fI B M ,(6.7b)

u(x) = U∂Γ ∀x ∈ ∂Γ,(6.7c)

where u is the velocity field, p is the kinematic pressure (i.e., pressure over the fluid density ρ f ),

and ν= µ/ρ f is the kinematic viscosity. The equations are discretized using second-order central

differences on a staggered grid. Time integration is performed with a low-storage semi-implicit

3-stage Runge-Kutta scheme. The forcing term fI B M is added to ensure that the no-slip boundary

condition (equation 6.7c) is satisfied at the boundaries of the bodies (i.e., on the surface of the wing

segments), where U∂Γ is the velocity at the surface of those segments. The system of equations (6.6)

is weakly coupled to the system of equations (6.7). It is well known that weakly-coupled systems of

equations might be prone to stability issues. However, in the parametric range considered in this

study, no stability problems have been observed (Arranz et al., 2022b).

A complete description of the fluid solver implemented in TUCAN together with an extensive

validation can be found elsewhere (Moriche, 2017; Moriche et al., 2017). The multibody version has
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also been successfully employed in previous works (Arranz et al., 2022a; Martínez-Muriel et al., 2023).

6.2.4 Computational Set-up

The computational setup is very similar to the one described in Martínez-Muriel et al. (2023) for

isolated wings. The size of the computational domain is 14c × 11c × 7c in the streamwise, spanwise,

and vertical directions, respectively. The wings are located in the central part of the computational

domain, inside of a refined zone with a uniform grid spacing, ∆r , in all directions. The size of the

refined zone is (3.5c ×Ly,r × 3c), with Ly,r = (A+ 1)c depending on the aspect ratio of the wing.

Outside of this refined region, a constant stretching of 1% is applied to the grid in all directions. The

origin of the reference system is located at the leading edge of the mid-span section of the wing. The

time step is chosen such that the CFL number is lower than 0.3. At the inlet (x/c =−4.75), a constant

uniform velocity is imposed while at the outlet (x/c = 9.25) an advective boundary condition is used

(∂u/∂t +U∞∂u/∂x = 0). Free slip boundary conditions are imposed at the lateral boundaries.

All simulations are first run for four cycles with a grid resolution of ∆r = c/56 (in the refined zone).

Then, for all relevant cases (see table 6.2), three additional cycles are run at the higher resolution,

∆r = c/96. This higher resolution is chosen based on the grid refinement study performed by Arranz

et al. (2020) for a similar problem at the same Reynolds number. In order to have more data points for

analysis and to save computational resources, a few less relevant cases are run with the coarse grid

resolution only, as indicated in table 6.2. As shown by Martínez-Muriel et al. (2023) for an isolated

wing, with this relatively coarse resolution the force coefficients present a difference of about 3%

with respect to the finer grid resolution of ∆r = c/96. The number of cycles run in all simulations are

enough to ensure that both aerodynamic forces and the flow near the wings are periodic.

6.2.5 Definition of aerodynamic coefficients

The aerodynamic performance of the wings can be measured in terms of the thrust and lift coeffi-

cients, which are defined as

(6.8) CT,i = −2Fi ·ex

ρ f U 2∞S
, CL,i = 2Fi ·ez

ρ f U 2∞S
,

where Fi is the total aerodynamic force of the i th wing and ek is the unitary vector in the k-axis

direction. Values of thrust and lift coefficients averaged over a cycle are denoted by CT,i and CL,i ,

respectively. On the other hand, the propulsive efficiency of each wing is defined as

(6.9) ηi =
CT,i

Pi
,

where Pi is the non-dimensional input power of the i th wing averaged over a cycle. The instantaneous

non-dimensional input power coefficient, Pi , defined as

(6.10) Pi (t ) = 2

ρ f U 3∞S

(
max(Rz,i (t )ḣi (t ),0)+max(Rθ,i (t )θ̇i (t ),0)

)
,
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is computed as in Martínez-Muriel et al. (2023), by using the reaction forces and moments on the

segment whose motion is imposed. The reaction force in the vertical direction is denoted Rz and the

reaction pitching moment is denoted Rθ. This definition is such that no energy extraction from the

fluid is allowed (Berman & Wang, 2007; Vejdani et al., 2018; Jurado et al., 2022). For rigid wings, the

reactions are simply Rz = Fz , Rθ = My , where My is the aerodynamic moment about the pivoting axis

of the wing.

We will also discuss sectional force coefficients ct and cl , together with the sectional normal force

coefficient cn , which are defined as

(6.11) ct ,i = −2fi ·ex

ρ f U 2∞c
, cl ,i =

2fi ·ez

ρ f U 2∞c
, cn,i = cl ,i cos(θi )− ct ,i sin(θi ),

where f is the sectional aerodynamic force. This definition is also valid for two-dimensional foils. In a

similar fashion to 3D, the propulsive efficiency for foils is defined as

(6.12) η2D
i = ct ,i /P 2D

i

where P 2D
i is the non-dimensional input power coefficient of the i th wing averaged over a cycle,

where the instantaneous value is computed as

(6.13) P 2D
i (t ) = 2

ρ f U 3∞c

(
max( fz,i (t )ḣi (t ),0)+max(my,i (t )θ̇i (t ),0)

)
.

Finally, we define the pressure coefficient cp as

(6.14) cp = p −p∞
1
2ρ f U 2∞

,

where p∞ is the pressure of the free stream.

6.3 Two-dimensional problem and selection of kinematics

Arranging wings in horizontal tandem may be beneficial, as mentioned in section 1, if the kinematics

are properly selected. To provide a basis for the analysis of flexible wings in tandem, in this section

we analyze the aerodynamic performance of a system of two-dimensional foils in tandem, that move

with the same kinematics as the mid-span sections of the flexible wings. To highlight the benefits

of the tandem configuration, the results obtained for the 2D tandem system are compared to those

yielded by an isolated foil.

First, vorticity contours at t/T ≈ 0.25 for both the isolated foil and the system of foils in tandem

are shown in figure 6.3. The isolated foil sheds leading edge vortices on both downstroke (labeled

LEV1 and LEV3 in figure 6.3a) and upstroke (labeled LEV2 and LEV4) that are equal due to the

mirror-symmetry of the kinematics. These vortices are located in the wake following a staggered

disposition, in such a way that each pair induces a jet-like motion (indicated with yellow arrows in

the figure) that favors propulsion, even if it is misaligned with the direction of the incoming free

stream. Vorticity leaving the trailing edge forms a shear layer, that is engulfed by the traveling LEVs.
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(a)

(b)

Figure 6.3: Spanwise vorticity, ωy c/U∞, fields for (a) isolated foil and (b) tandem system at t/T ≈ 0.25.
Red means clockwise rotation.

When looking at the tandem foils, figure 6.3(b), the vortical structures near the forefoil are very

similar to those of the isolated foil, suggesting that the aerodynamic performance of the forefoil is

similar to the aerodynamic performance of the isolated foil. On the other hand, due to the interaction

with the LEVs shed by the forefoil (labeled LEV-F in the figure), the LEV developed by the hindfoil

is stronger (labeled LEV-H). In addition, a secondary vortex is also shed from the pressure surface

of the hindfoil. This secondary vortex travels with the dipole (circled in dashed blue in figure 6.3b),

formed by LEVs from fore- and hindfoil. The dipole is asymmetric from the beginning, as the LEV-H

is stronger than the LEV-F, and due to this asymmetry, the dipole rotates. For x/c ≤ 4, the dipole is

roughly vertical, exerting a horizontal jet and leading to an increase in the thrust coefficient. For

x/c > 4, the dipole starts to drift in the vertical direction, and the direction of rotation is determined

by the most intense vortex forming the dipole.

The temporal evolution of lift, cl , and thrust, ct , coefficients for both forefoil and hindfoil are com-

pared with those provided by the isolated foil in figure 6.4. The forces of the hindfoil are significantly

larger than those of the isolated foil, consistent with the flow visualization. A propulsive efficiency of

η2D
i so = 0.237 is obtained for the isolated foil. This value can be compared with the efficiency of both

foils in tandem, which are increased to η2D
F = 0.289,η2D

H = 0.358.

The larger force generation on the hindfoil can be attributed to the hydrodynamic interaction

between the hindfoil and the wake of the forefoil, denoted in the following wake capture, for the sake

of brevity. In this wake capture phenomenon, the velocity induced by the forefoil goes in phase with

the imposed motion of the hindfoil during long intervals of the cycle, i.e., positive vertical velocity



6 - ON THE ROLE OF WAKE-CAPT. AND RESON. IN SPANWISE-FLEX. FLAPPING WINGS IN TANDEM 111

(a) (b)

Figure 6.4: Temporal evolution of (a) lift and (b) thrust coefficient. Line colors correspond to: :
Isolated. : Forefoil. : Hindfoil.

induced by the forefoil when the hindfoil is heaving down, and vice versa. This leads to an increase in

the effective angle of attack of the hindfoil. In order to quantify the effect of the wake capture (and

hence to understand the change in the force generation of the hindfoil) we compute the effective

angle of attack of the hindfoil and compare it with that of the forefoil, which depends only on the

imposed kinematics.

The effective angle of attack of the hindfoil has contributions from the velocity induced by the

forefoil, and contributions from the kinematics of the hindfoil. To characterize the former, we follow

the approach proposed by Zhu et al. (2014a), Z. R. Peng et al. (2018) and Arranz et al. (2022a), who use

the velocity field in the wake of an isolated forefoil (i.e, uz (x, z, t )) to estimate the velocities induced by

the forefoil on the hindfoil. Following Martínez-Muriel & Flores (2020), we define a locally-averaged

vertical velocity,

(6.15) uz (z, t ) = 1

c

∫ xH
T E

xH
LE

uz (x0, z, t )d x0,

where uz (x, z, t ) is the velocity in the wake of the isolated forefoil, and the average is taken from the

leading edge to the trailing edge of the hindfoil (i.e., xH
LE = 1.5c, xH

T E = 2.5c, see figure 6.3). Figure

6.5(a) shows contours of uz as a function of time and the vertical coordinate. The trajectory of the

mid-chord point of the hindfoil is shown in blue. The values of uz along this trajectory are employed

to estimate the vertical velocity induced by the forefoil on the hindfoil, uz,MC . These values will be

used for the computation of the effective angle of attack. Note that the induced velocity is positive

from t/T ≈ 0.2 to 0.7, and negative during the remaining part of the cycle, resulting in positive

contributions to the effective angle of attack of the foil during most of the up/down stroke.

In order to define the effective angle of attack of the hindfoil, we combine the geometric angle of

attack of the leading edge of the hindfoil with the velocity induced by the forefoil,

(6.16) αe = θ+argtan

(
uz,MC − ḣ − cθ̇/2

U∞

)
.
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(a) (b)

Figure 6.5: (a) Contours of locally-averaged vertical velocity, uz /U∞, as a function of time and the
vertical coordinate. Dashed black lines correspond to uz /U∞ = 0. The blue line corresponds to the
trajectory of the mid-chord of the hindfoil. (b) Time evolution of the geometric angle of attack, αg

( ), and the estimate of the effective angle of attack, αe ( ).

We also define the geometric angle of attack,

(6.17) αg = θ+argtan

(−ḣ − cθ̇/2

U∞

)
,

which is equal to the effective angle of attack seen by the isolated foil and the forefoil. These two

angles are presented in figure 6.5(b), showing a clear effect of the forefoils wake on the hindfoil: the

effective angle of attack of the hindfoil is lagged with respect to the isolated foil’s, with a smaller peak

value and a broader maximum.

It is illustrative to compare the time evolution of the effective angles of attack for the isolated foil

and the hindfoil, figure 6.5(b), with the time evolution of the corresponding lift coefficients, figure

6.4(a). It is apparent that the time instants where the effective angles of attack of the hindfoil are

larger than those of the isolated foil match the instants when the force generation is also larger. In

particular, for the hindfoil, the shape of the lift coefficient curve is rather similar to the shape of the

estimated effective angle of attack curve.

Thus, it is possible to qualitatively estimate the lift coefficient of the hindfoil by using the estima-

tion of its effective angle of attack. However, this approximation does not account for the contribution

of the LEVs shed by the hindfoil, which is rather complex and difficult to incorporate into the defini-

tion of αe .

Finally, the effect that the hindfoil has on the forefoil is analyzed. Figure 6.6 shows the pressure

field around the isolated foil (figure 6.6a) and the tandem system (figure 6.6b). The presence of the

hindfoil in the tandem system modifies the pressure distribution around the forefoil. This effect

seems to be related to a blockage effect in the region between the foils (note the strong pressure

gradient in figure 6.6b), resulting in a larger pressure difference between the pressure and suction

sides of the forefoil, and larger aerodynamic forces. On the other hand, the pressure field around the
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(a) (b)

Figure 6.6: Pressure coefficient, cp , contours for (a) isolated and (b) tandem system at mid downstroke
of the trajectory, t/T ≈ 0.25.

(a) (b)

Figure 6.7: (a) Mean CT and (b) propulsive efficiency averaged over a cycle for wings withA = 2
(open symbols) andA= 4 (closed symbols). H: isolated wings. N: forewings. •: hindwings.

hindfoil shows stronger pressure peaks at the leading edge, consistent with a larger effective angle of

attack and a stronger LEV, in line with the discussion presented in the previous paragraphs.

6.4 Three-dimensional spanwise-flexible wings arranged in horizontal

tandem

6.4.1 Overview of the aerodynamic performance of tandem systems

Following the observations for the two-dimensional problem, we analyse now the performance of a

pair of three-dimensional spanwise-flexible wings arranged in horizontal tandem.

The propulsive performance of the tandem systems and isolated wings can be measured in terms

of the mean thrust coefficient CT,i and propulsive efficiency ηi , where the subindex i = F, H and I

for forewings, hindwings and isolated wings, respectively. They are shown in figure 6.7 as a function

of the natural frequency in fluid over the angular frequency of the flapping motion, ωn, f /ω. The

effect of ωn, f /ω on the performance of the tandem system is very similar forA= 4 and 2. Overall,

the values of CT,F and ηF are similar to CT,I and ηI , although the former are somewhat higher than

the latter for ωn, f /ω ≥ 2. The maximum values of CT and η for forewings and isolated wings are

reached at ωn, f /ω≈ 1. In the following, we denote these cases as resonant cases. For ωn, f /ω< 1, both
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(a) ωn, f /ω= 1.11 (b) ωn, f /ω→∞

Figure 6.8: Flow visualization using iso-surfaces of the second invariant of the velocity gradient tensor,
Q = 7.5ω2, colored in purple (forewings) and green (isolated wings). The yellow line denotes the
location of the midsection of the wings, separating (a) resonant wings (ωn, f /ω= 1.11) and (b) rigid
wings (ωn, f /ω→∞) ofA= 4. Time instant correspond to t/T = 0.5.

the mean thrust coefficient and the propulsive efficiency drop sharply. Cases that are beyond this

drop in performance (i.e., ωn, f /ω< 1) are denoted as sub-optimal. We denote rigid cases those with

ωn, f /ω→∞, and intermediate cases those between the rigid and the resonant cases. For reference,

this terminology is included in table 6.2.

The effect of ωn, f /ω on the performance of the hindwings is slightly different. Both CT,H and ηH

exhibit a broad maximum at ωn, f /ω≈ 2, with a moderate increase in performance with respect to

the rigid hindwings (30% and 4% forA= 4 wings, somewhat larger forA= 2 wings). Increasing the

flexibility beyond ωn, f /ω< 2 results in a slow decrease in CT,H and ηH up to ωn, f /ω≈ 1, followed by

a steeper drop on performance for ωn, f /ω< 1. When the tandem system is considered as a whole,

the best performance is achieved at ωn, f /ω≈ 2 as well. In the following, we denote this case as the

“optimal” tandem case.

The differences in the performances of forewings and hindwings observed in figure 6.7 suggest

that the underlying mechanisms at play in each wing are different. Hence, we proceed to analyze the

fluid-structure interaction of each wing separately.

6.4.2 Aeroelastic behaviour of forewings

The results presented in figure 6.7 suggest that the aeroelastic response of forewings and isolated

wings is very similar. This similarity is further analyzed in figure 6.8, where we compare instantaneous

flow fields around forewings and isolated wings, for two different values of ωn, f /ω. The figure shows

the developing LEV on the suction side of the wings during the downstroke, using iso-surfaces of the

second invariant of the velocity gradient tensor, Q. Four cases are represented in figure 6.8: green for

isolated wings and purple for forewings, left for resonant wings (ωn, f /ω= 1.11) and right for rigid

wings. It is possible to see that the structure of the vortices over forewings and isolated wings are
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(a) (b) (c)

Figure 6.9: Temporal evolution of (a) lift coefficient, CL,F , (b) thrust coefficient, CT,F , and (c) input
power coefficient, PF . Solid ( ) and dashed ( ) lines correspond to forewings and isolated
wings, respectively. Line colors correspond to: : Rigid. : Intermediate. : Resonant.

: Sub-optimal.

very similar, suggesting that the mechanism governing their aeroelastic behavior is the same. This

mechanism has been thoroughly described by Martínez-Muriel et al. (2023) for isolated wings. In the

following, we provide a brief description of the mechanism for completeness.

The temporal evolution of lift, CL,i , thrust, CT,i , and input power, Pi , coefficients of forewings

and isolated wings withA = 4 is presented in figure 6.9. The differences between forewings and

isolated wings are small, consistent with the results presented in figures 6.7 and 6.8. The maximum

instantaneous values of CL,F and CT,F increase with flexibility up to the resonant case, decreasing

suddenly for the sub-optimal case. These maximum values are obtained at later times as flexibility

increases, consistent with an increasing lag between the excitation (motion of the root of the wing)

and the response (motion of the rest of the wing). Rigid and intermediate forewings seem to have

larger values of lift and thrust coefficients than isolated wings, especially around mid-stroke (i.e.,

t/T ≈ 0.1−0.3). This is probably caused by the same blocking effect discussed in section 6.3 for 2D

foils, see figure 6.6. On the other hand, forewings with resonant and sub-optimal flexibility do not

seem to benefit from the tandem configuration.

Figure 6.9(c) shows that the power required to drive rigid and intermediate forewings is slightly

larger than for the corresponding isolated wings. The increase in PF over PI for these cases is smaller

than the increase in CT,F over CT,I , which explains the larger propulsive efficiency of forewings com-

pared to isolated wings in figure 6.7(b). Resonant forewings have slightly lower power requirements

than resonant isolated wings, while the power requirements of suboptimal forewings are virtually the

same as for suboptimal isolated wings. In order to characterize the structural response of forewings

and isolated wings, figure 6.10 shows the amplitude and phase of the wing tip displacement, as

a function of their natural frequency. Overall, the structural response is consistent with that of a

non-linear damped harmonic oscillator. Figure 6.10(a) shows moderate values of the maximum

amplification (i.e, ht i p /h0 ≈ 1.4) at the resonant frequency (ωn, f /ω≈ 1), with a sharp transition from
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(a) (b)

Figure 6.10: (a) Amplitude of the vertical position of the tip normalized with the heaving amplitude,
ht i p /h0, as a function of the frequency ratio in fluid, ωn, f /ω. (b) Phase lag of the tip displacement
relative to the wing root φt i p , as a function of the frequency ratio in fluid, ωn, f /ω. In both figures,
(H): isolated wings, (N): forewings.A= 2, open symbols.A= 4, closed symbols.

the resonant response to the suboptimal responses. Due to the non-linearity of the system (both

fluid and structural), the phase lag between the motion of the root (excitation) and the tip (response)

at resonance is φt i p ≈ 45◦, in agreement with previous works (Qi et al., 2010; Martínez-Muriel et al.,

2023). Note that this phase lag is important, since it allows the synchronization of the effective angle

of attack of the wings and their pitching motion, maximizing the aerodynamic loads generated by

the wing and their projection in the horizontal direction (aerodynamic tailoring, see Ramananarivo

et al., 2011).

6.4.3 Aeroelastic behaviour of hindwings

As shown in section 6.4.1, the effect of ωn, f /ω in the propulsive performance of hindwings is different

than in forewings and isolated wings. In particular, the optimal performance for hindwings is not

found at the fluid-structural resonance, suggesting a significant role of the wake capture mechanism

described for 2D foils in section 6.3. Consequently, in this section we will analyze the interplay

among wing kinematics, structural response, and wake capture that determines the aerodynamic

performance of the hindwing.

To assess the aeroelastic response of the hindwing, figure 6.11 shows the sectional thrust coeffi-

cient ct (y, t ) at the mid-span (2y/b = 0) and near the wing tip (2y/b = 0.8), forA= 4 hindwings with

different flexibility. For reference, the sectional thrust coefficient of the isolated, rigid wing is also

included in the figure (blue dashed line). At the mid-span (figure 6.11a), all hindwings present an

increase in ct with respect to the rigid isolated wings, with the exception of the sub-optimal hindwing

whose ct is similar to the isolated case. The increase in ct is also present when comparing the flexible

hindwings with their isolated flexible counterparts (not shown), suggesting a relevant contribution

from the wake capture phenomenon (compare figures 6.11a and 6.4b). Note that the conditions of

the mid-span section of wings withA= 4 are relatively close to the 2D foils discussed in section 6.3,

due to negligible wing tip effects (see Arranz et al., 2020) and the prescribed kinematics of the root

(i.e., smaller effect of flexibility).
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(a) (b)

Figure 6.11: Sectional thrust coefficients, ct , for hindwings at (a) 2y/b = 0, (b) 2y/b = 0.8. Line
colors correspond to: : Rigid. : Intermediate. : Resonant. : Sub-optimal. The blue
dashed line corresponds to the isolated rigid case.

When moving from the mid-span section to the outboard sections of the hindwing, the full

complexity of the problem becomes apparent: 3D effects become more relevant due to the proximity

of the wing tips, and the kinematics of the wing section are determined by the structural response,

which is fully coupled with the wake capture and the generation of aerodynamic loads. For the

rigid case, where only wake capture and 3D effects are at play, ct decreases from the mid-span to

the wing tips. This can be observed comparing the blue solid lines in figures 6.11a and 6.11b. For

the intermediate and resonant cases, the maximum values of ct (y, t) are larger near the wing tips

than at the mid-span section. Indeed, figure 6.11(b) shows that increasing flexibility results in larger

maximum values for ct near the wing tips (2y/b = 0.8), except for the sub-optimal case. However, the

resonant case also shows large negative values of ct (i.e, sectional drag) near the wing tips during a

considerable portion of the cycle. This explains the lower values of CT,H for resonant wings than for

intermediate wings in figure 6.7(a). The generation of drag near the wing tip becomes more acute for

the sub-optimal case, as shown by the black line in figure 6.11(b).

To further explore this observation, we proceed to estimate the effective angles of attack of the

wing section at 2y/b = 0.8, following the procedure described for the 2D tandem foils in §6.3. We

estimate the vertical velocity in the wake of the forewing as

(6.18) uz (y, z, t ) = 1

c

∫ xH
T E

xH
LE

uz (x0, y, z, t )d x0,

where uz (x, y, z, t ) is the vertical velocity in the wake of the corresponding isolated wing, the integral

is taken from the leading edge to the trailing edge of the hindwing. Figure 6.12 presents uz at

2y/b = 0.8 for the rigid, intermediate, and resonant cases. The spatio-temporal distribution of the

wake velocities is very similar for the three cases, with larger velocity magnitude (i.e., stronger vortices)

with increasing flexibility. Figure 6.12 also includes the trajectory of the mid-chord of the hindwings

at the wing section 2y/b = 0.8. Overall, the upwash (i.e., positive uz ) regions roughly correspond with

the downstroke of the hindwing for the three cases, increasing the aerodynamic loads generated by

the hindwing compared to the isolated rigid wing. The figure also shows that the synchronization of
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(a) (b) (c)

Figure 6.12: Contours of locally-averaged vertical velocity, uz /U∞, at 2y/b = 0.8, as a function of time
and the vertical coordinate. Dashed black lines correspond to uz /U∞ = 0. The solid lines corresponds
to the trajectories of the mid-chord of the corresponding section of the hindwing. (a) Rigid case. (b)
Intermediate case. (c) Resonant case.

the upwash and the downstroke of the hindwing is better for the intermediate case, as evidenced

by the close proximity of the dash-dotted lines with uz = 0 and the maximum and minimum of

the trajectory in figure 6.12(b). For the resonant case this synchronization is worse, which might

contribute to its lower propulsive performance (even with a stronger upwash).

In order to quantify this effect and its interaction with the pitching angle of the wing, we compute

the effective angle of attack as defined in equation (6.16). The vertical velocity perceived by the

hindwing, uz,MC , is taken along the trajectories shown in figure 6.12, and ḣ is the vertical velocity of

the mid-chord point at 2y/b = 0.8. The temporal evolution of the αe ’s of the hindwings is shown in

figure 6.13(a) in solid lines. For comparison, the αe ’s of the forewings are included in dashed lines.

We can observe that the αe of hindwings are delayed with respect to the αe of the forewings. Also,

the αe of rigid cases are delayed with respect to intermediates, and αe of intermediates are slightly

delayed with respect to rigid, both for forewings and hindwings. These time lags have implications for

the generation of aerodynamic forces. First, the delay in αe results in a delay in the development and

detachment of the LEV (Martínez-Muriel et al., 2023), which results in stronger peaks in the sectional

normal force coefficients, as shown in figure 6.13(b). Second, the production of thrust depends on

the synchronization of the time evolution of the normal forces and the pitching angle, since the latter

determines the projection of the forces in the horizontal direction (aerodynamic tailoring). Recall

that the phase lag of the kinematics of the forewing and hindwing is small (φ f h =−13◦), resulting in a

time lag ≈ 0.03T between the pitching motions of forewing and hindwing. Consequently, the pitching

angle of both wings changes sign at t/T ≈ 0 and t/T ≈ 0.5. For the hindwings, the synchronization

of the zero-crossing of αe and pitching angles explains the superior propulsive performance of the

intermediate case (even if the normal forces generated by the resonant case are larger, as shown in
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(a) (b)

Figure 6.13: Temporal evolution of (a) the estimate of the effective angles of attack αe and (b) the
sectional normal force coefficient cn at a spanwise section 2y/b = 0.8. Line colors correspond to:

: rigid, : intermediate, and : resonant hindwings. The area shaded in gray represents
the envelope of effective angles of attack seen by the rigid-to-resonant forewings at the same spanwise
2y/b = 0.8 section. The dashed blue line in panel (b) refers to the rigid forewing.

(a) (b)

Figure 6.14: (a) Amplitude of the vertical position of the tip normalized with the heaving amplitude,
ht i p /h0, as a function of the frequency ratio in fluid, ωn, f /ω. (b) Phase lag of the tip displacement
relative to the wing root φt i p , as a function of the frequency ratio in fluid, ωn, f /ω. In both figures,
(H): isolated wings, (•): hindwings.A= 2, open symbols.A= 4, closed symbols.

figure 6.13b), and the appearance of sectional drag for the resonant case (as discussed in figure 6.11).

The change in the aerodynamic performance of the hindwings comes together with a change

in the structural response, which is presented in figure 6.14. Recall that the structural response of

the forewings is very similar to the structural response of the isolated wings (see figure 6.10). The

values of the amplitude of the vertical displacement of the hindwing tip as a function of ωn, f /ω

are presented in figure 6.14(a). They are qualitatively similar when compared to the isolated wings,

presenting a maximum in ht i p /h0 and a sharp drop for ωn, f /ω < 1. However, the value of the

frequency ratio at which the hindwings present a maximum is ωn, f /ω≈ 2, same as CT,H in figure

6.7(a), further supporting the idea that the optimal performance of the hindwings is not dominated

by a fluid-structure resonance. Moreover, the maximum tip displacement of the hindwing is smaller

than forewings and isolated wings at resonance, and the phase lags for the optimal hindwing (i.e.,

ωn, f /ω≈ 2) are small (see figure 6.14b). These two observations draw a picture where the benefits of
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(a) (b)

Figure 6.15: Mean thrust coefficient CT as a function of the flexibility of the wing, ωn, f /ω, for (a)
forewings and (b) hindwings. Colored lines connect cases where the opposite wing has the same
flexibility, namely: : Rigid. : Intermediate. : Resonant.

the hindwing flexibility are related to the synchronization of wing deformation with the incoming

wake (i.e, to maximize the wake capture) and with the pitching angle (i.e., aerodynamic tailoring), with

a smaller role associated to the increased amplitude of the wing tip displacement (i.e., fluid-structure

resonance).

6.4.4 Mixed tandem systems

The results shown in the previous sections indicate that the optimal performance of forewings

is found at resonance, while the optimal performance of hindwings is found at ωn, f /ω ≈ 2. This

observation suggests that a system made of wings with different flexibilities could outperform a

system where the wings have the same flexibility. We denote in the following such systems as mixed

tandem systems.

In order to explore this idea we have performed a proof-of-concept study, running numerical

simulations of a series of mixed tandem systems. Due to the available computational resources,

we have only consideredA = 2 wings (the required computational domain is smaller) and the

simulations are conducted with the moderate grid resolution ∆r = c/56. The latter has been shown

to be good enough to represent accurately the trends in the forces (Martínez-Muriel et al., 2023). We

have considered all possible combinations with rigid (ωn, f /ω =∞), intermediate (ωn, f /ω = 2.82)

and resonant (ωn, f /ω= 1.41) flexibilities forA= 2. This leads to 9 systems, 6 of which are mixed

tandem systems, and the other 3 are systems with equal flexibility already included in Table 6.2. For

the mixed systems, we need to distinguish between the natural frequency in the fluid of each wing.

We do so by introducing the superscript F for forewing and H for hindwing.

Figure 6.15(a) shows the value of the mean thrust coefficient of the forewings, CT,F , as a function

of ωF
n, f /ω. Each line corresponds to a different value of ωH

n, f /ω. As expected, the CT,F of the forewings

do not depend on the stiffness of the hindwing, with resonant forewings providing the largest thrust

in all cases.

The results for the thrust coefficient of hindwings are shown in figure 6.15(b). We first analyze the

rigid hindwings (ωH
n, f /ω=∞), when the flexibility of the forewing is varied. What we observe is that
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CT,H increases with the flexibility of the forewing, at least for ωF
n, f /ω≥ 1. This enhanced aerodynamic

performance of the hindwings can be linked to the larger velocities induced by the forewings on the

wake (see figure 6.12), which increases the effective angle of attack of the hindwings and their thrust.

Recall that, as these hindwings are rigid, the trajectory of all the sections is the same independent of

the flexibility of the forewing, and no aerodynamic tailoring is involved.

We now analyse the response of the different hindwings while maintaining the same flexibility

of the forewing. Hindwings of cases where the forewing is either rigid (blue line) or intermediately

flexible (magenta line) have increasing values of CT,H as the wing is made more flexible, with max-

imum values at the resonance. However, when the forewing is resonant (and the wake velocities

are stronger), the maximum CT,H is obtained for the intermediate hindwing, consistent with an

increasing relevance of the wake capture and aerodynamic tailoring mechanisms as the wake of the

forewing becomes stronger.

Overall, our proof-of-concept study shows that the largest CT,F +CT,H is provided by the system

with a resonant forewing and an intermediate hindwing, confirming the hypothesis that mixed

tandem systems can outperform systems with equally-flexible wings. The implication for the design

of systems of flexible flapping wings in tandem is that while the flexibility of the forewing can be

prescribed to ensure a resonance at the driving frequency, the flexibility of the hindwing needs to be

tuned together with the kinematic parameters (i.e., driving frequency, heaving and pitching ampli-

tudes, phase shifts and distance between forewing and hindwing) to ensure optimal performance of

the system.

6.5 Conclusions

In this work, the effect of spanwise-flexibility on the propulsive performance of tandem flapping

wings is analyzed using Direct Numerical Simulations. Different flexibilities (i.e., effective stiffness

Π1 ≈ [1−100,∞]) and two aspect ratios (A = 2 and 4) are considered in a simple configuration:

a pair of rectangular wings in forward flight at Re = 1000, with a prescribed heaving and pitching

motion at the mid-span section of the wing, while the rest of the wing deforms passively. The selected

kinematics are optimal, in the sense of maximizing the propulsive efficiency in a 2D configuration.

The results show that the aerodynamic performance and structural behavior of forewings are

similar to that found for isolated wings, with a small influence of the hindwing. In particular, the

maximum propulsive performance of the forewings is obtained at excitation frequencies close to

the natural frequency, ωn, f /ω ≈ 1. This implies that the fluid-structure resonance mechanism is

dominant in explaining the enhanced propulsive performance of forewings, same as in isolated

wings (Martínez-Muriel et al., 2023).

Conversely, the optimal performance of the hindwing is found at ωn, f /ω ≈ 2 (i.e., more rigid

than the optimal forewing), suggesting that the performance of the hindwing is not dominated by

the same fluid-structure resonance that dominates the forewing’s performance. The analysis of the
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results of the simulations has shown that the hindwing performance is dominated by two additional

mechanisms, namely wake capture and aerodynamic tailoring. These mechanisms are well described

in the literature. The wake capture mechanism is the basic mechanism at play in tandem rigid wings:

the hindwing takes advantage of the vortices shed by the forewing to increase thrust and reduce the

power required to sustain its flapping motion (Broering & Lian, 2012). The aerodynamic tailoring

consists on synchronizing the aerodynamic forces with the pitching angle of the wing, maximizing

thrust generation during the cycle (Ramananarivo et al., 2011).

Our results show that the hindwing flexibility introduces a lag between the motion of the root

(which in our study is chosen to have an optimal wake capture) and the motion of the tips. The

magnitude of this lag affects both the intensity of the wake capture and the timing between forces

and pitching angle, which in turn affects the wing deformation (both amplitude and phase lag). To

quantify these effects we have defined an effective angle of attack, which qualitatively correlates with

the aerodynamic forces produced by the hindwing. This quantity only requires information from

the wake of the forewing, meaning that it can be computed from simulations of isolated wings. Note

that the performance of the hindwing is dependent on the flexibility of the forewing, since the latter

impacts the strength of the vortices in the wake, and hence the maximum propulsive performance of

the hindwing.

The observation that the mechanisms resulting in optimally performing forewings and hindwings

are different has motivated a proof-of-concept study of tandem systems with mixed flexibilities (i.e.,

different flexibilities for forewing and hindwing). Our preliminary results show that mixed flexibility

systems can outperform systems with the same flexibility in forewing and hindwing. Indeed, the

maximum propulsive efficiency is obtained for mixed system with a forewing with ωF
n, f /ω≈ 1 and a

hindwing with ωH
n, f /ω≈ 2.

The results of this work have implications for the optimization process of tandem systems

with spanwise flexible wings. Our results suggest that the flexibility of the forewing can be chosen

to ensure a fluid-structure resonance at the driving frequency. This will maximize the forewing

propulsive performance and the wake intensity. On the other hand, the hindwing flexibility needs

to be optimized together with the kinematic parameters, to ensure an optimal interaction of the

hindwing with the incoming wake (wake capture) and an optimal synchronization of the forces

generated by the hindwing and its pitching angle (aerodynamic tailoring).
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7
MAIN CONTRIBUTIONS AND CONCLUSIONS

Bioinspired locomotion has attracted the scientific community during the last decades. Still, there is

lack of knowledge and many open questions to be addressed in order to achieve human-developed

designs with performance and efficiency comparable to that found in natural locomotion. The

main contribution of this thesis is the exploration and analysis of the physics underlying different

simplified bioinspired problems, with the hope that they serve to pave the way for future research

and eventual design of more efficient and sustainable small-scale robotic vehicles. For a detailed

discussion and a deeper understanding of the results, the reader is referred to the studies that can be

found in chapters 3 to 6.

Four different problems have been treated in this thesis, which can be split in two main blocks.

The two first problems can be grouped in the block of flight in gusty environments. The effect of

perturbations on large-scale aerodynamic problems has been widely addressed in the past, where

it has been possible to propose reduced order models in order to characterise the aerodynamic

response of aircraft. However, the hypotheses which those studies rely on do not apply for small-scale

problems, being necessary to extract new models describing the aerodynamic behaviour of small-

scale bodies immersed in gusty environments. Chapter 3, although in a simplified configuration,

analyses the hydro-aerodynamic response of two-dimensional airfoils to isolated vortical gusts,

exemplifying the interaction between flying or swimming vehicles with the disturbances found in

nature. On the other hand, vehicles are designed not only focusing on their aerodynamic response

but also many other different considerations must be taken into account. Among them, there are

requirements in terms of the structural integrity of the vehicle, which will determine at least part

of their lifespan. One of the main well-known issues with structures subjected to cyclic/unsteady

loads is fatigue. Chapter 4 addresses the load that can be mitigated using passive-pitching trailing

edges on airfoils undergoing oscillations in the angle of attack, in order to evaluate their aerodynamic
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response. The results are compared to a quasi-steady potential flow theory, where the hypothesis

which it is based on are no longer valid in the current situation.

The two last problems focus on the coupling between unsteady and aeroelastic effects on wings

in forward flight. In particular, chapters 5 and 6 analyse the effects of spanwise flexibility on the

aerodynamic performance of wings undergoing flapping motions. While the wings in chapter 5 are

isolated, those considered in chapter 6 are arranged in horizontal tandem configuration, resembling

how they are disposed in dragonflies. The analysis of isolated wings helps to elucidate the role

of spanwise flexibility on their aerodynamic performance, while the study of wings in tandem

arrangement allows to gather information on the combined effect of kinematics, flexibility and

wing-wake interaction.

7.1 Highlights of scientific contributions

Chapter 3. Analysis of vortical gust impact on airfoils at low Reynolds number:

• The impact of vortical gusts with different intensity, size, location and vorticity distribution on

airfoils flying at Reynolds number Re = 1000 is analysed in this work. A large database covering

the parametric space has been generated.

• The aerodynamic response of the airfoil has been reproduced in terms of forces and fluid

flow, identifying the dependence of each of variable on them. It has been found that the

temporal evolution of the change in lift coefficient with respect to the steady state value is

barely dependent on the angle of attack.

• A linear dependence of the time instant when the maximum lift is achieved and the diameter of

the gust and the free stream velocity is found. Besides, this maximum lift is roughly proportional

to the circulation of the gust, but varies non-linearly with the vertical separation between gust

and airfoil.

• A semi-empirical model is proposed to compute the temporal evolution of the change in lift

coefficient due to the gust based on an integral definition of the vortex velocity induced along

the chord of the airfoil.

Chapter 4. Load mitigation on heaving airfoils using passive trailing-edge flaps:

• The load mitigation that can be achieved on airfoils undergoing heaving motion at Re = 1000

using passive-pitching trailing edge flaps is studied performing direct numerical simulations.

• The obtained results are compared with quasi-steady linear models. While these quasi-steady

models are not able to predict the exact value of the reduction of fluctuations, it has been
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proved that, under the parametric space covered in this work, an increment in the flap-to-

chord length ratio leads to an equal increment in the reduction of fluctuations, in line with the

predictions of the model. The quasi-steady model is unable to predict the flap deflections.

• The effect of different parameters describing the dynamics of the flap and the aerodynamic

performance of the foil has been assessed. In particular, the effects of inertia and the preload

of the torsional spring on the load mitigation have been explored to analyse the applicability of

passive-pitching trailing edge flaps.

Chapter 5. Fluid-structure resonance in spanwise-flexible flapping wings:

• Direct numerical simulations are performed to assess the role of flexibility in the spanwise

direction of wings undergoing flapping motion.

• Different values of the effective stiffness, Π1, are selected, while the effective inertia of the wing,

Π0 is held constant. The effect of the aspect ratio is also analysed considering wings of aspect

ratio 2 and 4. The results show that, while this effect is relevant for rigid wings, it becomes

almost negligible for the flexible wings considered in this study.

• The optimal propulsive performance and efficiency is linked to a fluid-structure resonance,

occurring when the natural frequency of the wings in fluid, ωn, f , matches the excitation

frequency, ω. At this point, maximum thrust is obtained, being 2 times larger than that of rigid

wings. On the other hand, the propulsive efficiency increases by a 3-6% in absolute terms.

• The aeroelastic response is characterised in terms of amplitudes and phase lags, the former

showing peaks also at ωn, f /ω≈ 1, and the latter having a value of approximately 45◦ at that

frequency ratio. It is seen that this leads to an optimal distribution of effective angles of attack

that maximize force generation, suggesting streamlining arguments similar to those found in

the literature.

Chapter 6. On the role of wake-capture and resonance in tandem flapping wings:

• The propulsive performance of spanwise-flexible wings arranged in horizontal tandem configu-

ration has been analysed. While the mid sections of the wings follow optimal 2D kinematics, the

rest of the wings deform passively. Their deformation is now a result of the coupling between

unsteady aerodynamics and structure in the case of forewings, while hindwings also combine

those effects with a wake capture, i.e., the interaction with the vortices shed by the forewing.

• The optimal aerodynamic performance of forewings can be explained through the same

mechanisms that are used to explain that of isolated spanwise flexible wings, i.e., a fluid-

structure resonance combined with a proper projection of the generated forces.
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• The force generation and efficiency of hindwings can be drastically improved if the flexibility

is properly selected. Optimal aerodynamic performance of hindwings cannot be explained

through a resonance phenomenon. Instead, due to wake capture effects and an aerodynamic

tailoring, the natural frequency of hindwings such that the efficiency and force coefficients

are maximum is shifted towards larger values. The performance of the hindwings can be

qualitatively analysed estimating the effective angle of attack using the information about the

velocity induced by the forewing on the hindwing.

• Based on the results seen for systems with equally flexible wings, a proof-of-concept study has

been conducted analysing tandem systems with mixed flexibility, suggesting that they could

outperform those with equally flexible wings.

7.2 Future work

The present work has intended to gather information about the unsteady and aeroelastic response

of different bioinspired fluid-structure interaction problems. Nevertheless, as clearly stated in the

previous section and chapters, the goal of the work has always been to pave the way for future studies

such that eventually we obtain enough knowledge in the field in order to design devices whose

efficiency is close to that achieved in the animal kingdom. In order to achieve this ultimate goal,

more steps must be done. Here we propose some future work lines.

First, it would be interesting to extend the problems of chapters 3 and 4 to three dimensions. The

assumptions that have been made allow to study the physics in simple configurations to isolate the

effects under the scope of the analysis. However, finite wing/blade effects are obviously relevant on

both their interaction with vortices and load mitigation. Regarding this second problem, the spanwise

load distribution typically found in finite wings/blades is not constant. Hence, the assumption of

an infinitely long trailing-edge flap is also strong for design purposes, and its extensions to three-

dimensions is key.

On the other hand, effects of flexibility have been restricted in chapters 5 and 6 to flexibility in the

spanwise direction of wings. However, although it is the one mainly governing the structural response

of different lifting surfaces found in insects, these surfaces usually combine membranes and veins

leading to a non-uniform distribution of flexibility. Studies of chapters 5 and 6 should be extended

for non-uniformly flexible structures. Finally, the parametric space the problems considered in this

dissertation is so vast that a huge part of them remains unexplored. Further exploration, combined

with the aim of extracting accurate reduced-order models, are ideas to keep in mind.
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