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Highlights:

• Second-derivative (DDTG) curves helped overcome the challenges of overlapping peaks in the
DTG curves of wheat straw;

• Deconvolution methods lead to high errors in the estimation of lignin content;
• Curve-fitting methods lead to lower errors when determining the kinetics of biomass degradation,

especially for hemicellulose;
• Reaction networks were modified to consider K content to describe straw pyrolysis.

Abstract: Wheat straw is a renewable agricultural by-product that is currently underutilized in the
production of bioenergy and bioproducts due to its high ash content, as well as high transport costs
due to its low volumetric energy density. The thermogravimetric analysis of this material produces
derivative curves with a single broad peak, making it difficult to identify the three conventional
pseudo-components (cellulose, hemicellulose, and lignin), which is resolved using the second deriva-
tive to determine inflection points. Model-fitting methods and isoconversional methods were applied
to determine the degradation kinetics of wheat straw at two different particle sizes, as well as that of
a reference feedstock (beech wood), and the obtained values were used to divide the degradation
curves to be compared to the experimental data. Seven different pyrolysis reaction networks from
the literature were given a similar treatment to determine which provides the best estimation of the
actual pyrolysis process for the case of the feedstocks under study. The impact of the potassium
content in the feedstock was considered by comparing the original pathway with a modification
dependent on the experimental potassium content and an estimated optimum value.

Keywords: pyrolysis; lignocellulose; kinetics; isoconversional; DDTG; reaction network

1. Introduction

As a thermochemical conversion method, the detailed and complex mechanism of py-
rolysis remains unknown, though current models have simplified it into a set of competitive
and consecutive reactions of the main pseudo-components cellulose, hemicellulose, and
lignin. It is important to keep in mind that pyrolysis is also a step in the combustion and
gasification processes, hence enhancing the importance of understanding the fundamentals.
Despite being unable to reproduce the heating rates observed in a fast pyrolysis process,
thermogravimetric analysis (TGA) is still the state-of-the-art means of determining kinetic
parameters for this degradation method [1].

It is very common to determine pyrolysis kinetics or degradation pathways using TGA,
which determines the variation of mass loss over time. The repeatability of this method is
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often low, a fact attributed to heterogeneity within a sample batch and phenomena such as
thermal lag [2].

Experimental results for TGA analysis of biomass are abundant in the literature, and
several reviews and comparisons have been published. Among these, White et al. [3]
condensed many different sources while providing a comprehensive explanation of the
available methods for deriving degradation kinetics from TGA data. On the other hand,
Anca-Couce et al. [4] provided a graphical analysis of the dispersion of some previously
published results.

The main methods of processing TGA data for the assessment of kinetic data are
through model-fitting or the use of so-called isoconversional methods [5]. The latter were
devised to obtain the variation of Arrhenius parameters with the extent of conversion. In
contrast to the model-fitting methods that consider the whole weight loss, isoconversional
methods allow for the estimation of parameters for specific conversion values. Depend-
ing on the assumptions made, there are several methods available, the applicability and
methodology of which have been very well discussed by Cai et al. [5].

A common method of comparing the efficacy of prediction methods for kinetics is
through their activation energy, which quantifies the minimum amount of energy that
must be provided for a system to result in a chemical reaction, and is represented in
formal units of energy/mol (e.g., kJ·mol−1) [6]. Wu et al. [7] established the relationships
between the effective activation energies, obtained as a function of the conversion using
the isoconversional methods, and the different stages of the degradation of biomass. The
authors performed the study on tobacco waste, which contains compounds such as pectin
and nicotine, which do not play a part in most lignocellulosic materials’ degradation. The
authors proposed the division of the DTG curve into a series of ranges that divide the
weight loss profile into regions and disregard the concurrence of degradation of different
pseudo-components (PCs), akin to what was proposed by Sher et al. [8]. On the other
hand, this logic also fails by considering the decomposition of lignin as occurring after the
temperature at which the curve flattens (transition between the active and passive pyrolysis
zones), where exothermic charring reactions dominate [9], and may not be completely
attributed to lignin degradation but also secondary pyrolysis.

However, in the case of wheat straw and several other lignocellulosic biomasses, the
distinction between the hemicellulose and cellulose peaks is difficult, as already pointed
out by Šimkovic and Csomorová [10]. The second derivative of the mass loss (henceforth
named DDTG) can be used to estimate the point corresponding to a hemicellulose peak
based on the fact that the cellulose degradation often happens within a smaller range of
temperatures during TGA and corresponds to the period of maximum degradation rate
(the highest DTG peak). The degradation of hemicellulose happens over a larger range of
temperatures, as reflected in a separate lower peak or a shoulder/bump at temperatures
below the maximum degradation temperature. This shoulder/bump corresponds to the
progressive lowering of the DDTG until a minimum, after which the cellulose degradation
dominates, which is visible in the DTG curve as the peak of a small shoulder [9,11]. This
minimum is taken as the hemicellulose point, as shown by Gaitán-Álvarez et al. [11], who
noticed a similar issue with biomasses such as Tectona grandis.

The determination of the lignin peak is a contentious topic when using TGA data
to determine the kinetics and/or lignocellulose composition. On the one hand, the de-
composition range is reported to cover the whole range of a typical TGA run, meaning
that its presence will affect the results obtained for the other two pseudo-components by
representing an underlying curve that affects the performance of curve-fitting methods.
Most sources use the end-point of the cellulose degradation, where a visible change in the
slope of the DTG is observable, as the point of maximum degradation of lignin is therefore
the center of the pseudo-component degradation curve. However, this is a contentious
topic, as the area of DTG typically corresponding to lignin can also be influenced by char-
ring processes at high temperatures. On the other hand, the decomposition of lignin is a
complex process that should not be described using a single reaction, as the decomposition
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is commonly represented by three [12,13] or even seven pseudo-monomers [14], which
decompose at different temperatures. Regardless, this process is often modeled with a
single component.

It must be kept in mind that values for temperature ranges for the different lignocellu-
losic components in the literature are often non-consensual, especially in the case of lignin,
for which values may range from 250 to 500 ◦C [15], or even span the entire degradation
range, as far as 900 ◦C [16].

Multicomponent model-fitting makes use of the simultaneous degradation of multiple
pseudo-components to estimate the kinetic parameters that describe the degradation of
biomass [1,2,4]. While more complex than considering the biomass as a single component,
it often leads to better fits for biomasses whose degradation has several stages (represented
as peaks/shoulders in the DTG profile) [1,4,17–19].

Reaction networks were developed to predict the degradation of lignocellulosic
biomasses and product distribution [2]. The current state of the art seems to be a competitive
and concurrent mechanism for the degradation of the different lignocellulosic components
developed by the Ranzi group at the CRECK Modeling Group at the Politecnico di Milano,
Italy [12]. The model is comprised of complete detailed reaction networks, including kinetic
parameters. Since 2008, the model was improved by several authors by modifying the
kinetic parameters and/or the product distribution [20], the inclusion of a radical mech-
anism for the degradation of lignin [14], the inclusion of pyrolysis of plant extractives,
and triglycerides [21–23] considering different types of hemicellulose [21–23] or the extent
of charring during the pyrolysis process [13]. Pecha et al. [24] compiled a very thorough
review of the historical development of pyrolysis reaction modeling from cellulose-focused
to detailed kinetic models which include possible products and intermediates.

The majority of these models were developed from the thermogravimetric data of
the isolated lignocellulosic fractions, and therefore did not take into account the catalytic
effect of alkali metals within the ash, which are known to reduce oil yields and alter
product composition [2,25]; however, Trendewicz et al. [26] published a modified cellulose
degradation network with activation energy which is a function of the potassium fraction
in the feedstock. To the best of the authors’ knowledge, the application of the reaction
networks for ash-rich plant biomasses, such as wheat straw, has not been evaluated to date.

Thermogravimetry is most often performed with small sample sizes and particle sizes
to minimize buoyancy effects and heat/mass diffusional limitation effects, however, no
studies were found by the authors which compared the effect of particle size during TGA
for the case of wheat straw. Marcilla et al. [27] tested the effects of particle size on the
thermal degradation of both almond shells and olive stones using this method decrease
in particle sizes was shown to lead to a lower solid residue yield and a higher rate of
convolution between the hemicellulose and cellulose peaks, which may be attributed to
the higher ash contents in finer sieves, leading to a reduction in the temperature of the
cellulose peak.

The known effects of particle sizes were studied several times in the past. It is a known
fact that pyrolysis setups with very small particles and very low vapor residence times lead
to high bio-oil yields by mitigating secondary reactions [28,29]. Wang et al. [30] showed
that the variation in the diameter of wood cylinders has a minor effect on the liquid yield,
but thicker cylinders lead to a higher water production. Shen et al. [31] proposed that
the mechanical particle size reduction (shredding, milling) leads to higher oil yields due
to disruption of the internal particle structure, leveling out after a certain particle size.
This fact was corroborated by Salehi et al. [32], who noticed a decrease of 10% in bio-oil
yield when increasing the sieve fraction from <0.59 mm to 0.59–1 mm for higher fractions.
Decreases in coal yield with a lower particle size were found by Demirbaş [33] using olive
husks and Luangkiattikhun et al. [34] using oil palm solid waste, while Pütün et al. [35]
found no correlation for sunflower pressed bagasse, in contrast to coal and oil shales.

According to Anca-Couce et al. [4], in an analysis of 17 sources using different methods,
the activation energy for each pseudo-component shows a substantial variance, and was
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the highest for cellulose (75–250 kJ/mol), followed by hemicellulose (55–200 kJ/mol), and
then lignin (15–215 kJ/mol).

Lopéz [36] (Table 1) analyzed wheat straw similar to that presented in this manuscript
and performed the succinct analysis of different kinetic determination methods using TGA.
However, the authors considered a lower range of conversion values and a higher range of
temperatures, as well as analyzed the kinetic parameters without considering the different
lignocellulosic fractions.

Table 1. Arrhenius parameters for the non-catalytic degradation of wheat straw (WS) taken from the
work of Lopez et al. [36].

Method Temperature
Range (◦C)

Heating Rates
(K·min−1) Ea (kJ·mol−1) log10 (A (s−1))

KAS α 0.10–0.70 a 1, 2.5, 5 214–353 19.1–32.8
FWO α 0.10–0.70 a 1, 2.5, 5 215–347 19.2–32.3

Friedman α 0.10–0.70 a 1, 2.5, 5 218–535 19.7–48.4
Curve Fitting 100–900 1, 2.5, 5 226.90 21.03

a No temperature data were provided, just the variation with the conversion.

A series of literature values for wheat straw are presented in Table 2, and the values
associated with the isolated fractions of wheat straw are presented in Table 3. Of these, the
Coats–Redfern method (as well as the unrecognized method) cannot be compared with
those obtained in the context of this work, as they are based on degradation using a single
heating rate, often leading to the activation energy values of a lower order of magnitude.
Additionally, several authors omitted the pre-exponential factor in the published results.

Table 2. Literature data of Arrhenius parameters for the non-catalytic degradation of wheat straw (WS).

Method Temperature
Range (◦C)

Heating Rates
(K·min−1) Ea (kJ·mol−1) log10 (A (s−1)) Reference

FWO 315–392 5, 10, 20 130–175 - [37]
Kissinger 220–400 10, 20, 30, 40, 50 93.92 3.03 [38]

Coats–Redfern 198–338 30 115.59 11.97 [39]
Coats–Redfern 338–840 30 24.26 3.42 [39]

Coats–Redfern a 220–260 10 69 - [10]
Coats–Redfern 251–347 20 8.81 - [40]
Coats–Redfern

(First Order Model) 250–400 5 40.84 5.55 [41]

Coats–Redfern
(3D diffusion model) 250–400 5 82.44 6.99 [41]

Coats–Redfern
(Geometric contraction) 250–400 5 36.53 9.06 [41]

Coats–Redfern
(Avarami–Erofe’ev) 250–400 5 15.73 5.53 [41]

Coats–Redfern
(Power Law) 250–400 5 9.70 5.53 [41]

Modified Friedman α 0.05–0.60 b 2.5, 5, 10, 20 154–176 - [42]
Modified Friedman α 0.60–0.85 b 2.5, 5, 10, 20 176–379 - [42]

DAEM 177–527 40, 45, 50 236–382 2.95 [43]
Unrecognized c 215–315 20 98.98 - [8]

a: Referred to by the authors as the “linear regression method”; b: No temperature data were provided, just
the variation with the conversion. c: Referred to by the authors as “based on Arrhenius equation”, based on
Mureddu et al. [44].
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Table 3. Literature data of Arrhenius parameters for the non-catalytic degradation of wheat straw
(WS) fractions.

Feedstock Method Temperature
Range (◦C)

Heating Rates
(K·min−1)

Ea
(kJ·mol−1)

log10
(A (s−1)) Reference

Hemicellulose WS Coats–Redfern 160–350 5, 10, 20, 30 88–97 7.42–8.90 [45]
Hemicellulose WS Coats–Redfern 350–550 5, 10, 20, 30 53–59 2.80–3.72 [45]

Enzymatic
Acidolysis
WS Lignin

Kissinger 343–392 10, 20, 30, 40, 50 103.92 3.06 [46]

Enzymatic
Acidolysis
WS Lignin

Ozawa 343–392 10, 20, 30, 40, 50 107.69 3.09 [46]

A kinetic model is required to improve the process modeling, which often disregards
the presence of ash in biomasses. The objective of this work was to obtain reliable kinetic
data for the pyrolysis of biomass with a high ash content, such as, e.g., wheat straw, which
are not available yet. Thermogravimetry is a widely used experimental method to obtain
kinetic parameters for pyrolysis, however, in order to do so, two major challenges need to
be addressed to acquire reliable kinetic data for biomass with a high ash content. First, one
single peak is observed during the thermogravimetry of high-ash feedstock (such as wheat
straw) due to the catalytic effects of inorganic compounds present in the feedstock. This
observation demands a reproducible method to deconvolute such single peaks into three,
one for each of the main biomass macromolecular components—cellulose, hemicellulose,
and lignin. Secondly, the available reaction schemes for pyrolysis were derived from
feedstocks with relatively low ash contents and it follows that validation is required
as to whether they can be applied to an ash-rich feedstock due to the aforementioned
catalytic effects.

The objective was met by testing the use of the DDTG evaluation of the experimental
TGA data from wheat straw, representing a high ash content feedstock. The results were
compared to experimental TGA data from beech wood, representing a low ash content
feedstock, to evaluate the impact of the ash content. These experimental datasets were com-
pared with simulated data computed using kinetic parameters from previously published
biomass pyrolysis reaction networks.

2. Materials and Methods

In the context of this report, the thermogravimetry data of wheat straw at two different
particle sizes were analyzed. Wheat straw powder (WS-P) and not-pulverized wheat straw
(≈5 mm, WS-H, from ‘hull’). The thermogravimetric data of beech wood powder (beech)
which were previously presented in another publication [4] were used as a comparison
feedstock due to its lower ash content.

Wheat straw (Triticum aestivum L.) was procured from a local farmer (Dörrmann,
Kraichtal-Münzesheim, Germany), supplied in spring wheat bales (250–300 kg). The straw
was shredded to a particle size of <5 mm using a disintegrator (HZR 1300) and cutting mill
(LM 450/1000-S5-2) delivered and installed by ‘Neue Herbold Maschinen- und Anlagenbau
GmbH’ (Sinsheim/Reihen, Germany). Beech wood was supplied for a round-robin test,
the details of which can be found in Anca-Couce et al. [4].

2.1. Analytic Methods

The elementary analysis of the biomass samples was performed according to the
DIN EN 15,104 standard. The elementary characterization of the inorganic ash fraction of
biomass was performed using a variation of the DIN EN ISO 21,587 standard. Inductively
coupled plasma optical emission spectroscopy (ICP-OES) was performed using an Agilent
725 spectrometer coupled with a simultaneous echelle spectrometer with radial plasma
observation. Argon was employed as both plasma gas (15 L/min, excitation at 40 MHz,
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and 2 KW) and auxiliary gas (1.5 L/min). Samples were dissolved in hydrofluoric acid
(HF) and analyzed using a feed rate of 1.3 mL/min, for a total of 3 measurements over 8 s.
Before the measurement, each sample was dissolved in an acid mixture: HNO3 (65%), HCl
(37%), HF (40%), H2O2 (35%), on a prepared glass beak. The analysis of the feedstocks can
be found in Table 4.

Table 4. Proximate, ultimate, and elemental analysis of the feedstocks used in the work. All values in
dry base.

Beech WS-P WS-H

Moisture (wt.%) 9.0 9.3 9.2
Ash (wt.%) 1.0 6.9 7.0

Volatile Matter (wt.%) 81.7 67.5 67.5
Ultimate Analysis

C (wt.%) 47.3 43.8 43.8
H (wt.%) 6.1 6.1 6.1
N (wt.%) <0.3 <1 <1
S (wt.%) 0.02 0.09 0.09

Ca (ppm) 2644 3780 3780
K (ppm) 955 11,800 11,800
Si (ppm) 6521 22,600 22,600

For tests with particles of low dimensions, a SPEX SamplePrep Freezer-Mill 6875
was employed to powder samples of up to 10 g, using 2–3 cycles of 10 min (precool
5 min, 3 cycles of 1 min grinding, 1 min cool time, at a rate of 10 cps) to a particle size of
approximately 100 mesh (149 µm).

2.2. Thermogravimetry

The TGA data were obtained in-house using a Netzsch STA-409 thermal analysis
system at the following linear heating rates: 1, 5, 10, and 20 K·min−1 up to 900 ◦C. The
WS-P and WS-H samples were submitted to all these heating rates as well as 50 K·min−1.
The software is able to export mass loss data as a function of time or temperature, as well
as compute the first and second derivatives of these curves. The 10 K·min−1 WS-P was
submitted to 5 replicas (initial mass 224.2 ± 11.0 mg) to estimate the measurement error
during TGA, leading to an error of 0.31% for the maximum degradation rate temperature
(DTG peak), 0.00% for the solid residue yield, and 0.25% for the maximum degradation
rate value. The analysis of all samples can be found in Supplementary Information (SI).

2.3. Data Analysis

The analysis of the system was restricted to the temperature range of 150–500 ◦C,
according to the methodology used by Anca-Couce [1,4], limiting the number of points to
250. The second mass-loss derivative was employed to estimate the points of the maximum
degradation of each lignocellulosic pseudo-component (an example of which is shown in
Figure 1). This method was employed for every set of thermogravimetric data.

The estimations of the temperatures and conversion points for the maximum degra-
dation of each pseudo-component were performed by analyzing the inflection points of
the second derivative curve (DDTG), for which the hemicellulosic peak center is deter-
mined by the minimum of the DDTG, the cellulose peak corresponds to a zero of the curve
at which DDTG becomes positive, and the lignin peak to the inflection point where the
DDTG curve flattens at approximately 0. (Figure 1) This method is based on the strategy
employed by Gaitán-Álvarez et al. [11]. The software-mediated numerical estimation of
the second derivative, such as that employed in the context of this manuscript, features an
error proportional to the square of the step size (O(h2)), where h refers to the temperature
step. A description of the mathematical proof can be found at [47].
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Figure 1. Use of the second derivative (DDTG, in black) inflection points to determine the
peak/transition points for the different pseudo-components (PCs) based on the works of Gaitán-
Álvarez et al. [11] and Wu et al. [7]. Example using wheat straw hull at 10 K·min−1.

After estimating the temperatures and conversion points for the maximum degrada-
tion of each pseudo-component, it is possible to apply Voigtian deconvolution methods
to estimate the lignocellulosic content of the biomass, assuming a dry-ash-free basis. This
logic is an adaptation of the method employed by Rego et al. [48], and the lignocellulosic
relative distribution is based on the ratio of the areas of the curves. The software employed
was the Origin Pro 2019, and the employed curves were Gaussians. The standard error
reported is the error in the area determination divided by the value of the said area.

The kinetic parameters of the TGA data may be estimated in several ways, however,
the most common are model-fitting and isoconversional methods. Both methods make use
of material conversion (α, Equation (1), where m0 stands for the initial mass, m stands for
the current mass, and mf for the final mass) [1].

α = 1 −
m − m f

m0 − m f
(1)

Multicomponent model-fitting makes use of summative Arrhenius curves of the form
described in Equation (1), for which A stands for the pre-exponential factor and Ea for
the activation energy for each pseudo-component i, if it fits. The position and shape of
the accrued pseudo-component curves are very sensitive to either of these parameters.
These methods employ pseudo-components, which are assumed to represent the three
lignocellulosic polymers: cellulose, hemicellulose, and lignin. These degrade simultane-
ously and non-competitively (Equation (2), where ci and αi stand for the relative fraction
and conversion of each pseudo-component i), and their degradations are represented by
Arrhenius kinetics (Equation (3)) [1].

dα

dt
=

n

∑
i=1

ci
dαi
dt

(2)
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dαi
dt

= Ai exp
(

Ea,i

RT

)
f (αi) (3)

The conversion function, f (α) (Equation (4)), is commonly assumed to be first-order
(n = 1). Şen et al. [49] also considered the contracting-sphere (n = 2/3) and three-halves
(n = 3/2) models. Manyà et al. [17] reported interesting results when employing n = 3
for the degradation of Kraft lignin, and Gomèz [18,19] reported better results when using
these results when modeling the degradation of different lignocellulosic biomasses. Anca-
Couce et al. reported better values when leaving the order of the reaction as a fitting
parameter with good results to better account for the variability of the curve shape with
the specifications of each biomass [1,4].

f (αi) = (1 − αi)
n (4)

The method used to model-fit the experimental data was based on that employed by
Anca-Couce [1], in that the fit is simultaneous for all DTG curves of a material, normalized
using the lowest value (-DTG peak). The fit was based on the least-squares minimization
of the objective function (Equation (5)) over N = 250 experimental points, using a GRG
nonlinear solver (bundled with Microsoft Excel™ 2016). The quality of the fit was evaluated
using Equation (6) (root sum of square errors), normalized using the difference between
the peak and the minimum experimental derivatives of conversion. The fit for each case
was taken to be the average of the results of each DTG curve.

S =
N

∑
i=1

((
dαi
dt

)
exp

−
(

dαi
dt

)
sim

)2

(5)

f it(%) =

√
S
N(

dαi
dt

)
exp, max

−
(

dαi
dt

)
exp, min

(6)

Cai et al. [5] discussed the problems concerning the numerical estimation of the deriva-
tive of the conversion at each point, as proposed in the method presented in Equation (7),
where t may stand for either time or temperature.

(
dαi
dt

)
i
=


αi+1−αi
ti+1−ti

for the start point
1
2

αi−αi−1
ti−ti−1

+ 1
2

αi+1−αi
ti+1−ti

for intermediate points
αi−αi−1
ti−ti−1

for the end point
(7)

In this study, three isoconversional methods were employed: the Flynn–Wall–Ozawa
(FWO) method (Equation (8)), the Kissinger–Akahira–Sunose (KAS) method (Equation (9),
and the Friedman differential method (Equation (10)), based on the methodology presented
by Cai et al. [5] and Carrier et al. [50], and demonstrated by Vyazovkin et al. [51] (where
βi represents the apparent heating rate (∆T/∆t)). The Kissinger method (Equation (11)) is
used to estimate kinetic parameters at a maximum degradation rate (Tmax), and its results
are presented in the SI.

ln(βi) = −1.052
(

Eα

RTα,i

)
+ ln

(
AαEα

ln(1 − α)R

)
− 5.331. (8)

ln

(
βi

T2
α,i

)
= − Eα

RTα,i
+ ln

(
AαR

ln(1 − α)Eα

)
(9)

ln

(
βi

(
dα

dT

)
α,i

)
= − Eα

RTα,i
+ ln(Aα(1 − α)) (10)
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ln
(

β

T2
max

)
= ln

(
AR
Ea

)
− Ea,max

RTmax
(11)

Using isoconversional methods, the kinetic parameters are determined using linear re-
gression, with the energy of activation equaling the slope of the fit, and the pre-exponential
factor being a function of the intercept. The results were estimated in intervals of α 0.05,
and were disregarded at high conversions due to a large error. These methods are often
employed due to their ease of applicability and comparable results; in addition, due to
making use of data at different heating rates, it may be feasible to employ them at high
heating rates for which kinetic determination is unpractical.

The peak associated with each pseudo-component and feedstock changes with the
heating rate; therefore, the average of the kinetic parameters corresponding to each ligno-
cellulosic fraction was calculated based on the peak conversions determined by the second
derivative method. For each conversion value, the kinetic parameters were determined
considering the distance to the closest multiple of α 0.05 (e.g., for a peak conversion of 0.37,
the value is estimated by taking 3/5 of the α 0.35 value and 2/5 of the α 0.4 value).

The deviation (ε, root sum of square errors, results are best when approaching zero)
was estimated as shown in Equation (12). The mass loss comparison (TGA) was performed
against the experimental 1 − α curves to disregard the presence of residual solid content,
and the derivative mass loss (DTG) was compared to the experimental dα/dt curves for
consistency. For the case of DTG-based comparisons, (1 − α)exp is replaced by the (dα/dt)exp
curve at time i:

ε = RSSE =

√√√√∑N
i=1

(
(1 − α)exp,i − (1 − α)kin,i

)2

N
(12)

2.4. Simulation of Mass Loss Curves

The simulation of the mass loss curves for the purpose of being compared with
experimental TGA data was performed using spreadsheet software (in this case, Microsoft
Excel™ 2016) based on the method employed by Anca-Couce et al. for MatLab™ [1].

The method makes use of the temperature time stamps of experimental TGA data
(beech straw powder, heating rate of 10 K·min−1). For each temperature T, the derivative
of the mass loss of a solid component αi was estimated using Equation (3) and using n = 1
when estimating f (α) (Equation (4)). The mass loss curves were computed by numerical
integration using the forward Euler method, with time steps given by the timestamps on
the original thermogravimetric data (Equation (13)). This method features a local error of
(O(h)), for which h refers to the time step [52]. The value of (1 − αi) at time 0 is defined as
1 for the components present at time 0, and 10−5 for those absent.

(1 − αi)t=j = (1 − αi)t=j−1 −
(

dαi
dt

)
t=j−1

×
(
tj − tj−1

)
(13)

The deviations in experimental data were estimated using Equations (5) and (6). The
estimated kinetic parameters are presented among the results in this manuscript. The
reaction networks from the literature and their kinetic parameters can be found in SI.

3. Results and Discussion

In Figure 2, the DTG profile for each feedstock is shown with higher peaks correspond-
ing to higher heating rates. Additionally, a slight deviation towards higher temperatures
(to the right) is observable in the peaks of the curves as the heating rate increases. Numeric
data associated with the thermograms are reported in the SI. Char yields (at 900 ◦C) for
beech wood averaged at approximately 25 wt.%, and for the wheat straw, at approximately
27 wt.%, with little variance between the feedstock particle sizes. These values may be
attributed to the relatively large sample size for each TGA experiment, as proposed by
Anca-Couce et al. [4]. Kornmayer [53] reported comparable values for 1 mm wheat straw
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(28.5% ± 0.6%) using the same equipment, but no information is given regarding TGA data
and its treatment.
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Figure 2. Comparison of the DTG behavior divided by feedstock: (a) beech; (b) WS-P; and (c) WS-H.

In a DTG curve, the cellulose peak is, by convention, the tallest peak; however, for
degradation curves such as those of wheat straw, it is often difficult to precisely define
where the hemicellulose would be, leading to authors such as Šimkovic and Csomorová [10]
characterizing the phenomenon as a single curve encompassing a ‘holocellulosic’ degrada-
tion. In several biomasses, including those of beech wood ([4]) or almond shells ([27]), the
hemicellulose degradation is identifiable as a ‘shoulder’ or an independent peak at lower
temperatures, therefore not requiring this type of treatment.

3.1. Estimation of the Lignocellulosic Composition

Rego et al. [48] employed the deconvolution method of lignocellulosic determina-
tion (three pseudo-components) to different poplar wood genotypes and compared it to
conventional chemometric measurements; the authors observed a higher coefficient of
variation for hemicellulose, between all three, for both the replica measurements (sim-
ple genotype) and the chemometric ones. Şen et al. [49] employed both model-fitting
(first-order, contracting-sphere, and three-halves models) and deconvolution as separate
methods to estimate the lignocellulosic composition of Turkey oak (Quercus cerris) cork,
while comparing to chemometric values, and the authors found that first-order model-
fitting led to better estimations of cellulose, hemicellulose, and suberin (the sum of both
aliphatic and aromatic), but poor estimations of lignin, most likely due to methodological
issues. A study by Zhou et al. [54] employed TGA to successfully determine lignocellulosic
composition for five different types of biomass with results in the same range as those
obtained with conventional methods.

The validity of deconvolution-based methods for lignocellulosic biomass is contested.
Maschio et al. [55] indicated the lack of accuracy of thermal decomposition methods, due to
the complexity of this kind of structure. The same publication refers to the potential of this
method after the hemicellulose content is removed through hydrolysis. Caballero et al. [56]
referred to the heterogeneity of the lignocellulosic materials as a deterrent: even between
samples of the same crop, the features of the individual organism, such as age and growth
factors, lead to large ranges of possible results, especially due to uncertainty in estimating
the amount of lignin.

The results presented in Table 5 reflect the pair temperature/conversion for each
degradation step considered when using the method proposed by Wu et al. [7], using
the second-derivative method by Gaitán-Álvarez et al. [11], and exemplified in Figure 1.
The beech wood employed was supplied in the context of another publication [4]. The
authors reported, using the same equipment, shoulder temperatures (hemicellulose in
Table 5, Beech) of 267.6 ◦C, 293.5 ◦C, 309.8 ◦C, and 321.0 ◦C for 1, 5, 10, and 20 K·min−1,
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respectively, as well as peak temperatures of 321.5 ◦C, 344.2 ◦C, 355.3 ◦C, and 367.5 ◦C,
respectively, for the same heating rates. While the peak temperatures reported for cellulose
were essentially equal, those for hemicellulose are often higher than those reported in this
work. Regarding the conversions, the values selected are 0.261 for the shoulder and 0.693
for the peak, again essentially equal in the case of cellulose and slightly divergent in the
case of hemicellulose. The authors selected a conversion for lignin of 0.92, which is higher
than the values reported in this work for low heating rates.

Table 5. Results of the second-derivative study. Temperature in ◦C.

Heating Rate (K min−1) Beech

Hemicellulose Cellulose Lignin

1 T = 260.6 ± 0.5
α = 0.17 ± 0.01

T = 322.9 ± 0.1
α = 0.71 ± 0.00

T = 344.8 ± 0.4
α = 0.88 ± 0.00

5 T = 294.3 ± 0.9
α = 0.25 ± 0.00

T = 345.1 ± 0.7
α = 0.69 ± 0.00

T = 370.0 ± 1.1
α = 0.89 ± 0.00

10 T = 299.1 ± 0.6
α = 0.22 ± 0.01

T = 354.9 ± 0.2
α = 0.69 ± 0.00

T = 391.3 ± 0.8
α = 0.91 ± 0.00

20 T = 312.2
α = 0.23

T = 368.3
α = 0.71

T = 400.3
α = 0.92

Heating Rate (K min−1) WS-P

1 T = 263.3 ± 2.5
α = 0.26 ± 0.03

T = 288.6 ± 0.5
α = 0.53 ± 0.00

T = 330.6 ± 5.4
α = 0.82 ± 0.01

5 T = 275.5 ± 3.4
α = 0.21 ± 0.01

T = 310.9 ± 1.9
α = 0.57 ± 0.00

T = 353.5 ± 2.4
α = 0.84 ± 0.00

10 T = 283.5 ± 1.6
α = 0.21 ± 0.00

T = 321.4 ± 1.0
α = 0.59 ± 0.00

T = 369.6 ± 1.5
α = 0.86 ± 0.00

20 T = 299.6 ± 0.2
α = 0.23 ± 0.00

T = 334.6 ± 0.1
α = 0.62 ± 0.00

T = 379.1 ± 0.2
α = 0.88 ± 0.00

50 T = 316.6 ± 0.8
α = 0.31 ± 0.01

T = 338.5 ± 0.2
α = 0.60 ± 0.00

T = 393.5 ± 4.0
α = 0.92 ± 0.00

Heating Rate (K min−1) WS-H

1 T = 257.1
α = 0.21

T = 287.9
α = 0.52

T = 349.7
α = 0.86

5 T = 256.1
α = 0.10

T = 300.7
α = 0.42

T = 352.3
α = 0.83

10 T = 279.8
α = 0.17

T = 319.5
α = 0.55

T = 375.9
α = 0.89

20 T = 289.9 ± 0.9
α = 0.20 ± 0.01

T = 326.7 ± 1.4
α = 0.57 ± 0.01

T = 400.4 ± 1.7
α = 0.92 ± 0.00

50 T = 302.7 ± 1.9
α = 0.27 ± 0.00

T = 321.5 ± 2.5
α = 0.51 ± 0.00

T = 420.5 ± 3.3
α = 0.95 ± 0.00

In Table 6, a comparison between the estimated values for each lignocellulosic pseudo-
component using the different methods is presented (simple deconvolution and as a
variable during model-fitting). These results show that the deconvolution method per-
forms worse than model-fitting methods where the kinetic parameters are also estimated
simultaneously. As can be seen in Figure 3, there is considerable overlap between the
three pseudo-components due to concurrent degradation, which impacts the feasibility of
Gaussian deconvolution methods for biomasses such as wheat straw. When comparing the
two different particle sizes (WS-P and WS-H), no consistent difference was found when
using these two methods.
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Table 6. Comparison of the presented estimates for the lignocellulosic composition of the feedstocks
in this study (wt.% daf.). Values in italics represent the deviation from the literature values. All
values were extrapolated to 100%, and the presence of extractives, lipids, and protein content
was disregarded.

Cellulose Hemicellulose Lignin

Beech

Literature a 47.9 ± 5.0 28.9 ± 2.5 23.2 ± 2.7

Model-Fitting Anca-Couce b 54.2
(13.2%)

33.1
(14.5%)

12.8
(−44.8%)

Deconvolution 43.8 ± 1.2
(−8.6%)

38.0 ± 1.4
(31.5%)

18.1 ± 1.7
(−22.0%)

Model-fitting First Order 54.7
(14.2%)

28.2
(−2.4%)

17.1
(−26.3%)

Model-Fitting nLig = 3 46.9
(−2.1%)

24.9
(−14.0%)

28.2
(21.7%)

Model-Fitting Free Order 45.6
(−4.7%)

19.3
(−33.1%)

35.0
(51.0%)

Wheat Straw
Powder
(WS-P)

Literature c 45.5 ± 1.4 32.6 ± 2.5 21.9 ± 1.0

Deconvolution 36.4 ± 1.3
(−20.0%)

26.4 ± 1.1
(−19.0%)

37.2 ± 0.4
(69.9%)

Model-Fitting First Order 47.2
(3.8%)

24.7
(−24.2%)

28.1
(28.1%)

Model-Fitting nLig = 3 44.3
(−2.7%)

31.4
(−3.8%)

24.4
(11.3%)

Model-Fitting Free Order 42.5
(−6.6%)

32.5
(−0.3%)

25.0
(14.2%)

Wheat straw
Hull

(WS-H)

Literature c 45.5 ± 1.4 32.6 ± 2.5 21.9 ± 1.0

Deconvolution 47.4 ± 1.0
(4.2%)

18.7 ± 1.8
(−42.6%)

33.9 ± 1.2
(54.8%)

Model-Fitting First Order 43.2
(−5.0%)

32.1
(−1.4%)

24.6
(12.5%)

Model-Fitting nLig = 3 41.7
(−8.4%)

31.7
(−2.9%)

26.7
(21.8%)

Model-Fitting Free Order 39.0
(−14.3%)

31.5
(−3.4%)

29.5
(34.7%)

a: Sourced from the Phyllis2 database (www.phyllis.nl) using 4 samples. b: Obtained using a free-order model-
fitting method for simultaneous kinetic and lignocellulosic determination. Source: [4]. c: Sourced from the
Phyllis2 database (www.phyllis.nl) using 19 samples.
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The values in Table 7 show the average error of estimation using the different methods
in comparison to the reference, taken to be the literature values in Table 6. The lowest
error was found for cellulose, which is determined by the highest peak. As the different
components of the lignocellulosic matrix undergo simultaneous degradation, the authors
suggest that the error stems from the fitting curve overlapping, which may lead to some
areas of each peak being assigned to another peak for the same temperature.

Table 7. Average absolute error of estimation of the lignocellulosic composition of a feedstock versus
its reference value.

Cellulose Hemicellulose Lignin Error per Method

Deconvolution 10.9% ± 7.5% 31.0% ± 10.9% 48.9% ± 22.6% 30.3% ± 13.4%
Model-Fitting First-Order 7.6% ± 5.3% 9.3% ± 11.9% 22.3% ± 7.9% 13.1% ± 6.6%

Model-Fitting nLig = 3 4.4% ± 3.2% 6.9% ± 5.7% 18.2% ± 5.6% 9.8% ± 4.9%
Model-Fitting Free Order 8.5% ± 4.7% 12.3% ± 16.7% 33.3% ± 17.1% 18.0% ± 10.8%

Error per Pseudo-Component 7.9% ± 3.0% 14.9% ± 8.1% 30.7% ± 10.1%

The errors for lignin are the highest, with the error of deconvolution being even higher,
which may indicate the shortcomings of the methodology. To obtain the deconvolution
results, the temperature of the center of each Gaussian peak was set to the value presented
in Table 6. Defining the peak point for the lignin curve on the slope change may have led to
a large contribution of the charring reaction at high temperatures.

3.2. Comparison of Estimated Kinetic Results

The determination of the shape of a degradation curve using thermogravimetry with
Arrhenius parameters can be elusive due to the often unpredictable effects of small changes
in the values of these parameters. In that sense, while several publications have discussed
the numeric values of the kinetic parameters obtained using isoconversional methods,
seldom are such values employed/compared with the DTG curves in a graphic manner. In
this section, the curves obtained using the isoconversional methods, and the curve-fitting
methods are overlapped with the DTG curve for the sake of comparison.

The values of the curve-fitting methods were obtained by fitting all experimental
curves of a feedstock simultaneously. On the other hand, to estimate the isoconversional
method-derived Arrhenius parameters for each compound (cellulose, hemicellulose, and
lignin) of a feedstock, a weighted average was made of the estimated conversion values
representative of each compound based on the average of the results of the deconvolution.
All numeric values can be found in the SI, as well as the graphical demonstration of the
model-fitting procedures. An example of the application of a curve-fitting method is shown
in Figure 4, where the reader can see the level of overlap between the different curves at
the same temperature, which affects the values of the accrued kinetic parameters.

The values for the isoconversional methods are displayed as graphs in Figure 5
(numeric values can be found in the SI), where one can see a visual range of conversion
values for which apparent reaction energies for each lignocellulosic pseudo-component
were taken for further comparison. The ranges of said pseudo-components are based on
the ranges of values obtained using the second derivative method (Table 5). The range of
values shown in Figure 5 does not include higher conversions due to the unfeasible results
which are expected from these methods; therefore, the value for lignin was taken as the last
valid one for each case.

It is a common assumption that the isoconversional methods lead to similar results
that resemble each other, as can be seen for the KAS and FWO methods, both integral
methods based on similar premises. The use of the Friedman method, a differential method,
may lead to erroneous estimates, due to the fact that they require an assumption concerning
the form of the kinetic equation, whereas the KAS and FWO methods do not [57].
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Figure 4. Example of curve-fitting using Arrhenius curves. Initial guess for each curve centered at
the point devised by the DDTG method (see Table 5). WS-P, 10 K·min−1.

The kinetic parameters obtained using all methods were collected in Table 8 (cellulose),
Table 9 (hemicellulose), and Table 10 (lignin), to ease the comparison. Table 11 shows the
root mean square error (RMSE) between the experimental results and curves traced using
the kinetic parameters obtained, in which a lower value indicates a better fit.
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Figure 5. Kinetic parameters obtained using the isoconversional methods. Top: activation energy; bottom: pre-exponential factor. Values for higher conversions
were disregarded.
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Table 8. Peak values and kinetic parameters for the different feedstocks and different methods. Cellulose peak @ 10 K·min−1. Order 1 to cellulose in all cases.

Beech Wood Powder Wheat Straw Powder Wheat Straw Hull

T Peak (◦C) Ea (kJ·mol−1) log10 (A(s−1)) T Peak (◦C) Ea (kJ·mol−1) log10 (A(s−1)) T Peak (◦C) Ea (kJ·mol−1) log10 (A(s−1))

Cellulose

DTG Peak 357.3 318.2 319.4
Isoconversional KAS 355.9 201.4 14.75 325.5 206.9 16.12 323.5 226.6 17.97
Isoconversional FWO 355.9 201.2 14.75 323.6 224.8 17.79 322.1 224.6 17.81

Isoconversional Friedman 364.2 201.5 14.56 334.5 231.6 17.99 333.2 239.8 18.77
Model-Fitting First Order 353.1 198.4 14.55 323.3 185.2 14.24 325.0 191.6 14.78

Model-Fitting n3 = 3 353.1 208.6 15.44 324.1 188.2 14.49 323.5 195.9 15.20
Model-Fitting Free Order 354.5 211.0 15.61 322.8 190.6 14.74 322.1 201.4 15.71

KAS RR a 199.9
Model-Fitting Free-Order RR a 354.5 199.6 14.63

a: Sourced from the aforementioned round-robin using the same equipment as that employed in the context of this work [4].

Table 9. Peak values and kinetic parameters for the different feedstocks and different methods. Hemicellulose peak @ 10 K·min−1.

Beech Wood Powder Wheat Straw Powder Wheat Straw Hull

T Peak (◦C) Ea
(kJ·mol−1)

log10
(A(s−1)) Order T Peak (◦C) Ea

(kJ·mol−1)
log10

(A(s−1)) Order T Peak (◦C) Ea
(kJ·mol−1)

log10
(A(s−1)) Order

Hemcellulose

DTG Peak 298.2 283.2 279.8
Isoconversional KAS 326.8 178.3 13.59 1 312.0 183.7 14.43 1 304.3 203.6 16.51 1
Isoconversional FWO 324.0 178.5 13.61 1 309.9 192.2 15.28 1 304.3 202.2 16.39 1

Isoconversional Friedman 336.4 190.1 14.34 1 320.6 189.1 14.67 1 312.5 211.4 16.95 1
Model-Fitting First Order 298.9 136.3 10.41 1 289.0 125.5 9.58 1 288.8 147.3 11.68 1

Model-Fitting n3 = 3 297.5 139.3 10.72 1 292.3 119.8 8.96 1 287.4 147.6 11.72 1
Model-Fitting Free Order 288.8 156.2 12.55 1.62 287.9 138.8 10.87 1.74 286.0 172.5 14.14 1.48

KAS RR a 185.7 1
Model-Fitting Free-Order RR a 296.1 161.7 12.86 1.79

a: Sourced from the aforementioned round-robin using the same equipment as that employed in the context of this work [4].
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Table 10. Peak values and kinetic parameters for the different feedstocks and different methods. Lignin peak @ 10 K·min−1.

Beech Wood Powder Wheat Straw Powder Wheat Straw Hull

T Peak (◦C) Ea
(kJ·mol−1)

log10
(A(s−1)) Order T Peak (◦C) Ea

(kJ·mol−1)
log10

(A(s−1)) Order T Peak (◦C) Ea
(kJ·mol−1)

log10
(A(s−1)) Order

Lignin

DTG Peak 390.2 366.7 369.5

Isoconversional KAS
390.5

423.9 31.65
1 377.1

434.2 33.20
1 375.5

387.5 29.49
1

389.2 3 376.3 3 374.1 3

Isoconversional FWO
390.5

413.2 30.82
1 387.4

430.0 32.31
1 371.2

378.5 28.97
1

389.2 3 386.1 3 369.9 3

Isoconversional Friedman
408.8

508.3 37.26
1 394.4

506.8 38.00
1 400.7

404.0 29.58
1

408.8 3 394.2 3 399.3 3
Model-Fitting First Order 444.2 58.2 1.60 1 421.4 54.4 1.45 1 411.7 69.7 2.79 1

Model-Fitting n3 = 3 351.8 105.0 6.43 3 386.1 119.9 7.20 3 369.9 126.0 7.96 3
Model-Fitting Free Order 304.7 222.6 18.09 7.73 376.6 160.5 10.71 4.93 356.2 185.9 13.26 5.68

KAS RR a 412.6
Model-Fitting Free Order RR a 397.1 347.6 25.17 7.26

a: Sourced from the aforementioned round-robin using the same equipment as that employed in the context of this work [4].
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Table 11. Derivative RMSE of the curves produced using kinetics determination methods in simulta-
neous comparison with all experimental dα/dt curves. Confidence interval of 95%.

Method Beech Wood Powder Wheat Straw Powder Wheat Straw Hull

KAS n3 = 1 17.0% ± 1.8% 19.4% ± 2.8% 21.5% ± 3.4%
KAS n3 = 3 13.4% ± 1.6% 15.9% ± 2.8% 18.4% ± 4.7%
FWO n3 = 1 16.8% ± 1.6% 19.9% ± 4.0% 21.2% ± 3.6%
FWO n3 = 3 13.3% ± 1.5% 16.6% ± 3.3% 18.2% ± 4.7%

Friedman n3 = 1 19.4% ± 1.1% 25.3% ± 3.9% 24.2% ± 6.2%
Friedman n3 = 3 16.0% ± 1.2% 22.3% ± 4.5% 21.6% ± 7.9%

First Order to All 3.9% ± 2.0% 6.2% ± 5.9% 9.6% ± 8.9%
Third Order to Lignin (n3 = 3) 3.5% ± 1.4% 5.8% ± 6.5% 8.8% ± 9.3%

Free Order to All 2.9% ± 0.6% 5.3% ± 5.6% 8.1% ± 9.5%

Round-Robin Free Order * 2.9% ± 0.7%

* Sourced from the aforementioned round-robin using the same equipment as that employed in the context of this
work. [4].

As seen in Table 11, Isoconversional kinetic parameters derived from the powder
samples (Beech and WS-P) are more similar to each other than with the hull sample
(WS-H) for hemicellulose and lignin due to the differences in particle size, and may be
associated with the heat/mass-transfer limitations because of unconventionally high sam-
ple sizes, or even due to the method of identification of the peak conversion value. The
values obtained from the hull (not-milled) wheat straw were slightly higher for cellulose
and hemicellulose, but lower for lignin.

The curve-fitting method leads to lower errors (Table 11) than the isoconversional meth-
ods, as they are directly determined from the experimental data while producing substantially
different kinetic parameters, with a difference range to the equivalent isoconversional pa-
rameters of 1.7–57.3 kJ·mol−1/1.2–105 s−1 for cellulose, 4.6–78.5 kJ·mol−1/12–107 s−1 for
hemicellulose, and 100.0–456.1 kJ·mol−1/102–1036 s−1 for lignin. Despite these differences,
the obtained curves show small deviations in shape and peak temperature, and it must be
kept in mind that the phenomena of curve overlap are actively occurring, indicating the
presence of concurrent reactions, and thus lowering the obtained activation energy of any
individual phenomenon.

The kinetic parameters obtained using the KAS and FWO methods are very similar,
with an exception in wheat straw powder cellulose, leading to very similar average de-
viations (Table 11). The similar Friedman method, based on different premises, leads to
activation energies similar to the other isoconversional methods, but higher pre-exponential
factors for the case of lignin. When comparing the effect of setting the reaction order to
3 instead of 1 for lignin, following the proposal by Manyà et al. [17], when employing
the kinetics derived from isoconversional methods for each compound, the differences
in the peak position and deviation from the experimental data lead to a consistent ~3%
improvement in the fit.

In contrast to the data presented in the introduction, namely the value obtained by
Lopéz et al. [36], as shown in Table 1, in which the authors presented values within the
range of those obtained in the context of this work, albeit with lower values for both
(hemicellulose and lignin) ends of the range, a fact that may have to do with the lower
heating rates used in that work in comparison to this one, or with the employed conversion
range. Regarding the curve-fitting values, these can be more directly related to the lignin
values obtained in the context of this work, both because of the lower heating rates and
also due to considering a more extensive temperature range, thus perhaps factoring in
charring effects.

The best overall accuracy for all three feedstocks was obtained using the free-order
model, due to it having fewer model constraints. Possibly attributed to the aforementioned
heat/mass transfer limitations, WS-W presents consistently worse fits than WS-P (except
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when using the Friedman method). The clear ‘shoulder’ attributed to hemicellulose favors
the estimation of this pseudo-component for the beech wood curve-fitting methods, whilst
the WS methods present more overlap.

The difference in errors is not enough to completely discard the isoconversional
(KAS, FWO, and Friedman) methods on their own since both methods can be regarded
as complementary. This manuscript shows that applying isoconversional methods to the
kinetic determination of each compound in lignocellulosic biomass is a viable alternative to
low application demand. However, this method tends to predict a delay in hemicellulose
degradation, which is probably caused by the overlap of cellulose and hemicellulose at the
conversions where hemicellulose peaks. This phenomenon is shown in Figure 6.
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Figure 6. Comparison of the curve-fitting n3 = 3 method (left) and the isoconversional KAS (n3 = 3)
method (right). Experimental data: DTG from WS-P, 10 K·min−1.

3.3. Performance of Published Reaction Networks

The degradation of the solid pseudo-components based on the published reaction
networks [12–14,20–23,26] was plotted against that of beech wood (powder) and wheat
straw (powder (WS-P) and hull (WS-H)) to compare the performance of these networks in
simulating the degradation of the biomasses.

All models employ two PCs to model the degradation of cellulose (cellulose and
activated cellulose), and three PCs to model hemicellulose (hemicellulose, hemicellulose
1 and 2 (HCE1 and 2)). Of all models reported here, Ranzi et al. [21,22] and Debiagi [23]
considered the effects of different hemicellulose (HCE) compositions: the former contrasting
the degradation of arabinoxylan-rich materials (softwoods, HCE1/HCE2 = 70/30) with that
of galactomannan-rich ones (hardwoods, HCE1/HCE2 = 35/65), and the latter adding grass
and cereal feedstocks (HCE1/HCE2 = 12/88) [23]. Based on hemicellulose composition,
both beech wood and wheat straw are considered arabinoxylan-rich [45,58].

Regarding lignin, the most common approach is that of three primary PCs (lignins
C, H, and O), which degrade into three secondary PCs (lignin-CC, -OH, and “Lig”), as
introduced by Ranzi et al. [12]. However, Faravelli et al. [14] developed a radical-based
model featuring seven initial lignin representatives and a complex set of intermediaries,
but did not lead to a particular improvement in terms of the modeling results.

Table 12 shows the deviations between the summative fit curves and the experimental
results for the three feedstocks. Evaluation is primarily based on the derivative deviation,
and every model predicts the degradation of beech wood consistently better than it predicts
any of the wheat straw particle sizes, except for the case of the Ranzi–Faravelli [12,14,59]
network, and the difference between powder and hull wheat straw is lower than 2.5% for
all networks. This fact is not surprising, as the detailed degradation schemes commonly
use low-ash feedstocks such as wood as reference biomasses during development.
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Table 12. Root sum of square errors between the (1 − α)/dα/dt curves and the summative fits of
curves based on literature-found reaction network kinetic values.

Mass Loss (1 − α) (%) Derivative (dα/dt) (%)

WS-P WS-H Beech WS-P WS-H Beech

Ranzi 2008 (R08) [12] 6.2% 5.7% 5.7% 22.0% 21.5% 10.6%
Ranzi + Faravelli (R + F) [12,14,59] 18.6% 18.4% 18.3% 28.2% 30.7% 30.0%

Corbetta (C13) [20] 11.5% 10.4% 5.6% 21.6% 20.6% 7.4%
RAC [13] * 6.5% 6.0% 5.1% 25.7% 25.2% 7.1%

Ranzi 2017a (R17a) [21] 6.4% 5.9% 5.1% 25.7% 25.3% 8.4%
Ranzi 2017b (R17b) [22] 8.0% 8.2% 9.5% 28.6% 29.3% 17.9%

Debiagi HCE = Hardwood (D18-H) [23] 7.6% 7.8% 9.4% 31.1% 32.0% 19.5%
Debiagi HCE = Cereal (D18-C) [23] 7.2% 7.3% 8.9% 31.6% 32.8% 20.6%

*: Including modifications and charring estimations by Pecha et al. [24].

The RAC model [13,24] is the best performing for beech wood, followed by the
Corbetta [20], the Ranzi (17a) [21], and the Ranzi (08) [12] models. For the cases of both
wheat straw feedstocks, the lowest deviations were found for the Corbetta [20], while the
second place was taken by the Ranzi (08) [12] model, followed by the RAC [13,24] and
Ranzi (17a) [21] models. A visual representation of the best results (derivatives) can be
found in Figure 7, and a representation of the individual component curves can be found
in the SI.
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Figure 7. Comparison of the experimental degradation (above: mass loss; below: derivative)
curves with the network curves with the lowest deviations towards WS-H. R08 = Ranzi et al. [12];
C13 = Corbetta [20]; RAC = Anca-Couce and Scharler [13,24]; and R17a = Ranzi et al. [21].

Influence of Potassium Content on the Pyrolysis of Cellulose

Trendewicz et al. [26] proposed alternative kinetic parameters for the degradation of
active cellulose and the charring of crystal cellulose depending on the potassium content
of the feedstock. For the best four cases in Table 12, the original cellulose degradation
networks were partially replaced with the Trendewicz model, of which the deviations from
the experimental results are shown in Table 13.
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Table 13. Root sum of square errors between the (1 − α)/dα/dt curves and the summative fits
of curves based on literature-found reaction network kinetic values—including modifications by
Trendewicz et al. [26].

K Content
Mass Loss (1 − α) Derivative (dα/dt)

WS-P WS-H Beech WS-P WS-H Beech

Ranzi 2008 [12]

Original 6.2% 5.7% 5.7% 22.0% 21.5% 10.6%
0.096 wt.% (B) 12.1% 23.2%

1.180 wt.% (WS) 15.4% 16.3% 30.7% 34.1%
Best B = 0.001 wt.% 5.4% 10.5%

Best WS = 0.071 wt.% 6.7% 7.1% 15.4% 15.7%

Corbetta [20]

Original 11.5% 10.4% 5.6% 21.6% 20.6% 7.4%
0.096 wt.% (B) 10.1% 21.5%

1.180 wt.% (WS) 12.5% 13.3% 24.0% 26.7%
Best B = 0.000 wt.% 4.2% 7.4%

Best WS = 0.086 wt.% 6.6% 6.6% 12.7% 12.8%

RAC [13] *

Original 6.5% 6.0% 5.1% 25.7% 25.2% 7.1%
0.096 wt.% (B) 7.1% 17.6%

1.180 wt.% (WS) 11.2% 12.0% 25.8% 28.1%
Best B = 0.001 wt.% 6.7% 14.9%

Best WS = 0.393 wt.% 5.5% 5.6% 11.2% 10.7%

Ranzi 2017a [21]

Original 8.7% 7.6% 2.1% 26.5% 26.1% 8.4%
0.096 wt.% (B) 11.3% 17.6%

1.180 wt.% (WS) 15.5% 16.4% 31.8% 34.8%
Best B = 0.011 wt.% 5.8% 7.6%

Best WS = 0.119 wt.% 7.5% 8.1% 13.6% 13.8%

*: Including modifications and charring estimations by Pecha et al. [24].

The fact that the presence of ash leads to higher deviations for beech than for straw—
deviations which are often higher than curves not considering this factor—may stem from
overlap with the hemicellulose curve due to the shift to lower temperatures, leading to a
less pronounced hemicellulose shoulder, and thus higher deviations. This phenomenon
does not occur for wheat straw due to the absence of a pronounced shoulder.

The results found in Table 13 indicate that taking into consideration the potassium
influence often leads to better fits (lower deviations) for wheat straw, mostly because of
a peak shift to lower temperatures (catalyzed reaction, as shown in Figure 7). However,
the experimental value of the potassium content of wheat straw (1.18 wt.%) is outside the
range of values employed by Trendewicz et al. [26] to calibrate the model, thus presenting
very high deviations in all cases.

The best values (‘Best B’ and ‘Best WS’) were estimated to find the potassium content
for which the fit of each reaction network presents the lowest deviation for beech and
WS-P/WS-H, respectively, estimated using GRG nonlinear solver (bundled with Microsoft
Excel™ 2016). Apart from the Ranzi (17a) model [21], the optimum potassium content for
beech is very close to null. For the case of wheat straw, the optimum is found for values
much lower than the experimentally determined value, indicating the need to calibrate this
model by taking into consideration the real biomass, and not just isolated cellulose.

That said, the best models to model the degradation of beech wood are the unmodified
networks presented in Table 13. For the case of straw, deviations are marginally different
between powder and hull. Based exclusively on the derivative error, the best results are
found for the RAC [13,24], followed by the Corbetta model [20], the Ranzi (17a) model [21],
and the Ranzi (08) model [12], all of which employ a potassium content named Best WS. A
visual representation of the influence of the changing cellulose peak height and position
can be found in Figure 8.
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Figure 8. Comparison of the experimental derivative degradation curves with the predictions of
the R17a model [21] modified using the Trendewicz model [26] assuming three different potassium
contents: (A) cellulose curves against WS-H experimental degradation; (B) summative curves against
WS-H experimental degradation; (C) cellulose curves against beech experimental degradation; and
(D) summative curves against beech experimental degradation.

4. Conclusions

This paper presents the experimental determination of kinetic parameters for the
pyrolysis of wheat straw as a representative of high ash content biomass. Two fundamental
challenges were addressed to obtain these parameters which are due to the catalytic effects
of (earth) alkali metals that often occur in biomass with a high ash content.

First, wheat straw degradation is characterized by a single decomposition stage (a
single peak in the derivative curve (DTG)) due to its high ash content, which hampers the
identification of the degradation of hemicellulose. This problem was solved by applying the
second derivative (DDTG) to identify inflection points that can be taken as the peak position
of the degradation of the different pseudo-components. To the best of our knowledge, this
method does not seem to have been previously implemented for either of the feedstocks
employed in the context of this work for the estimation of lignocellulosic composition,
presenting an average error of 30 wt. %, when compared to literature values based on
conventional chemometric methods. Based on the method results, it is possible to identify
conversion values corresponding to the maximum degradation of hemicellulose, cellulose,
and lignin, allowing the user to obtain kinetic parameters for these three phenomena based
on isoconversional methods (KAS, FWO, and Friedman), or as anchor points for curve-
fitting by square error minimization assuming the concurrent degradation of lignocellulosic
pseudo-components (different orders of reaction considered).

Curve-fitting methods predictably lead to better fits when testing the obtained kinetic
parameters, while the values derived from the use of isoconversional methods to determine
the kinetics of each compound often present a delay in the hemicellulose degradation.
However, a higher error should not be indicative of the unfeasibility of this method, as
despite this fact, it has a much higher simplicity of application. The comparison between



Energies 2022, 15, 7240 23 of 26

the powder and hull particle sizes showed a small but significant deviation, probably due
to the thin walls of wheat straw hulls.

Secondly, it was confirmed that reaction networks available in the literature–which
have been primarily developed for biomass with a low ash content—can also be used to
describe the degradation of biomass with a high ash content. Kinetic parameters from seven
published reaction networks designed to model the pyrolysis of biomass were employed
to model degradation curves which were contrasted with experimental data to evaluate
their feasibility for modeling the degradation of the feedstocks being studied in this work.
Among the reaction networks tested, the best results (lowest derivative deviation) were
found for the Ranzi (08) [12], Corbetta [20], RAC [13,24], and Ranzi (17a) [21] models. As
expected, deviations between the experimental behavior and model results using reaction
networks were found to be lower for beech wood compared to wheat straw.

It is a known fact that potassium catalyzes the degradation of cellulose, shifting the
derivative curve (DTG) to lower temperatures and higher peaks. Trendewicz et al. [26]
developed an alternative model for the degradation of cellulose, which considers the effect
of the feedstock potassium content and was implemented in the seven aforementioned
reaction networks. While a potassium content of 0.10 wt.% (beech wood) leads to a minor
shift, it was ultimately found that it does not lead to a better fit to beech experimental
data. A potassium content of 1.18 wt.% (wheat straw) leads to both excessively tall peaks
at low temperatures, leading to worse fits than the original reaction networks. Based on
the alternative model, we were able to estimate the potassium contents for which the
experimental data are best modeled, allowing for more accurate modeling.

Future work indubitably lies in the application of the obtained kinetic parameters to
model the degradation of wheat straw using fast pyrolysis, as the considerable differences
in heating rate may lead to non-optimal results. In addition, improving on the current
model of Trendewicz et al. [26] by considering not only a larger range of ash contents but
also complete biomass—rather than only isolated cellulose—may lead to more exact results.
Other options for future work may lie in the comparison of more recently developed
methods for the estimation of degradation kinetics. The application of a simple Newton
method for the numerical estimation of the second derivative incurs an error proportional
to the square of the step size, and more novel methods with lower errors may be employed.

Kinetic parameters for wheat straw are scarcely available in the literature. They show
a wide range of values which are not associated with individual lignocellulosic pseudo-
components, but rather assume a single-stage decomposition of the material. By applying
the presented methodology, this problem could be solved and a more reliable description
of wheat straw pyrolysis, as representative for biomass with high ash content, was derived.
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