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Abstract: The increasing isolation of the elderly both in their own homes and in care homes has
made the problem of caring for elderly people who live alone an urgent priority. This article presents
a proposed design for a heterogeneous multirobot system consisting of (i) a small mobile robot to
monitor the well-being of elderly people who live alone and suggest activities to keep them positive
and active and (ii) a domestic mobile manipulating robot that helps to perform household tasks.
The entire system is integrated in an automated home environment (AAL), which also includes a
set of low-cost automation sensors, a medical monitoring bracelet and an Android application to
propose emotional coaching activities to the person who lives alone. The heterogeneous system uses
ROS, IoT technologies, such as Node-RED, and the Home Assistant Platform. Both platforms with
the home automation system have been tested over a long period of time and integrated in a real
test environment, with good results. The semantic segmentation of the navigation and planning
environment in the mobile manipulator for navigation and movement in the manipulation area
facilitated the tasks of the later planners. Results about the interactions of users with the applications
are presented and the use of artificial intelligence to predict mood is discussed. The experiments
support the conclusion that the assistance robot correctly proposes activities, such as calling a relative,
exercising, etc., during the day, according to the user’s detected emotional state, making this is an
innovative proposal aimed at empowering the elderly so that they can be autonomous in their homes
and have a good quality of life.

Keywords: assistive robotics; social robots; aging; Ambient Assisted Living (AAL); Node-RED; IoT;
interoperability; heterogeneous systems; ROS; smart home; robotic manipulation; well-being

1. Introduction

The increasing isolation of the elderly both in their own homes and in care homes has
made the problem of caring for elderly people who live alone an urgent priority. Several
experts have spoken in favour of “the availability of comprehensive and integrated care at
home” [1]. During the COVID-19 pandemic, the care-response capacity in nursing homes
was overwhelmed, causing a dramatic situation. For this reason, the protection of the
elderly in Spain now presents a different scenario that requires person-centred care, for
which adapted housing can be used [2].

It will be difficult to fully meet the demand for home care in the near future due to the
shortage of available health personnel that is a result of increased life expectancy and low
birth rates. Spain continues to head the list in terms of longevity in Europe, with an average
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longevity of 82.4 years. Unfortunately, aging often goes hand in hand with deteriorating
health, and, in many cases, this requires additional attention. The number of those over 65
who live alone has increased by 30% in the last ten years, so that it can be concluded that
people in Spain, and in most first-world countries in general, are living longer and have
more health problems, in addition to the growing tendency to live alone.

In addition to the psychological problems derived from the growing tendency to
loneliness, the progressive deterioration of physical capacities with age must be considered.
Everyday tasks, such as getting up to move the shutter or answer the phone, fetch a glass
of water or hot milk from the kitchen, can be difficult challenges to overcome. Current
technology should be able to provide solutions to help people living alone with these needs.

In the last five years, technology has invaded almost all areas of our lives; it helps us
at work, in our leisure time and in answering medical questions. However, there is another
important aspect that has not been given the attention it deserves and which is now gaining
prominence: the care of elderly people in their own homes. Although solutions have been
found for specific problems, at present, there are no generic, coordinated, adaptable and
affordable solutions, as stated in [3].

In this regard, we are faced with a scenario in which the environment must relate to
the person, be adaptable to the user’s capabilities and help him/her to be autonomous
with a better quality of life. For this, we propose three coordinated actors to interact with
the person:

1. The home itself, i.e., the immediate environment: turning lights on and off and
moving the blinds without having to get up, having technical alarms in the home (gas
leakage, water, fire detection) to detect dangerous situations, such as a stove that has
been left on, but also collecting information through non-invasive and cost-effective
commercial sensors, which, thanks to artificial intelligence, can detect situations in
which help is necessary and suggest activities to improve mood. A wearable on the
wrist collects personal data for the training of a machine-learning algorithm to predict
the user’s mood.

2. A social mobile robot that interacts actively with the user. This robot is equipped with
an openable tray to carry objects weighing less than 1 kg.

3. A two-armed domestic-assistance robot to manipulate objects for the service robot,
performing basic actions, such as picking up objects from the kitchen, manipulating
them and leaving them on the service robot’s tray.

These elements constitute a heterogeneous system called HIMTAE (Heterogeneous
Intelligent Multirobot Team for the Assistance of Elderly People) for the assistance of
elderly people who seek comprehensive care. The main contribution of this work is the
proposal of this heterogeneous system that includes elements from different disciplines,
such as social and assistive robotics, psychology, home automation, Ambient Assisted
Living (AAL) and artificial intelligence (AI), which aims at analyzing a subject’s behaviour
and state of mind and suggesting emotional coaching activities through the user’s own
smart devices. The proposed Multirobot and Ambient Assisted Living system is modular
and scalable according to the user’s needs, thanks to its open architecture. Different
system deployments are possible, from the simplest model (home automation and smart
speakers to communicate and interact with the user’s environment, possibly including
the social robot) to the most complex model, which includes two robots, i.e., a social
assistant and a manipulator. The small mobile social robot monitors the user’s well-being,
giving suggestions to improve their mood, while the domestic manipulating robot helps
to perform household tasks. These types of integrated platforms with home automation
solutions aligned with Ambient Assisted Living (AAL) belong to the field of social and
assistive robotics to improve people’s everyday lives.

Both robots have different requirements, morphological characteristics and functional-
ities, depending on the tasks to be performed. The companion social robot must be small,
user-friendly, capable of interaction and possess the software and algorithms required to
process the types of information necessary. The domestic-assistance robot must be larger to
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have access to the work areas, be able to carry loads and be equipped with handling capa-
bilities. Its manipulation capabilities must include planning algorithms and environmental
modelling in both 2D and 3D.

Previous works, such as [4], have proposed solutions based on multirobot systems
for people with reduced mobility, but these have consisted of an accompanying robot
and an autonomous wheelchair without a manipulation robot for physical assistance.
In [5], a multirobot system was proposed which consisted of a multirobot system that
included serial manipulator arms, a wheeled base and an approachable human-like face
but which did not incorporate Ambient Assisted Living (AAL). Other proposed solutions
include multirobot systems [6,7], but in these cases the platforms are social robots without
manipulation or movement capabilities. In [8], the authors present a multirobot system
based on cloud computing to share information but which is not capable of performing
tasks that require manipulation. The present proposed system consists of a multiple robot
system with AAL and manipulation capabilities designed to provide complete assistance
(mental and physical). Both platforms were considered to need movement capabilities to
follow and monitor the companion, while a domestic physical-assistance robot needs to be
able to position itself in the work area and any part of the house.

In the following two subsections, other state-of-the-art solutions are presented; in
Section 1.3, the HIMTAE system overview and its main contributions are described.

1.1. Related Works on Assistive Robots and Ambient Assisted Living

Recent developments in companion robotics suggest that social robots could be used
successfully in elderly populations to improve mood, decrease negative emotions and
reduce loneliness [9–11]. Studies on elderly populations have used pet-like robots, such as
Paro, Aibo and NeCoRo. Samsung’s BotCare [12], Rassel robot [13] and Mini robot [11],
although not mobile, can focus on interactions and mood recognition. The idea of complet-
ing a system with a multirobot care team is proposed in [14], which defines the theoretical
aspects of integration. In [15], the Romeo2 project introduced the concept of an assistant
robot for everyday life in the form of a humanoid robot, although it focused more on
interaction with the user. Ref. [16] proposed a manipulator to assist and entertain elderly
people living in apartments, but it has limitations regarding manipulation and operations
in human environments. In addition to these systems, new designs can be found in the
recent literature, such as [9], which describe the current state of the art in assistive robots to
help older adults through the COVID-19 pandemic. Further examples are presented in [17]
of how assistive robots could improve the elderly’s independence as regards their reduced
mobility, including rehabilitation needs.

However, as the range of psychological problems that previous work has addressed
is limited, recent analyses have urged greater efforts in robotics to treat common mental
disorders, such as depression and other mental health problems associated with high
individual and societal costs.

Robotic systems are now able to interact in more complex ways with human users,
offering new opportunities to provide individualized healthcare and mental care. Much
attention and research are being devoted to assistive systems that aim at promoting in-
dependent living at home for as long as possible. The transition from home automation
to the more ambitious Ambient Assisted Living (AAL) paradigm has given the opportu-
nity to integrate robots and ambient home help systems. An example of the symbiosis
between AALs and robotics is given in the H2020 ENRICHME project, in which envi-
ronmental sensors provide information on activities to an assistive robot. Refs. [18–20]
detail several studies of smart environments and robotic assistive technologies that have
the potential to support the independent living of older adults at home by implementing
age-friendly care services. Recent successes of the AAL program include ReMember-Me
(https://www.rememberme-aal.eu/es/inicio/ (accessed on 10 September 2022)), an intelli-
gent assistant to detect and prevent cognitive decline and promote social inclusion. This is
a technological solution composed of a social robot in a tablet plus smart sensors. Through
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the system, users will be able to perform various exercises and assessment games tailored
to their performance level and preferences, receive personalized health recommendations
and share their knowledge with reputable members of the community. Their progress will
be recorded and displayed to family members and authorized healthcare professionals to
aid early detection and intervention. In Spain, some research groups are promoting the
use of social robots for physical and cognitive stimulation in elderly care facilities with
success, as in Zalama [10], which puts forward the innovative idea that mood levels can be
estimated from automatic observation of Activities of Daily Living (ADL) by integrating
AAL sensor data with robot sensors. Salich [11] and other groups working on European
projects, such as Pharaon (www.pharaon.eu (accessed on 10 September 2022)), are more
concerned with healthcare but deal with active and healthy aging aided by technology [21].

The HIMTAE system proposes a two-armed manipulating robot capable of working
in a home environment in coordination with a small mobile assistant robot. In this field,
the ability to manage a team of heterogeneous robots is desirable. In [22], a multirobot task-
planning-and-execution architecture is presented. The system is designed to coordinate
a team of mobile robots with different physical characteristics and functions. The system
also allows interaction with multiple users. People with reduced mobility can also benefit
from approaches based on multiple assistance robots, as in our proposed system, where
a small robot can collaborate with another manipulator robot to transport small objects
to a person with reduced mobility or help with the previously mentioned household jobs
that include the use of robotic wheelchairs [4,5,17]. Research is emerging to coordinate
these robots in smart places, as in [14], with an approach aimed at enhancing Ambient
Assisted Living services. This work aims to integrate a Robot-Assisted Ambient Intelligence
(RAmI) architecture with mobile robot teams. The RAmI architecture contains a semantic,
a scheduling and an execution layer.

Regarding the advanced architecture of this type of system, it is important to achieve
persistent autonomy, including planning, reasoning and acting phases. In this regard,
automated planning for high-level control of robotic architectures is becoming widespread,
thanks mainly to the capability to define tasks to be performed declaratively [23]. The
authors of the latter study propose a classical planning system and its extension to the
action-based planning paradigm. This allows the robot’s actions and the possible states
of the system to be defined using the Planning Domain Definition Language (PDDL) [24],
a predicate-logic-based language. PDDL is also used by other systems for AI planning and
reasoning in socially assistive robots, as in [25], which proposes a modular and common
framework and adopts two standards: the ROS platform and the PDDL language.

Regarding task planning, there are other methods proposed by different authors. One
method is a marks-based approach. For instance, in [26], tasks are regarded as trees, in
which subtasks can be contracted to different agents. Another method is a mixed-integer
linear program, as proposed, for example, in [27]. In [28], a method for simultaneous task
allocation and planning (STAP) is presented to combine the planning of tasks with their
allocation to agents. Another algorithm used for path planning is fast marching. In [27],
the method is applied twice (FM2). The solution can deal with both individuals and groups
using O-space values as indicators for the robot’s social behaviour. This solution allows
the robot to navigate an environment populated by humans who may be obstacles that
need special treatment and who at other times may be the objectives. A generic framework
for social path planning can be studied in [29], and an implementation of a dynamic
path-planning method for social robots in the home environment can be found in [30].

Grasping assistance may be needed by elderly people who have reduced mobility and
motor deficiencies and need solutions to various problems. In [31,32], a proposal is made
to facilitate human–robot interaction in gripping tasks. This involves scene segmentation,
prehension and recognition of 3D objects. They authors present a method based on decision
trees for object prehension.

www.pharaon.eu
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The last issue also requires the detection of objects and place recognition. There
are different ways to approach this problem. In [33], a lightweight convolutional neural
network (CNN) approach is proposed for visual place recognition.

The development of pre-grasping and grasping techniques that include object recogni-
tion, path planning and learning methods are important contributions to grasping tasks.

1.2. Related Works on the Assessment of Emotional States, Mental Health Monitoring and
Coaching

The field of mood recognition has gained in importance in the world of artificial
intelligence. Successful studies have been conducted with wearables [34,35], such as IoT
sensors for behavioural inference [36]. However, putting the system to practical use is still
the challenge we are facing with the proposed system.

Different sensor systems have been proposed to collect physiological and activity data
and analyze them to automatically assess people’s moods. Smart monitoring systems use
smartphones and self-reported depression reports to assess people’s moods, as in [37].
However, the latter system does not provide counselling. In the H2020 Help4mood project,
data on daily activities are converted into graphical, textual and conceptual summaries that
can be communicated to clinicians providing external assessment.

Automatic mood monitoring and assessment are important components of support
therapies and daily life coaching. Ecological momentary assessment (EMA) can ease
patients’ mental burdens, since the traditional assessment tests are too long to be used re-
peatedly. In addition, the latest smartphones and wearable devices make the EMA approach
much more feasible as a solution for monitoring mental illness and offer economically
friendly solutions.

The above-described method of gathering information on mental well-being has been
used in several works. In [38], a system is proposed to monitor potential depressive patterns
in elderly people living alone. Emotional states are assessed from diverse sources, such as
surveys, smart watches and EMA questionnaires. EMA methods for obtaining emotional
information can expand this research area to practical applications. For example, in [39],
a system which gathers information on a person’s activities can detect long-term stress
patterns. Stress detection during daily real-world tasks through advances in intelligent
systems is described in [21]. Techniques such as machine learning were also applied in [19]
to monitor elderly people’s moods via intelligent sensors on wristbands.

An issue to be addressed is the usability of these modern assistive technologies by the
elderly. In [40], the authors present a user-centred design for a web-based multimodal user
interface tailored for elderly users of near-future multirobot services.

1.3. HIMTAE Overview and Main Contributions

The integration of a heterogeneous multirobot system in a domestic environment is
an important contribution of the HIMTAE system for domestic tasks. It considers both
mental assistance in an AAL environment and robot task path planning and grasping
problems to assist humans in their tasks. It also employs robot–user interaction with mental
health monitoring and coaching to interact with humans. This HIMTAE system extends
IoT sensors with distributed artificial intelligence to strengthen the symbiosis between AAL
and robots. Our system proposes a change in training to address different mood episodes
and will advance the “interaction capability” of robotics in care scenarios, developing novel
techniques to cue users and engage them in therapeutic activities.

The development of 3D planning task algorithms is needed for mobile manipulators
that include safe 2D displacements and 3D plans for manipulation tasks, considering the
optimal assignment of tasks to be performed by the robots. It will take account of the
heterogeneous system’s resolution of navigation problems, the occurrence of unforeseen
events, people, etc.

The HIMTAE system extends mental assessment and mood monitoring with proactive
coaching capabilities, provided by a companion social robot, which suggests activities to
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older people to improve their mood and mental well-being. Following the WHO’s [41]
recommendations on ethics and governance in the field of health, artificial intelligence, as
used in this work, holds great promise for public health practice, as it has great benefits, such
as protecting human autonomy, promoting the well-being and safety of individuals and the
public, ensuring transparency, clarity and intelligibility, and guaranteeing inclusiveness,
equity and sustainability.

The proposed HIMTAE heterogeneous robotic and AAL system comprises several
components, summarized below and described in detail in the following sections. It
should be remembered that different deployments of the system are possible, as mentioned
previously, from the simplest to the most complex model, including both robots. Using low-
cost commercial components (such as low-cost commercial sensors), open-source software
(ROS, Node-RED v.3.0.2, Home Assistant 2022.10.3) also favours the incorporation of new
hardware and software for future developments.

• Assistive mobile robot: Designed to navigate autonomously around the house to
attend to the users’ needs or suggest an activity according to their mood.

• Home automation sensor ecosystem: Includes a set of low-cost sensors, both commer-
cial and self-designed, to monitor the user’s lifestyle.

• Empatica E4 medical device: Monitors certain physiological variables, such as BVP
(blood volume pulse), EDA (electrodermal activity), skin temperature, HR (heart
rate), IBI (interbeat interval) and acceleration, for the training of a machine-learning
algorithm to predict the user’s mood.

• Application for psychological data acquisition: Carries out a psychological study and
thus relates the information obtained from the Empatica E4 to the user’s state of mind,
such that basic questions about activity/well-being can be answered. This is another
input for the machine-learning algorithm.

• Domestic-assistance manipulative robot: Carries out domestic tasks which require
both the ability to move around a room and handling skills. This creates a need for a
larger mobile platform than the companion robot, similar in size to a person, since it
must adapt to the household dimensions.

• Central home-assistant unit: Collects home automation data on the person’s routines
at home and activates the necessary devices. This unit, currently a Raspberry Pi, will
be replaced by an embedded PC to house the artificial intelligence algorithms for the
coordination and functioning of the various well-being devices. ROS, Home Assistant
and IoT were used to make the information transparent among the system’s different
elements.

Figure 1 shows a scheme of the main elements.
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2. Materials and Methods

Several technologies and methods for systems integration that have been used to build
the heterogeneous system described above and represented in Figure 1 are described in
this section.

Section 2.1 describes how the ecosystem of sensors and actuators distributed through-
out the home has been designed as an Ambient Assisted Living (AAL) system to monitor
and care for the elderly, as well as the acquisition of physiological signal data and the
estimation of mood states using machine-learning algorithms, including the psychological
tools used.

Section 2.2 describes the two coordinated robots designed for assistance in household
tasks, the domestic manipulator and a small low-cost social robot that attends to the user’s
requirements and proactively suggests emotional coaching activities according to the mood
it perceives by means of the estimations made by the AI and Ambient Assisted Living
systems.

Section 2.3 describes the methods used for the modelling, planning and navigation of
the robot’s movements and routes, using state-of-the-art and self-development algorithms.

Section 2.4 describes the software architecture proposed to integrate the heterogeneous
systems that make up HIMTAE, as well as the communication techniques and protocols
respecting the different nodes.

2.1. Ambient Assisted Living and Data Acquisition

Although many research efforts have focused on the development of home automation
and elderly care systems with service robots in the context of home care, it is currently
difficult to find near-market solutions for home automation and remote care for the el-
derly at home, including affordable assistant robots and Ambient Assisted Living (AAL)
capable of analyzing the environment, determining subjects’ emotional states and acting
accordingly, and interacting with users in a natural way, adapting to them according to
their roles (elderly patients, relatives or caregivers), among other characteristics. The home
automation components that guarantee AAL in this system are minimally intrusive.
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2.1.1. Sensor Ecosystem

Figure 2 provides a complete proposal for the distribution of basic commercial home
automation sensors, while simplified schemes of this deployment are adopted in the test
scenarios, which will be described below.

• The main activities that can be monitored so that, with the support of the psychol-
ogy team, emotional coaching strategies can be proposed are given below; further
information can be found in [36]:

• Hours of sleep, physical activity inside the home, the times the subject visits the
bathroom and time spent in different rooms. For this, activity bracelets are used, such
as the Empatica E4, and movement sensors, such as Xiaomi’s Mi Motion Sensor;

• Time sitting in front of the television or in bed using simple seat sensors with an
electronic interface developed for the proposed system;

• Alteration of habits or mood due to changes in thermal sensation and light intensity
through temperature and light sensors;

• Cleaning activities, organization, use of the refrigerator, etc., registered through open-
ing detectors, electrical consumption sensors, etc;

• Stress and activity levels and other biometric parameters to supplement mood estima-
tion by the Empatica E4 medical bracelet [42].
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As all the commercial sensors use the Zigbee protocol, to manage them locally with
the Home Assistant, the generic CC2531 gateway was used. The option of using the Conbee
II gateway was also originally considered but was discarded for stability reasons. A low-
cost ESP32 microcontroller [43] was used for the self-designed sensors to transmit their
information through the MQTT communication protocol to a Mosquitto broker mounted
on the same Raspberry Pi system as the Home Assistant.

2.1.2. Data Acquisition of Physiological Signals and Estimation of Mood State

One of the HIMTAE’s main features is that it analyses physiological and psychological
data to estimate the subject’s mood, with the help of AI [44]. Although it is true that good
results have been achieved in this field, many of the tests have been performed in laboratory
environments [45,46], i.e., the entire process has been under constant surveillance. The
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proposed system aims to provide a way of capturing data that does not intrude in the
user’s daily routine and does not require constant surveillance.

Physiological and activity measurements are taken by means of an E4 medical wrist-
band from Empatica, which monitors certain variables, such as BVP (blood volume pulse),
EDA (electrodermal activity), skin temperature, HR (heart rate), IBI (interbeat interval) and
acceleration in three axes (XYZ).

The different physiological signals are first preprocessed and filtered. Features of all
the signals are extracted using a sliding window approach, with a window size of 60 seg.
We also set an overlap of 10% between consecutive windows to reduce the boundary effect
when signals are filtered. The process of feature extraction from the various sensors in-
cluded in the Empatica e4 wristband is detailed in [44]. Features in both time and frequency
domains are calculated for each component. These will be part of the dataset necessary to
train the machine-learning algorithms to predict the user’s mood. In particular, several
tables in [44] show 72 features from the 3-axis accelerometer (minimal and maximal values,
standard deviations, etc.), 13 features of peripheral skin temperature (means of absolute
values, mean value of power spectral density, etc.), 27 features of heart-rate variability
(high-frequency spectral power as a percentage, etc.) and 82 features of electrodermal
activity (means, standard deviations, etc.).

Taking the experiments described in [44] as a starting point, as were taken into account
in [42], an Android application was designed to capture psychologically relevant data (Fig-
ure 3). The system uses 2 tools, the first of which consists of EMAs (ecological momentary
assessments) based on the mental/mood state model proposed by JA Russell [46], such
that the user is asked 5 times a day about their levels of happiness and activity, dividing
these parameters into 5 different discrete levels ranging from 0–4. The second tool used
is a questionnaire made up of the first 20 questions of the STAI questionnaire, which pro-
vides potential insights into symptoms of anxiety and depression. Frequency analysis was
carried out to contrast the correlation between the arousal (or activeness) and pleasure (or
happiness) dimensions with the anxiety levels registered (Table 1). The results concluded
that correlations between affective dimensions and anxiety states were not statistically
significant [44].
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Table 1. Information collected by the Android.

Information Description

Happiness level Representation of the happiness level felt by the user at the time
of the test on a discrete scale divided into 5 levels (0–4).

Activity level Representation of the activity level felt by the user at the time of
the test on a discrete scale divided into 5 levels (0–4).

Test hours User-defined time register of time tests.

Reaction time
Timestamp at which the application gives notification that the
test is to be performed and the timestamp at which the user
accesses the notification.

As shown in the scheme in Figure 3, the method of estimating the person’s state of
mind at home is based, first, on a comparative study of the user’s own perceptions, with
their states of happiness and activity marked in the mobile application and physiological
data captured by the Empatica medical device. When enough user data have been obtained,
the pertinent characteristics of the physiological data are obtained for labelling with the
psychological data for subsequent classification by a classifier built using the SVM (sup-
port vector machine) libSVM library (www.csie.ntu.edu.tw/~cjlin/libsvm/ (accessed on
10 September 2022)). Once the model has been built and sufficiently trained, the final goal
is the estimation of the user’s mood without them having to answer the questionnaires [44].

2.2. Mobile Assistance and Domestic Manipulator Robotic Platforms

The proposed system involves a multiple robot system that includes AAL and manip-
ulation capabilities to provide fully comprehensive assistance (mental and physical) to the
user. Both robots have different requirements, morphological characteristics and functional-
ities that depend on the tasks to be performed. The companion social robot is user-friendly,
with greater user-monitoring and -interaction capabilities. The domestic-assistance robot is
larger to enable access to work areas and the support of greater loads and is equipped with
handling capabilities.

2.2.1. Mobile Assistance and Coaching Robot

The Turtlebot II low-cost business solution [47] was used as the mobile base for the
assistance robotic platform, which, with the proper voice and graphical interface, will be
able to propose emotional coaching activities to the person (such as suggesting that they
move to another room, stop watching television and exercise, make a video call to a family
member (facilitated by the system), etc.). This is a well-known differential-type mobile
robot with two support wheels in the shape of a rhomboid. The rest of the robotic platform
is mounted on the Kobuki’s IClebo mobile base, which offers the possibility of mounting
platforms on top in a modular structure to incorporate the necessary extra hardware, such
as the Intel NUC CPU and the LIDAR Hokuyo UST-10LX. To make it user-friendly and with
a graphical interface for the user, a 3D design and 3D-printed prototype have been attached
on top of the Kobuki base, as shown in Figure 4. The user interface integrates natural
language in addition to visual interaction by means of an Echo show 8 smart speaker, with
a screen and an Alexa mounted on the top platform.

The robotic platform uses Ubuntu 16.04 as the operating system and ROS as the
software robotics framework. The mapping and navigation stack offered by ROS is used
to map the home in which the robot is installed and for autonomous navigation once it
is mapped. The robot can navigate inside the home, avoiding both static and dynamic
objects, thanks to the Hokuyo UST-10LX LIDAR that provides precise information on the
environment for mapping and navigation.

www.csie.ntu.edu.tw/~cjlin/libsvm/
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2.2.2. Domestic-Assistance Mobile Robot

The domestic-assistance robot is a two-arm manipulative robot that can perform
domestic tasks, such as cooking, and has the ability to move around a room as well as
manipulation skills. To achieve these functionalities, a larger mobile platform than the
accompanying robot was needed, one similar in size to a person that is able to adapt to the
dimensions of a home. The platform is designed to interact with people and takes semantic
concepts into account in its algorithms and contemplates social path planning [28].

The selected robot is made up of a mobile base, a torso and two arms, reaching a
total height of 160 cm. The 50 cm-diameter base is a Robotnik model RB-1 [48] actuated
by two motorized wheels and three support wheels that move forward and backward
and rotate but which cannot move sideways. The base contains a 2D laser sensor a short
distance above ground level, which obtains geometric information from the environment
for navigation. The torso is made up of two parts: one on top of the base, in the shape
of a cuboid, that contains the arm-control computers. The upper level contains the arms.
The first part has three metal trays at the front for the transportation of various objects.
The two UR3 arms are from Universal Robots [49], with a range of 50 cm and a load of
3 kg. They have a total of six degrees of freedom each and a range of movement in each
joint between −360◦ and +360◦, except for the final effector, which allows more than one
revolution. Figure 5 shows a diagram of the different parts that make up the robot.

A gripper for handling tasks was produced with a 3D printer. The apparatus consists
of two fingers sub-actuated by a servomotor to open and close the grippers, in addition to
two linear impedance sensors in the fingers to detect pressure when grasping an object and
prevent the action of the clamp.

To perform its tasks, the device is equipped with mobile navigation capabilities, such
as those provided by the mobile assistance platform, which is adapted to the size of the
mobile manipulator for correct positioning in work areas. A model of the work area is also
needed, as well as planning of the trajectories for arm movements and manipulation.



Sensors 2022, 22, 7983 12 of 28

Sensors 2022, 22, x FOR PEER REVIEW 11 of 28 
 

 

Figure 4. Assistive mobile robot: Turtlebot base and Hokuyo LIDAR (left), 3D model (middle) and 
real prototype (right). 

The robotic platform uses Ubuntu 16.04 as the operating system and ROS as the soft-
ware robotics framework. The mapping and navigation stack offered by ROS is used to 
map the home in which the robot is installed and for autonomous navigation once it is 
mapped. The robot can navigate inside the home, avoiding both static and dynamic ob-
jects, thanks to the Hokuyo UST-10LX LIDAR that provides precise information on the 
environment for mapping and navigation. 

2.2.2. Domestic-Assistance Mobile Robot 
The domestic-assistance robot is a two-arm manipulative robot that can perform do-

mestic tasks, such as cooking, and has the ability to move around a room as well as ma-
nipulation skills. To achieve these functionalities, a larger mobile platform than the ac-
companying robot was needed, one similar in size to a person that is able to adapt to the 
dimensions of a home . The platform is designed to interact with people and takes seman-
tic concepts into account in its algorithms and contemplates social path planning [28]. 

The selected robot is made up of a mobile base, a torso and two arms, reaching a total 
height of 160 cm. The 50 cm-diameter base is a Robotnik model RB-1 [48] actuated by two 
motorized wheels and three support wheels that move forward and backward and rotate 
but which cannot move sideways. The base contains a 2D laser sensor a short distance 
above ground level, which obtains geometric information from the environment for nav-
igation. The torso is made up of two parts: one on top of the base, in the shape of a cuboid, 
that contains the arm-control computers. The upper level contains the arms. The first part 
has three metal trays at the front for the transportation of various objects. The two UR3 
arms are from Universal Robots [49], with a range of 50 cm and a load of 3 kg. They have 
a total of six degrees of freedom each and a range of movement in each joint between −360° 
and +360°, except for the final effector, which allows more than one revolution. Figure 5 
shows a diagram of the different parts that make up the robot. 

 
Figure 5. ADAM twin-arm manipulator robot and gripper. Figure 5. ADAM twin-arm manipulator robot and gripper.

2.3. Methods used for Modelling, Planning and Navigation

The navigation system and the environmental modelling are based on the geometric
characteristics of the environment for local navigation but use semantic concepts to facilitate
user interaction and social path-planning techniques to move around the environment. The
environment is modelled using occupation maps in which free, occupied and unknown
zones are identified by the SLAM technique, which positions the robot during exploration
of an unknown environment. This process is carried out in the ROS environment through
the Gmapping package [50], which takes odometry and laser sensor values as inputs
and builds an occupancy map as output. This process is combined with an autonomous
scanning algorithm [51].

Due to the robot’s large size, its behaviour must be able to adapt to whatever actions it
executes. It has to be able to differentiate between navigation in an unobstructed room and
in confined areas, especially doorways, so these must be defined on the occupation map.

The method selected for this was Watershed [52], characterized by its fast execution.
Once each of the rooms has been differentiated, a topological map is extracted for navigation
between different areas in the house, and semantic labelling is applied based on the
geometric zones detected in the environment and the uses to which they are intended by
the user. An example is shown in Figure 6, with the initial occupancy map, segmentation of
the rooms by colour and the corresponding topological map. Each of the nodes represents
the available rooms (R) and doors (D), while the arches (E) indicate the connectivity between
zones. This method is applied to both the assistant and the bimanipulator robot.
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Once the environment has been modelled, localization and planning techniques are
used to navigate with the base. Initially, the locator provided by the ROS navigation stack
is used, based on Monte Carlo methods [53]. Given the current location of the robot and
the desired destination point, the path to follow is planned in two phases. In the first phase,
the topological map is used to check the rooms and doors that must be crossed and passed
through. The Dijkstra planner [54] is then applied after identifying the topological nodes of
the initial and final points. In the second phase, two different behaviours are alternated
depending on whether the robot is to pass through a door or navigate a room.

In the first case, low-level navigation is used, in which the robot first orients itself
to-wards the door and then moves in a straight line, using the information from the laser
sensor on the base to correct its orientation and avoid colliding with the frame. In the
second case, the selection of a path takes into account the user in the environment. To go
through a door, low-level navigation is used, in which the robot first orients itself towards
the door and then moves in a straight line, using the information from the laser sensor to
avoid colliding with the door. When passing through a room, FM2 [55] is selected. This
algorithm is executed before the robot starts to move, so that an overall plan is obtained.
If an unexpected object or a person is detected, it is added to the occupation map and the
modified FM2 considers the new object or social distance and the task to perform in the
case of a person, this being executed again so that the robot can avoid the new element in
real time [27].

Handling Planning

To plan the trajectory of the arms of the manipulating robot, a simulated model is used
to verify that the trajectory will not collide with other elements in the environment (which
has been modelled previously). Free and occupied spaces are defined by 3D occupancy
maps. Both the robot’s body and the elements in the room are occupied non-traversable
spaces with a value of 1, while the rest are traversable spaces with a value of 0. An example
of the model used is shown in Figure 7 with a simplified arm structure.
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It is then necessary to know the coordinate axes of the parts of the robot in the real
system to establish the necessary transformations with respect to our simulated model, for
which the 3D Rviz viewer is used. The axes involved in this task are shown in Figure 8. For
this, the robot’s basic axis is needed, since all the sensors are referenced with respect to it,
along with those of the arms, since the movement commands must be referenced to them.
The coordinate axes of both arms are different.
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The coordinate system of the arms is rotated with reference to a certain angle with
the base, which is 45◦ in both cases. The arms are displaced around the three axes, XYZ,
with respect to the base. Both rotation and translation operations will be necessary to
establish the relationship between these three reference axes, so that all the points calculated
with respect to the robot base by the sensors can later be referenced with respect to the
arms, thus avoiding errors in executing a movement. This process is based on a series of
transformations through which each of the joint positions are sent to generate the required
trajectory in the real robot model [56], for which the following steps are followed:

1. First, the real point in the environment to which to move the end effector of the arm
is located, using a RealSense D435RGBD camera to obtain its coordinates in three
dimensions.



Sensors 2022, 22, 7983 15 of 28

2. The values of the real environment are converted to the simulated model in Matlab
software. This environment (as shown in Figure 8) is based on a simplified model
translated with respect to the position of the real robot.

3. The necessary transformations are established between the robot’s base with respect
to which points of the real environment are taken and the bases of each of the robot’s
arms.

4. The corresponding planner is executed, and the transformations are undone by work-
ing with the inverse matrices of the calculated transformations to send the trajectory
to the real robot with respect to the bases of each arm.

The generation of the trajectory is then carried out to move the end effector of the arm
to the desired point, applying same FM2 and modified FM2 to take into account objects and
users; unlike the base case, this is performed in a 3D environment, based on the concepts
described above. Using FM2, the trajectory generated for the end effector is obtained.
Collisions with objects in the environment are avoided by applying a method based on
differential evolution [57], which verifies that the points of the joints and the links between
joints do not come into contact with an occupied element or with themselves.

2.4. Software Architecture for Systems Integration

ROS middleware was used for the integration of all the elements, robotic platforms,
home automation sensors and physiological information. It allows the architecture to be
organized in nodes, is multilingual, follows the publisher/subscriber policy and provides
flexibility and ease of understanding in terms of design.

Integration of the different elements of the heterogeneous system and ROS was also car-
ried out and validated, as can be seen in the general integration scheme in Figure 9. The use
of Node-RED and MQTT protocols to define component behaviours and communications
also facilitated the integration of components.
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Figure 9 contains two blocks which can be highlighted and on which most of the
system is mounted as follows:

• Raspberry Pi: A model 4 with 8 Gb of RAM memory to which a 240 Gb SSD hard drive
has been added containing Home Assistant. On top of it, a generic Zigbee cc2531 and
Conbee II gateway, a Mosquitto MQTT broker, a Node-RED server v.3.0.2 and a Home
Assistant software package called Zigbee2MQTT has been used. Thus, it is possible to
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obtain information from the home automation sensors and the Empatica E4 device
through MQTT.

• Embedded PC with ROS Master: An Intel NUC with Ubuntu 16.04 installed to run on
ROS Kinetic. The logic and software that provide interoperability and transparency
between the different elements of the system are executed on this PC. The websocket
from the rosbridge_server package is executed for integration with Home Assistant to
publish and subscribe to topics from Node-RED. Integration with other elements in
the system implemented in ROS Kinetic is direct.

A specific “Himtae” package defined in ROS was used for communications between
the elements of the system, with the messages to be exchanged according to the communi-
cation protocols between the different systems and the robots. The inclusion of the Echo 8
smart speaker allowed Alexa to be integrated with the rest of the system as a user–robot
interface. The Raspberry Pi server was configured to receive Alexa requests to integrate any
service with the backend of the Alexa skill developed: databases, home automation, third-
party APIs and ROS. This flexibility gives the user information about room temperature,
sending complex orders to the assistance robot through a user-friendly interface.

The domestic manipulator robot has a total of four modules that allow it to function
correctly. The first, the base, allows the robot to navigate its environment. The second,
the camera, is responsible for detecting objects found in the scene and identifying objects
of interest. The third, the arm, is responsible for approaching an identified object for
subsequent manipulation. The gripper module is responsible for gripping the object. All of
these modules work individually, so it is necessary to program a controller that coordinates
each module in use. A scheme of the proposed controller is shown in Figure 10.
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Figure 10. Structure of the controller and the four modules that define the operation of the physical
assistance robot.

This controller was designed in ROS as a state machine to toggle between the four
modules, for which messages are proposed. For the base, it sends the desired pose to the
robot. Once this pose is reached, the base module returns a Boolean to the controller, which
starts up the next desired module. The controller specifies the object to be searched for by
the camera and receives the spatial coordinates of the object in question. For the arms, the
controller sends the desired end point and orientation of the end effector and receives a
Boolean when it has been reached. The gripper then receives a Boolean from the controller
indicating whether it should open or close, and after performing the corresponding action
it sends a confirmation Boolean.

3. Results

In this section, several results obtained in experiments different to those performed
in [44] are presented and discussed.

3.1. Data-Capture Experiment for Mood Prediction

Continuing with the experimentation dynamics explained in [44], with datasets of
less than one month per subject, an attempt was made to capture a dataset of at least one
month with several subjects. In this case, data were collected from two control participants
with different digital capabilities to compare their response times. The first participant
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was a 63-year-old man in constant contact with technology. The second was a 75-year-
old technologically inexperienced woman. The ultimate goal of these experiments was
to obtain a large dataset (minimum 1 month) for each participant. However, due to the
difference between their profiles, adjustments had to be made when defining the stages of
these experiments. Since the first subject was an advanced user of technology, the system
was simply explained to him, and he was asked to use the Empatica E4 device for at least
1 month and answer the questions on the Android application five times. As the second
subject was a person who had little contact with technology, we devised a two-phase
experiment that prioritized adaptability and learning to use the system:

• First Phase: In this phase, the user only had to answer the questions proposed by
the Android application and carry the Empatica E4 device, without being required to
connect or charge it. In this way, the user would gradually become accustomed to the
acquisition system.

• Second Phase: In this phase, the user, in addition to answering the questionnaires
proposed by the application, was asked to have the Empatica E4 device connected in
order to start the data capture.

In the case of the first subject, the experiment lasted 47 days, while for the second
subject it lasted a total of 114 days. On the first phase, a total of 65 days were spent, and on
the second phase, a total of 49 days.

The data for the two subjects are shown below in the order given above and the results
are discussed. As previously explained, the questionnaires contain two questions on an
individual’s current level of activity or contentment. These levels are quantified in discrete
sectors ranging from 0–4. The level of −1 is assigned for days on which this question has
not been answered.

As can be seen in Figures 11 and 12, the rate of use of the application was not very
continuous. Upon analyzing the data, we realized that the subject did not answer the
questionnaires on at least 44.6% of the days. As regards using the Empatica E4 medical
device, we noticed that the data were similar. In Figure 13, we can see that we have records
for 24 days, which is still around 50%. On the other hand, Figure 13 shows a good data-
capture trend as regards the duration of the daily sessions. In general terms, after the first
seven sessions, the time averages for the Empatica E4 device are 8 h or more, which is a
good sign.
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Figure 11. This figure shows the maximum and minimum happiness values recorded each day for
the first subject.
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Figure 12. This figure shows the maximum and minimum activity values recorded each day for the
first subject.
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Figure 13. Duration of sessions recorded with the Empatica E4 medical device for the first subject.

As can be seen, during the first phase (Figures 14 and 15) of the study, there were
many days when the user did not answer the proposed questionnaires.
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Figure 14. First set of data from the first phase of the experiment. This figure shows the maximum
and minimum happiness values recorded each day for the second subject.
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Figure 15. Second set of data from the first phase of the experiment. This figure shows the maximum
and minimum happiness values recorded each day for the second subject.

As can be seen in the graph for the second phase (Figure 16), the experiment had a
much stronger continuity. While there were 36 days with no response in the first phase
(just over 50%), in the second phase, there was no response on only 4 days (8.16%).
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Figure 16. Second phase of the experiment. This figure shows the maximum and minimum happiness
values recorded each day for the second subject.

3.2. Social Path-Planning Results

In this work, we tested the modified FM2 algorithm in order to obtain smooth paths
that do not interfere with people in the home environment. When humans are present in
the environment as individuals, not taking part in social interactions, the robot treats each
one of them as a separate entity. Thanks to the design of FM2 and the personal-space model
used, the robot will create safe, smooth and human-friendly trajectories to reach a goal, as
shown in Figure 17.
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Figure 17. Results for the path-planning approach. The start point is at the top of the map and the
path selected avoids personal spaces, except when it means to get very close to obstacles. The y-axis
represents the velocity of the robot and the x-axis represent the trajectory of the robot.
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On the other hand, when the robot needs to accompany the user, the human can be
treated as the leader of the formation and the robot follows him/her according to the robot
formation motion-planning algorithm. The algorithm tries to maintain this situation as far
as possible. The way the algorithm is designed will give preference always to the human in
the cases of narrow corridors or cluttered environments. A sequence resulting from the
application of this algorithm is shown in Figure 18.
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Figure 18. From top-left to bottom-right: sequence of a robot following a human with the FM2-based
robot formation motion-planning algorithm.

3.3. Path-Planning Manipulation Results

Experimental results for the path planning were generated using Matlab. FM2 and
modified FM2 were applied to the end effectors of the arms, considering that the position
of the wrist must be horizontal at the end of the trajectory in order to grasp objects. As
explained, objects and users are avoided with FM2 and joint collisions are avoided using
differential evolution. The results for a generated path (red) and final arm positions (green)
are shown in Figure 19.
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3.4. Results of a Global Test in Real Scenarios

Several test scenarios were implemented, for example, the “start of the day” scenario
(Figure 20): when the alarm sounds in the morning, the lights progressively turn on and
Alexa provides information about the day’s agenda, weather, etc. The assistant robot
approaches the bed to suggest getting up to the user and asks if they want the robot in
the kitchen to prepare the coffee. When the user is detected getting out of bed, the robot
sends a message to the robot in the kitchen and either goes to a corner in safety mode to
await instructions or goes to the kitchen to wait for instructions when the coffee is ready to
pick up.
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Figure 20. “Start of the day” test scenario: (1) Echo robot: 3D-printed Turtlebot base with Echo 8
and Alexa on head; (2) subject wearing the Empatica E4; (3) presence detector in bed; (4) presence
detector in chair; (5) AAL user interface; (6) simulation of attention-status detection when viewing
TV; (7) simulator of other home automation elements.

Once the manipulative robot has received the order to heat the coffee, it must plan the
route and the gripping activity. First of all, the destinations are defined semantically. To
obtain the geometric destinations, we use a semantic planner developed in [58] that estab-
lishes the geometric positions of the objects in a room. After modelling the environment,
the starting points and the target (work zone) are established (points A and B in Figure 21).

The hybrid metric–topological planner is then launched on the map layers. An initial
test was carried out in a simple scenario (see Figure 21). From its initial resting position,
the robot was commanded to navigate inside a room until it approached a table, where the
approaching point for the robotic base was an established point in Euclidean space. As no
doors needed to be traversed, only the geometric part of the planner was activated. The
resulting path proved the smoothness of the applied geometric planner, FM2.

When dealing with a more complex scenario in which doors need to be passed through,
the topological side of the planner is applied, as shown in Figure 22. Initially, the geometric
map is segmented, and the topological map is extracted. In another test, the robot was
commanded to reach the same table as in the above test and was placed on topological
node number 5, while the table was on node number 1. The final topological path and the
local geometric paths were proven to speed up execution with respect to the traditional
geometric global planners, achieving a robust navigation system for the manipulating
robot.
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Figure 22. Complex scenario in which the robot needs to navigate through multiple rooms. The
topological path is first computed (left, where nodes are numbered in order of appearance) and the
geometric path planner is applied locally to each of the rooms (right, where rooms are labeled from
start to end locations).

The robot then activates the handling mode, uses the 3D scanner to reconnoitre the
work area and launches the manipulator to pick up the cup of coffee and put it in the
microwave by pressing the power button. Once heated, the robot opens the door, takes the
cup of coffee and gives it to the personal assistance robot to take it to the user. Figure 23
shows the robot putting the cup of coffee into the microwave.
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Figure 23. Manipulator robot inserting the cup of coffee into the microwave.

The assistance robot proposes activities, such as calling a relative, exercising, etc.,
during the day, according to the user’s detected emotional state. It also suggests going for
a walk if it thinks the user is spending too much time in front of the TV, etc. It may also get
the manipulative robot to reach for some utensil, medicine, etc., and put it in the assistance
robot’s tray to take to the user.

4. Discussion

The overall aim of the HIMTAE system was to create a heterogeneous system incor-
porating two robotic platforms and Ambient Assisted Living to help elderly people who
live alone at home in their daily activities and suggest activities to keep them positive and
active. In this regard, the environment must be suited to the person, adapted to the user’s
capabilities so as to help them maintain autonomy for longer with a higher quality of life.
Both operating platforms act in a coordinated manner: the domestic-assistance robot was
conceived as a two-arm manipulating robot to carry out tasks in the home, which requires
the ability to move around a room as well as manipulation skills, taking account of obstacles
and users using semantic concepts and social path planning. The mobile accompanying
robot was developed to work together with the Ambient Assisted Living (AAL) system
integrated in the home, the artificial intelligence algorithms and the biometric sensors
incorporated in the medical bracelet.

The benefits of having a modular and scalable Multirobot and Ambient Assisted
Living system were experienced in the different tests accomplished during the system’s
development and testing. Thanks to the open architecture, different system deployments
to help the elderly were tested, from the simplest model (with only home automation
and smart speakers to communicate and interact with the assisted environment, possibly
including the social robot) to the most complex model, which includes two robots, a social
assistant and manipulator.

Due to the maturity of IOT technology and the decision of manufacturers to unify
wireless protocols for home automation environments (Zigbee, Patter, etc.), it was easier to
add new sensors to the system, which expands the field of information obtained from the
user. All these sensors are integrated in a server inside the home, with all the necessary
security protocols to prevent computer attacks. This server is based on an open-source
operating system developed for home automation called Home Assistant (HA). This OS
can run on almost any hardware platform, which makes the central node system “immune”
to changes in microcomputer technology, such as Raspberry systems, Intel NUCs, etc. It is
designed as a free platform for the integration of different commercial products and has
a secure server in the cloud (Nabucasa). Running on HA, we have, among others, open
communication standards, such as Mosquito Browser, databases, such as MariaDB, open
representation tools, such as Grafana, and graphical programming frameworks, such as
NodeRed, etc. The robots can also communicate thanks to the central node, where roscore
runs, and subscribe to the necessary communication topics. The coordination of the whole
system is implemented by NodeRed, taking into account the decisions of the AI algorithms.
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There are an increasing number of works in the literature that propose the use of
one or more robots for home assistance, as commented on in the review of the state of
the art in Section 1. Many systems, such as those presented in [4,5], that offer solutions
based on multirobot systems show that even people with reduced mobility can benefit
from approaches based on multiple assistance robots, although it is more difficult to find
an integrative solution like ours, with a multiple robot system that includes AAL and
manipulation capabilities to provide complete home assistance (mental and physical).

The semantic segmentation of the navigation and planning environment in the mobile
manipulator for navigation and movement in the manipulation area facilitates the tasks of
the later planners. Although the current tasks carried out by the robots are predefined, the
system must be provided with a navigation system that combines semantic concepts with
the action-based planning paradigm to provide the system with a higher level of autonomy.
At a low level, the FM2 algorithms achieve smooth and safe travel routes for the base and the
manipulator, while differential evolution was shown to be ideal for avoiding arm collisions
during manipulation. It is planned to improve handling by replacing two-fingered grippers
with robotic hands and introducing ambidextrous handling algorithms.

For the development of the robotic platforms, ROS and proprietary algorithms such as
those described in this article were used for efficient mapping and autonomous navigation
in a real home environment. The home automation system was tested for a longer period of
time and integrated in a real test environment. The number of subjects for estimating moods
was expanded, as was the available dataset, to make it increasingly adaptable and reliable.
These tests and results can be found in [44], which concluded that the model showed a
promising ability to predict mood values using only physical data and machine-learning
techniques.

Although the results presented in the previous section are satisfactory as regards navi-
gation, manipulation and correct performance of the expected tasks, as well as predicting
moods and suggesting activities, work still has to be done to enhance the system’s robust-
ness and fault-tolerance, by improving, for instance, the robot autodocking algorithms
and the ability to locate people and dynamic obstacles inside the house. Currently, we are
performing new tests to improve the system while expanding the range of tasks that it
can carry out. Artificial intelligence algorithms other than those used in [34,36] are being
used to improve mood prediction. The method used by the HIMTAE system to gather
information on mental well-being has been used in other works, such as [38], to monitor
potential depressive patterns in elderly people living alone, and in [39], for a system that
gathers information on a person’s activities and detects long-term stress patterns. We can
thus conclude that the techniques are well used, but the long-term psychological impact of
the suggested activities needs further study to verify the user’s overall improved mental
health.

It should be noted that the current mood-prediction system is equipped only with
physiological data. This is why we have applied for funding to continue the development
in order to combine different data modalities, such as information on behaviour inside
the house deduced from home automation data, use of mobile phones, identification of
gestures and voices, etc. It is also necessary to provide better monitoring of the subject’s
mood and mental state, together with the implementation of interventions (guidance and
psychological counselling) to improve mental well-being. Progress will have to be made in
the healthcare system in response to the demands of today’s society, in which the promotion
of digital health has become a priority (Mental Health Strategy of the National Health
System 2022–2026). It is therefore necessary to adapt services to the needs of the population,
giving each person greater autonomy and capacity, as well as ensuring the sustainability of
systems.

To sum up, it can be concluded that this is an innovative proposal aimed at empower-
ing the elderly to be more independent in their own homes and improve their quality of
life.
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