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We propose new estimation methods for time series models, possibly
noncausal and/or noninvertible, using serial dependence information from
the characteristic function of model residuals. This allows to impose the i.i.d.
or martingale difference assumptions on the model errors to identify the un-
known location of the roots of the lag polynomials for ARMA models without
resorting to higher order moments or distributional assumptions. We consider
generalized spectral density and cumulative distribution functions to measure
residuals dependence at an increasing number of lags under both assumptions
and discuss robust inference to higher order dependence when only mean
independence is imposed on model errors. We study the consistency and
asymptotic distribution of parameter estimates and discuss efficiency when
different restrictions on error dependence are used simultaneously, includ-
ing serial uncorrelation. Optimal weighting of continuous moment conditions
yields maximum likelihood efficiency under independence for unknown er-
ror distribution. We investigate numerical implementation and finite sample
properties of the new classes of estimates.

1. Introduction. Most dynamic models are based on sequences of errors or innovations
that satisfy some form of unpredictability, such as serial statistical independence or condi-
tional moment independence given past information, which implies independence of a given
order imposed on joint moments. In particular, the conditional mean independence or mar-
tingale difference condition implies second-order independence, that is, serial uncorrelation
or white noise property. These dependence conditions on model errors permit to describe
the dynamic properties of the observed data and provide identification of model parameters
under general conditions. As a result, time series model specification testing is often based
on checking that residuals satisfy these forms of unpredictability or necessary conditions for
them, such as uncorrelation, which can also be sufficient for model identification under some
further restrictions (e.g., invertibility and causality).

For parameter estimation, the serial independence condition (together with the identical
distribution assumption) is exploited to construct the likelihood function. In absence of dis-
tributional assumptions on model errors, Gaussian Pseudo Maximum Likelihood (PML) es-
timates based on least squares are typically prescribed. The Gaussian PML estimates try in
fact to match data sample autocovariances with the model implied ones, or equivalently, min-
imize the magnitude of residuals autocorrelations to match the zero serial correlation white
noise assumption, which only under Gaussianity is equivalent to serial independence. Condi-
tional moments based models lead to unconditional moment restrictions using the uncorrela-
tion of errors with past information described by instrumental variables (see, e.g., the survey
by Anatolyev (2007)). These instruments are constructed with lags of observations and/or
residuals, though these alternative representations of past information are not equivalent in
general, for instance, when the true model is noninvertible.
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In this regard, a fundamental drawback of these methods based on correlations or second-
order moments is that they cannot discriminate between uncorrelated residuals generated by
alternative stationary representations of the model. However, residuals are not serially in-
dependent nor martingale difference sequences for the wrong representations, even if the
original non-Gaussian errors satisfy either of these conditions, because they become non-
linearly predictable (Rosenblatt (2000), Section 5.4). Identifying the true representation to
recover the original errors with the required independence conditions and the true impulse
response function is key in many applications, including the design of optimal estimates and
predictions, which can be nonlinear. For instance, noncausal processes can display nonlinear
or explosive dynamics very different from the linearity of their causal version sharing the
same autocorrelation function; see, for example, Gouriéroux and Zakoïan (2017), while non-
invertibility questions the approximation of time series by long autoregressions, for example,
Lippi and Reichlin (1994).

This identification problem can be alleviated by the use of non-Gaussian likelihoods or
approximations as in Lii and Rosenblatt (1992, 1996), Huang and Pawitan (2000) and Lanne
and Saikkonen (2011) or nonquadratic loss functions, based on, for example, LAD as in
Breidt, Davis and Trindade (2001) and ranks as in Andrews, Davis and Breidt (2007). Al-
ternatively, error independence of finite order can be imposed using higher order cumulants
and spectral densities, permitting to identify general dynamic models which encompass non-
minimum phase (i.e., noncausal or noninvertible) representations, both in the time domain,
for example, Ramsey and Montenegro (1992) and Gospodinov and Ng (2015), and in the
frequency domain, for example, Lii and Rosenblatt (1982) and Velasco and Lobato (2018).
This last article also showed that this additional information from higher order dynamics can
lead to efficiency improvements over Gaussian PML estimates.

While residual uncorrelation tests such as Box and Pierce (1970) are standard in empirical
goodness-of-fit analysis, there is an increasing number of proposals to check serial depen-
dence hypotheses on observed time series or on model residuals beyond uncorrelation; see,
for example, the survey of Tjøstheim, Otneim and Støve (2022). Some methods check gen-
eral dependence of a finite vector of observations at all possible lags using characterizing
families of transformations of the data that are able to describe any type of functional re-
lationship between different random variables. Pinkse (1998), Hong (1999), Hong and Lee
(2005), Escanciano and Velasco (2006a, 2006b) consider the characteristic and cumulative
probability distribution functions based on the exponential and indicator transformations, but
many others are possible; see Stinchcombe and White (1998).

In this paper, we consider estimation of dynamic models based on independence conditions
of the model errors, such as serial independence (or independent and identically distributed,
i.i.d., for stationary sequences), conditional mean independence (martingale difference se-
quences or mds) and uncorrelation (white noise sequences or wns). The first two conditions
guarantee identification of models in situations where second-order moments are not able to
discriminate between alternative representations and also could lead to efficiency improve-
ments for non-Gaussian time series over least squares methods when considered alone or
together with other restrictions. Further, our estimates are consistent without requiring addi-
tional distributional assumptions on the model errors apart from some finite moment and can
achieve ML efficiency under an appropriate weighting of continuous moment conditions.

To measure the dependence in model residuals for a given parameter value, instead of using
second or higher order moments through usual or higher order autocorrelations and spectral
density functions, we employ generalized spectral densities as proposed by Hong (1999) for
dependence testing on observed data and Hong and Lee (2005) for model residuals. Minimum
distance loss functions compare the integrated empirical generalized spectral density and
distribution functions of model residuals with the restricted estimates under an independence
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assumption. This approach exploits similar dependence measures to the ones used to test
independence or mds and other related hypotheses deduced from the relationship between the
(joint) characteristic function derivatives and (multivariate) moments, and have closed-form
expressions for integrable kernels. Fokianos and Pitsillou (2018) and Yao, Zhang and Shao
(2018) make similar testing proposals based on the distance covariance of Székely, Rizzo and
Bakirov (2007). Our measures also help to alleviate strong moment conditions associated to
dependence descriptions based on higher order moments. Further, cumulative measures also
avoid the choice of smoothing parameters necessary for pointwise consistency of spectral
density estimates.

We investigate under general forms of higher order dependence, such as conditional het-
eroskedasticity, asymptotic properties and robust inference for parameter estimates developed
under the mds restriction. We also consider overidentified generalized method of moments
(GMM) estimation exploiting different but compatible dependence characterizations. In this
way, there is no information loss in the Gaussian case when serial uncorrelation is imposed
directly, while permitting efficiency improvements for non-Gaussian series.

Our methods focus on dependence of model residuals measured through their joint em-
pirical characteristic function, but we do not specify any parametric model for this function
as previous proposals trying to resemble ML estimation based on blocks of data; see, for
example, Feuerverger (1990) and Knight and Yu (2002). Also, in contrast to Carrasco, Cher-
nov, Florens and Ghysels (2007), we do not specify our moment conditions in terms of a
closed-form expression of the conditional cf of observed data given past observations (or on
a simulated joint cf when the dynamic model is not Markov), but focus directly on resid-
uals. By estimating the residuals pairwise dependence at an increasing number of lags, our
estimates are easier to compute in the non-Markovian case, do not require any distributional
assumption and can be optimally continuously weighted to also achieve the ML efficiency un-
der independence as explored by Gassiat (1993) for noncausal autoregressions using Kreiss
(1987) adaptive estimation methods.

The rest of the paper is organized as follows. Section 2 presents the model and the depen-
dence measures based on the characteristic function. Section 3 investigates model identifi-
cation while Section 4 describes the asymptotic properties of parameter estimates based on
the mds assumption. Section 5 discusses GMM estimation based on several dependence re-
strictions, including i.i.d. and white noise, and Section 6 discusses optimal continuous GMM
estimation. Section 7 contains a simulation study of finite sample properties of our methods
and further computational details.

2. Time series models and characteristic function based residuals dependence mea-
sures. We assume that the observed time series Yt is generated by

Yt = μ0 +
∞∑

j=−∞
ψjεt−j ,(1)

where εt is a stationary sequence with zero mean, which we will assume to be an inde-
pendent identically distributed (i.i.d.) or martingale difference sequence (mds), but might
have no finite variance. Summability conditions on ψj together with moment conditions
on εt guarantee stationarity of Yt , for example,

∑∞
j=−∞ |ψj |a < ∞ and E|εt |a < ∞ for

a = 1,2 under i.i.d. and mds, respectively. Note that the two-sided summation in (1) allows
Yt to be noncausal. We also allow for noninvertible dynamics when inverting the linear fil-
ter ψ(L) = ∑∞

j=−∞ ψjL
j to recover εt = ∑∞

j=−∞ ψ
(−1)
j (Yt−j − μ0) with the inverse filter

ψ−1(L) := 1/ψ(L) = ∑∞
j=−∞ ψ

(−1)
j Lj using possibly future and past values of Yt .
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A model ψ(θ;L) = ∑∞
j=−∞ ψj(θ)Lj establishes a structure on the coefficients ψj(θ) in

terms of some parameter vector θ ∈ � ⊂ R
q , so the target is the estimation of θ . The primary

example are ARMA(q1, q2) models where

α(L)(Yt − μ0) = β(L)εt(2)

and the polynomials α(L) = 1 − ∑q1
j=1 αjL and β(L) = 1 + ∑q2

j=1 βjL are of order q1 and
q2, respectively, have all their roots away from the unit circle, inside or outside it, and do not
have any common roots. In this case, the model parameters are θ = (α1, . . . , αq1, β1, . . . , βq2)

′
and � ⊂ {θ ∈ R

q1+q2 : α(z)β(z) �= 0 for |z| = 1, |α(z)| + |β(z)| > 0 for all z ∈ C, αq1 �= 0,
βq2 �= 0}. Other parameterizations of ψ(θ) include the Bloomfield (1973) exponential model,
fractional models, Hosking (1981) and noncausal autoregressions, Lanne and Saikkonen
(2011).

In practice, given a parametric model ψ(θ;L), we compute residuals for any given (θ,μ),

εt (θ;μ) = ψ−1(θ;L)(Yt − μ),

where both ψ−1(θ;L) and ψ(θ;L) are at least square summable for all θ ∈ � and can
include lags and leads. Denoting by θ0 and μ0 the true value of the parameters, that is,
ψ(L) = ψ(θ0;L), we have that εt (θ0;μ0) = ψ−1(θ0;L)(Yt − μ0) = εt . In this paper, we
use generalized spectral densities based on the characteristic function (cf ) transformation,
Hong (1999), to measure the serial dependence in the residuals εt (θ;μ) and check the suit-
ability of candidate values of θ and μ. These dependence measures lead to population loss
functions to identify θ , which are invariant to centering by μ0 and μ, so we do not consider
identification of μ0, whose estimation can be pursued using the sample mean of observations,
ȲT = n−1 ∑T

t=1 Yt . Then we denote by εt (θ) = εt (θ;μ0) the residuals obtained with μ = μ0
and generated by

εt (θ) = ψ−1(θ;L)ψ(θ0;L)εt = φ(θ;L)εt

for φ(θ;L) := ψ−1(θ;L)ψ(θ0;L).
For a stationary time series of residuals εt (θ) with marginal cf given by ϕθ(u) =

ϕεt (θ)(u) = E[eiuεt (θ)], we define the pairwise cf of (εt (θ), εt−j (θ)) by ϕθ,j (u, v) =
E[ei(uεt (θ)+vεt−j (θ))] for j = 0,±1, . . ., i = √−1 and (u, v) ∈ R

2. Let σθ,j (u, v) be the co-
variance between eiuεt (θ) and eivεt−|j |(θ),

σθ,j (u, v) = Cov
(
eiuεt (θ), eivεt−|j |(θ)) = ϕθ,|j |(u, v) − ϕθ(u)ϕθ (v).

Then σθ,j (u, v) = 0 for all (u, v) ∈ R
2 and j �= 0 if and only if εt (θ) and εt−|j |(θ) are pair-

wise independent, capturing all types of dependence, including those described by autocor-
relations and higher order moments.

Assuming that sup(u,v)∈R2
∑∞

j=−∞ |σθ,j (u, v)| < ∞ if dependence decays fast enough
with j , we can define the generalized spectral density of εt (θ) as the Fourier transform of
σθ,j (u, v), that is,

fθ (ω,u, v) = 1

2π

∞∑
j=−∞

σθ,j (u, v)e−ijω, ω ∈ [−π,π ],

which describes pairwise dependence at all lags without assuming finite moments of any
order or smoothness conditions on the distribution of εt (θ), so that for all (ω,u, v) under
independence

fθ (ω,u, v) = fθ,i.i.d.(ω,u, v) := 1

2π
σθ,0(u, v).
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Sufficient weak dependence and moment assumptions guarantee the existence of the fol-
lowing generalized partial derivatives of the spectral density fθ (ω,u, v) of order (m, ) with
respect to (u, v),

f
(m,)
θ (ω,u, v) = 1

2π

∞∑
j=−∞

σ
(m,)
θ,j (u, v)e−ijω,

where σ
(m,)
θ,j (u, v) = (∂m+/∂um∂v)σθ,j (u, v). In particular, setting (m, ) = (1,0) and u =

0, σ (1,0)
θ,j (0, v) = Cov(iεt (θ), eivεt−|j |(θ)) = 0 for all v ∈ R and all j �= 0 if εt (θ) is a martingale

difference sequence, so that for all (ω, v) under mds,

f
(1,0)
θ (ω,0, v) = f

(1,0)
θ,mds(ω,0, v) := 1

2π
σ

(1,0)
θ,0 (0, v).

Similarly, we can define the spectral cumulative distribution function (cdf ),

Fθ(ω,u, v) = 2
∫ ω

0
fθ (λ,u, v) dλ =

∞∑
j=−∞

σθ,j (u, v)
sin jω

jπ
, ω ∈ [0, π],

to describe serial dependence in the sequence εt (θ) up to a given frequency ω.
To investigate the properties of these residual dependence measures, we introduce the fol-

lowing assumption. Let denote by C > 0 a generic bounded constant.

ASSUMPTION 1. � is assumed compact and let T = {z ∈ C : |z| = 1} be the complex
unit circle. Assume ψ(θ, z) ∈ L

2(T) and ψ−1(θ, z) ∈ L
2(T) for every θ ∈ � so that for some

η0 > 1/2,

sup
θ∈�

∣∣ψj(θ)
∣∣ + sup

θ∈�

∣∣ψ(−1)
j (θ)

∣∣ ≤ C|j |−η0, j = ±1,±2, . . . .

Assumption 1 implies the same summability restriction for the coefficients φj (θ) of the
filter φ(θ; z) and when η0 > 1 together with εt i.i.d., zero mean and E|εt | < ∞, guarantees
that Yt and εt (θ) are (strictly and first-order) stationary and that εt (θ) is weakly dependent
with |σθ,j (u, v)| → 0 as j → ∞ for each θ,u and v as we now show.

LEMMA 1. Under Assumption 1, η0 > 1, εt i.i.d., zero mean, E|εt | < ∞,

sup
θ∈�

∣∣σθ,j (u, v)
∣∣ ≤ C

(|u| + |v|)j1−η0 as j → ∞.

Proofs of results are contained in Appendix A of the Supplementary Material (Velasco
(2022)) with technical lemmas compiled in its Appendix B. Note that σθ,j (u, v) = Cov[zt (θ;
u), zt−|j |(θ;v)] and that, under causality, the sequence zt (θ;u) := eiuεt (θ) − ϕθ(u) is strong
mixing for each θ and u under the summability condition on ψj(θ) in Assumption 1 (η0 > 1),
a δ-moment condition on the i.i.d. εt , δ > 1, and an integral Lipschitz condition on the prob-
ability density function (pdf ) of εt ; see Gorodetskii (1977). Similar results are found by
Rosenblatt ((2000), Section 4.4) for processes with two-sided representations. Then the re-
sults of Hong (1999) on σθ,j could be easily transposed pointwise (i.e., for each θ). We use
instead the weak dependent processes framework of Doukhan and Louhichi (1999, Lemma 9)
to bound the covariances of centered finite functions of two-sided linear filters of i.i.d. se-
quences like zt (θ;u); see also Lemma 3.1 in Dedecker et al. (2007).

Using a similar approach, we show in next lemma that the mds condition on the sequence
εt together with two finite moments are sufficient to evaluate the rate of decay of σ

(1,0)
θ,j (0, v)

uniformly in θ as j grows without need of mixing conditions. This result also guarantees that
the population loss functions exploiting the mds property are well defined under our assump-
tions. Denote by It−1 the past information of the sequence εt , It−1 = σ(εt−1, εt−2, . . .).
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LEMMA 2. Under Assumption 1, η0 > 1/2, εt stationary mds, E[εt |It−1] = 0 and Eε2
t <

∞,

sup
θ∈�

∣∣σ (1,0)
θ,j (0, v)

∣∣ ≤ C|v|j1/2−η0 as j → ∞.

The rate of decay of the mds dependence measures obtained in this lemma is faster for the
same η0 compared to the one in Lemma 1 for general dependence measures σθ,j because it
exploits two finite moments instead of just one, only restricting the ψj to be square summable.

3. Model identification.

3.1. Identification under serial independence. Second-order dynamic properties of resid-
uals εt (θ) are not sufficient to identify the true value of θ ∈ � for some parametric models,
so stronger assumptions have to be imposed on the error sequence. The criteria we propose to
identify θ in this paper are L2 norms between the generalized spectral density or cumulative
distribution functions of the sequence of residuals based on σθ,j (u, v) and its derivatives, and
the restricted versions under the serial independence assumptions.

We now provide conditions to guarantee that for any θ �= θ0 the sequence of residuals
εt (θ) = φ(θ;L)εt is not serially pairwise independent if εt is non-Gaussian. This holds de-
spite εt (θ) could be serially uncorrelated when ψ(θ;L) = a(L)ψ(θ0;L) for an all-pass or
Blaschke factor a satisfying a(z) = a−1(z−1); see Hannan (1970, pp. 65–67). An all-pass
filter is a product of ratios of possibly nonminimum phase lag polynomials with denominator
roots which are the reciprocals of the numerator ones, implying that residuals have been gen-
erated by a different representation ψ(θ;L) of the true model which shifts the roots location
but generates the same spectral density as |a(eiω)|2 = 1.

ASSUMPTION 2.

1. For all θ ∈ �, θ �= θ0, φ(θ; z) = ψ−1(θ; z)ψ(θ0; z) �= c0z
j0 for any j0 ∈ Z and c0 ∈

R\{0} in a subset of positive measure of T and ψ(θ0; z) has only simple zeros or poles for
|z| �= 0.

2. If |φ(θ; z)|2 is constant for some θ �= θ0 a.e. in T, then εt is non-Gaussian with some
finite and different from zero higher order cumulant κε

a �= 0, a = 3,4, . . . .

Assumption 2.1 ensures that the linear representation is essentially unique by discarding
parameterizations that can generate i.i.d. residuals by a rescaling and time shift of the original
error sequence, that is, εt (θ) = c0εt−j0 ; see Cheng (1992). It is satisfied by ARMA models
with no unit or multiple roots. We make no other assumptions on the location of the (nonunit)
roots of the lag polynomials ψ(θ; z) and ψ−1(θ; z) with respect to the unit circle, unless we
allow for Gaussian εt . Note that it is not possible to identify a unique solution for Gaussian
processes when, for example, both causal and noncausal representations are allowed. If these
different representations are possible for some θ ∈ �, then εt is presumed non-Gaussian in
Assumption 2.2 to avoid that uncorrelated residuals εt (θ), generated by θ �= θ0 for which
|φ(θ; z)|2 and its spectral density are constant, become full independent as happens under
Gaussianity.

For θ �= θ0, the residuals εt (θ) necessarily depend on several values of εt under Assump-
tion 2.1 and, therefore, are serially correlated except if φ(θ;L) is an all-pass filter. However,
from the analysis of Section 5.4 of Rosenblatt (2000), concluding that the optimal mean
square prediction of nonminimum phase AR and MA processes with non-Gaussian innova-
tions is nonlinear, we can expect that the εt (θ) cannot form a serially (pairwise) independent
sequence even if they are uncorrelated. We now provide a result that confirms this claim.
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LEMMA 3. For an uncorrelated ARMA process Xt generated by a nonconstant all-pass
ψ(z) with nonunit simple lag polynomial roots and non-Gaussian i.i.d . innovations εt with
some finite and different from zero higher order cumulant κε

a �= 0, a = 3,4, . . ., the pairwise
conditional expectations E[Xt |Xt−j ], j = 1,2, . . . , are not all linear functions of Xt−j and,
therefore, are not all zero.

This lemma extends Rosenblatt (2000) argument in two important directions. First, we
consider explicitly predictions by a single element of the past, that is, pairwise dependence,
and not only predictions given all infinite past observations, E[Xt |Xt−1,Xt−2, . . .]. Second,
we consider serially uncorrelated ARMA processes with all-pass ψ(z), which may contain
both noninvertible and noncausal factors, not just serially correlated pure noncausal AR or
pure noninvertible MA processes. See Chen, Choi and Escanciano (2017) for a similar result
for multivariate all-pass noninvertible but causal processes when predicted by all infinite past.

For our identification purposes, the case when Xt is an uncorrelated residual process εt (θ)

is key, as Lemma 3 shows that residuals generated by imposing any different representation
of the true process with θ �= θ0 (flipping some of the lag polynomial roots around the unit
circle) is not (full nor pairwise) i.i.d. nor mds. Note, however, that for such θ the pairwise and
infinite-past optimal linear predictions of εt (θ) are zero and that the implied model represen-
tation is able to match the true autocorrelation function of Yt , but not its complete dynamics
described by the impulse response function ψ(θ0; z) �= ψ(θ; z). We conjecture that this result
holds without the restriction of ψ(θ0; z) having only simple zeros or poles for |z| �= 1 used
also by Rosenblatt (2000).

Therefore, under Assumption 2 and for any continuous and increasing W with unbounded
support,

∫ |σθ,j (u, v)|2 dW(u, v) > 0 for some j �= 0 because the joint cf ϕθ,j (u, v) of
(εt (θ), εt−j (θ)) does not factorize into the product of the marginals since E[εt (θ)|εt−j (θ)] �=
0. Thus, with Lemma 1 showing that |σθ,j (u, v)| decays fast enough with increasing j we
can define the population L2 distance between fθ and fθ,i.i.d.,

Qi.i.d.
0 (θ) :=

∫ ∫ π

−π

∣∣∣∣fθ (ω,u, v) − 1

2π
σθ,0(u, v)

∣∣∣∣2 dωdW(u, v)

= 2

π

∞∑
j=1

∫ ∣∣σθ,j (u, v)
∣∣2 dW(u, v),

where the second line follows by Parseval’s equality, for a weighting function W satisfying
the next assumption.

ASSUMPTION 3. W(u,v) = W(u)W(v) where W : R → R
+ is continuous, symmetric

and increasing with unbounded support and
∫ |u|3 dW(u) < ∞.

Assumption 3 on W is similar to the corresponding one used in Hong (1999) to argue
for the consistency of serial dependence tests and is stronger than the nondecreasing with
bounded total variation condition he used to derive the null asymptotic distribution of test
statistics. We also introduce a moment condition on W , to control fluctuations of |σθ,j (u, v)|
in u and v when using derivatives of the cf, and a factorization, to simplify numerical calcu-
lations and asymptotic analysis.

Then, under Assumptions 1–3, Qi.i.d.
0 (θ) > 0 for θ �= θ0, and similarly Li.i.d.

0 (θ) :=
L2

2(Fθ ,Fθ,i.i.d.) > 0 for θ �= θ0, where

Li.i.d.
0 (θ) = 2

π

∞∑
j=1

j−2
∫ ∣∣σθ,j (u, v)

∣∣2 dW(u, v).
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We also note that for any μ0 and μ, σε(θ;μ),j (u, v) = exp{iψ(−1)(θ;1)(u + v)(μ0 −
μ)}σθ,j (u, v) because centering only affects the cf of εt (θ;μ) by a complex scaling in the
unit circle. Then |σε(θ;μ),j (u, v)|2 = |σθ,j (u, v)|2 for all μ, showing that the identification
criteria for θ based on the i.i.d. assumption are invariant to location of Yt or εt (θ).

3.2. Identification under a martingale difference assumption. Lemma 3 shows that resid-
uals εt (θ) for θ �= θ0 and non-Gaussian εt are not pairwise i.i.d . nor mds even when innova-
tions are i.i.d ., so that we can expect that under Assumptions 2 and 3∫ ∣∣σ (1,0)

θ,j (0, v)
∣∣2 dW(v) > 0 for some j �= 0(3)

for a large class of dynamic processes driven by mds innovations, including all that impose
a particular causality and invertibility representation. Therefore, under (3), Qmds

0 (θ) > 0 for
θ �= θ0, where

Qmds
0 (θ) := L2

2
(
f

(1,0)
θ , f

(1,0)
θ,mds

) = 2

π

∞∑
j=1

∫ ∣∣σ (1,0)
θ,j (0, v)

∣∣2 dW(v),

and similarly Lmds
0 (θ) := L2

2(F
(1,0)
θ ,F

(1,0)
θ,mds) = 2

π

∑∞
j=1 j−2 ∫ |σ (1,0)

θ,j (0, v)|2 dW(v) > 0 for
θ �= θ0, which are well defined by Lemma 2.

By a similar argument as for the i.i.d. criteria, we can check for any μ0 and μ that
σ

(1,0)
ε(θ;μ),j (0, v) = exp{iψ(−1)(θ;1)v(μ0 −μ)}σ (1,0)

θ,j (0, v) because the mean component is au-

tomatically eliminated by centering in the covariance definition, so that |σ (1,0)
ε(θ;μ),j (0, v)|2 =

|σ (1,0)
θ,j (0, v)|2 and mds identification criteria for θ are also invariant to location of Yt or εt (θ).

3.3. Interpretation of loss functions and data scaling. The loss functions based on (gen-
eralized) autocovariances are not scale free. Replacing εt (θ) by σεt (θ) for some σ > 0 can
be interpreted naturally as a rescaling of the weighting measure W , which leads to a local
analysis as σ → 0. Focusing on Qi.i.d.

0 (θ) defined for σεt (θ), we can expand the cf of σεt (θ)

around u = 0 assuming all moments exist and obtain

Qi.i.d.
0 (θ;σ) = 2

π

∞∑
a,b,a′,b′=0

σa+b+a′+b′ ia+b−a′−b′

a!b!a′!b′! wa+a′wb+b′
∞∑

j=1

γ θ
a,b(j)γ θ

a′,b′(j)

for γ θ
a,b(j) := Cov[εa

t (θ), εb
t−|j |(θ)] and wa := ∫

ua dW(u) < ∞ assuming that W has finite
moments of all orders. Then, as σ → 0, the first term in the expansion is in the square of
γ θ

1,1(j) = Cov[εt (θ), εt−|j |(θ)], the usual covariance of residuals, while higher order cross-
moments appear successively.

Then, for small σ , linear residual correlations dominate Qi.i.d.
0 (θ;σ), explaining why our

estimates achieve ML efficiency for Gaussian data when σ → 0, as will be formally showed
in next sections. However, linear correlation does not contain all relevant information on
dependence and other choices of σ or of the weighting may lead to more efficient estimates.
For the mds criterion a similar interpretation is possible, but involving only the correlation of
residuals εt (θ) in levels with powers of its lags, see Escanciano and Velasco (2006a).

4. Asymptotic properties of estimates based on the mds criterion. In this section, we
explore the asymptotic properties of parameter estimates based on the mds assumption on
model errors εt and how to robustify inference when in absence of serial independence there
could be predictability in second moments (i.e., conditional dynamic heteroskedasticity) and
in nonlinear functions of future εt , for example, eiuεt+j , j > 0.
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To impose the mds restriction on model residuals, we use empirical versions of the iden-
tifying population loss functions Qmds

0 and Lmds
0 . However, given a finite sample {Yt }Tt=1,

we can only have an approximation to the population model residuals εt (θ) due to unknown
centering and information truncation, that is, for each θ we can only compute

ε̂t (θ) := ε̂t (θ; ȲT ) := ψ−1(θ;L)(Yt − ȲT )1{1 ≤ t ≤ T }
after centering by the sample mean. Given ε̂t (θ), we construct estimates

σ̂θ,j (u, v) := σ̂ε̂t (θ),j (u, v) = ϕ̂θ,|j |(u, v) − ϕ̂θ,|j |(u,0)ϕ̂θ,|j |(0, v)

with

ϕ̂θ,j (u, v) = 1

T − |j |
T∑

t=1+|j |
ei(uε̂t (θ)+vε̂t−j (θ))

to obtain estimation criteria equal to the squared L2 norm between the (derivatives of the)
empirical generalized spectral density or cumulative distribution functions of the residuals
ε̂t (θ) and their restricted versions under the different serial dependence hypotheses. After
standard calculations, we can check that

ε̂t (θ) = εt (θ) + υT (θ) − υt,T (θ),

where the unknown centering term υT (θ) := ψ(−1)(θ;1)(μ0 − ȲT ) is constant in t , so does
not contribute to the modulus of σ̂θ,j (u, v) as in the case of the population σθ,j (u, v). The in-

formation truncation term, υt,T (θ) := (
∑t−T −1

j=−∞ +∑∞
j=t )ψ

(−1)
j (θ)(Yt−j − ȲT ), is negligible

asymptotically because the coefficients of ψ−1(θ;L) decay fast uniformly in θ .
The empirical spectral densities and their derivatives are constructed following usual spec-

tral analysis:

f̂
(m,)
θ,T (ω,u, v) = 1

2π

T −1∑
j=1−T

(
1 − |j |

T

)1/2
k

(
j

p

)
σ̂

(m,)
θ,j (u, v)e−ijω,

where σ̂
(m,)
θ,j (u, v) = (∂m+/∂um∂v)σ̂θ,j (u, v), j = 0,±1, . . . ,±(T − 1). The kernel func-

tion k is a lag window with k(0) = 1 and p is a bandwidth or lag order required to increase
slower than T for consistency but without impact on asymptotic results, while the factor
(1 − |j |/T )1/2 is introduced to improve finite sample properties of estimates. Similarly, esti-
mates of the corresponding spectral cdf F

(m,)
θ (ω,u, v) can be devised,

F̂
(m,)
θ,T (ω,u, v) =

T −1∑
j=1−T

σ̂
(m,)
θ,j (u, v)

sin jω

jπ
,

for which it is not needed to use smoothing to achieve consistency.
When imposing the martingale difference assumption on εt but allowing for other type of

higher order dependence, we use the derivatives of order (1,0) of the estimated spectral and
covariance functions f and σ , which identify this hypothesis by means of

Qmds
T (θ) := L2

2
(
f̂

(1,0)
θ,T , f̂

(1,0)
θ,mds,T

) = 2

π

T −1∑
j=1

k2
(

j

p

)(
1 − |j |

T

)∫ ∣∣σ̂ (1,0)
θ,j (0, v)

∣∣2 dW(v),

while when using the spectral cdf we set

Lmds
T (θ) := L2

2
(
F̂

(1,0)
θ,T , F̂

(1,0)
θ,mds,T

) = 2

π

T −1∑
j=1

j−2
∫ ∣∣σ̂ (1,0)

θ,j (0, v)
∣∣2 dW(v),
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where

σ̂
(1,0)
θ,j (0, v) := ∂

∂u
σ̂θ,j (u, v)

∣∣∣∣
u=0

= ϕ̂
(1,0)
θ,j (0, v) − iε̂T (θ)ϕ̂θ,j (0, v),

with ε̂T (θ) = (T − |j |)−1 ∑T
t=1+|j | ε̂t (θ) = (∂/∂u)ϕ̂θ,j (u,0)|u=0/i, so the modulus of

σ̂
(1,0)
θ,j (0, v) is also invariant to location of ε̂t (θ), but not to information truncation when re-

placing εt (θ) by ε̂t (θ). The loss function Qmds
T with local smoothing is the main ingredient

of several test statistics for the martingale difference hypothesis when ε̂t (θ) are replaced by
observed time series or by residuals ε̂t = εt (θT ) evaluated at a particular parameter estimate
θT (see Hong (1999), Hong and Lee (2005) and Chen et al. (2017)), while Lmds

T is similar to
the test statistic used in Escanciano and Velasco (2006a) for the mds hypothesis.

The consistency analysis of parameter estimates under a correct parametrization assump-
tion is based on uniform convergence of the empirical objective function to the theoretical
counterpart that identifies properly the unique solution. We show the uniform convergence
of Lmds

T (θ) to Lmds
0 (θ) under fairly weak assumptions due to the improved convergence for

large lags built in the definition of Lmds
T (θ), and propose as initial estimation

θ̂mdsT := arg min
θ∈�

Lmds
T (θ).

To exploit potential efficiency improvements of estimates based on Qmds
T over those based on

Lmds
T , we compute a Newton–Raphson step from θ̂mdsT to set

θ̃mdsT := θ̂mdsT −
(

∂2

∂θ ∂θ ′ Q
mds
T

(
θ̂mdsT

))−1 ∂

∂θ
Qmds

T

(
θ̂mdsT

)
.

We first show consistency of θ̂mdsT and then compare the asymptotic distributions of both
estimates and obtain closed-form expressions for their asymptotic variances for Gaussian W

and consistent standard errors. For that, we introduce further assumptions on the smoothness
and weak dependence of the model and the innovations.

ASSUMPTION 4. The filter φ(θ; z) is differentiable for all θ ∈ � with derivative
δ(θ; z) := (∂/∂θ)φ(θ; z) = ∑∞

j=−∞ δj (θ)zj satisfying, for η1 > 1,

sup
θ∈�

∥∥δj (θ)
∥∥ ≤ C|j |−η1, j = ±1,±2, . . . .

ASSUMPTION 5. For some ν ≥ 3:

1. εt is a stationary mds, E[εt |It−1] = 0, and E|εt |ν < ∞.

2. εt is strong mixing with mixing coefficients satisfying
∑∞

j=1 α(j)
ν−2
ν < ∞.

Assumption 4 controls the rate of decay on the model scores, which are key in the asymp-
totic analysis. It is satisfied at once by ARMA models, possibly noncausal or noninvertible,
for any η1 > 0 when unit roots are excluded. The mixing condition in Assumption 5 on εt is
used to control in the asymptotic analysis the nonlinear predictability on top of the absence of
conditional mean dependence implied by the mds assumption. Together with a finite third ab-
solute moment for εt , it further allows us to evaluate the variance of the estimates σ̂

(1,0)
θ,j used

to construct Lmds
T (θ) and Qmds

T (θ) and show that Lmds
T (θ) converges to Lmds

0 (θ) uniformly for
θ ∈ �. The mixing assumption could be replaced by conditions guaranteeing that εt could be
approximated by a mds sequence, which is finite dependent as in Hong and Lee (2005).

THEOREM 1. Under Assumptions 1–5, η0 > 2, η1 > 1 and (3), θ̂mdsT →p θ0 as T → ∞.
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To analyze the asymptotic distribution of estimates under a mds condition, we need to rein-
force our moment and mixing conditions of Assumption 5 to evaluate higher order moments
of estimates of residuals cf and its derivatives. We also need a further assumption on the dif-
ferentiability of the model to analyse the asymptotic distribution of parameter estimates and
on the kernel k and lag parameter p for Qmds

T based estimates.

ASSUMPTION 6. For some ν ≥ 5:

1. εt is stationary mds, E[εt |It−1] = 0, and E|εt |ν < ∞.

2. εt is strong mixing with mixing coefficients satisfying
∑∞

j=1 j2α(j)
ν−4
ν < ∞.

ASSUMPTION 7. The filter φ(θ; z) has three derivatives with φ(a,n)(θ; z) :=
(∂/∂θn)

aφ(θ; z) = ∑∞
j=−∞ φ

(a,n)
j (θ)zj so that for ηa > 1, a = 1,2,3 and n = 1, . . . , q ,

sup
θ∈�

∣∣φ(a,n)
j (θ)

∣∣ ≤ C|j |−ηa , j = ±1,±2, . . . .

ASSUMPTION 8.

1. k : R →[−1,1] is symmetric and continuous at 0 and all but a finite number of points,
with k(1) = 1 and |k(x)| ≤ C|x|−b, b ≥ 1, for large x, and 1−k(x) = kτ |x|τ +o(x) as x → 0
for some τ ∈ (0,∞) and kτ > 0.

2. 1/p + p2/T → 0 as T → ∞.

Assumption 6 also implies the mixing condition used in Andrews (1991) for summability
of the fourth-order cumulants and the conditions in Yoshihara (1978) to bound the fourth
moment of sums of mixing processes. Assumption 7 imposes further smoothness on the fil-
ter φ for convergence of higher order derivatives of the objective functions as for ARMA
models. Assumption 8.1 was used by Hong (1999) for the analysis of dependence tests and
is standard in the related literature of smoothed spectral density estimation. Assumption 8.2
allows to choose p for optimal MSE estimation of the generalized spectral densities for stan-
dard kernels, but our theory does not provide a rule for the choice of p because first-order
asymptotic properties of parameter estimates θ̃mdsT based on Qmds

T (θ) do not depend on p

once Assumption 8.2 holds.
Define R

(a)
t for a = 0,1 and z0

t = zt (θ0;u) = eiuεt − ϕ(u), ϕ(u) = E[eiuεt ], as

R
(a)
t :=

∞∑
j=1

j−2ai

∫
z0
t−j (v)ζ 0

j (−v) dW(v), ζ 0
j (v) := −

∞∑
n=j

δn(θ0)ϕ
(1,0)
j−n (0, v),

noting that ϕ
(1,0)
j−n (0, v) = iE[εt−ne

ivεt−j ] is only different from zero under i.i.d. when n = j ,

in which case ζ 0
j (v) = −δj (θ0)ϕ

(1)(v). Define also for a = 0,1

S
(a)
t :=

∞∑
j=1

j−2ai

∫
z0
t−j (v)β0

j (−v) dW(v), β0
j (v) := −δ−j (θ0)vϕ

(2,0)
j (0, v),

which would simplify if εt were i.i.d. or a conditional homoskedastic mds, as in this case
ϕ

(2,0)
j (0, v) = −E[ε2

t e
ivεt−j ] = −σ 2

ε ϕ(v) and β0
j (v) = σ 2

ε δ−j (θ0)vϕ(v), σ 2
ε = E[ε2

t ]. Note

that, under Assumption 6, ϕ
(1,0)
j−n (0, v) tends to zero with a rate α(n − j)

ν−1
ν for ν ≥ 5 uni-

formly in v with supv

∑∞
n=j |ϕ(1,0)

j−n (0, v)| < ∞. Therefore, ζ 0
j (v) = O(‖δj (θ0)‖) as j → ∞

and it is immediate that β0
j (v) = O(|v|‖δ−j (θ0)‖) as j → ∞, both sequences being absolute

summable for η1 > 1. Also, β0
j (v) = 0 for all j = 1,2, . . . for causal and invertible processes.
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Finally, we set V mds
a := V[εt (R

(a)
t +S

(a)
t )] = E[ε2

t (R
(a)
t +S

(a)
t )(R

(a)
t + S

(a)
t )], a = 0,1, so

that

V mds
a =

∞∑
j=1

∞∑
=1

(j)−2a
∫ ∫

E
[
ε2
t z

0
t−j (v)z0

t−(−u)
]

× {
ζ 0
j (−v) + β0

j (−v)
}{

ζ 0
 (u) + β0

 (u)
}′

dW(v)dW(u),

while the also real matrix Hmds
a , a = 0,1, is defined as

Hmds
a := −

∞∑
j=1

j−2a
∫ {

ζ 0
j (−v) + β0

j (−v)
}{

ζ 0
j (v) + β0

j (v)
}′

dW(v).

THEOREM 2. Under Assumptions 1–8, η0 > 2, ηa > 1, a = 1,2,3, θ0 ∈ Int (�), (3), and
Hmds

0 and Hmds
1 positive definite, as T → ∞,

T 1/2(
θ̃mdsT − θ0

) →d N
(
0,

(
Hmds

0
)−1

V mds
0

(
Hmds

0
)−1)

,

T 1/2(
θ̂mdsT − θ0

) →d N
(
0,

(
Hmds

1
)−1

V mds
1

(
Hmds

1
)−1)

.

The kernel k and the bandwidth p do not play a direct role in the asymptotic distribution
of θ̃mdsT and its root-T convergence rate can be achieved without loss of asymptotic efficiency
from slowly increasing p because coefficients in the score representation converge very fast
(given that k(x) is smooth around x = 0).

When we impose the i.i.d. assumption instead of the mixing mds condition, we can find
that for a = 0,1,

V mds
a = σ 2

ε

{
σ 2

x �2a + σ 2
s �−

2a + σsx

(
�∓

2a + �∓′
2a

)}
,

where σ 2
s and σ 2

x are the variances of the (bounded) zero mean i.i.d. random variables
(s0

t , x0
t ),

s0
t := σ 2

ε

i

∫
z0
t (u)uϕ(−u)dW(u),

x0
t := 1

i

∫
z0
t (u)ϕ(1)(−u)dW(u),

σsx is their covariance and, a = 0,1,2,

�a :=
∞∑

j=1

j−2aδj (θ0)δ
′
j (θ0),

�−
a := ∑∞

j=1 j−2aδ−j (θ0)δ
′−j (θ0) and �∓

a := ∑∞
j=1 j−2aδ−j (θ0)δ

′
j (θ0).

The assumptions on Hmds
a are local identification conditions and, similarly, we find under

i.i.d. that a = 0,1,

Hmds
a = ρ1�a + σ 4

ε ρ2�
−
a − ρ0σ

2
ε

(
�∓

a + �∓′
a

)
,

where the scalar coefficients ρa are defined by ρ0 := − ∫
ϕ(1)(u)uϕ(−u)dW(u),ρ1 :=∫ |ϕ(1)(u)|2 dW(u) and ρ2 := ∫

u2|ϕ(u)|2 dW(u). When the model is further causal and in-
vertible, �−

a = �∓
a = 0 because δj (θ) = 0 for j = 0,−1, . . . . Then Hmds

a are positive definite
if �a are positive definite for pure causal-invertible models (or if �−

a is positive definite for
pure noncausal and noninvertible ones because in this case δj (θ) = 0 for j = 1,2, . . .). Note
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that �0 > 0 is the local identification condition for Gaussian PML estimates of causal and in-
vertible models, while the contribution of filters with forward components is reflected in �−

a

and �∓
a . In this case, the asymptotic variance of θ̃mdsT simplifies to κmds�−1

0 , where the scalar
factor κmds := σ 2

ε σ 2
x /ρ−2

1 measures the asymptotic relative efficiency of the estimates with
respect to the Gaussian PMLE. See similar representations in Velasco and Lobato (2018) for
estimates based on different sets of spectral densities also under i.i.d.

In the causal and invertible case, the asymptotic variance of θ̂mdsT also simplifies to
κmds�−1

1 �2�
−1
1 , where �1 and �2 are weighted versions of �0 with higher discount of

higher lags information when using the spectral cdf. It is easy to show that �−1
1 �2�

−1
1 −�−1

0
is positive semidefinite, so θ̃mdsT is asymptotically more efficient than θ̂mdsT for pure causal
and invertible models with independent errors, and also for pure noncausal and noninvertible
ones, for which the discussion is the same replacing �a by �−

a .
If additionally εt is Gaussian with distribution N(0, σ 2

ε ) and W is the standard normal
cdf, we can obtain closed-form expressions for these scalar coefficients (see Appendix C of
Velasco (2022)), and the asymptotic relative efficiency of θ̃mdsT with respect to the MLE is

κmds = κmds(σ 2
ε

) :=
(

(2σ 2
ε + 1)2

(2σ 2
ε + 1)2 − σ 4

ε

)3/2
,

where κmds(σ 2
ε ) → 1 as σε → 0, while κmds(σ 2

ε ) → (4/3)3/2 = 1.54 as σε → ∞ and
κmds(1) = (9/8)3/2 = 1.19 > 1, so efficiency improves as σ 2

ε becomes smaller. This sig-
nificant role of σ 2

ε in estimates’ efficiency implies that in practice the residuals ε̂t (θ) could
be normalized (for a fixed W) to obtain parameter estimates with asymptotic variance ap-
proaching the optimal one for normal data, or exploit dependence measures based on the wns
condition, which can be made scale independent as do not require integration.

4.1. Robust standard errors. Under the mds assumption we need robust estimates of the
asymptotic variances to nonlinear dependence, including conditional heteroskedasticity. Us-
ing a consistent θT ∈ {θ̃mdsT , θ̂mdsT }, we propose to estimate V mds

a , a = 0,1, with

V̂ mds
a,p := 1

T − 1

T∑
t=2

ε̂2
t Ẑ

(a)
t,pẐ

(a)′
t,p ,

where ε̂t := ε̂t (θT ) and Ẑ
(a)
t,p := i

∑t−1
j=1 j−2ak(

j
p
)
∫

ẑt−j (v){ζ̂j,p(−v) + β̂j (−v)}dW(v) for

ζ̂j,p(v) := −
T +j−1∑

n=j

k

(
n − j

p

)
δn(θT )ϕ̂

(1,0)
θT ,|j |−n(0, v),

and β̂j (v) := −δ−j (θT )vϕ̂
(2,0)
θT ,j (0, v), with k and p as in Assumption 8. Similarly, we can

estimate Hmds
a with

Ĥmds
a,p = −

T −1∑
j=1

j−2ak

(
j

p

)∫ {
ζ̂j,p(−v) + β̂j (−v)

}{
ζ̂j,p(v) + β̂j (v)

}′
dW(v),

where estimates are real and have closed-form expressions for W with known cf like the
Gaussian (see Appendix D of Velasco (2022)), and easily showed to be consistent using the
methods in the proof of Theorem 2.
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4.2. Standard errors under i.i.d. Under the i.i.d. assumption on εt , standard errors of
estimates can be obtained by direct estimation of (σ 2

s , σ 2
x , σsx) with the sample covariance

matrix of

ŝt := st (θT ) = σ̂ 2
ε

i

∫
ẑt (u)uϕ̂θT

(−u)dW(u),

x̂t := xt (θT ) = 1

i

∫
ẑt (u)ϕ̂

(1)
θT

(−u)dW(u),

noting that the integrals are pure imaginary because W is symmetric, where ẑt (u) :=
zt (θT ;u) = eiuε̂t − ϕ̂θT

(u) and σ̂ 2
ε is the sample variance of ε̂t . In the case of Gaussian or with

closed-form characteristic function W , ŝt and x̂t have explicit expressions amenable to fast
computation without numerical integration. Alternatively, we can approximate numerically
the integrals if no explicit expressions exist for a given W . For the estimation of (ρ0, ρ1, ρ2),
we could also perform numerical integration using ϕ̂θT

(u) and ϕ̂
(1)
θT

(u) in place of their popu-
lation counterparts, or alternatively, use closed-form expressions; see Appendix D of Velasco
(2022) for Gaussian W . For estimation of �a,�

−
a ,�∓

a , we just plug-in θT in the expression
for δj (θ) for a given model.

5. Overidentified GMM estimation. In this section, we explore efficient estimation
when more than one dependence condition is imposed on the residuals. Thus, when imposing
the i.i.d. assumption on estimation it is also possible to use information from the weaker iden-
tification mds condition and in this case and when estimating under mds it is possible to use
the even weaker white noise sequence (wns) or serial uncorrelation condition that motivates
the loss functions

Qwns
T (θ) := 2

π

T −1∑
j=1

k2
(

j

p

)(
1 − |j |

T

)
σ̂

(1,1)
θ,j (0,0)2

and Lwns
T (θ) := 2

π

∑T −1
j=1 j−2σ̂

(1,1)
θ,j (0,0)2, where

σ̂
(1,1)
θ,j (0,0) = − 1

T − |j |
T∑

t=1+|j |
ε̂t (θ)ε̂t−|j |(θ) + 1

(T − |j |)2

T∑
t=1+|j |

ε̂t (θ)

T∑
t=1+|j |

ε̂t−|j |(θ)

are (minus) the usual sample autocovariances of residuals ε̂t (θ).
First, in parallel with mds analysis, we can propose estimates based on the i.i.d. condition,

θ̂ i.i.d.T := arg min
θ∈�

Li.i.d.
T (θ)

and

θ̃ i.i.d.T := θ̂ i.i.d.T −
(

∂

∂θ ∂θ ′ Q
i.i.d.
T

(
θ̂ i.i.d.T

))−1 ∂

∂θ
Qi.i.d.

T

(
θ̂ i.i.d.T

)
.

With serially independent εt , consistency of θ̂ i.i.d.T follows by the identification provided by
Lemma 3 under slightly different conditions from those for θ̂mdsT , not requiring mixing or
bounded higher order moments on εt if the model does not admit θ �= θ0 for which |φ(θ; z)| is
constant, as identification can rely on the serial correlation of residuals when using the wrong
parameter values. However, the summability conditions on the linear filter are stronger as the
proof does not exploit higher order moments.

THEOREM 3. Under Assumptions 1–4, η0 ≥ 3, η1 > 1, εt i.i.d., zero mean, E|εt | <

∞, θ0 ∈ �, θ̂ i.i.d.T →p θ0 as T → ∞.
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Define for a = 0,1,2,

Va := σ 2
e σ 2

x

(
�2a + �−

2a

) + σ 2
xe

(
�∓

2a + �∓′
2a

)
,

Ha := ρ1ρ2
(
�a + �−

a

) + ρ2
0
(
�∓

a + �∓′
a

)
,

where (σ 2
x , σ 2

e ) and σxe are the variances and covariance of the (bounded and real) zero mean
i.i.d. random variables (x0

t , e0
t ) where

e0
t = et (θ0) := 1

i

∫
zt (θ0;u)uϕ(−u)dW(u).

Then we obtain the asymptotic distribution of i.i.d. based estimates also under weaker mo-
ment conditions than for mds based estimates if |φ(θ; z)| is constant only for θ = θ0 or if
otherwise κε

3 �= 0 and no higher than third-order cumulants are required for identification.

THEOREM 4. Under Assumptions 1–4, 7, 8, η0 ≥ 3, ηa > 1, a = 1,2,3, εt i.i.d., zero
mean, E|εt |3 < ∞, H0 and H1 positive definite and θ0 ∈ Int (�), as T → ∞,

T 1/2(
θ̃ i.i.d.T − θ0

) →d N
(
0,H−1

0 V0H
−1
0

)
,

T 1/2(
θ̂ i.i.d.T − θ0

) →d N
(
0,H−1

1 V1H
−1
1

)
.

Standard errors for i.i.d. estimates can be obtained in the same fashion as for mds estimates
under serial independence using x̂t and êt := et (θT ) = 1

i

∫
ẑt (u)uϕ̂θT

(−u)dW(u). For pure
causal-invertible models, the assumptions on Ha are satisfied if �a are positive definite and
the asymptotic variance of θ̃ i.i.d.T simplifies to κ i.i.d.�−1

0 , where the scalar factor κ i.i.d. :=
σ 2

e σ 2
x /(ρ2

1ρ2
2)−1 measures the asymptotic relative efficiency of the estimates compared to

the Gaussian PMLE, with θ̃ i.i.d.T being more efficient than θ̂ i.i.d.T , whose asymptotic variance
becomes κ i.i.d.�−1

1 �2�
−1
1 .

When εt is Gaussian with distribution N(0, σ 2
ε ) and W(u) is the standard normal cdf,

we obtain in Appendix C of Velasco (2022) that κ i.i.d. = κ i.i.d.(σ 2
ε ) = κmds(σ 2

ε )2. Therefore,
mds based estimation is more efficient than i.i.d. based one for Gaussian processes, but this
asymptotic relative efficiency might differ for other distributions, for example, for scaled chi-
square distributions with degrees of freedom under 4 and large σε; see Figures 1 and 2 in
Appendix C.

It is easy to check that estimates based on the wns criterion have the same asymptotic
distribution as the Gaussian PMLE under global identification (e.g., assuming invertibility
and causality) and a moment condition under serial independence. Further, we have argued
in Section 3 that, as the scaling σ → 0, the i.i.d. and mds criteria are equivalent to the wns
restriction, so using i.i.d. and mds estimation with a fixed σ together with the wns restriction,
can provide robust estimates to the scaling choice, which are never less efficient than the
Gaussian PMLE, while achieving identification under non-Gaussianity.

Following Velasco and Lobato (2018), who considered parameter estimation using simul-
taneously information from different moments, our GMM overidentified estimation considers
simultaneously the scores of the three objective functions Qi.i.d.

T ,Qmds
T and Qwns

T ,

ST (θ) =
⎛
⎜⎝(∂/∂θ)Qi.i.d.

T (θ)

(∂/∂θ)Qmds
T (θ)

(∂/∂θ)Qwns
T (θ)

⎞
⎟⎠ ,

and optimally weight the joint information provided by a Newton–Raphson iteration over the

objective function QT (θ) = ST (θ)′V̂ −1
T ST (θ), that is,

θ̃
gmm
T := θT − (

HT (θT )′V̂ −1
T HT (θT )

)−1HT (θT )′V̂ −1
T ST (θT ),(4)
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where V̂ T is a consistent estimator of V, the asymptotic variance of T 1/2ST (θ0), HT (θ) =
(∂/∂θ ′)ST (θ) and the initial estimate θT satisfies

θT − θ0 = Op

(
T −1/2)

.(5)

Further, we can replace HT (θT ) by the asymptotically equivalent Ĥ(θT ) where Ĥ uses the
functional form of H = H(θ0) := p limT →∞HT (θ0), but replacing unknown moments by
sample averages, errors by residuals and (derivatives of) the cf by empirical estimates. For
implementing (4), we can employ for θT some version of i.i.d. or mds estimation, which
correctly identifies θ0 in the case that noncausal or noninvertible models are allowed, while a
similar estimation strategy based on LT distances can be proposed. Given (5), the consistency
and asymptotic normality of θ̃

gmm
T is immediate as described by the next theorem.

THEOREM 5. Under the assumptions of Theorem 2, εt i.i.d., (5), V̂ →p V > 0 as T →
∞, √

T
(
θ̃

gmm
T − θ0

) →d N
(
0,

(
H′V−1H

)−1)
.

For causal and invertible models, H = (ρ1ρ2, ρ1, σ
4
ε )′ ⊗ �0 and V = {V(wt ) ◦ V(Wt)} ⊗

�0, where wt := (e0
t , εt , εt )

′, Wt := (x0
t , x0

t , σ 2
ε εt )

′ and ◦ is the Hadamart element by element
product. Then

V =
⎛
⎜⎝ σ 2

e −ρ0 −ρ0

−ρ0 σ 2
ε σ 2

ε

−ρ0 σ 2
ε σ 2

ε

⎞
⎟⎠ ◦

⎛
⎜⎝ σ 2

x σ 2
x σ 2

ε ρ1

σ 2
x σ 2

x σ 2
ε ρ1

σ 2
ε ρ1 σ 2

ε ρ1 σ 6
ε

⎞
⎟⎠ ⊗ �0

=
⎛
⎜⎝ σ 2

e σ 2
x −ρ0σ

2
x −σ 2

ε ρ0ρ1

−ρ0σ
2
x σ 2

ε σ 2
x σ 4

ε ρ1

−σ 2
ε ρ0ρ1 σ 4

ε ρ1 σ 8
ε

⎞
⎟⎠ ⊗ �0,

using that σeε = E[e0
t εt ] = −ρ0 and σxε = E[x0

t εt ] = ρ1, so that (H′V−1H)−1 = κ�−1
0 for

κ ≤ 1, and θ̃
gmm
T is never less efficient than the Gaussian PMLE.

Similarly, to make more robust the identification and estimation, we could drop the i.i.d.
assumption and rely only on identification from the mds condition by considering estimates
based on mds and wns criteria that do not impose in V lack of dynamics in higher order
moments of εt .

6. Efficient continuous GMM. In this section, we propose parameter estimates based
on the efficient weighting across (u, v) of the continuous moment conditions that set
σ̂θ,j (u, v) and σ̂

(1,0)
θ,j (0, v) equal to zero for all (u, v) ∈ R

2 and j = 1,2, . . . Since these re-
strictions use implicitly instruments based on the cf (of lagged residuals), the optimal score
functions are always included in the span of our specific continuous moment conditions,
allowing for optimal estimation in contrast to methods based on a finite set of moment con-
ditions as when using ordinary spectral densities for non-Gaussian data.

We follow the approach of Carrasco et al. (2007) to optimally weight the empirical con-
tinuous moments for each (u, v) using the appropriate covariance kernel and obtain the same
efficiency as the ML estimate using the likelihood function, which contains the same infor-
mation as the cf. However, by using an increasing number of pairwise dependence conditions
based on model residuals, we do not need to specify a conditional model for the cf of Yt given
a finite vector of past observations, or simulate their joint cf as in Carrasco et al. (2007). Since
residuals evaluated at the true parameter value become (mean) independent of all the past un-
der the i.i.d. (mds) assumption, their conditional cf (and its first derivative at zero) is equal
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to their marginal cf (expectation), which can be estimated using the residuals empirical cf
(mean) based on a preliminary estimate of θ0.

The continuous moments averaging the residual-based ξt,j (w; θ) = zt (θ;u)zt−|j |(θ;v),
w = (u, v) ∈ R

2, or ξt,j (w; θ) = εt (θ)zt−|j |(θ;v), w = v ∈ R, implicit in our i.i.d. and mds
estimation, have covariance function

Cj,n(w1,w2; θ) = Cov
[
ξt,j (w1; θ), ξt,n(w2; θ)

]
, j, n = 1,2, . . . .

For the former and under serial independence, Cj,n(w1,w2; θ0) = 0 for j �= n, while for
j = n, Cj,j is equal to

Ci.i.d.(w1,w2; θ0) := E
[
zt (θ0;u1)zt−|j |(θ0;v1)zt (θ0;u2)zt−|j |(θ0;v2)

]
= {

ϕ(u1 − u2) − ϕ(u1)ϕ(−u2)
}{

ϕ(v1 − v2) − ϕ(v1)ϕ(−v2)
}
,

which does not depend on j because both zt (θ0;u) and εt (θ0) become i.i.d ., but for the latter,

Cmds
j,n (v1, v2; θ0) := E

[
ε2
t

{
eiv1εt−|j | − ϕ(v1)

}{
e−iv2εt−|n| − ϕ(−v2)

}]
might depend on j and n when imposing only a mds condition. However, Cmds

j,n (v1, v2; θ0) = 0

for j �= n under i.i.d., while for j = n, Cmds
j,j simplifies to

Cmds(v1, v2; θ0) := σ 2
ε E

[{
eiv1εt−|j | − ϕ(v1)

}{
e−iv2εt−|j | − ϕ(−v2)

}]
= σ 2

ε

(
ϕ(v1 − v2) − ϕ(v1)ϕ(−v2)

)
.

Therefore, both efficient estimation strategies can be pursued as in Carrasco et al. (2007)
under i.i.d. despite we explicitly consider an increasing number of moment conditions in-
dexed by j . This is feasible because the moment conditions become asymptotically indepen-
dent at different lags for all values of (w1,w2) when evaluated at the true value of the param-
eter and, by stationarity and independence, all have the same covariance function, which then
only needs to be estimated once. However, under only a mds condition, estimation of Cmds

j,n

for all pairs (j, n) would be required as moment conditions are in general nonhomoskedastic
nor uncorrelated at different lags.

To construct continuous GMM (CGMM) efficient estimates, we need estimates of
(K i.i.d.)−1/2 and (Kmds)−1/2 to standardize each of the empirical moment conditions, where
K i.i.d. and Kmds are the operators implied by the corresponding covariance functions of the
sample moments σ̂θ0,j (w) and σ̂

(1,0)
θ0,j

(w), respectively, defined by

(
K•g

)
(w1; θ0) :=

∫
C•(w1,w2; θ0)g(w2) dW(w2).

For estimation of the inverse of the operators K i.i.d. and Kmds, we pursue the same strategy
as in Carrasco et al. (2007) using a Tikhonov regularized inverse of an estimate K•

T of K•,(
K•

T ,αT

)−1 := (
K•2

T + αT I
)−1

K•
T ,

for the identity operator I and a penalizing term αT → 0 to avoid the problem of (K•
T )−1 not

existing on the whole Hilbert space L2(W) defined by the weighting function W , but only on
a subset (the reproducing kernel Hilbert space of K•).

Following our pairwise approach, we define

Q̄i.i.d.
T (θ) := 2

π

T −1∑
j=1

k2
(

j

p

)(
1 − |j |

T

)∫ ∣∣(K i.i.d.
T ,αT

)−1/2
σ̂θ,j (u, v)

∣∣2 dW(u, v)
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for K i.i.d.
T ,αT

based on a consistent estimator K i.i.d.
T satisfying

∥∥K i.i.d.
T − K i.i.d.∥∥2 = sup

‖g‖≤1

∫ ∣∣(K i.i.d.
T − K i.i.d.)g(w)

∣∣2 dW(w) = Op

(
T −�)

(6)

for some � ≥ 0, and the corresponding estimates

θ̄ i.i.d.T = θT −
(

∂

∂θ ∂θ ′ Q̄
i.i.d.
T (θT )

)−1 ∂

∂θ
Q̄i.i.d.

T (θT )(7)

iterating over the preliminary root-T consistent estimate θT . A similar approach leads to the
definition of θ̄mdsT based on Q̄mds

T (θ) built in terms of (Kmds
T ,αT

)−1/2σ̂
(1,0)
θ,j (0, v) for a consistent

Kmds
T .
We set

Ĉ•
T (w1,w2; θT ) := 1

T − 1

T∑
t=2

ξ̂t,1(w1; θT )ξ̂t,1(w2; θT ),

where for Ĉi.i.d.
T and w = (u, v),

ξ̂t,1(w; θ) := (
eiuε̂t (θ) − ϕ̂θ,1(u)

)(
eivε̂t−1(θ) − ϕ̂θ,1(v)

)
,(8)

and for Ĉmds
T and w = v,

ξ̂t,1(v; θ) := (
ε̂t (θ) − ε̂T (θ)

)(
eivε̂t−1(θ) − ϕ̂θ,1(v)

)
,(9)

using the first lag to exploit the maximum possible number of observations in ϕ̂θ,1(v) because
the moments evaluated at θ = θ0 have the same variance for all j = 1,2, . . . . This leads to
consistent estimates of K•

T with � = 1/2.
For computation purposes, we write as in Carrasco et al. (2007) for each j = 1,2, . . .∫ ∣∣(K i.i.d.

T ,αT

)−1/2
σ̂θ,j (u, v)

∣∣2 dW(u, v) = vT ,j (θ)
′(
C2

T + αT IT −1
)−1vT ,j (θ),

where IT −1 is the (T − 1)-identity matrix, vT ,j (θ) = (vj,2(θ), . . . , vj,T (θ))′ with vj,t (θ) :=∫
ξ̂t,1(u, v; θT )σ̂θ,j (u, v) dW(u, v) and CT is the (T −1)×(T −1) matrix with (t, r) element

ĉtr/(T − 1), where ĉtr := ∫
ξ̂t,1(u, v; θT )ξr,1(u, v; θT ) dW(u, v) for ξ̂t,1 in (8) and a prelimi-

nary θT →p θ0. A similar expression holds for
∫ |(Kmds

T ,αT
)−1/2σ̂

(1,0)
θ,j (0, v)|2 dW(v) for ξ̂t,1 in

(9), where all integrals have closed form for Gaussian W ; see Appendix D in Velasco (2022).
Assuming that εt has finite variance and pdf f (x) with derivative ḟ (x) := (∂/∂x)f (x)

satisfying σ̄ 2
0 := E(ḟ (εt )/f (εt ))

2 < ∞, so that |ρ̄0| < ∞, ρ̄0 := E[εt ḟ (εt )/f (εt )], we define

H̄0 := σ 2
ε σ̄ 2

0
(
�0 + �−

0

) + ρ̄2
0
(
�∓

0 + �∓′
0

)
.

Note that σ̄ 2
0 and ρ̄0 are the variance of the (location) score of εt and its covariance with εt

itself, respectively, and

∂

∂θ
logf

(
εt (θ)

) = ε̇t (θ)
ḟ (εt (θ))

f (εt (θ))
,

where ε̇t (θ) := (∂/∂θ)εt (θ) is linear in leads and lags of εt and ḟ (εt (θ0)) = ḟ (εt ). Therefore,
H̄0 is the limit of the variance of the average score T −1/2 ∑T

t=1(∂/∂θ) logf (εt (θ0)) and H̄−1
0

is the asymptotic variance of the ML estimate of θ for known f under usual regularity con-
ditions. We now show that it is also the asymptotic variance of the optimal CGMM estimate
(7), which is not using knowledge of f , under the following assumption.
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ASSUMPTION 9. The null space of the kernel K•(·; θ0) of the covariance function
of the sample moment ξt,1(·; θ0) consists of only the null element, and E[ξt,1(·; θ)] and
E[(∂/∂θ)ξt,1(·; θ)] belong to its reproducing kernel Hilbert space for all θ ∈ �.

This condition is equivalent to Assumption A.5 of Carrasco et al. (2007) and we discuss
sufficient conditions for it in the proof of next theorem under i.i.d.

THEOREM 6. Under Assumptions 1–4, 7, 8 and 9 for K i.i.d., η0 ≥ 3, ηa > 1, a = 1,2,3,
εt i.i.d., zero mean, E|εt |3 < ∞, θ0 ∈ Int (�), with (T �αT )−1 + αT → 0 as T → ∞,

T 1/2(
θ̄ i.i.d.T − θ0

) →d N
(
0, H̄−1

0

)
.

This result extends the MLE efficiency results of Carrasco et al. (2007) of optimal CGMM
estimates to the non-Markov (or noncausal) case described by our class of models with-
out assumptions on the conditional cf thanks to the use of an increasing number of lags in
our objective function, providing an alternative method to the adaptive estimation of Gassiat
(1993). Similarly, we now provide the asymptotic distribution of CGMM estimates based on
the optimal continuous mds criterion under serial independence. Define

H̄mds
0 := �0 + σ 2

ε σ̄ 2
0 �−

0 − ρ̄0
(
�∓

0 + �∓′
0

)
.

THEOREM 7. Under Assumptions 1–8 and 9 for Kmds, η0 > 2, ηa > 1, a = 1,2,3, εt

i.i.d. zero mean, θ0 ∈ Int (�), with (T �αT )−1 + αT → 0 as T → ∞,

T 1/2(
θ̄mdsT − θ0

) →d N
(
0,

(
H̄mds

0
)−1)

.

For Gaussian εt ∼ N(0, σ 2
ε ), σ̄ 2

0 = σ−2
ε and ρ̄0 = −1, so that H̄mds

0 = H̄0 and the mds
based estimation also achieves the efficiency bound as with the optimal continuous i.i.d.
estimation, but this property does no need to hold for other distributions or in absence of the
independence assumption.

The asymptotic variance of CGMM estimates based on continuous optimal weighting
could be estimated directly using smoothed estimates of the pdf of εt with residuals to con-
struct estimates of (σ 2

ε , σ̄ 2
0 , ρ̄0). Alternatively, we can adapt the approach of Proposition 3.5

in Carrasco et al. (2007) for the asymptotic variance of the generic efficient estimate. For that,
we set for some consistent θT , for example, θ̃ i.i.d.T , CT defined as before and ε̂t = ε̂t (θT ),

̂̄σ 2
0 := 1

σ̂ 2
ε

∫
∇σ̂1,θT

(u, v)
(
K i.i.d.

T ,αT

)−1∇σ̂1,θT
(u, v) dW(u, v)

= 1

σ̂ 2
ε

v̂T ,1
′(
αT IT −1 + C2

T

)−1
v̂T ,1

and

̂̄ρ2
0 :=

∫
∇σ̂1,θT

(v, u)
(
K i.i.d.

T ,αT

)−1∇σ̂1,θT
(u, v) dW(u, v)

= ŵT ,1
′(
αT IT −1 + C2

T

)−1
v̂T ,1

for ∇σ̂1,θT
(u, v) = (T − 1)−1 ∑T

t=2 iuε̂t−1e
iuε̂t+ivε̂t−1 , v̂T ,1 = (v̂1,2, . . . , v̂1,T )′ and ŵT ,1 =

(ŵ1,2, . . . , ŵ1,T )′, where the integrals v̂1,t := ∫
ξ̂t,1(u, v; θT )∇σ̂1,θT

(u, v) dW(u, v) and

ŵ1,t := ∫
ξ̂t,1(u, v; θT )∇σ̂1,θT

(v, u) dW(u, v) do not require numerical integration for Gaus-
sian W . For the asymptotic variance of mds estimates, we can use the same strategy.
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7. Simulations. In this section, we explore the finite sample properties of our estimates
under different model specifications and innovation distributions. As discussed, the scaling
of the data can make a large difference in practice for a given W so in our simulation exer-
cises we standardize the residuals before computing dependence measures and loss functions,
replacing ε̂t (θ) by

ε̂t (θ;σ) := σ
ε̂t (θ)

sT (θ)
, s2

T (θ) := 1

T

T∑
t=1

(
ε̂t (θ) − ε̂T (θ)

)2
,

where σ is a user chosen scaling parameter that balances efficiency and identification ro-
bustness; see Section 3.3. Normalization of ε̂t (θ) by sT (θ) eliminates scaling effects in finite
samples, making parameter comparison invariant to the variance of the residuals induced by
the different causality and invertibility properties generated by each θ . For instance, poly-
nomial roots close to zero induce very small (large) residuals variance in the noninvertible
(noncausal) case, which can distort unscaled dependence comparisons.

This normalization does not affect asymptotic theory apart from shifting the innovations
variance σ 2

ε to the user chosen σ . This property follows because s2
T (θ) converges uniformly to

s2(θ) := σ 2
ε

∑∞
j=−∞ φ2

j (θ) under the conditions of Theorems 2 or 4. Then s2(θ) is bounded

and bounded away from zero uniformly for θ ∈ �, with s2(θ0) = σ 2
ε and derivative ṡ2(θ) :=

(∂/∂θ)s2(θ) = 2σ 2
ε

∑∞
j=−∞ φj (θ)δj (θ) satisfying ṡ2(θ0) = 2σ 2

ε δ0(θ0). Then ṡ2(θ0) is zero
for causal and invertible ARMA processes because φ0(θ) = 1 and δ0(θ) = 0 for all θ , so the
standardization has no asymptotic effect in this case. In the general case when δ0(θ0) �= 0, we
can check that the residual derivatives contain an additional term due to normalization,

∂

∂θ
ε̂t (θ;σ) = σ

̂̇εt (θ)

sT (θ)
− σ

ṡT (θ)

s2
T (θ)

ε̂t (θ),

where ̂̇εt (θ) := (∂/∂θ)ε̂t (θ) = ∑∞
j=−∞ δj (θ0)εt−j and ṡT (θ0) := (∂/∂θ)sT (θ0) →p σεδ0(θ0).

Therefore, for ε̇t (θ) := (∂/∂θ)εt (θ),

∂

∂θ
ε̂t (θ0;σ) →p

σ

σε

{
ε̇t (θ0) − δ0(θ0)εt

} = σ

σε

∑
j �=0

δj (θ0)εt−j ,

leaving asymptotic properties of parameter estimates unaltered because the residual scores
still do not depend on δ0(θ0) as without normalization; see Theorems 2 or 4.

For W , we use the standard normal cdf ; see Appendix D, Velasco (2022). For Q•
T criteria,

we employ the Daniell kernel, k(x) = sin(x)/x, while we set p = T 1/5, the results being
robust to these standard choices is spectral analysis. We use three sample sizes, T = 100,
200 and 400 and report results across 10,000, 5000 and 1000 replications for three values of
the normalizing parameter σ ∈ {0.5,1.0,2.0} for both i.i.d. and mds criteria. We only report
results for σ = 1.0; complete results can be found in Appendix E, Velasco (2022).

In our first experiment, we consider standardized non-Gaussian i.i.d. innovations εt given
by exponential, t5 and uniform distributions as in Velasco and Lobato (2018), where the
first one is highly asymmetric (κ3 = 2) with strong positive kurtosis (κ4 = 6) and the other
two distributions are symmetric, with positive (κ4 = 6) and negative kurtosis (κ4 = −1.2),
respectively. We consider AR(1), MA(1) and ARMA(1,1) models with parameters 0.5 and
0.9 to generate causal and invertible processes and their reciprocals to generate noncausal and
noninvertible models. Noncausal models are simulated using their stationary forward-looking
moving average representation.

In Tables 1 to 3, we report the percentage of correct identification of the location of the lag
polynomial roots with respect to the unit circle across simulations to investigate the global
identification achieved by our estimation criteria. For both objective functions, based on the
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TABLE 1
AR(1) Percentage of correct root identification, i.i.d. εt

Li.i.d.
T Lmds

T

εt T σ 0.5 0.9 0.9−1 0.5−1 0.5 0.9 0.9−1 0.5−1

Exp 100 1.0 97.43 88.13 89.04 99.82 98.14 89.85 52.31 69.39
200 1.0 97.95 96.35 96.34 100.00 98.00 96.18 55.32 75.57
400 1.0 100.00 99.50 99.50 100.00 100.00 99.20 57.20 97.30

t5 100 1.0 67.41 59.28 58.12 70.00 59.04 59.41 49.70 62.35
200 1.0 78.13 62.36 61.55 78.11 65.56 62.91 51.81 64.36
400 1.0 89.20 66.60 64.80 88.20 67.90 67.20 52.00 68.50

Unif 100 1.0 74.53 53.72 53.53 74.40 50.85 55.59 48.05 55.76
200 1.0 87.68 61.76 61.99 87.48 53.59 69.12 48.23 62.55
400 1.0 96.40 75.20 72.30 95.60 59.70 83.80 47.20 74.10

Note: Percentage of replications in which Li.i.d.
T (θ) and Lmds

T (θ) are minimized for a value θT so that 1{|θT | <

1} = 1{|θ0| < 1}. θ0 = 0.5,0.9,0.5−1,0.9−1.

i.i.d. or the mds assumptions, we only report results for L•
T estimates because results for Q•

T

are fairly similar, as they use initial values equal to θ̂•
T . The results in Tables 1 and 2 are very

similar for simple models, as AR(1) and MA(1) models face symmetric identification prob-
lems. Both estimation approaches report similar results for the exponential distribution, but
the i.i.d. criterion provides symmetric identification results between roots outside or inside
the unit circle, while the mds criterion can be very asymmetric, especially for roots close to
the unit circle, θ = 0.9,0.9−1, possibly due to the nonreversibility of the mds property. For
the other distributions, which are symmetric, the mds criterion results are more balanced, but
typically dominated by the i.i.d. criterion, which reports similar results for the uniform distri-
bution to those of the higher order moments-based method of Velasco and Lobato (2018) for
the MA(1) model and but slightly worse for the t5 distribution. For exponential innovations,
our estimates improve the results of moment estimation despite not directly focusing of the
strong skewness of this distribution. In terms of the choice of σ , there are not systematic dif-
ferences in many cases, but σ = 0.5 and 1.0 seem to perform better for the exponential and
t5 distributions and σ = 1.0 for the uniform, so σ = 1.0 seems an overall robust choice once
residuals are standardized.

In Table 3 reporting the results for the ARMA(1,1) models, we observe a similar pat-
tern, though identification of root location becomes more difficult with the complexity of the
model, noting that there are now up to four potential root configurations. The exponential
case is still the easier to identify, while the results in the uniform case seem to improve quite
slowly with sample size, especially for the mds criterion.

Our second experiment investigates model identification with mds innovations generated
by a GARCH model εt = γtet with γ 2

t = 1 + 0.8ε2
t−1 + 0.2γ 2

t−1 and centered i.i.d. expo-
nentially distributed et . The main conclusion from the results in Table 4 is the asymmetry
for i.i.d. and mds estimation criteria for both AR(1) and MA(1) models. The loss function
based on mds works as expected for models with roots outside the unit circle (with the i.i.d.
criterion obtaining not surprisingly misleading results as T grows for some σ ). However, for
models with roots inside the unit circle, the Lmds

T criterion loses much of its identification
power, improving very slowly with sample size, while Li.i.d.

T has a reasonable performance
despite simulated series have no linear representation with fully independent innovations. It
appears that the wrong linear representation, together with the higher order dependence of
the innovations, leads to stronger departures from the i.i.d. hypothesis than from the mds one,
so the mds criterion, which for the t distribution was already performing slightly worse for
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TABLE 2
MA(1) Percentage of correct root identification, i.i.d. εt

Li.i.d.
T Lmds

T

εt T σ 0.5 0.9 0.9−1 0.5−1 0.5 0.9 0.9−1 0.5−1

Exp 100 1.0 99.39 89.66 86.06 99.39 96.10 62.66 84.60 69.39
200 1.0 99.72 98.05 96.92 99.98 99.69 70.44 94.16 75.57
400 1.0 100.00 99.90 99.90 100.00 100.00 81.40 99.20 83.60

t5 100 1.0 69.19 61.19 55.85 69.32 59.61 53.35 54.33 59.72
200 1.0 78.21 62.72 59.19 77.06 62.99 54.52 55.61 59.67
400 1.0 88.30 69.30 65.80 87.80 69.40 54.80 60.20 61.10

Unif 100 1.0 73.26 57.76 52.47 71.63 58.24 52.07 56.88 49.61
200 1.0 86.96 63.63 58.59 86.63 65.08 53.09 67.65 52.42
400 1.0 96.40 73.50 72.10 96.70 75.90 55.40 80.70 59.50

Note: See Table 1.

independent innovations, has more difficulties to pick up the right model for moderate sample
sizes.

In our third simulation analysis, we investigate the empirical root mean square error
(RMSE) of parameter estimates of the moving average parameter of MA(1) and ARMA(1,1)
models with i.i.d. innovations (see Tables 5* and 6* in Appendix E in Velasco (2022)). We
use both (i.i.d. and mds) identification criteria with both spectral cumulative (L•

T ) and den-
sity (Q•

T ) functions for initial estimates (θ̂T and θ̃T , respectively). We also consider efficient
GMM estimates θ̃

gmm
T using jointly i.i.d., mds and wns or mds and wns moments and efficient

CGMM estimates θ̄T based on Q̄i.i.d.
T and Q̄mds

T . For the later estimate, we use αT = T −2,
which, despite does not satisfy the assumptions of Theorems 6 and 7, performed well when
estimating the asymptotic variance of criterion scores for Gaussian errors. RMSE calculations
only use replications in which the location of the lag polynomials were correctly identified.

In terms of efficiency of nonoptimal methods, i.i.d. based estimation works better than
mds for exponential and t5 distributions, but it is outperformed by mds estimation meth-
ods for invertible models with uniform innovations (Table 5*). Whittle estimation imposing

TABLE 3
ARMA(1,1) Percentage of correct root identification, εt ∼i.i.d.

Li.i.d.
T Lmds

T

εt T σ C-I NC-I C-NI NC-NI C-I NC-I C-NI NC-NI

Exp 100 1.0 95.02 88.95 89.05 93.47 89.38 71.98 68.82 54.85
200 1.0 99.60 98.28 98.16 99.48 98.54 85.56 80.94 66.12
400 1.0 100.00 100.00 100.00 100.00 100.00 94.90 90.20 79.50

t5 100 1.0 42.77 41.58 40.13 41.76 34.88 36.29 33.61 34.76
200 1.0 54.04 47.86 48.00 52.76 40.66 38.76 35.20 37.84
400 1.0 68.60 55.90 56.50 67.70 45.00 43.00 39.20 41.20

Unif 100 1.0 40.74 41.15 41.11 37.81 31.55 31.71 25.64 20.85
200 1.0 53.04 55.38 56.66 50.46 36.14 39.68 30.02 23.50
400 1.0 65.90 76.30 75.10 63.00 41.40 55.50 38.40 28.50

Note: Percentage of replications in which Li.i.d.
T (θ) and Lmds

T (θ) are minimized for a value θT , which identifies
correctly the location of both the AR and MA roots with respect the complex unit circle. Models: C-I is causal and
invertible, θ0 = (0.5,0.5)′; NC-I is noncausal and invertible, θ0 = (1/0.5,0.5)′; C-NI is causal and noninvertible,
θ0 = (0.5,1/0.5)′; NC-NI is noncausal and noninvertible, θ0 = (1/0.5,1/0.5)′.
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TABLE 4
AR(1) & MA(1) Percentage of correct root ident. εt ∼mds.GARCH.Exp(1)

AR(1) MA(1)

0.5 0.5−1 0.5 0.5−1

εt T σ Li.i.d.
T Lmds

T Li.i.d.
T Lmds

T Li.i.d.
T Lmds

T Li.i.d.
T Lmds

T

Exp 100 1.0 54.79 61.54 67.35 47.39 41.84 61.04 63.32 44.18
200 1.0 53.70 79.71 72.70 45.86 35.60 72.46 66.33 46.22
400 1.0 53.50 89.74 79.65 45.60 27.35 84.75 69.20 52.05
800 1.0 93.90 99.40 99.20 69.40 80.70 99.20 99.10 68.30

Note: See Table 1.

invertibility and causality (and inverting the roots for noninvertible or noncausal models)
performs systematically worse than our estimates, which exploit non-Gaussian information,
except again for the uniform distribution

Across parameter configurations and choices of σ , there are no systematic differences
between θ̂T and θ̃T exploiting spectral distribution and density functions, respectively, but
the latter shows better relative efficiency in more persistent set-ups as expected, though the
empirical RMSE seems very sensitive to a small number of outlying replications. For expo-
nential and uniform distributions, σ = 1.0 seems the best choice in terms of robustness and
efficiency, but for t5 innovations σ = 0.5 provides better results in most model and estimation
method configurations.

The two optimal GMM estimates can improve substantially with respect to unweighted
methods, specially for i.i.d. based estimation. We only report results for σ = 1.0 as results
after optimal weighting of moment conditions are more stable across σ . CGMM provides im-
proved efficiency overall, specially for large sample sizes, with the RMSE of GMM estimates
being more sensitive for roots close to the unit circle, perhaps because it relies on asymptotic
approximations to the score variances instead of standardizing directly empirical moments
as in CGMM. These optimal estimates under i.i.d. and mds perform noticeably better than
the higher order moments method of Velasco and Lobato (2018) for exponential errors. For t

and uniform errors and nonminimum phase models our estimates also improve on those, with
comparable performance for noninvertible models.

The results in Table 6* for the ARMA(1,1) model and exponential errors lead to analogous
conclusions, with weighted estimates displaying a more erratic behavior for the smallest sam-
ple size. However, for the larger samples, the efficient CGMM estimate outperforms almost
uniformly any other estimate also for this more complex model, being our general recom-
mended procedure for not too short time series, considering the modest additional computa-
tion cost from initial estimates like θ̂T , both based on standardized residuals with σ = 1.0.
With respect to which restriction to apply, mds is more robust by construction, but in mod-
erate sample sizes i.i.d . estimates typically have a higher rate of success to identify the right
model, even with misspecified innovations dependence, and smaller RMSE. We illustrate this
estimation strategy in the empirical application described in Appendix F of Velasco (2022).
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SUPPLEMENTARY MATERIAL

Technical and numerical appendices (DOI: 10.1214/22-AOS2220SUPPA; .pdf). The
Supplementary Material contains six Appendices: A. Proofs of results, B. Auxiliary Lem-
mas, C. Asymptotic variance for Gaussian errors and W , D. Closed-form expressions for
Gaussian W , E. Extended Monte Carlo Results, F. Empirical Application.

Matlab Code (DOI: 10.1214/22-AOS2220SUPPB; .zip). MATLAB code is provided for
replicating the simulations reported in the paper.
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