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Abstract
We present a framework that allows for the non-asymptotic study of the 2-Wasserstein distance be-
tween the invariant distribution of an ergodic stochastic differential equation and the distribution of
its numerical approximation in the strongly log-concave case. This allows us to study in a unified
way a number of different integrators proposed in the literature for the overdamped and under-
damped Langevin dynamics. In addition, we analyse a novel splitting method for the underdamped
Langevin dynamics which only requires one gradient evaluation per time step. Under an additional
smoothness assumption on a d–dimensional strongly log-concave distribution with condition num-
ber κ, the algorithm is shown to produce with an O

(
κ5/4d1/4ε−1/2

)
complexity samples from a

distribution that, in Wasserstein distance, is at most ε > 0 away from the target distribution.

Keywords: Markov Chain Monte Carlo; Langevin diffusion; Bayesian inference; numerical anal-
ysis of SDEs; strong convergence

1. Introduction

The problem of sampling from a target probability distribution π?(x) in Rd is ubiquitous throughout
applied mathematics, statistics, molecular dynamics, statistical physics and other fields. A typical
approach for solving such problems is to construct a Markov process on Rm, m ≥ d whose equilib-
rium distribution (or a suitable marginal of it) is designed to coincide with π? (Brooks et al., 2011).
Often such Markov processes are obtained by solving stochastic differential equations (SDEs). Two
typical examples of such SDEs are the overdamped Langevin equation, c > 0,

dx = −c∇f(x) dt+
√

2c dW (t), (1)

and the underdamped Langevin equation, c, γ > 0,

dv = −γv dt− c∇f(x) dt+
√

2γc dW (t), (2a)

dx = v dt. (2b)
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Under mild assumptions on f(x) one can show that the dynamics of (1) is ergodic with respect to
the distribution π? with density ∝ exp(−f(x)), while the dynamics of (2) is ergodic with respect
to π? with density ∝ exp(−f(x)− 1

2c‖v‖
2).

Equations (1), (2) (Sanz-Serna, 2014) provide the basis for different computational devises for
sampling from π?. In particular, one can obtain samples from π? by discretizing the SDEs and
generating numerical solutions over a long time interval (Milstein and Tretyakov, 2007). One needs
to be careful with the integrator that is used, since it could be the case that the discrete Markov chain
resulting from the numerical discretization might not be ergodic (Roberts and Tweedie, 1996). In
addition, even if that chain is ergodic, it is normally the case that the stationary distribution π̂? of
the numerical solution is different from π?. The study of the asymptotic error between π̂? and π?

has received a lot of attention in the literature. The work in Mattingly et al. (2010) investigates the
effect of the numerical discretization on the convergence of the ergodic averages, while Abdulle
et al. (2014) present general order conditions for the numerical invariant measure π̂? to approximate
π? with high order of accuracy, by exploiting the connections between partial differential equations
and SDEs (Lelièvre and Stoltz, 2016). A number of recent papers have applied this framework to
numerical integrators for the underdamped Langevin equation (Abdulle et al., 2015), as well as to
the case of stochastic gradient Langevin dynamics (Vollmer et al., 2016; Leimkuhler and Shang,
2016). In addition, Vilmart (2015); Laurent and Vilmart (2020) extended this framework to the case
of post processed integrators and to SDEs on manifolds.

Another line of research that has received much attention in the last few years deals with the
study of the non-asymptotic error between the numerical approximation and the invariant measure
π?. In particular, for the case of the overdamped Langevin equation (1) and log-concave and strongly
log-concave distributions Dalalyan (2017b) established non-asymptotic bounds in total variation
distance for the Euler-Maruyama method and an explicit extension of it based on further smoothness
assumptions. These results have been extended to the Wasserstein distance W2 in e.g. Durmus
and Moulines (2017); Dalalyan (2017a); Durmus and Moulines (2019); Dalalyan and Karagulyan
(2019); Durmus et al. (2019), while the paper Hodgkinson et al. (2021) obtains similar bounds for
implicit methods applied to (1). Similar non-asymptotic analyses for the case of the underdamped
Langevin equation appear in Cheng et al. (2018); Dalalyan and Riou-Durand (2020); Monmarché
(2021); Shen and Lee (2019); Foster et al. (2021). One of the aims of all that literature is to study
the number of steps n that the integrators require to achieve a target accuracy ε when applied to
d-dimensional targets with condition number κ. Underdamped discretizations may lead to a better
dependence of n on ε and d than their overdamped counterparts. The case of non-strongly log-
concave distributions and the non-asymptotic behaviour of numerical algorithms has also received
attention recently (Dalalyan et al., 2019; Majka et al., 2020).

In this work, we present a unified framework that allows for the non-asymptotic study of nu-
merical methods for ergodic stochastic differential equations (including equations (1) and (2)) in
the case of strongly log-concave distributions. In particular, we obtain a general bound for the er-
ror in W2 between π? and the probability distribution of the numerical solution after n-iterations.
This bound depends on two factors, the first can be controlled by understanding the contractivity
properties of the numerical method, while the second is directly related to the local strong error of
the integrator. Moving to integrators with smaller strong local error results in a better performance
when the dimensionality grows and the error level ε decreases. Also moving to integrators that
are contractive for larger step sizes improves the performance for large condition numbers. This is

2



WASSERSTEIN DISTANCE AND NUMERICAL APPROXIMATIONS TO ERGODIC SDES

consistent with what has been suggested in the literature (Hodgkinson et al., 2021; Pereyra et al.,
2020).

As an application of the suggested framework, we study two numerical methods for the under-
damped Langevin dynamics. The first is the method, that we shall call EE, used in Cheng et al.
(2018); the second is a splitting method called UBU. Both require the same computational effort,
namely one gradient evaluation per time-step, but UBU has better convergence properties (Alamo
and Sanz-Serna, 2016, 2019).

• For the integrator EE, we prove that, in 2-Wasserstein distance and for a strongly log-concave
d-dimensional distribution with condition number κ, the algorithm produces a distribution
that is ε–away from the target in a number of steps that (up to logarithmic terms) behaves like
O(ε−1κ3/2d1/2). This improves on the O(ε−1κ2d1/2) estimate in Cheng et al. (2018). EE
has also been analysed in Dalalyan and Riou-Durand (2020); however, the analysis in that
reference has severe limitations as discussed in Section 6.

• UBU, under the same hypotheses as EE, shares the O(ε−1κ3/2d1/2) estimate. However, un-
like EE, UBU is capable of leveraging additional smoothness properties of the log-density
of the target. With such an additional smoothness assumption, we prove an estimate that de-
pends on ε, κ and d as O(ε−1/2κ5/4d1/4) (there is also a dependence on a bound for the third
derivatives of the target log-density).

Even though a detailed comparison between UBU and alternative algorithms is not within the
scope of the present paper, the following comments are in order.

• As we will discuss in Remark 26, for fixed κ, the improvement from the ε−1d1/2 EE esti-
mate to the ε−1/2d1/4 UBU estimate arises from EE having strong order one and UBU having
strong order two. This shows the importance of strong second-order integrators. A strong
second-order discretization of the underdamped Langevin dynamics that requires evaluation
of the Hessian has been introduced in Dalalyan and Riou-Durand (2020). However the anal-
ysis in that reference only holds for unrealistic values of the stepsize, see Section 6.2.

• The randomized midpoint method in Shen and Lee (2019) uses two gradient evaluations per
time-step and may be regarded as optimal (Cao et al., 2020) among the integrators of the un-
derdamped Langevin dynamics that use the driving Brownian motion, its weighted integration
and target and an oracle of the ∇f . For Lipschitz gradients, the estimate of the mixing time
is O(ε−1/3κ7/6d1/6 + ε−2/3κd1/3), where we note the favourable dependence on κ, which
stems from the random nature of the algorithm (see Cao et al. (2020) and its references). For
fixed κ we then find an ε−2/3d1/3 behaviour, to be compared with the ε−1/2d1/4 estimate of
UBU when the extra smoothness assumption holds. See Remark 26.

• The algorithm suggested in Mou et al. (2021) is not based on integrating the underdamped
Langevin equation but an alternative system of stochastic differential equations where x has
additional smoothness (see Remark 4). For fixed κ, the authors prove a O(ε−1/2d1/4) esti-
mate of the mixing time (i.e. the behaviour established here for UBU). That reference does
not investigate the dependence of the mixing time on κ; numerical experiments suggest the
algorithm does not operate satisfactorily when the condition number is large.
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The main contributions of this work are:

1. The use of an appropriate state-form representation of SDEs and their numerical integrators
that allows to establish contractivity estimates both for the time-continuous process and its
numerical solution.

2. A study of the contractivity of integrators for the underdamped Langevin dynamics that takes
into account the possible impact of increasing condition numbers.

3. A general result that allows to obtain bounds for the 2-Wasserstein distance between the target
distribution and its numerical approximations for general SDEs. In particular the result may
be applied to discretizations of the overdamped and underdamped Langevin equations.

4. We improve on the analysis in Cheng et al. (2018) and explain the reasons why similar im-
provements may be expected when analysing other integrators.

5. We suggest the use in sampling of UBU, a splitting integrator for the underdamped Langevin
equations that only requires one gradient evaluation per step and possesses second order weak
and strong accuracy.

6. We provide non-asymptotic estimates of the sampling accuracy of UBU.

The rest of the paper is organised as follows. In Section 2 we set up notation and discuss the
different smoothness assumption on f that we will employ through out the paper. In Section 3 we
present the stochastic differential equations (SDEs) we are concerned with. These are written in
a state-space form framework, similar to that used (for other purposes) in Lessard et al. (2016);
Fazlyab et al. (2018); Sanz Serna and Zygalakis (2021). This framework is useful here because it
makes it easy (see Propositions 9 and 11) to investigate the contractivity properties that underlie
the SDE Wassertein distance estimates between the push-forward in time of two initial probability
distribution (Proposition 7). Section 4, parallel to Section 3, is devoted to the integrators and their
contractivity. Again a state-space framework is used that makes it possible to easily investigate
the contractivity of the integrators. Section 5 contains one of the main contributions of this paper,
Theorem 23, which provides a general result for getting bounds of the Wasserstein distance between
the invariant distribution π? of the SDE and the distribution of the numerical solution. To apply
Theorem 23 one needs (1) to establish a contractivity estimate for the integrator and (2) to prove
what we call a local error bound. The latter is essentially a mean square bound of the difference
between a single step of the integrator and a corresponding step with the SDE, under the assumption
that the initial data for the step follows the distribution π?. Section 6 applies the general result to
investigate two discretizations of the underdamped Langevin dynamics. The final Section 7 contains
some additional results and also the more technical proofs of the results in the preceding sections.

The extension of the material in this paper to variable step sizes and to inaccurate gradients is
certainly possible, but will not be considered.

2. Preliminaries

We will now discuss some assumptions on f , as well as set up some notation that we will later use.
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2.1 Smoothness properties of f

The symbol ‖ · ‖ always refers to the standard Euclidean norm. Throughout the paper we shall
assume that the following two conditions hold:

Assumption 1 f : Rd → Rd is twice differentiable and L-smooth, i.e

∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (3)

Assumption 2 f : Rd → Rd is m-strongly convex, i.e

∀x, y ∈ Rd, f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖x− y‖2.

It is well known that these two assumptions are equivalent to the Hessian of f , which we will
denote by H : Rd → Rd×d, being positive definite and satisfying mId×d � H(x) � LId×d.
In studies like the present one, Assumptions 1 and 2 are standard in the literature: see, among
others, Dalalyan (2017a); Durmus and Moulines (2017, 2019); Dalalyan and Karagulyan (2019) for
the overdamped Langevin dynamics and Cheng et al. (2018); Dalalyan and Riou-Durand (2020);
Monmarché (2021); Foster et al. (2021) for the underdamped case.

In addition to these two assumptions, the following further smoothness assumption on f will be
used when it comes to analysing higher strong-order discretizations for the underdamped Langevin
equation. The symbol H′ denotes the tensor of third derivatives (derivative of the Hessian); at each
x ∈ Rd,H′(x) is a bilinear operator mapping pairs (w1, w2) ∈ Rd × Rd into vectors in Rd.

Assumption 3 f is three times differentiable and there is a constant L1 ≥ 0 such that at each point
x ∈ Rd, for arbitrary w1, w2:

‖H′(x)[w1, w2]‖ ≤ L1‖w1‖ ‖w2‖

2.2 Wasserstein distance

Let π1 and π2 be two probability measures on RN . The 2-Wasserstein distance between π1, π2 is
given by

W2(π1, π2) =

(
inf
ζ∈Z

∫
RN

‖x− y‖2dζ(x, y)

)1/2

,

where Z is the set of all couplings Eberle et al. (2019) between π1 and π2, i.e. the set of all prob-
ability distributions in RN × RN whose marginals on the first and second factors are π1 and π2

respectively. More generally, if P is an N ×N positive definite symmetric matrix, we will use the
distance

WP (π1, π2) =

(
inf
ζ∈Z

∫
RN

‖x− y‖2Pdζ(x, y)

)1/2

,

where in the P -norm defined by ‖ξ‖P = (ξTPξ)1/2. Since the P -norm and the standard Euclidean
norm are related by

pmin‖ · ‖2 ≤ ‖ · ‖2P ≤ pmax‖ · ‖2, (4)

where pmin and pmax are the smallest and largest eigenvalues of P , we also have

pminW
2
2 (π1, π2) ≤W 2

P (π1, π2) ≤ pmaxW
2
2 (π1, π2),

for arbitrary π1, π2. Therefore bounds for the metricWP may immediately be translated into bounds
for W2 and viceversa.
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3. Stochastic differential equations

In this section we will study some properties of a class of ergodic stochastic differential equations
that includes (1) and (2). In particular, we will extend to the stochastic case a control theoretical
framework used in Fazlyab et al. (2018); Lessard et al. (2016) to analyse optimization algorithms,
and study properties of such SDEs, including the existence of an invariant measure, and the speed
of convergence to equilibrium in the Wasserstein distance.

3.1 State-space form

We are concerned with sampling algorithms obtained by discretizing SDEs with additive noise that
may be written as linear systems in state-space form:1

dξ(t) = Aξ(t)dt+Bu(t)dt+ σdW (t), (5a)

x(t) = Cξ(t), (5b)

u(t) = ∇f(x(t)). (5c)

Here ξ ∈ RN is the state, u ∈ Rd is the input, x ∈ Rd is the output that is mapped to u by
the nonlinear map ∇f and W represents the standard M -dimensional Brownian motion. The real
matrices A, B, C and σ are constant, with sizes N × N , N × d, d × N and N ×M respectively.
We define

D = (1/2)σσT .

and note that, since the right hand-side of (5a) is globally Lipschitz continuous, the solution exists
and is unique.

Example 1 The simplest case corresponds to the overdamped Langevin equation (1) (the positive
constant c may be set = 1 by rescaling t) and W d-dimensional. Here, N = d, M = d, ξ = x,
A = 0d×d, B = −cId, C = Id, σ =

√
2cId, D = cId.

Example 2 The underdamped Langevin dynamics (2) (γ and c are positive constants and W is
d-dimensional) has N = 2d, M = d, ξ = [vT , xT ]T , and (0 stands for 0d×d)

A =

[
−γId 0
Id 0

]
, B =

[
−cId

0

]
, C =

[
0 Id

]
, σ =

[√
2γcId
0

]
, D =

[
γcId 0

0 0

]
.

Remark 4 As distinct from the situation in (1), in (2) the noise W (t) does not enter the x equation
directly; it does so only through the auxiliary variable v. This results in x(t) being smoother in
the underdamped case than in the overdamped case. This idea may be taken further: additional
auxiliary variables may be introduced so as to increase the smoothness of x(t), see e.g. Mou et al.
(2021).

The following proposition, whose proof is given in Section 7.1, relates (5) and the pdf∝ exp
(
−

f(x)
)
. The proposition may be used to check that the target is in fact the invariant density for the

overdamped Langevin dynamics (1) and that the underdamped Langevin system (2) has the invariant
density ∝ exp

(
− f(x)− ‖v‖2/(2c)

)
.

1. Note that this excludes algorithms, like the Riemann manifold MALA in Girolami and Calderhead (2011), that
use multiplicative noise. Also Hamiltonian Montecarlo (Bou-Rabee and Sanz-Serna, 2018) and similar piecewise
deterministic samplers that use jumps do not fit in the present study.
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Proposition 5 Assume that S is an N ×N positive semidefinite symmetric matrix.

• The relations

Tr(A+DS) = 0, (6a)

CB + CDCT = 0, (6b)

CA+BTS + 2CDS = 0, (6c)

SA+ATS + 2SDS = 0, (6d)

imply that (5) has the invariant probability distribution π? with density

∝ exp
(
− f(Cξ)−(1/2)ξTSξ

)
.

• If SCT = 0, then the marginal of ∝ exp
(
− f(Cξ) − (1/2)ξTSξ

)
on x = Cξ is the target

∝ exp(−f(x)).

If f is regarded as being arbitrary, then the relations (6) are also necessary for the probability distri-
bution with density ∝ exp

(
− f(Cξ)−(1/2)ξTSξ

)
to be invariant, see Section 7.1. The next result

may be useful to check the hypotheses of Proposition 5. The proof is a simple exercise and will not
be given.

Proposition 6 The relations (6) hold if

A = −(D +R)S, B = −(D +R)CT ,

where R is an arbitrary N ×N skew-symmetric matrix.

3.2 Convergence to the invariant distribution

We assume hereafter that (5) has the unique invariant distribution π?. If π denotes the probability
distribution of the initial value ξ(0) for (5) and Φtπ, t ≥ 0 represents the resulting probability
distribution of ξ(t), we will investigate the convergence, in the Wasserstein distance, of Φtπ towards
π?, as t→∞.

In order to estimateWP (Φtπ1,Φtπ2) we use the following well-known approach. We introduce
the auxiliary 2N -dimensional SDE:

dξ(1)(t) = Aξ(1)(t)dt+B∇f(Cξ(1)(t))dt+ σdW (t), (7a)

dξ(2)(t) = Aξ(2)(t)dt+B∇f(Cξ(2)(t))dt+ σdW (t), (7b)

where the same Brownian motionW (t) drives ξ(1)(t) and ξ(2)(t). If ξ(1)(0) ∼ π1 and ξ(2)(0) ∼ π2,
and ζ is a coupling between π1 and π2 then the pushforward of ζ by the solution of (7) provides a
coupling for the distributions Φtπ1 and Φtπ2 of ξ(1)(t) and ξ(2)(t). In this setting it is easy to prove
the following result.

Proposition 7 Assume that P � 0 and λ > 0 exist such that for (7), almost surely,

‖ξ(2)(t)− ξ(1)(t)‖2P ≤ e−λt‖ξ(2)(0)− ξ(1)(0)‖2P , t > 0. (8)

Then, for arbitrary distributions, π1 and π2,

WP (Φtπ1,Φtπ2) ≤ e−λt/2WP (π1, π2), t > 0,

and, in particular, for arbitrary π,

WP (Φtπ, π
?) ≤ e−λt/2WP (π, π?), t > 0. (9)
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3.3 Contractivity

We now identify sufficient conditions for (8) to hold.

Lemma 8 Let P � 0 be an N ×N symmetric matrix and λ > 0. For solutions of (7),

d
(
eλt[ξ(2)(t)− ξ(1)(t)]TP [ξ(2)(t)− ξ(1)(t)]

)
=

eλt
(

[ξ(2)(t)− ξ(1)(t)]T (λP +ATP + PA)[ξ(2)(t)− ξ(1)(t)]

+ [u(2)(t)− u(1)(t)]BTP [ξ(2)(t)− ξ(1)(t)]

+ [ξ(2)(t)− ξ(1)(t)]TPB[u(2)(t)− u(1)(t)]
)
dt.

Proof It is enough to apply Ito’s rule to

F (t, ξ(1)(t), ξ(2)(t)) = eλt[ξ(2)(t)− ξ(1)(t)]TP [ξ(2)(t)− ξ(1)(t)];

the Ito correction is

Tr

([
σT σT

] [ P −P
−P P

] [
σ
σ

])
= 0.

The inputs u(1)(t), u(2)(t) that appear in the lemma may be eliminated by using that ∇f(x) is
continuously differentiable. In fact, by the mean value theorem,

u(2)(t)− u(1)(t) = H̄(x(2)(t), x(1)(t)) [x(2)(t)− x(1)(t)]

= H̄(x(2)(t), x(1)(t))C [ξ(2)(t)− ξ(1)(t)],

where, for each pair of vectors y1, y2 in Rd, we have defined

H̄(y2, y1) =

∫ 1

0
H
(
y1 + z[y2 − y1]

)
dz

(H is the Hessian of f ). After elimination of the inputs, Lemma 8 yields

d
(
eλt[ξ(2)(t)− ξ(1)(t)]TP [ξ(2)(t)− ξ(1)(t)]

)
=

eλt[ξ(2)(t)− ξ(1)(t)]T(
λP + P

(
A+BH̄(x(2)(t), x(1)(t))C

)
+
(
A+BH̄(x(2)(t), x(1)(t))C

)T
P
)

[ξ(2)(t)− ξ(1)(t)] dt,

an equality that implies our next result.

Proposition 9 Let P � 0 be an N × N symmetric matrix and λ > 0. Assume that, for each
y1, y2 ∈ Rd, the matrix

T (λ, P, y1, y2) = λP + P
(
A+BH̄(y1, y2)C

)
+
(
A+BH̄(y1, y2)C

)T
P

is � 0. Then, for solutions of (7) the contractivity estimate (8) holds almost surely.
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3.4 Checking contractivity

We next provide a result that is useful when checking the hypothesis T � 0 in the last proposition.
Typically, in (5)

A = Â⊗ Id, B = B̂ ⊗ Id, C = Ĉ ⊗ Id, (10)

with Â, B̂, and Ĉ of sizes N̂×N̂ , N̂×1, and 1×N̂ respectively (which implies thatN = N̂d). This
is for instance the situation for the overdamped and underdamped Langevin equations presented
above, where N̂ = 1 and N̂ = 2 respectively. In general N̂ will be a small integer and therefore the
matrices Â, B̂, and Ĉ will also be small.

When (10) holds and also σ = σ̂⊗ Id, (with σ̂ of size N̂ × M̂ ) and S = Ŝ ⊗ Id, the hypotheses
of Proposition 5 may be stated in terms of the matrices with a hat, i.e., in the second item, ŜĈT = 0
and, in the first item, Tr(Â + D̂Ŝ) = 0, etc. (here D̂ = (1/2)σ̂σ̂T ). The same observation applies
to Proposition 6. In addition, it makes sense to consider that the matrix P � 0 is of the form P̂ ⊗ Id
with P̂ of size N̂ × N̂ . Note that the eigenvalues of P are obtained by repeating d times each
eigenvalue of P̂ and in paticular P � 0 if and only if P̂ � 0. We then have:

Lemma 10 Assume that (10) holds and P = P̂ ⊗ Id. The set of the N = N̂d eigenvalues of
T (λ, P, y1, y2) is the union of the sets of eigenvalues of the matrices (of size N̂ × N̂ )

λP̂ + P̂
(
Â+Hi(y1, y2)B̂Ĉ

)
+
(
Â+Hi(y1, y2)B̂Ĉ

)T
P̂ (11)

where Hi(y1, y2), i = 1, . . . , d, are the eigenvalues of H̄(y1, y2).

Proof After using (10) and H̄ = 1⊗ H̄, the mixed product property of ⊗ implies:

T = (λP̂ + P̂ Â+ ÂT P̂ )⊗ Id + (P̂ B̂Ĉ + ĈT B̂T P̂ )⊗ H̄

Now factorize H̄ = QDQT with D diagonal and Q orthogonal (both d× d). It follows that

T = (I
N̂
⊗Q)

[
(λP̂ + P̂ Â+ ÂT P̂ )⊗ Id + (P̂ B̂Ĉ + ĈT B̂T P̂ )⊗D

]
(I
N̂
⊗Q)T ,

and, as a consequence, the eigenvalues of T are those of the matrix in square brackets in the display.
This matrix consists of N̂2 blocks, where each block is diagonal of size d× d. After reordering, the
matrix in square brackets becomes a direct sum of the d matrices in (11).

We now describe how to find, for a given P̂ � 0, the decay rate λ in (8). The hypotheses on f
guarantee that, in (11), Hi(y1, y2) ∈ [m,L]. After defining the matrix-valued function of the real
variable H ∈ [m,L] given by

Ẑ(H) = −P̂
(
Â+HB̂Ĉ

)
−
(
Â+HB̂Ĉ

)T
P̂ , (12)

we see from Lemma 10 that, if, for each H ∈ [m,L], λP̂ − Ẑ(H) � 0, then T � 0. We factorize
P̂ = L̂L̂T with L̂ invertible; for instance L̂ may be chosen to be lower triangular with positive
diagonal entries —Choleski’s factorization—, but other possibilities of course exist. The condition
λP̂ − Ẑ(H) � 0 is equivalent to the condition λId � L̂−1Ẑ(H)L̂−T . Therefore we will have
T � 0 if, as H varies in [m,L], the eigenvalues of L̂−1Ẑ(H)L̂−T are positive and bounded away
from zero. When that is the case, λ may be chosen to be the infimum of those eigenvalues. We
also note that the eigenvalues of L̂−1Ẑ(H)L̂−T are the eigenvalues of the generalized eigenvalue
problem Ẑ(H)x = ΛP̂ x. To sum up:

9



SANZ-SERNA AND ZYGALAKIS

Proposition 11 Given the symmetric, positive definite P̂ , define Ẑ(H) by (12). Assume that, as
H varies in [m,L], the eigenvalues Λ of the generalized eigenvalue problem Ẑ(H)x = ΛP̂ x are
positive and bounded away from zero and let λ > 0 be the infimum of those eigenvalues. Then the
contractivity bound (8) with P = P̂ ⊗ Id holds almost surely. Alternatively, λ may be defined as the
infimum of the eigenvalues of the matrices L̂−1Ẑ(H)L̂−T , where L̂ is any matrix with P̂ = L̂L̂T .

The following two examples show this framework applied to the case of equations (1) and (2).

Example 3 In the case of the overdamped Langevin equation (1) if we make the choice P̂ = 1, a
simple calculations gives Ẑi = 2cHi. We hence see that in this case λ = 2cm, a well-known result.

Example 4 The paper Cheng et al. (2018) studies the underdamped Langevin equation (2) and fixes
γ = 2. This does not entail any loss of generality as the value of γ > 0 may be chosen arbitrarily
by rescaling the variable t.2 Furthermore, Cheng et al. (2018) sets c = 1/L and

P̂ =

[
1 1
1 2

]
, L̂ =

[
1 0
1 1

]
. (13)

For these choices, we find

L̂−1Ẑ(H)L̂−T =

[
2 H/L− 2

H/L− 2 2

]
;

the eigenvalues of this matrix areH/L and 4−H/L and, sinceH ∈ [m,L], they are≥ m/L = 1/κ
(κ denotes the condition number). In this case λ = 1/κ and (8) becomes

‖x2(t)− x1(t)‖2 + ‖x2(t) + v2(t)− x1(t)− v1(t)‖2 ≤

exp(−t/κ)
(
‖x2(0)− x1(0)‖2 + ‖x2(0) + v2(0)− x1(0)− v1(0)‖2

)
;

which is the contraction estimate used in Cheng et al. (2018).
We note that the use of the inner product associated with P for (v, x) is equivalent to working

with the variables (x+ v, v) and the standard Euclidean inner product. This P -inner product often
appears in the construction of Lyapunov functions for damped oscillators Sanz-Serna and Stuart
(1999); Bou-Rabee and Sanz-Serna (2017)

Example 5 In the setting of the preceding example, we keep γ = 2 and P̂ as in (13), but do not
assume c = 1/L. The eigenvalues of the 2×2 matrix L̂−1Ẑ(H)L̂−T are found to be Λ+(H) = cH
and Λ−(H) = 4 − cH; for future reference, we note that they depend on H and c through the
combination cH (as it was to be expected from (2), where∇f(x) is multiplied by c). We distinguish
four cases:

1. c < 4/(L + m). As H varies in [m,L], we have min(Λ+(H)) = cm and min(Λ−(H)) =
4 − cL > cm. Therefore in this case the λ = cm and an increase in c results in an increase
in λ. In particular, for 1/L < c < 4/(L + m) the contraction rate improves on the value
1/κ corresponding to the choice c = 1/L in Cheng et al. (2018) discussed in the preceding
example.

2. Other authors, see e.g. Dalalyan and Riou-Durand (2020), use different scalings. When we quote estimates from
papers that use alternative scalings, we have translated them to the scale in Cheng et al. (2018) in order to have
meaningful comparisons.

10
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2. c = 4/(L + m). In this case min(Λ+(H)) = cm and min(Λ−(H)) = 4 − cL have the
common value 4/(κ+ 1).

3. c ∈ [4/(L+m), 4/L). Now min(Λ+(H)) = cm is larger than min(Λ−(H)) = 4− cL and
therefore λ = 4− cL, which decreases as c increases.

4. c ≥ 4/L. In this case min(Λ−(H)) ≤ 0 and there is no contractivity.

Therefore, with γ = 2 and P̂ in (13), the choice c = 4/(L + m) yields the best mixing: λ =
4/(κ+ 1). We prove in Section 7.2 that the mixing cannot be improved by using alternative choices
of P̂ .

More sophisticated choices of P̂ are considered in Dalalyan and Riou-Durand (2020).3 While
these choices allow, for some values of c, a degree of improvement on the value of λ we have
obtained by using (13) in Proposition 11, they do not yield values of λ above 4/(κ + 1) (which is
of course in agreement with the analysis in Section 7.2 below). In addition the study in Dalalyan
and Riou-Durand (2020) assumes that the variable v is started at stationarity and only monitors the
mixing in the variable x.

A useful reference on contractivity is Monmarché (2020).

Remark 12 In the examples above it was assumed that P̂ was known at the outset. Due to the small
dimension of this matrix in applications, it is not difficult to find favourable choices of P̂ . This is
illustrated in Section 7.2 (see also Dalalyan and Riou-Durand (2020)).

4. Discretizations

Having established properties for solutions of SDEs of the type (5), we now turn our attention to
the properties of their numerical discretizations. We derive a result analogous to Proposition 11 to
establish the contractivity of the numerical solutions for integrators that use only one gradient eval-
uation per time step. Such integrators are particularly attractive in problems of high dimensionality.

4.1 Discrete state-space form

To discretize (5) on the grid points tn = nh, h > 0, n = 0, 1, 2, . . ., we use schemes of the form:

ξn+1 = Ahξn +Bhun + σξhΩn, (14a)

yn = Chξn + σyhΩn, (14b)

un = ∇f(yn), (14c)

Here, at each step, yn ∈ Rd is the feedback output at which the gradient∇f will be evaluated and Ωn

represents a random vector in RM̄ suitably derived from the restriction to [tn, tn+1] of the Brownian
motion W in (5). The real matrices Ah, Bh, Ch, σξh and σyh are constant, with sizes N ×N , N × d,
d × N , N × M̄ and d × M̄ respectively. As the examples that follow will illustrate, consistency
requires that h−1(Ah − I) be an approximation to A in (5), while h−1Bh and Ch approximate B
and C. Note also the noise in (14b), which has no countepart in (5b).

3. The matrix P̂ is not used in that reference, which only works with a non-triangular L̂ such that P̂ = L̂T L̂. In turn,
L̂ is defined indirectly by choosing the columns of L̂−T to be eigenvectors of a suitable known matrix that depends
on a real parameter. The parameter is tuned to enhance the rate of contraction.

11
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Example 6 The Euler-Maruyama scheme for the SDE (1)

xn+1 = xn − hc∇f(xn) +
√

2c (W (tn+1)−W (tn))

is of the form (14) with N = d, M̄ = d, ξ = x, y = x, Ωn = W (tn+1) − W (tn), Ah = Id,
Bh = −hcId, Ch = Id, σξh =

√
2cId, σyh = 0d×d.

Example 7 To shorten the notation, we introduce the functions:

E(t) = exp(−γt), F(t) =

∫ t

0
E(s) ds =

1− exp(−γt)
γ

,

and

G(t) =

∫ t

0
F(s) ds =

γt+ exp(−γt)− 1

γ2
.

For the integration of (2) Cheng et al. Cheng et al. (2018) use the scheme:

vn+1 = E(h)vn −F(h)c∇f(xn) +
√

2γc

∫ tn+1

tn

E(tn+1 − s)dW (s), (15a)

xn+1 = xn + F(h)vn − G(h)c∇f(xn) +
√

2γc

∫ tn+1

tn

F(tn+1 − s)dW (s). (15b)

In this example, N = 2d, M̄ = 2d, ξ = [vT , xT ]T , y = x,

Ωn =

[∫ tn+1

tn
E(tn+1 − s)dW (s)∫ tn+1

tn
F(tn+1 − s)dW (s)

]
,

and

Ah =

[
E(h)Id 0d×d
F(h)Id Id

]
, Bh =

[
−F(h)cId
−G(h)cId

]
,

Ch = [0d×d, Id] σξh =
√

2cγI2d, σyh = 0d×2d.

The recipe for simulating the Gaussian random variables Ωn may be seen in Cheng et al. (2018).
In the absence of noise, this integrator is the well-known Euler exponential integrator Hochbruck

and Ostermann (2010), based, via the variation of constants formula/Duhamel’s principle, on the
exact integration of the system dv/dt = −γv, dx/dt = v. In the stochastic scenario the algorithm
is first order in both the weak and strong senses. The paper Foster et al. (2021) calls this scheme
the left point method. In what follows we shall refer to it as the Euler exponential (EE) integrator.

Example 8 Another instance of an underdamped Langevin integrator of the form (14) is the fol-
lowing UBU algorithm:

vn+1 = E(h)vn − hE(h/2)c∇f(yn) +
√

2γc

∫ tn+1

tn

E(tn+1 − s)dW (s), (16a)

xn+1 = xn + F(h)vn − hF(h/2)c∇f(yn) +
√

2γc

∫ tn+1

tn

F(tn+1 − s)dW (s), (16b)

yn = xn + F(h/2)vn +
√

2γc

∫ tn+1/2

tn

F(tn+1/2 − s)dW (s). (16c)

12
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Here and later tn+1/2 = tn + h/2. UBU is a splitting integrator McLachlan and Quispel (2002)
that is second order in both the weak and strong senses. See Section 7.3 for details and note that
both EE and UBU use stochastic integrals of the form

∫
FdW and therefore are not covered by the

analysis in Cao et al. (2020).

Remark 13 The format (14) only caters for schemes that use a single evaluation of the gradient
∇f per step. By increasing the dimension of u, the format may be easily adapted to integrators that
use several gradient evaluations, cf. Lessard et al. (2016); Fazlyab et al. (2018); Sanz Serna and
Zygalakis (2021). However, the technique used below to establish the contractivity of the integrators
cannot be immediately extended to schemes with several gradient evaluations; several gradient
evaluations would bring in Hessian matrices evaluated at different locations and it would not be
possible to diagonalize those Hessians simultaneously, as we did when proving Lemma 10. For the
contractivity of algorithms involving several gradient evaluations see e.g. Sanz Serna and Zygalakis
(2020) and its references.

4.2 The evolution of probability distributions in the discrete case

We will denote by Ψh,nπ the probability distribution for ξn in (14) when π is the distribution of ξ0

(thus Ψh,nπ is an operator on measures). After introducing (cf. (7))

ξ
(1)
n+1 = Ahξ

(1)
n +Bh∇f(Chξ

(1)
n + σyhΩn) + σξhΩn, (17a)

ξ
(2)
n+1 = Ahξ

(2)
n +Bh∇f(Chξ

(2)
n + σyhΩn) + σξhΩn, (17b)

we have the following discrete counterpart of Proposition 7, whose proof will not be given:

Proposition 14 Assume that Ph � 0 and ρh ∈ (0, 1) exist such that for (17), almost surely,

‖ξ(2)
n+1 − ξ

(1)
n+1‖

2
Ph
≤ ρh‖ξ(2)

n − ξ(1)
n ‖2Ph

, n = 0, 1, . . . (18)

Then, for arbitrary distributions, π1 and π2,

WP (Ψh,nπ1,Ψh,nπ2) ≤ ρn/2h WP (π1, π2), n = 0, 1, . . . (19)

4.3 Checking discrete contractivity

The proof of the following result is similar to that of Proposition 9 and will be omitted:

Proposition 15 Let Ph � 0 be an N ×N symmetric matrix and ρh ∈ (0, 1). Assume that, for each
y1, y2 ∈ Rd the matrix

Th(ρh, Ph, y1, y2) = ρhPh −
(
Ah +BhH̄(y1, y2)Ch

)T
Ph
(
Ah +BhH̄(y1, y2)Ch

)
is � 0. Then, for solutions of (17) the contractivity estimate (18) holds almost surely.

In a similar way as for the continuous time case we can prove a discrete time counterpart for
Proposition 11.
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Proposition 16 Given the symmetric, positive definite P̂h, set

Ẑh(H) =
(
Âh +HB̂hĈh

)T
P̂h
(
Âh +HB̂hĈh

)
.

Assume that, as H varies in [m,L], the supremum ρh of the eigenvalues R of the generalized
eigenvalue problems Ẑh(H)x = RP̂x is < 1. Then the contractivity bound (18) with Ph = P̂h⊗ Id
holds almost surely. Alternatively, ρh may be defined as the suppremum of the eigenvalues of the
matrices L̂−1

h Ẑh(H)L̂−Th , where L̂h is any matrix with P̂h = L̂hL̂
T
h .

The remainder of this section is devoted to the application of the last proposition to the inves-
tigation of the contractivity of the integrators (15) or (16) applied to the underdamped Langevin
system (2) with γ = 2 and P̂h chosen to coincide with P̂ in (13). We have computed symbolically
the eigenvalues R = R±h (H) in the proposition in closed form, but the resulting expressions are
complicated and will not be reproduced here. (For each fixed H we attach the + superscript to the
discrete eigenvalue R(H) closest to Λ+(H) = cH and the − superscript to the other.) Rather than
analysing directly the discrete eigenvalues, we follow an alternative approach based on leveraging
the contractivity of the SDE (studied in Example 5) and the consistency of the discretizations. The
key observation is that, by definition of consistency, for fixedH ∈ [m,L] and as h ↓ 0, the numerical
propagator matrix Âh +HB̂hĈh in Proposition 16 differs from the differential equation propagator
exp(−h(Â + HB̂Ĉ)) in Proposition 11 by an O(hp+1) amount, where p = 1 for the first order
EE integrator and p = 2 for the second order UBU. As a consequence, −h−1 log(Âh + HB̂hĈh)
is O(hp) away from Â + HB̂Ĉ (cf. (Sanz-Serna and Calvo, 2018, Example 10.1)), and, for the
eigenvalues, we have −h−1 log(R±h (H)) = Λ±(H) + O(hp). It is convenient for our purposes to
work, rather than with −h−1 log(R±h (H)), in terms of the quantities

Λ̃±h (H) = 2h−1(1−R±h (H)1/2); (20)

for these (since, as ζ → 1, −h log ζ ∼ 2(1 − ζ1/2)) we have Λ̃±h (H) = Λ±(H) + O(h). An
illustration of the convergence of Λ̃±h (H) to Λ±(H) may be seen in Figure 1.

Remark 17 Note that R±h (H)1/2 = 1 − Λ̃±h h/2 is an approximation to exp(−Λ±(H)h/2) and
compare with the relation between the discrete decay factor ρ1/2

h over one time step in (19) and the
SDE decay factor exp(−λh/2) in (9) over a time interval of length h.

Because the discrete eigenvalues depend smoothly onH and this variable ranges in the compact
interval [m,L], the convergence Λ̃±h (H) → Λ±(H) is uniform in H . Therefore 2(1 − ρ

1/2
h )/h,

which is the minimum of 2(1 − R±h (H)1/2)/h, converges to the minimum of Λ±(H), in the limit
where h ↓ 0 with c, m and L fixed. We conclude that, for h small enough, the discretizations will
behave contractively when the SDE does, i.e. whenever c ≤ 4/(L+m). However, this conclusion
is per se rather weak because, as we have seen in Example 5, as L and m vary with κ → ∞, the
contraction rate λ behaves like O(κ−1) and it may be feared that the discretizations be contractive
only for values of h that, as κ increases unboundedly, tend to 0 . If that were the case, the usefulness
of the integrators (15) or (16) could be doubted. The next result proves that those fears are not
warranted if c is chosen appropiately: the discretizations are contractive with a rate that essentially
coincides with the SDE rate, provided that h is below a threshold independent of L and m.
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Figure 1: On the left, γ = 2, L = 10, m = 1, c = 3/(L + m) and P̂ is as in (13); the condition
number is very low so as to enhance the clarity of the figure. The solid lines correspond to the
SDE eigenvalues Λ+(H) = cH , Λ−(H) = 4 − cH . The value of λ is the minimum eigenvalue
and occurs for Λ+ evaluated at m, so that λ = 3m/(L + m) = 3/11. The discontinuous lines
represent the UBU discrete counterparts Λ̃+

h (H) and Λ̃−h (H) for h = 2, 1, 1/2, 1/4; as h decreases,
Λ̃+
h (H) and Λ̃−h (H) converge to the SDE eigenvalues. For h = 2 and H large, Λ̃−h (H) < 0 and

the numerical scheme is not contractive. The parameters in the right panel are the same as those on
the left, with the exception that L = 109 leading to an extremely high condition number. Now the
minimum of the SDE eigenvalues is λ ≈ 10−9. As on the left, there is numerical contractivity for
h = 1, 1/2, 1/4, but not for h = 2; see the leftmost column in Table 1.

Theorem 18 Consider the SDE (2) with γ = 2, c = c̄/(L + m), where the constant c̄ ∈ (0, 4)
is independent of L and m. For the discretization provided by the integrators (15) or (16), to any
r̄ < c̄/2 there corresponds a value h0 = h0(r̄) such that, for h ≤ h0, the discrete contraction
estimate (18) holds with Ph = P̂ ⊗ Id (P̂ is the matrix in (13)) and ρh = 1− r̄h/(κ+ 1).

Proof We begin by recalling, from Example 5, that the SDE eigenvalues are Λ+ = cH and
Λ− = 4 − cH . In addition, and for the reasons we pointed out in the continuous case, the dis-
crete eigenvalues R±h (H), for fixed h, are functions of the combination H̃ = cH . In other words,
for fixed H̃ ,R±h depend only on h (i.e. they are independent of L andm). In this way, when thinking
in terms of the variable H̃ , changing L andm only impacts the convergence Λ̃±h → Λ± by changing
the interval [cm, cL] = [c̄/(κ+ 1), c̄κ/(κ+ 1)] ⊂ [0, c̄] of values of H̃ that have to be considered.
Therefore, how much h has to be reduced to get |Λ̃±h (H) − Λ±(H)| below a target error tolerance
is independent of H ∈ [m,L], m > 0 and L ≥ m.

Now the theorem is clearly true when κ ranges in a bounded interval and we may suppose in
what follows that κ is so large that c̄/(κ+ 1) ≤ 2− c̄/2. We consider the two eigenvalues − and +
successively.

For Λ̃−h we note that, as H varies in [m,L],

Λ−(H) ≥ Λ−(L) = 4− cL=4− c̄L

L+m
=

(4− c̄)L+ 4m

L+m
=

(4− c̄)κ+ 4

κ+ 1
≥ 4− c̄.
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As a consequence, for h small enough, Λ̃−h (H) > (1/2)(4 − c̄). In view of the restriction on κ,
Λ̃−h (H) > c̄/(κ+ 1).

The discussion of the behaviour of Λ̃+
h is more delicate. Here we need to take into account

that, if we set c = 0 in (1) so as to switch off the force ∇f(x) and the noise, then both in-
tegrators under consideration are exact. This implies that, at H̃ = 0 and for arbitrary h, Λ̃+

h

coincides exactly with the continuous eigenvalue Λ+ = 0. This in turn entails that the error
Λ̃+
h (H) − Λ+(H) vanishes at H̃ = 0 for each h and must then have an expression of the form

hH̃G(h, H̃), where G is a smooth function (this is born out in Figure 1, where the difference
Λ̃+
h (H)−Λ+(H) decreases as H̃ decreases with fixed h). Since Λ+(H) = H̃ , for the relative error

we may write
(
Λ̃+
h (H) − Λ+(H)

)
/Λ+(H) = hG(h, H̃). By taking h sufficiently small we may

guarantee that Λ̃+
h (H) ≥ (2r̄/c̄)Λ+(H) and, since Λ+(H) ≥ Λ+(m) = cm = c̄/(κ+ 1), we have

Λ̃+
h (H) > c̄/(κ+ 1) and the proof is complete.

Remark 19 The same proof shows that if c = 1/L (as in Cheng et al. (2018)) a similar results
holds with a rate ρh = 1− r̄h/κ, where r̄ < 1/2 may be chosen arbitrarily.

Remark 20 The choice c = 4/(L+m) guarantees contractivity in the SDE, but has to be excluded
from Theorem 18. For this value, the proof breaks down because, as the condition number increases,
Λ−(L) = 4m/(L+m) is not bounded away from zero. By using the expressions of the eigenvalues
R±h (H) at H = L, it may be seen that contractivity requires h = O(κ−1) for the EE integrator and
h = O(κ−1/2) for the second order UBU.

Remark 21 Only two properties of the integrators EE and UBU have been used in the proof: (i)
they are consistent, (ii) they are exact if the force and noise are switched off. The second of these
was required to prove that, for each h, Λ̃+

h (0) = 0, or equivalently, R+
h (0) = 1 (see (20)), which

means that that Âh has 1 as an eigenvalue. In fact, for all reasonable discretizations, it is true that
Âh has the eigenvalue 1. This happens because with v0 = 0 and c = 0 (no velocity, no force)
any reasonable discretization will yield v1 = v0, x1 = x0 (the particle stands still). Therefore the
theorem is true for all integrators of interest.

Example 9 The proof of the theorem sheds no light on the size of the threshold h0. With a view to
ascertaining the range of values of h for which the integrators (15) and (16) behave contractively,
we have computed numerically the eigenvalues in Proposition 16 and taken the suppremum over H
with fixed h. Table 1 provides information on the quotient (1−ρ1/2

h )/h that approximates the decay
constant λ/2 in the estimate (9). For the parameter choice c = 1/L used in Cheng et al. (2018),
the table shows that, for h sufficiently small (say h ≤ 1), there is numerical contractivity and the
quotient coincides (within the number of digits reported) with the SDE rate λ/2 = 1/(2κ) found in
Section 3.4. The table also gives results for the choices c = 2/(L+m) and c = 3/(L+m), where
again the values of (1 − ρ1/2

h )/h reported are in agreement with the SDE rates λ/2 = 1/(κ + 1)
and λ/2 = (3/2)/(κ+ 1) found in Example 5.

For all choices of c, the UBU integrator (16) operates contractively for values of h that are
larger than those required by the EE integrator (15). In addition, as c increases with fixed h, EE
looses contractivity before UBU. This is consistent with Remark 20.
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h c = 1/L c = 2/(L+m) c = 3/(L+m)

EE UBU EE UBU EE UBU
2 *** 5.000(-10) *** *** *** ***
1 5.000(-10) 5.000(-10) *** 1.000(-9) *** 1.500(-9)

1/2 5.000(-10) 5.000(-10) 1.000(-9) 1.000(-9) *** 1.500(-9)
1/4 5.000(-10) 5.000(-10) 1.000(-9) 1.000(-9) 1.500(-9) 1.500(-9)

Table 1: Contractivity of the integrators EE and UBU for the underdamped Langevin equations with γ = 2,
Ph = P̂ ⊗ Id (P̂ as in (13)). The table gives the value of (1 − ρ1/2h )/h where ρh is as in (18). The symbol
*** means that for that combination of h and c the integrator is not contractive. The table is for the large
condition number κ = 109. In the corresponding tables for κ = 103 or κ = 106 (not reproduced in this
paper), the symbol *** appears at exactly the same locations as in the case κ = 109 reported above, but the
values of (1− ρ1/2h )/h are multiplied by 106 or 103 respectively, showing a 1/κ behaviour.

5. A general theorem

In this section we consider integrators for (5) of the form ξn+1 = ψh(ξn, tn), tn = nh, n = 0, 1, . . .,
h > 0, where, following the terminology in Milstein and Tretyakov (2004), ψh(ξ, t) represents the
one-step approximation; ψh(ξ, t) uses the restriction of the Brownian motionW in (5) to the interval
[t, t+h], but this fact is not reflected in the notation. Integrators of the form (14) provide a particular
class of integrators of this form (cf. Remark 13). If Ph is an N ×N matrix� 0 and π is an arbitrary
probability distribution for the initial condition ξ0, we wish to study the distance WPh

(π?,Ψh,nπ)
between the invariant distribution π? and the distribution Ψh,nπ of ξn.

In the analysis, for random vectors X ∈ RN , we use the Hilbert-space norm ‖X‖L2,Ph
=

E(‖X‖2Ph
)1/2. The symbol 〈·, ·〉L2,Ph

will be used for the corresponding inner product. We denote
by φh(ξ, t) the exact counterpart of ψh(ξ, t), so that if ξ(t) is a solution of (5) then ξ(tn+1) =
φh(ξ(tn), tn). At each time-level n, n = 0, 1, 2, . . ., we introduce a random variable ξ̂n ∼ π? such
that WP (π?,Ψh,nπ) = ‖ξ̂n − ξn‖L2,Ph

. For the difference φh(ξ̂n, tn) − ψh(ξ̂n, tn) (that may be
seen as a local error), we consider the following assumption:

Assumption 22 There is a decomposition

φh(ξ̂n, tn)− ψh(ξ̂n, tn) = αh(ξ̂n, tn) + βh(ξ̂n, tn),

and positive constants p, h0, C0, C1, C2 such that for n ≥ 0 and h ≤ h0:∣∣∣∣〈ψh(ξ̂n, tn)− ψh(ξn, tn), αh(ξ̂n, tn)
〉
L2,Ph

∣∣∣∣ ≤ C0h ‖ξ̂n − ξn‖L2,Ph
‖αh(ξ̂n, tn)‖L2,Ph

(21)

and
‖αh(ξ̂n, tn)‖L2,Ph

≤ C1h
p+1/2, ‖βh(ξ̂n, tn)‖L2,Ph

≤ C2h
p+1. (22)

We can now state our general theorem that gives a bound for the Wasserstein distance between the
invariant measure π? and the distribution of the n+ 1-th iteration of the numerical scheme.
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t0 tn tn+1

π

π∗

W (Ψh,nπ, π
∗)

W (Ψh(Ψh,nπ),Ψhπ
∗)

W (Ψhπ
∗,Φhπ

∗)

(numerical contraction)

(local error)

t0 tntn+1

π

π∗

W (Ψh,nπ, π
∗)

W (Ψh(Ψh,nπ),Φh(Ψh,nπ))

W (Φh(Ψh,nπ),Φhπ
∗)

(local error)

(SDE contraction)

Figure 2: Different approaches for obtaining a bound for W2(Ψh,n+1π, π
∗). The vertical axes rep-

resent probability distributions and the horizontal axes correspond to time. Solid lines indicate
evolution with the SDE and broken lines evolution with the integrator. On the left, the technique
in Dalalyan (2017a); Dalalyan and Karagulyan (2019) and this paper, where the contractivity of the
integrator is used to propagate forward the distance between the target distribution π? and distribu-
tion Ψh,nπ of the numerical solution at time tn. On the right, the technique in Cheng et al. (2018);
Dalalyan and Riou-Durand (2020) that leverages the contractivity of the SDE. On the left, the “local
error” is based at the target; on the right is based at the numerical approximation.

Theorem 23 Assume that the integrator satisfies Assumption 22 and in addition, there are constants
h0 > 0, r > 0 such that for h ≤ h0 the contractivity estimate (18) holds with ρh ≤ (1 − rh)2.
Then, for any initial distribution π, stepsize h ≤ h0, and n = 0, 1, . . .,

WPh
(π?,Ψh,nπ) ≤ (1− hRh)nWPh

(π?, π) +

(√
2C1√
Rh

+
C2

Rh

)
hp, (23)

with
Rh =

1

h

(
1−

√
(1− rh)2 + C0h2

)
= r + o(1), as h ↓ 0.

Before going into the proof we make some observations:

• The theorem is in the spirit of classic “consistency and stability imply convergence” numerical
analysis results. The main idea of the proof is schematically illustrated in the left panel of
Figure 2. The error of interest at time level n + 1 can be decomposed into two terms. The
first is the distance between Ψh(Ψh,nπ) and Ψhπ

? and can be bounded in terms of the error at
time level n by using the contractivity of the numerical integrator. The second is the distance
between Ψhπ

? and Φhπ
? = π? and can be bounded by estimating the strong local error by

means of Assumption 22.

• The local error needs to be bounded in the strong sense. This should be compared with
studies about weak convergence of the numerical distribution Abdulle et al. (2014); Lelièvre
and Stoltz (2016) where the estimates depend on the weak order of the integrator.
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• The β = O(hp+1) part of the local error results in an O(hp) contribution to the bound on
WPh

(π?,Ψh,nπ). One power of h is lost from going from local to global as in the classical
analysis of (deterministic) numerical integrators.

• The α = O(hp+1/2) part of the local error is asked to satisfy the requirement (21) and only
looses a factor h1/2 when going from local to global. This is reminiscent of the situation
for the strong convergence of numerical solutions of SDEs (see e.g. (Milstein and Tretyakov,
2004, Theorem 1.1)), where, for instance, the Euler-Maruyama scheme with O(h3/2) strong
local errors yieldsO(h) strong global errors (assuming additivity of the noise). Typically, the
α part of the local error will consist of Ito integrals that, conditional on events occurring up
to the beginning of the time step, have zero expectation.

Proof We may write

φh(ξ̂n, tn)− ξn+1 =
(
ψh(ξ̂n, tn)− ψh(ξn, tn)

)
+
(
φh(ξ̂n, tn)− ψh(ξ̂n, tn)

)
=

(
ψh(ξ̂n, tn)− ψh(ξn, tn) + αh(ξ̂n, tn)

)
+ βh(ξ̂n, tn),

and therefore, by the triangle inequality and (21), for h ≤ h0,

‖φh(ξ̂n, tn)− ξn+1‖L2,Ph

≤ ‖ψh(ξ̂n, tn)− ψh(ξn, tn) + αh(ξ̂n, tn)‖L2,Ph
+ ‖βh(ξ̂n, tn)‖L2,Ph

≤
(
‖ψh(ξ̂n, tn)− ψh(ξn, tn)‖2L2,Ph

+ 2C0h‖ξ̂n − ξn‖L2,Ph
‖αh(ξ̂n, tn)‖L2,Ph

+ ‖αh(ξ̂n, tn)‖2L2,Ph

)1/2
+ ‖βh(ξ̂n, tn)‖L2,Ph

.

We next apply the contractivity hypothesis, the elementary bound 2ab ≤ a2 + b2, and (22):

‖φh(ξ̂n, tn)− ξn+1‖L2,Ph

≤
(

(1− rh)2‖ξ̂n − ξn‖2L2,Ph
+ C2

0h
2‖ξ̂n − ξn‖2L2,Ph

+ 2‖αh(ξ̂n, tn)‖2L2,Ph

)1/2

+ ‖βh(ξ̂n, tn)‖L2,Ph

≤
((

(1− rh)2 + C0h
2
)
‖ξ̂n − ξn‖2L2,Ph

+ 2C2
1h

2p+1
)1/2

+ C2h
p+1.

Therefore, in view of the choice of ξ̂n, and taking into account that φh(ξ̂n, tn) ∼ π∗,

WPh
(π?,Ψh,n+1π)

≤
((

(1− rh)2 + C0h
2
)
WPh

(π?,Ψh,nπ)2 + 2C2
1h

2p+1
)1/2

+ C2h
p+1.

The conclusion follows after applying the lemma in Section 7.4.

The paper Dalalyan and Karagulyan (2019) analyzes the Euler-Maruyama discretization of (1).
Under two different smoothness assumptions on f , it derives two different estimates similar to (23),
one with p = 1/2 and the other with p = 1. The application of Theorem 23 to those two cases
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retrieves the estimates in Dalalyan and Karagulyan (2019); in addition the proof of our theorem
as applied to those two particular cases coincides with the proofs provided in that paper. (In fact
we derived Theorem 23 as a generalization of the material in Dalalyan and Karagulyan (2019) to a
more general scenario.)

By considering the case where the target distribution is a product of uncorrelated univariate
Gaussians, one sees that the estimates of the mixing time in Dalalyan and Karagulyan (2019) are
optimal in their dependence on ε and d. Durmus et al. (2019) have shown that those estimates are
not optimal in their dependence on κ. This implies that the result in Theorem 23 is not necessarily
the best that may be achieved in each application.

6. Application to underdamped Langevin dynamics

We now apply Theorem 23 to integrators for (2).

6.1 The EE integrator

We begin with the EE integrator (15). For its local error we have the following theorem, proved in
Section 7.5. Recall that setting γ = 2 does not restrict the generality, as such a choice is equivalent
to choosing the units of time. Once this value of γ has been fixed, the choice of Ph in the theorem
that follows is the one that allows the best contraction rate for the SDE (2).

Theorem 24 Set γ = 2 and Ph = P̂ ⊗Id with P̂ as in (13). Then, for h ≤ 1, the discretization (15)
satisfies Assumption 22 with p = 1, C0 = C1 = 0 and C2 = Kc3/2Ld1/2, where K is an absolute
constant (K =

√
6 + 2

√
5/3).

We now may apply Theorem 23 to the situation at hand and to do so we need the contractivity
of the scheme in the P–norm studied in Theorem 18. The discussion that follows may immediately
be extended to all choices of c = c(L,m) that lead to contractivity; however, for the sake of clarity,
we fix c = 1/L as in Cheng et al. (2018). (But recall that c = 1/L is suboptimal in terms of the
contraction rate). For this choice, we know from Remark 19 that, for h ≤ h0, the numerical rate
(1 − ρ1/2

h )/h will be of the form r̄/κ, where r̄ < 1/2 may be chosen arbitrarily close to 1/2 (h0

depends of course on r̄ but it is independent of d, L and m). Theorem 23 yields, for h ≤ h0,

WP (π?,Ψn,hπ) ≤
(

1− r̄h

κ

)n
WP (π?, π) +

Kκd1/2

r̄L1/2
h. (24)

Assume now that, given any initial distribution π for the integrator and ε > 0, we wish to find
h and n to guarantee that WP (π?,Ψn,hπ) < ε. We may achieve this goal by first choosing h ≤ h0

small enough to ensure that
Kκd1/2

r̄L1/2
h <

ε

2

and then choosing n large enough to get(
1− r̄h

κ

)n
WP (π?, π) <

ε

2
.
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(Instead of splitting the target ε as ε/2 + ε/2, one may use aε+ (1− a)ε, a ∈ (0, 1), and tune a to
improve slightly some of the error constants below.) This leads to the conditions

h < min
(
h0,

r̄

2K
(m1/2ε)κ−1/2d−1/2

)
, (25)

(m1/2ε is a nondimensional combination whose value does not change if the scale of x is changed)
and

n >
−1

log(1− r̄h/κ)
log

2WP (π?, π)

ε
. (26)

According to the bound (25), h has to be scaled like (m1/2ε)κ−1/2d−1/2 as ε ↓ 0, κ ↑ ∞ or
d ↑ ∞; then the number of steps to achieve a target value of the contraction factor (1 − r̄h/κ)n

scales as
(m1/2ε)−1κ3/2d1/2. (27)

The analysis of the same integrator in (Cheng et al., 2018, Theorem 1) yields scalings that
are more pessimistic in their dependence on κ: there, h scales as (m1/2ε)κ−1d−1/2 and n as
(m1/2ε)−1κ2d1/2. In addition, the initial distribution π, which is arbitrary in the present study,
is assumed in Cheng et al. (2018) to be a Dirac delta located at v = 0 and x = x0; the estimates
become worse as the distance between the initial position x0 used in the integrator and the mode of
exp(−f(x)) increases.

It is perhaps useful to compare the technique of proof in Cheng et al. (2018) with our approach
by means of Figure 2. While we employ the contractivity of the algorithm, Cheng et al. (2018)
leverages the contractivity of the SDE itself. These two alternative approaches are well known in
deteministic numerical differential equations (see e.g. the discussion in (Hairer et al., 2000, Chapter
2) where a cartoon similar to Figure 2 is presented). On the other hand, while we investigate
φh(·, tn) − ψh(·, tn) evaluated at a random variable ξ̂n whose marginal distribution is π?, Cheng
et al. (2018) has to evaluate that difference at the numerical ξn. It is for this reason that in Cheng
et al. (2018) one needs to have information on the distribution π of ξ0 and to establish a priori bounds
on the distributions of ξn as n varies (this is done in Lemma 12 in Cheng et al. (2018)). Generally
speaking, once contractivity estimates are available for the numerical solution, the approach on the
left of Figure 2 is to be preferred.

The reference Dalalyan and Riou-Durand (2020) also investigates Wasserstein error bounds for
the integrator EE. The general approach is the same as that in Cheng et al. (2018), but the technical
details differ. For c ≤ 4/(L + m),4 an upper bound very similar to (24) is derived for the 2-
Wasserstein distance between the x-marginals of π? and Ψn,hπ. That bound depends on κ, L, d
and h in the same way as (24) does. The constants in the estimates are nevertheless different, as
expected. For instance, for the choice c = 1/L we have been discussing, the factor 1 − r̄h/κ in
(24) (where r̄ is arbitrarily close to 1/2) is replaced in Dalalyan and Riou-Durand (2020) by the
slightly worse factor 1 − 0.375h/κ. However the bound in Dalalyan and Riou-Durand (2020) is
only proved for very small values of h (h ≤ 1/(8κ) when c = 1/L). This is an extremely severe
limitation because we know from (25) that, as the condition number increases, EE may be operated
with a value of h of the order of 1/

√
κ rather than 1/κ. The unwelcome step size restriction

4. Because Dalalyan and Riou-Durand (2020) uses the SDE contractivity, it does not exclude the limit case c = 4/(L+
m) as we have to do. See Remark 20 that implies that for this integrator bounds that hold for c = 4/(L +m) are
only possible for h = O(κ−1) .
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originates from estimating φh(·, tn) − ψh(·, tn) evaluated at the numerical solution rather than at
the SDE solution.

6.2 The UBU integrator

We now turn our attention to the UBU integrator. Under the standard smoothness Assumptions 1
and 2, the strong order of convergence of UBU is p = 1 (see Section 7.7 for a detailed analysis of
the UBU local error under those assumptions). The analysis for UBU is then very similar to the
one presented above for EE, and leads to an O(ε−1κ3/2d1/2) estimate for the mixing time. When
f satisfies the additional smoothness Assumption 3, UBU exhibits strong order p = 2 and this may
be used in our context to improve on the estimates (25)–(26).

The proof of the next result is given in Section 7.6.

Theorem 25 Assume that f satisfies Assumptions 1–3. Set γ = 2 and Ph = P̂ ⊗ Id with P̂ as in
(13). Then, for h ≤ 2, the discretization (15) satisfies Assumption 22 with p = 2,

C0 = K0(2 + cL),

C1 = K1c
3/2Ld1/2,

C2 = K2

(
(1 + 4

√
3)c2L3/2 + (3 +

√
42

2
)c3/2L+ 6cL1/2 +

√
3c2L1

)
d1/2,

where Kj , j = 0, 1, 2, are the following absolute constants

K0 =

√
2
√

2

3−
√

5
, K1 =

√
3

12
, K2 =

1

24

√
3 +
√

5

2
.

The contractivity of the scheme in the P -norm necessary to use Theorem 23 was established
in Theorem 18. As we did for the first-order integrator, for the sake of clarity, we fix c = 1/L
(but other values of c may be discussed similarly, provided that they ensure the contractivity of the
algorithm). Note that the constant C0 = K0(2 + cL) is then ≤ 3K0. After choosing r̄ < 1/2
arbitrarily as in Remark 19, Theorem 23 yields, for h ≤ h0:

WP (π?,Ψn,hπ) ≤
(

1− r̄h

κ

)n
WP (π?, π) + K̄

(
1√
L

+
L1

L2

)
κd1/2h2, (28)

where K̄ denotes an absolute constant. To ensure WP (π?,Ψn,hπ) < ε, we take

K̄

(
1√
L

+
L1

L2

)
κd1/2h2 <

ε

2
,

and then increase n as in (26). Thus, for UBU, the scaling of h is

(m1/2ε)1/2κ−1/4(1 + L−3/2L1)−1/2d−1/4,

and, as a consequence, the number of steps n to guarantee a target contraction factor (1 − r̄h/κ)n

scales as
(m1/2ε)−1/2κ5/4(1 + L−3/2L1)1/2d1/4. (29)
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The dependence of n on m1/2ε, κ and d in this estimate is far more favourable than it was for
EE (see (27)). However here we have the (L1 dependent) factor (1 + L−3/2L1)1/2 and one could
easily concoct examples of distributions where this factor is large even if the condition number is of
moderate size. In those, arguably artificial, particular cases, it may be advantageous to see UBU as
a first order method as discussed at the beginning of this section.

Remark 26 A comparison between (24) and (28) makes it clear that (for fixed m, L, L1) the
ε−1/2d1/4 dependence of the mixing time of UBU stems from having strong order two. In the sec-
ond term of the right hand-side of the inequalities (24) and (28) (i.e. the bias), the exponent of h
coincides with the strong order of the integrator. In order to make those second terms of size ε one
needs to scale h as εd−1/2 for EE and as ε1/2d−1/4 for UBU. The first terms of the right hand-side
of the inequalities (24) and (28), then show that n has to be scaled as h−1, i.e. as ε−1d1/2 for the
first-order method and ε−1/2d1/4 for the second-order method.

Integrators of strong order higher than two would have even more favourable dependence of
the mixing time on ε and d. Unfortunately such high-order integrators (Milstein and Tretyakov,
2007) are invariably too complicated to be of much practical significance. In particular there is no
splitting algorithm that achieves strong order larger than two (Alamo and Sanz-Serna, 2019). In
addition, an increase of the order may be expected to require an increase of the required smoothness
of f .

The randomized algorithm in Shen and Lee (2019) has a bias that behaves as d1/2h3/2 leading
to an ε−2/3d1/3 estimate of the mixing time.

Remark 27 The paper Dalalyan and Karagulyan (2019) considers a weaker form of the extra-
smoothness assumption Assumption 3 where H(x), rather than assumed to be differentiable with
derivative upper-bounded by L1, is only assumed to be Lipschitz continuous with constant L1. It is
likely that, by means of the technique in the proof of (Dalalyan and Karagulyan, 2019, Lemma 6),
Theorem 25 may be proved under that alternative, weaker version of Assumption 3, but we have not
yet studied that possibility.

A second order discretization of the underdamped Langevin equation, that unlike UBU, re-
quires to evaluate the Hessian of f once per step, has been suggested in Dalalyan and Riou-
Durand (2020). A bound similar to (28) is derived which is valid only for small values h ≤
O(κ−1) ∧ O(L1/2md−1/2L−1

1 ). This is very restritive because, as we have just found, for UBU
h scales with κ as κ−1/4.

The reference Foster et al. (2021) suggests a novel approach to obtaining high order discretiza-
tions of the underdamped Langevin dynamics (2). At each step, in addition to generating suitable
random variables, one has to integrate a so-called “shifted ODE”, whose solutions are smoother than
the solutions of (2). The analysis in that reference examines the case where the integration is exact;
in practice, the shifted ODE has of course to be discretized by a suitable numerical method and
Foster et al. (2021) provides numerical examples based on two different choices of such a method.

7. Additional results and proofs

7.1 Proof of Proposition 5

The second item in the Proposition is proved as follows. By standard linear algebra results, ξ may
be uniquely decomposed as ξ = n + m with n in the kernel of C and m in the image of CT ;
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furthermore there is a bijection between values of m and values of x = Cξ. Under the assumption
SCT = 0, which implies CS = 0, Sm and mTS vanish, and then ξTSξ = nTSn is independent
of m, i.e. of x. Therefore the marginal of ∝ exp(−f(Cξ)− (1/2)ξSξ) coincides with the marginal
of ∝ exp(−f(Cξ)) .

For the first item, we have to show that the pdf k exp
(
−f(x)−(1/2)ξTSξ

)
(k is the normalizing

constant), that with some abuse of notation we denote by π? satisfies the Fokker-Planck equation

−∇ξ ·
(
π?(Aξ +B∇f(x))

)
+∇ξ · (D∇ξπ?) = 0.

Here∇ξ· and∇ξ respectively denote the standard divergence and gradient operators in the space RN
of the variable ξ. The computations that follow use repeatedly the well-known identity∇ξ · (cF ) =
c∇ξ · F + F T∇ξc, where c = c(ξ) is a scalar valued function and F = F (ξ) is an RN -valued
function. We will also use that if R is any M × d constant matrix, then ∇ξ · (R∇f(x)) = CR :
H(x), where H(x) denotes the Hessian of f(x) and : stands for the Frobenius product of matrices
(equivalently CR : H(x) = Tr((CR)TH(x)).

We observe that
∇ξπ? = −π?

(
Sξ + CT∇f(x)

)
and therefore

∇ξ · (π?Aξ) = π?Tr(A)− π?ξTATSξ − π?ξTATCT∇f(x)

and

∇ξ ·
(
π?B∇f(x)

)
= π?(CB : H(x))

−π?(∇f(x))TBTSξ − π?(∇f(x))TBTCT∇f(x).

Furthermore

∇ξ · (D∇ξπ?) = −∇ξ · (π?DSξ)−∇ξ · (π?DCT∇f(x))

= −π?Tr(DS) + π?ξTSDSξ + π?ξTSDCT∇f(x)

−π?(CDCT : H(x))

+π?(∇f(x))TCDSξ + π?(∇f(x))TCDCT∇f(x).

From the last three displays we conclude that the left hand-side of the Fokker-Planck equations
is the product of π? and

−Tr(A+DS)

−(CB + CDCT ) : H(x) + (∇f(x))T (BTCT + CDCT )∇f(x)

+ξT (ATCT + SB + 2SDCT )∇f(x)

+ξT (ATS + SDS)ξ;

each of the first three relations in (6) is sufficient for the corresponding line in this display to vanish.
(In addition, if f is regarded as arbitrary, then those three relations are also necessary.) The quadratic
form in the fourth line in the display vanishes if and only if ATS + SDS is skew-symmetric as
demanded by the fourth relation in (6). This completes the proof.
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7.2 Contraction estimates for the underdamped Langevin equations

We consider the underdamped Langevin equations (2) where, after rescaling t, we may assume that
γ = 2. We apply Proposition 11 to determine P̂ and c so as to maximize the decay rate λ. We
exclude the case L = m, which has no practical relevance.

If

L̂ =

[
`11 0
`12 `22

]
,

`11, `22 > 0, denotes the unknown Choleski factor of P̂ , the eigenvalues of L̂−1ẐiL̂
−T are found to

be

2±

√(
`211cHi − 2`11`21 + `221 − `222

)2
+ 4`222 (`11 − `21)2

`11`22
. (30)

Since our aim is to ensure that these have a lower bound as large as possible and we only have to
consider the minus sign in (30).

Without loss of generality, we may set `11 = 1 and then have to find c > 0, `22 > 0 and `21 to
minimize

sup
m≤H≤L

{
1

`222

[
cH − (`222 + 2`21 − `221)

]2
+ 4(1− `21)2

}
. (31)

Consider a local minimum c, `21, `22 of the minimization problem. We claim that

c
L+m

2
= a (32)

where
a = `222 + 2`21 − `221.

In other words a has to coincide with the midpoint of the interval [cm, cL] of possible values of
cH . In fact, assume that c(L + m)/2 > a, i.e. the point a is to the left of the midpoint. Then the
supremum in (31) is attained at H = L, because |cm− a| < |cL− a|; we could lower the value of
the supremum by decreasing slightly c. If u(L+m)/2 < a the supremum decreases by increasing
slightly c.

When (32) holds the supremum in (31) is the common value that the expression in braces takes
at H = m and H = L. This common value is:

1

`222

(
L−m
L+m

)2

(`222 + 2`21 − `221)2 + 4(1− `21)2,

that we rewrite as

1

`222

(
L−m
L+m

)2 (
`222 + 1− (1− `21)2

)2
+ 4(1− `21)2.

With b = (L−m)2/(L+m)2 < 1, our task is to find X = `222 > 0, Y = (1− `21)2 ≥ 0 so as to
minimize

F (X,Y ) =
b

X
(X + 1− Y )2 + 4Y.
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We first fix Y ∈ [0, 1). Then F → ∞ as X → 0 or X → ∞. By setting ∂F/∂X = 0, we
easily see that F has a unique minimum at X = 1− Y ∈ (0, 1]. At that minimum

F = 4(b− 1)X + 4,

which, in turn, is minimized by taking X as large as possible, i.e. X = 1. Then Y = 0 and
F = 4b < 4. We then fix Y ≥ 1. In this case, F ≥ 4Y ≥ 4, which is worse than the best F that can
be achieved with Y ∈ [0, 1). To sum up: the optimum value of F is 4b and is achieved whenX = 1,
Y = 0, i.e. `22 = 1, `21 = 1; then the matrix P̂ is the one in (13). Taking these values of `ij to (32),
we find that c = 4/(L+m) provides the optimal parameter choice. Finally, since the best value of
(31) is 4b, the expression (30) shows that the best decay rate is λ = 2−

√
4b = 4m/(L+m).

7.3 Integrators for the underdamped Langevin equations

Due to the importance of (2) in statistical physics and molecular dynamics, the literature on its
numerical integration is by now enormous. It is completely out of our scope to summarize it and we
limit ourselves to a few comments on splitting algorithms.

The different terms in the right hand-side of (2a) and (2b) correspond to different, separate
physical effects, like inertia, noise, damping, etc. Therefore the system (2) it is ideally suited to
splitting algorithms McLachlan and Quispel (2002). A possible way of carrying out the splitting is

(A) (d/dt)v = 0, (d/dt)x = v,

(B) (d/dt)v = −c∇f(x), (d/dt)x = 0,

(O) dv = −γvdt+
√

2γcdW, (d/dt)x = 0.

Each of these subsystems may be integrated in closed form. This partitioning gives rise to schemes
like ABOBA, BAOAB and OBABO Leimkuhler and Matthews (2012, 2015); Monmarché (2021).
For instance, a step of ABOBA first advances the numerical solution over [tn, tn+1/2] using the
exact solution of (A), then over [tn, tn+1/2] using the exact solution of (B), then over [tn, tn+1] with
(O), then over [tn+1/2, tn+1] with (B) and finally closes symmetrically with (A) over [tn+1/2, tn+1].
ABOBA, BAOAB and OBABO have weak order two but only possess strong order one. In fact it
is easy to check that with the A-B-O splitting it is impossible to generate the Ito integrals that are
required to ensure strong order two.

Another subsystem that may be integrated exactly in closed form is

(U) dv = −γvdt+
√

2γcdW, (d/dt)x = v.

The algorithm BUB, used e.g. in Buckwar et al. (2020), advances with (B) over [tn, tn+1/2], then
with (U) over [tn, tn+1] and closes the step with (B) over [tn+1/2, tn+1]. To our best knowledge it
was first suggested by Skeel Skeel (1999). In Foster et al. (2021) is referred to as Strang splitting,
but this terminology may be confusing because it is standard to use the expression Strang splitting
to mean any splitting algorithms with a symmetric pattern XYX Sanz-Serna and Calvo (2018). The
authors of Foster et al. (2021), a reference that compares different integrators, “believe that BUB
offers an attractive compromise between accuracy and computational cost”.

Changing the roles of B and U we obtain the UBU scheme suggested in the thesis Zapatero
(2019), where it is proved that both BUB and UBU have weak and strong order two. In fact BUB
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and UBU are closely related because, UBU is the algorithm that advances the BUB solution from
the midpoint tn+1/2 of one step to the midpoint tn+3/2 of the next (and vice versa).

The thesis Zapatero (2019) also describes a method to boost to strong order two any method
whose strong order is only one. The boosting is achieved by generating auxiliary Gaussian random
variables and may be relevant in our context where we are interested in the strong order of the
integrators. A general technique to investigate the weak and strong order of splitting algorithms
for general SDEs may be seen in Alamo and Sanz-Serna (2016, 2019); those reference provide a
detailed study of splitting Langevin integrators.

7.4 A lemma

The following result is a variant of (Dalalyan and Karagulyan, 2019, Lemma 7) and may be proved
in a similar way.

Lemma 28 Assume that the sequence of nonnegative numbers (zn) is such that for some constants
A ∈ (0, 1), B ≥ 0, C ≥ 0 and each n = 0, 1, 2, . . .

zn+1 ≤
√

(1−A)2z2
n +B + C.

Then, for n = 0, 1, 2, . . .

zn ≤ (1−A)nz0 +

√
B

A
+
C

A
.

7.5 The local error for EE integrator

To analyze φh(ξ̂n, tn) − ψh(ξ̂n, tn), we have to take the random variable ξ̂n = (v̂n, x̂n) ∼ π∗ (see
Theorem 23) as initial data, first to move the solution of the SDE forward in the interval [tn, tn +h]
and then to perform a step of the integrator over the same interval. Solutions of (1) satisfy, for
t ≥ tn, n = 0, 1, 2, . . .,

v(t) = E(t− tn)v(tn)−
∫ t

tn

E(t− s)c∇f(x(s)) ds+
√

2γc

∫ t

tn

E(t− s) dW (s), (33a)

x(t) = x(tn) + F(t− tn)v(tn)−
∫ t

tn

F(t− s)c∇f(x(s)) ds+
√

2γc

∫ t

tn

F(t− s) dW (s),(33b)

The proof is divided up in steps.
First step. From (33a) and (15a), we find that the v-component of φh(ξ̂n, tn) − ψh(ξ̂n, tn),

denoted as ∆v, is

∆v = −
∫ tn+1

tn

E(tn+1 − s)c
(
∇f(x(s))−∇f(x̂n)

)
ds;

where x(s) is the x-component of the solution of (2) that at tn takes the value ξ̂n (we shall later
need the v component, to be denoted by v(s)). Using successively the Cauchy-Schwartz inequality,
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the bound E(t) ≤ 1 for t ≥ 0, the Lipschitz continuity of∇f(x), and (2b), we find:

E
(
‖∆v‖2

)
≤ c2E

(∫ tn+1

tn

E(tn+1 − s)2ds

∫ tn+1

tn

‖∇f(x(s))−∇f(x̂n)‖2ds
)

≤ hc2

∫ tn+1

tn

E
(
‖∇f(x(s))−∇f(x̂n)‖2

)
ds

≤ hc2L2

∫ tn+1

tn

E
(
‖x(s)− x̂n‖2

)
ds

≤ hc2L2

∫ tn+1

tn

E
(
‖
∫ s

tn

v(s′)ds′‖2
)
ds.

An application of the Cauchy-Schwartz inequality to the inner integral yields

E
(
‖∆v‖2

)
≤ hc2L2

∫ tn+1

tn

s

(∫ s

tn

E
(
‖v(s′)‖2

)
ds′
)
ds.

Now, using the fact that the initial data ξ̂n is distributed according to π∗, this will be the distribution
of v(s′) for all s′ ≥ tn. Hence, since the distribution of each of the d scalar components of v is
centered Gaussian with second moment equal to c, we obtain the final bound

E
(
‖∆v‖2

)
≤ hc2L2d

∫ tn+1

tn

s

(∫ s

tn

c ds′
)
ds =

h4

3
c3L2d.

Second step. Turning now to the x component of φh(ξ̂n, tn)− ψh(ξ̂n, tn), we have

∆x = −
∫ tn+1

tn

F(tn+1 − s)c
(
∇f(x(s))−∇f(x̂n)

)
ds,

and, applying the Cauchy-Schwartz inequality and the bound F(t) ≤ t,

E
(
‖∆x‖2

)
≤ c2E

(∫ tn+1

tn

F(tn+1 − s)2ds

∫ tn+1

tn

‖∇f(x(s))−∇f(x̂n)‖2
)
ds

≤ h3

3
c2

∫ tn+1

tn

E
(
‖∇f(x(s))−∇f(x̂n)‖2ds

)
.

Therefore, by proceeding in the last integral as we when we found it above, we find

E
(
‖∆x‖2

)
≤ h6

9
c3L2d.

Third step. The preceding analysis is valid for all values of the parameters. We now assume that
t is measured in units for which γ = 2 and that h is chosen ≤ 1. Then, combining the estimates for
the v and x components:

E
(
‖φh(ξ̂n, tn)− ψh(ξ̂n, tn)‖2

)
≤ h4

3
c3L2d+

h6

9
c3L2d ≤ 4

9
h4c3L2d. (34)

For the matrix P̂ in (13) the constant pmax in (4) is easily computed as (3 +
√

5)/2 and we finally
have:

‖φh(ξ̂n, tn)− ψh(ξ̂n, tn)‖2L2,P ≤
6 + 2

√
5

9
h4c3L2d.
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7.6 The local error for UBU

We first provide bounds for the local error for UBU under Assumptions 1–3 that ensure strong order
two. As in the previous Subsection we have to take (v̂n, x̂n) as a starting point for the SDE solution
and the integrator. As with the EE integrator, v(t) and x(t) denote the solution of (2) that starts at tn
from (v̂n, x̂n). The analysis is now substantially more involved as the Ito-Taylor expansions have
to be taken to higher order.

First step. We begin by estimating the difference ∆y between x(tn + h/2) and the point yn
where the integrator evaluates the force −∇f (see (16c)). By using (33b) and (16c), we find

∆y = x(tn + h/2)− yn = −
∫ tn+1/2

tn

F(tn+1/2 − s)c∇f(x(s)) ds.

We apply the Cauchy-Schwartz inequality (in a similar way to what we did at Step 2 in the preceding
subsection) to get

E
(
‖∆y‖2

)
≤ h3

24
c2

∫ tn+1/2

tn

E
(
‖∇f(x(s)‖2

)
ds.

As proved in (Dalalyan, 2017a, Lemma 2), when x̄ has the distribution π?,

E
(
‖∇f(x̄)‖2

)
≤ Ld (35)

and, accordingly,

E
(
‖∆y‖2

)
≤ h4

48
c2Ld. (36)

Second step. From (33a) and (16a), the v-component of φh(ξ̂n, tn)− ψh(ξ̂n, tn) is found to be

∆v = −
∫ tn+1

tn

E(tn+1 − s)c∇f(x(s)) ds+ hE(h/2)c∇f(yn); (37)

thus UBU replaces the integral by a midpoint-rule approximation. We Ito-Taylor expand (see e.g.
Kloeden and Platen (1992); Alamo and Sanz-Serna (2019)) the integral around tn+1/2 as follows.
Denote by χ(s) the (differentiable) integrand, i.e.

χ(s) = E(tn+1 − s)c∇f(x(s)).

Then (the dot indicates differentiation),∫ tn+1

tn

χ(s)ds =

∫ tn+1

tn

χ(tn+1/2)ds+

∫ tn+1

tn

ds

∫ s

tn+1/2

χ̇(s)ds′, (38)

and taking the expansion one step further, we find∫ tn+1

tn

χ(s)ds = hχ(tn+1/2) +

∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

(
χ̇(s′)− χ̇(2tn+1/2 − s′)

)
ds′

= hχ(tn+1/2) +

∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
dχ̇(s′′). (39)
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We now replace dχ̇(s′′) by its expression given by Ito’s lemma. (While χ is differentiable, χ̇ is a
diffusion process.) There is no Ito correction because χ̇ is linear in v and there is no forcing noise
in the x equation (2b). After computing dχ̇(s′′) and substituting back in (37), we have

∆v = −hcE(h/2)
(
∇f(x(tn+1/2))−∇f(yn)

)
+ I1 + I2 + I3 + I4 + I5, (40)

with

I1 = −
∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
E(tn+1 − s′′)γ2c∇f(x(s′′))ds′′,

I2 = −
∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
E(tn+1 − s′′)γcH(x(s′′))v(s′′)ds′′,

I3 = −
∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
E(tn+1 − s′′)cH′(x(s′′))[v(s′′), v(s′′)]ds′′,

I4 =

∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
E(tn+1 − s′′)c2H(x(s′′))∇f(x(s′′))ds′′,

I5 = −
√

2γc

∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
E(tn+1 − s′′)cH(x(s′′))dW (s′′).

We now successively bound each term in the right hand-side of (40). From (36) and the Lipschitz
continuity of ∇f(x)

E
(
‖hcE(h/2)

(
∇f(x(tn+1/2))−∇f(yn)

)
‖2
)
≤ h6

48
c4L3d.

The integral I1 may be bounded as follows:

E
(
‖I1‖2

)
≤ γ4c2E

[(∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
E(tn+1 − s′′)2ds′′

)
(∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
‖∇f(x(s′′))‖2ds′′

)]

Now using the fact that E(t) ≤ 1, for t ≥ 0, we can bound the first term in the equation above by
observing that ∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
ds′′ =

h3

24

and then take into account (35), to get

E
(
‖I1‖2

)
≤ h6

576
γ4c2Ld.

A bound for I2 may be derived similarly, by using, instead of (35),

E
(
‖H(x̄)v̄‖2

)
≤ L2E

(
‖v̄‖2

)
= L2cd.
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((v̄, x̄) ∼ π?). Then

E
(
‖I2‖2

)
≤ h6

576
γ2c3L2d.

For I3 we use (each scalar component of v̄ is a centered Gaussian with variance c and fourth
moment 3c2)

E
(
‖H′(x̄)[v̄, v̄]‖2

)
= L2

1E
(
‖v̄‖4

)
≤ 3L2

1c
2d,

that leads to

E
(
‖I3‖2

)
≤ 3h6

576
c4L2

1d.

Turning now to I4, a new application of (35) gives

E
(
‖H(x̄)∇f(x̄)‖2

)
≤ L2E

(
‖∇f(x̄)‖2

)
≤ L3d,

and then

E
(
‖I4‖2

)
≤ h6

576
c4L3d.

Using the Cauchy-Schwartz inequality for the inner product associated with the integration on
s and s′, we have

E
(
‖I5‖2

)
≤ 2γc3E

[(∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′

)
×∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

∥∥∥∥∥
∫ s′

2tn+1/2−s′
E(tn+1 − s′′)H(x(s′′))dW (s′′)

∥∥∥∥∥
2

ds′


and, with the help of the Ito isommetry, since the Frobenius norm ofH is bounded by L2d,

E
(
‖I5‖2

)
≤ 2γc3h

2

8

∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′
L2d ds′′ =

h5

96
γc3L2d.

We have now bounded each term in the right-hand side of (40); the dominant term is I5, with
(E(‖I5‖2))1/2 = O(h5/2). In Assumption 22 we have to split φh(ξ̂n, tn)−ψh(ξ̂n, tn) into two parts,
α and β, with β of higher order; for the v component we then define αv = I5 and βv = ∆v − αv.
The bounds obtained above yield

(
E(‖αv‖2)

)1/2 ≤ √6

24
h5/2γ1/2c3/2Ld1/2

and (
E(‖βv‖2)

)1/2 ≤ h3

24

(
(1 + 2

√
3)c2L3/2 + γ2cL1/2 + γc3/2L+

√
3c2L1

)
d1/2.

Third step. From (33b) and (16b), the x-component of φh(ξ̂n, tn)− ψh(ξ̂n, tn) is given by

∆x = −
∫ tn+1

tn

F(tn+1 − s)c∇f(x(s)) ds+ hF(h/2)c∇f(yn); (41)
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again UBU replaces the integral by a midpoint approximation. By expanding the integrand by
means of the fundamental theorem of calculus as

F(tn+1 − s)c∇f(x(s)) = F(h/2)c∇f(x(tn+1/2))

+

∫ s

tn+1/2

(
F(tn+1 − s′)cH(x(s′))v(s′)− E(tn+1 − s′)c∇f(x(s′))

)
ds′,

(41) becomes
∆x = −hcF(h/2)

(
∇f(x(tn+1/2))−∇f(yn)

)
+ I6 + I7 (42)

with

I6 = −
∫ tn+1

tn

ds

∫ s

tn+1/2

F(tn+1 − s′)cH(x(s′))v(s′)ds′,

I7 =

∫ tn+1

tn

ds

∫ s

tn+1/2

E(tn+1 − s′)c∇f(x(s′))ds′.

Now, in (42), taking (36) into account and recalling that F(t) ≤ t,

E
(
‖hcF(h/2)

(
∇f(x(tn+1/2))−∇f(yn)

)
‖2
)
≤ h8

192
c4L3d.

Next, for I6 (it is necessary to put absolute value bars around the inner integrals because s could
be < tn+1/2),

E
(
‖I6‖2

)
≤ c2E

[(∫ tn+1

tn

ds

∣∣∣∣∣
∫ s

tn+1/2

F(tn+1 − s′)2ds′

∣∣∣∣∣
)
×(∫ tn+1

tn

ds

∣∣∣∣∣
∫ s

tn+1/2

‖H(x(s′))v(s′)‖2ds′
∣∣∣∣∣
)]

≤ c2 7h4

96
× h2

4
L2cd =

7h6

384
c3L2d.

The integral I7 may be rewritten as

I7 =

∫ tn+1

tn+1/2

ds

∫ s

tn+1/2

ds′
∫ s′

2tn+1/2−s′

d

ds′′

(
E(tn+1 − s′′)c∇f(x(s′′))ds′′

)
ds′′,

and, after performing the differentiation in the integrand, I7 = −γ−1(I1 + I2), so that we may use
the available bounds for I1 and I2.

Taking all the partial bounds to (42),

(
E(‖∆x‖2)

)1/2 ≤ h3

24

(√
3hc2L3/2 + (

√
42

2
+ 1)c3/2L+ γcL1/2

)
d1/2.

As we see, for the x component there is no O(h5/2) contribution and therefore we take αx = 0 and
βx = ∆x.
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Fourth step. With a view to checking at Step 5 condition (22) in Assumption 22, we esti-
mate |E

(
〈ṽn+1 − vn+1, αv〉

)
|; here 〈·, ·〉 is the standard inner product in Rd, vn+1 is the velocity

component of ξn+1 and ṽn+1 denotes the velocity component of a numerical step starting from
ξ̂n = (v̂n, x̂n). (This should not be confused with v̂n+1, the v-component of the random variable
ξ̂n+1 to be introduced at the next time level in the construction leading to Theorem 23.)

Since, conditional on v̂n, vn, the expectation of the stochastic integral αv = I5 is zero, we may
write ∣∣E(〈ṽn+1 − vn+1, αv〉

)∣∣ =
∣∣E(〈ṽn+1 − v̂n − vn+1 + vn, αv〉

)∣∣
≤

(
E(‖ṽn+1 − v̂n − vn+1 + vn‖2)

)1/2(
E(‖αv‖2)

)1/2
.

Now, from (16a),

ṽn+1 − v̂n − vn+1 + vn = (E(h)− 1)(v̂n − vn)− hE(h/2)c(∇f(ỹn)−∇f(yn))

with (see (16c))

ỹn = x̂n + F(h/2)v̂n +
√

2γc

∫ tn+1/2

tn

F(tn+1/2 − s)dW (s),

and thus, since 1− E(h) ≤ γh and E(h/2) ≤ 1,(
E(‖ṽn+1 − v̂n − vn+1 + vn‖2)

)1/2

≤ hγ
(
E(‖v̂n − vn‖2)

)1/2
+ hcL

(
E(‖ỹn − yn‖2)

)1/2
.

Taking into account (16c) and the definition of ỹn(
E‖ỹn − yn‖2

)1/2
≤
(
E(‖x̂n − xn‖2)

)1/2
+
h

2

(
E(‖v̂n − vn‖2)

)1/2
,

and we conclude that |E
(
〈ṽn+1 − vn+1, αv〉

)
| is bounded above by

h

((
γ +

h

2
cL
)(

E(‖v̂n − vn‖2)
)1/2

+ cL
(
E(‖x̂n − xn‖2)

)1/2
)(

E(‖αv‖2)
)1/2

. (43)

Fifth step. The preceding analysis holds for all values of the parameters. We now focus in the
case where γ = 2 and h ≤ 2 as in the statement of Theorem 25. To complete the proof it is enough
to translate the Euclidean norm bounds in Steps 1–4 into P -norm bounds.

To establish (21), we note that, because αx = 0,∣∣∣∣〈ψh(ξ̂n, tn)− ψh(ξn, tn), αh(ξ̂n, tn)
〉
L2,Ph

∣∣∣∣ = |E
(
〈ṽn+1 − vn+1, αv〉

)
|.

The right hand-side of this expression was bounded in (43) in terms of E(‖v̂n−vn‖2), E(‖x̂n−xn‖2)
and E(‖αv‖2). We now take into account (4) to bound E(‖v̂n − vn‖2) and E(‖x̂n − xn‖2) by a
multiple of ‖ξ̂n − ξn‖L2,Ph

and to bound E(‖αv‖2) by a multiple of ‖αh(ξ̂n, tn)‖L2,Ph
.

The estimates in (22) are established in a similar way.
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7.7 The local error for UBU without extrasmoothness

Let us now assume that Assumptions 1–2 hold but Assumption 3 does not. Then the strong order of
UBU is one. The bound for E(‖∆x‖2) derived in the third step of the preceding subsection remains
valid (note that it does not involve the constant L1). However for the component ∆y of the local
error, the Ito-Taylor expansion leading to (39) cannot be taken beyond (38) because now dχ̇ does
not make sense. After replacing χ̇(s) by its expression in terms of f , one obtains the bound

(
E(‖∆y‖2)

)1/2 ≤ h2

4
γc3/2Ld1/2 +

h2

4
γcL1/2d1/2 +

√
3

12
h3c2L3/2d1/2.

Then, after combining the x and v contributions and setting γ = 2, we have the bound

(
E
(
‖φh(ξ̂n, tn)− ψh(ξ̂n, tn)‖2

))1/2
≤ h2

4

[
(1 +

(
1

6
+

√
42

12

)
h

]
c3/2Ld1/2

+
h2

2

(
1 +

h

6

)
cL1/2d1/2

+

√
3

12
h3

(
1 +

h

2

)
c2L3/2d1/2.

Recall that, for contractivity the integrator has to be operated with cL bounded above, so that the
combinations c2/L3/2, c3/2L, and cL1/2 are all O(L−1/2) as L increases. The leading terms in the
UBU bound in the display are (h2/4)(c3/2Ld1/2) + (h2/2)cL1/2d1/2. For comparison, we note
from (34), that for EE the corresponding leading term in the bound is (

√
3/3)h2c3/2Ld1/2. The

conclusion is that, under Assumptions 1–2, the properties of UBU are very close to those of EE.
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