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The constants of motion of a mechanical system with a finite number of degrees of
freedomare related to the variational symmetries of aLagrangian constructed from the
Hamiltonian of the original system. The configuration space for this Lagrangian is the
phase space of the original system. The symmetries considered in this manner include
transformations of the time andmay not be canonical in the standard sense. C© 2014 Au-
thor(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4896601]

I. INTRODUCTION

In analytical mechanics and in other areas of physics, the usefulness of the continuous symmetry
groups is well known. Perhaps the simplest example is encountered in Lagrangian mechanics, where
the groups of point transformations that leave a Lagrangian invariant up to a total derivative are
associated with constants of motion (Noether–Bessel-Hagen theorem). In its elementary version,
the Noether theorem only includes symmetries of the Lagrangian induced by transformations of
the extended configuration space onto itself, known as point symmetries (see, e.g., Ref. 1), and the
associated constants of motion are of a restricted class (see Eq. (7), below); in many cases, not all
of the constants of motion can be obtained in this way, and in some cases, not even one constant
of motion is associated with point symmetries of the Lagrangian (see, e.g., Ref. 2). By contrast,
in the Hamiltonian formalism, any constant of motion is the generator of a group of canonical
transformations that leave the Hamiltonian invariant. (Even though in the standard definition of a
canonical transformation, the time is not transformed.)

In this paper we make use of the fact that the Noether theorem does not require the regularity
of the Lagrangian, and that the Hamilton equations can be obtained from a Lagrangian whose
configuration space is the phase space of the original system.3 In that way, all the constants of
motion are obtainable with the elementary version of the Noether theorem provided, of course, that
one is able to find enough symmetries of this Lagrangian. Though this problem is as complicated
as that of finding the groups of canonical transformations that leave a Hamiltonian invariant, a
simplification is obtained from the fact that there are two subgroups of the point symmetries of
the Lagrangian that can be determined in a simple manner. One of these subgroups is formed
by the transformations in the phase space induced by the point transformations of the extended
configuration space, i.e., in the space (qi, t), and the other is formed by the transformations induced
by transformations in the space (pi, t).

In Section II we present some elementary concepts and results about the variational symmetries
of a Lagrangian and their relationship with constants of motion; in Section III we apply these results
to a Lagrangian that reproduces the Hamilton equations and we derive some useful expressions that
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simplify the search for constants of motion. Section IV contains several illustrative examples and in
Section V we present some conclusions.

II. CONSTANTS OF MOTION ASSOCIATED WITH VARIATIONAL SYMMETRIES

We begin by summarizing the definition of the variational symmetries of a Lagrangian and the
basic equation that relates the generator of a variational symmetry with a constant of motion.

If q1, q2, . . . , qn is a system of generalized coordinates for some mechanical system, a one-
parameter family of point transformations is given by expressions of the form

q ′
i = q ′

i (q1, . . . , qn, t, s), t ′ = t ′(q1, . . . , qn, t, s), (1)

where i = 1, 2, . . . , n and s ∈ R is a parameter that can take values in some neighborhood of 0.
The family of point transformations (1) is a variational symmetry, or a Noether symmetry, of the
Lagrangian L(qi , q̇i , t) if

L

(
q ′

i ,
dq ′

i

dt ′ , t ′
)
dt ′

dt
= L

(
qi ,

dqi

dt
, t

)
+ d

dt
F(qi , t, s), for all s, (2)

where F is some real-valued function. (Usually, the term Noether symmetry is employed in the case
where F = 0.) Assuming that q ′

i (q1, . . . , qn, t, 0) = qi and t′(q1, . . . , qn, t, 0) = t, from Eq. (2) one
finds that

n∑
i=1

[
∂L

∂qi
ηi + ∂L

∂q̇i

(
dηi

dt
− q̇i

dξ

dt

)]
+ ∂L

∂t
ξ + L

dξ

dt
= dG

dt
, (3)

where

ηi (q j , t) ≡ ∂q ′
i (q j , t, s)

∂s

∣∣∣∣
s=0

, ξ (qi , t) ≡ ∂t ′(qi , t, s)

∂s

∣∣∣∣
s=0

, (4)

and

G(qi , t) ≡ ∂ F(qi , t, s)

∂s

∣∣∣∣
s=0

.

The functions ηi and ξ are the components of the generator of the transformations (1),

X =
n∑

i=1

ηi
∂

∂qi
+ ξ

∂

∂t
. (5)

Equation (3) can be written in the form

dϕ

dt
=

n∑
i=1

(ηi − ξ q̇i )

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
, (6)

where

ϕ(qi , q̇i , t) ≡
n∑

i=1

∂L

∂q̇i
ηi + ξ

(
L −

n∑
i=1

∂L

∂q̇i
q̇i

)
− G. (7)

Hence, if the Euler–Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0,

are satisfied, the function ϕ is a constant of motion.
Equation (3) is a partial differential equation for n + 2 functions of n + 1 variables. The method

usually employed to solve Eq. (3) is based on the fact that ξ and ηi are functions of qi and t only and,
in many cases, the left-hand side of Eq. (3) is a polynomial in the q̇i , with coefficients that depend on
qi and t only. Since Eq. (3) must hold for all values of qi, q̇i , and t, without imposing the equations
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of motion, by equating the coefficients of the products of the q̇i on each side of the equation, one
obtains a system of equations that only involve the variables qi and t.

In this manner one obtains some expressions for the partial derivatives, ∂G/∂t and ∂G/∂qi, of
the unknown function G in terms of L, ξ , ηi and their first partial derivatives. From the equality of
the mixed second partial derivatives of G with respect to qi and t, one finds n(n + 1)/2 equations,
that do not contain G. Once ξ and ηi are determined from the set of equations thus obtained, the
functions G and ϕ can be finally calculated.

It can be mentioned that, since Eq. (6) must be valid for all values of t, qi, q̇i and q̈i , a direct
computation shows that this equation is equivalent to

∂ϕ

∂q̇i
=

n∑
j=1

(η j − ξ q̇ j )

(
∂2L

∂q̇i∂q̇ j

)
, (8)

∂ϕ

∂t
+

n∑
j=1

∂ϕ

∂q j
q̇ j =

n∑
j=1

(η j − ξ q̇ j )

(
∂2L

∂t∂q̇ j
+

n∑
k=1

∂2L

∂qk∂q̇ j
q̇k − ∂L

∂q j

)
. (9)

Observe that by using Eq. (7) in the above equations, Eq. (8) turns out to be an identity and Eq. (9)
reduces to Eq. (3). That is, they are equivalent, as must be, to Eq. (3). From Eq. (8) we see that when
the Lagrangian L is not singular; that is,

det

(
∂2L

∂q̇i∂q̇ j

)
�= 0, (10)

then we can solve for the functions (η j − ξ q̇ j ) and substituting the resulting expressions into
Eq. (9) one obtains a partial differential equation for the constant of motion ϕ, which determines
the constants of motion that can be associated with variational symmetries of L. By solving the
resulting equation one has the constant of motion and, then, the corresponding one-parameter family
of point transformations. In the case of a singular Lagrangian, if m is the rank of the Hessian matrix,
(∂2L/∂q̇i∂q̇ j ), only m functions (η j − ξ q̇ j ) will be determined by Eq. (8). By substituting these m
functions into Eq. (9) we obtain a partial differential equation for the constant of motion ϕ, which
contains n − m unknown functions (η j − ξ q̇ j ), and Eq. (8) leads to n − m further conditions for ϕ.

III. VARIATIONAL SYMMETRIES IN THE PHASE SPACE

The Hamilton equations can be derived from the auxiliary Lagrangian

L(qi , pi , q̇i , ṗi , t) ≡ pi q̇i − H (qi , pi , t). (11)

In fact, substituting the expression (11) into the Euler–Lagrange equations one obtains

0 = d

dt

∂L

∂q̇i
− ∂L

∂qi
= d

dt
pi + ∂ H

∂qi
,

0 = d

dt

∂L

∂ ṗi
− ∂L

∂pi
= 0 − q̇i + ∂ H

∂pi

(i = 1, 2, . . . , n), which are the Hamilton equations corresponding to the Hamiltonian H(qi, pi, t).
It may be noticed that Eq. (11) is similar to the usual relationship between the Hamiltonian and the
Lagrangian of a mechanical system with n degrees of freedom, namely,

L(qi , q̇i , t) = pi q̇i − H (qi , pi , t), (12)

but the usual Lagrangian is a function of qi , q̇i , and t only. Equation (12) defines the Hamiltonian in
terms of L, provided that the equations

pi = ∂L

∂q̇i
(13)

can be solved for the q̇i , as functions of qi, pi, and t, which amounts to the condition (10).
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If one substitutes the Lagrangian L(qi , q̇i , t) into the Euler–Lagrange equations, and the regular-
ity condition (10) is satisfied, one obtains a system of n second-order ordinary differential equations
(ODEs), which are equivalent to the Hamilton equations. By contrast, as shown above, from L one
obtains a system of 2n first-order ODEs, which are precisely the Hamilton equations. The Lagrangian
L is singular in the sense that it does not satisfy the analog of the condition (10); however, as can be
seen from the discussion above, this fact does not affect the validity of the analogs of Eqs. (3) and (4)
to find the variational symmetries of L, and relate them with constants of motion by means of the
analog of Eq. (7). (A detailed treatment of the Noether theorem for singular Lagrangians can be
found in Refs. 4–7. Cf. also Ref. 8.)

Thus, a one-parameter family of point transformations in the extended phase space, analogous
to (1), is a variational symmetry of L if

n∑
i=1

[
∂L

∂qi
ηi + ∂L

∂pi
η̃i + ∂L

∂q̇i

(
dηi

dt
− q̇i

dξ

dt

)]
+ ∂L

∂t
ξ + L

dξ

dt
= dG

dt
, (14)

where G is some function of qi, pi, and t, and

ηi ≡ ∂q ′
i (q j , p j , t, s)

∂s

∣∣∣∣
s=0

, η̃i ≡ ∂p′
i (q j , p j , t, s)

∂s

∣∣∣∣
s=0

, ξ ≡ ∂t ′(qi , pi , t, s)

∂s

∣∣∣∣
s=0

.

In this case, the functions ηi, η̃i and ξ are the components of the generator of the variational
symmetry

X =
n∑

i=1

(
ηi

∂

∂qi
+ η̃i

∂

∂pi

)
+ ξ

∂

∂t
. (15)

According to Eqs. (7) and (11), the constant of motion associated with this symmetry is

ϕ =
n∑

i=1

∂L

∂q̇i
ηi + ξ

(
L −

n∑
i=1

∂L

∂ q̇i
q̇i

)
− G

=
n∑

i=1

piηi − ξ H − G. (16)

It may be noticed that, by virtue of Eqs. (12) and (13), the constant of motion (16) has the same form
as (7), the only difference is that in the case of Eq. (16), the functions ηi and G may depend on pi.
In fact, as we shall see below, any constant of motion can be obtained from Eqs. (14) and (16).

Eliminating L and G from Eq. (14) with the aid of Eqs. (11) and (16), one finds that
n∑

i=1

[
−∂ H

∂qi
ηi +

(
q̇i − ∂ H

∂pi

)
η̃i

]
− ∂ H

∂t
ξ =

n∑
i=1

ηi
dpi

dt
− ξ

dH

dt
− dϕ

dt
.

Equating the coefficients of q̇i and ṗi on both sides of the last equation one obtains

η̃i = −ξ
∂ H

∂qi
− ∂ϕ

∂qi
, (17)

ηi = ξ
∂ H

∂pi
+ ∂ϕ

∂pi
(18)

and, therefore,
n∑

i=1

(
−∂ H

∂qi
ηi − ∂ H

∂pi
η̃i

)
= −∂ϕ

∂t
. (19)

Then, the substitution of Eqs. (17) and (18) into (19) yields the condition

∂ϕ

∂t
+

n∑
i=1

(
∂ϕ

∂qi

∂ H

∂pi
− ∂ϕ

∂pi

∂ H

∂qi

)
= 0. (20)
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Thus, if one assumes that the Hamilton equations are satisfied, then Eq. (20) amounts to dϕ/dt = 0
[cf. Eq. (6)].

After using Eqs. (17) and (18), Eq. (15) amounts to

X = ξ

[
n∑

i=1

(
∂ H

∂pi

∂

∂qi
− ∂ H

∂qi

∂

∂pi

)
+ ∂

∂t

]
+

n∑
i=1

(
∂ϕ

∂pi

∂

∂qi
− ∂ϕ

∂qi

∂

∂pi

)
. (21)

The vector field between braces in Eq. (21), which only involves the Hamiltonian, is tangent to
the curves in the extended phase space that represent the evolution of the system. In other words,
this vector field generates transformations that map a solution curve of the Hamilton equations into
itself, while that the part depending on ϕ generates transformations that map a solution curve into a
different one.

In the standard treatment of the Hamiltonian formalism, the attention is focussed on canonical
transformations, q ′

i = q ′
i (q j , p j , t), p′

i = p′
i (q j , p j , t), without transforming the time (t′ = t) (see,

e.g., Refs. 3 and 9); the variational symmetries considered here reduce to this restricted class of
transformations when ξ = 0.

As in the Lagrangian case, we can follow two different approaches. One approach consists in
solving Eq. (20) for the constant of motion and with that information to compute the generator
of the corresponding symmetry by means of Eq. (21), with ξ completely arbitrary. Notice that the
general solution to Eq. (20) is an arbitrary function of 2n functionally independent constants of
motion, and the knowledge of this set is equivalent to having the solution of the Hamilton equations,
which, in general is not an easy task. The second approach consists in making an ansatz about the
components of the generator of the symmetry and using Eqs. (17), (18), and (20) to look for the
constant of motion. In the examples given below we assume that ηi and ξ are functions of qi and t
only (which corresponds to the transformations induced by the point transformations in the extended
configuration space), or that η̃i and ξ are functions of pi and t only.

IV. EXAMPLES

We now present some illustrative examples of the results derived in Section III.

A. First example

As a first example we consider the Hamiltonian for a particle in a uniform gravitational field

H = p2

2m
+ mgx . (22)

Substituting Eq. (22) into Eqs. (17), (18), and (20) we obtain

η̃ = −mgξ − ∂ϕ

∂x
, (23)

η = p

m
ξ + ∂ϕ

∂p
(24)

and

∂ϕ

∂t
= mg

∂ϕ

∂p
− p

m

∂ϕ

∂x
. (25)

As stated above, we consider symmetries induced by transformations of the extended configuration
space or of the extended “momentum space.” (Note that in this simple example, the general solution
of Eq. (25) can be readily obtained.)

1. The Lagrangian solution

First we look for particular solutions to the conditions (23)–(25) such that

η = η(x, t), ξ = ξ (x, t).
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Under these conditions, Eq. (24) implies that

ϕ = − p2

2m
ξ + pη + a1(x, t), (26)

where a1 is a function of x and t only. Substituting this result into Eq. (25) we obtain

p3

2m2

∂ξ

∂x
+ p2

m

(
1

2

∂ξ

∂t
− ∂η

∂x

)
− p

(
∂η

∂t
+ 1

m

∂a1

∂x
+ gξ

)
+ mgη − ∂a1

∂t
= 0. (27)

This equation implies that

ξ = ξ (t), (28)

η = x

2

dξ

dt
+ a2(t), (29)

a1 = −mx2

4

d2ξ

dt2
− mx

da2

dt
− mgxξ + a3(t), (30)

0 = mx2

4

d3ξ

dt3
+ x

(
3

2
mg

dξ

dt
+ m

d2a2

dt2

)
+ mga2 − da3

dt
, (31)

where a2, a3 are functions of t only. Equation (31) implies that

ξ = c1t2 + c2t + c3, (32)

η = c1

(
xt − 1

2
gt3

)
+ c2

(
1

2
x − 3

4
gt2

)
+ c4t + c5, (33)

a1 = c1

(
1

2
mgxt2 − 1

2
mx2 − 1

8
mg2t4

)
+ c2

(
1

2
mgxt − 1

4
mg2t3

)
− c3(mgx)

+ c4

(
1

2
mgt2 − mx

)
+ c5(mgt), (34)

where c1, . . . , c5 are arbitrary constants.
The corresponding constant of motion is given by

ϕ =c1

[
− (2pt +mgt2−2mx)2

8m

]
+c2

[
− (p+mgt)(2pt +mgt2−2mx)

4m

]
+c3

(
− p2

2m
−mgx

)

+ c4

(
2pt + mgt2 − 2mx

2

)
+ c5(p + mgt). (35)

On the other hand,

η̃ = c1

(
mx − pt − 3

2
mgt2

)
+ c2

(
−1

2
p − 3

2
mgt

)
+ c4m (36)

and the generator of the symmetry takes the form

X = c1

[
t2

∂

∂t
+

(
t x − 1

2
gt3

)
∂

∂x
+

(
mx − pt − 3

2
mgt2

)
∂

∂p

]

+ c2

[
t

∂

∂t
+

(
1

2
x − 3

4
gt2

)
∂

∂x
+

(
−1

2
p − 3

2
mgt

)
∂

∂p

]
+ c3

∂

∂t

+ c4

(
t

∂

∂x
+ m

∂

∂p

)
+ c5

∂

∂x
, (37)

whose projection to the extended configuration space reduces to that obtained in the standard
Lagrangian formulation.10
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2. Another solution

Now we look for new particular solutions to the conditions (23)–(25). We start with

η̃ = η̃(p, t), ξ = ξ (p, t).

Under these conditions Eq. (23) implies that

ϕ = −x(η̃ + mgξ ) + b1(p, t), (38)

where b1 is a function of p and t only. Substituting this result into Eq. (25) we have that

− p

m
(η̃ + mgξ ) +

(
∂

∂t
− mg

∂

∂p

)
b1 −

[(
∂

∂t
− mg

∂

∂p

)
(η̃ + mgξ )

]
x = 0. (39)

Then

η̃ + mgξ = f (v),

b1 = − p2

2m2g
f (v) + h(v), (40)

where f and h are arbitrary functions of v and

v ≡ p + mgt. (41)

Therefore, from Eqs. (38) and (40) we find that

ϕ = − 1

mg

(
p2

2m
+ mgx

)
f (v) + h(v) = − 1

mg
H f (v) + h(v). (42)

Note that in this case the constant of motion is given in terms of arbitrary functions of v. In fact,
v and H are functionally independent constants of motion and any function of them is also a constant
of motion.

As in the case of Eq. (42), the constant of motion given in Eq. (35) can be expressed in terms
of H and v

ϕ=c1

[
−1

8

(
v2

mg
− 2H

g

)2
]

+ c2

[
− v

4m

(
v2

mg
− 2H

g

)]
+ c3 (−H ) + c4

(
v2

2mg
− H

g

)
+ c5(v).

Even though in this particular example one can find the general solution of Eq. (25), the present
approach allow us to distinguish subgroups of the variational symmetries admitted in this example.

In order to get the generator of the symmetry given by this second solution we compute

η = ξ
p

m
− f

p

m2g
− H

mg

∂ f

∂v
+ ∂h

∂v
, (43)

and the generator of the symmetry acquires the form

X = ξ

(
p

m

∂

∂x
− mg

∂

∂p
+ ∂

∂t

)
+

(
∂h

∂v
− H

mg

∂ f

∂v
− p f

m2g

)
∂

∂x
+ f

∂

∂p
. (44)

B. Second example

Consider now the Hamiltonian associated with the time-dependent oscillator given by

H = 1

2m
p2 + mω2(t)

2
x2, (45)

where ω is a function of t. Using Eq. (45) in Eqs. (17), (18), and (20) we obtain

η̃ = −mω2xξ − ∂ϕ

∂x
, (46)
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η = p

m
ξ + ∂ϕ

∂p
, (47)

and
∂ϕ

∂t
= mω2x

∂ϕ

∂p
− p

m

∂ϕ

∂x
. (48)

1. The Lagrangian solution

We construct particular solutions to the conditions Eqs. (46)–(48). For this purpose, we assume
that ξ = ξ (x, t), η = η(x, t). Then, Eq. (47) implies that

ϕ = − p2

2m
ξ + pη + a1(x, t). (49)

where a1(x, t) is a function of x and t only. Using this result into Eq. (48), we obtain

p3

2m2

∂ξ

∂x
+ p2

m

(
1

2

∂ξ

∂t
− ∂η

∂x

)
− p

(
∂η

∂t
+ 1

m

∂a1

∂x
+ ω2ξ x

)
+ mω2xη − ∂a1

∂t
= 0. (50)

This equation implies

ξ = ξ (t), (51)

η = x

2

dξ

dt
+ a2(t), (52)

∂η

∂t
+ 1

m

∂a1

∂x
+ ω2xξ = 0, (53)

mω2xη − ∂a1

∂t
= 0, (54)

where a2 is a function of t only. From Eq. (53) making use of Eq. (52) we get

a1

m
= − x2ω2ξ

2
− d2ξ

dt2
x2

4
− da2

dt
x + a3(t), (55)

where a3 is another function of t only. Substituting Eqs. (52) and (55) into Eq. (54) we obtain

x2

4

(
d3ξ

dt3
+ 4ω2 dξ

dt
+ 4ω

dω

dt
ξ

)
+ x

(
d2a2

dt2
+ ω2a2

)
+ da3

dt
= 0. (56)

This equation implies

d3ξ

dt3
+ 4ω2 dξ

dt
+ 4ω

dω

dt
ξ = 0, (57)

d2a2

dt2
+ ω2a2 = 0, (58)

and that a3 is an irrelevant constant. Equation (57) integrates to

d2 f

dt2
+ ω2 f = c3

f 3
(59)

where f2 ≡ ξ and c3 is an integration constant.11 Using these results into Eq. (52) we have

η(x, t) = f
d f

dt
x + a2. (60)

Thus, from Eqs. (55), (60), with ξ = f2, we obtain that the constant of motion is given by

ϕ = 1

2m

(
f p − m

d f

dt
x

)2

+ c3m

2

(
x

f

)2

− m
da2

dt
x + a2 p. (61)
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A direct computation shows that

η̃ = d f

dt

(
f p − d f

dt
x

)
− c3mx

f 2
− f 2ω2x − m

da2

dt
. (62)

Therefore, the generator of the symmetry is given by

XH = x f
d f

dt

∂

∂x
+

[
d f

dt

(
f p − d f

dt
x

)
− c3mx

f 2
− f 2ω2x

]
∂

∂p
+ f 2

∂

∂t

+ a2
∂

∂x
+ m

da2

dt

∂

∂p
(63)

whose projection to the extended configuration space reduces to that obtained in the Lagrangian

formulation11 (in this reference, a2 is set to zero, cf. also Ref. 12). Notice that 1
2m

(
f p − m d f

dt x
)2

+
c3m
2

(
x
f

)2
corresponds to the Lewis invariant, which is associated with conservation of angular

momentum for two-dimensional systems;13 we must remark that the constant of motion −m da2
dt x +

a2 p could be used along the ideas of Ref. 11.
Note also that there exist five constants of motion associated to the time-dependent oscillator

regardless of the form of ω, this is because ξ satisfies a third-order differential equation, whose
general solution must contain three arbitrary constants and the solution for a2 must contain two
additional arbitrary constants (see the following example).

2. Another solution

We find a new particular solution to Eqs. (46)–(48). For this purpose, we take η̃ = η̃(p, t) and
ξ = ξ (p, t). Then, under these conditions, Eq. (46) implies that

ϕ = −mω2x2

2
ξ − x η̃ + b1(p, t). (64)

where b1 is a function of p and t only.
Now from Eq. (48) and using (64), we have a third-order polynomial equation in the variable x

given by

x3 m2ω4

2

∂ξ

∂p
− x2m

(
ω2

2

∂ξ

∂t
+ ξω

dω

dt
− ω2 ∂η̃

∂p

)

− x

(
ω2ξp + mω2 ∂b1

∂p
+ ∂η̃

∂t

)
+ ∂b1

∂t
− p

m
η̃ = 0, (65)

where b2 is a function of t only. Therefore,

ξ = ξ (t), (66)

η̃ = p

(
1

2

dξ

dt
+ ξ

ω

dω

dt

)
+ b2(t), (67)

ω2ξp + mω2 ∂b1
∂p

+ ∂η̃

∂t
= 0, (68)

∂b1
∂t

− p

m
η̃ = 0. (69)

Now from Eqs. (67) and (68), a direct calculation shows that

b1 = − p2

2m

[
1

2ω2

d2ξ

dt2
+ 1

ω3

dω

dt

dξ

dt
+ ξ

ω3

d2ω

dt2
− ξ

ω4

(
dω

dt

)2
]

− p

mω2

db2
dt

+ b3(t), (70)
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where b3 is function of t only. Substituting into (69), we obtain

db3
dt

= − p2

4

{
d3ξ

dt3
+ dξ

dt

[
4

ω

d2ω

dt2
− 8

ω2

(
dω

dt

)2

+ 4ω2

]

+ξ

[
2

ω

d2ω

dt2
− 10

ω2

d2ω

dt2
dω

dt
+ 8

ω3

(
dω

dt

)3
]}

− p

ω2

(
d2b2
dt2

− 2

ω

dω

dt

db2
dt

+ ω2b2

)
. (71)

This equation implies that

d3ξ

dt3
+ dξ

dt

[
4

ω

d2ω

dt2
− 8

ω2

(
dω

dt

)2

+ 4ω2

]

+ ξ

[
2

ω

d2ω

dt2
− 10

ω2

d2ω

dt2
dω

dt
+ 8

ω3

(
dω

dt

)3
]

= 0, (72)

d2b2
dt2

− 2

ω

dω

dt

db2
dt

+ ω2b2 = 0 (73)

and that b3 is an irrelevant constant. Notice that these equations are more complicated than (57),
(58). Finally, the constant of motion is

ϕ = −mω2x2

2
ξ − xp

(
1

2

dξ

dt
+ ξ

ω

dω

dt

)

− p2

2m

[
1

2ω2

d2ξ

dt2
+ 1

ω3

dω

dt

dξ

dt
+ ξ

ω3

d2ω

dt2
− ξ

ω4

(
dω

dt

)2
]

− xb2(t) − p

mω2

db2
dt

. (74)

We do not write down η and the vector fieldX, because they do not help to the discussion. These
constants of motion have been obtained using other approaches.14, 15

C. Third example

Consider now the previous example with constant frequency ω = ω0.

1. The Lagrangian solution

In this case, we can see that the Eqs. (57) and (58) reduce to

d3ξ

dt3
+ 4ω2

0
dξ

dt
= 0,

d2a2

dt2
+ ω2

0a2 = 0.

These equations imply that

ξ (t) = 1

ω0

[ − c1 cos (2ω0t) + c2 sin (2ω0t)
] + c3, (75)

a2(t) = c4 cos (ω0t) + c5 sin (ω0t) , (76)

where c1, . . . , c5 are arbitrary constants. Substituting Eqs. (75) and (76) into Eqs. (52) and (55) we
get

η(x, t) = x
[
c1 sin (2ω0t) + c2 cos (2ω0t)

] + c4 cos (ω0t) + c5 sin (ω0t) , (77)
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a1(x, t) = mω0x2

2

[ − c1 cos (2ω0t) + c2 sin (2ω0t)
] − kx2

2
c3

+ mω0x
[
c4 sin (ω0t) − c5 cos (ω0t)

]
. (78)

Thus, substituting Eqs. (75), (77) and (78) into Eq. (49) we obtain that the constant of motion is
given by

ϕ = c1

[(
p2

2mω0
− mω0x2

2

)
cos(2ω0t) + px sin(2ω0t)

]

+ c2

[(
− p2

2mω0
+ mω0x2

2

)
sin(2ω0t) + px cos(2ω0t)

]

− c3H + c4
[

p cos(ω0t) + mxω0 sin(ω0t)
] + c5

[
p sin(ω0t) − mxω0 cos(ω0t)

]
. (79)

A direct computation shows that

η̃ = c1
[
2mω0x cos(2ω0t) − p sin(2ω0t)

] − c2
[
2mω0x sin(2ω0t) + p cos(2ω0t)

]
− c4mω0 sin(ω0t) + c5mω0 cos(ω0t). (80)

Therefore, the generator of the symmetry is given by

X = c1

{
x sin(2ω0t)

∂

∂x
+ [

2mω0x cos(2ω0t) − p sin(2ω0t)
] ∂

∂p
− 1

ω0
cos(2ω0t)

∂

∂t

}

+ c2

{
x cos(2ω0t)

∂

∂x
− [

2mω0x sin(2ω0t) + p cos(2ω0t)
] ∂

∂p
+ 1

ω0
sin(2ω0t)

∂

∂t

}
+ c3

∂

∂t

+ c4

[
cos(ω0t)

∂

∂x
− mω0 sin(ω0t)

∂

∂p

]
+ c5

[
sin(ω0t)

∂

∂x
+ mω0 cos(ω0t)

∂

∂p

]
. (81)

Due to the symmetry of the Hamilton equations under x �→ p, p �→ −m2ω2
0x , the case where ξ

and η̃ are functions of p and t only, can be obtained from the results above, applying this substitution,
namely

ϕ(x, p, t) = −c1m2ω2
0

[
xp sin(2ω0t) −

(
mω0x2

2
− p2

2mω0

)
cos(2ω0t)

]
,

− c2m2ω2
0

[
xp cos(2ω0t) +

(
mω0x2

2
− p2

2mω0

)
sin(2ω0t)

]

− c3H − c4m2ω2
0

[
x cos(ω0t) − p

mω0
sin(ω0t)

]

− c5m2ω2
0

[
x sin(ω0t) + p

mω0
cos(ω0t)

]
, (82)

associated to the generator

X = −c1m2ω2
0

{[
2p

mω0
cos(2ω0t) + x sin(2ω0t)

]
∂

∂x
− p sin(2ω0t)

∂

∂p
+ 1

ω0
cos(2ω0t)

∂

∂t

}

+ c2m2ω2
0

{[
2p

mω0
sin(2ω0t) − x cos(2ω0t)

]
∂

∂x
+ p cos(2ω0t)

∂

∂p
+ 1

ω0
sin(2ω0t)

∂

∂t

}

+ c3
∂

∂t
+ c4m2ω2

0

[
1

mω0
sin(ω0t)

∂

∂x
+ cos(ω0t)

∂

∂p

]

− c5m2ω2
0

[
1

mω0
cos(ω0t)

∂

∂x
− sin(ω0t)

∂

∂p

]
. (83)



097135-12 Dı́az et al. AIP Advances 4, 097135 (2014)

The constant of motion (82) essentially coincides with (79), in spite of the fact that the vector fields
(81) and (83) have different forms.

V. CONCLUSIONS

We have shown that by using the Lagrangian (11), which leads to the Hamilton equations,
one can find a relationship between symmetries and constants of motion associated with point
transformations in the phase space. In particular, by requiring that η = η(qi, t), ξ = ξ (qi, t) one
obtains the transformations in the phase space induced by the point transformations of the extended
configuration space. The other important and natural group of transformations is obtained imposing
η̃ = η̃(pi , t), ξ = ξ (pi, t).

After finishing this work we found Ref. 16, where the authors apply the basic idea of this
paper, extending the Noether Theorem to its Hamiltonian form; there are some important differences
however: In the first place, they eliminate the function G by using the equality of the mixed second
partial derivatives of G. Since their approach is restricted to one degree of freedom, they obtain three
partial differential equations but, in general case, one would have to deal with too many Eqs. (n(n
+ 1)/2) in contrast with Eqs. (17)–(20). Second, they have to find the function G in order to finally
arrive to the constant of motion, which is calculated here in a direct manner.

Another important difference is that they restrict themselves to time-independent canonical
transformations, in contrast with our more general discussion.

Also, in their discussion about the time-dependent oscillator they only obtain the Lewis invariant,
as a consequence of the assumptions made guided by the problem under consideration, without a
more systematic approach.
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