
Performance Evaluation And Anomaly detection in
Mobile BroadBand Across Europe

by

Mohamed Lamine Touhami Moulay Brahim

in partial fulfillment of the requirements for the degree of Doctor in

Multimedia And Communication

Universidad Carlos III de Madrid

Advisor: Vincenzo Mancuso

June 2022

iii

Performance Evaluation And Anomaly detection in Mobile BroadBand Across Europe

Prepared by:
Mohamed Lamine Touhami Moulay Brahim, IMDEA Networks Institute, Universidad
Carlos III de Madrid
contact: mohamed.Moulay@imdea.org

Under the advice of:
Vincenzo Mancuso, IMDEA Networks Institute
Telematic Engineering Department, Universidad Carlos III de Madrid

This work has been supported by:

Unless otherwise indicated, the content of is Thesis is distributed under a
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA).

To my father, for making this possible
and to all my family for the constant
support.

To my soon to be wife, thank you for
all the love and support changing the
meaning of long distance.

Acknowledgements

Starting a Ph.D. is a long journey that requires patience, detection, and hard work
to reach the final stretch, and I wouldn’t have been able to do it without the guidance
and help of my supervisor Dr. Vincenzo Mancuso. He guided me to become a better
version of myself through constructive feedback and passing on responsibilities preparing
me to stair the ship on my own one day. Combined with the guidance of Dr. Antonio
Fernández Anta and Rafael García Leiva, I learned a lot, and I can’t thank you enough.
I can’t also forget to thank Dr. Miguel Peón Quirós for his help in integrating me into
the research team and guiding me with the tasks at hand. I would also like to extend my
thank you to my colleagues at IMDEA Networks. The environment was amazing, filled
with humor and good times. Since the second floor was my home during that period, I
would like to thank Joan, Maurizio, Foivos, Ander, Roberto, Javier, Sonia, Pilar, Vadim,
Noelia, Constantine, Yago, and Hany for those memories and moments.

Finally, I would like to thank all IMDEA Network’s team from professors to HR for
being there for us.

vii

Published Content

The ideas and investigations of this Thesis emerged from the following refereed
publications:

[1] Mohamed Moulay, Vincenzo Mancuso. Experimental performance evaluation
of WebRTC video services over mobile networks. Published in The 5th International
Workshop on Computer and Networking Experimental Research using Testbeds in
conjunction with IEEE INFOCOM 2018, July 2018. https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=8407020

• This work is fully included and its content is reported in Chapter 4.

• The author implemented a Docker container that assets the performance of
WebRTC in mobile-cellular networks leveraging the MONROE testbed. The author
investigated Key Performance Indicators (KPIs) such as BitRate, Jitter, Frames Per
Second (FPS), and Packet delay in static and mobile networking environments. At
the time of writing the paper, no such work existed to evaluate WebRTC in real-world
scenarios.

[2] Cise Midoglu, Mohamed Moulay, Vincenzo Mancuso, Ozgu Alay, Andra Lutu,
Carsten Griwodz. Open video datasets over operational mobile networks with MONROE.
Published in The Proceedings of the 9th ACM Multimedia Systems Conference, June 2018,
(MMsys ’18). https://dl.acm.org/doi/abs/10.1145/3204949.3208138

• This work is partially included and its content is reported in Chapter 4.

• The author participated in writing several parts of this paper and his role was
centred around the inclusion of WebRTC in terms of data-set, configuration, descirption,
and results.

[3] Mohamed Moulay, Fernando Diez, Vincenzo Mancuso. On the Experimental
Assessment of QUIC and Congestion Control Schemes in Cellular Networks. Published
in 19th Mediterranean Communication and Computer Networking Conference (IEEE
MedComNet 2021) , 15-17 June 2021, Online Conference. https://doi.org/10.1007/
978-3-030-05195-2_20

ix

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8407020
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8407020
https://dl.acm.org/doi/abs/10.1145/3204949.3208138
https://doi.org/10.1007/978-3-030-05195-2_20
https://doi.org/10.1007/978-3-030-05195-2_20

x

• This work is fully included and its content is reported in Chapter 5.

• The author’s initial investigation and performance evaluation of Quick UDP
Internet Connections (QUIC) utilizing the MONROE testbed in different mobile network
environments. The key idea was to evaluate QUIC using different congestion control
algorithms as well as leveraging the IETF QUIC implementation.

[4] Mohamed Moulay, Rafael Garcia and Maroni, Pablo J. Rojo and Lazaro, Javier
and Mancuso, Vincenzo and Anta, Antonio Fernandez. A Novel Methodology for the
Automated Detection and Classification of Networking Anomalies. Published in The 3rd
International Workshop on Network Intelligence (NI 2020): Learning and Optimizing
Future Networks in conjunction with IEEE INFOCOM 2020, Virtual, July 2020. https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9162710

• This work is fully included and its content is reported in Chapter 6.

• The author participated in writing several parts of this paper and his role in this
work is focused on implementing and validating the methodology using multiple classical
and interpretable machine learning algorithms.

[5] Mohamed Moulay, Rafael Garcia, Mancuso, Vincenzo, Anta, Antonio Fernandez
and Pablo J. Rojo. TTrees: Automated Classification of Causes of Network Anomalies
with Little Data. Published in The 22nd International Symposium on a World of Wireless,
Mobile and Multimedia Networks (IEEE WoWMoM 2021), 7-11 June 2021, Fully virtual
event. https://eprints.networks.imdea.org/2303/1/TTreess.pdf

• This work is fully included and its content is reported in Chapter 7.

• The author participated in writing several parts of this paper and his role in this
work is focused on improving the methodology and automating the anomalies detection
in cellular networks.

[6] Vincenzo Mancuso and Miguel Peon Quiros and Cise Midoglu and Mohamed
Moulay and Vincenzo Comite and Andra Lutu and Ozgu Alay and Stefan Alfredsson and
Mohammad Rajiullah and Anna Brunstrom and Marco Mellia and Ali Safari Khatouni
and Thomas Hirsch. Results from running an experiment as a service platform for
mobile broadband networks in Europe. Computer Communications vol 133, Pages 89-
101, Elsevier. https://eprints.networks.imdea.org/1972/1/COMCOM_5773.pdf

• This work is partially included and its content is reported in Chapter 4.

• The author participated in writing the WebRTC part of this paper and his role in
this work is focused on a more broad assessment of WebRTC in cellular networks.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9162710
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9162710
https://eprints.networks.imdea.org/2303/1/TTreess.pdf
https://eprints.networks.imdea.org/1972/1/COMCOM_5773.pdf

xi

[7] Mohamed Moulay and Rafael Garcia and Vincenzo Mancuso and Pablo Rojo and
Antonio Fernandez Anta and Ali Safari Khatouni. MonTrees: Automated Detection and
Classification of Networking Anomalies in Cellular Networks. Under Review in IEEE
Transactions on Network and Service Management, 2021, Virtual. https://arxiv.org/
pdf/2108.13156.pdf.

• This work is partially included and its content is reported in Chapter 7.

• The author’s role in this work is focused is to further evaluate Strees leveraging
various data-sets with multiple file download scenarios.

[8] Mohamed Moulay, Rafael Garcia, Pablo J. Rojo, Fernando Diez, Mancuso,
Vincenzo, Anta, Antonio Fernandez. Automated Identification of Network Anomalies
and Their Causes with Interpretable Machine Learning: the CIAN Methodology and
TTrees Implementation. Accepted in The International Journal for the Computer and
Telecommunications Industry Special Issue with WoWMoM.

• This work is fully included and its content is reported in Chapter 7.

• The author participated in writing several parts of this paper and his role in this
work is focused on extending the methodology with the QUIC data-set.

https://arxiv.org/pdf/2108.13156.pdf
https://arxiv.org/pdf/2108.13156.pdf

Abstract

With the rapidly growing market for smartphones and user’s confidence for immediate
access to high-quality multimedia content, the delivery of video over wireless networks has
become a big challenge. It makes it challenging to accommodate end-users with flawless
quality of service. The growth of the smartphone market goes hand in hand with the
development of the Internet, in which current transport protocols are being re-evaluated to
deal with traffic growth. QUIC and WebRTC are new and evolving standards. The latter
is a unique and evolving standard explicitly developed to meet this demand and enable
a high-quality experience for mobile users of real-time communication services. QUIC
has been designed to reduce Web latency, integrate security features, and allow a high-
quality experience for mobile users. Thus, the need to evaluate the performance of these
rising protocols in a non-systematic environment is essential to understand the behavior
of the network and provide the end user with a better multimedia delivery service. Since
most of the work in the research community is conducted in a controlled environment, we
leverage the MONROE platform to investigate the performance of QUIC and WebRTC
in real cellular networks using static and mobile nodes. During this Thesis, we conduct
measurements of WebRTC and QUIC while making their data-sets public to the interested
experimenter. Building such data-sets is very welcomed with the research community,
opening doors to applying data science to network data-sets. The development part of the
experiments involves building Docker containers that act as QUIC and WebRTC clients.
These containers are publicly available to be used candidly or within the MONROE
platform. These key contributions span from Chapter 4 to Chapter 5 presented in Part
II of the Thesis.

We exploit data collection from MONROE to apply data science over network
data-sets, which will help identify networking problems shifting the Thesis focus from
performance evaluation to a data science problem.

Indeed, the second part of the Thesis focuses on interpretable data science. Identifying
network problems leveraging Machine Learning (ML) has gained much visibility in the
past few years, resulting in dramatically improved cellular network services. However,
critical tasks like troubleshooting cellular networks are still performed manually by experts
who monitor the network around the clock.

xiii

xiv

In this context, this Thesis contributes by proposing the use of simple interpretable
ML algorithms, moving away from the current trend of high-accuracy ML algorithms
(e.g., deep learning) that do not allow interpretation (and hence understanding) of their
outcome. We prefer having lower accuracy since we consider it interesting (anomalous)
the scenarios misclassified by the ML algorithms, and we do not want to miss them by
overfitting. To this aim, we present CIAN (from Causality Inference of Anomalies in
Networks), a practical and interpretable ML methodology, which we implement in the
form of a software tool named TTrees (from Troubleshooting Trees) and compare it to
a supervised counterpart, named STress (from Supervised Trees). Both methodologies
require small volumes of data and are quick at training. Our experiments using real
data from operational commercial mobile networks e.g., sampled with MONROE probes,
show that STrees and CIAN can automatically identify and accurately classify network
anomalies—e.g., cases for which a low network performance is not justified by operational
conditions—training with just a few hundreds of data samples, hence enabling precise
troubleshooting actions. Most importantly, our experiments show that a fully automated
unsupervised approach is viable and efficient. In Part III of the Thesis which includes
Chapter 6 and 7.

In conclusion, in this Thesis, we go through a data-driven networking roller coaster,
from performance evaluating upcoming network protocols in real mobile networks to
building methodologies that help identify and classify the root cause of networking
problems, emphasizing the fact that these methodologies are easy to implement and can
be deployed in production environments.

Table of Contents

Acknowledgements VII

Published Content IX

Abstract XIII

Table of Contents XV

List of Tables XIX

List of Figures XXI

List of Acronyms XXVII

I Introduction 1

1. Introduction 3
1.1. Contribution . 6
1.2. Outline of the Thesis . 8

2. Background 11
2.1. Mobile Broadband . 11
2.2. Rising Protocols . 12

2.2.1. Web Real-Time Communication 12
2.2.2. Quick UDP Internet Protocol . 13

2.3. Data Science In Cellular Networks . 15
2.3.1. Causality . 15
2.3.2. Explainable AI . 16
2.3.3. Anomaly detection . 17

3. MONROE 19
3.1. EaaS platform design and implementation 21

xv

xvi TABLE OF CONTENTS

3.1.1. Node instrumentation . 23
3.1.2. Data flows . 23
3.1.3. At the node side . 25
3.1.4. At the server side . 25
3.1.5. Access to data . 26
3.1.6. User access and experiment scheduling 26
3.1.7. Experimentation workflow . 27

3.2. Experiments . 27
3.2.1. Experiments currently available as services 27
3.2.2. Selected measurement studies . 32

3.3. Discussions . 39

II Network protocols performance evaluation 41

4. Performance Evaluation of WebRTC 43
4.1. WebRTC Overview . 44

4.1.1. Real-time communications to and from browsers 44
4.1.2. Protocols and Communication Services 46

4.2. Measurement Setup & data-set . 47
4.2.1. Setup . 47
4.2.2. data-set . 48

4.3. Results and Observations . 50
4.4. Discussion . 55

5. Performance Evaluation of QUIC 57
5.1. QUIC operation and logging . 59

5.1.1. The QUIC protocol in a nutshell 59
5.1.2. QUIC logging . 59

5.2. Experimental Methodology . 61
5.2.1. Methodology . 63
5.2.2. Setup . 65

5.3. Results . 66
5.3.1. Assessment of QUIC and HTTP/3 performance 66
5.3.2. Assessment of Congestion Control Variants in QUIC 69

5.4. Discussion . 72

III Data science in cellular networks 75

6. Supervised Trees 77

TABLE OF CONTENTS xvii

6.1. Supervised ML Methodology . 78
6.1.1. Target Variable Characterization 81
6.1.2. Detecting Anomalies . 81
6.1.3. Clustering Anomalies . 82
6.1.4. Classifying Anomalies . 83

6.2. data-sets . 84
6.2.1. Nokia drive-test measurements . 84
6.2.2. MONROE measurements . 85

6.3. Results . 86
6.3.1. Data Analysis for Nokia Drive Tests 86
6.3.2. Data Analysis for MONROE data-sets 94

6.4. Discussion . 104

7. Causality Inference of Anomalies in Networks 105
7.1. Overview of CIAN . 108

7.1.1. The Core Idea for Detecting Anomalies 109
7.1.2. Input . 110
7.1.3. Discretization . 111
7.1.4. Selection of Anomalous Scenarios 111
7.1.5. Selection of the Most Relevant Features 112
7.1.6. Clustering Using the Most Relevant Features 113
7.1.7. Aspect Classification of Scenarios 114
7.1.8. Using the Classifiers to Detect and Identify Anomalies 114

7.2. Implementation of the CIAN methodology 115
7.2.1. Data Preparation in TTrees . 116
7.2.2. Discretization in TTrees . 116
7.2.3. Knowledge Model for Identifying Anomalies 117
7.2.4. Most Relevant TTrees Features . 118
7.2.5. Clustering of Anomalies in TTrees 120
7.2.6. Aspect Classification in TTrees . 121
7.2.7. Software Implementation . 122

7.3. Empirical Evaluation . 122
7.3.1. Supervised ML-based Troubleshooting 123
7.3.2. Datasets . 123
7.3.3. TTrees in Action and its Validation 126
7.3.4. TCP Performance Evaluation . 133
7.3.5. QUIC performance evaluation . 136
7.3.6. Modifications needed to deal with imbalancedness of data-sets . . 140

7.4. Discussion . 149

xviii TABLE OF CONTENTS

8. Conclusions 151

References 153

List of Tables

3.1. MONROE metadata topics . 29

4.1. MONROE nodes throughput comparison . 48

6.1. Overview of MONROE data-sets collected in Norway, Sweden, Italy, and
Spain . 85

6.2. Summary of the decision tree rules of Figure 6.4 producing the most
significant RTT attributes against the TDR percentile class split shown
in Figure 6.3 . 88

6.3. Confusion matrix for the supervised ML classifier of Figure 6.4 trained with the
classes identified using Figure 6.3 . 89

6.4. radio and TCP data attributes used by the unsupervised ML algorithm used in
STrees (i.e., k-means, with k=2) . 90

6.5. Highlights of the STrees decision tree rules for detection of anomalies in Figure 6.8
showcasing the dominant attributes from Table 6.4 and classes from Figure 6.8 . 93

6.6. A summary of the initial decision tree’s performance utilizing Facebook as
a service in all the countries part of the MONROE project with all their
operators . 96

6.7. The final decision tree performance with STrees, using MONROE data-sets
for Facebook and Google experiments. 99

6.8. A summary of the initial decision tree’s performance utilizing Google as a
service following up the same methodology steps from section 6.3.2.1 . . . 100

6.9. The final STrees decision tree performance with MONROE data-sets for
YouTube and Twitter experiments. 103

7.1. Basic notation. 109
7.2. Brief description of the experimental data-sets used in this work 123
7.3. Knowledge (C1) and Aspect Classification (C2) trees’ performance across

the different data-sets using multiple aspect selection algorithms (Mutual
Information, Joint Mutual Information, and Miscoding) 134

xix

xx LIST OF TABLES

7.4. Classification output of TTrees with QUIC experiments – Data grouped
per congestion control algorithm (classes with no samples are omitted) . . 135

7.5. Classification output of TTrees with QUIC experiments – Data grouped
per experiment execution type (classes with no samples are omitted) . . . 135

7.6. A summary of the knowledge tree’s (C1) performance in TTrees utilizing
Facebook & Google as a service in all the countries part of the MONROE
project with all their operators. 141

7.7. A summary of the aspect classification tree’s (C2) performance with TTrees
utilizing Facebook & Google as a service in all the countries part of the
MONROE project with all their operators. 142

7.8. A comparison of the number of aspects and aspect families extracted from
C2 between k-means and GMM for the Google & Facebook data-sets in
all the countries part of the MONROE project. The table also shows the
number of aspects that are common to both algorithms as well as the ratio,
calculated from the division of the intersection by the size of the smallest
set of aspects between k-means and GMM. 147

List of Figures

1.1. High-level illustration of the Thesis. 8

2.1. QUIC communication flow. 14

3.1. MONROE system design. Researchers access the system through the Web
user interface and scheduler, or directly through the various repositories
and data bases. Several passive (metadata, mPlane, etc.) and active (RTT,
HTTP bandwidth, etc.) probes monitor network usage and performance
continuously. 22

3.2. Flow of information in the MONROE platform. 24
3.3. Experiment workflow covering the design, test and experimentation phases. 27
3.4. Experiments currently available as services that can be run on the

MONROE platform, within an EaaS framework. 28
3.5. RTT and RSSI measured in a bus at Karlstad, Sweden, over a few

observation days. Average RSSI values are shown on the XY plane.
Individual RTT measures are plotted on the Z-axis using their relative
timestamps as height to visualize successive laps. 33

3.6. This representation of link technology for the bus at Karlstad reveals that
4G coverage is consistently available for the complete route during the
analyzed period. 33

3.7. TCP three-way handshake times (TWHT) obtained using the HTTP
download experiment for bandwidth measurement with different operators
versus the RSSI reported in MONROE metadata. Blue and red correspond
to 4G and 3G samples, respectively. 34

3.8. Violin plots of the RTT measurements for different operators in Spain (ES),
Norway (NO) and Sweden (SE). 35

3.9. MONROE-Nettest base experiment results. 36
3.10. Average Time to First Byte and Complete Page Load Time for some

operators in Spain (ES), Norway (NO) and Sweden (SE) for www.bbc.com. 37
3.11. Country-wise per-operator overall webpage download performance. 38

xxi

www.bbc.com

xxii LIST OF FIGURES

4.1. WebRTC peer-to-peer communication. 45
4.2. MONROE-WebRTC video streaming setup. 47
4.3. WebRTC performance experienced by static nodes under different operators in

different countries. 51
4.4. WebRTC performance figures observed for static nodes. 52
4.5. WebRTC performance figures observed for a bus in a medium-size city in Sweden. 53
4.6. WebRTC video performance measured at destination, on a public bus on service

in a medium-size city in Sweden. 54
4.7. WebRTC performance figures observed for a train in a medium-size city in Norway. 56

5.2. QUIC events used in qlog . 61
5.3. Example of qvis statistics view . 62
5.4. Experimental scenario . 64
5.5. flowsim MONROE platform setup . 64
5.6. Download time comparison between QUIC and TCP, with flowsim clients

in Spain, Sweden and Norway (download size of 1 MB) 67
5.7. Download time comparison of QUIC and TCP with flowsim on a public

bus in Sweden (1 MB downloads) . 67
5.8. Page download time comparison between HTTP versions with flowsim

clients in Spain (static) and Sweden (mobile), with page size of 100 kB . . 68
5.9. Time series for for a QUIC download from a mobile flowsim client in

Sweden (qlog events, 100 kB downloads) 68
5.10. Time series for a webpage download from a mobile flowsim client in Sweden

(qlog events, 100 kB downloads) . 69
5.11. Sequential time series in Spain with three download streams (qlog files of

Mvfst experiments) . 70
5.12. Parallel time series in Spain with three download streams (qlog files of

Mvfst experiments) . 70
5.13. Parallel time series in Norway (with a static Mvfst client) with three

download streams . 71
5.14. Sequential time series in Sweden (with a mobile Mvfst client) with three

download streams . 72
5.15. Parallel time series in Sweden (with a mobile Mvfst client) with three

download streams . 73

6.1. High-level presentation of the STrees methodology, starting with the
characterization of the target variable, followed by the initial classification
of samples using the RTT as the data attribute of choice, grouping
anomalies with k-means (with Radio and TCP related data attributes),
and final classification of anomalies with a decision tree. 80

LIST OF FIGURES xxiii

6.2. Possible causes of a performance anomaly, starting with the RTT as the
first choice and moving downwards to identify other factors that cause
anomalies in the TDR observed (when using TCP for downloading files).
The conclusion may be that the cause of the observed anomalies is not
identifiable given the current model. 81

6.3. Distribution of Throughput Data Rate. 86
6.4. Decision tree generated with supervised ML using RTT attributes as

input and TDR classes inferred from percentiles (see Figure 6.3). when
visualizing the tree each box has the quality of the gini split, the number
samples at each split, the number values for each TDR class (Bad, OK,
Good), and which class was picked. 87

6.5. Graphical plot of the data items properly classified by the decision tree of
Figure 6.4 in black, and the misclassified data items in red. 89

6.6. The two k-means clusters obtained with TCP data attributes with respect
to the congestion window average and maximum value attributes. 91

6.7. The two k-means clusters obtained with radio attributes with respect to
the RSSI and RSRP attributes. 91

6.8. STrees anomaly detection decision tree with TCP, radio attributes from
Table 6.4, and k-means labeled clusters as classes. when visualizing the
tree each box has the quality of the gini split, the number samples at each
split, the number values for each class (Failure to identify, Radio Ok/TCP
Problem, Radio Problem/TCP Ok, unknown), and which class was picked
during each split. 92

6.9. The outcome of the misclassified points using a combination of
unsupervised and supervised ML in Figure 6.8 and properly classified points
with the supervised ML classifier in Figure 6.4. 93

6.10. A snapshot of the Distribution of Throughput Data Rate in Sweden using
Operator 0 and Facebook as a service. 95

6.11. The depth versus accuracy for a decision tree with the confidence interval
using Facebook as service in Sweden with Operator 0. 95

6.12. The two k-means clusters per countries and operators obtained with radio
attributes concerning the RSSI and RSRP attributes using anomalies
sample from table 6.6 leveraging Facebook as a service. 97

6.13. The two k-means clusters per countries and operators obtained with TCP
attributes using anomalies sample from table 6.6 leveraging Facebook as a
service . 98

6.14. A snapshot of the Distribution of Throughput Data Rate in Sweden using
Operator 0 and Google as a service. 100

xxiv LIST OF FIGURES

6.15. The two k-means clusters per countries and operators obtained with radio
attributes concerning the RSSI and RSRP attributes using anomalies
sample from table 6.8 leveraging google as a service. 101

7.1. Steps of TTrees (using multiple ML techniques): beginning with data
preparation, proportional discretization, training of knowledge tree,
selection of the most relevant features, identification of anomaly clusters,
and training of a network aspect anomaly classifier. 115

7.2. Target KPI (throughput) distribution for Dataset #1 via the proportional
discretization approach . 127

7.3. Zoom into a subset of the knowledge tree built for Dataset #1. The figure
also reports which family of features the branching variable belongs to (see
Table 7.2). Observe that both branches are the same up to the fourth node,
after which the left corresponds to the true brach and the right to the false
branch. 127

7.4. Difference (predicted - discretized) between the class assigned by the
knowledge tree and the discretized category for the target KPI of Dataset
#1 . 128

7.5. Ranking of features according to their relevance to the description of
anomalies for Dataset #1 . 128

7.6. NID heatmap matrix for cluster pairs. Darker colors represent redundancy. 129
7.7. Network aspect selection based on miscoding; lower inertia of k-means

clusters is preferred, unless clusters are redundant or imbalanced 130
7.8. Aspects obtained with TTrees for Dataset #1 (using Mscd, see Figs. 7.5

and 7.7). The parameters used are Signal-to-interference-plus-noise ratio
(SINR), Number of packet acknowledgment sent, absolute TCP Window
ratio, and RTT. 131

7.9. Aspects obtained with STree for Dataset #1 132
7.10. A comparison between the supervised and unsupervised approach showing

the resulting aspect classifiers . 133
7.11. Aspects obtained with TTrees for Dataset #4 136
7.12. Zoom into a subset of the branches of the knowledge tree C1 built by

TTrees for Dataset #4. The figure also reports which family of features
the branching variable belongs to (see Table 7.2) 137

7.13. Zoom into a subset of the branches of the aspect classification tree C2 built
by TTrees for Dataset #4. The figure also reports which family of features
the branching variable belongs to (see Table 7.2) 138

LIST OF FIGURES xxv

7.14. Histogram of Inertia (a, b) and BIC (c, d) values extracted during aspect
clustering for all relevant aspects and with two operators in Spain and Italy.
The lower the BIC or inertia the cleaner cluster grouping and splitting of
samples is overall . 145

7.16. Cluster grouping using k-means and GMM as the cluster algorithm using
Google Dataset and op0_it . 148

7.17. Cluster grouping Comparsion using k-means and GMM as the cluster
algorithm for Dataset #1 . 148

7.15. Histogram of the ratio of samples falling under the non-problematic class
during aspect clustering for all relevant aspects in Dataset #5 and with
two operators in Sweden and Norway. As it can be seen, most aspects,
especially with k-means, yield imbalanced clusters of anomalies. 149

List of Acronyms

API Application Programming Interface

BI Byte Index

CLI Command Line tool

CART Classification And Regression Tree algorithm

CIAN Causality Inference of Anomalies in Networks

DB Database

DASH Dynamic Adaptive Streaming over HTTP

DSCP Differentiated Services Code Point

EaaS Experiment as a Service

ECDF Empirical Cumulative Distribution Function

EDGE Enhanced Data for Global Evolution

FPS Frames Per Second

GPS Global Positioning System

GMM Gaussian Mixture Model

GSM Global System for Mobile Communications

GIPS Global IP Solutions

GDPR General Data Protection Regulation

HAR HTTP Archive

HoL Head-of-Line

HTTP Hypertext Transfer Protocol

xxvii

xxviii LIST OF ACRONYMS

ICE Interactive Connectivity Establishment

JMI Joint Mutual Information

JSEP JavaScript Session Establishment Protocol

KPI Key Performance Indicator

LTE Long Term Evaluation

MI Mutual Information

ML Machine Learning

MBB Mobile BroadBand

mscd Miscoding

OI Object Index

OS Operating System

PCA Principal Component Analysis

PLT Page Load Time

QoE Quality of Experience

QoS Quality of Service

QUIC Quick UDP Internet Connections

RTC Real Time communication

RTT Round Trip Time

RMBT RTR Multithreaded Broadband Test

RMSE Root Mean Square Error

RSSI Received Signal Strength Indicator

RTTCC Receive-side real-time congestion control

SDP Session Description Protocol

SNR Signal-to-Noise Ratio

SCTP Stream Control Transport Protocol

SRTP Secure Real-Time Transport

LIST OF ACRONYMS xxix

STress Supervised Trees

TR Test Record

TCP Transmission Control Protocol

TDR Throughput Data Rate

TTrees Troubleshooting Trees

UMTS Universal Mobile Telecommunications System

WebRTC Web Real-Time Communication

Part I

Introduction & Background

The rise of the Internet to be the more sophisticated tool ever created by humans,
made our lives easier, allowing us to be informed, stream our favorite shows, keep in
touch with family and friends, and express our ideas to large audiences over social
media networks. The most popular device to do so is our smartphone, which enables
instant Internet access anywhere and anytime. Therefore, Mobile BroadBand (MBB)
networks have become a crucial infrastructure for people to stay connected everywhere
and while on the move. Society’s increased dependence on MBB networks motivates
researchers and engineers to enhance the capabilities of mobile networks by designing
new technologies and protocols to cater to plenty of new applications and services that
require new monitoring tools and data analytics. Thus, Part I of this Thesis provides a
background of the protocols and methodologies dealt with during the Thesis. Chapter 1
describes a comprehensive introduction focusing on MBB, Internet traffic measurements,
and the vast potential of collecting data and understanding network protocols. It also
describes the key contributions of the Thesis. Chapters 2 represents the related work and
technical background. Finally, Chapter 3 introduces the testbed platform used in the
Thesis.

1

1 Introduction

As everyone knows, people are more and more connected to the Internet, with mobile
terminals allowing access to information from anywhere and anytime. The evolution of
the cellular network is something to admire, from the first cellular network named Global
System for Mobile Communications (GSM) to 5G moving through Enhanced Data for
Global Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), and
Long Term Evolution (LTE) wherein each generation we saw increased throughput and
reduced latency helping move Internet access from computers connected to wired cables
into smartphone-connected through cellular networks. In addition, this helped create
new kinds of business such as online shopping and even new career opportunities like
Youtube content creators and social influencers, changing the way we see the Internet
into a golden opportunity. Considering this growth, many researchers are focusing
on understand the behavior of Internet so as to be able to evaluate and predict the
performance of different technologies, the user’ Quality of Experience (QoE) and the
Quality of Service (QoS). Given the large quantity of data to gather and parse, this
effort entails developing automatic, reliable and efficient measurement probes and data
analytic tools. However, some key aspects such as looking at ways to troubleshoot cellular
networks remain a substantially manual procedure. Indeed, highly skilled experts analyze
alarms and statistics of performance indicators regularly to detect and diagnose the cause
of problems in the network. In contrast, unskilled engineers can not even detect problems
effectively [9].

In this context, there is a need to explore and evaluate the behavior of new protocols,
such as Web Real-Time Communication (WebRTC) and Quick UDP Internet Connection
(QUIC).

Web Real-Time Communication proposes to easily integrate video services in Web
browsers, based on local tools [10]. In turn, such tools are based on well-known Web
technologies, able to integrate audio, video, and data transfer operations of the real-time
communication protocol (RTC) into a standard webpage. The WebRTC project1 was

1http://www.webrtc.org/

3

http://www.webrtc.org/

4 Introduction

first introduced by Google as an open-source project. Then other software developers
and telecom vendors joined, which has led to the integration of WebRTC into commercial
browsers like Chrome, Opera, and Firefox [11,12].

QUIC is a new network transport protocol initially designed and proposed by Google,
which operates on top of a more straightforward transport protocol, UDP, to bypass
legacy TCP/IP transport limitations. QUIC itself is commonly seen as a transport-
layer protocol, although it embeds encryption features and relies on conventional UDP
transport.

QUIC eliminates significant TCP bottlenecks such as the need for an initial TCP
handshake mechanism, which takes one Round Time Trip (RTT) or two, in the case of
TCP data encryption via TLS. Indeed, Google has designed and implemented a novel
encryption scheme for QUIC, similar to TLS, which couples connection establishment
and key agreement within one RTT. Nevertheless, QUIC can start a connection in zero
RTT, like UDP, by instantly sending encrypted application data to the server. This is
possible when it previously has cached in a server certificate from a previous connection.
Moreover, running on top of UDP, QUIC bypasses the Head-of-Line (HoL) issue of TCP
in case of packet loss. For these reasons, in the long run, QUIC is expected to replace
TCP and TLS in the Web [13].

While researchers have carried performance evaluations of WebRTC and QUIC in
different networking scenarios, the problem is that most of them were under simulated
or controlled environments. For instance, the authors of [14] used a cloud-engineered
automatic testing tool for WebRTC, although they have not tested the service offered by
mobile operators and core networks.

Similarly, the authors of [15] have experimentally tested one-to-many communications
over WebRTC (namely “simulcast”), although their experiments are limited to a gigabit
LAN environment.

For what concerns QUIC, the authors of [16] use Google’s server and the client
to evaluate the performance of QUIC and TCP in wireless networks in a controlled
environment. However, they have not tested the service offered by mobile operators
and core networks. Similarly, the authors of [17] have QUIC and TCP in the kernel level
through a gigabit LAN environment.

Evaluating and assessing new protocols is one part of the story. To improve the overall
QoS and QoE, there is a need to investigate on automating the detection of networking
problems using new technologies, and in particular by leveraging the raising paradigm
of ML. This is made possible by applying data science to data collected from simulating
those protocols or through measurement campaigns. To deal with these needs, operators
are investing resources into the automation of the maintenance and troubleshooting tasks
through self-healing functionalities within the scope of intelligent, self-organizing network
operation tools. Self-healing networks are responsible for detecting, identifying, and

5

making decisions on recovery actions [18]. Multiple proposals exist for making fault
detection and self-healing systems practical in mobile networks [19]. However, current
self-healing troubleshooting proposals lack flexibility and do not scale well. There are
newly-defined approaches based on ML, which use deep learning and neural networks
(as black boxes) [20]. Unfortunately, these approaches lack interpretability, so it is not
possible to understand the cause of a detected network problem, and manual intervention
is required for classification after the detection. It is then possible to resort to Explainable
AI, or XAI, which deals with the problem of how human users could understand AI’s
cognition and decide if an AI-based model can be trusted or not [21]. However, XAI
does not help interpret AI decisions and conclusions per se. Multiple methods have been
proposed to address the complex issue of ML interpretability. [22], from determining which
features contribute the most to a neural network’s output to the development of targeted
models that explain individual predictions. Nonetheless, as of today, troubleshooting
cellular networks is a manual task.

Driven by all the above observations, this Thesis develops different ideas and solutions
to solve real data collection for new protocols and automatic analysis, with automatic
identification of the causes of anomalous behaviors. We leverage the MONROE platform
to probe real commercial MBBs.

We start by evaluating WebRTC video services performance linked to using an off-the-
shelf WebRTC-based streaming application with MBB networks in mobile and stationary
scenarios. Then, we collect data from real-world scenarios from multiple European
countries and make them public by using open-science tools such as Zenodo. Alongside,
we develop an application that enables streaming videos in real-time with high quality
using Web browsers that support WebRTC and look at stats collected from the WebRTC
internal page found nearly in all modern Web browsers.

Next, we look at QUIC performance figures in MBB following the same measurement
methodology as WebRTC. However, the difference is that we look at various congestion
control algorithms and work with multiple open-source implementations. We also resource
to qlog files, to extract statistics [23].

With the data-sets collected from MONROE through measurement campaigns and
with more data obtained by Nokia, we next build a methodology that automates the
classification of networking anomalies by using interpretable ML algorithms such as
decision trees and k-means. We validate the proposed methodology using different file
download scenarios and popular Web service pages. We show the ease of implementing
such tools in real-world production environments. We finally introduce new tweaks to the
methodology to eliminate hyper-parameters. More specifically, we propose a new feature
selection algorithm and mixture of supervised, unsupervised ML algorithms in tandem.
Understanding and classifying these anomalous scenarios allow alerting the appropriate
department to take corrective actions.

6 Introduction

In the following subsection, we detail the contribution of this Thesis.

1.1. Contribution

This section presents a quick recap covering the significant Thesis contributions
mapped to the associated research question. The major contributions are summarized
into 4 points and are as follow:

Contribution 1. Performance Evaluation of WebRTC Video Services Over Mobile
Networks

Given that WebRTC was pretty new around the investigation time, most of the
performance evaluation experiments were over-controlled or simulated environments.
There was a need to fill a gap in a WebRTC video service measurement campaign over
mobile networks. Thus, we developed and carried out a measurement campaign found
in Chapter 4 of WebRTC leveraging MONROE testbed flexibility testing WebRTC over
different European countries and in different MBB scenarios. We benchmarked WebRTC
by collecting stats regarding video quality such as bitrate, frames per second (FPS),
jitter and packet loss. Later on, this came in handy to explain WebRTC performance
degradation and challenges encountered in production environments.

Contribution 2. On the Experimental Assessment of QUIC and Congestion Control
Schemes in Cellular Networks

This contribution highlights QUIC’s and HTTP3 performance in mobile networks.
Experiments are performed with the help of the MONROE testbed. A blend of stats like
the file download time, round trip time (RTT), bytes in flights, throughput, congestion
window encapsulated in qlog file while leveraging two QUIC open-source implementations.
The interaction of QUIC transport with the choice of the congestion control algorithm
is investigated. Furthermore, the performance figures of different congestion control
algorithms in different networking scenarios are evaluated. Finally, we conclude by
observing that QUIC is advantageous over TCP for what concerns HTTP applications. In
addition, we find that the congestion control algorithm, especially under mobility, strongly
impacts the QUIC’s overall performance and BBR yields more stable performance figures
to mobile users.

Contribution 3. A Novel Methodology for the Automated Detection and Classification
of Networking Anomalies.
The methodology offers a way of detecting cellular networking anomalies using
interpretable ML algorithms and using data-sets collected in real cellular network

1.1 Contribution 7

environments. The approach described in this Thesis is interpretable in the sense that
is accessible to understand by humans using decision trees and k-means. Contrary
to popular approaches, we look at misclassified samples as anomalies. Instead of
discarding them, we cluster those anomaly samples and reclassify them to detect the
networking problems. Furthermore, we validate our approach with data collected through
a measurement campaign of different Web services, such as Facebook, Youtube, Twitter,
and Google. Notwithstanding that the data-sets were obtained under very heterogeneous
conditions and from very different networks, we show that we can quickly identify
behavioral anomalies and that we are also able to investigate further and identify the
their root causes.

Contribution 4. A Hyper-Parameter free Methodology for the Automated Detection
of Networking Anomalies

As the title tells, we extend the anomaly detection methodology by tarrying away
from hyper-parameters. To name a few extensions, we change how the target variable
is treated using the proportional discretization approach and automate how the most
relevant indicators are selected from the anomaly samples using a new feature selection
algorithm named Miscoding (mscd). We test mscd performance against popular feature
selection algorithms such as Mutual Information (MI) and Joint Mutual Information
(JMI). Furthermore, we validate our approach with different data-sets obtained through
measurement campaigns. The final outcome of our proposed methodology is a set of
easy-to-interpret classification rules that automatically alert the appropriate departments
for corrective actions in case of performance anomaly. The methodology only needs
small volumes of samples for the performance indicators and allows automatizing network
troubleshooting with high accuracy and fast training.

8 Introduction

1.2. Outline of the Thesis

An Upgrade to Strees with using
a hyper-parameter free appraoch

Chapter 7

Causality Inference of Anomalies
in Networks

Figure 1.1: High-level illustration of the Thesis.

The outline of this Thesis is divided into eight Chapters and three Parts each
Chapter showcasing a detailed contribution from Internet measurement and performance
evaluation to utilizing that data to come up with methodologies for the automation and
detection of cellular networking anomalies.

Part I which includes Chapter 2 and 3 focus on the related work and background of
the Thesis regarding MONROE and MBB in general.

The key contribution Chapters and Parts of the Thesis are as shown in Figure 1.1.
Thus, Our first stop is the performance evaluation of WebRTC in cellular networks

found in Chapter 4. Here, we develop a Docker container to evaluate WebRTC in the wild
within different real networking scenarios while collecting KPIs that are deemed relevant
to Video streaming—paving the way for a public repository of open data 2 collected from
WebRTC experiments. Next, Chapter 5 investigates another upcoming transport protocol
named QUIC. This Chapter aims to evaluate QUIC in different networking scenarios
and with different congestion control algorithms. An enhancement to the public data
repository from Chapter 4 is the addition of the collected data3 from QUIC available
completely for free and they represent Part II of the Thesis.

Chapters 6 and 7 presented in Part III look at cellular networks from a data
science perspective. Thus, Chapter 6 is centered around building a methodology for
the automated detection and classification of networking anomalies using interpretable
ML algorithms and data from real cellular networks. Chapter 7 comes in as enrichment
to that methodology while discarding the use of hyper-parameters.

2http://doi.org/10.5281/zenodo.1188411
3http://doi.org/10.5281/zenodo.4602217

http://doi.org/10.5281/zenodo.1188411
http://doi.org/10.5281/zenodo.4602217

1.2 Outline of the Thesis 9

Last but not least, Chapter 8 on its own concludes this research work.

10 Introduction

2 Background

In this Chapter, we present the related work concerning the Thesis. We start first by
describing works regarding MBB and the motivation behind the creation of MONROE.
Next, we look at related works from WebRTC and QUIC. Finally, we conclude with
research topics from the data science point of view.

2.1. Mobile Broadband

Due to growing interest by regulators, policy makers and networking community,
several nationwide efforts to measure the performance of home and mobile broadband
networks (e.g., the US FCC’s Measuring Broadband America initiative [24]) have been
initiated. In this Thesis we rely on the MONROE platform, which goes beyond by
proposing a trans-national platform dedicated to systematic measurements. MONROE
will be presented in detail in the next Chapter. Here, we point at alternative approaches
to MBB performance evaluation and monitoring.

In contrast with operator-driven measurement campaigns [25–27], or existing small-
case drive-by tests [28], MONROE offers open access to cross-operator collected data,
including device-level metadata, which is key to interpret measurement results, across a
wide variety of locations.

Moreover, there have been several crowdsourcing projects devoted to measure MBBs
using tools such as MobiPerf,1 Netalyzer [29] and Haystack [30]. Such projects allow
crawling through mobile network performance factors to identify the causes of experienced
performance figures. In general, such approaches lack rich metadata due to the privacy
concerns created by the involvement of real users, hindering the analysis of their data-
sets. Also, reliance on users can provide high coverage, but at the cost of repeatability
regarding location, route or equipment. However, in combination with a platform like
MONROE, they could be used in a more systematic and controllable way, as proposed

1MobiPerf is an open source application for measuring network performance on mobile platforms:
https://sites.google.com/site/mobiperfdev/

11

https://sites.google.com/site/mobiperfdev/

12 Background

and discussed in [31]. For our work, we leverage a large-scale measurement platform and
focus on users connectivity through MBB networks only. Precisely, we use the MONROE
platform, which has been designed with our contribution [6]. MONROE’s main goal is to
allow the collection of telemetries and the execution of experiments on operative mobile
networks. This is made possible through the use of hardware nodes which are connected
to different broadband operators and are locally running experiments uploaded by users
and programmed by means of an automatic scheduler. MONROE is currently operating
as an international alliance, formed after the consortium of a previous European project.
MONROE provides multi-homed, autonomous, large-scale monitoring and evaluation of
performance for mobile broadband networks in heterogeneous environments. Acquiring
access to this platform allows for the deployment of vast measurement setups to collect
data from operational MBB networks in various European countries. Differently from
other approaches based on operator-driven quality-assessment campaigns [26, 27], or on
traditional drive-by tests [28], MONROE offers an open platform for repeatable and
traceable experiments. Besides, it offers open access to collected data, which refer to
multiple operators, and includes device-level metadata, which is the key to use and
possibly filter results without raising user’s privacy concerns. This offers much richer
data than what can be offered by crowdsourcing initiatives like, e.g., Netalyzer [29] and
Haystack [30].

2.2. Rising Protocols

In Part II of this Thesis, the focus will be on measuring the performance of two new
communication protocols: WebRTC and QUIC.

2.2.1. Web Real-Time Communication

WebRTC was first developed by Global IP Solutions (GIPS) and later acquired by
Google in 2011. Google’s acquisition of GIPS helped make the WebRTC source code
open for developers, thus beginning the standardization of WebRTC in W3C. The idea
of making the WebRTC source code publicly available motivated researchers to evaluate
its overall performance.

The authors of [32] introduced WebRTCBench, which measures the overall peer-
to-peer communication performance. They made it publicly available, helping identify
performance bottlenecks of different WebRTC implementations across a domain of
platforms. The authors of [33] carried test evaluations of WebRTC applications on
different browsers ad cellular networks such as 3G, 4G, and Wifi. Concluding that the
overall performance in static cellular networks has a packet loss of less than 1% and
advises that a round trip time of less than 100ms helps maintain a better peer-to-peer
communication link. In [34], the authors evaluate the performance of various network

2.2 Rising Protocols 13

topologies implementing WebRTC, acknowledging the congestion control techniques used
and deployed lately. Receive-side real-time congestion control (RRTCC) is the algorithm
employed here. Varying throughput, delay, and effects of fluctuating proportions of
cross-traffic on both RTP and TCP are used to assess the performance, suggesting that
RRTCC yields good results but weakens when compared with TCP. Their experimental
observations showed that RRTCC works fine with low delay networks and can withstand
short-term modifications that might comprise delay or queuing. The authors of [35]
compares WebRTC servers on virtual machines and Docker containers. To facilitate the
encoding and decoding between different browsers, the authors used the Kurento media
server while checking the virtualization type that fits a WebRTC application. They
carried multimedia tests on Docker containers and KVM machines, showcasing that the
latter have overhead in their performance and can be expensive. Concluding that Docker
containers perform better than VM’s.

While current approaches evaluate WebRTC’s different components. In our case, we
look at WebRTC performance figures in heterogeneous networks and for users on the
move leveraging the MONROE platform.

2.2.2. Quick UDP Internet Protocol

QUIC was first introduced as gQUIC (Google’s version of QUIC), which led to an
early investigation work [36–41] assisting the performance of that specific implementation,
mostly using Chromium as the open-source gQUIC server of choice in local environments.
This means that the experimenters control various dimensions that can impact the
overall performance, such as network conditions. Instead, we study QUIC in the wild of
operational cellular networks in different countries. We can configure QUIC servers and
client, but we cannot touch the network. Figure 2.1 describes the QUIC’s communication
flow in terms of handshake and security.

Existing studies, e.g., [13, 42], show a toss-up in terms of who is the better
protocol QUIC or TCP. They dig deep into QUIC’s features, such as 0-RTT connection
establishment, congestion control, and removal of TCP’s HoL block. Some of these studies
conclude that QUIC outperforms TCP, while others show the opposite. These conflicts
between results are due to the different tuning of application settings and machine kernel
used in the experiments.

14 Background

Client Server
QUIC Initial
(Client Hello)

QUIC Initial
(Server Hello)

QUIC Initial
(ACK)

QUIC Handshake
(Finished)

QUIC Handshake
(Finished)

QUIC Protected Payload
(Application Data)

QUIC Connection Establishment
(1-RTT)

QUIC Initial
Protection Packets

QUIC Handshake
Packets

QUIC Protected
Payload Packets

Figure 2.1: QUIC communication flow.

Accordingly, recent works like [43] suggest to separate the QUIC protocol from
the implementation since there exist multiple implementations produced by Google,
Facebook, and Cloudflare. Moreover, many authors focus mostly on the gQUIC
implementation of QUIC,2 which is Google’s implementation, and which differs from
the proposed IETF version of QUIC,3 as discussed by the authors of [43]. They sustain
that most of the observed performance differences can be attributed to developer design
and operator configuration choices when selecting the congestion control algorithm used
in QUIC. They also point out that conducting new, experimental research from different
implementation angles in production environments is needed. This is exactly what we
present in this Thesis, leveraging two IETF-compliant open implementations of QUIC,
namely flowsim and Mvfst, through which we are able to explore the impact of QUIC’s

2https://www.chromium.org/quic
3https://quicwg.org

https://www.chromium.org/quic
https://quicwg.org

2.3 Data Science In Cellular Networks 15

configuration parameters in real cellular networks.
Thanks to MONROE, and unlike current approaches to QUIC measurements, we focus

more on the performance assessment of QUIC under real cellular networks in different
European countries, showing the impact of mobility on performance figures. We believe
that showcasing how QUIC behaves under operational setting, and compared to TCP
alongside different congestion control algorithms, offers a broader and more realistic image
of QUIC than available studies, at least for what concerns the use of QUIC in mobile
networks.

2.3. Data Science In Cellular Networks

In Part III of this Thesis, the focus will shift to data science for the identification of
performance anomalies.

2.3.1. Causality

Causality refers to the relationship existing between two types of events, cause and
effect, where the occurrence of the latter is a consequence of the occurrence of the
first. Causality must not be confused with another common term belonging to the
statistics lingo, which is correlation. While the latter refers to the relationship between
two variables based on their covariance (if a variable changes, the other does so too),
causality establishes a clear dependency and a mapping in the way these changes take
place. Causality always implies correlation but not the other way around [44].

Traditional methods for the discovery of causal relationships include the conduction of
randomized trials with the objective of removing confounders, that is, variables that may
deceive into drawing non-existent associations between different events. Due to the high
cost of implementing these experiments, many researches have switched to the discovery
of causal relationships through the exploratory analysis of observational data. This is
known as causal inference [45]. As a consequence, and due to the exponential increase
in the amount of data that can be collected and analyzed by systems nowadays, machine
learning has been put at the forefront as a promising pathway to the automatization of
causal inference and its execution in a computationally feasible amount of time. However,
the introduction of machine learning models can lead to the so-called “black box effect,”
as the convoluted nature of these algorithms can obscure the understanding of the reasons
behind the cause-effect connections and predictions discovered [46].

Advances have been done theoretically to favour the explanation of these causal
relationships in the field of machine learning. Judea Pearl proposed a three-level hierarchy
to classify causal information according to the type of queries each family can give
answer to [47]. Firstly, the Association level, at the bottom of the causal hierarchy and
syntactically expressed through conditional probability sentences, deals with information

16 Background

that allows to infer data associations extracted from the pure observation of data and the
application of standard probabilities. Secondly, the Intervention level, regards questions
that not only imply the observation of data but also the alteration of the perceived reality.
The probabilistic expressions at this level can be estimated both through experiments
and analysis using causal Bayesian networks. Finally, at the top of the hierarchy we have
the Counterfactual level, which deals with retrospective reasoning and the hypothesis
of scenarios provided environmental conditions had been different or altered prior to
observation.

Pearl’s three-tier hierarchy sheds light on why most machine learning systems, which
are only capable of extracting data associations and thus fit in the bottom of the
causal hierarchy, are unable to reason about newly unobserved data and provide causal
explanations. Thus, this raises the question whether artificial intelligence can be enriched
to provide new layers of causal inference. The main pathway towards a second generation
of machine learning models capable of achieving this level of cognition involves the
development of Explainable AI (XAI).

2.3.2. Explainable AI

Using Machine learning to detect anomalies has been around for a while. Currently,
the most powerful algorithms are based on Neural Networks, which show high accuracy
but have little interpretability. In reality, interpretability mainly refers to the intuition
behind the outputs of a model; the more interpretable a machine learning system is,
the easier it is to identify causality within the system’s inputs and outputs. Thus, XAI
has gained much momentum in the past few years to help explain any black-box Model.
The most complete techniques to achieve that are the local interpretable model-agnostic
explanations (LIME) and Shapley Additive explanations (SHAP), based on the current
state of the art.

The LIME [48] method is one of the most popular interpretability methods for black-
box models. Following a simple yet powerful approach, LIME can generate interpretations
for single prediction scores produced by any classifier. For any given instance and its
corresponding prediction, simulated randomly-sampled data around the neighborhood of
the input instance for which the prediction was produced are generated. Subsequently,
new predictions are made for the generated instances and weighted by their proximity
to the input instance while using the model in question. Lastly, a simple, interpretable
model, such as a decision tree, is trained on this newly-created dataset of perturbed
instances. By interpreting this local model, the initial black-box model is consequently
interpreted. Although LIME is powerful and straightforward, it has its drawbacks. In
2020, the first theoretical analysis of LIME [48] was published, validating the significance
and meaningfulness of LIME and proving that poor parameters choices could lead LIME
to miss out on essential features.

2.3 Data Science In Cellular Networks 17

SHAP [49] is a game-theory-inspired method that attempts to enhance interpretability
by computing the essential values for each feature for individual predictions. Firstly, the
authors define the class of additive feature attribution methods, which unifies six current
methods, including LIME [48], DeepLIFT [50], and Layer-Wise Relevance Propagation
[51], which all use the same explanation model. Subsequently, they propose SHAP values
as a suitable feature importance measure that maintains three desirable properties: local
accuracy, missingness, and consistency. Finally, they present several different methods for
SHAP value estimation and provide experiments demonstrating the superiority of these
values in terms of differentiating among the different output classes and better aligning
with human intuition than many other existing methods.

These techniques are generic and help interpret models deployed in multiple
disciplines, such as healthcare, medicine, retail, and banking. A key factor concerning
these techniques is that they have to be used on pre-trained models. We differ because we
are trying to deploy techniques that are easy to interpret throughout the entire process,
from data processing to problem classification.

2.3.3. Anomaly detection

Early works on fault detection suggested the use of time series regression methods
and Bayesian networks. For instance, Barco et al. [52] produced an automated tool
for troubleshooting mobile communication networks back in the days of 2G, relying on
Bayesian networks to detect call drops. Khanafer et al. [53] followed up on proposing a
method based on Bayesian networks to detect faults in UMTS systems, in which they
apply different algorithms to discrete KPIs. Other works, such as [54], rely on a scoring-
based system, in which the authors build the fault detection subsystem around labeled
fault cases. These cases were previously identified by experts, using a scoring system to
determine how well a specific case matches each diagnosis target. The work presented
in [55] is based on a supervised genetic fuzzy algorithm that learns a fuzzy rule base and,
as such, relies on the existence of labeled training sets. Indeed, most of the techniques
proposed in the literature focus on using supervised machine learning algorithms [53–55].
In this paper we show that it is convenient to use unsupervised techniques to unveil hidden
information in the input data, without restricting a priori the possible outcomes.

Other works make use of advanced mathematical and statistical tools. For instance,
Ciocarlie et al. [56] address the problem of checking the effect of network changes
via monitoring the state of the network, and determining if the changes resulted in
degradation. Their fault detection mechanism uses Markov logic networks to create
probabilistic rules that distinguish between different causes of problems. A framework
for network monitoring and fault detection is introduced in [57], using principal
component analysis (PCA) for dimension reduction, and kernel-based semi-supervised
fuzzy clustering with an adaptive kernel parameter. To evaluate the algorithms, they use

18 Background

data generated by means of an LTE system-level simulator. The authors claim that this
framework proactively detects network anomalies associated with various fault classes.
These methods lack the flexibility of ML-based ones and, differently from our proposal,
cannot be fully automated for a generic network context.

Recently, researchers are exploring the potentials of AI/ML for predicting and timely
obviating network performance issues. For instance, Terra et al. [58] analyze how to apply
existing XAI methods to identity the root causes of service level agreement violations in a
sliced network, in a 5G context. Tang et al. [59] use instead ML to identify the root causes
of exceptions in packet-over-optical networks, thus achieving what they define customized
performance monitoring and troubleshooting. Furthermore, Wei et al. [60] point out that
the class of AI that goes under the label of intent-based networking techniques can be used
for troubleshooting of network services. For instance, available products like Cisco ACI
and Spruce Network DeepFlow already offer network operators the capability to monitor
and rise alarms and trigger troubleshooting actions in 5G and beyond 5G networks.
However, they do not offer explainable nor interpretable methods and basically help in the
self-optimization of a system using intent-based networking, which is limited to the scope
of SDN/NFV network functionalities, while we will see in the reminder of this article
that contextual information is key to identify anomalies rather than generic performance
issues, and their causes. Moreover, existing AI/ML based approaches to troubleshooting
are highly customized (e.g., for 5G functionalities or for optical networks) and require the
collection of specific network features. Differently from our approach, these limitations
make existing approaches unsuitable to be flexibly applied to new protocols and services.

Finally, it is worth mentioning that most of the existing proposals have been evaluated
only through simulators, and require large datasets. They help to detect network issues,
but do not contribute to interpreting the network behavior. By comparison, in our work,
we use not-necessarily-abundant data collected in real operational networks and propose
a fully automated ML-based methodology that leads to a straightforward interpretation
of network behaviors. This includes identifying not only the occurrence of problems but
also their root causes.

3 MONROE

The field of networking offers the possibility of gathering large volumes of information
from network elements and end hosts. Analyzing these data is crucial to understand how
networks perform under different usage patterns and adapt them to future requirements.
This is particularly important for MBBs, which are the segment with the strongest growth
forecast and higher variability in operating conditions. Two main challenges arise when
trying to analyze the performance and reliability of MBBs: The difficulty of obtaining
systematic data from reliable repetition of experiments on commercial operational MBB
networks, and sifting through the big amount of variables that can be monitored and
measured.

MONROE is a Europe-wide experiment oriented network counting on more than 200
custom measurement probes (or nodes), designed to enable collection and analysis of the
characteristics of commercial mobile broadband networks and execution of discretionary
experiments from external researchers.1 The work carried out for this Thesis contributed
to the design of MONROE services and to data handling, which will be presented in what
follows jointly with the measurement architecture and some experiment examples, so as
to show the potentials of MONROE.

The platform nodes operate under a wide variety of conditions, the nodes being
deployed aboard trains, buses and delivery trucks, or inside residential homes and
laboratories. Nodes are co-located in pairs, where one node connects to two mobile
providers using customer-grade commercial subscriptions, and the other connects to a
third operator and potentially to a WiFi network. Both nodes can connect to Ethernet
where available.

The testbed performs periodic passive and active measurements and continuously
monitors the status of the MBB networks through metadata collection. The collected
metadata are centrally stored in a NoSQL database to ensure scalability past billions
of records. We offer to the community the unique possibility of accessing our curated

1MONROE is a FIRE+ project funded by the European Union’s H2020 research and innovation
programme. For more information, please visit https://www.monroe-project.eu/

19

20 MONROE

data-set through periodic data dumps, which enable data analysis across all the nodes
and lifespan of the platform. Additionally, we encourage external experimenters to devise
novel experiments and add to the diversity of MONROE open data.

The following is a list of the main characteristics and innovations of MONROE, which
exposes software services and physical nodes to plan and perform MBB measurements,
hence it is an Experiment as a Service (EaaS) platform.

Large-scale deployment in diversified scenarios: MONROE nodes are being
deployed across Norway, Sweden, Italy and Spain, with external partners currently
deploying additional nodes in Germany, Greece, France, Portugal, Slovenia and the UK.
Some nodes have stationary locations in dense urban areas, while a significant number
(more than 110 at the time of writing) operate aboard public inter-city trains, buses
and delivery trucks. Whereas trains traverse large distances, sometimes at high speeds,
buses cover urban areas. Both settings enable us to collect a unique data-set under
mobility scenarios along the fix routes of those vehicles. Nodes aboard delivery trucks,
which traverse both urban and rural areas without fixed routes, complement the previous
data-set.

Open experimentation platform on commercial cellular operators:
MONROE is an open platform that allows authenticated researchers to run their own
custom experiments on commercial MBB networks. Researchers can then opt to add their
data to the MONROE open data-set, increasing its diversity and allowing us to look past
performance metrics and metadata. Notable examples are a Web performance experiment
and video QoE measurements [61], which are being evaluated for inclusion in the set of
periodic measurements run on the nodes. In addition to the actual data, experiment
source code and supporting material for those wanting to create new experiments on
MONROE are also openly available.2

Consistency and repeatability: MONROE provides a uniform hardware and
software environment to measure and monitor MBB networks at fixed locations and times.
Furthermore, the public transportation vehicles that host MONROE nodes ensure fairly
repeatable routes for mobility experiments. Even more, they repeat the same itineraries
several times a day at different hours (i.e., mixing peak and normal hours) and on different
days (i.e., weekdays and weekends). This provides the data-set with a rich spatio-temporal
dimension, which is key to enable the comparison of different measurements over different
operators, places and times of day.

Metadata-rich data-set: Each MONROE node is instrumented to periodically
measure the performance of its MBB providers. They continuously gather metadata,
including, for example, location, signal strength and link technology for each network

2All stable pieces of open source code produced in MONROE are available on github at https://github.
com/MONROE-PROJECT/Experiments, whereas a complete user manual is made openly available at
https://github.com/MONROE-PROJECT/UserManual

https://github.com/MONROE-PROJECT/Experiments
https://github.com/MONROE-PROJECT/Experiments
https://github.com/MONROE-PROJECT/UserManual

3.1 EaaS platform design and implementation 21

provider. Additionally, several basic speed and network probing tests are executed
periodically to asses network performance. Since MONROE does not involve real users
(which usually entail privacy protection restrictions), rich metadata collection, including
geo-temporal tagging, is possible, which enables the evaluation of mobile services under
mobility. In particular, MONROE collection of data enables purely offline experiments
for analysis of MBB network performance.

In the rest of this Chapter, we start by describing the design of the MONROE EaaS
platform in Section 3.1. In Section 3.2, we first present the tools offered to experimenters
and currently available template experiments, then we showcase the possibilities that
MONROE opens by presenting a selection of experiments run by us and by several external
groups. Those examples aim to entice other researchers to exploit the data gathered by
our platform in innovative ways or to design their own experiments and so contribute
to improve our overall knowledge on the behavior of MBB networks. We conclude the
Chapter with a short discussion in Section 3.3.

3.1. EaaS platform design and implementation

The MONROE EaaS platform was designed with the purpose of collecting, storing
and offering open access to large amounts of diverse mobile network data, and providing
an EaaS platform for the execution of discretionary experiments by external researchers.
Therefore, enriching measurement data with abundant context information (metadata),
and enabling a wide variety of experiments, are the two key aspects that have steered the
platform design since its inception. Figure 3.1 offers a high-level overview of the complete
MONROE platform design.

Here we briefly present the platform components and focus on the processes of
collection and storage of measurement results and the concrete implementation choices
made during the platform design. The system design includes four main groups of
components distributed across nodes and backend, as shown by the color code adopted
in Figure 3.1.

The “red” component is responsible for MONROE default experiments, each using
an isolated Linux Docker container [62]. Default MONROE experiments include, for
example, periodic ping measurements for connectivity survey, HTTP downloads from a
series of targets under our control, or Web performance measurements. The results of
these default experiments and the collected metadata are transferred as JSON files to the
main MONROE server via rsync over SSH channels. Once at the server, the JSON files
are stored in a NoSQL database. Offline data analysis can happen both at the server side
in the form of database queries or at the experimenter’s side (with custom applications)
if further processing is required. Since data-sets are the main asset of the platform, we
implement several backup and duplication mechanisms to provide data safety and access

22 MONROE

Temporary	
Repository	

MONROE	
Open	
Data	

MONROE	
Visualiza8on	

B
ac

k-
En

d

DB	 DB	
Maintenance	
&	Opera8ons	

 N
od

e

User’s	
Storage	 Inventory	

Measurement	
Responders	

User	Access	and	Scheduling	 Management	and	Maintenance	

Default	Experiments	
(containers)	

User	Experiments	
(containers)	

Core	
Components	

mPlane	

MPLANE	
Repository	

mPlane	
Visualiza8on	

DB	
replica	
dumps	

Figure 3.1: MONROE system design. Researchers access the system through the Web
user interface and scheduler, or directly through the various repositories and data bases.
Several passive (metadata, mPlane, etc.) and active (RTT, HTTP bandwidth, etc.)
probes monitor network usage and performance continuously.

redundancy. A visualization solution facilitates the surveillance of the platform health
and its available resources in near real-time.

Beside default experiments, MONROE allows authenticated external researchers to
access the platform via the Web user interface and deploy their own custom experiments.
This is the “azure” component of Figure 3.1. Separate storage for the results of user
experiments is offered in a temporary repository accessible through the platform Web
user interface. We encourage users to make their results public and include them in the
MONROE open data-set.

In addition to default and external experiments, each node runs Tstat [63], a passive
traffic analysis tool connected to the mPlane measurement platform [64]. Tstat generates a
series of logs that the nodes send to the mPlane repository, from where users can consume
the data using the mPlane visualization solution. This is the “orange” component in
Figure 3.1. Note that Tstat data is also imported to the MONROE database, as shown
in the figure.

A fourth component, the “blue” one in Figure 3.1, has been designed for dealing with
node connectivity and software management of the platform.

As shown in the upper part of Figure 3.1, access to the platform is guaranteed
to experimenters by means of a user access portal, and experiments are automatically
loaded by a global scheduler that enforces and activates the Docker containers provided
by the experimenters and carrying the experimental code. Thus, the entire architecture
is transparent to the end-users, i.e., the experimenters. Moreover, platform maintainers

3.1 EaaS platform design and implementation 23

have direct and exclusive access to the nodes and to the MONROE back-end.

3.1.1. Node instrumentation

MONROE nodes collect four types of information:
1. Metadata: This includes network parameters (RSSI, cell identifiers, link

technology, etc.), node location and speed (GPS), node working parameters (CPU
temperature, processing load, etc.) and node events (watchdogs).

2. Connectivity and latency measurements: Basic active measurements are run
in a container that collects statistics on ICMP packets sent towards fixed destinations
(UDP/TCP RTT will be added as future extensions).

3. MONROE and user experiments: Experimenters define Docker containers
to run their measurements in isolation. Some containers are scheduled periodically to
estimate available bandwidth, to track routes to and from specific targets in the network,
etc. Other containers are scheduled upon the request of the experimenters.

4. Passive traffic monitoring: TCP flows are captured and analyzed by means
of the Tstat measurement suit. MONROE nodes include a Tstat probe in a dedicated
container, in which all MBB interfaces are monitored and where per-flow statistics are
computed and subsequently published in the mPlane and MONROE databases.

The differentiation between the aforementioned types of data responds to their distinct
natures and purposes. In that way, passive metadata can be gathered at the nodes
with minimal impact on any experiments; thus, they are recorded on a continuous basis.
Similarly, the passive mPlane Tstat probe, which produces low processing load, runs
continuously. Background experiments such as end-to-end delay or round-trip time (RTT)
measurements may create a moderate (controlled) interference with other experiments;
however, the value obtained by gathering these data are worth their cost. Experimenters
are made aware of those background experiments. Finally, some MONROE experiments
such as bandwidth measurements might produce a higher impact on user experiments.
Therefore, those experiments are not scheduled concurrently with any user’s ones. Indeed,
each user experiment runs in exclusivity with respect to experiments from any other users.

3.1.2. Data flows

Figure 3.2 shows the different flows of information through the platform, since
it is generated in a node until it is collected and stored in our databases for later
analysis. MONROE nodes implement a metadata distribution mechanism based on a
publish/subscribe model. Experiments running in the nodes can subscribe to different
information “topics” to monitor system status and events such as network interface
(dis)connections, link technology changes or GPS location variations. This flexible design
eases the implementation of each platform component as data producers do not need to

24 MONROE

Server 1

MONROE Server

SSH
tunnel

Web
UI

Experimenters

Server 2

RSYNC

ZMQ
M

O
DEM

G
PS

System

Status
Scheduler

Status

M
etadata Exporter

M
etadata

Subscriber
Experim

ent
containers

RSYNC (JSON files)

RSYNC
RS

YN
C

Metadata
importer

Cassandra
DB

CSV
dumps

Temporary
Storage

Backup Cassandra DB
(public)

Nodes

Figure 3.2: Flow of information in the MONROE platform.

keep track of their clients, and new data consumers can choose the information topics
they are interested on without caring about the details of the producers.

Independently of their origin, all data items are transferred to the MONROE servers
via rsync over SSH. Once at the server, each item is processed and stored according to
its nature: Metadata, the results of the MONROE experiments and Tstat measurements,
which arrived as JSON files, are stored in a NoSQL database, whereas the results of user
experiments are temporarily kept at a repository for easy access through a Web user
interface.

In the server, several scripts create backups of the database contents and a dump
of the database in CSV format is produced daily; experimenters may use those 24-hour
feeds if their experiments are focused on small periods of time. Furthermore, a secondary
copy of the database is updated every day for direct access by external researchers. That
secondary copy is not a normal database “replica” to avoid the risk that accidental (or
malicious) modifications to the (open) database spread to the primary one. The daily
CSV dumps are available for direct download to registered users through the Web user
interface; access to the (secondary) database is provided to external researchers via SSH
tunnels.

3.1 EaaS platform design and implementation 25

3.1.3. At the node side

At the node side, metadata distribution is implemented in a publish/subscribe pattern
using ZeroMQ.3 The metadata stream is available for experiments during their execution
using the ZeroMQ subscription mechanisms. Metadata entries are generated in a single-
line JSON format, which eases human analysis. Every data entry is labeled with a “topic”
field; consumers may subscribe to the whole stream of metadata or just to some topics.
The metadata subscriber module runs in the nodes and subscribes to all the topics,
writing JSON entries to files in a special file system location. A synchronization process
transfers those files to the MONROE server when no other active, periodic, or user-defined
experiment is running.

Regarding node stability, several monitoring and recovery methods ensure that they
remain online and capable of executing experiments. Node stability is ensured via
lightweight virtualization (by means of Docker containers), thus guaranteeing a clean
environment for each experiment. Several surveillance mechanisms (watchdogs) in the
nodes can force a complete reinstallation of the operating system and environments if
they detect system malfunctions such as filesystem corruption.

3.1.4. At the server side

Information received from the nodes in JSON format is stored at the server in a NoSQL
database. The choice of a NoSQL solution was based on the need to permanently store a
potentially very large data-set consisting of billions of entries. As a quick calculation to
illustrate the scale of the data-set, RTT measurements are executed for each of the three
MBB interfaces of each node every second. Therefore, 3×3600×24×365days×150nodes =
14191e6 entries could be stored in the database every year, only for RTT measurements, if
they are run every second. Based on the concrete storage and access needs of MONROE,
Apache Cassandra4 was chosen as the system NoSQL database for its scaling abilities,
both in performance and storage capacity. If the space available in a machine is exhausted,
new space may be added simply by configuring a new replica. Additionally, Cassandra
is a mature technology that offers access drivers for multiple programming languages
and production-grade tools for data analytics, widening access options for researchers.
Besides, several Python scripts produce a backup of the JSON files received at the server
and a daily CSV dump of the database. Those results are transferred to a backup server
that provides off-site backups. The copy of the database accessible to external researchers
is hosted in an independent server, thus avoiding performance interferences with the main
database.

3ZeroMQ distributed messaging: http://zeromq.org
4The Apache Cassandra database: http://cassandra.apache.org

http://zeromq.org
http://cassandra.apache.org

26 MONROE

3.1.5. Access to data

The metadata produced by the nodes can be accessed in several ways. First,
experiments may access the metadata stream during execution using the ZeroMQ
subscription mechanisms. In this way, they can monitor and react to events such as
interface reconnections or link technology and signal strength changes for each MBB at
run-time. Second, researchers may access the database (or the CSV dumps) to correlate
their results with the metadata matching by the corresponding timestamps. As an
example, the results of an experiment may be related to the network conditions during
its execution, even if at that time not all the metadata was checked online. Researchers
may also import the CSV dumps into their own tools for more specific data analyses.

3.1.6. User access and experiment scheduling

MONROE enables user access to the experimental platform through a user-friendly
interface built on an AngularJS-based Web portal. The platform is open, although
authentication is required. In particular, as part of the MONROE federation with
the Fed4FIRE initiative of the European Commission,5 MONROE user access follows
Fed4FIRE specifications in terms of authentication and provisioning of resources. Hence,
the MONROE portal allows to access the MONROE scheduler, which is a server in charge
of setting up the experiments without requiring the users to directly interact with the
nodes (i.e., no SSH access to the node environment). The scheduler ensures that there
are no conflicts between users when running their experiments and assigns resources to
each user.

The scheduling system consists of two parts. A scheduling server runs on a MONROE
server behind an Nginx proxy and uses an SQLite 3 database to store user roles, node and
experiment status, and schedules. In addition to Fed4FIRE-compatible APIs, it offers a
REST API that can be accessed through the Web user interface or directly through the
Nginx proxy if users develop their own access scripts. The client part of the scheduler
runs on MONROE nodes. It periodically contacts the scheduler in the server to send
“heartbeats” and traffic statistics, and check for new schedules for the node. When
new schedules are available, the scheduler preloads up to three containers, depending on
criteria such as available storage in the node and time until schedule. It also schedules the
start and stop times of each container using operating system functions. When the time
to execute a new container arrives, the operating system executes the container using the
Docker tools. Finally, the scheduler monitors the experiments to check if they exceed the
allocated resources and to transfer any result files and inform of result codes.

5Fed4FIRE, testbed federation for Future Internet Research and Experimentation (FIRE): http://
www.fed4fire.eu

http://www.fed4fire.eu
http://www.fed4fire.eu

3.2 Experiments 27

Design experiment Schedule container
in a testing node

Schedule
experiment

Create container for

g

Test & Debug

p

Deployment /
experiment

St t i i

Test & Debug

MONROE

execution

Store container in
repository

MONROE
certification Retrieval of results

Design Testing Experimentation

Figure 3.3: Experiment workflow covering the design, test and experimentation phases.

3.1.7. Experimentation workflow

Figure 3.3 shows the general workflow of the experiments executed on MONROE
nodes. The first step is to design the experiment selecting the appropriate tools. The
required files have to be collected in a Docker container, which is submitted to a repository.
MONROE offers a set of dedicated testing nodes that can execute containers from any
public repository. Once the experiment is ready, it undergoes a certification process in
which MONROE administrators check that it is generally safe for execution and move the
container to a private repository. Deployed nodes (i.e., real experimentation nodes) can
download containers only from the MONROE private repository. Container execution
can be scheduled as many times and on as many nodes as required, always subject to
quota availability. Using the platform Web interface, users can monitor the progress of
all their experiments, including repetitions on multiple nodes. Finally, the results can be
downloaded directly from the platform Web page.

3.2. Experiments

In this section, we list and describe the EaaS templates currently available in form of
Docker containers and ready for experimentation with the MONROE platform, as well
as a number of their use cases for MBB evaluation.

3.2.1. Experiments currently available as services

There are many experiments available as services on the MONROE platform within
an EaaS framework. Figure 3.4 lists these experiments with respect to their origin and
characteristics.

Consortium experiments are provided by the MONROE Consortium and are all

28 MONROE

Figure 3.4: Experiments currently available as services that can be run on the MONROE
platform, within an EaaS framework.

available on github, as mentioned in the introduction, jointly with detailed instructions on
how to configure and run the experiments. For each experiment and the Docker container
implementing it, a template is prepared and provided for running the experiment from
the MONROE Web interface with a single click, without the need to set any configuration
parameters. The default parameters can be modified at will, as documented in the
MONROE user manual.

The experiments can be passive or active. Passive experiments collect information in
the background without generating additional traffic, whereas active experiments perform
new measurements by generating data traffic. Passive experiments run continuously
(periodically). Active experiments can either be run periodically with a lower frequency
than the passive experiments (those are referred to as “base” experiments), or be available
for running at will without a regular schedule (“non-base experiments”).

In addition to the consortium experiments, the platform was also used for research
and experimentation by 27 external groups from academy and industry, who run both
passive and active experiments.

In what follows, we describe the design and implementation of the most prominent
experiments produced by the MONROE consortium and provided as EaaS, and give two
examples of experiments designed by external experimenters.

3.2.1.1. Metadata collection

MONROE nodes passively and continuously generates metadata. Table 3.1 illustrates
the metadata “topics”, which are streamed to subscriber entities within the node using
ZeroMQ, as previously explained in Sections 3.1.2 and 3.1.3. Metadata are collected and
stored in a database for post processing. However, experiments running containers can
also have their containers subscribed to any of the metadata topics and use them during

3.2 Experiments 29

Table 3.1: MONROE metadata topics

Class Type Examples
Node Sensor CPU temperature
Node Probe Load, memory usage
Node Event Power up, reboot
Device GPS GPS coordinates
Device Modem RSSI, link technology, cell ID, IP address

Experiment RTT Ping RTT
Experiment Bandwidth HTTP download throughput

their experiments or store them jointly with their results, to easy the joint post processing
of data and metadata pertinent to a given experiment. Upon a variation in a monitored
value, a new message is sent to subscribers only, so the metadata generation uses limited
resources.

3.2.1.2. TCP flow analysis

One of the Docker containers always present in a MONROE node runs TCP flow
analysis in near-real time using Tstat. Tstat is a powerful passive monitoring tool that
rebuilds TCP flows reporting more than 100 flow descriptors (e.g., client and server IP and
port, RTT, number of retransmissions) and more than a thousand packet level metrics [63].
Therefore the container implements a passive traffic probe that provides insights on
the traffic patterns at both the network and the transport levels, offering additional
information on the traffic each interface exchanged during an experiment. This container
runs continuously and does not interfere with other experiments. Moreover, experimenters
can use Graphite to easily navigate through offline logs and store a dashboard showing
relevant data within an adjustable time window.6

3.2.1.3. End-to-end delay statistics

This is a base experiment running active and lightweight measurements. It consists in
a simple container that pings continuously a few remote targets and records ICMP ping
statistics. A variant of this container is also available, in which UDP is used instead of
ICMP. Despite being very simple, this experiment gives fundamental information about
the status of the network and its congestion level.

3.2.1.4. Route monitoring

MONROE incorporates active traceroute measurements in the set of base experiments,
to study routing and to identify middleboxes. The MONROE traceroute experiment

6Graphite documentation: http://graphite.readthedocs.org/en/latest/index.html

http://graphite.readthedocs.org/en/latest/index.html

30 MONROE

aims to compare routing from nodes in different countries and, inside a country, different
operators (some of our measurements are performed with SIM cards in roaming that
show home-routing patterns). By using Paris Traceroute rather than a simple and legacy
traceroute application,7 these experiments also allow identifying middleboxes and their
differences between operators and countries.

3.2.1.5. Webpage download

To assess basic Web performance figures, one of the experiments available as service
in MONROE, WebWorks, is an active on-demand experiment using the Firefox browser
in headless mode allowing to run in a node with no need of a monitor. WebWorks is built
on top of the Selenium Web automation framework.8 Selenium provides a Web driver
that can interact with Firefox as a regular user would. During a page visit, WebWorks
uses the HAR export trigger add-on to log Firefox interactions with the page as JSON-
formatted archive file called HAR (HTTP Archive).9 WebWorks uses the HAR file to
derive a number of Web performance metrics such as DNS resolution time, TCP connect
time, object receive time specific to various objects in a page. Besides WebWorks tracks
three other metrics, namely Page Load Time (PLT), Byte Index (BI), and Object Index
(OI). PLT is primarily based on OnLoad event triggered by the browser when all objects
on a page are loaded. OI and BI are time-integral QoE metrics derived from the HAR
files [65]. They are computed from the arrival time of all objects in the webpage waterfall.
OI tracks the time at which the content of the page is retrieved, taking into account all
external images, stylesheets and scripts needed to render the page. BI operates in the
same way, but weights objects by their size. For both, a higher value indicates higher
page load time and higher delays at the reader’s browser. WebWorks measures Web
performance against multiple popular targets, enabling, for example, the tracking of PLT
and other metrics and their correlation with metadata information.

3.2.1.6. HTTP download

This is another active base experiment that is periodically scheduled in all nodes.
The container tests HTTP download rates using the various available versions of HTTP,
and generate statistics about large file downloads. Being data-consuming, this test is not
aggressively scheduled, although it is needed to complement the statistics on delay/RTT
studied by means of tiny ping packets and on short-lived flows collected with the webpage
download experiments described above.

7Paris Traceroute network diagnosis/measurement tool: https://paris-traceroute.net
8Selenium browser automation: http://www.seleniumhq.org
9HAR export trigger: http://www.softwareishard.com/blog/har-export-trigger

https://paris-traceroute.net
http://www.seleniumhq.org
http://www.softwareishard.com/blog/har-export-trigger

3.2 Experiments 31

3.2.1.7. Network speed tests

MONROE-Nettest is a configurable tool for data rate and latency measurements,
intended for the study of speed in MBB networks, using active experiments. We choose
RTR Multithreaded Broadband Test (RMBT) by Netztest10 as the codebase for our client
implementation since this is a tool used by most network regulatory authorities in Europe
for their crowdsourced measurement applications. Adopting a user experience oriented
approach for measuring data rate, these solutions use TCP-based testing with multiple
parallel flows. Configurable parameters of the client include the number of flows for
downlink and uplink, measurement durations, and measurement server. For the server
side, we make sure to keep compatibility with the RMBT, and use the server code from
the open-source Open-RMBT project,11 with only minor changes. We have deployed a
network of MONROE-Nettest servers in Europe, including Germany, Norway, Spain, and
Sweden for large scale experimentation. MONROE-Nettest12 is run as a base experiment
in the MONROE platform, so it is run periodically on every node and every connected
MBB network.

3.2.1.8. Adaptive streaming over HTTP

MONROE uses a variant of AStream, which is an open source software written
in Python to implement 3 different rate adaptation algorithms for evaluating MPEG
Dynamic Adaptive Streaming over HTTP (DASH).13 We have adapted the existing
AStream framework to the MONROE platform with slight modifications, providing a
suitable Docker container which integrates a wrapper. Therefore, this is an active type
of experiments, which currently run as a non-base MONROE container. However, this
experiment will soon be run as a base experiment within the VideoMon container,14 which
is a combination of the consortium experiment AStream with the external user experiment
YoMoApp (more info in Section 3.2.1.9).

3.2.1.9. Video QoE with YoMoApp

YoMoApp is an application for YouTube performance monitoring, which allows
analyzing mobile network performance with respect to YouTube traffic [61]. It also
serves developing optimization solutions and QoE models for mobile HTTP adaptive
streaming. The application has been developed by external MONROE experimenters
to extend MONROE into the domain of QoE with the design and implementation of a
measurement tool for YouTube video streaming sessions. YoMoApp gathers statistics on

10RMBT specification: https://www.netztest.at/doc/
11https://github.com/alladin-IT/open-rmbtcommitdfc008de71e321c863716b0d34208159b140c653
12https://github.com/MONROE-PROJECT/Experiments/tree/master/experiments/nettest
13https://github.com/pari685/AStream/
14https://hub.Docker.com/u/videomon/

https://www.netztest.at/doc/
https://github.com/ alladin-IT/open-rmbt commit dfc008de71e321c863716b0d34208159b140c653
https://github.com/MONROE-PROJECT/Experiments/tree/master/experiments/nettest
https://github.com/pari685/AStream/
https://hub.Docker.com/u/videomon/

32 MONROE

initial delay, video adaptation over HTTP, HTTP request and response information, and
stalling occurrences [66].

3.2.1.10. Path transparency

This is another example of MONROE container and experiment developed and
provided by external experimenters. The container uses [67] to detect the presence
of middleboxes over point-to-point paths. In addition, it tests the feasibility of deploying
new protocols in the Internet while quantifying the impact of path impairments.

3.2.2. Selected measurement studies

Next, we present some of the most interesting studies that have been conducted on
MONROE using the previously described experiments and/or the MONROE data-set,
which, at the time of writing, contained more than 2102M metadata entries, 4230M
RTT and 107K bandwidth measurements, 102M Tstat entries and more than 50K
experimenter results.

Studies on the MONROE platform can be passive or active. Passive studies analyze
and use the curated MONROE data-set, which contains metadata, the results of the
default experiments and the results of experiments shared by their owners with the broader
community. They can perform queries directly on our NoSQL database or process the CSV
files that are generated daily (e.g., for more complex analyses on smaller amounts of data).
Those experiments can use the whole range of MONROE data, since the moment it started
to collect information, and for all the nodes in all the countries, and can be repeated at
any point in time. Active studies are executed on MONROE nodes via explicit scheduling.
They use the experiment services provided as Docker containers and schedule them on
real nodes through the platform Web user interface. Those experiments can consist of
any software compatible with the container architecture and use all networking resources
available in the nodes at the moment of execution, subject to user quotas availability.15

Experiments can be repeated as desired to verify the consistency of the results or to
analyze changes on network behavior along time. The new data generated by active
experiments may become part of the data-set available for passive experiments.

3.2.2.1. Studies by the Consortium

In what follows we describe some of the key studies conducted by using the available
MONROE experiment containers, and show samples of our measurement campaigns.
However, here we only focus on showcasing the kind of experiments that can be performed
and put no emphasis on performance figures and comparisons between services offered
by different operators. Therefore, we do not provide a complete and exhaustive set of

15For fairness, MONROE users receive a share of the platform resources.

3.2 Experiments 33

-80 -75 -70 -65 -60 -55 -50 -45 -40
RSSI (dBm)

 13.42 13.44 13.46 13.48 13.5 13.52 13.54 59.32
 59.33

 59.34
 59.35

 59.36
 59.37

 59.38
 59.39

 59.4

Ti

m
es

ta
m

p

Longitude

Latitude

Ti
m

es
ta

m
p

 0

 100

 200

 300

 400

 500
RTT (ms)

Figure 3.5: RTT and RSSI measured in a bus at Karlstad, Sweden, over a few observation
days. Average RSSI values are shown on the XY plane. Individual RTT measures are
plotted on the Z-axis using their relative timestamps as height to visualize successive laps.

Figure 3.6: This representation of link technology for the bus at Karlstad reveals that 4G
coverage is consistently available for the complete route during the analyzed period.

experiments for all operators and all countries in which we have run the measurements,
and we anonymize our measurements with respect to operator names. The results shown
in what follows are not representative of the full coverage and service offered by operators
across Europe, although the platform could be used to pursue such goal.

Metadata/QoS analysis to build coverage and latency maps. MONROE
deployment in public transportation vehicles enables evaluation of MBBs on wide
urban mobility environments. Route predictability provides high confidence, whereas
measurements taken at similar positions on different hours allow comparing the behavior
of the MBBs at different times (e.g., rush hour versus normal hours).

Figure 3.5 follows the typical route of a bus around Karlstad (Sweden), showing the
measured RSSI (signal strength) and RTT (ICMP ping). The different laps along several
days are represented vertically ascending to ease the visualization of the dense information
obtained. Figure 3.6 shows the negotiated link technology for the same route. The analysis
of the collected data (signal strength, link technology and measured delay) gives insights

34 MONROE

(a) Italy (b) Spain

(c) Sweden (d) Norway

Figure 3.7: TCP three-way handshake times (TWHT) obtained using the HTTP
download experiment for bandwidth measurement with different operators versus the
RSSI reported in MONROE metadata. Blue and red correspond to 4G and 3G samples,
respectively.

into the performance perceived by users during their bus trips. Such information might
then be used by network operators to improve the service offered to commuters.

Based on the same data-set and on theory and observations that show that fading
follows a Rice distribution under line-of-sight conditions, while it follows a Rayleigh
distribution otherwise [68], we are currently developing a method to infer which
distribution yields a better fit for experimental data, potentially providing information to
operators to optimize the location of base stations.

Traffic analysis and network monitoring with Tstat. We have used Tstat to
study the performance of TCP flows as observed by the MONROE nodes. As an example,
Figure 3.7 shows a correlation between three-way handshake time as measured by Tstat,
and RSSI from the metadata, illustrating the many possibilities that MONROE creates
for cross-domain data analysis.

Operator benchmarking with cross-country performance. MONROE enables

3.2 Experiments 35

op2@SE

op1@SE

op0@SE

op1@NO

op0@NO

op1@ES

op0@ES

100 1000
RTT [ms]

O
pe

ra
to

r

Figure 3.8: Violin plots of the RTT measurements for different operators in Spain (ES),
Norway (NO) and Sweden (SE).

comparison of different operators (in terms of network characteristics and user-perceived
application performance) in and among countries. For this purpose, multiple MONROE
services, such as the ICMP ping container, and the Nettest container can be used.

Figure 3.8 shows a violin plot for the RTT samples collected (using ICMP ping) during
one week with 30 stationary nodes for 7 different operators in 3 countries. Each “violin”
shows the probability density of the RTT at different values; the higher the area, the higher
the probability of observing a measurement in that range. Nodes in Norway and Sweden
exhibit lower delays than nodes in Spain because they are closer to the target measurement
server, which is hosted in the MONROE backend in Sweden. Interestingly, measurement
variance is much higher than in fixed networks, showing that MBBs introduce complexity
even for such basic tests as RTT monitoring. For example, RTT measurements exhibit
typically a multimodal distribution that corresponds to the different access delays faced by
different radio access technologies (e.g., 3G vs. 4G). MONROE repetitive measurements
enable correlation with time, location and context conditions such as variations in signal
strength.

It is also possible to benchmark operators using the MONROE-Nettest container.
Running as a base experiment, this container has provided more than 850000
measurements over stationary and mobile nodes in Norway and Sweden since June 2017.
Figure 3.9 presents an overview of the downlink and uplink data rate, as well as latency
values for stationary nodes and 6 operators (3 in Sweden, 3 in Norway), including an
example case of roaming. For each operator camping on its own network, we use the
MONROE-Nettest server in the corresponding country (Figures 3.9a–c). The roaming
example in Figure 3.9(d) shows the downlink data rate for operator op1 (Sweden) camping

36 MONROE

op1 op2 op3 op4 op5 op6

0

20

40

60

80

100

120

140

160

180
D

a
ta

 R
a

te
 (

M
b

p
s
)

(a) Downlink
op1 op2 op3 op4 op5 op6

0

5

10

15

20

25

30

35

40

45

50

D
a
ta

 R
a

te
 (

M
b

p
s
)

(b) Uplink

op1 op2 op3 op4 op5 op6
0

10

20

30

40

50

60

70

80

90

100

P
in

g
,

m
e

a
s
u

re
d

 b
y
 c

lie
n

t
(m

s
)

(c) Ping
op1 op1 in op4 op4

0

20

40

60

80

100

120

140

160

180

D
a

ta
 R

a
te

 (
M

b
p

s
)

(d) Downlink in Roaming

Figure 3.9: MONROE-Nettest base experiment results.
on op4 (Norway), compared with the native downlink data rates for op1 and op4 from
Figure 3.9(a). For this comparison, we had client nodes in Norway using op1 SIMs, and
the measurements have been conducted against the MONROE-Nettest server in Norway.

Investigating the speed of mobile broadband. In [69] we present our experience
estimating the download speed offered by actual 3G/4G networks. For that experiment,
we analyzed data from 50 nodes in 4 countries over 11 operators during more than two
months, using the Tstat container. The conclusion of that study is that measuring the
performance of MBB networks is quite complex as different network configurations such
as the presence of NATs or Performance Enhancing Proxies (PEPs), which do vary over
time, have a significant impact on measurements.

We have made similar observations using the active MONROE-Nettest container,
where the effect of measurement methodology has proven to be a key factor affecting
reported data rates. Currently, we have identified 3 main aspects of active measurements
that influence data rate as: number of parallel TCP flows, measurement duration, and
server location.

Web performance. Web performance is assessed by means of the WebWorks
experiment described in Section 3.2.1.5. In [70] we have shown preliminary results from
our experiments on Web page load time (i.e., PLT) and proxy identification over mobile
broadband networks. There, we use a headless browser to fetch two popular websites from
37 nodes operating in four countries and using 11 operators. As an example, we observe

3.2 Experiments 37

ES NO SE

0.00

0.25

0.50

0.75

1.00

http://w
w

w
.bbc.com

/

100 1000 100 1000 100 1000
Time [ms]

C
D

F

Operator
op0@NO

op1@NO

op0@SE

op1@SE

op2@SE

op0@ES

op1@ES

Average Time to First Byte

ES NO SE

0.00

0.25

0.50

0.75

1.00

http://w
w

w
.bbc.com

/

1000 10000 1000 10000 1000 10000
Time [ms]

C
D

F

Operator
op0@NO

op1@NO

op0@SE

op1@SE

op2@SE

op0@ES

op1@ES

Complete Page Load Time

Figure 3.10: Average Time to First Byte and Complete Page Load Time for some operators
in Spain (ES), Norway (NO) and Sweden (SE) for www.bbc.com.

large variations of PLT for the same website between Sweden and Norway. In that work
we also report results on identification of PEPs in MBBs.

In Figure 3.10, we present the CDFs of the complete page load time and average time-
to-first-byte for www.bbc.com broken down per country. Interestingly, for the Spanish
operators we detected multiple DNS iterations, which partially account for their higher
time-to-first-byte values.

If we consider multiple websites, we obtain the results shown in Figure 3.11. In
there, we show not only the PLT metric, but also the two time-integral metrics computed
by WebWorks, namely OI and BI. Such metrics show that overall Web performance
is similar across different countries and operators, with only slight variations. At this
aggregate level, we also observe similar performance between HTTP versions (indicated
in the figure as H1s in case of version 1.1 with TLS, and H2 in case of version 2.0).

3.2.2.2. Studies by external experimenters

Here we give some specific examples of experiments designed by external users and
deployed on the MONROE platform. Note that, thanks to the openness of our platform,
some of the described experiments have been built on top of MONROE, by extending
our nodes with additional hardware and/or software. For detais on extensions and results
obtained by experimental researchers, in what follows we give specific pointers on a case-
by-case basis.

Software radio extensions. The SOPHIA project has developed an extension to
enhance MONROE nodes with software radio capabilities. In [71], its members present
detailed performance measurements of LTE networks to illustrate the potential benefits

www.bbc.com
www.bbc.com

38 MONROE

P
LT

[s
]

P
LT

[s
]

Telia (SE) Telenor (SE) 3 (SE)
0

5

10

15

20

P
LT

Telenor (NO) Telia (NO) ICE (NO)
0

5

10

15

20

TIM (IT) Vodafone (IT) Wind (IT)
Operators

0

5

10

15

20

P
LT

Orange (ES) Yoigo (ES)
Operators

0

10

20
H1s
H2

op1@SE op2@SE op3@SE op1@NO op2@NO op3@NO
Telia (SE) Telenor (SE) 3 (SE)

0

5

10

15

20

P
LT

Telenor (NO) Telia (NO) ICE (NO)
0

5

10

15

20

TIM (IT) Vodafone (IT) Wind (IT)
Operators

0

5

10

15

20

P
LT

Orange (ES) Yoigo (ES)
Operators

0

10

20
H1s
H2

op1@IT op2@IT op3@IT op1@ES op2@ES
(a) PLT statistics

B
I

[s
]

B
I

[s
]

Telia (SE) Telenor (SE) 3 (SE)
0

5

10

B
I

Telenor (NO) Telia (NO) ICE (NO)
0

5

10

TIM (IT) Vodafone (IT) Wind (IT)
Operators

0

5

10

B
I

Orange (ES) Yoigo (ES)
Operators

0

5

10
H1s
H2

op1@SE op2@SE op3@SE op1@NO op2@NO op3@NO
Telia (SE) Telenor (SE) 3 (SE)

0

5

10

B
I

Telenor (NO) Telia (NO) ICE (NO)
0

5

10

TIM (IT) Vodafone (IT) Wind (IT)
Operators

0

5

10

B
I

Orange (ES) Yoigo (ES)
Operators

0

5

10
H1s
H2

op1@IT op2@IT op3@IT op1@ES op2@ES
(b) BI ststistics

O
I

[s
]

O
I

[s
]

Telia (SE) Telenor (SE) 3 (SE)
0

5

10

O
I

Telenor (NO) Telia (NO) ICE (NO)
0

5

10

TIM (IT) Vodafone (IT) Wind (IT)
Operators

0

5

10

O
I

Orange (ES) Yoigo (ES)
Operators

0

5

10 H1s
H2

op1@SE op2@SE op3@SE op1@NO op2@NO op3@NO
Telia (SE) Telenor (SE) 3 (SE)

0

5

10

O
I

Telenor (NO) Telia (NO) ICE (NO)
0

5

10

TIM (IT) Vodafone (IT) Wind (IT)
Operators

0

5

10

O
I

Orange (ES) Yoigo (ES)
Operators

0

5

10 H1s
H2

op1@IT op2@IT op3@IT op1@ES op2@ES
(c) OI statistics

Figure 3.11: Country-wise per-operator overall webpage download performance.

and new possible passive measurements obtained by decoding the control channels of
LTE.

Forecasting LTE cell congestion. In [72], the authors try to forecast the average
downlink throughput for LTE cells using data collected from multiple MONROE probes
and to apply that knowledge to self-organizing network strategies to shift coverage and
capacity according to predicted demand. This group updated some MONROE nodes to

3.3 Discussions 39

address the benchmarking of voice calls, showing the flexibility of the platform nodes.
Available Bandwidth measurement on SDN deployments. In [73], the authors

employ MONROE as a testbed to study the complexity of available bandwidth estimation
using SDN-based active measurements. They conduct their experiments using one node
in each of the four main countries of the project. Their ongoing work tries to improve
the accuracy and reliability of existing tools, using the MONROE testbed to isolate and
better understand different aspects of the measurement process.

Designing application performance with MBB analytics. The authors of [74]
use the radio parameters measured by MONROE nodes to determine the best application
protocol for a service, identifying the most suitable key performance indicators to
characterize the network state. These types of works are very relevant to close the
gap between network performance measurements and user experience. Interestingly, the
authors see an opportunity on the data generated by other experiments running in the
platform (and made openly available by the respective researchers) as a means to obtain
additional data points for their own investigation.

Surveying DSCP modifications in mobile networks. MONROE is used by a
group of researchers in [75] to conduct a survey on path-level treatment of DiffServ packets
in MBB networks and identify behaviors that potentially violate the IETF specifications.
DiffServ enables the classification of traffic into QoS classes via usage of the Differentiated
Services Code Point (DSCP) field in the IP packet header. Using MONROE to analyze
the behavior at the edge mobile network, they find that there is a high probability that
the corresponding fields are overwritten in the first two network hops.

Path protocol transparency. [67] is a tool developed for A/B testing of path
transparency. It allows testing the feasibility of deploying new protocols in the Internet
and quantifying the impact of path impairments and of middleboxes. In [76], the authors,
in collaboration with part of the MONROE consortium, present the results of adapting
PATHspider, to the realm of commercial mobile networks using MONROE nodes deployed
by themselves in the UK. Among their conclusions, the most relevant is that MBB
networks provide a considerably different environment—and therefore very valuable—
with respect to the one provided by the cloud access points that PATHspider was using
in the past.

3.3. Discussions

In this Chapter, we have described the unique EaaS offered by MONROE and
discussed how it allows to collect, curate and make available valuable and uniquely
rich and open data-sets to the community. We have focused on how MONROE helps
to improve the knowledge on the usage and behavior of current and future commercial
mobile broadband networks. We have also explained the main design characteristics of the

40 MONROE

platform that make it unique and how, from the generation of data at the nodes to their
storage in a NoSQL database that can scale past billions of records, MONROE offers the
unprecedented possibility of data analysis across all the nodes and lifespan of the platform.
We have presented several and key experiments designed by the MONROE Consortium
and by external experimenters. Eventually, to illustrate the potential and flexibility of
the platform, we have presented samples of results from our own experiments in which the
author of this Thesis was mainly involved in terms of developing the platform and the tools
used, and providing support to the experimenters, while experiments specifically designed
and run for this Thesis will be described later. As shown, the MONROE platform has
been also used by several research groups that have been granted access to the platform.

Part II

Network Protocols Performance
Evaluation

Over the past decade, TCP and UDP prevailed as the dominant networking protocols,
but these two protocols could not cope with ever demanding mobile market as the years
passed. Separately, UDP and TCP cannot handle Real-Time Communication (RTC).
However, in tandem, they gave birth to Real-Time Communication (WebRTC). WebRTC
proposes integrating video services in Web browsers based on local tools. In turn, such
tools are based on well-knownWeb technologies, able to incorporate audio, video, and data
transfer operations of RTC into a standard webpage. The evolution does not stop with
WebRTC, but with another additional protocol: Quick UDP internet connection (QUIC),
designed mainly to solve problems encountered with TCP and dominate internet traffic
for years to come. Both developed and maintained by Google since 2011 and now officially
standardized by the IETF. Since these protocols are fairly newish, a need to performance
asset them is essential in their early development cycle, not only in simulated/controlled
environments but also in real operational cellular networks.

In Part II of the Thesis, we investigate performance figures of WebRTC and QUIC
in real operational mobile networks in static and mobility scenarios. Chapter 4 mainly
focuses on WebRTC performance evaluation in cellular networks across different European
countries leveraging the MONROE testbed. We developed and made available for free
a Docker container for running experiments alongside the data-set collected based on
the WebRTC open-source code to gather stats, for which so far little experimental work
existed at the time of writing.

Chapter 5 centers on the experimental assessment of QUIC and congestion control
schemes in cellular networks. In there, we derive a method for evaluating the performance
of QUIC by leveraging two open-source implementations. All the stats collected are
available as open-source for the interested experimenter. We assess both implementations
with different congestion control algorithms such as Copa, Bbr, newReno, Cubic in
different real-world networking scenarios.

41

4 Performance Evaluation of
WebRTC

WebRTC proposes to easily integrate video services in Web browsers, based on local
tools [10]. In turn, such tools are based on well-known Web technologies, able to simply
integrate audio, video, and data transfer operations of the real-time communication
protocol (RTC) into a normal webpage. The WebRTC project1 was first introduced
by Google as an open source project, and then other software developers and telecom
vendors joined, which has led to integration of WebRTC into commercial browsers like
Chrome, Opera and Firefox [11,12].

Since offering video services and multimedia channels is a killer application for MBB
networks, WebRTC and similar projects impose stringent quality requirements on such
networks, that are nowadays evolving from 4G to 5G under the pressure of a steadily
increasing number of mobile users [24]. Therefore, there is now a strong need for objective
information about MBB performance and reliability to support video and multimedia
mobile services. Thus, various initiatives have arisen, among which the US FCC’s
Measuring Broadband America initiative [24] and MONROE, to monitor and assess MBB
performance.

We focus on WebRTC performance figures in mobile environments, for which so far
little experimental work exists. In fact, other works on assessing WebRTC performance
figures are currently sprouting, but they have so far only investigated basic properties
in controlled environments. For instance, the authors of [14] used a cloud-engineered
automatic testing tool for WebRTC, although they have not tested the service offered by
mobile operators and core networks. Similarly, the authors of [15] have experimentally
tested one-to-many communications over WebRTC (namely “simulcast”), although their
experiments are limited to a gigabit LAN environment.

In contrast, for our work, we leverage a large-scale on-line measurement platform
and focus on users connecting through MBB networks only. Specifically, we use the
above mentioned MONROE platform, which has been designed and is currently operated
in the frame of a European project aimed at providing multi-homed, independent,

1http://www.webrtc.org/

43

http://www.webrtc.org/

44 Performance Evaluation of WebRTC

large-scale monitoring and evaluation of performance for mobile broadband networks in
heterogeneous environments.

Acquiring access to this platform allows for the deployment of vast measurement setups
to collect data from operational MBB networks in various European countries. Differently
from other approaches based on operator-driven quality-assessment campaigns [26, 27],
or on traditional drive-by tests [28], MONROE offers an open platform for repeatable
and traceable experiments. Besides, it offers open access to collected data, which refer
to multiple operators, and includes device-level metadata, which is the key to use and
possibly filter results without raising user’s privacy concerns. Therefore, this platform
offers much richer data than what can be offered by crowdsourcing initiatives like, e.g.,
Netalyzer [29] and Haystack [30].

In this Chapter, we use the MONROE platform to investigate session-related
performance statistics linked to the use of an off-the-shelf, WebRTC-based streaming
application. This application enables streaming videos in real time with high quality
using Web browsers that support WebRTC (e.g., Chrome, Firefox) [10]. When using
Google Chrome, data from both the sending and receiving parties in a WebRTC-based
telemeeting, can be gathered via the WebRTC internals page,2 thus making it possible
to get a complete overview of the stream in the mobile nodes. Such session-related
statistics may help to identify root causes and track the origins of performance issues
in video streaming, so as to understand how these technical factors impact Quality of
Service (QoS) offered by the network and Quality of Experience (QoE) enjoied by the
users. Indeed, gathering such insights is crucial and may steer the development of real-
time communication schemes and intelligent optimization strategies. Our results show
that current European MBB networks provide static users with enough resources and
QoS to suitably make use of WebRTC, whereas mobility dramatically worsens network
performance, often resulting in unacceptably low levels of QoE.

In the reminder of the Chapter, we first give an overview of WebRTC in Section 4.1.
Subsequently, we present our measurement setup in Section 4.2. Section 4.3 focuses on
experimental results. Eventually, Section 4.4 summarizes the findings of the Chapter.

4.1. WebRTC Overview

4.1.1. Real-time communications to and from browsers

The initial idea behind the development of a mechanism for Web-based real-time
communication like WebRTC or other proposals discussed in standardization fora was
mainly to provide a tool to empower Web browsers and make multimedia communications
easier than before [10]. Specifically, the WebRTC approach is based on well-known Web
technologies like HTML and JavaScript, which are able to simply integrate RTC into a

2chrome://webrtc-internals/

chrome://webrtc-internals/

4.1 WebRTC Overview 45

Figure 4.1: WebRTC peer-to-peer communication.
webpage.

Supported by Google first, and then by other Web browser developers (Firefox,
Opera) and telecom vendors (Ericsson, Cisco, Alcatel-Lucent) [11], WebRTC integrates
video streaming capabilities into Web browsers without the need of installing plugins
or third-party software. Its standardization—led by W3C and IETF—helps separating
application and communication level duties of video services [77]. In particular W3C and
IETF are jointly concentrated on defining JavaScript Application Programming Interfaces
(APIs) and a peer-to-peer communication mechanisms between browsers, to allow direct
and possibly server-less video communication [78]. The designed API for WebRTC is
capable of managing a browser based client-side RTC with host-to-browser connection,
browser-to-browser connection management, encoding/decoding, NAT traversal and
media streaming [78].
The main API highlights are as follow:

GetUserMedia: it provides with agile access to user media such as
microphones, cameras and display.

RTCDataChannel: it authorizes data transfer through peer-to-peer
channels.

46 Performance Evaluation of WebRTC

RTCPeerConnection: it is responsible for setting up a direct connections
between two WebRTC applications, which allows data channels and media streams
to be carried.

This API represents the base of any WebRTC application. Besides, it is possible to
add plugins to exploit WebRTC or to empower it with, e.g., encryption and security
features [79].

4.1.2. Protocols and Communication Services

Web browsers have to support several communication protocols and communication
services to enable WebRTC. As shown in Figure 4.1, this includes mechanisms such as
signaling, session establishment, transport and security.

For transport, WebRTC commonly uses UDP with DTLS security, which is a TLS
extension for unreliable datagram transport. However, WebRTC gives the option to use
TCP with TLS as well. In addition, it uses the Stream Control Transport Protocol
(SCTP) and the Secure Real-Time Transport (SRTP) to control media channels and
handle encryption keys. SCTP is capable of multiplexing multiple application data
streams and provides reliable delivery of UDP datagrams. Hence, a peer-to-peer secured
media path can be established by leveraging SCTP and SRTP.

For what concerns the session setup and the negotiation of media features and
connection parameters, WebRTC uses SIP or XMPP with parameters conveyed through
the Session Description Protocol (SDP). In addition, WebRTC uses the JavaScript Session
Establishment Protocol (JSEP) as session setup mechanism, which endorses secured
signaling, and encrypted data transport over either DTLS/UDP or TLS/TCP. It also
uses signaling servers that help initiate peer-to-peer multimedia capabilities handshaking
and establish connections.

WebRTC also includes mechanisms for firewall and NAT traversal. Specifically,
it inherits from the VoIP world the Interactive Connectivity Establishment (ICE)
framework. ICE helps to use TURN/STUN, which in turn eases WebRTC peers to
test and collect preferred candidates of communication options, i.e., it sorts the known
transport addresses of a media destination to which is possible to attempt connection.
Indeed, carefully selected communication candidates are the key to maximize the chance
of success.

The most recent specifications on WebRTC have been released in November 2017 with
the W3C EditorDraft “WebRTC 1.0: Real-time Communication Between Browsers”.3

3https://www.w3.org/TR/webrtc/

https://www.w3.org/TR/webrtc/

4.2 Measurement Setup & data-set 47

4.2. Measurement Setup & data-set

4.2.1. Setup

The main idea for the WebRTC experiment is to test video streaming using WebRTC
for mobile users. Figure 4.2 outlines the streaming setup. When an experiment is
scheduled on a set of MONROE nodes, each node runs the WebStreamer container, which
makes an HTTPS link available to watch the video stream coming from the node. We
use a Chrome browser acting as the WebRTC client in our lab. The WebRTC client is
connected from a computer wired to a well provisioned gigabit link so that the receiver
is not the bottleneck. The video stream produced by the MONROE node goes through a
cellular uplink, traverses the Internet and then accesses the network of our lab. Therefore,
the network bottleneck experienced in a WebRTC streaming session is the MBB network
used by the MONROE node.

Figure 4.2: MONROE-WebRTC video streaming setup.

The video source is stored locally in the Docker container, with a resolution of 854x480
and a constant frame rate of 24 fps. The duration of the video is 9 minutes but can be
looped for several hours, according to the duration of the scheduled experiment. The
video streaming configuration parameters include the following:

The possibility to use a local or online video by passing an RTSP link.

Picking the preferred port for communication.

Using a specific STUN server in case the client is behind a firewall.

Tweaking resolution and duration of the video to stream.

At the client side, the video stream is received by means of Google Chrome, which
also measures and collects streaming statistics in JSON format. The resulting dump
contains peer-to-peer connection status information between the MONROE node and the

48 Performance Evaluation of WebRTC

WebRTC client in our lab, in addition to updates and data statistics that can be easily
accessed, e.g., by loading a specific Chrome page.4

The client logs contain, per each individual stream, the timing and headers of packets
received as well as the timing of various internal events such as received frames, losses,
bitrate, delay, jitter and other metrics that will be discussed in Section 4.2.2.

The MONROE platform provided us with many static and mobile nodes. Specifically,
for the experiments reported in this Chapter, we have used the nodes listed in Table 4.1.
The table includes some limited yet important information about the location of the
node. Indeed, we only report operator name and country, whereas more detailed pieces of
information about the locations are omitted since this study does not serve as a thorough
survey of operator’s performance comparison. The examples of results reported here are
only meant to highlight how the potentials of WebRTC have not been fully unleashed by
the sub-optimal MBB service available in many places in Europe as of today. However,
as we will see later, MBB operators already offer WebRTC-ready connectivity for static
users, while mobility is still a big issue.

The WebRTC throughput offered by MONROE nodes—i.e., the one offered by the
MBB operator used at the node—differs a lot across space and operators, as well as across
time, as shown in the third and fourth columns of Table 4.1. Such throughput values have
been collected with capacity experiment run a few minutes before and after running the
WebRTC experiments.

Table 4.1: MONROE nodes throughput comparison

Node ID Location Download [Mb/s] Upload [Mb/s]

423 Telia SE 0.178-10.38 0.165-1.58
428 Telia SE 0.53-13.97 0.25-2.4
429 Telenor SE 0.78-12.178 0.22-1.74
501 Telenor SE 36.43-68.12 14.93-22.32
591 Vodafone ES 24.58-72.64 17.36-23.14
596 Vodafone IT 32.78-65.41 14.21-25.10

4.2.2. data-set

The WebRTC Docker container generates two types of log files. The first one is our
Docker container log, which consists of the following:

HTTP link to connect to.

2018-xx-xxTxx:xx:xx your url is: https://xxxx

4chrome://webrtc-internals

chrome://webrtc-internals

4.2 Measurement Setup & data-set 49

The videos you are going to watch.

2018-xx-xxTxx:xx:xx.xx answer:[
2018-xx-xxTxx:xx:xx.xx "xx.mp4,rtsp://xxxxx"]

The open port listening to upcoming connections.

2018-xx-xxTxx:xx:xx.xx HTTP Listen at :8888

The constant Framerate of the video.

2018-xx-xxTxx:xx:xx.xx a=framerate:24.0

The video codec used that includes h264, VP8, and VP9.

2018-xx-xxTxx:xx:xx Created a data sink for the "video/H264/VP8/
VP9" subsession

The STUN server used when establishing connection between client and host.

2018-xx-xxTxx:xx:xx.xx{"url" : "stun:stun.l.google.com:19302"
2018-xx-xxTxx:xx:xx.xx }

The preferred candidate for connection.

body:{"candidate":"candidate:0 2 UDP 2122252542
192.xx.x.x 42479 typ host",
"sdpMid":"sdparta_0","sdpMLineIndex":0}
answer:1

The Video Content Type which is an extension used to communicate a video content
type from sender to receiver of RTP video stream.

2018-xx-xxTxx:xx:xx.xx
a=rtpmap:96 mpeg4-generic/48000/2

When the connection is established, the WebRTC receiver starts collecting the JSON
dump from Google Chrome, which is our second log. This includes different metrics:
bitrate received, frames decoded, packets lost during the session, packets received per
second, video current delay in ms, frame rate received, decoded and output, jitter delay in
ms, number of ACKs sent, target delay in ms.

The MONROE-WebRTC template and the visualization tool that helps import all the
metrics mentioned in CSV format can be found at [80] and [81].

50 Performance Evaluation of WebRTC

4.3. Results and Observations

In this section we report statistics on WebRTC performance attributes, as observed by
means of Chrome internals at the destination of the WebRTC streams. We run WebRTC
streamers in static nodes across Italy, Spain and Sweden, and on mobile nodes in Sweden.
We only report a small yet indicative subset of the results we have collected. For each
experiment, we plot the following statistics: (i) BitRate, (ii) frames per second (FPS)
rendered at the receiver, (iii) packet delay and (iv) jitter. We compare static and mobile
cases.

Static case. In the first scenario that we consider, the streamer and the client have
high quality connectivity (nodes 501, 591, and 596 in Table 4.1). The selected MONROE
nodes were connected to various 4G operators and, at the other end of the connection,
we use a computer connected to a gigabit LAN directly connected to a multi-gigabit
metropolitan network. In most of the test cases, the media stream turned out to be
smooth, the final user having a rather good experience with typical bitrates of a few Mb/s,
frame rates often above ten frames per second and latency in the ballpark of 100 ms, which
is below the treshold of human perception. Jitter was normally below 100 ms. Figure 4.3
illustrates an example of performance figures over time for three simultaneous connections
using MONROE nodes in three countries. Of course each connection shows different
performance figures, and in particular the Spanish sample shows the worst behavior in
terms of rate and delay/jitter, although we need to mention that the selected MONROE
node in Spain was using an Italian SIM card operating in roaming. In any case, the
observed performance is acceptable.

We show sample results for multiple operators in four countries in Figure 4.4, in terms
of bitrate and delay. In there, we see that the media stream was smooth in most of the
cases, with limited delay (and delay variations, i.e., jitter), and bitrates of a the order of
a few Mb/s, corresponding to acceptable performance.

However, the results for Swedish operators are not very good, which is in contrast
with other observations on the quality offered by those operators. This is an example
of experiment that needs to be interpreted jointly with metadata. In fact, observing
our logs, we have discovered that the SIM cards used for static WebRTC experiments in
Sweden had simply exhausted their monthly data allowance, which resulted in severe rate
limiting experienced by the MONROE nodes, and low WebRTC bitrate.

4.3 Results and Observations 51

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 0 50 100 150 200 250 300 350

B
it

R
a
te

 [
b
/s

]

Time [s]

VODAFONE ES
VODAFONE IT
TELENOR SE

(a) Video bitrate.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350

F
ra

m
e
s
P
e
rS

e
c
o
n
d
 (

F
P
S
)

Time [s]

VODAFONE ES
VODAFONE IT
TELENOR SE

(b) Video frame rate.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350

D
e
la

y
 [

m
s
]

Time [s]

VODAFONE ES
VODAFONE IT
TELENOR SE

(c) Packet delay.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350

Ji
tt

e
r

D
e
la

y
 [

m
s
]

Time [s]

VODAFONE ES
VODAFONE IT
TELENOR SE

(d) Jitter delay.

Figure 4.3: WebRTC performance experienced by static nodes under different operators in
different countries.

52 Performance Evaluation of WebRTC

	0
	0.5
	1

	1.5
	2

	2.5
	3

	3.5
	4

op0 op1 op2 op0 op1	 op2 op0 op1 op2 op0 op1 op2

Av
er
ag
e	
Bi
tR
at
e	
[M
b/
s]

Operators	per	Country NorwaySwedenItalySpain

(a) Bitrate.

	0
	100
	200
	300
	400
	500
	600
	700
	800

op0 op1 op2 op0 op1 op2 op0 op1 op2 op0 op1 op2

Av
er
ag
e	
De
la
y	
[m
s]

Operators	per	Country NorwaySwedenItalySpain

(b) Delay.

Figure 4.4: WebRTC performance figures observed for static nodes.

Mobile case. In this scenario we select MONROE nodes in buses in Sweden (nodes
423, 428, and 429 in Table 4.1), while the other end of the connection is in our lab, as
in the other case. Figure 4.5 shows that the user experience was not as smooth as in the
first case since the bitrate was significantly degraded. Although WebRTC was able to
keep the stream going, frame rate was very variable, and delay and jitter were annoyingly
high in all locations and for all operators. We have observed many other cases like this in
our measurements (and not only in Sweden, of course), which leads to the conclusion that
current MBB networks are not ready to fully support WebRTC (and alike multimedia
services) on the move.

To further understand the behavior of WebRTC on MBB networks, Figure 4.6 shows
3D plots of bitrate and delay experienced by a MONROE node on a bus, for one of the
operators in Sweden, as a function of the geographical position of the node (also shown
in the topmost subfigure using Google Earth). The information about coordinates is
provided by the MONROE node itself, within a metadata stream generated during the
experiments. From the figure it is clear that some areas crossed by the bus were very
poorly served, so that delay are constantly high and bitrates change smoothly over the
trajectory, indicating that coverage (signal strength) is far from optimal in that area.

4.3 Results and Observations 53

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 50 100 150 200 250 300

B
it

R
a
te

 [
b
/s

]

Time [s]

TELIA SE
TELENOR SE

(a) Video bitrate.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300

F
ra

m
e
s
P
e
rS

e
c
o
n
d
 [

F
P
S
]

Time [s]

TELIA SE
TELENOR SE

(b) Video frame rate.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

D
e
la

y
 [

m
s
]

Time [s]

TELIA SE
TELENOR SE

(c) Packet delay.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250

Ji
tt

e
r

D
e
la

y
 [

m
s
]

Time [s]

TELIA SE
TELENOR SE

(d) Jitter delay.

Figure 4.5: WebRTC performance figures observed for a bus in a medium-size city in Sweden.

54 Performance Evaluation of WebRTC

(a) Bus route.

	59.5
	59.55

	59.6
	59.65

	59.7
	59.75

	59.8
	59.85

	13.08 	13.1 	13.12	13.14	13.16	13.18 	13.2 	13.22	13.24

	0
	500

	1000
	1500
	2000
	2500
	3000
	3500
	4000

Ti
m
e	
[s
]

BitRate	[b/s]

Latitude	NorthLongitude	East

Ti
m
e	
[s
]

	0
	1x106
	2x106
	3x106
	4x106
	5x106
	6x106

(b) Bitrate.

	59.5
	59.55

	59.6
	59.65

	59.7
	59.75

	59.8
	59.85

	13.08 	13.1 	13.12	13.14	13.16	13.18 	13.2 	13.22	13.24

	0
	500

	1000
	1500
	2000
	2500
	3000
	3500
	4000

Ti
m
e	
[s
]

Delay	[ms]

Latitude	NorthLongitude	East

Ti
m
e	
[s
]

	0
	100
	200
	300
	400
	500
	600
	700
	800
	900

(c) Packet delay.

Figure 4.6: WebRTC video performance measured at destination, on a public bus on service in
a medium-size city in Sweden.

4.4 Discussion 55

Figure 4.7 depicts instantaneous values of bitrate received, video frame rate
reconstructed at destination, and video delay and jitter experienced by the receiver.
The figure shows that performance under mobility can be relatively good, at least under
good cellular coverage. However, cellular coverage in mobility is not always available in
the observed area. By analyzing the metadata associated with the traces reported in
Figure 4.7, we have noticed that one of the trains used for the experiment progressively
moved from the city center to the outskirts of Oslo, while the other trains stayed within the
city, moving between multiple stations in Oslo. The streams from the trains remaining in
the city experienced almost always good performance, albeit with high variability. On the
other hand, the stream from the train moving outside of Oslo shows poor performance
at the beginning of the experiment, when the stream suffered a huge degradation in
bitrate and a significant increase in delay and jitter, and later suffers an almost complete
connection drop (almost no delay reports were received, and only sporadic frames were
reproduced).

From the above results, it is clear that peer-to-peer communication over the Internet is
still not ideal and whether one gets good QoE or not for the whole communication period
completely depends on how good the network connection is, and how good it remains
across the whole time of the communication session. In the ideal WebRTC scenario,
endpoints are Web browsers running on reasonably powerful laptops with strong WiFi
or wired network connections, communicating on top of a reasonably consistent network.
This should work well. However, if the devices are mobile and have a non-consistent and
often not good wireless connection, then the quality of the communication is likely to be
below any acceptable treshold, as observed in the mobile case described above.

4.4. Discussion

In this Chapter, we have evaluated the performance of WebRTC for static and mobile
users by leveraging the MONROE platform. To this aim, we have designed an open tool,
running in a Docker container, for generating WebRTC sessions in mobile nodes by using
standard WebRTC APIs. As such, the work presented a complete and novel methodology
for the performance evaluation of Web services using operational MBB networks. As an
initial result, we have observed that mobility is still an important challenge for WebRTC,
since MBB operators do not yet provide users with full quality coverage on the move. Our
approach can be used in the future for a broader and continuous assessment of WebRTC.

56 Performance Evaluation of WebRTC

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900 1000
Time [s]

op0
op1
op2

(a) Video bitrate.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800 900 1000
Time [s]

op0
op1
op2

(b) Video frame rate.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0 100 200 300 400 500 600 700 800 900 1000
Time [s]

op0
op1
op2

(c) Packet delay.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000
Time [s]

op0
op1
op2

(d) Jitter delay.

Figure 4.7: WebRTC performance figures observed for a train in a medium-size city in Norway.

5 Performance Evaluation of
QUIC

HTTP prevails as the undisputed king of the Web with its two versions HTTP/1.1
and HTTP/2 adopted by the vast majority of websites. This is also clear in terms
of Internet traffic [82] and in terms of the widespread support offered by all current
browsers to HTTP/1.1 and HTTP/2, based on TCP and all its features. However, in
recent years a new protocol has come into play with the name of QUIC (Quick UDP
Internet Connections) as the foundation of upcoming HTTP3 [39]. QUIC is a new network
transport protocol originally designed and proposed by Google, which operates on top
of a simpler transport protocol, UDP, so as to bypass the limitations of legacy TCP/IP
transport. QUIC itself is commonly seen as a transport-layer protocol, although it embeds
encryption features and relies on conventional UDP transport.

QUIC eliminates significant TCP bottlenecks such as the need of initial TCP
handshake mechanism, which takes one Round Time Trip (RTT) or two, in case of
TCP data encryption via TLS. Indeed, Google has designed and implemented a novel
encryption scheme for QUIC, similar to TLS, which couples connection establishment
and key agreement within one RTT. Nevertheless, QUIC can start a connection in zero
RTT, like UDP, by instantly sending encrypted application data to the server. This is
possible when it previously has cached in a server certificate from a previous connection.
Moreover, running on top of UDP, QUIC bypasses HoL issue of TCP in case of packet
loss. For these reasons, in the long run, QUIC is expected to replace TCP and TLS in
the Web [13].

Since offering video services and multimedia channels is the main trend in the Internet,
which is stressful for the entire network infrastructure and in particular for MBB networks,
the evaluation of QUIC and HTTP/3 as an alternative to TCP and HTTP/1.1 or HTTP/2
is necessary in the steadily growing MBB environment [24]. This need motivates us to
design, develop, and deploy experiments with QUIC and HTTP/3 on operational MBB
networks.

Thus, we focus on QUIC and HTTP/3 performance figures in mobile environments,
for which so far little experimental work exists. In fact, other works on assessing QUIC

57

58 Performance Evaluation of QUIC

performance figures are currently growing, but only by studying basic properties in
controlled environments. For instance, the authors of [16] use Google’s server and the
client to evaluate the performance of QUIC and TCP in wireless networks in a controlled
environment although they have not tested the service offered by mobile operators and
core networks. Similarly, the authors of [17] have QUIC and TCP in the kernel level
through a gigabit LAN environment.

To assess QUIC and HTTP/3 in uncontrolled networks, we need, on the one side,
an open and flexible implementation of QUIC, which allows for end-to-end testing and
collecting statistics, possibly playing with QUIC’s configuration. We use two open-source
implementation of QUIC for this purpose: flowsim1 and Mvfst2. We also resource to qlog
files, to extract statistics [23]. On the other side, we also need objective information about
MBB performance and reliability to provide an adequate QoE (Quality of Experience) to
the end-user when using QUIC. Various initiatives have arisen recently to help in that
direction, among which the above mentioned US FCC’s Measuring Broadband America
initiative and the European initiative MONROE. In our work, we leverage MONROE,
to which we have direct access and which we have co-designed during the last years.
Our results show that QUIC and TCP performance attributes over MBB are relatively
similar, except QUIC reacts better to the vagaries of channel quality experienced by
mobile nodes. However, with the application protocols, HTTP3 based on QUIC performs
better than HTTP/1.1 and HTTP/2 based on TCP, although the choice of the QUIC’s
control algorithm sensibly impacts on the overall performance.

The main contributions of this Chapter can be summarized as follows: (i) we design
Docker containers that run QUIC and TCP measurements as well as run HTTP variants,
and integrate them in the MONROE platform; (ii) we explore the performance of QUIC
and HTTP/3 to download contents from the Web under heterogeneous conditions, in
terms of geographical diversity and mobility; (iii) thanks to the flexibility of flowsim,
which can act as a TCP or QUIC traffic generator as well as an HTTP server, we compare
the performance of QUIC, TCP and compare HTTP variants; (iv) thanks to the flexibility
of Mvfst, which has been developed by Facebook, we evaluate the impact of congestion
control algorithms in QUIC; and (v) we generate a large open qlog data-set with our
experiments with QUIC and HTTP/3 in real operational networks.

The rest of the Chapter is organized as follows. Section 5.1 offers background
information on QUIC and the qlog file structure. Section 5.2 discusses our measurement
methodology and setup. Section 5.3 focuses on experimental results. Eventually,
Section 5.4 summarizes the findings of the Chapter and points out future research
directions.

1https://github.com/paaguti/flowsim
2https://github.com/facebookincubator/mvfst

5.1 QUIC operation and logging 59

5.1. QUIC operation and logging

5.1.1. The QUIC protocol in a nutshell

QUIC is a new evolving transport protocol originally proposed by Google to compete
specific problems encountered while using TCP’s HTTP/1.1 and HTTP2. QUIC provides
similar guarantees to TCP in terms of reliable data delivery and strict flow control
by combining TCP multiplexing and TLS into one transport protocol built on top of
UDP [39].

To achieve that, QUIC employs features such as Multiplexed Streams [83], which
eliminates the HoL problem found in TCP by extricating the ordering restrictions on
packet delivery since in-order data delivery is done on the stream level rather than the
connection level.

A key feature of QUIC is the shorter time to establish a secure connection within
fewer RTTs than TCP/TLS. To achieve this, the TLS negotiation mechanism is part of
the QUIC protocol by default, removing the need for a separate non-TLS TCP handshake
to synchronize client and server [84].

These new features pave the way to implement HTTP/3 [85] as the upcoming web
application protocol. HTTP/3 will evolve radically by avoiding the use of HTTP/2’s
stream metadata, by using a new header compression algorithm as well as by adopting a
new prioritization scheme.

Another interesting feature of QUIC is that it can be rapidly deployed since it runs in
the user space and not in the kernel space of the operating system. This allows researchers
and developers to quickly test and deploy and evaluate flow-control and congestion-control
alternatives.

As for the loss and recovery mechanism, which is run on top of connection-
less UDP features, QUIC introduces monotonically-increasing packet numbers to
differentiate between new and retransmitted data, which significantly simplifies RTT
measurements [84].

However, QUIC’s diversification of features is a double-edged sword that might
contribute to generate performance inconsistencies across implementations. This raises
the need to investigate QUIC’s performance under different real cellular networking
environments, with different congestion control algorithms.

5.1.2. QUIC logging

QUIC is characterized by a series of messages which govern the end-to-end interaction
between a server and a client. As such, QUIC counts with a predefined set of events which
can be captured and analyzed offline. Well-established protocols like TCP rely on specific
analysis and debugging tools that directly present the protocol information as it would

60 Performance Evaluation of QUIC

be seen externally by another entity. Existing tools for TCP rely on pcap files, which
simply capture IP packets (or even lower layer frames) and read into protocol headers
to reconstruct TCP flows and events. This approach, however, prevents the access to
state variables that are internal to the communication and are not conveyed through
protocol headers, although they can help the inspection of more intricate elements, such
as congestion control algorithms. Thus, differently from the case of TCP, debugging a
protocol as complex as QUIC, which is not a legacy transport protocol and comes with
native encryption, is not feasible through the collection of legacy pcap files [23].

To this aim, the QUIClog project [23] was created to define a specific format, qlog,
to organize and record, in so-called qlog files, different information captured during an
exchange over QUIC. Logging occurs within the QUIC implementation, at server side.
However, it must be said that several implementations of HTTP/3, which runs over QUIC
at an application level, have managed to capture logs on the client side as well. As our
study will center on the evaluation of QUIC’s transport-based capabilities, this possible
scenario will not be explored in the Chapter. Although QUIC developers are free to
introduce additional information in qlog [86], conferring to the log a certain degree of
extensibility, some qlog fields are reserved and predefined, and a general basic indexing
structure must be guaranteed to parse information correctly.

A qlog file describes protocol events, not just QUIC events, according to the scheme
shown in Figure 5.2. Each event record must include, as specified in [87], a timestamp
indicating the time at which the event was registered, a field describing the type of event
associated to the record, and finally, the data registered. Events can be grouped in
categories, which although not mandatory are recommended to favour high-level filtering
of logs. It is also essential to note that a qlog can trace activity from different protocol
stacks, thanks to the fact that a field is reserved to indicate the type of protocol the event
is related to, making it possible to capture both TCP and QUIC information.

Regarding event definitions related to QUIC traces, using qlog allows to record
information related to the connection and key-sharing processes, as well as the data-
exchange process. It does so not only gathering information about the frames sent and
received from the serve-side, but also by including transport metrics relevant for the
communication, such as RTT and congestion window updates. As a matter of fact, these
values, specially time delays, are aggregated and classified under the recovery category,
whose event types are specified in a generic way to ensure that diverse congestion and
recovery schemes can be covered by the logging format. It is mainly thanks to the
information gathered in the recovery category that it is possible not only to evaluate
QUIC’s performance over time but also to fine-tune the protocol, as congestion and loss
detection parametrization is also recorded in qlog files. To improve the interpretability of
results, a visualization tool, qvis,3 is also available for users. As pictured in Figure 5.3,

3https://qvis.quictools.info

5.2 Experimental Methodology 61

Events

Recovery Connectivity Security Transport

parameters_set

metrics_updated

congestion_state_updated

loss_timer_set

loss_timer_expired

MIGRATION-related-
Events

server_listening

connection_started

marked_for_retransmit

packet_lost

key_retired key_updated

connection_id_updated

spin_bit_updated

connection_retried

connection_state_updated

parameters_set

packet_sent

packet_received

packet_dropped

packet_buffered

datagrams_sent

datagrams_received

datagrams_dropped

stream_state_updated

frames_processed

Figure 5.2: QUIC events used in qlog

qvis allows for the import of logging files and the graphical display not only of the
packet exchange between nodes but also of aggregated statistics that can be extracted
from qlog events, such as packet loss percentage, as well as event count and percentage of
occurrence. For all the aforementioned, qlog files are currently the main source of insight
to understand the behaviour of QUIC.

5.2. Experimental Methodology

The QUIC protocol has been evaluated mainly in controlled and simulated scenarios,
which is useful to understand the basic behavior of the protocol. Here, we want to
capture the complexity of operational cellular networks, where radio conditions impact
performance and can vary immensely in a brief period. As such, we want to shed light
on the behavior of QUIC in the context of realistic mobile scenarios. Moreover, aware
of the difficulties for researchers to count with a testing environment that allows them
to experiment over operational networks and use existing infrastructure, we wanted to
contribute by building and releasing a qlog data-set with the files extracted from our
tests.4

In addition, we take into consideration that multiple open-source versions of the
QUIC protocol are available, each of them offering distinctive tuning possibilities for the
configuration of QUIC instances. This opens the possibility of tackling the comparison
between the most well-known and widely adopted implementations, currently those being
flowsim and Mvfst. It also opens the possibility to test the congestion control algorithms
currently under evaluation at IETF for QUIC, which also entails the need to compare
QUIC to TCP.

4data-set available at https://doi.org/10.5281/zenodo.4602217

62 Performance Evaluation of QUIC

Figure 5.3: Example of qvis statistics view

5.2 Experimental Methodology 63

5.2.1. Methodology

We study the case of downloads from a network server to a mobile node and the case of
webpage retrieval with HTTP variants. The methodology chosen to assess experimentally
QUIC’s configurations follows an outside-in approach, where we first center on external
information that can be extracted from the experiment, such as its duration or the
throughput of the download. To do so, we frame the experiments in the context of
cellular networks, and develop Docker containers compatible with the MONROE platform.
Experiments are defined in the form of Docker containers embedding flowsim and Mvfst

clients. The use of containers favours an efficient use of the MONROE node’s resources
and ensures that the experiment execution does not compromise the configuration of the
node or future experiment runs.

We test and certify our containers with the MONROE authority, and obtain access
to the MONROE automatic experiment scheduler, through which we deploy recurrent
experiments at client side. Specifically, the scheduler deploys our containers with our
transport clients on selected MONROE nodes when the time to run the experiment comes.

The server, which acts as a traffic generator and an event logger, runs in a lab
machine in which we implement flowsim and Mvfst and tune the structure of qlog files
to collect the desired flow statistics of both QUIC and TCP downloads. Figure 5.4 shows
our experimental scenario, which includes the tools needs for storage and retrieval of
measurements.

Since QUIC allows multiple parallel flows, and the fact that the selected tools can
be run in multiple instance on the servers, and hence allow to receive multiple incoming
requests in parallel with different server configurations, entail the consideration of two
different types of download experiments: one in which the client issues download requests
sequentially, and thus does not have to share network resources between flows, and a
second one, in which multiple download requests are triggered in parallel from the client
against different ports in the server (which corresponds to one client connected to multiple
servers on the same machine). With this, we can test multiple configurations on QUIC in
parallel, and also test their fairness. In addition, flowsim offers the possibility to mimic
HTTP (versions 1.1, 2 and 3), so that we use it to reproduce the behavior of webpage
retrieval with TCP and QUIC.

We repeat all types of experiments sequentially from multiple MONROE nodes and
from each of the cellular interfaces available on the nodes (note that each MONROE node
has three interfaces connected to three different MBB operators).

Although download/page retrieval time and throughput (or TCP goodput)
measurements can provide an overview of the experiment’s performance, it does not
explain the reasons behind the results gathered, due to the complexity of the QUIC
and TCP protocols. We then first analyze the logs of our Docker containers for

64 Performance Evaluation of QUIC

aggregate download statistics, and then move to the analysis of qlog files redacted by
our experimental server, which allows to evaluate the behavior of the transport protocol
during the download.

Indeed, the inspection of experiment results and qlog files allows us to study the
evolution of transport-related metrics. From the user point of observation, in the Docker
container, we collect flow statistics such as the (webpage) download time, which is
equivalent to estimate the average throughput during the download. Instead, with the
qlog files generated at the server, we study the behavior over time of experienced RTT
and throughput, and how the congestion window evolves and drives the volume and speed
of data downloaded.

Figure 5.4: Experimental scenario

Packet Exchange

Request multi Burst Send multi Burst
Set duration between bursts

Request X bytes Send X bytes

Monroe Node QUIC client QUIC Server With public IP

Figure 5.5: flowsim MONROE platform setup

5.2 Experimental Methodology 65

5.2.2. Setup

Our Docker containers come with a QUIC/TCP client request file download from a
server located in our lab that runs a QUIC/TCP traffic generator, as shown in Figure 5.4.5

A client in the container interacts with our server as exemplified in Figure 5.4 for the
case of QUIC with flowsim. We have opened a limited number of ports on a few machines
in our lab and across Europe in labs of the partners of the MONROE Alliance. All servers
have public IP address, so that a client on a MONROE node, and hence passing through
a cellular network and the public Internet, can request multiple bursts of traffic (i.e., file
downloads).

We use clients and servers in Spain, Italy, Norway and Sweden. For the clients, we
distinguish between static nodes and mobile nodes, the latter being MONROE nodes
installed on trains in Norway and busses in Sweden. Static nodes have high-quality
connectivity, while mobile nodes can suffer low quality and even outages. In all cases, the
server-side of our experiment is connected to a gigabit LAN directly connected, in turn,
to a multi-gigabit metropolitan network.

The Docker container at the client requests 100 kB to 1 MB per download burst in the
experiments with flowsim, to test Web downloads, and set a time interval of 15 seconds
for experiments with Mvfst, to emulate streaming cases. We repeat the download 10
times in each experiments from each node, alternating downloads to pause times during
which we select a different cellular interface. The pause time is set to 10 seconds, and a
data burst is interrupted after 60 seconds in case the file download or the page retrieval
is not completed before. This is needed in order to avoid hanging connections during
the experiments. We collect the download time in seconds for all requests as well as the
underling qlog events.

In the experiments with Mvfst, we configure the download of each file several times,
using a different congestion control algorithm every time, and alternating between single
downloads and multiple parallel downloads. The Docker container with Mvfst uses tperf

to tell the QUIC server which congestion control protocol has to be used. Indeed, the fact
that QUIC runs in user space, makes it possible to reconfigure the server on the fly. We
experiment with Cubic, BBR, Copa and Newreno congestion control algorithms, which
are encoded in Mvfst. Instead, flowsim only implements Cubic.

For what concerns Copa, a fairly new congestion control scheme that follows the
delay-based approach undertaken by BBR, we remark that we have not played with its
optimization, and we have used a default Copa’s latency factor of 0.5, which corresponds
to an equilibrium between queueing delay and throughput [88].

5Our Docker containers are publicly available for interested experimenters at
https://hub.Docker.com/repository/Docker/07777/fullquic and https://hub.Docker.com/r/7466291/zmq-
mvfst-tperf

66 Performance Evaluation of QUIC

5.3. Results

We start first by comparing pure TCP with pure QUIC, followed by comparing
application protocols HTTP (i.e., HTTP/1.1), HTTPS (i.e., HTTP/2), and HTTP3 (i.e.,
flowsim’s implementation of HTTP3 with QUIC).

We only report a small yet characteristic subset of the results we have collected and
start first by showcasing the results gathered with flowsim and then move to Mvfst. For
the interested experimenters, all the results are accessible online.6

5.3.1. Assessment of QUIC and HTTP/3 performance

Here we report the results of our flowsim experiments for the evaluation of QUIC
and HTTP/3 vs TCP and older HTTP versions, using a single stream per download.

Figure 5.6 and Figure 5.7 show that empirical distribution of the download time for
traffic burst of 1 MB. The considered experiments were run from static nodes in Spain,
Norway and Sweden. Figure 5.6 contains separated statistics for the three countries.
Differences across countries are normal also because we put together the results of three
operators per country, each with different latency to the servers. However, for each
country we use a local server in that same country. The figure also reports TCP statistics
for the same kind of experiment. It is interesting to see that QUIC performs better than
TCP in Spain, but not in Norway and Sweden. The differences are however not huge.

Figure 5.7 reports download time statistics, and the collected samples, for the case of
mobile clients located on busses in Sweden. The distribution of results shows practically
no differences between QUIC and TCP. However, TCP tends to suffer occasionally and
reports higher extreme values. This means that QUIC reacts better to channel outages
than TCP.

Next, we turn our attention to the application protocols, using the HTTP emulation
mode of flowsim, and we change the download size to 100 KB to match the size of real
webpages. We can notice a difference in download time, as observed in Figure 5.8 for
Spain (with static clients) and Sweden (with clients on the move). In this case, HTTP3,
which is based on QUIC, offers a clear advantage, especially with respect to HTTP/2,
due to the reduced connection establishment time.

6https://github.com/Mohmoulay/QUIC-MedNetCom

5.3 Results 67

25 50 75 100
Download[ms]

0.0

0.2

0.4

0.6

0.8

1.0
EC

DF

QUIC
TCP

(a) Spain

5 10 15 20
Download[ms]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

QUIC
TCP

(b) Norway

0 50 100 150 200
Download[ms]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

QUIC
TCP

(c) Sweden

Figure 5.6: Download time comparison between QUIC and TCP, with flowsim clients in
Spain, Sweden and Norway (download size of 1 MB)

0 1 2 3 4
Download[ms] 1e5

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

QUIC
TCP

(a) ECDF

0 200 400
Samples

0

1

2

3

4

Do
wn

lo
ad

[m
s]

1e5
QUIC
TCP

(b) Samples

Figure 5.7: Download time comparison of QUIC and TCP with flowsim on a public bus
in Sweden (1 MB downloads)

68 Performance Evaluation of QUIC

200 400
Download[ms]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

HTTP3
HTTPS
HTTP

(a) Spain

500 1000 1500 2000
Download[ms]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

HTTP3
HTTPS
HTTP

(b) Sweden

Figure 5.8: Page download time comparison between HTTP versions with flowsim clients
in Spain (static) and Sweden (mobile), with page size of 100 kB

We also collect qlog files for plain QUIC and HTTP3 experiments. Here we show the
case of the mobile Swedish nodes. In Figure 5.9, we report RTT, throughput, congestion
window and number of bytes in flight as reported in the qlog files for a specific experiment
lasting about one second. From the time series Figure 5.9, we can see how the flowsim

implementation of QUIC adapts fast to delay variations (due to the mobility of the client),
and the resulting volume of bytes in flight is maintained practically constant after a short
transient phase.

Similarly, for the case of HTTP/3 with a mobile client, Figure 5.10 shows that a
QUIC-based Web browsing is quite robust to fast channel quality variations.

1.0

1.5

2.0

2.5

tim
e(

μs
)

1e5 Smoothed RTT

0

2

4

6

bp
s

1e5 Throughput

0 2 4 6 8
time(μs) 1e5

0.0

0.5

1.0

1.5

by
te

s

1e5 Congestion Window

0 2 4 6 8
time(μs) 1e5

Bytes in flight

Figure 5.9: Time series for for a QUIC download from a mobile flowsim client in Sweden
(qlog events, 100 kB downloads)

5.3 Results 69

6.5

7.0

7.5

8.0
tim

e(
μs

)

1e4 Smoothed RTT

0.0

2.5

5.0

7.5

bp
s

1e5 Throughput

0.00 0.25 0.50 0.75 1.00
time(μs) 1e6

0

1

2

by
te

s

1e5 Congestion Window

0.00 0.25 0.50 0.75 1.00
time(μs) 1e6

Bytes in flight

Figure 5.10: Time series for a webpage download from a mobile flowsim client in Sweden
(qlog events, 100 kB downloads)

5.3.2. Assessment of Congestion Control Variants in QUIC

Here we evaluate the impact of congestion control on QUIC and how it behaves
over time in the presence of multiple downloads streams. We use Mvfst for the set
of experiments described in this subsection, because it allows to test several congestion
control schemes. Results with Mvfst running Cubic are very similar to the ones obtained
with flowsim, so we do not include flowsim experiments here. Instead, we compare
sequential vs parallel experiments: in the sequential ones, the congestion control scheme
is switched from one set of experiments to the next, while in parallel experiments, the
various congestion control schemes are run in parallel on different instances of the QUIC
servers, using different ports. This also allows us to evaluate the fairness among QUIC
variants.

Figs. 5.11 and 5.12 report the results for a download stream, performed sequentially
or in parallel, respectively, from the same static MONROE client in Spain. The figures
include statistics extracted from the qlog files, and refer to the case of three streams
per download (mimicking the download of multiple media channels), although results
with a different number of streams are similar. The figures also report results for four
congestion control schemes, the first (Cubic) being the one also used in the experiments
with flowsim.

70 Performance Evaluation of QUIC

2

4

tim
e(

μs
)

1e5 Smoothed RTT

0

1

2

bp
s

1e6 Throughput

0.0 0.5 1.0 1.5
time(μs) 1e7

0

2

4

6

by
te

s

1e5 Congestion Window

0.0 0.5 1.0 1.5
time(μs) 1e7

Bytes in flight

bbr copa cubic newreno

Figure 5.11: Sequential time series in Spain with three download streams (qlog files of
Mvfst experiments)

2

4

6

tim
e(

μs
)

1e5 Smoothed RTT

0.0

0.5

1.0

bp
s

1e6 Throughput

0.0 0.5 1.0 1.5
time(μs) 1e7

0.0

0.5

1.0

by
te

s

1e6 Congestion Window

0.0 0.5 1.0 1.5
time(μs) 1e7

Bytes in flight

bbr copa cubic newreno

Figure 5.12: Parallel time series in Spain with three download streams (qlog files of Mvfst
experiments)

5.3 Results 71

0.8

0.9

1.0

1.1
tim

e(
μs

)

1e5 Smoothed RTT

0.0

0.5

1.0

1.5

bp
s

1e6 Throughput

0.0 0.5 1.0 1.5
time(μs) 1e7

0

2

4

6

by
te

s

1e5 Congestion Window

0.0 0.5 1.0 1.5
time(μs) 1e7

Bytes in flight

bbr copa cubic newreno

Figure 5.13: Parallel time series in Norway (with a static Mvfst client) with three
download streams

In the sequential case of Figure 5.11, we can see that the RTT observed are different
for the various congestion control cases, because they are run one after the other. Instead,
in the parallel case of Figure 5.12, the RTT curves are very similar, because the flows
with different congestion control are run in parallel. The curves are not exactly the same
because each IP packet is routed independently, which results in small fluctuations of
latency from one packet to the other.

In Figure 5.11, we can observe that Cubic is the congestion control scheme that
yields the highest throughput, on average, while BBR adapts better and faster to channel
variations. Newreno achieves the highest pick rates, but also suffers the higher variations
of throughput and in the use of buffer space, witnessed by the least stable values in the
number of bytes in flight. Copa is by far the least performing scheme, as visible, e.g., in
the low values reached by its congestion window.

In Figure 5.12, with parallel tests, we can observe that BBR is more stable and
adapts quicker to network conditions than the other schemes. This is in contrast with
the operation of classic schemes like Cubic an Newreno, which hardly come close to the
maximum congestion window size after a change in network conditions. This eventually
results also in a better average throughput for BBR, although Cubic obtains comparable
results.

With better and more stable network conditions, like shown in Figure 5.13 for a static
parallel experiment with a client in Norway, BBR clearly shows its ability to jump fast

72 Performance Evaluation of QUIC

1.5

2.0

tim
e(

μs
)

1e5 Smoothed RTT

0.0

0.5

1.0

bp
s

1e6 Throughput

0.0 0.5 1.0 1.5
time(μs) 1e7

0

2

4

by
te

s

1e5 Congestion Window

0.0 0.5 1.0 1.5
time(μs) 1e7

Bytes in flight

bbr copa cubic newreno

Figure 5.14: Sequential time series in Sweden (with a mobile Mvfst client) with three
download streams

to better operational conditions with respect to the other schemes. However, it is also
interesting to note that Cubic, BBR and Newreno are essentially fair with each other,
while Copa exhibits strong limitations.

The fact that BBR is the scheme that succeeds the most at maintaining a sustained
throughput value across executions is also visible from experiments with mobile nodes. For
instance, Figs. 5.14 and 5.15 show that BBR can introduce oscillations in the congestion
window which eventually result in stable and high throughput and number of bytes in
flight. This is true both in case of sequential and parallel experiments, which means that
the result is not a byproduct of the coexistence of multiple download flows.

Regarding Copa, we remark that we have not optimized its parameters, because that
was out of the scope of our measurement study. We leave for future work the investigation
on the impact of Copa’s configuration on QUIC performance.

5.4. Discussion

We have evaluated the performance of QUIC and HTTP/3 under different cellular
network conditions and with multiple congestion control algorithms. We have leveraged
the MONROE platform and two open QUIC implementations, namely flowsim and
Mvfst, and employed Docker containers and qlog. Containers and raw measurements
have been made available online.

5.4 Discussion 73

1.2

1.4

1.6
tim

e(
μs

)

1e5 Smoothed RTT

0.0

0.5

1.0

bp
s

1e6 Throughput

0.0 0.5 1.0 1.5
time(μs) 1e7

0

2

4

by
te

s

1e5 Congestion Window

0.0 0.5 1.0 1.5
time(μs) 1e7

Bytes in flight

bbr copa cubic newreno

Figure 5.15: Parallel time series in Sweden (with a mobile Mvfst client) with three
download streams

By analyzing container logs and qlog files, we have observed that QUIC is advantageous
over TCP for what concerns HTTP applications. In addition, the congestion control
algorithm, especially under mobility, strongly impacts the QUIC’s overall performance,
and BBR yields the more stable performance figures to mobile users.

Our tools and methodology can be used in the future for a broader and continuous
assessment of ever-evolving QUIC-based protocols.

Part III

Data science in cellular networks
Monitoring the performance of cellular networks is one part of the story, but one has

to wonder what we can do with all of this collected data. Thus, employing data science
techniques is essential to obtain meaningful insights from the data acquired. Applying
data science has gained momentum in the research community in the past few years
due from multiple domains due to the more accessible computational power and cheaper
hardware in general. In our case, we use data science to troubleshoot cellular networks;
more specifically, we apply interpretable ML techniques, e.g., decision trees, k-means,
etc. The fundamental motivation is that troubleshooting cellular networks is still a
manual task, assigned to experts who monitor the network around the clock. Besides,
existing approaches centered around Explainable Artificial Intelligence (XAI) and based
on deep learning and neural networks help to identify problems, but not to interpret and
identify the causes of the problems. Indeed, recent studies show that junior engineers
can hardly detect network problem with existing tools, and it can take up to 60 minutes
for a senior engineer to troubleshoot simple problems. For this reason, in this part of
the Thesis, we leverage data collected from real operational cellular networks to present
different methodologies to automate the fault identification process in a cellular network
and to classify network anomalies based on their inferred causes, using interpretable ML
algorithms. In Chapter 6, we present the first stage of the methodology which we call
Supervised Trees (STrees). We leverage multiple ML algorithms, mainly Decision Trees
and k-means. We test our methodology on several data-set collected by Nokia, and
to further validate our methodology, we employ MONROE data-sets. Understanding
and classifying anomalous scenarios allows alerting the appropriate department to take
corrective actions. Specifically, we use decision trees since they are transparent to
inspection, hence interpretable.

In Chapter 6, we rely on a supervised approach, while we later turn our attention to
a fully automated, hyper-parameter-free approach. Following this statement, Chapter 7
is a continuation of improving the proposed methodology described in Chapter 6. We
introduce a novel feature selection algorithm based on miscoding, which is a new metric
introduced in this Thesis, and which is based on the concept of Kolmogorov complexity.
Each step of the proposed unsupervised methodology uses a specific interpretable
algorithm with no hyperparameter. We showcase that STrees and CIAN are easy to deploy
in actual production environments, thus accelerating fault detection and troubleshooting
cellular networks.

75

””

6 Supervised Trees

There has been a remarkable evolution in cellular networks during the recent years.

With 4G networks, and even more with the recently roll out of 5G, network services

have gained a large degree of intelligence, and involve intensive access to both data

communication and computing resources. With the evolution of cellular networks, it

has also come an increase in structural complexity and heterogeneity of services, which

requires the constant monitoring of the communication system. Indeed, the early

detection and correction of operational issues and malfunctioning components in the

network is needed to provide network customers with flawless quality of service (QoS) [18].

However, the development and deployment of monitoring subsystems have to face the fast

increase in technical complexity of networks [89], and a steady increase in the number and

capabilities of mobile devices, hence in the number and complexity of service instances

requested to the network [24]. To deal with these phenomena, operators are investing

resources into the automation of the maintenance and troubleshooting tasks through self-

healing functionalities within the scope of intelligent self-organizing network operation

tools. Self-healing network mechanisms are accountable for detecting, identifying, and

making decisions on recovery actions [18].

There exist various proposals for making fault detection and self-healing systems

effective in mobile networks [19]. However, while traditional approaches lack flexibility

and do not scale, newly-defined approaches based on ML lack interpretability of results,

which hinders the triggering of proper and effective troubleshooting actions when a system

fault is detected.

77

78 Supervised Trees

In this work, we join the ML research stream while focusing on the automated

detection and classification of possible network performance anomalies. For training

and model evaluation, we use real operational network data collected for cellular service

auditing purposes by Nokia in various European countries, and we complement them

with real operational data gathered by means of the MONROE platform, operating in

several European countries as well [90]. Differently from existing proposals, we develop

STrees, a supervised ML methodology around an interpretable, cost efficient, scalable,

and accessible combination of supervised and unsupervised ML algorithms.

By means of studying the behavior of real networks with respect to TCP performance,

the main contribution of this Chapter is a comprehensive supervised ML-based complex

methodology that (i) identifies if a network is behaving as expected or is under-performing,

and (ii) automatically determines with high accuracy the root causes that lead to

performance issues. In addition, we provide an open source implementation of our

methodology, which is based on the use of the Scikit-learn library for Python [91]. Besides,

we use valuable real data from commercial networks to test our proposal. The data-set

used are webpages such as Facebook, Twitter, Google, and Youtube downloaded while

containing TCP statistics, e.g. (RTT, TCP Window, Congestion Window) and radio

statistics, e.g. (RSRP, RSRQ, RSSI).

The structure of the rest of the Chapter is as follows. Section 6.1 takes a detailed

look into STrees, the supervised ML methodology we propose. Section 6.2 describes

our measurements and the data-sets we use. Section 6.3 illustrates the implementation

of STrees methodology and analyzes the results it achieves when using real data. We

summarize and conclude the Chapter in Section 6.4.

6.1. Supervised ML Methodology

In this section, we present the STrees supervised ML methodology, which we propose

to detect and classify networking anomalies at radio access and transport layer. Our

methodology is generic for numerical data-sets with multiple features, although here we

exploit the Throughput Data Rate (TDR), i.e., the TCP goodput, as a well-defined KPI

6.1 Supervised ML Methodology 79

to characterize anomalies in a data-set reporting TDR and several radio and transport-

level observations (“data attributes”). We also leverage the fact that the TDR is strongly

correlated to the Round Trip Time (RTT) [92] to build a prediction model.

Figure 6.1 shows the four steps of STrees, starting with (i) processing the target KPI

to classify available data points according to KPI ranges (this is our “ground truth”).

Then we (ii) build a classifier for the data points solely based on RTT data attributes to

predict TDR values (this is therefore a model), so as to be able to compare the output

of the classifier with the ground truth, which leads to detecting anomalies. Thereafter

we (iii) cluster detected anomalies based on selected attributes (related to either radio or

transport layers), which allows to finally (iv) classify anomalies based on their cause(s).

80
Supervised

T
rees

Country
Operator
Services

Filter	by:

Network	data

Goodput	classification	by	%

RTT attributes only

Y

X

Initial	decision	Tree

Anomalies	samples 		Radio	KPIs
TCP	KPIs

Filter	by: Radio data

TCP data

k-means	

+

Radio labels

TCP labels

Merged Y = k-mean labels

X = Anomalous samples

Final	decision	Tree

Figure 6.1: High-level presentation of the STrees methodology, starting with the characterization of the target variable, followed by the
initial classification of samples using the RTT as the data attribute of choice, grouping anomalies with k-means (with Radio and TCP
related data attributes), and final classification of anomalies with a decision tree.

6.1 Supervised ML Methodology 81

TCP Radio

T
C
P
/
R
a
d
i
o

RTT

Unknown

Figure 6.2: Possible causes of a performance anomaly, starting with the RTT as the first
choice and moving downwards to identify other factors that cause anomalies in the TDR
observed (when using TCP for downloading files). The conclusion may be that the cause
of the observed anomalies is not identifiable given the current model.

6.1.1. Target Variable Characterization

The first step of the STrees methodology (see Figure 6.1) starts by characterizing the

target variable, the TDR, using a statistical percentiles approach which represents our

ground truth on the quality of the TDR. In practice, the data-set is split into three groups:

data points with TDR values above the 90-th percentile (Good TDR samples), below the

10-th percentile (Bad TDR samples), and everything else (OK samples). Regulators and

self quality assessment teams usually adopt this approach in the analysis of a complex

system; in our case, the Nokia team involved in the measurements recommended this

approach. Of course, other possible percentile tresholds are possible; for instance, the

20-th and 80-th percentiles could be used. This choice does not affect the proposed

methodology.

6.1.2. Detecting Anomalies

After dividing our target variable KPI (TDR), we turn the attention to an

interpretable classifier that can classify the TDR into three classes (i.e., Bad, OK, or

82 Supervised Trees

Good). There exists a wide range of classifiers fit for this job, but in this particular

case, we are looking at an interpretable classifier; for instance, decision trees are humanly

interpretable (white box). Thus, we use all the input data to build a decision tree with

CART, which classifies the data items into these classes (Bad, OK, and Good TDR), using

only the RTT data attributes (e.g., the average/maximum/minimum/standard-deviation

RTT observed). We do so since our data-sets contain data about webpage visits, for

which it is known that the TDR almost directly originates from the observed RTT [92].

The depth of the tree is limited to b(log2 n)/2c, where n is the number of samples. Thus

rule allows to easily and automatically accommodate different data-set sizes into our

methodology.

As a result of the above process, we have a tree that classifies correctly a large portion

of the data items. Intuitively, these are experiments in which the values of TDR and RTT

are consistent. However, some items are not correctly classified by the tree. We consider

these as anomalies, since data attribute (RTT) does not explain the target (TDR). For

instance, in the next section, we will observe file download and Web page experiments

in which TDR and RTT values are inconsistent. We want to explore these data items

further, since they may be symptoms of an underlying network problem.

6.1.3. Clustering Anomalies

In the third step of our methodology, we restrict our attention to the anomalous

data items misclassified by the initial decision tree. The general idea is to apply a generic

clustering technique (i.e., k-means) leveraging Radio data attributes (e.g., Received Signal

Strength Indicator (RSSI), Reference Signal Received Power (RSRP), Reference Signal

Received Quality (RSRQ)) and TCP data attributes (e.g., congestion window size, receive

window size, packet lost values, TCP idle-time) separately, and observe if these attribute

combinations yield any groups. An expert supervised the process and handpicked these

attributes since the idea is that what cannot be explained within the relation between the

TDR and RTT is an anomaly that we should investigate through other data attributes.

In general, we have to identify a number c of potential causes for the misclassification,

6.1 Supervised ML Methodology 83

and for each cause, a set of data attributes that can be used to characterize the problem.

As mentioned we use c = 2 here and, in the next section, we identified potential anomalies

caused by TCP problems and radio problems. Hence, using only the data attributes that

correspond to each potential cause, clustering is used to divide the anomalous data items

into two clusters per cause.

By applying this process for each of the c potential causes of problems, we classify

anomalous data items into 2c classes.

6.1.4. Classifying Anomalies

The final step involves building a second decision tree with the full collection of data

attributes (e.g., Radio and TCP) identified and trained using the items clustered with

k-means in the previous step. The class into which this second tree classifies a data item

reflects what makes it to be anomalous, and it is one of the possible 2c classes identified.

We use Gini as the metric to determine the best Radio and TCP data attributes to split the

new classes (Radio OK/TCP OK, Radio OK/TCP Problem, Radio Problem/TCP OK,

Radio Problem/TCP Problem) at each point. For instance, in the example presented in

the next section, the tree obtained in the final step determines if a given TCP flow is

anomalous because of TCP problems or radio problems (or both, or none, see Figure 6.2).

Observe that the outcome may show that there are several causes for the same data item.

It is also possible that no cause is assigned to a data item, because it can be a false

positive or because the actual cause is not among the set of c considered causes (TCP or

Radio, in our case).

In STrees, we leverage the interpretability of decision trees to find the conditions in

the attributes that make each data item anomalous. The path from the root to the leaf

gives these conditions in the decision trees. This is expected to be useful for network

administrators to identify what is causing the anomaly and allow for a fast diagnosis

and solution of the corresponding network problem. Observe that this decision tree can

also be used in the future to classify other anomalous data items. Suppose the network

administrators have been able to identify the issues that made an experiment anomalous

84 Supervised Trees

in the past. In that case, they can use that experience with new instances, and very

possibly fix the problem quickly.

6.2. data-sets

In this section, we present the data-sets used in this study, namely from MONROE

and Nokia.

6.2.1. Nokia drive-test measurements

To benchmark quality of service in mobile networks, continuous drive tests with end-

to-end test scenarios are performed every day internally by the network operators (Quality

Teams), and externally by third-parties or government regulators. Each of these test

campaigns can have up to tens of thousands of individual test cases, from which specific

metrics are calculated. These drive tests are normally executed with off-the-shelf testing

equipment (NEMO, TEMS, Swissqual, etc.), capable of running predefined sequences of

tests and collecting relevant low level radio and traffic information, as well as application

performance statistics. Part of the data-sets used for this experimental validation are

real test records used by Nokia for the assessment of various mobile networks in year

2019. The data used in this study has been generated by processing all the information

provided by the testing equipment and aggregating it at test level (count, sum, min,

max, average, percentiles, etc.). The resulting data-sets have a single row per test

and hundreds of columns summarizing all the dimensions (date, time, location, network

element information, etc.) and features (radio, TCP/IP, application, etc.) related to that

particular test. The data transmitted in the drive tests is synthetic and does not include

any customer’s sensitive information, hence respecting the European Union General Data

Protection Regulation (GDPR) and similar regulations (i.e., the data has been generated

by a testing device and not by real users). Finally, potentially commercial sensitive data,

such as the identity of the network operator, has been anonymized.

The Nokia-provided data-sets consists in 2.2 GB of data in CSV format, containing

358 514 rows and 1164 attributes per row, obtained from direct measurements and post

6.2 data-sets 85

Table 6.1: Overview of MONROE data-sets collected in Norway, Sweden, Italy, and Spain

Services Countries # Measurement nodes # Months Size (GB)
Facebook all 239 24 11.0
Google all 240 24 10.0
Youtube all 239 19 5.1
Twitter all 231 18 3.1

processing of pcap files, which produced several conditional statistics on the selected

performance indicators. The pcap files themselves are not included in the database. For

instance, the drive-test data-set reports separate statistics for the throughput and RTT

observed over the entire download of a file or over the initial n seconds, for multiple values

of n. This data-set is also rich in terms of metadata, which allows us to filter experiments

by test type, infrastructure, operator, vendor, device type, and communication technology,

among other parameters.

6.2.2. MONROE measurements

In addition to the data provided by Nokia, this study also leverages MONROE data-

sets. Table 6.1 reports a breakdown of the data collected with MONROE for the services

used for this study for all operators1 available in their respective countries. We divide

experiments into mobile vs wired connections. Overall, We have three mobile network

operators and a wired connection for each node, although we only use one operator at a

time to avoid interference and overloading the node’s board. For the experiments analyzed

in this Chapter, we consider the historical data collected by several MONROE nodes in

four European countries over several months, using active experiments and generating

statistics with Tstat. Each node performed different experiments, which caused them to

contact Facebook, Twitter, YouTube, and Google. The data collection duration varies

from 19 months to 23 months, depending on the country and service, and the node type

(static or mobile) used. The database with the services used in this extension for all

countries and operators totals 29.2 GB in CSV format, with 144 attributes comprising

millions of TCP flows.

1We do not report the name of the operator for the sake of privacy.

86 Supervised Trees

0 20000 40000 60000 80000 100000 120000
Throughput (kbit/s)

0

10

20

30

40
Co

un
t

Throughput Data Rate

<10 Percentile
10-90 Percentile
>90 Percentile

Figure 6.3: Distribution of Throughput Data Rate.

6.3. Results

In this section, we report the results of our methodology, implemented by using the

widely adopted scikit-learn library from Python in real data. Scikit-learn provides ML

algorithms, such as decision trees and k-means.

6.3.1. Data Analysis for Nokia Drive Tests

We have only chosen one value from each of categories available in the Nokia drive-

test data-set. This suffices to showcase how our methodology works without losing focus

in the description of experiments, and to demonstrate the properties of our proposal.

The data-sets used correspond to Hypertext Transfer Protocol (HTTP) file downloads,

in cities, over LTE networks, and with one single operator (we anonymize the operator’s

name for privacy purposes). Filtering the data with these parameters produced 1494

samples. Henceforth, these are the data items (samples, experiments) to be used and

analyzed in this subsection.

6.3.1.1. TDR Characterization

Figure 6.3 depicts the distribution of the TDR values. Using these TDR values, we

split the samples into three groups: those with TDR values above the 90-th percentile

(Good throughput samples), below the 10-th percentile (Bad samples), and everything

6.3 Results 87

Abs_RTT_VolStep_630KB <= 225.468
gini = 0.34

samples = 1494
value = [150, 1195, 149]

class = OK

Abs_RTT_max <= 130.5
gini = 0.274

samples = 1395
value = [69, 1177, 149]

class = OK

True

Abs_RTT_VolStep_240KB <= 93.478
gini = 0.298

samples = 99
value = [81, 18, 0]

class = Bad

False

Abs_RTT_VolStep_240KB <= 37.104
gini = 0.505

samples = 314
value = [7, 182, 125]

class = OK

Abs_RTT_max <= 1130.0
gini = 0.149

samples = 1081
value = [62, 995, 24]

class = OK

gini = 0.509
samples = 155

value = [2, 70, 83]
class = Good

gini = 0.433
samples = 159

value = [5, 112, 42]
class = OK

gini = 0.112
samples = 1036

value = [37, 975, 24]
class = OK

gini = 0.494
samples = 45

value = [25, 20, 0]
class = Bad

Abs_RTT_max <= 1467.5
gini = 0.48

samples = 15
value = [6, 9, 0]

class = OK

Abs_RTT_max <= 1113.5
gini = 0.191

samples = 84
value = [75, 9, 0]

class = Bad

gini = 0.18
samples = 10

value = [1, 9, 0]
class = OK

gini = 0.0
samples = 5

value = [5, 0, 0]
class = Bad

gini = 0.384
samples = 27

value = [20, 7, 0]
class = Bad

gini = 0.068
samples = 57

value = [55, 2, 0]
class = Bad

Figure 6.4: Decision tree generated with supervised ML using RTT attributes as input
and TDR classes inferred from percentiles (see Figure 6.3). when visualizing the tree each
box has the quality of the gini split, the number samples at each split, the number values
for each TDR class (Bad, OK, Good), and which class was picked.

else (OK samples). Specifically, the value of the 10-th percentile was 7 796 kbit/s, while

the value of the 90-th percentile was 68 493 kbit/s. This approach based on the use of

statistical percentiles is commonly adopted by regulators and (self-) quality assessment

teams for the analysis of complex systems, and by the Nokia team involved in the

measurements.

6.3.1.2. Detecting Anomalies

We use the TDR split of the 1 494 samples as a target for a supervised ML decision

tree with three classes: Bad, OK, and Good. Since it is well known that the TCP

throughput is a function of the RTT, in the classification we use only the RTT attributes

available in the data-set to feed the CART algorithm. To avoid overfitting we limited the

number of internal tree levels to three. Figure 6.4 illustrates the resulting decision tree

with RTT attributes. For a given sample, at the root of the node, it is decided if the

Abs_RTT_VolStep_630KB attribute (the RTT after downloading 630 KB) value of the

sample is smaller or equal to 255.468 ms. If true, we move to the left side of the tree,

and to the right side otherwise. Other information included in each tree node besides

the attribute and split value is the actual value of the Gini impurity for the class split at

88 Supervised Trees

Table 6.2: Summary of the decision tree rules of Figure 6.4 producing the most significant
RTT attributes against the TDR percentile class split shown in Figure 6.3

.

Rules Prob. Class
If Abs_RTT_VolStep_630KB <= 225.468 0.84 TDR OK
If Abs_RTT_VolStep_630KB <= 225.468
and If Abs_RTT_max <= 130.5 0.58 TDR OK

If Abs_RTT_VolStep_630KB <= 225.468
and If Abs_RTT_max <= 130.5
and if Abs_RTT_VolStep_240KB <= 37.104

0.54 TDR
Good

If Abs_RTT_VolStep_630KB <= 225.468
and If Abs_RTT_max <= 130.5
and if Abs_RTT_VolStep_240KB >37.104

0.70 TDR OK

If Abs_RTT_VolStep_630KB <= 225.468
and If Abs_RTT_max >130.5 0.92 TDR OK

If Abs_RTT_VolStep_630KB <= 225.468
and If Abs_RTT_max >130.5
and If Abs_RTT_max <= 1130.0

0.94 TDR OK

If Abs_RTT_VolStep_630KB <= 225.468
and If Abs_RTT_max >130.5
and If Abs_RTT_max >1130.0

0.56 TDR Bad

If Abs_RTT_VolStep_630KB >225.468 0.82 TDR Bad
If Abs_RTT_VolStep_630KB >225.468
and If Abs_RTT_VolStep_240KB <= 93.478 0.60 TDR OK

If Abs_RTT_VolStep_630KB >225.468
and If Abs_RTT_VolStep_240KB <= 93.478
and If Abs_RTT_max <= 1467.5

0.9 TDR OK

If Abs_RTT_VolStep_630KB >225.468
and If Abs_RTT_VolStep_240KB <= 93.478
and If Abs_RTT_max >1467.5

1.00 TDR Bad

If Abs_RTT_VolStep_630KB >225.468
and If Abs_RTT_VolStep_240KB >93.478 0.89 TDR Bad

If Abs_RTT_VolStep_630KB >225.468
and If Abs_RTT_VolStep_240KB >93.478
and If Abs_RTT_max <= 1113.5

0.74 TDR Bad

If Abs_RTT_VolStep_630KB >225.468
and If Abs_RTT_VolStep_240KB >93.478
and If Abs_RTT_max >1113.5

0.96 TDR Bad

this level of the tree, the total number of samples considered in the node (1 494 at the

root) and the number of samples for each label [150, 1195, 149], that correspond to the

classes [Bad, OK, Good]. The class value matches the predicted class at this level of the

tree (the class that has a highest number of samples). Employing a tree traversal, we

will reach a leaf node, where there are no more conditions, and the class for the sample

6.3 Results 89

102 103 104
RTT_avg

103

104

105

TD
R

Properly classified
Misclassified

Figure 6.5: Graphical plot of the data items properly classified by the decision tree of
Figure 6.4 in black, and the misclassified data items in red.

Table 6.3: Confusion matrix for the supervised ML classifier of Figure 6.4 trained with the classes
identified using Figure 6.3

Bad (ML) OK (ML) Good (ML)
Bad (percentile) 105 43 2
OK (percentile) 29 1096 70
Good (percentile) 0 66 83

is defined. The decision tree depicted in Figure 6.4 was able to classify the TDR samples

to some degree, with an accuracy score of 85% (number of correct predictions from the

TDR classes computed by the tree, in this case 1 269, over the total number of samples,

which is 1 494). Table 6.2 describes the results generated by the decision tree at relevant

nodes.

After using the decision tree built with the CART algorithm for the classification of all

the samples in the data-set, we still have 225 samples, which represent 15% of the original

data-set, that are not correctly classified (they are visually reported in Figure 6.5). More

in detail, Table 6.3 reports the confusion matrix, which shows how data samples labeled

by means of percentile tresholds are subsequently classified by the decision tree, based on

RTT attributes only. Understanding the cause of these misclassification is the target of

the methodology presented in the previous section. We therefore consider next how to

cluster these anomalous samples (i.e., the data samples that are incorrectly modeled and

classified with the decision tree).

90 Supervised Trees

Table 6.4: radio and TCP data attributes used by the unsupervised ML algorithm used in STrees
(i.e., k-means, with k=2)

Type Attributes Description
Radio Start.RSSI.dBm Received signal strength indication initial

value.
Radio End.RSSI.dBm Received signal strength indication (final

value).
Radio Start.RSRP.dBm Reference Signals Received Power (initial

value).
Radio End.RSRP.dBm Reference Signals Received Power (final

value).
Radio Start.SINR.dB Signal-to-Interference-plus-Noise Ratio

(initial value).
Radio End.SINR.dB Signal-to-Interference-plus-Noise Ratio

(final value).
TCP Abs_CWIN_avg Average congestion window size.
TCP Abs_CWIN_max Maximum congestion Window size.
TCP Abs_RWIN_avg Average TCP receive window.
TCP Abs_RWIN_max Maximum TCP receive window.
TCP Abs_PacketLost_sum PacketLost total value.
TCP Abs_IdleTime_avg Average gap value between consecutive TCP

segments.
TCP triple_dupacks_b2a Triple duplicate ack value (server to client).

6.3.1.3. Clustering Anomalies

To cluster the misclassified samples obtained in the previous step we have chosen

k-means to use as technique, due to its suitability for a medium-sized data-set and the

ability to cluster data. We fit k-means with attributes picked from a homogeneous class

of data attributes. In particular, we use either TCP-related or radio-related attributes.

We try to identify if the problem belongs to TCP events (losses, duplicated ACks, etc.,),

radio quality events (e.g., changes in signal strength), or a combination of both. Table 6.4

displays the data attributes used.

Although not presented here, we have tested various possibilities for the numbers of

target clusters, and found out that the highest score of k-means was obtained by using only

two clusters. Indeed, the use of k-means revealed that the data incorrectly classified by

the decision tree can be further clustered into two groups according to TCP attributes.

Similarly, the best choice is to use two clusters also in case of using radio attributes.

6.3 Results 91

0.0 0.2 0.4 0.6 0.8 1.0
Abs_CWIN_avg 1e6

0.0

0.5

1.0

1.5

2.0

Ab
s_

CW
IN

_m
ax

1e6

TCP Problem
TCP ok

Figure 6.6: The two k-means clusters obtained with TCP data attributes with respect to
the congestion window average and maximum value attributes.

90 80 70 60 50 40
Start.RSSI.dBm

110

100

90

80

70

60

St
ar

t.R
SR

P.
dB

m

Radio Problem
Radio ok

Figure 6.7: The two k-means clusters obtained with radio attributes with respect to the
RSSI and RSRP attributes.

Figure 6.6 and Figure 6.7 show the clusters obtained by using carefully chosen pairs of

attributes. The first figure reports an example of TCP attributes and the second depicts

an example of radio attributes. In both cases, it is clear that the clusters obtained with k-

means separate the samples into those that have TCP (resp., radio) issues and those that

do not have issues. Therefore, applying k-means to TCP (resp., radio) attributes allows

to identify whether there exists a problem with the TCP (resp., radio) performance.

92 Supervised Trees

Abs_CWIN_max <= 681468.0
gini = 0.698

samples = 195
value = [25, 69, 28, 73]

class = Unknown

Start.RSRP.dBm <= -102.0
gini = 0.514

samples = 52
value = [23, 0, 28, 1]

class = Radio Problem/TCP ok

True

Start.RSRP.dBm <= -86.5
gini = 0.513

samples = 143
value = [2, 69, 0, 72]

class = Unknown

False

Abs_CWIN_avg <= 23854.341
gini = 0.245
samples = 7

value = [6, 0, 1, 0]
class = Failure to identify

Abs_CWIN_avg <= 17639.411
gini = 0.497

samples = 45
value = [17, 0, 27, 1]

class = Radio Problem/TCP ok

gini = 0.0
samples = 1

value = [0, 0, 1, 0]
class = Radio Problem/TCP ok

gini = 0.0
samples = 6

value = [6, 0, 0, 0]
class = Failure to identify

gini = 0.0
samples = 4

value = [4, 0, 0, 0]
class = Failure to identify

gini = 0.465
samples = 41

value = [13, 0, 27, 1]
class = Radio Problem/TCP ok

Start.SINR.dB <= -1.5
gini = 0.479

samples = 77
value = [1, 48, 0, 28]

class = Radio ok/TCP Problem

Abs_RWIN_avg <= 1840754.938
gini = 0.454

samples = 66
value = [1, 21, 0, 44]

class = Unknown

gini = 0.0
samples = 11

value = [0, 11, 0, 0]
class = Radio ok/TCP Problem

gini = 0.506
samples = 66

value = [1, 37, 0, 28]
class = Radio ok/TCP Problem

gini = 0.393
samples = 54

value = [1, 13, 0, 40]
class = Unknown

gini = 0.444
samples = 12

value = [0, 8, 0, 4]
class = Radio ok/TCP Problem

Figure 6.8: STrees anomaly detection decision tree with TCP, radio attributes from
Table 6.4, and k-means labeled clusters as classes. when visualizing the tree each box has
the quality of the gini split, the number samples at each split, the number values for each
class (Failure to identify, Radio Ok/TCP Problem, Radio Problem/TCP Ok, unknown),
and which class was picked during each split.

6.3.1.4. Classifying Anomalies

The last stage of our methodology involves deriving a final model, using again a

decision tree, to identify the root cause of the identified anomalies. For our specific case

study, we use a decision tree to classify into the cases that the causes of the anomaly

are TCP events, radio conditions, or both. This decision tree has been trained with the

k-means labels previously collected from TCP-based and radio-based clustering, and a

new collection of relevant attributes (see Table 6.4). Figure 6.8 showcases the resulting

decision tree, which not only classifies TCP and radio issues, but also identifies a class

of anomalies that cannot be explained by means of TCP and radio attributes (labeled

as “failure to identify”). A problem is classified as “unknow” when it is not possible

to distinguish between TCP or radio problem, but it is definitely one of these two. An

enumeration of the rules applied by the decision tree can be found in Table 6.5. Figure 6.9

depicts the points that belong to each class in terms of TDR and RTT. Observing the

final decision tree, we can distinguish if the problem is due to TCP with a probability of

0.623, or radio with probability of 0.60 (note that events are not mutually exclusive so

that their probabilities do not need to sum up to one or less). The overall score of the

tree is 70%, which means that 70% of the anomalies are identified, jointly with their root

causes. Misclassification is mostly due to lack of data, since after three split levels, the

amount of data at some leaf nodes is no longer statistically relevant.

6.3 Results 93

Table 6.5: Highlights of the STrees decision tree rules for detection of anomalies in Figure 6.8
showcasing the dominant attributes from Table 6.4 and classes from Figure 6.8

Rules Probability Class
If Abs_CWIN_max <= 681468.0 0.54 Radio Problem
If Abs_CWIN_max <= 681468.0
and if Start.RSRP.dBm <= -102.0 x Failure to identify

(lack of data)
If Abs_CWIN_max <= 681468.0
and if Start.RSRP.dBm > -102.0 0.60 Radio Problem

If Abs_CWIN_max <= 681468.0
and if Start.RSRP.dBm > -102.0
and If Abs_CWIN_avg >17639.411

0.66 Radio Problem

If Abs_CWIN_max >681468.0 x Unknown problem!
(investigate further)

If Abs_CWIN_max >681468.0
and if Start.RSRP.dBm <= -86.5 0.62 TCP Problem

If Abs_CWIN_max >681468.0
and if Start.RSRP.dBm > -86.5 0.67 Unknow problem!

(investigate further)

102 103 104
RTT_avg

103

104

105

TD
R

RTT
Radio Problem
TCP Problem
Unknown

Figure 6.9: The outcome of the misclassified points using a combination of unsupervised
and supervised ML in Figure 6.8 and properly classified points with the supervised ML
classifier in Figure 6.4.

Note that the “Failure to Identify” class shown in the decision tree of Figure 6.8

and in Table 6.5 is due to a lack of training data over other attributes. For example,

the availability of Domain Name System (DNS) and Transport Layer Security (TLS)

measurements might help to identify more types of network problems and further

complement the analysis in a fully automated way.

94 Supervised Trees

6.3.2. Data Analysis for MONROE data-sets

The MONROE data-sets come in as a layer to extend and validate our methodology.

We choose multiple data-sets with multiple services such as Facebook and Google collected

in various European countries ranging from south (Spain, Italy) to north (Sweden,

Norway) using a range of mobile operators collected from an experiment campaign in

the MONROE platform. The methodology is the same with minor tweaks; for instance,

we change the TDR characterization from 90-10 to 80-20 percentiles to validate the claim

that choosing other percentile tresholds does not affect the proposed methodology. Thus,

everything above the 80-th percentile is considered Good TDR, below the 20-th Bad, and

in between (20-th to 80-th) OK TDR. We test the methodology on three operators per

country for a given service. We report the results and interesting findings per service.

6.3.2.1. Facebook

The first test in question is with Facebook. We conducted multiple Facebook webpage

downloads in various European countries. The average downloaded webpage size of

Facebook was 72 757.3 bytes and, at each experiment run, we cleaned the cache to make

sure that a new complete download occurs. In some countries, such as Sweden and

Norway, we had access to mobile nodes mounted on public transport vehicles. Thus, the

downloaded page statistics for those countries are a mixture of statistics for static and

mobile cellular nodes, hence the slightly higher radio problems which is depicted later in

this subsection. As for Italy and Spain, we only report results for static cellular nodes.

The data-set consisted of 176 018 samples. As an example, Figure 6.10 exhibits the

TDR values distribution for the data-set obtained using an anonymised operator 0 in

Sweden. Notice that the 20-th and 80-th percentiles are defined for each studied group

of data, and if we consider the entire subset of operators and countries monitored in

the study, the percentile treshold values range from 500 kbit/s up to 60 Mbit/s. Our

methodological procedure uses these tresholds on the TDR split with a decision tree,

while fitting only the Tstat server-side RTT attributes as the input features to classify

the TDR.

6.3 Results 95

0 10 20 30 40 50
Throughput (Mbit/s)

0

2000

4000

6000

8000

10000

Co
un

t

Throughput Data Rate

<20 Percentile
20-80 Percentile
>80 Percentile

Figure 6.10: A snapshot of the Distribution of Throughput Data Rate in Sweden using
Operator 0 and Facebook as a service.

0 5 10 15 20 25 30
Depth

0.575
0.600
0.625
0.650
0.675
0.700

Ac
cu
ra
cy

Figure 6.11: The depth versus accuracy for a decision tree with the confidence interval
using Facebook as service in Sweden with Operator 0.

The decision tree depth now changes depending on how many samples are available,

and for the case of operator 0 in Sweden, the depth was n = 6. As a proof that our rule

on the selection of n works, Figure 6.11 depicts the depth versus the accuracy alongside

the confidence interval applying cross-validation 30 times, again for operator 0 in Sweden.

From the figure, it is clear that with a depth of 6 we gain more accuracy while we avoid

overfitting. We repeat these steps, not only for one operator in Sweden but also for all

operators available in the data-set.

Table 6.6 reports results obtained for the first decision tree, accompanied by their

accuracy, precision, recall, and F1 score. To get the precision, the recall, and the F1

96 Supervised Trees

Table 6.6: A summary of the initial decision tree’s performance utilizing Facebook as a
service in all the countries part of the MONROE project with all their operators

ServiceCountryOperatorAccuracyPrecisionRecall F1 samples anomalies
(%) (%) (%) Score

Fa
ce
bo

ok

op0_sw 68.1 66.0 67.8 64.3 176018 55784
Sweden op1_sw 66.0 61.7 64.8 59.0 137777 46814

op2_sw 70.0 67.0 68.6 65.4 132802 40841
op0_no 73.1 71.9 72.2 71.5 111276 29904

Norway op1_no 74.5 74.4 74.4 73.4 132128 33233
op2_no 73.2 72.1 72.7 71.3 112728 29611
op0_it 75.0 73.0 73.3 71.0 48265 12117

Italy op1_it 75.6 75.4 75.3 74.7 73352 17869
op2_it 70.6 67.3 67.6 66.4 36223 10622
op0_es 74.7 73.6 73.4 71.3 27289 7025

Spain op1_es 76.4 75.5 76.2 75.2 75903 17878
op2_es 72.5 70.9 70.7 67.8 23449 6442

Score, we split the data-sets into training and test subsets, with 20% testing data.

Following the methodology described in Section 6.1, we identify anomalous samples

and use them to fit k-means with clusters leveraging radio and TCP attributes. For

matching, we use Tstat reported attributes on radio and TCP, such as RSSI, RSRP, and

RSRQ in the case of radio and Congestion and Receiver Window in TCP. Figure 6.12

takes a closer look at the clusters detected by using radio attributes, where we can see

that using k-means produces two sets of groups; TCP follows the same trend in that

regard, as shown through Figure 6.13. We further summarize the results with the counts

of radio and TCP problem observed in the Facebook experiments with the final step of

our methodology in the topmost part of Table 6.7. Depending on the country and their

operator, the ratio between radio and TCP problems might vary. For instance, in Sweden

and Norway we can observe more radio problems than in other countries, which is due to

the fact that MONROE nodes used in those countries were not only static nodes (e.g., in

labs and office) but also mobile nodes (e.g., moving with buses and trains).

We can therefore deduce that our methodology can detect anomalies, and their causes,

starting from the analysis of very different data-sets. Indeed, our methodology easily

adapts to the structure and size of the chosen data-set. We further corroborate our

intuition by reporting results on different data-sets and experiment, starting with the

6.3 Results 97

interesting finding encountered when testing the Google service, described next.

Operator 0 Operator 1 Operator 2
Sw

ed
en

N
or
wa

y
It
al
y

Sp
ai
n

Figure 6.12: The two k-means clusters per countries and operators obtained with
radio attributes concerning the RSSI and RSRP attributes using anomalies sample from
table 6.6 leveraging Facebook as a service.

98 Supervised Trees

Operator 0 Operator 1 Operator 2

Sw
ed
en

N
or
wa

y
It
al
y

Sp
ai
n

Figure 6.13: The two k-means clusters per countries and operators obtained with TCP
attributes using anomalies sample from table 6.6 leveraging Facebook as a service

6.3
R
esults

99

Table 6.7: The final decision tree performance with STrees, using MONROE data-sets for Facebook and Google experiments.

ServicesCountryOperatorsAccuracy (%)Precision (%)Recall (%)F1 ScoreRadio ProblemTCP ProblemProb in both

Fa
ce
bo

ok

op0_sw 99.1 98.0 96.0 98 13082 5153 2963
Sweden op1_sw 98.7 97.2 95.2 96.1 5914 8065 5311

op2_sw 99.0 98.2 97.4 98.3 19416 2487 4416
op0_no 99.3 99.2 98.7 98.9 10747 3188 2990

Norway op1_no 99.3 99.2 98.3 98.0 12136 2384 2877
op2_no 99.0 98.0 97.0 97.0 3304 11924 9797
op0_it 99.4 98.4 97.2 98.0 1642 6750 4425

Italy op1_it 98.7 92.6 94.4 92.5 801 2880 5194
op2_it 99.5 99.0 99.0 99.0 372 5357 1884
op0_es 98.3 98.5 97.0 96.0 2631 5039 9008

Spain op1_es 99.3 98.2 98.1 98.0 656 3544 2314
op2_es 99.0 98.3 98.5 97.7 1046 1057 4493

G
oo

gl
e

op0_sw 99.8 99.9 99.9 99.9 11120 1 122
Sweden op1_sw 99.7 99.7 99.7 99.7 22799 2 203

op2_sw 99.4 99.6 99.6 99.4 9653 3 106
op0_no 99.3 99.5 99.5 99.5 4852 681 637

Norway op1_no 99.4 99.7 99.7 99.7 7839 8 5
op2_no 98.5 98.7 98.7 98.7 10591 333 422
op0_it 99.3 99.5 99.5 99.5 12121 69 23

Italy op1_it 99.7 99.7 99.7 99.7 7141 118 71
op2_it 98.4 99.2 99.2 99.2 4591 476 372
op0_es 98.7 98.5 98.9 98.9 14058 30 716

Spain op1_es 98.7 98.9 99.0 99.0 4227 23 -
op2_es 99.0 99.7 99.7 99.7 1586 8 2

100 Supervised Trees

0 10 20 30 40 50
Throughput (Mbit/s)

0

2000

4000

6000

8000

10000
Co

un
t

Throughput Data Rate

<20 Percentile
20-80 Percentile
>80 Percentile

Figure 6.14: A snapshot of the Distribution of Throughput Data Rate in Sweden using
Operator 0 and Google as a service.

6.3.2.2. Google

A second experiment with MONROE and Tstat data leverages the Google search

engine as the downloaded webpage. We observed an average downloaded size of 17 368.8

bytes, following the same procedure as the Facebook service (repeating downloads,

clearing the cache, etc..). The available TDR samples are classified as shown in

Figure 6.14, while the first decision tree with the TDR as classes and RTT as input

features yields the results reported in Table 6.8.

Table 6.8: A summary of the initial decision tree’s performance utilizing Google as a
service following up the same methodology steps from section 6.3.2.1

ServiceCountryOperatorAccuracyPrecisionRecall F1 samples anomalies
(%) (%) (%) Score

G
oo

gl
e

op0_sw 64.8 66.0 67.7 65.4 100876 35475
Sweden op1_sw 66.0 66.0 67.7 65.5 97945 34760

op2_sw 70.0 66.8 68.6 64.6 90198 31550
op0_no 66.9 70.2 69.9 66.3 52158 17228

Norway op1_no 67.6 71.4 70.3 67.8 42028 13586
op2_no 66.8 69.7 69.9 67.6 54996 18261
op0_it 67.7 72.1 71.2 68.9 74596 24091

Italy op1_it 66.5 69.0 69.0 66.2 46978 15726
op2_it 66.0 69.3 67.6 66.4 32909 11164
op0_es 69 71.9 71.7 70.5 75279 23334

Spain op1_es 66.0 70.5 69.7 66.6 31863 10821
op2_es 64.8 68.4 68.3 67.8 27058 8315

6.3 Results 101

Operator 0 Operator 1 Operator 2
Sw

ed
en

N
or
wa

y
It
al
y

Sp
ai
n

Figure 6.15: The two k-means clusters per countries and operators obtained with
radio attributes concerning the RSSI and RSRP attributes using anomalies sample from
table 6.8 leveraging google as a service.

The interesting part comes in treating the anomalies samples from Table 6.8 with

k-means. In the radio case shown in Figure 6.15, k-means produced two sets of clusters

separated, which is consistent with what previously observed in this Chapter with other

data-sets. However, a neat change comes in the TCP case where k-means could not

identify two clusters. This is logical and somehow expected given (i) the small size of

downloaded webpage, and (ii) the fact that Google services are replicated very close to

users. Indeed, moving forward to our methodology’s final step, we can see from Table 6.7

that the number of TCP problems in the Google experiment is low or non-existent;

102 Supervised Trees

instead, we have mainly radio problems, which do not directly depend on the nature

of the downloaded page and its location. This indirectly confirms that our methodology

finds meaningful conclusions on the origins and causes of anomalies.

6.3.2.3. Other services

We have used our methodology to analyze more data-sets collected with MONROE

and Tstat, e.g., by repeatedly accessing the webpages of YouTube (80 kbytes on average)

and Twitter (39.1 kbytes on average). YouTube showed the same behavior as Google,

with almost no TCP problem, while the analysis with Twitter’s experiments was similar

to the one with Facebook. Table 6.9 reports the final results obtained in the four cases

by applying our methodology. These results were expected because YouTube and Google

are typically co-deployed, while Facebook and Twitter have similar webpage structures.

They further confirm that our methodology yields consistent results across different

experimental conditions.

Regardless of the service, country, or operator, we have shown that our automated

anomaly detection system works and is functional to improve the networking service

quality. Indeed, the system can self-identify network performance issues. So it can be

used to alert the right support personnel, either TCP or radio experts in the presented

example, which will receive as input the rules from, e.g., Table 6.5, that raised the alarm.

Our STrees methodology is easy to implement, and it can be deployed in production

environments.

6.3
R
esults

103

Table 6.9: The final STrees decision tree performance with MONROE data-sets for YouTube and Twitter experiments.

ServicesCountryOperatorsAccuracy (%)Precision (%)Recall (%)F1 ScoreRadio ProblemTCP ProblemProb in both

Y
ou

T
ub

e

op0_sw 98.8 98.9 98.9 98.9 121200 2340 122
Sweden op1_sw 98.8 98.9 98.9 98.9 92473 897 449

op2_sw 99.1 99.2 99.2 99.2 80054 4280 1203
op0_no 99.6 99.6 99.6 99.6 171094 534 1814

Norway op1_no 99.3 99.3 99.3 99.3 163712 234 7567
op2_no 99.5 99.5 99.5 99.5 61605 1960 26
op0_it 99.3 99.3 99.3 99.3 47544 28 268

Italy op1_it 99.5 99.5 99.5 99.5 22503 3071 1071
op2_it 97.9 98.0 98.0 98.0 18266 2155 804
op0_es 98.7 98.5 98.9 98.9 80248 2 20

Spain op1_es 98.7 98.9 99.0 99.0 28229 1884 2951
op2_es 99.0 99.7 99.7 99.7 22430 840 1020

T
w
it
te
r

op0_sw 98.8 98.9 98.9 98.9 23591 15165 6565
Sweden op1_sw 98.8 98.9 98.9 98.9 24907 7442 2653

op2_sw 99.1 99.2 99.2 99.2 37615 11108 18926
op0_no 98.8 98.7 98.7 98.7 66112 4306 6803

Norway op1_no 98.3 98.3 98.3 98.3 34017 14908 19618
op2_no 98.7 98.7 98.7 98.7 17406 23543 28127
op0_it 99.3 99.5 99.5 99.5 27306 3051 2894

Italy op1_it 99.7 99.7 99.7 99.7 14679 7584 2674
op2_it 98.4 99.2 99.2 99.2 17378 14 6
op0_es 96.7 96.7 96.6 96.6 19041 8280 7896

Spain op1_es 98.9 98.8 98.8 98.8 5403 1364 987
op2_es 99.0 98.8 99.8 99.8 8459 2572 4288

104 Supervised Trees

6.4. Discussion

In this chapter we have presented a supervised ML methodology that allows to fully

automate the process of identifying anomalies in the behavior of a network. The main

advantages of STrees are that it can be implemented with limited supervision, and that

its results are interpretable by humans.

We have also provided a few application examples based on real data from operational

cellular networks. Notwithstanding the data-sets were obtained under very heterogeneous

conditions and from very different networks, we have shown that we can easily identify

behavioral anomalies (specifically, we have dealt with the case of TCP throughput,

although the methodology is not tied to TCP) and that we are also able to further

investigate and identify their root causes. This feature is key to promptly activate precise

and effective troubleshooting actions.

Furthermore, our methodology is generic and can be used to automatically detect

several types of networking problems, and examine several classes of potential anomaly

causes, without losing the interpretation of the results. As such, it can be stationed by

current cellular networks and used for future cellular monitoring

7 Causality Inference of
Anomalies in Networks

Chapter 6 showcased that it is possible to build a troubleshooting tool to detect and

classify networking anomalies using interpretable ML algorithms. However, one of the

drawbacks of that approach is the continuous need for an expert in cellular networks to

select the best KPIs to group the networking problems. Moreover, STrees uses supervised

and unsupervised ML, and does not take advantage of all the features available in the

data-set. To make troubleshooting even more automatizable, this Chapter presents an

enhanced methodology which makes use of all available features in the data-set under

observations and employs unsupervised feature selection techniques. We also eliminate

the use of hyper-parameters and automate the complete process.

One can argue that it is possible to resort to Explainable AI, or XAI, instead of using

simple ML algorthims which deals with the problem of how human users could understand

AI’s cognition, and decide if an AI based model can be trusted or not [21]. However, XAI

does not help interpret AI decisions and conclusions per se, although its transparency

of operation and interpretability of decisions allows humans to identify which features

of the observed system led to specific algorithm’s outputs on a case-by-case basis [93].

Multiple methods have been proposed to address the complex issue of ML interpretability,

from determining which features contribute the most to a neural network’s output, to

the development of targeted models that explain individual predictions [22]. However,

other studies point out that there is a potential need for applying an interdisciplinary

joint efforts in order to correctly apply and leverage explainable/interpretable ML

algorithms [94].

105

106 Causality Inference of Anomalies in Networks

In this Chapter, we focus on anomalies as to situations that should not happen, given

the capacity of the network and the current network traffic. Anomalies are not the same

as problems. For instance, while an overloaded base station located in a football stadium

full of people yields a network problem, that is not an anomaly. In fact, there is a clear

reason for the base station to be very busy and provide low per-user throughput. On

the contrary, an idle base station when the stadium is full is not a network problem (no

network alarm is raised), but it is an anomaly, since the base station should be busy. This

situation should raise an alarm and call for examination in order to seek for the causes of

this anomaly, which might go beyond the network. We are interested in the identification

of anomalies because they complement other tools for the identification of problems across

the components used to establish a communication between users and server in a network.

Moreover, anomalies are, hopefully, easier to solve than network problems, since they deal

with an abnormal operation of the network, not with its limitations.

To perform anomaly detection and classification of their causes, here we only resort

to simple and unsupervised ML tools to process the data collected from the network.

We therefore develop an upgraded and generalized version of STrees, which we call

Causality Inference of Anomalies in Networks (CIAN). In addition, we provide a software

implementation of the methodology named Troubleshooting Trees (TTrees). We do so by

making the methodology fully unsupervised and adding ML techniques such as discretizing

the target variable and feature selection. The interpretability is maintained intact, with

a key advantage that CIAN does not require access to large volumes of training data.

The key contribution of this Chapter consists in proposing an unsupervised

methodology for the detection and classification of network performance anomalies. Here

we resort to Kolmogorov complexity and information theory concepts and tools to build

ML anomaly classifiers automatically and with limited data samples. Hence, with this

work, we join the ML research stream in networking, while focusing on the troubleshooting

of possible network issues even with small volumes of measurement data. However,

differently from existing ML proposals, we detect anomalies by simply identifying the

scenarios that ML algorithms cannot learn/explain. For instance, a network that shows

107

low throughput is not anomalous if its low performance can be explained, e.g., by detecting

the presence of a bad radio link. For this reason, a novel aspect of our work is the use

of simple interpretable ML algorithms, moving away from the current trend of high-

accuracy ML algorithms (e.g., deep learning) that do not allow interpretation (and hence

understanding) of their outcome. Specifically, we use decision trees in our methodology

since they are transparent to inspection, hence interpretable [95]. In fact, having low

accuracy ML models in not a problem to our system, since we consider as interesting

(anomalous) the scenarios that are misclassified by the ML algorithms, and we do not want

to miss them by overfitting. Then, the anomalous scenarios are classified by the potential

causes of their behavior. Understanding and classifying these anomalous scenarios allow

alerting the appropriate department to take corrective actions.

In order to evaluate the methodology, we use real operational network data. Two of the

data-sets used here were collected for cellular service auditing purposes by Nokia in various

European countries. They include thousands of features (i.e., operational parameter

reports and statistics) and a few KPIs used to mark the quality of the network in each

test (i.e., throughput, connection establishment time, download time, etc.). However, the

available data-sets are also quite limited in terms of number of data samples, e.g., they only

report hundreds or a few thousands of experiments each. Thus, these data-sets are not

suitable for commonly adopted deep neural networks and ML methods requiring complex

training. The other data-sets have been obtained in measurement campaigns conducted

by us with MONROE, an open-access platform for multi-homed experimentation with

commercial mobile broadband networks across Europe [96]. With MONROE, we have

access to larger data-sets, although with a reduced number of features with respect to

Nokia’s data-sets. Moreover, while Nokia’s data-sets report mostly TCP traffic, with

MONROE we were able to experiment with TCP and QUIC. Furthermore, We analyze two

datasets with imbalanced anomalies and test an alternative implementation of CIAN with

a new clustering algorithm. We use this alternative implementation to draw performance

comparisons that assess the shortcommings of TTrees and propose possible solutions to

the latter. As a result, in this chapter we show how CIAN can be flexibly used to study

108 Causality Inference of Anomalies in Networks

heterogeneous and diverse data-sets to identify the root causes of anomalies without

human intervention.

The experts in detection and classification of network issues from the research team

have been instrumental in the validation of the methodology and the TTrees system.

They have manually inspected the outcome of the unsupervised process, verifying that

the scenarios that were classified as anomalous did in fact show strange combinations

of observed features and KPIs, and that their unsupervised classification into network

aspects (i.e., combination of observed operational features) that identify the causes of

the anomalies was consistent. Additionally, the experts guided the development of a

supervised implementation of the methodology, STrees, in which features were manually

aggregated into a few relevant network aspects based on the experts’ knowledge and

experience, like it happens in currently implemented troubleshooting protocols. The

comparison of the outcomes of unsupervised and supervised methods with the same data

has also been used to validate the methodology.

As mentioned, we provide a Python open-source implementation of our methodology

based on the Scikit-learn library [91] and a new library that we have implemented.1

The rest of the Chapter is organized as follows. Section 7.1 overviews the unsupervised

methodology proposed. Section 7.2 explains in detail how this methodology has been

impemented as the TTrees system. Section 7.3 presents and analyzes the results CIAN

achieves when it is applied to real data-sets of various kind. Finally, we discuss the lesson

learnt in Section 7.4.

7.1. Overview of CIAN

In this section, we briefly describe the framework, and the steps into which the

automated unsupervised methodological process we propose is divided, without entering

in the details of design and implementation, which will be instead the object of Section 7.2.

We begin by defining some basic notations and concepts that will be used to describe the

methodology. The basic notation used is summarized in Table 7.1.

1https://github.com/Mohmoulay/WoWMoM2021

https://github.com/Mohmoulay/WoWMoM2021

7.1 Overview of CIAN 109

Table 7.1: Basic notation.

Symbol Description
M Model
D data-set

L(M) Model length
L(D|M) Length of the data-set D given the model M

x Collection of data samples
xi A specific data sample
xik A specific feature of a data sample
y Set of target KPIs
m Number of classes resulting from KPI

discretization
C1 Initial classifier (Knowledge Tree)
A Set of anomalous scenarios
xA Set of features in anomalous scenarios
yA Set of target KPIs in anomalous scenarios
R Set of features that are highly informative

about the target KPI
ra Subset of relevant features for problem

classification
α Number of subsets selected for problem

classification
C2 Second classifier (Aspect Classification Tree)

7.1.1. The Core Idea for Detecting Anomalies

Our methodology has been developed to find and interpret anomalies in network

communications, in an automatizable way. The core idea behind our approach has been

inspired by the concepts of Kolmogorov complexity, and in particular, by the minimum

description length (MDL) and minimum message length principles [97, 98]. According

to these concepts, learning from data is equivalent to find regularities, or equivalently,

compress data, i.e., describe data in the shortest possible way without loosing information.

In particular, the MDL principle claims that the best model M for a data-set D is the

one that minimizes the following expression.

L(M) + L(D|M), (7.1)

where L(M) is the length of a model M encoded as a string of symbols, and L(D|M)

is the length of the data-set given the model. Intuitively, this latter term can be seen

as the length of the list of errors made by the model M when predicting KPIs from

features with a specific data-set D, encoded using an optimal length code. In this sense,

110 Causality Inference of Anomalies in Networks

we divide our data-set into two disjoint groups: the compressible part of D that can

be described through M , and the incompressible part that includes all the points in D

that are wrongly predicted (e.g., misclassified) by M . In a network data context, the

compressible part of D is therefore what the model M identifies as regularities in the

network described with a given set of features and KPIs, while the incompressible part

corresponds to unexpected behaviors for which the KPIs cannot be predicted based on

the observed features. In general, the more complex we allow the model to be, the more

regularities we will be able to find, but also the longer its representation will be; thus,

the appropriate balance between model complexity and model accuracy has to be found,

so as to minimize expression (7.1). In this paper we address this trade-off between model

complexity and model accuracy by means of applying an incremental procedure over

model hyper-parameters to find the most complex possible model that does not overfit

the data-set. The particular families of models used are selected for their accuracy and

interpretability, i.e., they produce models that identify the compressible part of D based

on interpretable rules. From here it follows the claim that the incompressible part of D

cannot be interpreted, and hence it contains anomalies.

7.1.2. Input

The input to the process is a collection x of data samples, obtained from n network

operation scenarios. Each data sample xi includes k features (xi1, . . . , xik), which are

operational characteristics of the network and the context in which measurements are

taken, in scenario i ∈ [1, n]. In addition to these features, there is a distinguished set of `

target KPIs y which drives the search for anomalies. Hence, the data-set is formed by x

and y, and each scenario i ∈ [1, n] is a row of the data-set containing features (xi1, . . . , xik)

and KPIs (yi1, . . . , yi`). Note that realistic data-sets can contain incomplete data entries.

Therefore, before processing further a data-set, we will possibly filter out malformed or

incomplete rows, and all rows that do not contain values for the target KPIs.

7.1 Overview of CIAN 111

7.1.3. Discretization

The first step of our methodology consists in grouping data samples into classes,

based on the value of the target KPIs y. The reason for having this step is because, in

general, the target KPI values belong to an infinite domain.2 Note that our methodology

is oblivious to the process that collects data samples, as we simply take a data-set and

work with all its valid entries. For discretization, it is desirable that the number of

classes m used is manageable but not too small, for expressiveness. However, we do not

need vast amounts of data, as our methodology works with as few as tens of samples

per discretization class, so as to have a bare minimum level of statistical relevance.

Additionally, it is desirable that data samples are reasonably balanced across classes,

although this may not be perfectly achievable in all cases. Finally, in order to provide

semantics to the discretization, every vector of KPIs (yi1, . . . , yi`) is assigned a certain

QoS, which can be quantified. Then, the discretization places in the the same class

scenarios whose QoS are similar, and the m classes can be ranked by an expert based on

their goodness (e.g., as “very bad", “bad", “medium", “good", “very good", etc.).

7.1.4. Selection of Anomalous Scenarios

Once the data samples have been assigned to the classes based on the value of the

target KPIs, we use them to train a classifier C1. This classifier will use the features

(xi1, . . . , xik) to determine whether, in scenario i, the KPIs (yi1, . . . , yi`) seem to belong

to class j ∈ [1,m]. The objective is to build a classifier that is able to correctly classify as

many data samples as possible without overfitting. It is also desirable that the decisions

of the classifier can be interpreted.

Applying this classifier C1 to all the data samples will hence incorrectly classify a

subset of them, out of which we consider the subset A ⊂ [1, n] for which the classifier

predicts classes higher than the observed ones. The scenarios in set A are the ones that

we consider interesting, or anomalous: scenarios whose target KPIs is overestimated with

2We explored options without discretization, but they were unsatisfactory, because they led to complex
approaches with additional hyperparameters.

112 Causality Inference of Anomalies in Networks

a properly trained classifier C1.3 The interpretability of the classifier helps to determine

why the data samples in A are anomalous (with respect to those properly classified). This

means identifying which features are relevant and how to differentiate A from the rest.

Observe that the scenarios in A are not necessarily those in which any of the target

KPIs show low performance. For instance, if y consists of a single KPI (e.g., the average

throughput observed), a scenario i with low throughput yi may not be anomalous if this is

due to a low radio coverage (i.e., when the user is at the cell edge). This scenario should

be correctly classified by an interpretable classifier C1 as bad, and a visual inspection

of the radio features in xi should reveal the issue. The anomalous scenarios that are of

interest to us are those that cannot be (directly) explained. For instance, a scenario i

with low throughput yi in which the features xi are all good.

Hence, from this point on, our target will be to identify automatically which types

of anomalies the scenarios in A show. This could later be used to report the issue

(complemented with the data samples) to the appropriate department, that may take

corrective action.

7.1.5. Selection of the Most Relevant Features

Let xA and yA be the set of features and corresponding KPIs in anomalous scenarios,

taken as xi and yi, for i ∈ A. These are the scenarios that we want to explore further.

A natural approach to attempt for understanding what makes these scenarios anomalous

would be using another classifier only for them. While this indeed separates these

scenarios into different classes, our experience has shown that the results are however

hard to interpret, even by an expert.

For this reason, for the sake of interpretability, in our methodology we proceed

by restricting the set of features for further analysis. Hence, in the next step of the

3In some practical cases, it may be interesting to consider in the set A also the scenarios for which the
classification assigns a worse class (in QoS terms) than their actual class. Anomalies that have a positive
impact on QoS are not harmful at all for the user and could be treated less urgently than anomalies with
negative impact on QoS, so we ignore them in this work. Still, they would deserve further studies because
they could reveal the existence, and possibly explain the cause, of new interesting effects to be considered
for design and tuning of network systems and services. The methodology described in this article can be
straightforwardly extended to analyze also this kind of anomalies.

7.1 Overview of CIAN 113

methodology, we select a small subset R ⊂ [1, k] of features. The set R should contain

only non-redundant features, and should contain those that are highly informative with

respect to the set yA. The process we apply to select R is as follows. First, rank the

features of xA by the amount of information they provide about yA. Then, using this

ranking, select the top features in order, removing those that are redundant with respect

to the previously selected features. This process stops when a certain number of features

have been selected, or when the next feature in the ranking gives little information about

yA.

7.1.6. Clustering Using the Most Relevant Features

The next step of the methodology is to use the features in R to classify the anomalous

scenarios into meaningful types. We have observed empirically that the features in R

naturaly belong to different network aspects (e.g., radio features, TCP features, QUIC

features, etc.), and that an anomalous scenario may show issues in several of these aspects

simultaneously. This leads to a process in which subsets r ⊆ R are selected, and each

subset is used to classify the anomalous scenarios using binary clustering indicating

whether the selected subset of features seems to be (at least partially) responsible for

the anomaly. The conjecture is that this (unsupervised) process will select subsets that

correspond to different network aspects, and the clustering will separate “good” scenarios

from those with issues in that aspect. While this process is unsupervised, our experience

is that it leads to subsets of R that an expert can easily match with particular aspects of

the network.

Hence, in this step we select α subsets ra ⊆ R, a ∈ [1, α], and apply each of them

to divide the set A of anomalous scenarios into two clusters, a low-performing cluster

(or a cluster with issues with respect to that network aspect, indicated with a bit 0)

and a high-performing cluster (bit 1). The bit labels 0 and 1 are assigned automatically

to the clusters, depending on which of them has better performance (in terms of QoS).

Moreover, it is desirable to have balanced, compact and non-redundant clusters. Each

anomalous scenario will be assigned to one of the two clusters generated with each subset

114 Causality Inference of Anomalies in Networks

ra. This can be represented as a binary string of length α, with a value 0 or 1 in each

position, which classifies all anomalous scenarios A into 2α types. Each of the bits in

the vector associated to a scenario conveys whether that scenario shows issues in the

particular network aspect.

7.1.7. Aspect Classification of Scenarios

Finally, a second classifier C2 is built using xA and yA as training data, and the 2α

types as the classes to which these scenarios are assigned. Observe that we do not restrict

the classifier C2 to use only the features from R (although it is very likely that they will

be used). Thus, C2 uses for training xA, yA, and the α-bit string of every scenario in A

(identifying the presence of anomalies in the α selected network aspects, as described in

Section 7.1.6). The output of C2 will group anomalies into 2α classes, each with a specific

anomaly pattern.

It is important that this classifier is interpretable, because this makes experts able to

understand why an anomalous scenario has to be considered to have issues or not in each

of the automatically identified network aspects. Note that if an expert had been involved

in the most relevant feature selection process, she should have assigned a specific network

aspect to each subset ra, a ∈ [1, α], and possibly a meaning to every binary value of every

element of the network aspect anomaly string. Be it the output of manual inspection

or automatic data analysis, this information can be used to determine the issues each

particular anomalous scenario has, and can be sent to the appropriate department to

promptly intervene.

7.1.8. Using the Classifiers to Detect and Identify Anomalies

After the previously described steps have been completed, we found ourselves with

two classifiers C1 and C2, that can be used to detect anomalous scenarios, determine

network aspects that make this scenario anomalous, and hence notify about this to the

appropriate department for troubleshooting. Now we can use these trained classifiers to

analyze fresh data inputs and detect anomalies. In particular, consider a new scenario

7.2 Implementation of the CIAN methodology 115

TTrees

Data Preparation

discretization
(Proportional
approach)

Knowledge Model
(Decision Tree)

Most Relevant
indicators

(Mscd, JMI, MI)

Clustering of
anomalies

(k-means, Inertia
NID)

Aspect
Classification
(Decision Tree)

Figure 7.1: Steps of TTrees (using multiple ML techniques): beginning with data
preparation, proportional discretization, training of knowledge tree, selection of the most
relevant features, identification of anomaly clusters, and training of a network aspect
anomaly classifier.

(x1, . . . , xk, y1, . . . , y`). Using classifier C1 we determine that this is an anomalous

scenario if the KPI class C1 assigned to (x1, . . . , xk) is not the one corresponding to

the discretization class of (y1, . . . , y`) but it is actually better. If that is the case, C2 will

be used, so that the class assigned to (x1, . . . , xk, y1, . . . , y`) is an α-bit string expressing

whether this scenario has issues in each of the α different network aspects or not, which

allows for alerting the appropriate department(s).

7.2. Implementation of the CIAN methodology

Here we present the implementation details of the tool TTrees that automatizes CIAN,

the methodology presented in the previous section. Fig. 7.1 depicts the different phases

of the proposed methodology according to their implementation in TTrees. As reported

in the figure, our implementation leverages a number of standard tools for data analysis

and ML, from discretization algorithms to clustering and classification.

116 Causality Inference of Anomalies in Networks

7.2.1. Data Preparation in TTrees

The first phase consists in preparing the available data. This is a necessarily

preliminary step that includes data filtering, cleaning of the data-set from the presence of

incomplete entries, and extracting the k features in x and the target KPIs in y that need

to be observed (i.e., note that the given data-set might include more features and KPIs

than what we are interested in). Thus, we use a Python script to extract x and y from the

data-set. The script automatically discards entries in which one or more KPIs or features

are not reported. It also discards features that are constant through the data-set, which

would not be informative. Features can be either numeric values or categorical entries

(e.g., labels used to indicate the operational conditions of the network, like the name of

the radio technology used, the name of the protocol adopted for transmission, etc.).

7.2.2. Discretization in TTrees

The selected target y is usually a set of one or more numerical KPIs, whose values

may lay on a continuous real interval. Thus, a first problem to address in the training of

TTrees consists in discretizing the continuous target into a finite number of classes (i.e.,

categories). Using a simple quantization of the values in y would introduce an error in

the subsequent data analysis. Hence, instead we keep the target values as they are in the

data-set, and assign a label to each point, which identifies their class. Since TTrees is

unsupervised, discretization uses progressive numbers as labels (e.g., “0” to “5”).

In our methodology, being based on the study of the compressibility of the training

data-set using optimal lengths codes, it is of upmost importance that the discretization

algorithm applied does not alter the distribution of the training samples, that is, both

the continuos KPI and the discretized version should follow the same distribution. A

uniform discretization is an easy to implement approach that satisfies this requirement.

Therefore, we adopt a uniform discretization of target KPIs.

The number of classes (labels) used is not pre-defined. Instead, it is automatically

derived by TTrees from the available number of points in the data-set. There exist a

collection of candidate discretization algorithms that are not biased and have low variance

7.2 Implementation of the CIAN methodology 117

(e.g., equal width, equal frequency, or fixed-frequency). Unfortunately, they require

optimizing hyperparameters [99], which makes them inadequate for an unsupervised

automated software tool. Instead, we use a discretization approach that does not require

any hyperparameter tuning: proportional discretization [100]. This method uses a number

of categories proportional to the size of the data-set. The number of categories used,

denoted by m, is computed as m = (log2 n)/2, where n is the number of samples of KPIs

y. We use the proportional discretization approach to identify the centroids of the m

intervals of KPI values (associated to the m categories). After identifying the centroids,

we apply k-means clustering to the continuous target variable y, which assigns labels to

the data points and returns the boundaries between categories intervals.

7.2.3. Knowledge Model for Identifying Anomalies

Once the data points y are assigned to a finite number of categories, TTrees continues

by building a knowledge model, meant to identify anomalies. For this step we use an ML

classifier, which we want to be interpretable, so as to allow the user to understand what

kind of anomaly is detected. This is achieved by training a decision tree [101] with the

data set x, and using as classes the categories defined in the discretization phase. The

decision tree infers the class for a sample yi of y from the values of the associated features

xi. This justifies the use of terms “knowledge model” and “knowledge tree” for the role

of this classifier. However, some samples yi can be misclassified, representing anomalous

behavioral trends that cannon be learned. Note that, with more advanced models (neural

networks, random forests, etc.) instead of a decission tree, we could gain accuracy, but

we would lose interpretability and the model may discard interesting samples.

The knowledge tree is build by applying the widely adopted Classification And

Regression Tree (CART) algorithm [102], with the Gini impurity metric [103] computed

by comparing the output of the classification with respect to the discretization categories.

We refer the resulting decision tree as C1. The depth of C1 is limited to a maximum of

b(log2 n)/2c, so that, on average, the leaves of the tree hold a sufficiently large number

of samples to properly classify the KPIs. A deeper tree would suffer a high risk of

118 Causality Inference of Anomalies in Networks

overfitting [104]. Moreover, we also limit the number of samples at the tree leaves to a

minimum of five, to further reduce the risk of overfitting [103].

After the full tree has been derived to the maximum depth allowed, we perform a cost-

complexity pruning, which is the best known approach to avoid overfitting in potentially

large trees [103], combined with cross-validation of the candidate pruning points. The

leaves of the tree that have the highest Gini impurity measure are removed first. Pruning

minimizes a cost-complexity metric that linearly combines the classification error (cost)

made by the tree and the size of the tree (complexity). However, the pruning metric

has a hyperparameter which represents the relative importance of cost with respect to

complexity. Cross-validation is used to tune that hyperparameter automatically. In

practice, for each candidate value of the hyperparameter, we identify the tree with the

minimal cost-complexity, and cross-validate the performance of that tree by splitting the

data-set into smaller pieces of at least 30 samples each: we use all but one of the pieces

to train the tree and the remaining one for evaluation. This process is repeated as many

times as the number of pieces in which we break the original data-set (so as to use every

piece for validation exactly once).

Once C1 is created, for each sample of y we have two possibilities: the sample is

classified or not under the same class in the discretization phase and by the knowledge

tree. If the knowledge tree returns a class higher than the one of the discretization phase,

an anomaly of interest is identified and included in set A.

7.2.4. Most Relevant TTrees Features

The next step consists in identifying a subset of features that are relevant for the

anomalous scenarios in A, so as to identify which network aspects are relevant to explain

the anomaly. TTrees then evaluates each of the available features by computing how much

information on the target y is contained in the feature. For this task we use the well known

metrics mutual information (MI) [105] and joint mutual information (JMI) [106], from

classic information theory.

We have also tested a novel metric that we have built on top of the concepts of

7.2 Implementation of the CIAN methodology 119

Kolmogorov complexity and normalized compression distance (NCD) [107], which we call

miscoding (Mscd). The miscoding of a sequence of p different features x = {x1,x2, . . .xp}

with respect to the target y is defined as

Mscd(xi,y) = 1−NCD(xi,y)∑p
j=1 (1−NCD(xj ,y)) . (7.2)

We propose Mscd because it measures the difficulty of reconstructing the target y from the

features of x and vice versa, which accounts for the redundancy in x. In TTrees we start

by computing a conditional redundancy matrix with the normalized compression distance

of all possible pairs of features with respect to the target variable NCD(〈xi,xj〉,y), based

on a joint discretization of the attributes, and the computation of optimal length codes,

given the relative frequencies of the discretized vectors. Then, we select the attribute with

the highest NCD, and recompute the values of the redundancy matrix assuming that this

value is selected. We repeat this process of selection of the best feature and recalculation

of the redundancy matrix until all the features have been selected. The final miscoding

is given by normalizing over one minus the NCDs computed for the different attributes.

MI is applied on a per-feature basis and is able to quantify the relevance of a feature,

but it fails to identify redundancy. JMI is instead used on feature pairs, so that it

allows to evaluate not only the relevance of an feature but also the redundancy with

another feature. However, JMI is prone to errors in case outliers are present. Mscd offers

the possibility of evaluating relevance and redundancy, plus the quantity of irrelevant

information contained in the feature.

We will compare the performance obtained by applying MI, JMI and Mscd in the

numerical evaluation section. Here it is enough to mention that in all of the three cases,

we sort the features in decreasing order according to the selected metric, and pass the

top of the list to the next TTrees phase. In particular, since we will need to cluster the

anomalies based on selected network aspects, we pass to the clustering phase a number

of features much larger than the number of aspects to study. For this paper we have used

m2 features, where m is the number of bins in which the target KPI has been discretized.

120 Causality Inference of Anomalies in Networks

7.2.5. Clustering of Anomalies in TTrees

Each pair of relevant features is regarded as a potential network aspect. For

each aspect, TTrees applies a clustering algorithm on all anomalous samples. This

bidimensional clustering is done with the k-means algorithm [103], using the normalized

values of the features obtained via RobustScaler [108]. In addition, and for visualization

purposes only, when we have just one target KPI, we use a simple regression with respect

to y on each of the features, and we sort samples according to increasing regression values.

This allows to plot anomalous samples consistently so that higher y values are at the top-

right corner of the plots. As a consequence, the cluster of samples at the top-right corner

contains the samples with highest y values and the cluster at the bottom-left corner the

samples with lowest y values. If the target KPI y is better when larger (resp., smaller),

then the bottom-left (resp., top-right) cluster is the one with issues in the network aspect

defined by the two features. In general, the cluster with issues is assigned a label 0 in this

aspect, and the other cluster is assigned 1.

The problem is that we have potentially a large number of pairs of features

(and hence network aspects), and some of them might bring redundant information.

Therefore, TTrees selects only a few pairs of features as network aspects, so as to

easily and interpretably identify non-redundant descriptions of anomalies. In our current

implementation we select α = 4 feature pairs, i.e., the 4 most relevant aspects to evaluate

to understand the anomaly. Thus, the number of features passed from the previous step

is p = α2 = 16. We do not use all possible features for a matter of practicality. For

example, if we had p = 120 features, which is a reasonable value for cellular data traffic

traces, we would have to evaluate p(p− 1) = 14280 pairs, and make hundreds of millions

of comparisons to test the redundancy among pairs.

The most relevant and descriptive feature pairs are selected based on multiple metrics.

First of all, TTrees computes the inertia score [109] of the clusters resulting from each

feature pair. The inertia of a cluster quantifies the tightness of the clusters (the lower,

the better). The resulting ranked list is filtered by using two criteria: TTrees only keeps

clusters with low redundancy and which are balanced in the number of elements in the

7.2 Implementation of the CIAN methodology 121

two clusters. Redundancy of clusters is computed using the normalized information

distance metric (NID) [110]. Here the order matters, since if two feature pairs yield

redundant clusters, the feature pair with lower inertia is retained, while the other is

discarded. In order to automatically tune and apply both filters, we select filtering

thresholds with the help of the histograms obtained for the distributions of redundancy

scores and balance metric. We have observed that the histogram of redundancy shows

a bimodal distribution, therefore we select as threshold to accept/reject a feature pair

the point with the lowest value in-between the two peaks of the bimodal distribution.

For balancedness, the distribution histogram is multimodal, with an automatic threshold

selection where the minimum point between first and second peaks (minimum accepted

value of balancedness), and the minimum point between the last two peaks (maximum

accepted value for balancedness).

7.2.6. Aspect Classification in TTrees

The α top feature pairs, obtained in the previous phase of TTrees, identify network

aspects in which the anomaly could be rooted. In this phase they are used to train an

interpretable classifier (again a decision tree) to map the anomalies A onto the 2α classes

corresponding to the combinations of the α network aspects relevant for the anomalies.

This aspect classifier, denoted as C2, uses the the binary values of the aspects assigned in

the previous phase, and builds new categorical target variables consisting of binary strings

that combine these binary aspect values. The elements with value 1 in the binary string

identify aspects in which the scenarios of that category may have issues, and for which a

network specialist should be called. Note that this classifier makes decisions based on the

full list of features, and not only based on the most relevant features identified by TTrees.

In the training of C2, like for C1, we avoid overfitting by limiting the depth of the tree to

b(log2 |A|) /2c, and apply cost/complexity pruning with cross validation to increase the

generalization level of the tree.

122 Causality Inference of Anomalies in Networks

7.2.7. Software Implementation

TTrees is implemented using Python. We use two libraries: (i) the widely adopted

scikit-learn library, which provides us with ML algorithms, such as decision trees and

k-means, and (ii) a library developed by us for automatic ML tools, which includes an

Mscd calculator.

7.3. Empirical Evaluation

Existing troubleshooting tools do not generalize very well and need the assistance

of an expert. For this reason, here we evaluate TTrees along with a supervised version

of our tool, which provides a validation baseline. For simplicity, here we use only one

target KPI (e.g., the throughput) and restrict the analysis of anomalies to the case

in which the knowledge model predicts better throughput than what observed. We

also present a modified version of TTrees, in which we modify the clustering algorithm

in order to effectively analyze imbalanced data-sets. The first data-sets used in this

section were extracted from experiments executed in controlled environments. These are

complemented with Google and Facebook data-sets, which are the result of homogeneous

cellular network conditions and include nodes deployed in both static and mobile stations.

The latter can suffer from network outages and undergo unexpected variances in the

quality of the signal, which enriches the possible scenarios captured in the data-set and

can be a clear source of anomalies. As it will be later developed, these uncertain conditions

yield aspect classification clusters where the number of anomalies is imbalanced, that is,

the ratio is not equal between clusters and one class accumulates most of the samples.

The data-sets collected for this paper and the analysis of all data-sets presented here,

for all services and operators discussed, are available in GitHub.4

4https://github.com/Mohmoulay/WoWMoM2021

7.3 Empirical Evaluation 123

7.3.1. Supervised ML-based Troubleshooting

The supervised version of TTrees, denoted as STrees, uses a supervised selection of

network aspects that are most relevant to identify and cause anomalies in the problem

classification phase of the methodology. In particular, with the supervision of a network

expert, STrees selects as network aspects those combinations of features that are most

relevant for the selected target KPIs, as identified by the expert. Afterward, in STrees,

we take the tagged classes and use them to train C2, i.e., the final aspect classification

tree, like is done in TTrees.

Table 7.2: Brief description of the experimental data-sets used in this work

ID Dataset # Samples # features Families of features
#1 HTTP FILE DL 6, 690 228 Radio, RTT, Duration, TCP

Volume, TCP Flags, TCP Window,
Packet Anomaly

#2 HTTP LIVEPAGE DL 10, 500 126 Radio, RTT, Duration, TCP
Volume, TCP Flags, TCP Window,
Packet Anomaly

#3 HTTP FILE DL MONROE 120, 000 106 Radio, RTT, TCP Window, Packet
Anomaly

#4 QUIC FILE DL MONROE 3, 951 91 RTT, Duration, TCP Volume,
TCP Flags, TCP Window, Packet
Anomaly

#5 Facebook Page Download 1447,839 109 Radio, RTT, TCP Window, TCP,
Packet Anomaly

#6 Google Page Download 1261,119 109 Radio, RTT, TCP Window, TCP,
Packet Anomaly

7.3.2. Datasets

Table 7.2 summarizes the characteristics of the data-sets used in this work. We first

analyze two data collections of cellular network experiments used by Nokia in 2019 for

network performance assessment of various European 4G networks (Datasets #1 and #2).

These two data-sets contain drive-test information on TCP traffic experiments in which

constant-size (3 MB) files are downloaded, and live web-pages are fetched with a mobile

user device. Then, we further evaluate TTrees using larger mobile broadband connectivity

data-sets collected with MONROE [111]. This includes generating a data-set of QUIC

qlogs by running experiments from MONROE nodes.

More in detail, the Nokia data-sets used for experimental validation are real test

124 Causality Inference of Anomalies in Networks

records generated by processing all the information provided by the testing equipment

used in the drive-tests, and aggregating the information at test level (count, sum, min,

max, average, percentiles, etc.). The resulting data-sets have a single row per test and

hundreds of columns summarizing all the dimensions (i.e., context features like date,

time, location, network element information, etc.), technology features (radio, TCP/IP,

application, etc.) and the KPI related to that particular test. The data transmitted

in the drive tests is synthetic and does not include customer’s sensitive information,

protected by the European Union General Data Protection Regulation (GDPR) or similar

regulations (i.e., the data has been generated by a testing device and not by real users).

Finally, potentially sensitive data, such as the identity of the network operator, has been

anonymized. The Nokia data-sets utilized in this study are rich but not sufficiently large

to, e.g., train a neural network. They contain 54 228 and 21 655 rows, respectively, with

1326 columns.

The third data-set we use (Dataset #3) is a MONROE data-set with 120 000 rows and

106 columns. We have obtained access to MONROE and replicated the experiments of

the first Nokia data-set (i.e., with 3 MB HTTP file downloads) on a larger scale, although

with a different number of features. Moreover, some of the MONROE data-set highlights

include the ability to filter by test type, infrastructure, operator, vendor, and transmission

technology.

The fourth data-set (Dataset #4) was also obtained by means of the MONROE

platform with the main aim of capturing traffic different than TCP. The experiments

conducted in this scenario consist in the exchange of data packets from a server we

control to a client residing on a MONROE network probe. Packets are sent over QUIC.

From a data transport point of view, the novelties introduced by QUIC can be roughly

summarized as follows: QUIC offers a combination of TCP reliability and multiplexing

capabilities with the speed provided by the UDP transport protocol, over which QUIC

is built [39]. In the experiments, we tested multiple possible variants for the congestion

control algorithm implemented by QUIC, those being BBR, COPA, New Reno and Cubic.

We also conducted two classes of QUIC experiments with sequential and parallel file

7.3 Empirical Evaluation 125

downloads, respectively. The server can utilize multiple streams to exchange data with

the client over QUIC. The number of streams spawned ranged from 1 to 5 across the

experiments conducted. To limit the duration of the experiments, each opened connection

had a lifespan of 15 seconds, enough to evaluate the behaviour of congestion control

algorithms over variable radio conditions. Client nodes located in Norway, Sweden and

Spain were utilized to run the experiments. Two types of clients were identified according

to their mobility: static and mobile nodes. Among the mobile nodes available in the

MONROE platform, the experiments conducted involved those which were installed on

Swedish buses. Introducing mobile nodes contributes to increase the heterogeneity of

samples with scenarios were the quality of network connectivity can be significantly lower

than in static cases.

The complexity of the QUIC protocol and its use of encryption can hinder the

inspection of QUIC traffic to such an extent that a specific format called qlog has been

defined to organize and collect the information captured during a data exchange [23]. A

qlog file includes not only QUIC events, but also protocol events, each of which includes a

timestamp, the type of event and the value associated as specified in [87]: the timestamp

indicates the time at which the event was registered, a field describes the type of event

associated to the record, and finally, the data recorded in included. These qlogs have been

the primary source of information to produce the data that populates the fourth data-

set, which emulates the format and features present in the Nokia data-set. Therefore by

applying TTrees to QUIC qlogs, we test its flexibility to work with heterogeneous kinds

of data without the need of tuning any hyperparameter manually.

Datasets #5 and #6 were specifically designed to evaluate the connectivity to

websites that should offer high performance, so that possible network anomalies could be

experienced mostly because of radio problems. In this way, we obtain data-sets in which

radio and transport anomalies are strongly imbalanced. Specifically, Dataset #4 collects

measurements run against the Facebook webpage. We obtained the measurements by

means of multiple Facebook webpage downloads in various European countries, using

MONROE probes. The average downloaded webpage size of Facebook was 72 757.3

126 Causality Inference of Anomalies in Networks

bytes and, at each experiment run, we cleaned the cache to make sure that a new

complete download occurs. In some countries, such as Sweden and Norway, we had

access to mobile nodes mounted on public transport vehicles. Thus, the downloaded

page statistics for those countries are a mixture of statistics for static and mobile cellular

nodes, hence the slightly higher radio problems which is depicted later in this subsection.

As for Italy and Spain, we only report results for static cellular nodes. We run similar

measurements with MONROE and Tstat against the Google search engine webpage, which

was used to build Dataset #6. In those experiments, We observed an average downloaded

size of 17 368.8 bytes, following the same procedure as the Facebook service (repeating

downloads, clearing the cache, etc.).

In what follows, we use the first Nokia data-set to validate CIAN/TTrees and showcase

its troubleshooting capabilities for the case of HTTP file download operations over LTE

networks. We only consider data for a single operator (we anonymize the operator’s

name for privacy purposes). The other data-sets are used to showcase the potentials

of CIAN and pros and cons of how the methodology is implemented. In particular, the

second Nokia data-set is for HTTP webpage download performed live, over LTE networks,

and one single operator as well. The first MONROE data-set Dataset #3 is for HTTP

file download over LTE networks, and with one single operator, with tests anonymously

conducted from labs and public buses in various European countries; so it is similar to

the first Nokia data-set, but with more entries, less features and much more geographical

diversity. The MONROE QUIC data-set Dataset #4 is relatively small, with less than

4000 entries, and reports very different families of features with respect to the other data-

sets. Datasets #5 and #6 are used to show that, in some cases, we need to trade off

accuracy for interpretability of CIAN results.

7.3.3. TTrees in Action and its Validation

For the analysis of the HTTP file download data-set of Nokia, we choose the throughput

as the desired target KPI. Since there are 6690 samples, the number of categories used

for this specific case is b(log2 6690)/2c = 6. Fig. 7.2 illustrates the results obtained when

7.3 Empirical Evaluation 127

0 1 2 3 4 5
Throughput (Kbit/s)

0

500

1000

1500

2000

2500

Co
un

t

Very bad

Bad
Ok

Good

Very good
Excellent

Figure 7.2: Target KPI (throughput) distribution for Dataset #1 via the proportional
discretization approach

Abs_RWIN_FirstSec	<=	1351112.625
Family:	TCP	WINDOW

Abs_PushEvents_TimeStep_2560ms	<=	0.5
Family:	TCP	FLAGS

ack_pkts_sent_a2b	<=	1108.5
Family:	TCP	FLAGS

End.RSSI.dBm	>	-58.5
Family:	Radio

Abs_RWIN_25.	<=	593712.0
Family:	TCP	WINDOW

Ok
Samples	=	18
Prob	=	0.56	

Samples	=	6
Bad

Prob	=	1	

Knowledge	Tree

Subset	of	the	Tree

Abs_CWIN_VolStep_90KB	<=	27311.609
Family:	TCP	WINDOW

Bad
Samples	=	17
Prob	=	0.73	

Very	Bad
Samples	=	14
Prob	=	0.4	

True False

Abs_RWIN_FirstSec	<=	1351112.625
Family:	TCP	WINDOW

Abs_PushEvents_TimeStep_2560ms	<=	0.5
Family:	TCP	FLAGS

ack_pkts_sent_a2b	<=	1108.5
Family:	TCP	FLAGS

End.RSSI.dBm	>	-58.5
Family:	Radio

End.SINR.dB	<=	1.5
Family:	Radio

FalseTrue

Figure 7.3: Zoom into a subset of the knowledge tree built for Dataset #1. The figure
also reports which family of features the branching variable belongs to (see Table 7.2).
Observe that both branches are the same up to the fourth node, after which the left
corresponds to the true brach and the right to the false branch.

applying the proportional discretization approach to this KPI in TTrees. The discretized

target variable is fed to the CART algorithm to build the knowledge tree. In CART, we

fit the knowledge tree using all the 228 features available in the data-set.

Fig. 7.3 explains a subset of the resulting knowledge tree. For a given sample at the

root of the node, the CART algorithm checks if the Abs_RWIN_FirstSec feature (the

absolute value of the TCP received window during the first second of a connection) is less

or equal to the self-learned threshold of about 1.3 MB. If this statement is true, the CART

algorithm moves to the left side of the tree. Each node of the knowledge tree reports the

value of Gini impurity, i.e., a measure of the fraction of misclassified data points that are

128 Causality Inference of Anomalies in Networks

−4 −2 0 2 4
Difference

0

1000

2000

3000

4000

5000

Co
un

t

Figure 7.4: Difference (predicted - discretized) between the class assigned by the
knowledge tree and the discretized category for the target KPI of Dataset #1

Ab
s_

RT
T_

av
g

Ab
s_

CW
IN

_V
ol

St
ep

_6
30

KB
Ab

s_
RT

T_
Vo

lS
te

p_
30

KB
Ab

s_
W

IN
Ra

tio
_2

5.
Ab

s_
RT

T_
Vo

lS
te

p_
63

0K
B

Ab
s_

RW
IN

_F
irs

tS
ec

Ab
s_

W
IN

Ra
tio

_V
ol

St
ep

_9
0K

B
Ab

s_
RT

T_
m

ax
Ab

s_
RT

T_
Vo

lS
te

p_
90

KB
ac

k_
pk

ts
_s

en
t_

a2
b

St
ar

t.S
IN

R.
dB

Ab
s_

W
IN

Ra
tio

_V
ol

St
ep

_4
32

0K
B

Ab
s_

RT
T_

Vo
lS

te
p_

16
50

KB
Ti

m
e.

to
.F

irs
t.B

yt
e.

s
Ab

s_
RT

T_
Vo

lS
te

p_
43

20
KB

Ab
s_

CW
IN

_V
ol

St
ep

_2
40

KB

Performance indicators

0.004

0.005

0.006

0.007

0.008

0.009

M
sc

d

(a) Miscoding

Ab
s_

RT
T_

av
g

am
bi

gu
ou

s_
ac

ks
_a

2b
Ab

s_
RT

T_
Fi

rs
tM

B
Ab

s_
RT

T_
Fi

rs
tS

ec
Ab

s_
RW

IN
_a

vg
Ab

s_
RW

IN
_F

irs
tS

ec
Ab

s_
W

IN
Ra

tio
_a

vg
Ab

s_
W

IN
Ra

tio
_F

irs
tM

B
Ab

s_
W

IN
Ra

tio
_F

irs
tS

ec
av

g_
wi

n_
ad

v_
a2

b
Ab

s_
RT

T_
Vo

lS
te

p_
30

KB
Ab

s_
W

IN
Ra

tio
_V

ol
St

ep
_6

30
KB

Ab
s_

RT
T_

Vo
lS

te
p_

63
0K

B
Ab

s_
RT

T_
Vo

lS
te

p_
43

20
KB

Ab
s_

RT
T_

Vo
lS

te
p_

24
0K

B
Ab

s_
W

IN
Ra

tio
_V

ol
St

ep
_2

40
KB

Performance indicators

0.0

0.2

0.4

0.6

0.8 Mutual Information
Joint Mutual Information

(b) MI and JMI

Figure 7.5: Ranking of features according to their relevance to the description of anomalies
for Dataset #1

reported in the tree leaves that can be reached from that node. It also reports the total

number of samples examined in the node (6690 at the root) and the number of samples

that corresponds to each discretization category. E.g., [2185, 1646, 1293, 950, 506, 110] in

the root node correspond to the number of samples that fall in the “Very bad” (0), “Bad”

(1), “OK” (2), “Good” (3), “Very Good” (4), and “Excellent” (5) discretized throughput

categories. The class value associated to each node is the one with the highest number

of samples (“Very bad”, in the example). The full knowledge tree generates a meaningful

set of classification rules, each based on a feature, and whose family (radio, TCP window,

TCP flags, etc.) is reported in each node of the tree. That can help expert troubleshooters

get an initial idea of what is going on in the cellular network, but since the full knowledge

7.3 Empirical Evaluation 129

0 50 100
Cluster (ID)

0
20
40
60
80

100

Cl
us

te
r (

ID
)

(a) MI-based selection

0 50 100
Cluster (ID)

0
20
40
60
80

100

Cl
us

te
r (

ID
)

(b) JMI-based selection

Figure 7.6: NID heatmap matrix for cluster pairs. Darker colors represent redundancy.

tree is wide, manual inspection and interpretation can be cumbersome.5

Fig. 7.4 shows that the knowledge tree classifies the target samples with high accuracy,

although the number of cases in which the predicted class is better than the one observed

in the discretization phase is not negligible (‘-1’ in the figure). TTrees selects these 740

anomalies to continue the analysis.

The number of network aspects that can be analyzed by composing binary clusters

in the aspect classifier C2 with a population of 740 anomalies is α = b(log2 740)/2c = 4.

Thus, the number of features to use is α2 = 16. Fig. 7.5 depicts the 16 most relevant

features obtained by using the Mscd metric (left subplot) and by the MI and JMI metrics

(right subplot). The figure clearly shows that MI and JMI practically find the same set

of features, while Mscd identifies a significantly different subset, which is due to the fact

that Mscd accounts for redundancy of features while MI and JMI do not.

In Figs. 7.6 and 7.7(a) the redundancy of the binary clusters obtained with the 16 most

relevant features is shown, for MI, JMI, and Mscd metrics, respectively. The heatmaps

shown in the figures represent the NID metric between cluster pairs: the darker the color

the lower the distance between cluster pairs (and hence the higher their redundancy).

Fig. 7.7(a) shows lighter colors than the other two heatmaps of Fig. 7.6, which means

5The full tree is large and cannot be correctly visualized here, so we made it available online at
https://github.com/Mohmoulay/WoWMoM2021.

https://github.com/Mohmoulay/WoWMoM2021

130 Causality Inference of Anomalies in Networks

0 50 100
Cluster (ID)

0
20
40
60
80

100

Cl
us

te
r (

ID
)

(a) NID of cluster pairs (features selected
with Mscd)

Pairs of relevant Indicators

0

1000

2000

3000

In
er

tia

Unbalanced
Redundant
Picked
Others

(b) Inertia of clusters (combinations of
relevant features)

Figure 7.7: Network aspect selection based on miscoding; lower inertia of k-means clusters
is preferred, unless clusters are redundant or imbalanced

that Mscd yields features whose combinations of clusters have lower redundancy. For this

reason we will mainly consider the features selected with Mscd in the rest of this section.

Fig. 7.7(b) illustrates the inertia of the clusters obtained with the features selected

with Mscd, and the filtering process based on balancedness and low redundancy criteria.

The output of this filtering process is a set of 4 network aspects (in practice, 4 pairs

of features) used for binary clustering. The visualization of the filtering results for the

selection of relevant aspects obtained with MI and JMI is omitted because it is not relevant

for comparison purposes. What matters is instead the set of results on the performance

eventually obtained with those metrics, which will be commented later and which are

reported in Table 7.3.

Fig. 7.8 shows the 4 network aspects obtained with the first Nokia data-set and the

corresponding clusters to be used in the aspect classifier C2. The figure shows that

TTrees has identified anomaly clusters characterized by TCP operational parameters,

radio parameters, delay parameters and packet anomaly. In STrees, instead, an expert

would have to look manually at the “usual suspects” for the presence of anomalies, such

as possible radio strength problems, TCP-related problem, packet anomaly and high RTT

caused by buffering, and cluster them to see if they yield any groups. In this case, a Nokia

cellular expert has identified for us the most relevant features, which led STrees to identify

7.3 Empirical Evaluation 131

0.0 0.1 0.2 0.3 0.4
Abs_WINRatio_25.

0.00

0.25

0.50

0.75

Ab
s_

W
IN

Ra
tio

_V
ol

St
ep

_4
23

0K
B

[B
yt

es
]

1 (H)
0 (L)

(a) Aspect 1

0.0 0.1 0.2 0.3 0.4
Abs_WINRatio_25.

0

20

40

St
ar

t.S
IN

R.
dB

 [d
B]

1 (H)
0 (L)

(b) Aspect 2

0.0 0.1 0.2 0.3 0.4
Abs_WINRatio_25.

0

2000

4000ac
k_

pk
ts

_s
en

t_
a2

b

1 (H)
0 (L)

(c) Aspect 3

0100200300
Abs_RTT_VolStep_630KB [ms]

0

20

40

St
ar

t.S
IN

R.
dB

 [d
B]

1 (H)
0 (L)

(d) Aspect 4

Figure 7.8: Aspects obtained with TTrees for Dataset #1 (using Mscd, see Figs. 7.5 and
7.7). The parameters used are Signal-to-interference-plus-noise ratio (SINR), Number of
packet acknowledgment sent, absolute TCP Window ratio, and RTT.

the network aspects visualized in Fig. 7.9. Aspects identified by TTrees and STrees are

quite different, except in both cases they cover the same families of features (radio, TCP

window, RTT, packet anomaly). The actual features selected by TTrees could be less

intuitive for an expert (e.g., selecting number of acknowledgment instead of packet loss),

but without loss in information. In reality, for an expert, Aspect 3 from Fig. 7.8 makes

sense but may not be the first (intuitive) choice; instead, he/she would first look at the

packet loss from Fig. 7.9. Indeed, one of the advantages of the TTrees methodology

over STrees is the capability of creating meaningful yet not intuitive inter-family aspects

combining radio with TCP, TCP window with packet anomaly, etc.

The corresponding C2 trees trained with TTrees and STrees are (partially) reported

132 Causality Inference of Anomalies in Networks

0.0 0.2 0.4 0.6
Abs_WINRatio_50

0.00

0.25

0.50

0.75

1.00

1.25

Ab
s_

CW
IN

_V
ol

St
ep

_4
32

0K
B

[B
yt

es
]

1e6
1 (TCP OK)
0 (TCP Problem)

(a) Aspect 1 (TCP Window)

−100 −80 −60 −40
Start.RSSI.dBm [dBm]

−10

0

10

20

30

En
d.

SI
NR

.d
B

[d
B]

1 (Good Radio)
0 (Bad Radio)

(b) Aspect 2 (Radio coverage)

0 200 400 600
Abs_RTT_50 [ms]

100

200

300

400

500

Ab
s_

RT
T_

av
g.

 [m
s]

 1 (High RTT)
0 (Low RTT)

(c) Aspect 3 (RTT)

0 250 500 750 1000
Abs_PacketLost_sum

0
100
200
300
400
500

Ab
s_

Pa
ck

et
Lo

st
_F

irs
tS

ec
.

1 (High PacketLost)
0 (Low PacketLost)

(d) Aspect 4 (Packet anomaly)

Figure 7.9: Aspects obtained with STree for Dataset #1

in Fig. 7.10. The same four families of identifiers are deemed as relevant by supervised

and unsupervised approaches: Radio, TCP-based, RTT, Packet anomaly. TTrees detects

a dependency in Aspect 4 that is negatively correlated: when the value of the specific

feature Abs_RTT_VolStep_630KB (i.e., the RTT observed after averaging over chunks

of 630 kB of transmitted data) is higher than 87.909 ms, the throughput is going to be

lower. This means that channel capacity will be the limiting factor causing buffering and

we have a negatively correlated relation in Aspect 4. Now, if we look at the right side

of Fig. 7.10, STrees is describing low RTT and high packet loss as well, deriving that

result from the same TCP features plus radio. Furthermore, if we look at the whole tree,

they both convey similar results. In practice, TTrees and STrees are comparable and

show similar classification, taking into account the difference seen in the aspect selected.

7.3 Empirical Evaluation 133

D1PC;D2PC;D3PC;D4NC D1PC;D2PC;D3NC;D4NC

Aspect Classifier TTrees

Abs_RTT_avg <= 122.432
Family: RTT

Abs_RTT_avg <= 122.432
Family: RTT

Abs_CWIN_VolStep_4320KB > 542403.75
Family: TCP WINDOW

Abs_CWIN_VolStep_4320KB > 542403.75
Family: TCP WINDOW

sack_pkts_sent_a2b <= 1322.0
Family: Packet Anomaly

sack_pkts_sent_a2b > 1322.0
Family: Packet Anomaly

Abs_RTT_FirstMB > 62.343
Family: RTT

Abs_WINRatio_25. > 0.19
Family: TCP WINDOW

Abs_RTT_VolStep_630KB <= 87.909
Family: RTT Abs_SegmentSizes_FirstSec <= 1307.094

Family: Data Volume

Abs_RTT_VolStep_90KB <= 53.359
Family: RTT

True

No anomaly detected
Samples = 121
Prob = 0.65

False

Abs_WINRatio_50.<= 0.387
Family: TCP WINDOW

True False

Samples = 46

Prob = 0.5

Class: 0001 ; Class: 0011

Samples = 8

Prob = 0.42

; No anomaly detected
Samples = 18
Prob = 0.69

Subset of the Tree

Aspect Classifier STrees

Abs_RTT_avg <= 122.432

Family: RTT

Abs_RTT_avg <= 122.432

Family: RTT

Abs_RWIN_FirstSec <= 1314405.5
Family: TCP WINDOW

Abs_RWIN_FirstSec <= 1314405.5
Family: TCP WINDOW

Abs_RTT_FirstMB > 59.871

Family: RTT

Abs_RTT_FirstMB <= 59.871
Family: RTT

ack_pkts_sent_a2b > 2212.0

Family: Packet Anomaly

ack_pkts_sent_a2b > 1545.0

Family: Packet Anomaly

Abs_CWIN_VolStep_4320KB <= 589832.719

Family: TCP WINDOW

Abs_CWIN_VolStep_4320KB <= 589832.719

Family: TCP WINDOW

Start.RSRP.dBm <= -85.5
Family: Radio

True

No anomaly detected
Samples = 29

False

Good Radio/TCP OK

Low RTT/High Packetloss

True

Bad Radio/TCP OK

False

Good Radio/TCP OK

Prob = 0.9 Samples = 29 Prob = 0.40

Low RTT/High Packetloss Low RTT/High Packetloss Subset of the Tree
Samples = 29 Prob = 0.72 Samples = 26 Prob = 0.81

Figure 7.10: A comparison between the supervised and unsupervised approach showing
the resulting aspect classifiers

For instance, the root node is the same: Abs_RTT_avg (i.e., the average RTT observed

during file download) is less or equal to 122.432 ms, but the tree leafs can not be identical.

Both results are usable by an expert to identify manageable sets of similar tests for

troubleshooting. Additionally, the tree rule would allow correct assessments to assign

each group to the right troubleshooting department.

The overall accuracy score of C2 for both approaches is 90%, which means that C2

can identify 90% of non-anomalies and anomalies alongside their root cause. With the

above simple example, we have defined an automated anomaly detection system that

is functional to improve the quality of the networking service. Indeed, TTrees can

self-identify network performance issues. So it can be used to alert the right support

personnel, either the TCP or radio optimization team, in the presented example, which

will receive as input the rules from Fig. 7.10 that raised the alarm. Acknowledging that

other classification approaches might yield higher accuracy, we remark that would occur

at the expense of interpretability.

7.3.4. TCP Performance Evaluation

TTrees has been executed in three different data-sets to identify anomalies with TCP

data exchanges. The target KPI for Dataset #2 is Average Session Duration, discretized

into six classes, and for Dataset #3 the KPI is Throughput, discretized into eight classes.

134 Causality Inference of Anomalies in Networks

Table 7.3: Knowledge (C1) and Aspect Classification (C2) trees’ performance across the
different data-sets using multiple aspect selection algorithms (Mutual Information, Joint
Mutual Information, and Miscoding)

Classifier Accuracy Precision Recall F1
Dataset #1 C1 82.5% NA NA NA

HTTP C2 (MI) 92.0% NA NA NA
file DL C2 (JMI) 91.0% NA NA NA
(Nokia) C2 (Mscd) 90.0% NA NA NA

Dataset #2 C1 82.6% 80.0% 81.5% 80.0
HTTP C2 (MI) - - - -

livepage DL C2 (JMI) - - - -
(Nokia) C2 (Mscd) 88.0% 85.0% 86.0% 84.0

Dataset #3 C1 92.0% 90.0% 91.0% 89.0
HTTP C2 (MI) 95.0% 92.6% 94.4% 92.5
file DL C2 (JMI) 95% 94.5% 94.5% 92.7

(MONROE) C2 (Mscd) 95.0% 93.0% 94.4% 93.5
Dataset #4 C1 87.3% NA NA NA

QUIC C2 (MI) 94.0% NA NA NA
file DL C2 (JMI) 94.0% NA NA NA

(MONROE) C2 (Mscd) 96.0% NA NA NA

Since the new data-sets are large enough for TTrees, we split them into training and

test subsets, with 10% and 20% testing data while applying cross validation 30 times,

respectively. Note that, due to the small size of Dataset #4, data could not be split into

training and testing sets and thus, cross validation could not be carried out, hence the

“NA” entries on the table. Tests are done in classifiers C1 and C2 to get the metrics

shown in Table 7.3. The number of anomalous scenarios is 1152 and 6902, with 25 and

36 most relevant features, respectively. TTrees with Mscd was able to identify similar

network aspects in Datasets #2 and #3 as it was in Dataset #1: radio, TCP, and RTT.

Unfortunately, the selection of the most relevant features did not work well using MI and

JMI for Dataset #2 (HTTP livepage DL), since all the pairs of features selected were

redundant, and TTrees could not build C2 (hence the entries “-" in Table 7.3). This was

not surprising to our expert, since the anomalous scenarios of Dataset #2 are very hard

to classify, since they contain downloads of webpages with multiple sizes. The fact that

Mscd found meaningful network aspects is indeed impressive. For Dataset #1 and #3,

7.3 Empirical Evaluation 135

Table 7.4: Classification output of TTrees with QUIC experiments – Data grouped per
congestion control algorithm (classes with no samples are omitted)

Knowledge tree C1 Aspect classification tree C2

Throughput class Count Anomaly class Count
BBR 0 363 111 926

1 304 110 1
2 243 011 29
3 87 010 42
4 1

COPA 0 983 111 991
1 14 011 6

Cubic 0 579 111 907
1 170 011 9
2 167 010 35
3 42 000 7

New Reno 0 562 111 928
1 212 011 16
2 164 010 15
3 40 001 3

000 36

Table 7.5: Classification output of TTrees with QUIC experiments – Data grouped per
experiment execution type (classes with no samples are omitted)

Knowledge tree C1 Aspect classification tree C2

Throughput class Count Anomaly class Count
Parallel 0 1260 111 1831

1 413 011 40
2 208 010 48
3 70 001 3

000 29
Sequential 0 1227 111 1921

1 287 110 1
2 366 011 20
3 119 010 44
4 1 000 14

the C2 classifiers show similar classification performance (see Table 7.3). However, the

use of JMI and MI did not produce network aspects easily identifiable by an expert. In

summary, using Mscd leads to better performance than the other two metrics, reaching

136 Causality Inference of Anomalies in Networks

0 200 400 600 800 1000 1200
Abs_SegmentSizes_TimeStep_20480ms [Bytes]

0.0

0.2

0.4

0.6

0.8

Ab
s_

RT
T_

Ti
m

eS
te

p_
20

48
0m

s [
s]

0 (L)
1 (H)

(a) Aspect 1 (Segment sizes)

0123
Abs_CWIN_TimeStep_2560ms [Bytes] 1e6

0

200

400

600

800

1000

1200

Ab
s_

Se
gm

en
tS

ize
s_

Ti
m

eS
te

p_
20

48
0m

s [
By

te
s] 0 (L)

1 (H)

(b) Aspect 2 (TCP Window)

0.00.20.40.60.81.0
Abs_RTT_TimeStep_10240ms [s]

0.0

0.2

0.4

0.6

0.8

Ab
s_

RT
T_

Ti
m

eS
te

p_
20

48
0m

s [
s]

0 (L)
1 (H)

(c) Aspect 3 (RTT)

Figure 7.11: Aspects obtained with TTrees for Dataset #4

good accuracy scores while producing meaningful sets of rules for troubleshooting.

7.3.5. QUIC performance evaluation

Finally, we use TTrees with our fourth data-set, containing the qlogs of almost

4000 experiments carried out with MONROE. The target KPI for Dataset #4 is the

average throughput, which has been discretized into five classes. The congestion control

algorithm and execution type used in each experiment were recorded jointly with qlogs

and MONROE probe context parameters. Table 7.4 summarizes per-congestion control

algorithm statistics computed to form the knowledge tree C1 with the initial steps of the

TTrees methodology. The table shows that experiments with COPA, Cubic and New

Reno systematically yielded low throughput, especially with COPA, while with BBR we

7.3 Empirical Evaluation 137

Knowledge Tree

Abs_CWIN_75. <= 103139.0
Family: TCP WINDOW

Abs_SegmentSizes_TimeStep_20480ms <= 1251.374
Family: TCP FLAGS

Abs_CWIN_avg <= 49646.922
Family: TCP WINDOW

Very bad
Samples = 10
Prob = 0.83

Bad
Samples = 22
Prob = 0.88

Abs_CWIN_75. > 103139.0
Family: TCP WINDOW

Abs_SegmentSizes_TimeStep_20480ms <= 1242.839
Family: TCP FLAGS

Abs_CWIN_TimeStep_5120ms <= 462907.688
Family: TCP WINDOW

Ok
Samples = 33
Prob = 0.75

True False

Abs_SegmentSizes_min <= 24.5
Family: TCP FLAGS

Good
Samples = 105
Prob = 0.99

Subset of the tree

Family: RTT
Abs_RTT_25, <= 0.109

FalseTrue

Figure 7.12: Zoom into a subset of the branches of the knowledge tree C1 built by TTrees
for Dataset #4. The figure also reports which family of features the branching variable
belongs to (see Table 7.2)

can observe a higher throughput, in terms of distribution over the 5 identified classes. The

table also shows the number of anomalous cases classified according to network aspects.

There were in total eight possible combinations of three network aspects in which to look

for anomalies. The three identified network aspects are shown in Fig.7.11. The first two of

them show a clear dependency on one parameter only, which is the segment size in the first

case and the congestion window in the second case. Note that small segment sizes would

naturally lead to low throughput while small congestion window values are typical of bad

performers. So, the selection of those network aspects, which was done automatically by

TTrees, makes sense. The third network aspect is a combination of RTT statistics taken

with different averaging intervals. Indeed, when it comes to evaluate the throughput of

congestion-controlled transmissions, it is well known that RTT statistics are a meaningful

network aspect to consider as well. In particular, high RTT values tend to indicate the

presence of radio limitations.

Table 7.4 shows that not all combinations of network aspects were observed among

138 Causality Inference of Anomalies in Networks

Aspect Classifier TTrees

Abs_CWIN_50, <= 460223.0

Family: TCP WINDOW

Abs_RTT_max <= 0.617

Family: RTT

Class: 111

samples = 23

Prob = 1

True

Abs_RTT_TimeStep_20480ms > 0.303

Family: RTT

Subset of the tree

Abs_CWIN_TimeStep_640ms <= 55624.834

Family: TCP WINDOW

Abs_RTT_TimeStep_5120ms <= 0.353

Family: RTT

False

Class: 011

samples = 14

Prob = 0.82

Class: 111

samples = 8

Prob = 0.90

True False

Abs_CWIN_50, > 460223.0

Family: TCP WINDOW

Num_Streams <= 2.5

Abs_CWIN_TimeStep_320ms <= 211509.734

Family: TCP WINDOW

Class: 000

samples = 9

Prob = 0.72

Class: 111

samples = 137

Prob = 0.72

True False

Figure 7.13: Zoom into a subset of the branches of the aspect classification tree C2 built
by TTrees for Dataset #4. The figure also reports which family of features the branching
variable belongs to (see Table 7.2)

the identified anomalies. Of course, the more frequently observed case is that there are

no anomalies (class 111), while most of detected anomalies show a combination of two or

three network aspects. QUIC anomalies with BBR mostly depend on the segment size and

RTT, while Cubic and NewReno anomalies also depend on the congestion window. The

least number of anomalies was observed with COPA, and are caused by low values of the

segment size utilized for transmission. Note that looking at Table 7.4, we can see that no

experiment conducted using BBR falls under the second anomaly class, i.e., the congestion

window network aspect does not affect BBR anomalies. This is a meaningful result since

with BBR the value of the congestion window (CWIN) is automatically modulated to

maintain the RTT within acceptable values, so that CWIN cannot be directly correlated

with the experienced throughput.

7.3 Empirical Evaluation 139

If we consider parallel and serial QUIC data transmissions separately, Table 7.5

resumes the distribution of throughput samples—where of course we can see that

sequential downloads observe higher per-download throughput—and anomalies. It is

interesting to note that anomalies for parallel download experiments show a fundamentally

different distribution across anomaly classes with respect to the case of sequential

downloads. For instance, while the first network aspect (the segment size) is identified as

a common cause of anomaly in all cases, the second network aspect (i.e., the congestion

window size) is more relevant for parallel downloads. This result is meaningful because

segment size always affects transmission rate, while the congestion window is affected by

the number of ongoing transmission flows.

Note that, due to the small size of Dataset #4, data could not be split into training

and testing sets and thus, cross validation could not be carried out. The knowledge tree,

shown in Fig. 7.12, yielded 199 anomalous scenarios in total. As mention before, here

we selected only three network aspects, which were extracted from a set of nine most

relevant features. The aspect selection of TTrees automatically deemed appropriate to

stop the search of network aspects to three, because adding a fourth one would have been

redundant. We remark that this was done automatically, and we did not have to manually

change the number of network aspects to select. The accuracy of the aspect classification

tree for the QUIC data-set of Fig. 7.13, was the highest of all C2 trees, with a value

of 96% and includes the three types of anomalies identified. Also for the case of QUIC,

using miscoding rather than (join) mutual information for aspect selection was eventually

advantageous in terms of accuracy, as visible in Table 7.3.

With Dataset #4, trees C1 and C2 are smaller than with the other data-sets, which

allows us to analyze them more in detail. A general analysis of the classification trees C1

(partially depicted in Fig. 7.12) and C2 (Fig. 7.13) shows that critical QUIC features were

properly selected to classify the performance of tests. In particular congestion window size

(specifically, its 75th percentile) is at the root node of C1. Indeed, given the characteristics

of the tests performed using different congestion algorithms and assuming similar radio

conditions, it is clear that the main features differentiating each type of test has to be

140 Causality Inference of Anomalies in Networks

the congestion window related statistics. Other features like the number of streams,

buffering/delay (RTT), packet loss or segment sizes are also correctly classifying each

test. For example, RTT values above 100 ms identify lower throughput samples due

to capacity limitations (high buffering). A higher number of streams is also normally

identifying better samples in the knowledge tree C1 built by TTrees for Dataset #4.

The aspect classification tree C2 tells that, with high probability, we either have an

anomaly due to a low congestion window (maybe due to packet loss), or a combination

of the three identified network aspects. For the first case we have two leaves of the tree,

and in both leaves we can see that CWIN and RTT in the initial five seconds were OK,

but at the end of the test they were not. This might be due to packet loss. In the case of

combined anomalies, the tree shows that there was low radio capacity or the congestion

algorithm was too aggressive. In both cases we have identified the cause of anomalous

performance of QUIC with the same methodology used to identify anomalous performance

of TCP.

7.3.6. Modifications needed to deal with imbalancedness of data-sets

To further extend the evaluation of TTrees, we employ Datasets #5 and #6, collected

with MONROE. These data-sets are collected from real operational mobile networks over

which we do not have control. However, we have tested the connectivity to Facebook and

Google webpages, which are highly replicated across the network, and easily reachable

without having to traverse large portions of the cellular and core networks of the mobile

operators to which MONROE probes were connected. As such, these data-sets suffer

imbalancedness, meaning that TCP problems are rare, while radio conditions might

impair performance with much higher frequency, especially for mobile MONROE probes.

Therefore, the analysis of Datasets #5 and #6 is suitable to showcase possible drawbacks

due to the use of simple ML mechanisms in TTrees, and in particular the clustering

operated with k-means, which is known to suffer in case of parsing imbalanced data-

sets [112,113].

Table 7.6 summarizes the results obtained with TTrees in terms of accuracy and the

7.3 Empirical Evaluation 141

Table 7.6: A summary of the knowledge tree’s (C1) performance in TTrees utilizing
Facebook & Google as a service in all the countries part of the MONROE project with
all their operators.

ServicesCountryOperatorsAccuracy (%)# Samples# Anomalous samples

Fa
ce
bo

ok
(D

at
as
et

#
5)

op0_sw 96.0 183240 3162
Sweden op2_sw 96.6 235568 3346

op0_no 96.5 160290 2235
Norway op1_no 96.6 130334 2139

op2_no 95.4 128804 2688
op0_it 96.9 66420 1008

Italy op1_it 96.5 83966 1049
op0_es 97.5 26795 320

Spain op1_es 95.5 30575 380
op2_es 96.3 86450 1044

G
oo

gl
e
(D

at
as
et

#
6) op0_sw 92.7 146327 3061

Sweden op2_sw 98.9 180784 953
Norway op1_no 99.2 127628 469

op0_it 96.8 66420 1008
Italy op1_it 96.5 83966 1049

op0_es 98.4 24530 117
Spain op1_es 91.4 2078 32718

op2_es 88.5 77729 7145

number of samples concerning the knowledge tree for Datasets #5 and #6. The table

shows results classified according to the origin of the data collected, i.e., per country of

test and per operator. Similarly, Table 7.7 showcases the performance of TTrees when

it comes to the aspect classification tree for the same data-sets. For both data-sets,

the accuracy obtained with TTrees in both trees C1 and C2 is high, and the number of

anomalies is as limited as it could be expected. However, Table 7.8 reveals that TTrees

does not always manage to reach a fully meaningful classification of anomaly causes. In

particular, the fourth and fifth columns of Table 7.8 show that the number of aspects

identified with TTrees, and of the corresponding families, by means of k-means clustering

is small for these data-sets. This is a problem because the less aspects and families

are extracted by the algorithm, the poorer is the precision with which the cause of an

anomaly can be explained. Moreover, Table 7.8 does not report the results for some of

the tested networks because in those cases there were not enough aspects to generate C2.

The problem with the analysis of these data-sets is that the anomalies found by means of

142 Causality Inference of Anomalies in Networks

Table 7.7: A summary of the aspect classification tree’s (C2) performance with TTrees
utilizing Facebook & Google as a service in all the countries part of the MONROE project
with all their operators.

ServicesCountryOperatorsAccuracy (%)# Samples# Anomalous samples

Fa
ce
bo

ok
(D

at
as
et

#
5) op0_sw 98.5 183240 104

Sweden op2_sw 98.9 235568 295
op0_no 98.9 160290 2235

Norway op1_no 98.6 130334 2139
op2_no 98.8 128804 770

Italy op1_it 98.7 83966 5
op0_es 99.0 26795 18

Spain op1_es 98.9 30575 38
op2_es 99.0 86450 1044

G
oo

gl
e
(D

at
as
et

#
6) op0_sw 98.5 146327 105

Sweden op2_sw 98.9 180784 322
Norway op1_no 99.6 127628 23

op0_it 98.9 66420 89
Italy op1_it 99.0 83966 0

op0_es 99.5 24530 0
op1_es 94.5 24530 32718

Spain op2_es 95.5 77729 350

C1 are strongly imbalanced. For instance, Figure 7.15 shows that k-means founds most

of the anomalies of C1 concentrated in one of the two clusters extracted after applying

binary classification using the most relevant features. In some scenarios, such as the ones

displayed in those figures, this led to the impossibility of finding a set of features that

fell under the balancedness threshold, and, thus, no aspects were obtained for labelling

anomalous classes in C2. Therefore, applying k-means on these imbalanced C1 anomalies

can incur performance problems, as actually witnessed in our experiments.

Note that we have designed our CIAN methodology in a modular way, and the TTrees

implementation relaying on k-means is only a possible implementation with some strong

advantages (it relies on simple algorithms and is interpretable) and some cons due to the

limitations of the selected algorithms. However, in CIAN, methodological phases are well

separated and the overall system is highly modular. Therefore, tools and algorithm used

for a particular implementation can be easily exchanged guaranteeing no inter-dependency

between technologies at different steps. Considering this, we can think of combating

imbalancedness through a relatively simple modification of TTrees to implement CIAN.

7.3 Empirical Evaluation 143

The alternative implementation of the methodology can simply differ from TTrees in how

problems are clustered. In particular, we tested a modified version of TTrees obtained

by interchanging k-means with Gaussian Mixture Model (GMM) [114], which is robust

to imbalancedness and operates clustering in a very flexible way, although with less

interpretable results.

7.3.6.1. Modified TTrees with GMM clustering

It is important to bear in mind that GMM is a model-based clustering approach that

works with the concept of soft clustering, meaning that data is not just assigned to a

cluster, but instead it has a likelihood of belonging to it [114]. Therefore, the objective

of applying GMM to implement CIAN is to maximize this probability, a concept which

can be directly associated to that of cluster tightness measured through inertia. Indeed,

the previously defined TTrees implementation computes the inertia score for each pair

of attributes. Instead, GMM requires to use of a different metric to draw performance

comparisons between different pairs of attributes. The most well-known score for the

selection of the optimal model in model-based clustering is the Bayesian Information

Criterion (BIC) [115], so we use the BIC metric. Like inertia, the BIC metric is a penalty

measure, which has to be minimized.

To show that GMM and k-means behave in a substantially different way, we evaluate

the behavior of BIC and inertia obtained by applying GMM and k-means to form C2

with the data relative to two operators within what collected in Dataset #5. Specifically,

Figure 7.14 depicts the clustering performance values for the pairs of attributes extracted

for Dataset #5 with op0 in Spain, using GMM or k-means, respectively. Given that having

lower inertia and BIC values translates into better separation between clusters, we see that

the BIC metric reports values that are clearly lower than the ones extracted with inertia,

and, more importantly, grouped within a considerably smaller range. This difference in

the consistency of clustering performance may be an indicative of unstable behaviour of k-

means, thus showing the presence of imbalancedness in the data-set. Moreover, according

to the analysis conducted, low inertia would correspond to values between a 40 and 100,

144 Causality Inference of Anomalies in Networks

which as it is shown in the image, it is not the case for most attributes. This translates in

the obtained clusters not being the most optimal, highlighting an under-performance of

k-means compared to previous data-sets and resulting of this imbalancedness. Figure 7.14

shows that the same analysis carried out for another operator and data-set (in Italy and

with Dataset #6) yields an upper threshold for inertia values higher than the one obtained

with BIC and a similar tendency in the distribution of data compared with the scenario

mentioned previously. This proves that the imbalancedness of the data-set is consistent

and observable across multiple operators and scenarios and thus it is a direct result of the

nature of the experiments conducted.

Thus, using BIC, GMM is able to identify substantially different behaviors across the

data collected for one operator or the other, while k-means might not be able to do so, at

least when the data-sets are imbalanced. Figure 7.15 clearly shows that the anomalies

obtained from C1 are indeed imbalanced for the two cases analyzed in Figure 7.14. During

the clustering phase of the methodology, samples classified as anomalous are fit into one

of two clusters for each aspect: a cluster of problematic samples and one of compliant

(non-problematic) samples. Since “N Class 0”, which is the ratio of samples falling under

the non-problematic class for this binary classification problem, only takes values that

are very close to 0 or 1, the anomalies are indeed imbalanced, as opposed to being evenly

distributed.

By comparing aspect classification performance across more scenarios, the sixth and

seventh columns of Table 7.8 show that using GMM instead of k-means, with Datasets

#5 and #6 finds more aspects. The last two column show that GMM finds most of the

aspects found by k-means and identifies additional ones. This shows that GMM tends

to be more general than k-means. However, the results obtained with k-means are more

interpretable. Interpretability in decision trees is tightly correlated to the tree’s size.

Thus, the higher the number of nodes, the less interpretable the tree is. The significant

difference in the number of aspects identified with GMM translates in an increase in the

depth and branching of C2. Therefore, although GMM was able to compute a solution

in those particular cases, it yielded clusters and an aspect classification trees harder to

7.3 Empirical Evaluation 145

0 2000 4000 6000 8000
Inertia

0

10

20

30

40

Co
un

t

(a) op0_es in Dataset #5 with k-means

0 5000 10000 15000 20000 25000 30000
Inertia

0

20

40

60

80

Co
un

t

(b) op0_it in Dataset #6 with k-means

−1000 0 1000 2000 3000
BIC

0
5

10
15
20
25

Co
un

t

(c) op0_es in Dataset #5 with GMM

−4000−2000 0 2000 4000 6000 8000
BIC

0

10

20

30

Co
un

t
(d) op0_it in Dataset #6 with GMM

Figure 7.14: Histogram of Inertia (a, b) and BIC (c, d) values extracted during aspect
clustering for all relevant aspects and with two operators in Spain and Italy. The lower
the BIC or inertia the cleaner cluster grouping and splitting of samples is overall

traverse and understand. This relates to the fact that although GMM can handle complex

patterns in data, it does so at the expense of interpretability [116].

7.3.6.2. Take away message

In case the data-set is balanced k-means and GMM convey similar clustering each

grouping the clusters based on how the algorithm works underneath as shown in

Figures 7.16 and 7.17. This is true for Datasets #1 to #4. However, Table 7.8 tells

that the differences in the aspect families extracted from the application of k-means and

GMM are significant in Datasets #5 and #6. The table reports the number of intersecting

aspects and the ratio between intersecting aspects and the size of the smallest aspect set

among the ones identified by k-means and GMM. The value of the ratio is, in most cases,

close to one, which hints to the fact that the intersection of aspects found with the two

approaches is similar to the smallest set identified by either GMM or k-means. Moreover,

it is significant that in all the subsets available in Datasets #5 and #6, GMM finds a group

of attributes equal or larger to the one extracted with k-means. In practice, as shown in

the table, all the aspect families detected by k-means are extended by GMM, which is

146 Causality Inference of Anomalies in Networks

indicative of the fact that k-means identifies a subset of the data extracted with GMM.

Thus, differently from GMM, k-means enforces a more aggressive filtering behaviour when

selecting aspects, and this behavior is strongly affected by the balancedness filter used in

the proposed methodology.

This difference between using GMM or k-means is clearly displayed, e.g., in

Figure 7.15, in which we can see how GMM is able to identify a significantly higher number

of aspects closer to an ideally balanced distribution of samples. It is also important to

note that in some cases, k-means does not find a sufficient number of aspects and is not

capable of identifying the root for the existence of anomalies. In fact, when TTrees with

k-means does not obtain an aspect label, no aspect families are highlighted in C2, and

TTrees cannot identify clearly whether a group of anomalies as classified by the decision

tree C1 is problematic or not for the target KPI. Indeed, the fact that some operators are

not included in Table 7.8 alludes to the failure of some experiments utilizing k-means.

We observed that TTrees with the latter clustering algorithm was not able to generate

C2 due to a highly imbalanced number of anomalies obtained from C1. On the contrary,

the application of GMM as the clustering algorithm in the same scenarios always resulted

in a complete aspect classification tree. Note also that, although GMM was able to

compute a solution in those particular cases, it yielded clusters and an aspect classification

trees harder to traverse and understand. Therefore, at the end of the day, if imbalanced

anomalies are encountered, a feasible approach would be to switch the clustering algorithm

to one that is able to handle this particular data distribution, thus, allowing for a higher

flexibility.

7.3
E
m
pirical

E
valuation

147

Table 7.8: A comparison of the number of aspects and aspect families extracted from C2 between k-means and GMM for the Google &
Facebook data-sets in all the countries part of the MONROE project. The table also shows the number of aspects that are common to
both algorithms as well as the ratio, calculated from the division of the intersection by the size of the smallest set of aspects between
k-means and GMM.

k-means # GMM # Aspect
Service CountryOperators Aspects k-means Aspect

families
Aspects GMM Aspect families intersectionRatio

Fa
ce
bo

ok
(D

at
as
et

#
5)

op0_sw 6 RTT, TCP Window,
Packet anomaly

8 RTT, TCP, TCPWindow,
Packet anomaly

4 0.667

Sweden op2_sw 4 RTT, Packet anomaly 10 RTT, TCP, TCPWindow,
Packet anomaly

4 1.0

op0_no 2 - 11 RTT, TCP, TCPWindow,
Packet anomaly

2 1.0

Norway op1_no 2 - 10 RTT, TCP, TCPWindow,
Packet anomaly

1 0.5

op2_no 5 RTT, TCP, TCP Window 10 RTT, TCP Window,
Packet anomaly

4 0.8

Italy op1_it 8 RTT, TCP, TCPWindow,
Packet anomaly

10 RTT, TCP, TCPWindow,
Packet anomaly

4 0.5

op0_es 4 RTT, TCP 7 RTT, TCP, TCP Window 3 0.75
Spain op1_es 6 RTT, TCP 7 RTT, TCP, TCP Window 5 0.833

op2_es 2 - 7 TCP, TCP Window,
Packet Anomaly

2 1.0

G
oo

gl
e
(D

at
as
et

#
6) op0_sw 10 RTT, TCP, TCP Window 10 RTT, TCP, TCPWindow,

Packet anomaly
4 0.4

Sweden op2_sw 8 RTT, TCP, TCP Window 9 RTT, TCP, TCP Window 7 0.875
Norway op1_no 5 RTT, TCP Window,

Packet anomaly
9 RTT, TCP Window,

Packet anomaly
5 1.0

op0_it 9 RTT, TCP, TCP Window 8 RTT, TCP, TCP Window 7 0.875
Italy op1_it 10 RTT, TCP, Packet

Anomaly
12 RTT, TCP, Packet

Anomaly
8 0.8

Spain op0_es 1 - 1 - 1 1.0

148 Causality Inference of Anomalies in Networks

0 100 200 300 400
s_ack_cnt

0

100

200

300

c_
ac

k_
cn

t
1 (H)
0 (L)

(a) Aspect 1 (Packet anomalies) with k-

means

0 100 200 300 400
s_ack_cnt

0

100

200

300

c_
ac

k_
cn

t

1 (H)
0 (L)

(b) Aspect 1 (Packet anomalies) with

GMM

Figure 7.16: Cluster grouping using k-means and GMM as the cluster algorithm using
Google Dataset and op0_it

0.0 0.1 0.2 0.3 0.4
Abs_WINRatio_25.

0

20

40

St
ar

t.S
IN

R.
dB

 [d
B]

1 (H)
0 (L)

(a) Aspect 1 (TCP Congestion Window

Vs Signal-To-Noise-plus-Interference

Ratio (SINR)) with k-means

(b) Aspect 1 (TCP Congestion Window

Vs Signal-To-Noise-plus-Interference

Ratio (SINR)) with GMM

Figure 7.17: Cluster grouping Comparsion using k-means and GMM as the cluster
algorithm for Dataset #1

Ideally, we want an easy-to-interpret separation to distinguish between anomaly

samples, and this is why in TTrees we have opted for k-means. However, in case of

imbalanced data-sets, a more complex separation of anomalies into clusters is needed, and

can be achieved by using GMM, at the expenses of interpretability. Therefore, at the end

of the day, if anomalies are balanced, k-means is a suitable tool to be used to implement

7.4 Discussion 149

0.0 0.2 0.4 0.6 0.8 1.0
N Class 0

0

5

10

15

20

Co
un

t

(a) op1_no with k-means

0.0 0.2 0.4 0.6 0.8 1.0
N Class 0

0

20

40

60

80

Co
un

t

(b) op2_sw with k-means

0.2 0.4 0.6 0.8 1.0
N Class 0

0

5

10

15

20

Co
un

t

(c) op1_no with GMM

0.0 0.2 0.4 0.6 0.8 1.0
N Class 0

0

10

20

30

40

Co
un

t
(d) op2_sw with GMM

Figure 7.15: Histogram of the ratio of samples falling under the non-problematic class
during aspect clustering for all relevant aspects in Dataset #5 and with two operators
in Sweden and Norway. As it can be seen, most aspects, especially with k-means, yield
imbalanced clusters of anomalies.

CIAN, whereas, should imbalanced anomalies be encountered, a feasible approach would

be to switch to GMM. In practice, we could extend TTrees by automatically checking

the presence of imbalanced anomalies, and then automatically select the appropriate

clustering algorithm between k-means and GMM, or another one that is able to handle

the particular data/anomaly distribution observed in the data-set. This would allow for

a higher flexibility in the implementation of CIAN.

7.4. Discussion

In this Chapter, we have developed, validated and applied a methodology to identify

the root causes of network anomalies by means of interpretable ML algorithms. Our

methodology, named TTrees, allows for automatic identification of the networking aspects

that cause anomalous behaviors. Such anomalies cannot be immediately and directly

explained by observing the network features. In fact, the potentially large number of

network aspects, even in the presence of a limited number of features and samples per

150 Causality Inference of Anomalies in Networks

feature, makes it impossible to manually inspect and correlate. With TTrees, we have

purposely developed a radically novel methodology and implemented it with Python.

Specifically, we have leveraged the key observation that if a network behavior cannot be

modeled (or learned by ML), it is a symptom of network anomaly. We therefore easily

identify performance anomalies, after which we are able to use unsupervised ML and

Kolmogorov complexity-inspired tools to smartly search for the aspects that are more

relevant to explain where the anomaly is rooted. In particular we have introduced a novel

metric, miscoding, for the evaluation of redundancy and relevance of features. The final

outcome of our proposed methodology is a set of easy-to-interpret classification rules,

that, in case of performance anomaly, allow for automatically alerting the appropriate

departments for corrective actions. To do so, TTrees only needs little volumes of samples

for the features. TTrees is not specifically designed for a network protocol or service

or data-set type, as we have validated in this work by applying TTrees to the analysis

of TCP and QUIC with data gathered with different granularity, formats and richness

of experimentally collected metrics. Indeed, TTrees allows to fully automatize network

troubleshooting with high accuracy and fast training, as shown in this Chapter with the

help of real data gathered from operational cellular networks in various countries.

8 Conclusions

This Thesis investigated WebRTC and QUIC in different MBB networking scenarios

while bringing meaningful insights into the behavior of these protocols in real operational

cellular networks with the help of the MONROE platform. We have presented different

ideas on assessing the overall QoE and QoS using stats collected through qlogs and

WebRTC internals and also used data collected from the MONROE testbed to further

build methodologies that automate the detection of network problems and help fast

cellular network troubleshooting leveraging ML algorithms.

As such, in Part II, we have presented a complete and novel methodology for evaluating

Web services using operational MBB networks. Initially, we have observed that mobility

poses a challenge for WebRTC, considering MBB operators do not yet provide full quality

coverage for users on the move.

We continued investigating the overall performance of rising protocols, namely QUIC

and HTTP3, under different network conditions various congestion control algorithms,

in Chapter 5. Containers for WebRTC and QUIC experiments, as well as all the raw

measurements, have been made available online.

In Part III of the Thesis, we have demonstrated the usefulness of applying data science

to data collected from operational commercial cellular networks. To elaborate further,

Chapter 6 has proposed a novel supervised methodology for the detection of network

anomalies using interpretable ML algorithms. The work reported in this Thesis has shown

that the main advantages of the proposed STrees methodology can be fully automated,

and its results are easy to understand. Concretely, the methodology is based on the

151

152 Conclusions

combined application of well-established supervised and unsupervised ML tools. We have

also presented a few application examples based on real data from operational cellular

networks.

Finally, Chapter 7 has presented a generalization of the STrees methodology with

fully automation and unsupervised algorithms. Indeed, by leveraging unsupervised ML

and Kolmogorov complexity-inspired tools to smartly search for the aspects that are

more relevant to explain where the anomaly is rooted in the network protocols, we have

proposed CIAN. In CIAN, we have also introduced a novel metric, miscoding, to evaluate

the redundancy and relevance of performance indicators. In summary, the outcome of our

proposed STrees and CIAN methodologies are a set of easy-to-interpret classification rules

that automatically allow us to alert the appropriate departments for corrective actions

in case of performance anomaly. Combining performance evaluation over rising protocols

and collected data from real opertional MBB while building methdologies to automate

the fault detection in cellular networks which are easy to interpret reflect the key novilties

behind this Thesis.

References

[1] M. Moulay and V. Mancuso, “Experimental performance evaluation of webrtc video

services over mobile networks,” in IEEE INFOCOM 2018 _ IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), 2018, pp. 541–546.

[2] C. Midoglu, M. Moulay, V. Mancuso, O. Alay, A. Lutu, and C. Griwodz, “Open

video datasets over operational mobile networks with monroe,” in Proceedings of

the 9th ACM Multimedia Systems Conference, ser. MMSys ’18. New York, NY,

USA: Association for Computing Machinery, 2018, p. 426–431. [Online]. Available:

https://doi.org/10.1145/3204949.3208138

[3] M. Moulay, F. D. Munoz, and V. Mancuso, “On the experimental assessment

of QUIC and congestion control schemes in cellular networks,” in 2021

19th Mediterranean Communication and Computer Networking Conference

(MedComNet) (MedComNet 2021), Online Conference, Jun. 2021.

[4] M. Moulay, R. García, P. J. R. Maroni, J. Lazaro, V. Mancuso, and A. Fernández

Anta, “A novel methodology for the automated detection and classification of

networking anomalies,” in IEEE INFOCOM 2020 _ IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2020, pp. 780–786.

[5] M. Moulay, R. García, V. Mancuso, P. Rojo, and A. Fernández Anta, “TTrees:

automated classification of causes of network anomalies with little data,” in

2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and

Multimedia Networks (WoWMoM) (WoWMoM 2021), Pisa, Italy, Jun. 2021.

[6] V. Mancuso, M. Peón Quirós, C. Midoglu, M. Moulay, V. Comite,

153

https://doi.org/10.1145/3204949.3208138

154 REFERENCES

A. Lutu, Özgü Alay, S. Alfredsson, M. Rajiullah, A. Brunström, M. Mellia,

A. Safari Khatouni, and T. Hirsch, “Results from running an experiment

as a service platform for mobile broadband networks in europe,” Computer

Communications, vol. 133, pp. 89–101, 2019. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0140366417312860

[7] M. Moulay, R. García, V. Mancuso, P. Rojo, and A. Fernández Anta and Ali

Safari Khatouni, “Montrees: Automated detection and classification of networking

anomalies in cellular networks,” IEEE Transactions on Network and Service

Management, pp. 1–1, 2021.

[8] M. Moulay, R. García, P. Rojo, F. Diez, V. Mancuso, and A. Fernández Anta,

“Automated identification of network anomalies and their causes with interpretable

machine learning: the ttrees methodology,” Computer Communications, pp. 1–1,

2021.

[9] T. Ogata, A. Takeuchi, S. Fukuda, T. Yamada, T. Ochi, K. Inoue, and J. Ota,

“Characteristics of skilled and unskilled system engineers in troubleshooting for

network systems,” IEEE Access, vol. 8, pp. 80 779–80 791, 2020.

[10] A. Zeidan, A. Lehmann, and U. Trick, “WebRTC enabled multimedia,” in in

proceedings of World Telecommunications Congress 2014, Jun. 2014.

[11] A. Johnston, J. Yoakum, and K. Singh, “Taking on WebRTC in an enterprise,”

IEEE Communications Magazine, vol. 51, no. 4, pp. 48–54, April 2013.

[12] S. Loreto and S. P. Romano, “How Far Are We from WebRTC_1.0? An Update on

Standards and a Look at What’s Next,” IEEE Communications Magazine, vol. 55,

no. 7, pp. 200–207, 2017.

[13] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same standards, different

decisions: A study of QUIC and HTTP/3 implementation diversity,” in Proceedings

of ACM EPIQ, 2020.

https://www.sciencedirect.com/science/article/pii/S0140366417312860
https://www.sciencedirect.com/science/article/pii/S0140366417312860

REFERENCES 155

[14] B. Garcia, F. Gortazar, L. Lopez_Fernandez, M. Gallego, and M. Paris, “WebRTC

Testing: Challenges and Practical Solutions,” IEEE Communications Standards

Magazine, vol. 1, no. 2, pp. 36–42, 2017.

[15] B. Grozev, G. Politis, E. Ivov, T. Noel, and V. Singh, “Experimental Evaluation of

Simulcast for WebRTC,” IEEE Communications Standards Magazine, vol. 1, no. 2,

pp. 52–59, 2017.

[16] P. K. Kharat, A. Rege, A. Goel, and M. Kulkarni, “QUIC protocol performance in

wireless networks,” in Proceedinfs of ICCSP, 2018.

[17] P. Wang, C. Bianco, J. Riihijärvi, and M. Petrova, “Implementation and

performance evaluation of the QUIC protocol in Linux kernel,” in Proceedings of

ACM MSWIM, 2018.

[18] J. P. Santos, R. Alheiro, L. Andrade, A. L. Valdivieso_Caraguay, L. I.

Barona_López, M. A. Sotelo_Monge, L. J. Garcia_Villalba, W. Jiang,

H. Schotten, J. M. Alcaraz_Calero, Q. Wang, and M. J. Barros, “SELFNET

framework self_healing capabilities for 5G mobile networks,” Trans. Emerg.

Telecommun. Technol., vol. 27, no. 9, p. 1225–1232, Sep. 2016. [Online]. Available:

https://doi.org/10.1002/ett.3049

[19] A. Asghar, H. Farooq, and A. Imran, “Self_healing in emerging cellular networks:

Review, challenges, and research directions,” IEEE Communications Surveys &

Tutorials, vol. 20, no. 3, pp. 1682–1709, 2018.

[20] O. Loyola_González, “Black_box vs. white_box: Understanding their advantages

and weaknesses from a practical point of view,” IEEE Access, vol. 7, pp. 154 096–

154 113, 2019.

[21] A. HoLzinger, M. Plass, K. HoLzinger, G. Crisan, C. Pintea, and V. Palade, “A

glass_box interactive machine learning approach for solving np_hard problems with

the human_in_the_loop (2017),” arXiv preprint arXiv:1708.01104, 2017.

https://doi.org/10.1002/ett.3049

156 REFERENCES

[22] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A

survey,” in 2018 41st International convention on information and communication

technology, electronics and microelectronics (MIPRO). IEEE, 2018, pp. 0210–0215.

[23] R. Marx, W. Lamotte, J. Reynders, K. Pittevils, and P. Quax, “Towards QUIC

debuggability,” in Proceedings of ACM EPIQ, 2018.

[24] FCC, “2013 Measuring Broadband America February Report,” FCC’s Office of

Engineering and Technology and Consumer and Governmental Affairs Bureau, Tech.

Rep., 2013.

[25] E. Halepovic, J. Pang, and O. Spatscheck, “Can you GET me now?: Estimating the

time_to_first_byte of HTTP transactions with passive measurements.” in Proc. of

IMC, 2012.

[26] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, S. Venkataraman, and J. Wang, “A

First Look at Cellular Network Performance during Crowded Events,” in Proc.

of SIGMETRICS, 2013.

[27] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. Mao, S. Sen, and O. Spatscheck,

“An In_depth Study of LTE: Effect of Network Protocol and Application Behavior

on Performance,” in Proc. of SIGCOMM, 2013.

[28] Tektronix, “Reduce Drive Test Costs and Increase Effectiveness of 3G Network

Optimization,” Tektronix Comm., Tech. Rep., 2009.

[29] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illuminating

the edge network,” in Proc. of the 10th ACM SIGCOMM conference on Internet

measurement, 2010, pp. 246–259.

[30] N. Vallina_Rodriguez, “Illuminating the Third Party Mobile Ecosystem with the

Lumen Privacy Monitor,” in FTC PrivacyCon 2017, January 2017.

[31] M. R. Fida, A. Lutu, M. K. Marina, and O. Alay, “Zipweave: Towards efficient

REFERENCES 157

and reliable measurement based mobile coverage maps,” in IEEE INFOCOM 2017

- IEEE Conference on Computer Communications, May 2017, pp. 1–9.

[32] S. Taheri, L. A. Beni, A. V. Veidenbaum, A. Nicolau, R. Cammarota, J. Qiu, Q. Lu,

and M. R. Haghighat, “Webrtcbench: a benchmark for performance assessment of

webrtc implementations,” in 2015 13th IEEE Symposium on Embedded Systems For

Real-time Multimedia (ESTIMedia), 2015, pp. 1–7.

[33] B. Sredojev, D. Samardzija, and D. Posarac, “Webrtc technology overview and

signaling solution design and implementation,” 2015 38th International Convention

on Information and Communication Technology, Electronics and Microelectronics

(MIPRO), pp. 1006–1009, 2015.

[34] V. Singh, A. Abello Lozano, and J. Ott, “Performance analysis of receive-side

real-time congestion control for webrtc,” in 2013 20th International Packet Video

Workshop, 2013, pp. 1–8.

[35] C. C. Spoiala, A. Calinciuc, C. O. Turcu, and C. Filote, “Performance comparison of

a webrtc server on docker versus virtual machine,” in 2016 International Conference

on Development and Application Systems (DAS), 2016, pp. 295–298.

[36] P. Biswal and O. Gnawali, “Does QUIC make the Web faster?” in Proceedings of

IEEE GLOBECOM, 2016.

[37] G. Carlucci, L. De Cicco, and S. Mascolo, “HTTP over UDP: An experimental

investigation of QUIC,” in Proceedings of ACM SAC, 2015.

[38] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita_Rotaru, and A. Mislove, “Taking a long

look at QUIC: An approach for rigorous evaluation of rapidly evolving transport

protocols,” in Proceedings of ACM IMC, 2017.

[39] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,

F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik,

P. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W. Chang, and

158 REFERENCES

Z. Shi, “The QUIC transport protocol: Design and internet_scale deployment,”

in Proceedings ACM SIGCOMM, 2017.

[40] M. Nguyen, H. Amirpour, C. Timmerer, and H. Hellwagner, “Scalable high efficiency

video coding based HTTP adaptive streaming over QUIC,” in Proceedings of ACM

EPIQ, 2020.

[41] J. Rüth, K. Wolsing, K. Wehrle, and O. Hohlfeld, “Perceiving QUIC: Do users

notice or even care?” in Proceedings of ACM CoNEXT, 2019.

[42] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “QUIC: Better for what and

for whom?” in Proceedings of IEEE ICC, 2017.

[43] T. A. B. Alexander Yu, “Dissecting performance of production QUIC,” in

Proceedings of ACM EPIQ, 2021.

[44] T. Marwala, Causality, Correlation and Artificial Intelligence for Rational

Decision Making. WORLD SCIENTIFIC, 2015. [Online]. Available: https:

//www.worldscientific.com/doi/abs/10.1142/9356

[45] B. Huang, K. Zhang, J. Zhang, J. Ramsey, R. Sanchez-Romero, C. Glymour,

and B. Schölkopf, “Causal discovery from heterogeneous/nonstationary data with

independent changes,” 2019. [Online]. Available: https://arxiv.org/abs/1903.01672

[46] A. McGovern, R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R.

Homeyer, and T. Smith, “Making the black box more transparent: Understanding

the physical implications of machine learning,” Bulletin of the American

Meteorological Society, vol. 100, no. 11, pp. 2175 – 2199, 2019. [Online]. Available:

https://journals.ametsoc.org/view/journals/bams/100/11/bams-d-18-0195.1.xml

[47] J. Pearl, “The seven tools of causal inference, with reflections on machine

learning,” Commun. ACM, vol. 62, no. 3, p. 54–60, feb 2019. [Online]. Available:

https://doi.org/10.1145/3241036

https://www.worldscientific.com/doi/abs/10.1142/9356
https://www.worldscientific.com/doi/abs/10.1142/9356
https://arxiv.org/abs/1903.01672
https://journals.ametsoc.org/view/journals/bams/100/11/bams-d-18-0195.1.xml
https://doi.org/10.1145/3241036

REFERENCES 159

[48] D. Garreau and U. von Luxburg, “Explaining the explainer: A first theoretical

analysis of lime,” in Proceedings of the 23rd International Conference on Artificial

Intelligence and Statistics (AISTATS), ser. Proceedings of Machine Learning

Research, vol. 108. PMLR, Aug. 2020, pp. 1287–1296. [Online]. Available:

http://proceedings.mlr.press/v108/garreau20a.html

[49] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model

predictions,” in Proceedings of the 31st International Conference on Neural

Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran

Associates Inc., 2017, p. 4768–4777.

[50] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features

through propagating activation differences,” in Proceedings of the 34th International

Conference on Machine Learning - Volume 70, ser. ICML’17. JMLR.org, 2017, p.

3145–3153.

[51] A. Binder, G. Montavon, S. Bach, K. Müller, and W. Samek, “Layer-wise relevance

propagation for neural networks with local renormalization layers,” CoRR, vol.

abs/1604.00825, 2016. [Online]. Available: http://arxiv.org/abs/1604.00825

[52] R. Barco, L. Nielsen, R. Guerrero, G. Hylander, and S. Patel, “Automated

troubleshooting of a mobile communication network using bayesian networks,” in 4th

International Workshop on Mobile and Wireless Communications Network, 2002,

pp. 606–610.

[53] R. M. Khanafer, B. Solana, J. Triola, R. Barco, L. Moltsen, Z. Altman, and

P. Lazaro, “Automated diagnosis for UMTS networks using Bayesian network

approach,” IEEE Transactions on Vehicular Technology, vol. 57, no. 4, pp. 2451–

2461, July 2008.

[54] S. Rezaei, H. Radmanesh, P. Alavizadeh, H. Nikoofar, and F. Lahouti, “Automatic

fault detection and diagnosis in cellular networks using operations support systems

http://proceedings.mlr.press/v108/garreau20a.html
http://arxiv.org/abs/1604.00825

160 REFERENCES

data,” in 2016 IEEE/IFIP Network Operations and Management Symposium

(NOMS 2016), April 2016, pp. 468–473.

[55] E. J. Khatib, R. Barco, A. Gómez_Andrades, and I. Serrano, “Diagnosis based on

genetic fuzzy algorithms for LTE self_healing,” IEEE Transactions on Vehicular

Technology, vol. 65, no. 3, pp. 1639–1651, March 2016.

[56] G. Ciocarlie, U. Lindqvist, K. Nitz, S. Nováczki, and H. Sanneck, “On the feasibility

of deploying cell anomaly detection in operational cellular networks,” in 2014 IEEE

Network Operations and Management Symposium (NOMS 2014), May 2014, pp.

1–6.

[57] Q. Liao and S. Stanczak, “Network state awareness and proactive anomaly detection

in self_organizing networks,” in 2015 IEEE Globecom Workshops (GC Wkshps),

Dec 2015, pp. 1–6.

[58] A. Terra, R. Inam, S. Baskaran, P. Batista, I. Burdick, and E. Fersman,

“Explainability Methods for Identifying Root-Cause of SLA Violation Prediction

in 5G Network,” in GLOBECOM 2020 - 2020 IEEE Global Communications

Conference, 2020, pp. 1–7.

[59] S. Tang, J. Kong, B. Niu, and Z. Zhu, “Programmable Multilayer INT: An Enabler

for AI-Assisted Network Automation,” IEEE Communications Magazine, vol. 58,

no. 1, pp. 26–32, 2020.

[60] Y. Wei, M. Peng, and Y. Liu, “Intent-based networks for 6G: Insights

and challenges,” Digital Communications and Networks, vol. 6, no. 3, pp.

270–280, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S2352864820302418

[61] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran_Gia, and R. Schatz,

“YoMoApp: A tool for analyzing QoE of YouTube HTTP adaptive streaming

in mobile networks,” in European Conference on Networks and Communications

(EuCNC), 2015.

https://www.sciencedirect.com/science/article/pii/S2352864820302418
https://www.sciencedirect.com/science/article/pii/S2352864820302418

REFERENCES 161

[62] D. Merkel, “Docker: Lightweight Linux Containers for Consistent Development and

Deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[63] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, P. D. Torino, and D. Rossi,

“Experiences of internet traffic monitoring with tstat,” IEEE Network, vol. 25,

no. 3, pp. 8–14, May 2011.

[64] P. Casas, P. Fiadino, S. Wassermann, S. Traverso, A. D’Alconzo, E. Tego, F. Matera,

and M. Mellia, “Unveiling network and service performance degradation in the wild

with mplane,” IEEE Communications Magazine, vol. 54, no. 3, pp. 71–79, March

2016.

[65] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the quality of experience of web

users,” SIGCOMM Comput. Commun. Rev., vol. 46, no. 4, pp. 8–13, Dec. 2016.

[66] A. Schwind, M. Seufert, O. Alay, P. Casas, P. Tran_Gia, and F. Wamser, “Concept

and Implementation of Video QoE Measurements in a Mobile Broadband Testbed,”

in Proc. of the IEEE/IFIP Workshop on Mobile Network Measurement, Jun. 2017.

[67] I.-R. Learmonth, B. Trammell, M. Kühlewind, and G. Fairhurst, “PATHspider: A

tool for active measurement of path transparency,” in First ACM/IRTF Applied

Networking Research Workshop, Berlin, Germany, Jul 2016.

[68] H. Bai and M. Atiquzzaman, “Error modeling schemes for fading channels in wireless

communications: A survey,” IEEE Communications Surveys Tutorials, vol. 5, no. 2,

pp. 2–9, Fourth 2003.

[69] A. Safari Khatouni, M. Mellia, M. Ajmone Marsan, S. Alfredsson, J. Karlsson,

A. Brunström, O. Alay, C. M. A. Lutu, and V. Mancuso, “Speedtest_like

Measurements in 3G/4G Networks: The MONROE Experience,” in Proc. of ITC29,

2017.

[70] O. Alay, A. Lutu, M. Peón-Quirós, V. Mancuso, T. Hirsch, K. Evensen, A. Hansen,

S. Alfredsson, J. Karlsson, A. Brunström, A. Safari Khatouni, M. Mellia, and

162 REFERENCES

M. Ajmone Marsan, “Experience: An Open Platform for Experimentation with

Commercial Mobile Broadband Networks,” in Proc. of ACM Mobicom., 2017.

[71] P. Sutton and I. Gomez, “MONROE_SOPHIA _ A Software Radio Platform for

Mobile Network Measurement,” in Proc. of the IEEE/IFIP Workshop on Mobile

Network Measurement, Jun. 2017.

[72] P. Torres, P. Marques, H. Marques, R. Dionísio, T. Alves, L. Pereira, and J. Ribeiro,

“Data Analytics for Forecasting Cell Congestion on LTE Networks,” in Proc. of the

IEEE/IFIP Workshop on Mobile Network Measurement, Jun. 2017.

[73] G. Aceto, V. Persico, A. Pescapé, and G. Ventre, “SOMETIME: SOftware defined

network_based Available Bandwidth MEasuremenT In MONROE,” in Proc. of the

IEEE/IFIP Workshop on Mobile Network Measurement, Jun. 2017.

[74] I. Alepuz, J. Cabrejas, J. Monserrat, A. Perez, G. Pajares, and R. Gimenez, “Use

of Mobile Network Analytics for Application Performance Design,” in Proc. of the

IEEE/IFIP Workshop on Mobile Network Measurement, Jun. 2017.

[75] A. Custura, A. Venne, and G. Fairhurst, “Exploring DSCP modification pathologies

in mobile edge networks,” in Proc. of the IEEE/IFIP Workshop on Mobile Network

Measurement, Jun. 2017.

[76] I. Learmonth, A. Lutu, G. Fairhurst, D. Ros, and O. Alay, “Path Transparency

Measurements from the Mobile Edge with PATHspider,” in Proc. of the IEEE/IFIP

Workshop on Mobile Network Measurement, Jun. 2017.

[77] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “On the seamless

interaction between WebRTC browsers and SIP_based conferencing systems,”

IEEE Communications Magazine, vol. 51, no. 4, pp. 42–47, April 2013.

[78] E. Bertin, S. Cubaud, S. Tuffin, N. Crespi, and V. Beltran, “WebRTC, the day after:

What’s next for conversational services?” in 2013 17th International Conference on

Intelligence in Next Generation Networks (ICIN), Oct 2013, pp. 46–52.

REFERENCES 163

[79] A. Amirante, T. Castaldi, A. Gouaillard, L. Miniero, S. G. Murillo, and S. P.

Romano, “Bringing privacy to the Janus WebRTC server: The PERC way,” in

2017 Principles, Systems and Applications of IP Telecommunications (IPTComm),

Sept 2017, pp. 1–8.

[80] M. V. data set. (2018). [Online]. Available: https://doi.org/10.5281/zenodo.1188410

[81] M.-W. Container. (2018). [Online]. Available: https://github.com/acmmmsys/

2018-MONROE-webstreamer/

[82] K. Nepomuceno, I. N. d. Oliveira, R. R. Aschoff, D. Bezerra, M. S. Ito, W. Melo,

D. Sadok, and G. Szabó, “QUIC and TCP: A performance evaluation,” in IEEE

ISCC, June 2018.

[83] P. Qian, N. Wang, and R. Tafazolli, “Achieving robust mobile Web content delivery

performance based on multiple coordinated QUIC connections,” IEEE Access,

vol. 6, pp. 11 313–11 328, 2018.

[84] R. Lychev, S. Jero, A. Boldyreva, and C. Nita_Rotaru, “How secure and quick

is QUIC? Provable security and performance analyses,” in IEEE Symposium on

Security and Privacy, 2015.

[85] M. Bishop, “Hypertext transfer protocol version 3 (HTTP/3),” Internet Engineering

Task Force, Internet-Draft draft-ietf-quic-http-34, Feb. 2021, Work in Progress.

[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34

[86] R. Marx, “QUIC and HTTP/3 event definitions for qlog,” Internet Engineering

Task Force, Internet-Draft draft-marx-qlog-event-definitions-quic-h3-02, Nov. 2020,

Work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/

draft-marx-qlog-event-definitions-quic-h3-02

[87] ——, “Main logging schema for qlog,” Internet Engineering Task Force, Internet-

Draft draft-marx-qlog-main-schema-02, Nov. 2020, Work in Progress. [Online].

Available: https://datatracker.ietf.org/doc/html/draft-marx-qlog-main-schema-02

https://doi.org/10.5281/zenodo.1188410
https://github.com/acmmmsys/2018-MONROE-webstreamer/
https://github.com/acmmmsys/2018-MONROE-webstreamer/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-marx-qlog-event-definitions-quic-h3-02
https://datatracker.ietf.org/doc/html/draft-marx-qlog-event-definitions-quic-h3-02
https://datatracker.ietf.org/doc/html/draft-marx-qlog-main-schema-02

164 REFERENCES

[88] V. Arun and H. Balakrishnan, “Copa: Practical delay_based congestion control for

the Internet,” in Proceedings of ANRW, 2018.

[89] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and

potential techniques,” IEEE Network, vol. 33, no. 4, pp. 70–75, July 2019.

[90] M. Rajiullah, A. Lutu, A. S. Khatouni, M.-R. Fida, M. Mellia, A. Brunstrom,

O. Alay, S. Alfredsson, and V. Mancuso, “Web experience in mobile networks:

Lessons from two million page visits,” in The World Wide Web Conference, ser.

WWW ’19. New York, NY, USA: Association for Computing Machinery, 2019, p.

1532–1543. [Online]. Available: https://doi.org/10.1145/3308558.3313606

[91] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,

2011.

[92] S. Biaz and N. H. Vaidya, “Is the round_trip time correlated with the number

of packets in flight?” in Proceedings of the 3rd ACM SIGCOMM Conference on

Internet Measurement IMC’03. New York, NY, USA: Association for Computing

Machinery, 2003. [Online]. Available: https://doi.org/10.1145/948205.948240

[93] S. Dhanorkar, C. T. Wolf, K. Qian, A. Xu, L. Popa, and Y. Li, “Who

Needs to Know What, When?: Broadening the Explainable AI (XAI) Design

Space by Looking at Explanations Across the AI Lifecycle,” in Designing

Interactive Systems Conference 2021, ser. DIS ’21. New York, NY, USA:

Association for Computing Machinery, 2021, p. 1591–1602. [Online]. Available:

https://doi.org/10.1145/3461778.3462131

[94] M. Langer, D. Oster, T. Speith, H. Hermanns, L. Kästner, E. Schmidt, A. Sesing,

and K. Baum, “What do we want from Explainable Artificial Intelligence (XAI)? –

A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary

https://doi.org/10.1145/3308558.3313606
https://doi.org/10.1145/948205.948240
https://doi.org/10.1145/3461778.3462131

REFERENCES 165

XAI research,” Artificial Intelligence, vol. 296, p. 103473, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0004370221000242

[95] N. Bostrom and E. Yudkowsky, “The ethics of artificial intelligence,” The Cambridge

handbook of artificial intelligence, vol. 1, pp. 316–334, 2014.

[96] O. Alay, A. Lutu, M. Peón_Quirós, V. Mancuso, T. Hirsch, K. Evensen,

A. Hansen, S. Alfredsson, J. Karlsson, A. Brunstrom, A. Safari Khatouni,

M. Mellia, and M. A. Marsan, “Experience: An open platform for experimentation

with commercial mobile broadband networks,” in Proceedings of the 23rd Annual

International Conference on Mobile Computing and Networking, ser. MobiCom

’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 70–78.

[Online]. Available: https://doi.org/10.1145/3117811.3117812

[97] P. D. Grünwald, The Minimum Description Length Principle (Adaptive

Computation and Machine Learning). The MIT Press, 2007.

[98] C. S. Wallace and D. L. Dowe, “Minimum Message Length and Kolmogorov

Complexity,” The Computer Journal, vol. 42, no. 4, pp. 270–283, 01 1999. [Online].

Available: https://doi.org/10.1093/comjnl/42.4.270

[99] Y. Yang and G. I. Webb, “Discretization for naive_bayes learning: managing

discretization bias and variance,” Machine learning, vol. 74, no. 1, pp. 39–74, 2009.

[100] S. García, J. Luengo, J. A. Sáez, V. López, and F. Herrera, “A survey of

discretization techniques: Taxonomy and empirical analysis in supervised learning,”

IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 4, pp. 734–750,

2013.

[101] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning interpretability:

A survey on methods and metrics,” Electronics, vol. 8, no. 8, p. 832, 2019.

[102] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and regression

trees.” Kluwer Academic Publishers, New York, 1984.

https://www.sciencedirect.com/science/article/pii/S0004370221000242
https://doi.org/10.1145/3117811.3117812
https://doi.org/10.1093/comjnl/42.4.270

166 REFERENCES

[103] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning:

data mining, inference and prediction, 2nd ed. Springer, 2009. [Online]. Available:

http://www-stat.stanford.edu/~tibs/ElemStatLearn/

[104] W. Loh, “Fifty years of classification and regression trees,” International Statistical

Review, vol. 82, no. 3, pp. 329–348, 2014.

[105] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information:

Criteria of max_dependency, max_relevance, and min_redundancy,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 27, no. 8, p. 1226–1238, Aug. 2005. [Online].

Available: https://doi.org/10.1109/TPAMI.2005.159

[106] G. Brown, A. Pocock, M. Zhao, and M. Luján, “Conditional likelihood

maximisation: A unifying framework for information theoretic feature selection,” J.

Mach. Learn. Res., vol. 13, no. null, p. 27–66, Jan. 2012.

[107] R. Cilibrasi and P. M. Vitányi, “Clustering by compression,” IEEE Transactions

on Information theory, vol. 51, no. 4, pp. 1523–1545, 2005.

[108] D. C. Hoaglin, F. Mosteller, and J. W. T. (Editor), Understanding Robust and

Exploratory Data Analysis, 1st ed. Wiley_Interscience, 2000.

[109] D. Arthur and S. Vassilvitskii, “K_means++: The advantages of careful seeding,”

in Proceedings of the Eighteenth Annual ACM_SIAM Symposium on Discrete

Algorithms, ser. SODA ’07. USA: Society for Industrial and Applied Mathematics,

2007, p. 1027–1035.

[110] P. M. B. Vitányi, F. J. Balbach, R. Cilibrasi, and M. Li, “Normalized

information distance,” CoRR, vol. abs/0809.2553, 2008. [Online]. Available:

http://arxiv.org/abs/0809.2553

[111] V. Mancuso, M. Peón Quirós, C. Midoglu, M. Moulay, V. Comite, A. Lutu,

O. Alay, S. Alfredsson, M. Rajiullah, A. Brunström, M. Mellia, A. Safari Khatouni,

and T. Hirsch, “Results from running an experiment as a service platform for

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://doi.org/10.1109/TPAMI.2005.159
http://arxiv.org/abs/0809.2553

REFERENCES 167

mobile broadband networks in europe,” Computer Communications, vol. 133, pp.

89–101, 2019. [Online]. Available: http://infoscience.epfl.ch/record/257228

[112] H. Xiong, J. Wu, and J. Chen, “K-means clustering versus validation measures:

A data-distribution perspective,” Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, vol. 39, pp. 318 – 331, 05 2009.

[113] S. Sieranoja, “K-means properties on six clustering benchmark datasets,” Applied

Intelligence, vol. 48, 12 2018.

[114] C. M. Bishop, “Mixture density networks,” 1994.

[115] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6,

no. 2, pp. 461–464, 1978. [Online]. Available: http://www.jstor.org/stable/2958889

[116] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics), 1st ed. Springer, 2007. [Online]. Available:

http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/

dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%

3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%

26creativeASIN%3D0387310738

http://infoscience.epfl.ch/record/257228
http://www.jstor.org/stable/2958889
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738

	Acknowledgements
	Published Content
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	I Introduction
	Introduction
	Contribution
	Outline of the Thesis

	Background
	Mobile Broadband
	Rising Protocols
	Web Real-Time Communication
	Quick UDP Internet Protocol

	Data Science In Cellular Networks
	Causality
	Explainable AI
	Anomaly detection

	MONROE
	EaaS platform design and implementation
	Node instrumentation
	Data flows
	At the node side
	At the server side
	Access to data
	User access and experiment scheduling
	Experimentation workflow

	Experiments
	Experiments currently available as services
	Selected measurement studies

	Discussions

	II Network protocols performance evaluation
	Performance Evaluation of WebRTC
	WebRTC Overview
	Real-time communications to and from browsers
	Protocols and Communication Services

	Measurement Setup & data-set
	Setup
	data-set

	Results and Observations
	Discussion

	Performance Evaluation of QUIC
	QUIC operation and logging
	The QUIC protocol in a nutshell
	QUIC logging

	Experimental Methodology
	Methodology
	Setup

	Results
	Assessment of QUIC and HTTP/3 performance
	Assessment of Congestion Control Variants in QUIC

	Discussion

	III Data science in cellular networks
	Supervised Trees
	Supervised ML Methodology
	Target Variable Characterization
	Detecting Anomalies
	Clustering Anomalies
	Classifying Anomalies

	data-sets
	Nokia drive-test measurements
	MONROE measurements

	Results
	Data Analysis for Nokia Drive Tests
	Data Analysis for MONROE data-sets

	Discussion

	Causality Inference of Anomalies in Networks
	Overview of CIAN
	The Core Idea for Detecting Anomalies
	Input
	Discretization
	Selection of Anomalous Scenarios
	Selection of the Most Relevant Features
	Clustering Using the Most Relevant Features
	Aspect Classification of Scenarios
	Using the Classifiers to Detect and Identify Anomalies

	Implementation of the CIAN methodology
	Data Preparation in TTrees
	Discretization in TTrees
	Knowledge Model for Identifying Anomalies
	Most Relevant TTrees Features
	Clustering of Anomalies in TTrees
	Aspect Classification in TTrees
	Software Implementation

	Empirical Evaluation
	Supervised ML-based Troubleshooting
	Datasets
	TTrees in Action and its Validation
	TCP Performance Evaluation
	QUIC performance evaluation
	Modifications needed to deal with imbalancedness of data-sets

	Discussion

	Conclusions
	References

