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Abstract

The resolution of multiclass classification problems has been usually addressed by using a "divide 
and conquer" strategy that splits the original problem into several binary subproblems. This 
approach is mandatory when the learning algorithm has been designed to solve binary problems 
and a multiclass version cannot be devised. 

Artificial Neural Networks, ANN, are binary learning models whose extension to multiclass 
problems is rather straightforward by using the standard 1-out-of N codification of the classes. 
However, the use of a single ANN can be inefficient in terms of accuracy and computational 
complexity when the data set is large, or the number of classes is high.

In this work, we exhaustively describe CCE, a new classifier ensemble based on ANN. Each 
member of this new ensemble is a couple of multiclass ANN’s. Each ANN is trained using 
different subsets of the dataset ensuring these subsets to be disjoint. This new approach 
allows to combine the benefits of the divide and conquer methodology, with the use of 
multiclass ANNs and with the combination of individual classification modules that give a 
complete answer to the addressed problem. The combination of these elements results in a 
classifier ensemble in which the diversity of the base classifiers provides high accuracy values. 
Moreover, the use of couples of ANN proves to be tolerant to labeling noise and 
computationally efficient. 

The performance of CCE has been tested on various datasets and the results show the higher 
performance of this approach with respect to other used classification systems. 

Keywords: Ensemble of classifiers; Multiclass-classification tasks; Artificial Neural Networks; 
Diversity 

1. Introduction

A classifier is a system that, given an input example, assigns that example to one class or 
category [1]. The most common way of establishing the mapping function is to deduce it from 
a set of previously categorized instances by applying a specific learning algorithm. Despite 
many classification algorithms such as the SVM family or logistic regression are defined only to 
binary problems [2] [3], many real classification problems require algorithms that may classify 
instances that belong to more of two categories. When the set of potential categories is of 
finite cardinality and contains more than two elements, the mapping task is called multi-class 
classification. 

Most research in Machine Learning has been focused on studying and comparing the 
performance of different learning algorithms such as decision trees [4], artificial neural 
networks [5], inductive logic programming [6], [7] or Bayesian algorithms [7]. Given that 
each learning 
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algorithm has both, advantages and drawbacks the main conclusion of these studies is that 
there is not a single approach that can claim to be superior to any other [8]. So, the 
strategy of combining different classification models has attracted the interest of the 
Machine Learning Community. These kind of approaches are known as hybrid methods, 
multiple experts, mixture of experts, ensemble methods or ensembles of classifiers [9]. Given 
that today there are many unanswered questions about ensembles of classifiers, the 
improvement of classic algorithms and the design of new methodologies are one of the 
main focus of interest in the Machine Learning Community [10], [11], [12][13].  

The main idea behind the ensembles of classifiers is to use the predictions of a pool of 
individual classifiers (base learners) in order to obtain a system that is more accurate 
than the base learners that make it up [14]. Therefore, to obtain the final ensemble decision a 
procedure to combine the individual decisions must be established. There are two main 
strategies for combining the base learner decisions: fusion and selection [15]. Classifier 
selection assumes that each base learner has a region of the space in which it is the most 
reliable. So, when an instance must be classified, the ensemble decision coincides with the 
decision given by the classifier (or subset of base classifiers) that is expert in the region of the 
space to which the instance belongs. In classifier fusion, the ensemble decision is obtained by 
combining the decisions from all the base learners. Classifier fusion algorithms include 
combining rules such as the average, majority voting or the weighting methods and, more 
complex integration models, such as meta-learning methods [16] [17].     

The main premise to obtain a good ensemble when the final decision is obtained using fusion 
methods is that the error rate of the base learners must be low, and the errors made by one 
member of the ensemble must be compensated by the correct predictions from other base 
learners. That is, the members of the ensemble must be both accurate and diverse [18]. 
However, the more accurate the base learners are, the more similar they are likely to be. And, 
the more diverse the classifiers are, the more uncertain the individual predictions are [19]. So, 
one of the main challenges in the field of the ensembles of classifiers is to achieve a balance 
between these two conditions.

An important drawback of the classifier ensembles is that they usually require longer training 
times than single classifiers. This potential time increase depends on the number of base 
learners and how are they built. Therefore, a second challenge related to the design of a good 
classifier ensemble is to seek for a good compromise between the required ensemble training 
time and its accuracy.

To analyze the influence of both, diversity and accuracy of the base learners on the accuracy of 
the ensemble, we have designed two different ensemble architectures that are 
complementary. Moreover, these architectures have been conceived with the goal to obtain 
classifier systems that are both accurate, and efficient in terms of training time.

The first proposal, named BCE −Binary-Complementary Ensemble−, builds base learners that 
are highly accurate but not very diverse. To achieve this goal, the members of the ensemble 
have been implemented with two coupled classifiers: a binary classifier and a multiclass 
classifier. The binary classifier is trained to distinguish whether an example belongs to a certain 
class. On the other hand, the second classifier, named complementary classifier, is a multi-
class classifier with k-1 outputs (where k is the number of classes). The goal of this classifier is 
to label the instances
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that have been labelled as negative by the corresponding binary classifier. Moreover, with the 
double goal of promoting diversity among the classifiers and improving the learning time in 
terms of both accuracy and computational cost, each one of the classifiers that compose a 
base learner, is trained using a specific feature subset. The experimental evaluation of BCE 
over different domains indicates that on domains with a large number of features, BCE is 
equal or more accurate than other traditional classifiers, but clearly much more 
efficient. On the contrary, in domains where the number of features is relatively small, the 
accuracy of BCE is not good. However, when the feature selection process is switched off, 
the accuracy of BCE is equivalent or even better than those obtained with other classification 
models. The details and the experimental evaluation of this architecture can be found in [20].

The second architecture, named CCE −Complementary-Complementary Ensemble−, generates 
base learners that are relatively accurate but highly diverse. To accomplish this requirement, 
we propose transforming the initial learning task into a pool of new pairwise disjoint 
subproblems. So, an initial classification problem with instances belonging to one of k classes is 
transformed in a pool of pairwise disjoint subproblems. One of these subproblems works with 
the instances that belong to j classes (2  j  k-2) and the other one with the examples that 
belong to the (k-j) remaining classes. A preliminary description of the conceptual framework of 
CCE was presented in [21]. In this preliminary work the accuracy of the proposed ensemble 
was tested only on the popular MNIST database [22]. The good results obtained in this 
domain have motivated us to evaluate whether this methodology can be successfully 
applied to resolve other multiclass classification problems. The present work accomplishes 
this task, including also an exhaustive comparison with other well-established methods.

Machine Learning literature collects different metrics such as accuracy, precision, recall or 
F_measure, that can be used to analyze various aspects of the multi-class classification systems 
[23]. To evaluate all the different characteristics of the proposed classification systems, we 
have chosen to use the accuracy, the diversity (or disagreement degree between the members 
of the ensemble) using the Q-statistic, and the computational cost measuring the training time. 

In this research, we describe the theoretical basis of CCE and indicate, in an intensive way, how 
the base classifiers are constructed and how the final decision of the ensemble is generated. 
To test the viability of this proposal, we present an exhaustive experimental analysis in which 
CCE is evaluated in 20 benchmark classification tasks according to the parameters indicated 
above (accuracy, diversity and training time). In addition, an analysis of its tolerance to labeling 
noise is presented. The experimental analysis also includes a study in which the CCE 
performance is compared with those obtained with: 

 BCE. Because it is a system that encourages the precision of the base learners versus
their diversity.

 A single ANN. Since all the base learners are ANN, this model can be considered the
standard classification model.

 An OAA One Against All architecture, an OAO architecture, and ECOC Error-
Correcting Output Codes. These architectures are the tree basic approaches to solve
multiclass problems using binary decomposition.
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 Bagging and Boosting: Because, as is stated in the literature, these systems are the most
used ensembles of classifiers. In addition, although Bagging and Boosting seem to be
quite old, they are still one of the best alternatives.

To avoid biases that may be attributed to different implementations of the same algorithm, [24] 
[3] all the systems used in the comparison have been implemented in C ++ by the authors of this
work. Moreover, all the models are based in Artificial Neural Networks, they use the same set
of parameters and, in the case of the ensembles, they use the same combination method. With
these premises, it is guaranteed that no system (in particular CCE) benefits from a favorable
choice of parameters.

It is worth mentioning that this paper extends the experimental work shown in previous works 
[20], [21]. The aim is to propose an exhaustively tested system; therefore, we have now 
included:

- A completely new evaluation for the CCE architecture, as we have included more
domains rather than using only a specific version of MNIST.

- Boosting and the OAO architecture are now included for comparison.

- A thorough test of the tolerance to noise of our system and of the other baseline
methods, based on training with examples with incorrect class labels.

The remainder of the paper is organized as follows: First, some related work on ensemble 
classifiers is given. Then Section 3 describes the theoretical framework proposed for our 
ensemble model and presents the architecture of CCE. Section 4 introduces the data sets, the 
method and the measures used to evaluate CCE. Section 5 shows the experimental evaluation. 
Last, Section 6 presents some conclusions that have been derived from this work.

2. Ensembles of Classifiers.

As previously mentioned, an ensemble of classifiers is a pool of classifiers whose outputs are 
combined in an attempt to reach a more accurate decision than the best of its members [25].

The main phases to develop an ensemble are the following [26]: 1) decomposition phase: if 
ensembles are applied to multi-class problems, then the first phase can be to split the 
classification task into several sub-problems; 2) generation phase: build the base classifiers; 3) 
pruning phase: some base classifiers obtained from the generation phase can be dismissed if 
they are redundant; 4) and finally the integration phase provides a strategy to get the final 
answer of the ensemble, combining the answer from each individual classifier.

To achieve the main goal of the ensemble (to outperform each of its members), the members 
of the ensemble must be both accurate and diverse [18], [27]. Empirical and theoretical studies 
have proved that an effective way to achieve accurate and diverse base learners is varying the 
set of hypotheses that are accessible by each base learner. According to [28], there are two ways 
to achieve this goal: i) Altering the training data that the base learner receives and/or 
ii) varying the learning algorithm.

Approaches that alter the training data are usually subdivided into three groups [29]. Some 
methods, such as Bagging [30], Boosting [31] or the ensemble model proposed in [32], build 
each member of the ensemble using different subsets of patterns. Other methods, such as the 
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Decision Forest proposed in [33] or the ensembles presented in [34], build each base learner 
using all the patterns contained in the training set, but with an alteration of the set of attributes 
that describe them. The third alternative consists in manipulating the output targets, that is, in 
decomposing the original classification problem into new subproblems (decomposition phase). 
This category includes methods like OAO One Against One [35], [36], OAA One Against All  
[37], OAHO One Against High Order [38] or ECOC [39], that solve multiclass problems by 
converting them into several binary subproblems. Finally, some methods build each base leaner 
combining or modifying some of these processes. So, in Random Forest [40] diversity is induced 
training each member of the ensemble (tree) on a different sample of instances and choosing 
the best split attribute among a subset of features. Other methods as RFW Random Feature 
Weights [41] alter the training data assigning a weight to each attribute.

On the other hand, methods that change the learning algorithm can be subdivided in two 
groups: Approaches that use different versions of the same learning algorithm and approaches 
that use different learning algorithms. Among the strategies for generating diversity using a 
single learning algorithm are the proposed in [42] where the pool of ANN that compose the 
ensemble are trained starting from different initial weights, and Randomization where diversity 
is achieved by varying the criterion used to expand the decision tree nodes. Approaches where 
diversity is obtained using different learning algorithms seek to increase the performance of the 
base learners by exploiting the strength of each algorithm. In these systems, known as 
heterogeneous ensembles, the ensemble is generated by combining several base learners that 
are trained using ANN, decision trees, Bayesian models, and so on. Stacking [43] and most of its 
variants [44] achieve diversity by applying this approach.

More detailed surveys of these and other recent ensemble approaches can be found in [45] and 
[16].

3. Complementary-Complementary Ensemble Architecture

CCE is an ensemble architecture for classifying multi-class patterns that seeks to increase the 
diversity among the base learners by decomposing the learning task into two coupled disjoint 
multi-class subproblems. According to this requirement, when the application domain has 
instances belonging to k classes, one of the classifiers that compose the base learner is trained 
with the instances that belong to j classes (2jk-2) and the other one is trained with the 
instances that belong to the (k-j) remaining classes. For example, in a four-class problem (k=4; 
j=2) in which the classes are labelled with {c1, c2, c3, c4}, the distribution of classes used to build 
the different base learners (BLi) is shown in Table 1.

Table 1. Class distribution scheme of CCE for a four-class problem.

Base Learner Classifier #1 Classifier #2
BL1 {c1, c2} {c3, c4}
BL2 {c1, c3} {c2, c4}
BL3 {c1, c4} {c2, c3}
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Taking into account the possible values of j and omitting the dual combinations1, the potential 
number of base learners, L(1)

, is bounded by Eq. (1).

(1)𝐿(1) = 2𝑘 ‒ 1 ‒ (𝑘 + 1)

Given that the number of possible base learners increases exponentially with the number of 
classes, the use of an over-produce and choose [26] methodology, in which all the candidates 
for base learners are built and then the subgroup that offers a higher degree of diversity or 
accuracy is selected, can be an unfeasible alternative due to its high computational cost. To 
overcome this difficulty, we propose the use of an ad hoc technique that first heuristically picks 
the number and the structure (class distribution) of the base learners, and then builds these 
learners. In the next epigraph, we show how to choose the structure of the base learners to 
achieve good classification performance with short training time.

3.1. Design of the Base Learners

The base learners that integrate CCE are composed by two multiclass coupled classifiers. So, in 
a k class domain, the first classifier is trained with the instances that belong to j classes
(2jk-2) and the other one is trained with the instances that belong to the (k-j) remaining 
classes.

The proposed class decomposition scheme allows that some classifiers must classify examples 
that do not belong to any of the learnt classes. That is, given an example that belongs to class ci, 
those classifiers that have not been trained using examples belonging to this class give a decision 
that is always erroneous. If we consider the class distribution scheme shown in Table 1, we can 
observe that this unfavorable scenario appears in one of the two classifiers that composes each 
base learner. For example, no pattern belonging to c1 is correctly classified by the classifiers 
identified as Classifier#2 because no pattern belonging to c1 is used during the training phase of 
these classifiers (following the same example, Classifier#2 of BL1 is trained using only the 
patterns belonging to classes c3 and c4). 

To delimit the number of arbitrary decisions that are given by each one of the classifiers that 
compose a base learner and, at the same time, to limit their training time, we propose to fix the 
value of j to k/2. This restriction does not only affect to the expected accuracy and the training 
time of the classifiers that compose each base learner but also reduces the number of possible 
base learners that can be built. Consequently, the number of potential base learners is reduced 
from L(1) to L(2), with L(2) defined in Eq. (2).

(2)L(2) = {
1
2

k!

(k
2)!(k

2)!
,      if 𝑘 is an even number

1
2

(k + 1)!

(k + 1
2 )!(k + 1

2 )!
 if 𝑘 is an odd number

The constraint imposed on the value of j considerably reduces the number of possible base 
learners (for example, when k=6, L(1)=25, L(2)=10; k=8, L(1)=119, L(2)=35; k=10, L(1)=501, L(2)=126, 
and so on) but when the number of classes is high, the number of learners that can be built is 

1 Note that the combination [{c1, c2} classifier #1; {c3, c4} classifier #2] is equivalent to [{c3, c4} classifier#1; 
{c1, c2} classifier #2]. Therefore, only one of these dual combinations is considered.
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still very high. As an alternative approach applicable in the cases in which L(2) is greater than 20 
(that is, when k>6), we propose to reduce the number of base learners to the number of 
classes (L(3)= k).

This new restriction on the number of base learners implies choosing from the group of 
candidates which specific base learners will constitute the ensemble. A possibility is to build all 
the candidates for the base learners and then to select those that, when combined, offer more 
diversity or accuracy. Depending on the value of L(2) −number of possible candidates− and L(3) −
bounded ensemble size− either an exhaustive search, or another selection algorithm can be 
applied [46]. Another alternative is to use an ad hoc technique that first selects the class 
distribution of the prefixed number of base learners, and then builds them. To avoid 
generating all the candidates for the base learners and therefore, to reduce the 
computational cost, CCE follows the second approach. Next, we show how to choose the 
structure of the base learners to achieve a classification performance as best as possible. 

3.2. Assignment of Classes to Base Learners

As noted above, one of the main difficulties of the CCE architecture is the high number of 
arbitrary decisions that are given by each one of the classifiers that compose a base learner. In 
a balanced domain (all classes have the same number of instances) where the two classifiers 
that integrate a base learner are trained with half of the classes (j =k/2), the 50% of the 
decisions given by each classifier will be fictitious. Ideally, it is expected that when these 
classifiers are combined, the output of the classifier that was trained with examples belonging 
to the class that must be predicted prevails over the fictitious output of the other classifier. 
Experimentally we have observed that, in a great number of cases, this premise is satisfied. 
Nevertheless, analyzing the global output given by different base learners in different domains 
we have observed that a high number of wrong classifications have their origin in that this 
assumption is not satisfied. Therefore, one of the main challenges of the CCE architecture 
is to reduce this mislabeling. Experimentally we have realized that an effective way of 
reducing this type of error is to guarantee that, given any two classes, there is at least a 
base classifier that has been trained using samples from both classes. This restriction allows 
that when the domain contains two classes that can easily be confused, there is, at least, 
a classifier that has been trained to distinguish them. 

To satisfy the previous requirements and establish the class distribution of the base learners, 
a simple trial and error algorithm is used. This algorithm can be summarized as follows:

1. Build, in a random way, a tentative class distribution for all the L(3) base learners2.

2. Check that there are no two learners with the same class distribution.

3. Verify that given any two classes there is at least one classifier that has been trained
using examples that belong to both classes.

4. Repeat the process until requirements 2 and 3 are satisfied.

Considering a domain of ten classes and setting L(3)=k, a possible scheme of the CCE topology is 
shown in Table 2.a. Additionally, and based on this topology, Table 2.b shows the number of 
classifiers built using examples belonging to the classes ci and cj.

2 Note that L(3) = L(2) when k≤6; otherwise L(3)=k.
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Table 2 a) A possible class distribution scheme of CCE for a ten-class problem. b) Number of classifiers 
that, based on Table 2a, have been built using examples belonging to the classes cicj.

Base Learner Classifier #1 Classifier #2
BL1 {c0, c5, c7, c8, c9} {c1, c2, c3, c4, c6}
BL2 {c0, c4, c7, c8, c9} {c1, c2, c3, c5, c6}
BL3 {c1, c3, c7, c8, c9} {c0, c2, c4, c5, c6}
BL4 {c1, c3, c4, c5, c8} {c0, c2, c6, c7, c9}
BL5 {c0, c1, c2, c4, c6} {c3, c5, c7, c8, c9}
BL6 {c2, c5, c6, c7, c9} {c0, c1, c3, c4, c8}
BL7 {c4, c5, c6, c7, c8} {c0, c1, c2, c3, c9}
BL8 {c2, c3, c6, c7, c8} {c0, c1, c4, c5, c9}
BL9 {c1, c3, c4, c5, c7} {c0, c2, c6, c8, c9}
BL10 {c0, c1, c3, c4, c6} {c2, c5, c7, c8, c9}

c1 c2 c3 c4 c5 c6 c7 c8 c9

c0 5 5 3 6 3 5 3 4 6

c1 4 8 7 4 4 2 3 3

c2 4 3 4 8 4 3 5

c3 5 4 4 4 5 3

c4 5 5 3 4 2

c5 4 6 5 5

c6 4 3 3

c7 7 7

c8 6

In conclusion, CCE is an ensemble of classifiers that is designed to resolve multi-class problems 
and whose architecture adopts a configuration in which:

i. When k>6, the number of base learners is fixed to k. Otherwise, the number of base
learners is computed according to Eq (2).

ii. Each base learner is composed by two complementary multiclass classifiers. Each
one of these classifiers is trained with instances that belong to k/2 classes. When k
is an even number the first one is trained with instances that belong to k/2 classes
while the second one later is trained with instances that belong to k/2 +1 classes.

iii. Given any two classes, there is, at least one classifier that has been trained using
examples that belong to both classes.

Fig. 1 shows the construction scheme of CCE for a problem of four classes.

Classifier #1

Classifier #2

Base Learner 1

Classes {c1, c2}

Classes {c3, c4}

Classifier #1

Classifier #2

Base Learner 2

Classes {c1, c3}

Classes {c2, c4}

Classifier #1

Classifier #2

Base Learner 3

Classes {c1, c4}

Classes {c2, c3}

4 classes
{c1, c2, c3, c4}

Classifier #1
{c1, c2}
{c1, c3}
{c1, c4}

Classifier #2
{c3, c4}
{c2, c4}
{c2, c3}

Class Distribution 
Scheme

Fig. 1. CCE design for a four-class problem.
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3.3. Base Learner Combination Method 

Once the methodology for creating the class distribution of the base learners has been fixed, the 
next step is to determine the strategies for obtaining both the output of each base learner and 
the final decision of the ensemble.

To obtain the output given by a base learner, a parallel combination scheme is applied. As a 
result, each base learner produces an output (Yi(x) = {y0, y2,.., yk-1}), in which the yj component is 
generated by the first classifier (Classifier #1) when the examples belonging to class cj have been 
used to train this classifier. Otherwise, the yj component is generated by the second classifier 
(Classifier #2). Using the example of BL1 in Table2.a, the components {y0, y5, y7, y8, y9} are 
generated by Classifier #1 and components {y1, y2, y3, y4, y6} are generated by Classifier #2.

Due to the members of CCE supply different solutions to the classification problem and all of 
them are equally reliable, the ensemble decision should be taken in a collaborative way using a 
fusion strategy. For both its simplicity and its effectiveness in large and complex data sets [47], 
the CCE output is calculated by averaging the outputs that are associated with each class and 
choosing the class that attains the maximum value. Mathematically, the process is described 
through Eq. (3).

(3)



























L

y

i

k
xC

L

j
ij

1

0
maxarg

1
)(

where: yij is the ith output of the jth base learner, k is the number of categories, L is the number 
of base learners,  is the input instance and  the class assigned to  .𝑥 𝐶(𝑥) ∈ [0,𝑘 ‒ 1] 𝑥

Algorithm 1 compiles the details of the CCE design.



10

Algorithm 1: CCE 

Input: 
Training dataset: 𝐷𝑡 = {(𝑥𝑖, 𝑦𝑖)} 𝑁

𝑖 = 1, 𝑦𝑖 ∈ {𝑐1,…, 𝑐𝑘}
Number of base learners: L(3)

Output:
Classifier Ensemble E with classification function CE

Process:
  repeat

1. for i=1 to i=L(3)

#𝐶𝐷𝑆𝑖 = {𝐶 𝑙
#1,𝐶 𝑙

#2}  𝐶 𝑙
#1 ∪ 𝐶 𝑙

#2 = {𝑐1,.., 𝑐𝑘};𝐶 𝑙
#1 ∩ 𝐶 𝑙

#2 = 𝜙
end for

2. Verify that i, j | ij CDSiCDSj

3. Verify that {ci, cj} ij   CDSk  |  or {𝑐𝑖,𝑐𝑗}  𝐶 𝑘
#1 {𝑐𝑖,𝑐𝑗} 𝐶 𝑘

#2
until requirements 2 and 3 are satisfied;
E=Ø;
for i=1,     ,L(3)

1. Generate Dt
1 and Dt

2 # Dt
1=U{(xi, yi) | yi=ci AND ci } ; Dt

2={(xj, yj) | yj=cj AND cj }.𝐶 𝑙
#1 𝐶 𝑙

#2
2. Train a classifier, Cl#1, from Dt

1

3. Train a classifier, Cl#2, from Dt
2

4. Build a base learner, BLl from Cl#1 AND Cl#1 #   𝑌𝑙(𝒙) = {𝑦0,…..,𝑦𝑘 ‒ 1}
5. E=E BLl

end for

 where yjl, is the jth output of the lth base learner and k is the number of 𝐶𝐸(𝑥) =
𝑘 ‒ 1

arg𝑚𝑎𝑥
𝑗 = 0

(∑𝐿3

𝑙 = 1𝑦𝑗𝑙)
classes.

end
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4. Experimental Evaluation

This section describes the data sets (Sec. 4.1) and the method and the procedures (Sec. 4.2) used 
to evaluate CCE.

4.1. Selected Data Sets

To test the performance of CCE when solving multiclass problems, we have selected 20 different 
datasets. A summary of these datasets is shown in Table 3.

Table 3. Summary of the evaluated datasets.

Data set Number of 
Instances

Number of 
Features

Number of 
Classes

Num. 
Instances 

max/min class

Imbalance 
Ratio Source

YEAST 1472 8 10 462/5 94.2 [48]
GLASS 211 9 6 76/9 8.44 [48], [49]

SHUTTLE 58000 9 7 45586/10 4558.60 [48], [49]
WINERED 1599 11 6 681/10 68.10 [48]
VOWEL 990 12 11 90/90 1.00 [48], [50]

PENDIGITS 10992 16 10 1144/1055 1.08 [48], [49]
SEGMENTATION 2310 18 7 330/330 1.00 [48], [50]

SATIMAGE 6435 36 6 1533/626 2.45 [48], [50]
TEXTURE 5500 40 11 500/500 1.00 [48], [50]
SENSORLESS 58483 48 11 5319/5314 1.00 [48], [49]
SYNTHETIC 600 60 6 100/100 1.00 [48]
OPTDIGITS 5620 64 10 572/554 1.03 [48], [50]

AUTOMOBILE 159 75 6 48/3 3.05 [48], [50]
LIBRAS 360 90 15 24/24 1.00 [48], [50]

MFEAT-FAC 2000 216 10 200/200 1.00 [48]
SEMEION 1592 256 10 162/155 1.04 [48]

IMBALANCED 
SEMEION

1236 256 10 162/40 4.05 [48], [51]

USPS 7291 256 10 1194/542 2.20 [48], [49] 
MNIST 60000 784 10 6742/5421 1.24 [22]

ASISTENTUR 1006 1024 9 478/22 21.73 [51]

4.2. Experimental Setup 

To obtain a global vision of the behavior of CCE, we analyze the following aspects: ensemble 
performance (classification accuracy and training time), diversity of the base learners, and the 
tolerance in the presence of examples with incorrect class labels. Moreover, to test how well 
CCE works, its performance is compared to that obtained by a single ANN, by BCE [20] and by 
the usual ANN classifier ensembles: the OAA architecture [52], Bagging [30], ECOC [39], Boosting 
with re-sampling [53] and the OAO architecture [35].
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4.2.1. Designing the Comparison

For all the classification models, the ANN’s used are one-hidden-layer Multilayer Perceptron 
(MLP) trained with the Back-Propagation algorithm. For each data set, the ANN architecture and 
topology have been fixed with the objective of achieving a single MLP with a good generalization 
capacity. This thesis is supported by [54] who points that finding the adequate parameters for 
an optimal generalization capacity is more critical in the case of a single ANN than in the case 
of an ANN ensemble. So, the parameter search (number of hidden units, number of iterations 
and learning rate) has been performed on a single ANN using a cross validation scheme with 
only the training set. To establish a fair basis for comparison, the same final parameters have 
been used to train the ANN of the other systems. The details of the used ANN, the training 
parameters, and the number of base learners of each ensemble are summarized in Table 4.

It is worth mentioning that the number of the base learners of:

 OAA/BCE is equal to the number of classes.
 ECOC has been fixed according to the error-correcting codes proposed in [39]
 Bagging and Boosting have been fixed to 15. To set this value we have attempted to

reach a compromise between the accuracy improvement and the computational cost of
training an ANN. According to the experimental setup conducted in [55], when Bagging
and Boosting are implemented with ANN, the largest error generalization reduction
occurs when using approximately 10 base learners.

 CCE has been calculated according to Eq (2) when the number of classes is lower than 6.
Otherwise the number of base classifiers is equal to the number of classes.

 OAO is equal to , where k is the number of classes.(𝑘2)
Table 4. Parameters of the evaluated models.

Number of base classifiers

CCE OAA/BCE Bagging/Boosting ECOC OAO

Number 
of Hidden 

units

Number of
Iterations

Learning 
Rate

YEAST 10 10 15 15 45 8 400 0.25
GLASS 10 6 15 31 15 7 300 0.3

SHUTTLE 7 7 15 63 21 10 500 0.25
WINERED 10 6 15 31 15 20 1000 0.025
VOWEL 11 11 15 14 55 20 500 0.050

PENDIGITS 10 10 15 15 45 8 200 0.025
SEGMENTATION 7 7 15 63 21 10 500 0.025

SATIMAGE 10 6 15 31 15 15 600 0.050
TEXTURE 11 11 15 14 55 20 300 0.250
SENSORLESS 11 11 15 14 55 20 300 0.02
SYNTHETIC 10 6 15 31 15 15 300 0.025
OPTDIGITS 10 10 15 15 45 30 400 0.050

AUTOMOBILE 10 6 15 15 10 20 500 0.025
LIBRAS 15 15 15 15 105 20 300 0.250

MFEAT-FAC 10 10 15 15 45 20 150 0.3
SEMEION 10 10 15 15 45 20 300 0.025

IMBALANCED 
SEMEION

10 10 15 15 45 20 300 0.025

USPS 10 10 15 15 45 30 100 0.025
MNIST 10 10 15 15 45 100 500 0.025

ASISTENTUR 9 9 15 15 36 30 2000 0.025
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4.2.2. Ensemble Performance Evaluation

To measure the accuracy of the different classification models, we have performed 5 replications 
of a 2-fold stratified cross validation. In each replication, the dataset is randomly partitioned into 
two stratified and equal-sized subsets, Si

(1) and Si
(2). Furthermore, to reduce the variations that 

are due to the randomness of the ANN, each classification model has been trained on each 
dataset ten times. So, the accuracy of each model is computed following Eq. (4).

(4)𝐴𝑐 =
1

10∑
10
𝑗 = 𝑖

1
5∑

5
𝑖 = 1

1
2(𝑇𝑃(1)

𝑖𝑗

𝑁 +
𝑇𝑃(2)

𝑖𝑗

𝑁 )
where  is the ratio of correctly identified instances by the model when it is trained on Si

(1) 
𝑇𝑃(1)

𝑖𝑗

𝑁

and tested on Si
(2) and  is the proportion of correctly identified instances by the model when 

𝑇𝑃(2)
𝑖𝑗

𝑁

it is trained on Si
(2) and tested on Si

(1) in the j-th execution.
Given that, for multi-class classification problems the F1-score is accepted as an evaluation 
criterion that complements the accuracy measure, Appendix 1 gathers the F1-score values 
computed on each data set.

To statistically compare the accuracy of CCE with that obtained by the baseline classification 
models, we have applied the F-test over the results obtained in the 5 runs of the 2-fold stratified 
cross validation. According to [56], if pi

(j) is the difference between the error rates of the two 

classifiers on fold j of run i, and  is the estimated variance on run𝑠2
𝑖 = (𝑝(1)

𝑖 ‒ 𝑝𝑖)2 + (𝑝(2)
𝑖 ‒ 𝑝𝑖)2

i (where ), then the statistic given in Eq. (3) approximately follows an F 𝑝𝑖 = (𝑝(1)
𝑖 + 𝑝(2)

𝑖 ) 2
distribution with 10 and 5 degrees of freedom.
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Consequently, the null hypothesis of equal error rate can be rejected when the computed 
F-Test value is equal to or greater than the tabled critical one-tailed value of the F distribution.
At the 0.05 level of significance, this value is equal to 4.735 [57].

In addition, to analyze the performance of CCE over the 20 datasets and compare it with the 
global performance of the baseline classification models, we have applied the Wilcoxon Signed-
Ranks test [58]. This test is a non-parametric procedure which computes, for each data set, the 
differences in performance of two classifiers by subtracting the classifier 2 performance score 
from the classifier 1 performance score. Then, it ranks the differences ignoring the signs and 
finally compares the sum of the ranks for the positive differences (R+) and the sum of the ranks 
for the negative differences (R-).

According to this test, the null hypothesis that both classifiers perform equally well is rejected 
at the  confidence level when min (R+, R-) is less or equal than the one-tailed critical T-value 
at the pre-specified level of significance and n is equal to the number of signed ranks (number 
of data sets). For n=20 and =0.05 this value is equal to 60. 

Finally, to estimate the cost-effectiveness of CCE, we have measured and analyzed its training 
time.
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4.2.3. Diversity Evaluation
To study the relationship between the diversity of the base learners and the ensemble accuracy, 
some well-known measures of diversity have been computed: The Q statistic, that computes the 
"coefficient of association" for two classifiers [59], the correlation coefficient () that indicates 
the strength and direction of a linear relationship between two classifiers [59], the kappa 
statistic (), that measures the degree of similarity between two classifiers while subtracting the 
probability that the similarity occurs by chance [60], and the fail/non-fail disagreement measure, 
which measures the percentage of instances for which the classifiers make different predictions 
being one of them the correct one [61]. Table 5 shows a summary of these measures and the 
relationship between the obtained value and the diversity between the ensemble members (the 
greater/lower the value is, the more diverse the base classifiers are). 

Table 5. Summary of the diversity measures used. Monotonically increasing/decreasing measures 
are identified with an ascending/descending arrow.

Name Symbol Definition /

Q statistic Q
10010011

10010011

NNNN
NNNN






correlation 
coefficient      0010011100011011
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NNNNNNNN
NNNN






kappa degree-of- 
agreement statistic 


























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k
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ii
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i

ii

k

i
ii

N
N

N
N

N
N

N
N

N

N

1

**

1

**1

1



fail/non-fail 
disagreement 

measure
Dis

00011011

0101

NNNN
NN






where:
N is the cardinality of the test set.
k is the number of classes.
Nab is the number of instances in the data set, correctly (a=1) or incorrectly (a=0) classified by the 
classifier i, and correctly (b=1) or incorrectly (b=0) by the classifier j.
Nij is the number of instances in the data set, labelled as class i by the first classifier and as class j 
by the second classifier.

4.2.4. Tolerance to Noise

One of the most important requirements in any classification system is its tolerance to the noise. 
To determine the performance of a classifier in the presence of noise, some authors [62], [63], 
propose to randomly change the class that is assigned to a fraction of the instances in both the 
training and the testing set. Nevertheless, in this work, the labeling errors are exclusively 
induced on the training instances. 

In this experimental phase, we use the previously mentioned 20 benchmark classification tasks 
(Table 3), the 5x2cv scheme and four rates of noise: 10%, 15%., 20% and 25%.
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The Fig. 2  shows the noise injection process when the classifier system is built using a cross-
validation process with two folds. 

Noise (r %)

System
Classifier 2

Training

Test

Folder 2

Folder 1

Folder 2

Folder 1

Training
System

Classifier 1

Test

Fig. 2. Noise injection process in a two-folds cross validation scheme.

5. Experimental Results

Once the implemented classification models and the experimental methodology have been 
described, this section shows the obtained experimental results. First, in Section 5.1, we test the 
accuracy and the training time of CCE. In addition, the obtained values are compared with other 
baseline classification systems. Section 5.2, shows the diversity of the base learners and an 
analysis of the relationship between base learner diversity and ensemble accuracy. Finally, 
section 5.3, shows the CCE performance in the presence of noise. 

5.1. CCE performance

As was noted above, to evaluate the accuracy of the different classification models on each 
dataset, a 10x5x2 cv scheme is employed. Moreover, to determine if CCE is statistically better, 
equal or worse than every other of the baseline methods, the 5x2 cv F-test with a significance 
level of 0.05 is computed. 

Table 6 shows a summary of the accuracy for the different classification models that have been 
evaluated and the conclusions of the statistical comparison between CCE and the other 
implemented classifier models using F-test. Additionally, the last row compiles the number of 
times that the standard model (of the corresponding column) performs significantly better (win), 
equal (tie) or worse (loss) than CCE and the conclusions of the statistical comparison using 
Wilcoxon signed-ranks test.
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Table 6. Summary of the different values of accuracy. The // symbols indicate that the standard classifier is significantly better/equal/worse than CCE. The best values 
are shown in bold.

Standard ClassifiersData Set CCE BCE ANN OAA Bagging ECOC Boosting OAO
YEAST 56.85 56.89  56.27  57.13  59.21  48.32  59.63  57.91 
GLASS 68.53 65.96  66.12  67.87  67.83  67.57  67.99  66.12 

SHUTTLE 99.64 99.53  99.53  99.51  99.66  99.54  99.18  99.53 
WINERED 59.42 59.26  59.27  59.12  59.58  55.83  59.74  59.15 
VOWEL 88.58 73.76  79.13  86.29  83.82  87.05  93.21  90.14 

PENDIGITS 97.73 93.65  92.27 96.44 93.83 98.03  99.11  98.09 
SEGMENTATION 94.14 93.08  93.73  92.89  93.67  92.88  93.43  94.10 

SATIMAGE 87.77 86.14  87.16  86.21  87.44  85.35  84.98  87.52 
TEXTURE 99.54 98.63  99.52  99.49  99.65  99.56  99.62  99.27 

SENSORLESS 94.33 84.82  92.66  92.69  93.71  91.08  98.77  92.66 
SYNTHETIC 95.90 97.02   96.26  94.58  96.85  94.77  96.33  95.60 
OPTDIGITS 97.72 95.37  96.13  97.08  97.68  97.31  97.99  97.41 

AUTOMOBILE 67.11 69.29  64.28  64.42  65.13  63.33  67.01  67.55 
LIBRAS 77.34 71.39  72.99  73.15  77.08  76.33  81.27  78.16 

MFEAT-FAC 96.87 96.96  96.42  96.66  97.00  96.77  97.12  96.50 
SEMEION 90.67 90.12  86.10  87.09  90.56  88.06  90.45  89.22 

IMBALANCED 
SEMEION

89.51 90.70  84.71  85.70  89.12  87.07  90.09  87.89 

USPS 96.22 95.26  95.19  95.98  95.91  95.86  96.97  96.20 
MNIST 97.09 96.91  95.26  96.56  96.38  96.95  97.03  96.38 

ASISTENTUR 94.43 94.70  93.27  92.87  94.36  94.31  94.69  91.32 
win/tie/loss 0/12/8  0/9/11  0/9/11  0/15/5  0/10/10  4/14/2 0/15/5 
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As it can be appreciated from the results in Table 6:

 The best accuracy values are achieved by Boosting (in 9 of the 20 data sets: YEAST,
WINERED,  VOWEL, PENDIGITS, SENSORLESS, OPTDIGITS, LIBRAS, MFEAT-FAC, and UPS), CCE (in 5 of the 20
data sets: GLASS, SEGMENTATION, SATIMAGE, SEMEION and MNIST), BCE (in 4 of the 20 data
sets: SYNTHETIC, AUTOMOBILE, IMBALANCED-SEMEION and ASISTENTUR), and Bagging (in two
data sets: SHUTTLE AND TEXTURE).

 CCE is significantly more accurate than OAA and ANN in 11 data sets, ECOC in 10 data
sets, BCE in 8 data sets, Bagging and OAO in 5 data sets, and Boosting in two. Only
Boosting outperforms CCE with statistical significance in four domains (VOWEL, PENDIGITS,
SENSORLESS and USPS).

 For the MNIST data set, the mean accuracy rate achieved by CCE is statistically better
than those obtained by the rest of implemented models.

 The comparison over all data sets reveals that CCE is statistically better than ANN, OAA,
ECOC, BCE, Bagging, and OAO. Additionally, CCE is statistically equivalent to Boosting.

To evaluate the quality of CCE and to verify whether it outperforms its base learners, Fig. 3 shows 
the relation between the accuracy of the ensemble and the mean accuracy of the base learners. 
Each display shows the values obtained using a 10x5x2 cv scheme that delivers 100 points in 
each plot. Additionally, similar graphs for BCE, Bagging and Boosting are shown. (Note that this 
representation only is possible with systems in which the base learners provide a complete 
answer to the classification problem. Therefore, for the single ANN and the ensembles based on 
binary decomposition ECOC, OAA and OAO this graphical representation is unfeasible).

In each graph, the points that lie above the dashed diagonal represent a better accuracy of each 
ensemble with respect to the mean accuracy of its base learners. It can be seen, that sometimes, 
both Bagging and Boosting are less accurate than some of their base classifiers. By the contrary, 
CCE and BCE always outperform their base learners. On the other hand, when the values for 
CCE, BCE, Bagging and Boosting are compared, it is possible to appreciate that the four 
ensembles have a similar global accuracy (y axis values) but, as expected, the base learners of 
CCE are less accurate than the base learners of the other ensembles (x axis values). Let us 
remember that CCE attends to build base learners that are relatively accurate but highly diverse.
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CCE BCE Bagging Boosting
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Fig. 3.a. Relationship between the accuracy of CCE/BCE/Bagging/Boosting (y axis) and the mean accuracy of the base learners (x 
axis). Datasets: YEAST, GLASS, SHUTTLE, WINERED, VOWEL, PENDIGITS and SEGMENTATION. 



19

CCE BCE Bagging Boosting
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Fig 3.b. Relationship between the accuracy of CCE/BCE/Bagging/Boosting (y axis) and the mean accuracy of the base learners (x 
axis). Datasets: SATIMAGE, TEXTURE, SENSORLESS, SYNTHETIC, OPTDIGITS, AUTOMOBILE and LIBRAS. 
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CCE BCE Bagging Boosting
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Fig 3.c. Relationship between the accuracy of CCE/BCE/Bagging/Boosting (y axis) and the mean accuracy of the base learners (x 
axis). Datasets: MFEAT-FAC, SEMEION, IMBALANCED SEMEION, USPS, MNIST, and ASISTENTUR. 

Although the accuracy is the main criterion used to measure the quality of the classification 
systems, another criterion that must receive some attention, specially in the case of large data 
sets, is the computational cost of training each system. According to [64], when two or more 
systems deliver comparable accuracy rates, excessive training times may be undesirable. 

Fig. 4. shows the training time of the implemented classification models when they are 
measured on a computer cluster. 
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It is worth mentioning that the independent nature of the base learners that compose CCE, BCE, 
Bagging, ECOC, OAA and OAO allows for a very natural parallelization of the construction process of 
the ensembles. Using clusters or CPUs with multiple cores it is possible to reduce the training time of 
the whole ensemble to the training time of a base learner. This is reflected in the graphs in Fig. 4. A 
special case is Boosting, which has the specific inconvenience of requiring a strictly sequential training 
of its base learners, as each one uses a resampled data set based on the training of the previous base 
learner. 

The evaluation of the training time shows that the system with the lowest training time is OAO 
followed by BCE and CCE. The reduced training time of these systems is due to the structure of their 
base learners. While OAO and CCE decrease the training time due to the reduced number of examples 
that are used for training each classifier, BCE decreases its training time due to the reduced number of 
attributes that are used to describe the instances. 

If we  consider simultaneously the accuracy and the training time, we can conclude that CCE 
outperforms the other analyzed systems: CCE is more accurate than those systems that require less 
training time (OAO and BCE), and it requires a much shorter training time than the system with a 
comparable accuracy rate (Boosting).

5.2. Study of the Diversity 

Once CCE has been analyzed according to its performance, in this section we study the relation 
between the diversity of base learners and the accuracy of the ensemble. At first, the global ensemble 
diversity is calculated by using the four measures mentioned in the section 4.2.3: the Q statistic, the 
correlation coefficient (), the kappa statistic () and the fail/non-fail disagreement measure. Then, we 
measure the correlation between the diversity and the gain (ensemble accuracy minus mean accuracy 
of its base learners) of the ensemble. The relationship between the Q statistic and the gain of the 
ensemble is illustrated in Fig 5. 

Given that Q is a monotonically decreasing diversity measure [65], values plotted in Fig 5 indicate that 
Boosting and CCE are the most diverse systems (the clouds of points are distributed close to the best 
possible theoretical value). Moreover, CCE is the system that presents the biggest gain (the values in 
the y axis are the highest). Finally, Bagging and BCE are the system that present the lowest diversity 
and gain values. These findings suggest that the accuracy of both Bagging and BCE appear to depend 
on the accuracy of the base learners but not on their diversity. By the contrary the accuracy of both 
Boosting and CCE appears to depend more on the diversity than on the accuracy of the base learners. 

To check whether the gain of the different ensembles is a consequence of the diversity of their base 
learners, we compute the correlation between both measures using the Spearman’s correlation 
coefficient (RCC) [61]. This coefficient is defined by Eq.5.

(5)𝑅𝐶𝐶 = 1 ‒ 6∑𝑁𝑖 = 1

(𝑅𝑎𝑛𝑘(𝑥𝑖) ‒ 𝑅𝑎𝑛𝑘(𝑦𝑖))2

𝑁(𝑁2 ‒ 1)

Where N is the number of evaluated ensembles (10x5x2=100), X and Y are the diversity and the gain 
of the ensembles respectively, and Rank(xi) and Rank(yi) are the ith value of X and Y when they are 
ranked in descending order. The different values of RCC are compiled in Table 7.

To determine the significance of RCC and to analyze whether the measured variables (diversity and 
gain) are correlated, the RCC value must be evaluated with the Table of Critical Values for Spearman’s 
Rho [57]. According to this table, at the 0.05 level of significance, the hypothesis that the diversity and 
the gain of the ensemble are unrelated is rejected when |RCC|≥ 0.197.
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Fig. 5.a. Relationship between the diversity (x axis) and the gain (y axis) of the ensemble. Diversity is quantified using the Q 
statistic. Datasets: YEAST, GLASS, SHUTTLE, WINERED, VOWEL, PENDIGITS and SEGMENTATION
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Fig. 5.b. Relationship between the diversity (x axis) and the gain (y axis) of the ensemble. Diversity is quantified using the Q 
statistic. Datasets: SATIMAGE, TEXTURE, SENSORLESS, SYNTHETIC, OPTDIGITS, AUTOMOBILE and LIBRAS.
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Fig. 5.c. Relationship between the diversity (x axis) and the gain (y axis) of the ensemble. Diversity is quantified using the Q 
statistic. Datasets: MFEAT-FAC, SEMEION, IMBALANCED-SEMEION, USPS, MNIST and ASISTENTUR.
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Table 7. Spearman´s correlation coefficient for the diversity and the gain of the ensemble. The shaded values represent the values that support the hypothesis that the diversity 
and the gain of the ensemble are unrelated. Monotonically increasing/decreasing measures are identified with an ascending/descending arrow.

Q ()  () () dis ()

CCE BCE Bagging Boosting CCE BCE Bagging Boosting CCE BCE Bagging Boosting CCE BCE Bagging Boosting

YEAST -0.246 0.465 0.66 0.185 -0.128 -0.458 -0.476 0.480 -0.651 -0.668 -0.616 0.618 -0.195 -0.201 -0.117 0.122

GLASS -0.591 0.718 0.605 -0.554 -0.679 -0.74 -0.676 0.683 -0.616 -0.631 -0.637 0.644 -0.362 -0.369 -0.348 -0.581

SHUTTLE -0.677 0.978 0.871 -0.362 -0.641 -0.58 -0.976 0.979 -0.618 -0.698 -0.729 0.87 -0.214 -0.102 0.397 -0.36

WINERED -0.769 -0.159 -0.551 -0.198 -0.159 -0.288 -0.202 0.213 -0.551 -0.548 -0.499 0.5 -0.198 -0.192 -0.182 -0.187

VOWEL -0.34 0.679 -0.695 0.04 -0.359 0.71 -0.679 0.066 -0.635 0.454 -0.556 -0.142 0.633 -0.453 0.555 0.139

PENDIGITS -0.414 0.77 0.839 0.005 -0.506 -0.553 -0.797 0.804 -0.819 -0.808 -0.744 0.751 -0.13 -0.078 0.017 -0.014

SEGMENTATION -0.233 -0.386 -0.209 -0.269 -0.164 -0.347 -0.23 -0.289 -0.651 -0.312 -0.22 -0.04 0.646 0.312 0.239 -0.428

SATIMAGE -0.244 -0.219 -0.537 0.461 -0.182 -0.243 -0.554 0.389 -0.512 -0.41 -0.463 0.681 0.464 0.413 0.467 -0.662

TEXTURES -0.107 -0.271 -0.634 -0.02 0.085 -0.268 -0.559 -0.026 -0.766 -0.209 -0.588 0.039 0.772 0.21 0.644 0.072

SENSORLESS -0.331 0.71 0.728 -0.182 -0.629 -0.589 -0.653 0.668 -0.689 -0.684 -0.697 0.728 -0.107 -0.045 0.19 -0.184

SYNTHETIC 0.287 -0.403 -0.564 -0.008 0.347 -0.506 -0.564 0.063 -0.298 -0.182 -0.091 0.136 0.218 0.195 0.105 0.139

OPTIDIGITS -0.736 -0.698 -0.449 -0.118 -0.486 -0.508 -0.079 -0.12 -0.965 -0.781 -0.625 0.053 0.968 0.809 0.663 -0.041

AUTOS -0.246 -0.310 -0.378 -0.252 -0.251 -0.308 -0.407 -0.24 -0.394 -0.447 -0.26 -0.265 0.387 0.456 0.258 -0.024

LIBRAS -0.588 -0.573 -0.745 -0.145 -0.608 -0.557 -0.744 -0.123 -0.612 -0.419 -0.75 0.157 0.617 0.422 0.752 -0.143

MFEAT-FAC -0.559 -0.117 -0.877 0.880 -0.703 -0.618 -0.676 0.689 -0.701 -0.643 -0.509 0.521 -0.175 -0.204 0.057 -0.05

SEMEION -0.647 -0.479 -0.505 -0.023 -0.524 -0.384 -0.471 -0.009 -0.808 -0.473 -0.411 0.058 0.811 0.525 0.475 -0.054

IMBALANCED 
SEMEION

-0.689 -0.536 -0.668 -0.255 -0.615 -0.514 -0.626 -0.189 -0.709 -0.433 -0.495 -0.108 0.711 0.478 0.584 0.11

USPS -0.854 0.798 -0.583 -0.189 -0.872 -0.807 -0.73 0.731 -0.583 -0.658 -0.264 0.300 -0.189 -0.24 -0.147 0.159

MNIST -0.659 -0.697 -0.374 0.229 -0.547 -0.741 -0.329 0.378 -0.825 -0.825 -0.304 0.165 0.829 0.834 0.522 0.023

ASISTENTUR -0.523 -0.324 -0.455 -0.178 -0.315 -0.274 -0.288 -0.235 -0.915 -0.36 -0.361 0.235 0.916 0.506 0.507 -0.228



27

The values on Table 7 show that, with some exceptions, for CCE, BCE and Bagging the 
relationship between the diversity and the gain of the ensemble is statistically significant. 
Therefore, it is possible to conclude than the increase on the diversity between the base learners 
is associated with an increase on the gain of the ensemble. On the contrary, although the 
experimental results show that the base learners of Boosting are the most diverse, there is no 
statistical relationship between the diversity and the gain of the ensemble. This observation 
suggests that i) the Boosting accuracy depends mainly of the accuracy of the base learners and 
ii) on the analyzed domains, the diversity of the base learners of Boosting can be qualified as a
“bad” diversity [66].

On the other hand, the values on Table 7 show that when diversity is computed using the 
disagreement measure (dis) or the kappa statistic ( ), CCE presents the highest values of RCC. 
That is, according to these measures, CCE is the system in which the degree of relationship 
between the diversity of the base learners and the gain of ensemble is the strongest. On the 
contrary, when diversity is computed using the Q statistic (Q) the system that presents a high 
degree of correlation between diversity and gain is Bagging. Finally, when diversity is computed 
using the correlation coefficient (), the systems with the highest values of RCC are BCE and 
Bagging. These results reveal that is difficult to determine the relationship between the diversity 
and the gain of the ensembles because of their strong dependency on the measure used to 
compute the diversity. 

5.3. Noise Resilience

To analyze the performance of CCE in the presence of noise, we add noise by randomly changing 
the class that is assigned to a fraction of the training examples. According to the scheme shown 
in Fig 2., once the classification models have been built, they are tested using a noiseless data 
set.

Tables 8-11 show the accuracy on the different domains (see Table 3) when the evaluated 
classification models are built with a noise rate of 10%, 15%, 20% and 25% respectively. As in 
the previous section, the results of the statistical comparison (applying the F-test and Wilcoxon 
Signed-Ranks test with level of significance of 0.05) between CCE and the baseline classification 
systems are represented. 



28

Table 8. Summary of the different values of accuracy when the training set has a noise rate of 10%. The / symbols indicate that the standard classifier is significantly 
equal/worse than CCE. The best values are shown in bold.

Standard ClassifiersData Set CCE BCE ANN OAA Bagging ECOC Boosting OAO
YEAST 57.07 55.94  56.03  56.94  59.05  46.84  59.30  57.54 
GLASS 66.35 44.19  65.16  66.31  67.11  65.36  65.69  66.04 

SHUTTLE 99.56 84.35  99.41  99.29  99.64  99.31  99.61  99.40 
WINERED 59.37 58.71  58.99  58.7  59.36  56.15  59.65  59.28 
VOWEL 84.79 66.28  75.59  82.45  81.53  81.38  79.67  83.96 

PENDIGITS 97.39 92.56  92.16  97.49  93.84  97.87  97.86  97.14 
SEGMENTATION 93.17 92.56  93.14  92.42  93.19  91.90  91.47  93.32 

SATIMAGE 86.84 85.27  86.52  85.55  87.15  84.43  87.43  86.46 
TEXTURE 99.33 97.81  98.90  99.08  99.46  99.23  97.87  98.56 

SENSORLESS 93.29 83.66  92.19  92.08  93.25  89.57  94.11  92.80 
SYNTHETIC 94.64 96.67  95.12  92.88  95.90  95.78  78.22  94.05 
OPTDIGITS 97.48 97.36  94.49  94.69  97.52  96.23  94.30  96.54 

AUTOMOBILE 63.76 56.34  62.67  62.64  62.80  60.63  59.86  62.56 
LIBRAS 74.91 60.79  70.29  69.28  74.89  70.77  74.18  73.53 

MFEAT-FAC 95.96 96.40  93.01  94.91  96.55  94.75  92.51  94.72 
SEMEION 88.70 87.94  81.67  83.46  88.78  84.74  86.11  86.81 

IMBALANCED 
SEMEION

88.01 88.56  80.59  82.42  87.65  84.64  86.17  86.40 

USPS 95.97 95.15  94.56  95.37  95.78  95.11  93.90  95.37 
MNIST 96.41 96.36  93.97  93.07  94.41  95.34  93.84  95.34 

ASISTENTUR 91.17 89.84  87.77  88.98  92.49  88.23  88.24  87.91 
win/tie/loss 0/11/9  0/9/11  0/10/10  0/16/4  0/6/14  3/6/11  0/13/7 
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Table 9. Summary of the different values of accuracy when the training set has a noise rate of 15%. The / symbols indicate that the standard classifier is significantly 
equal/worse than CCE. The best values are shown in bold.

Standard ClassifiersData Set CCE BCE ANN OAA Bagging ECOC Boosting OAO
YEAST 57.15 56.40  57.37  57.98  59.17  49.08  59.69  58.51 
GLASS 66.18 31.28  64.27  65.47  67.01  65.39  63.22  65.23 

SHUTTLE 99.58 82.82  99.25  99.31  99.64  99.25  99.60  99.29 
WINERED 58.77 57.97  58.73  58.28  59.18  55.28  59.59  58.77 
VOWEL 81.94 61.49  72.80  79.44  80.31  78.21  76.36  81.74 

PENDIGITS 97.29 92.40  92.44  97.65  94.36  97.80  97.30  96.83 
SEGMENTATION 92.65 92.07  93.11  92.57  93.16  91.68  92.55  91.84 

SATIMAGE 86.38 85.19  86.26  85.26  86.88  84.00  87.26  85.95 
TEXTURE 99.25 97.91  98.69  99.05  99.38  99.00  98.52  98.31 

SENSORLESS 92.51 83.02  91.92  91.55  92.83  88.65  93.55  91.73 
SYNTHETIC 95.10 95.49  95.30  93.55  96.04  93.76  86.02  94.43 
OPTDIGITS 97.29 97.20  93.41  93.31  97.24  95.06 95.30  96.07 

AUTOMOBILE 61.18 59.37  58.51  59.30  60.08  57.10  56.65  61.17 
LIBRAS 72.68 56.88  67.20  66.15  73.28  66.24  72.27  71.19 

MFEAT-FAC 95.04 95.47  91.04  92.43  95.99  92.84  89.25  93.07 
SEMEION 89.46 89.17  83.39  84.50  89.99  81.00  87.51  87.45 

IMBALANCED 
SEMEION

86.56 86.92  77.97  79.26  87.24  75.95  83.53  84.19 

USPS 95.68 94.96  94.05  94.74  95.48  94.29  94.69  94.92 
MNIST 96.17 96.10  91.83  93.92  95.78  94.08  93.65  94.73 

ASISTENTUR 88.74 89.28  84.38  86.12  90.62  85.01  84.99  87.12 

win/tie/loss 0/11/9  0/9/11  1/9/10  4/13/3  1/5/14  3/7/10  0/10/10 
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Table 10. Summary of the different values of accuracy when the training set has a noise rate of 20%. The // symbols indicate that the standard classifier is 
significantly better/equal/worse than CCE. The best values are shown in bold.

Standard ClassifiersData Set CCE BCE ANN OAA Bagging ECOC Boosting OAO
YEAST 57.30 54.19  55.10  56.18  58.77  44.99  59.26  56.81 
GLASS 66.19 26.36  64.86  66.78  66.40  64.57  63.02 x 65.90 

SHUTTLE 99.43 84.87  99.26  99.28  99.62  99.25  99.60  99.46 
WINERED 58.82 58.05  58.57  58.64  58.84  55.64  58.73  58.98 
VOWEL 78.33 59.72  71.84  76.82  76.85  75.01  76.50  77.03 

PENDIGITS 97.23 92.97  92.28  97.58  94.34  97.59  97.09  96.55 
SEGMENTATION 92.46 92.71  92.85  92.39  92.90  91.73  92.73  91.89 

SATIMAGE 86.19 84.80  85.93  84.99  86.74  83.66  87.13  85.53 
TEXTURE 99.13 97.52  98.37  98.84  99.30  98.78  98.83  98.02 

SENSORLESS 92.19 82.62  91.43  90.48  92.48  87.15  93.14  90.61 
SYNTHETIC 93.49 94.04  93.57  89.91  95.75  94.53  72.10  90.95 
OPTDIGITS 96.93 96.83  92.17  90.92  96.87  93.02  95.58  95.69 

AUTOMOBILE 58.90 57.62  55.74  55.61  56.84  53.93  55.13  58.09 
LIBRAS 71.94 50.85  65.22  64.12  71.79  63.84  69.59  69.79 

MFEAT-FAC 93.73 94.82  89.07  90.11  95.39  90.82  89.58  92.16 
SEMEION 85.13 84.00  75.19  76.69  85.75  78.80  80.12  82.37 

IMBALANCED 
SEMEION

85.78 84.32  74.93  76.38  85.81  79.51  81.72  83.50 

USPS 95.57 94.91  93.61  94.21  95.42  93.55  94.95  94.56 
MNIST 95.78 95.76  90.00  92.42  95.49  92.30  92.84  94.06 

ASISTENTUR 86.96 86.41  80.51  82.68  89.20  81.19  81.36  83.81 
win/tie/loss 0/11/9  0/10/10  0/11/9  2/14/3  0/6/14  1/8/11  0/12/8 
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Table 11. Summary of the different values of accuracy when the training set has a noise rate of 25%. The // symbols indicate that the standard classifier is 
significantly better/equal/worse than CCE. The best values are shown in bold.

Standard ClassifiersData Set CCE BCE ANN OAA Bagging ECOC Boosting OAO
YEAST 57.95 56.34  56.69  57.27  58.94  49.02  59.10  57.77 
GLASS 62.27 27.37  61.71  62.17  64.46  60.18  59.15  60.46 

SHUTTLE 99.40 85.55  99.29  99.31  99.58  99.33  99.60  99.13 
WINERED 57.89 57.08  57.76  57.60  57.86  54.83  58.02  58.22 
VOWEL 76.07 53.93  68.49  74.44  73.18  71.13  74.87  74.76 

PENDIGITS 97.08 92.80  92.57  97.21  94.39  97.16  96.62  96.43 
SEGMENTATION 91.56 91.76  92.16  91.80  92.44  90.55  92.39  91.17 

SATIMAGE 85.55 84.58  85.49  84.54  86.52  82.89  87.09  85.05 
TEXTURE 99.00 97.30  97.88  98.45  99.00  98.25  98.76  97.86 

SENSORLESS 91.77 82.34  91.02  87.89  92.05  85.54  93.18  89.31 
SYNTHETIC 94.11 93.85  94.94  92.63  95.65  92.33  88.71  92.45 
OPTDIGITS 96.62 96.74  91.02  88.94  96.45  91.49  95.84  95.05 

AUTOMOBILE 56.38 45.59  53.62  54.28  55.81  53.52  50.18  56.08 
LIBRAS 68.00 39.19  62.58  61.74  68.15  58.34  69.13  64.92 

MFEAT-FAC 93.28 94.31  87.15  87.53  94.57  87.67  91.04  89.96 
SEMEION 88.28 88.29  80.61  81.53  88.32  77.65  85.14  85.87 

IMBALANCED 
SEMEION

82.62 84.40  72.01  73.31  83.52  68.47  78.05  80.20 

USPS 95.39 94.70  93.02  93.52  94.70  92.25  94.99  94.04 
MNIST 95.41 95.36  88.07  90.24  95.00  89.77  92.45  93.39 

ASISTENTUR 84.41 85.10  77.43  79.72  86.54  78.12  79.22  83.08 

win/tie/loss 0/10/10  0/9/11  0/10/10  4/13/3  0/7/13  2/13/5  0/10/10 
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As it can be appreciated from the results in Tables 8-11:

 The ensembles which show more resilience to noise are Bagging and CCE. By the
contrary, Boosting and BCE are the most prone to fail with the labeling noise.

 For a noise level of 10%, 15%. 20% and 25% the Bagging accuracy degrades around 0.9%,
1.21%, 2.2% and 3% respectively.

 In CCE, for a noise level of 10%, the accuracy is reduced in a 1.4% and for a noise level
of 15%, 20% and 25% it is reduced in a 2%, a 3% and a 3.8% respectively.

 On the other hand, for a noise level of 10%, the accuracy of ANN, OAA, ECOC and OAO
degrades around 1.7%. For higher noise levels, the accuracy is degraded between 2.3
and 6.5%.

 Finally, the accuracy of BCE is reduced in a 4.1%, a 5.4%, a 6.8% and an 8% respectively,
and the accuracy of Boosting is reduced in a 4.2%, 4.6%, 6.4% and a 6.2% respectively.

 In four of the 20 domains, VOWEL, AUTOMOBILE, USPS and MNIST, CCE always offers the
best values of accuracy.

 The comparison over all data sets reveals that, in the presence of noise, CCE, is
statistically better than BCE, ANN, OAA, ECOC, OAO and Boosting and statistically
equivalent to Bagging.

This study allows to consider CCE as the best alternative in multiclass problems with 
different noise levels affecting the class label.

6. Conclusions and Future Work

This work demonstrates that the pairwise combination of ANNs that are trained with disjoint 
subsets of data is a worthy approach to resolve multiclass problems. A limitation of this schema 
is that the pool of possible base learners increases exponentially with the number of classes. To 
mitigate this disadvantage certain rules have been defined from which the CCE architecture is 
derived.

We have tested the performance of CCE in twenty different domains, and to evaluate their 
performance we have compared CCE against a single ANN, OAA, ECOC, Bagging, Boosting, OAO 
and BCE. The results of the experiments carried out indicate that, according to the F-test, CCE 
significantly outperforms OAA and ANN in 11 data sets, ECOC in 10 data sets, BCE in 8 data sets, 
and Bagging and OAO in 2. Boosting outperforms CCE with statistical significance in 4 domains. 
For the MNIST data set, one of the most difficult classification tasks, the mean accuracy rate 
achieved by CCE is statistically better than those obtained by the rest of implemented models.

Regarding to the training time, we have experimentally proved that CCE is more efficient than 
most standard classification models. Only OAO, and sometimes BCE, require a lower training 
time than CCE. 

If we consider simultaneously the accuracy and the training time, we can conclude that CCE 
outperforms the other analyzed systems: CCE is more accurate than those systems that require 
less training time (OAO and BCE) and it requires a much shorter training time than the system 
with a comparable accuracy rate (Boosting).

With the objective of estimating the quality of CCE and checking whether it outperforms every 
one of its members we have studied the relationship between its accuracy and the average 
accuracy of its base learners. Furthermore, to examine the influence of the diversity on the 
accuracy of the ensemble, we have computed the correlation between the diversity and the gain 
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of CCE. This study shows that the members of CCE are relatively accurate but quite diverse and 
that the relationship between diversity and the gain is statistically significant.

In the last set of experiments, we have analyzed the CCE performance in the presence of four 
levels of labeling noise. In this context, the experimental results show that CCE is as accurate as 
Bagging and less prone to noise than the other implemented classification systems. This 
resilience, together with the shorter training time highlights CCE as a very good option for 
classification in multiclass problems.

Finally, it is worth mentioning that when the Wilcoxon signed-ranks test is used to compare the 
global performance of CCE with the baseline classifiers, the results reveal that, in the absence of 
labeling noise, CCE is statistically better than ANN, OAA, ECOC, Bagging OAO and BCE and 
statistically equivalent to Boosting. On the other hand, in presence of labeling noise, the results 
indicate that CCE is statistically better than BCE, ANN, OAA, ECOC, OAO and Boosting and 
statistically equivalent to Bagging. Since it is not easy to know in advance the proportion of 
mislabeled training examples, we can conclude that CCE is the best alternative in all cases.

Some final conclusions about the results can be extracted. From all the experiments, we 
determined that, in multiclass problems, CCE offers a high correctly classified instance rate, is 
tolerant to labeling noise and is computational efficient. Moreover, considering these three 
parameters simultaneously, we can conclude that CCE outperforms many other classifier 
systems. 

Our future work is directed towards different goals. First, we intend to develop a more 
theoretical study about the relationship between the accuracy of CCE and the number of base 
learners. This study should include an exhaustive analysis of the effect of the class distribution 
scheme on the CCE performance. Furthermore, we intend to analyze the results obtained when 
the assignment of classes to base learners is done using other search techniques as, for example, 
Genetic Algorithms or Simulated Annealing.

On the other hand, we intend to analyze the dependence between CCE and the algorithm used 
in the construction of the base learners. Moreover, to increase the diversity of the base learners 
we think it would be interesting to incorporate a feature selection process into the CCE design. 
Finally, our work could be completed with an exhaustive study of the influence that both 
integration and selection methods have on the classification process.
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Appendix 1

This appendix shows the micro-average of the F1-score (eq 6) over the different evaluated models when the training set has a noise rate of a) 0%, b) 10%, c) 
15%, d) 20% and e) 25%:

 (6)𝐹𝜇1 =
2∑𝑘𝑖 = 1𝑇𝑃𝑖

2∑𝑘𝑖 = 1𝑇𝑃𝑖 + ∑𝑘
𝑖 = 1𝐹𝑃𝑖 + ∑𝑘

𝑖 = 1𝐹𝑁𝑖

where:
TPi: Is the number of instances of class ci  that are properly identified.
FNi: Is the number of instances of class ci  that are incorrectly classified.
FPi: Is the number of instances that are incorrectly identified as examples of class ci.

F1
 (Noise Rate: 0%) F1

  (Noise Rate: 10%) F1
  (Noise Rate: 15%)

Standard Classifiers Standard Classifiers Standard Classifiers
CCE

BCE ANN OAA Bagging ECOC Boosting OAO
CCE

BCE ANN OAA Bagging ECOC Boosting OAO
CCE

BCE ANN OAA Bagging ECOC Boosting OAO

YEAST 0.57 0.57 0.56 0.57 0.59 0.51 0.60 0.58 0.57 0.56 0.56 0.57 0.59 0.49 0.59 0.58 0.57 0.56 0.57 0.58 0.59 0.51 0.60 0.59
GLASS 0.68 0.66 0.66 0.68 0.68 0.69 0.68 0.67 0.65 0.63 0.65 0.66 0.67 0.67 0.65 0.66 0.65 0.62 0.64 0.65 0.67 0.68 0.63 0.65

SHUTTLE 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99
WINERED 0.60 0.59 0.59 0.59 0.60 0.59 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.60 0.59 0.59 0.58 0.59 0.58 0.59 0.58 0.60 0.59
VOWEL 0.89 0.74 0.79 0.86 0.84 0.89 0.92 0.90 0.85 0.66 0.76 0.82 0.82 0.84 0.80 0.84 0.83 0.64 0.74 0.80 0.78 0.82 0.80 0.83

PENDIGITS 0.98 0.94 0.92 0.96 0.94 0.98 0.99 0.98 0.97 0.93 0.92 0.97 0.94 0.98 0.98 0.97 0.97 0.92 0.93 0.98 0.94 0.98 0.97 0.97
SEGMENTATION 0.94 0.93 0.94 0.93 0.94 0.93 0.93 0.95 0.93 0.94 0.93 0.92 0.93 0.92 0.91 0.93 0.93 0.92 0.93 0.93 0.93 0.92 0.93 0.92

SATIMAGE 0.88 0.86 0.87 0.86 0.87 0.86 0.85 0.88 0.87 0.85 0.87 0.86 0.87 0.86 0.87 0.86 0.87 0.85 0.86 0.85 0.87 0.85 0.87 0.86
TEXTURE 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.97 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.98

SENSORLESS 0.94 0.85 0.93 0.93 0.94 0.93 0.99 0.94 0.93 0.84 0.92 0.92 0.93 0.92 0.94 0.93 0.93 0.83 0.92 0.92 0.93 0.91 0.94 0.92
SYNTHETIC 0.96 0.97 0.96 0.95 0.97 0.97 0.96 0.96 0.95 0.97 0.95 0.93 0.96 0.96 0.78 0.94 0.95 0.95 0.95 0.93 0.96 0.96 0.86 0.94
OPTDIGITS 0.98 0.98 0.96 0.97 0.98 0.98 0.98 0.97 0.97 0.97 0.94 0.95 0.98 0.97 0.94 0.97 0.97 0.97 0.93 0.93 0.97 0.97 0.95 0.96

AUTOMOBILE 0.67 0.61 0.64 0.64 0.65 0.28 0.67 0.67 0.64 0.56 0.63 0.63 0.63 0.29 0.60 0.63 0.61 0.59 0.58 0.59 0.60 0.59 0.56 0.61
LIBRAS 0.77 0.51 0.73 0.73 0.77 0.80 0.81 0.78 0.75 0.61 0.70 0.69 0.75 0.77 0.74 0.74 0.73 0.57 0.68 0.65 0.74 0.75 0.69 0.70

MFEAT-FAC 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.93 0.95 0.97 0.96 0.92 0.95 0.95 0.95 0.91 0.92 0.96 0.94 0.89 0.93
SEMEION 0.91 0.90 0.86 0.87 0.91 0.88 0.90 0.89 0.89 0.88 0.82 0.83 0.89 0.85 0.86 0.87 0.89 0.89 0.83 0.85 0.90 0.86 0.87 0.87

IMBALANCED 
SEMEION

0.90 0.89 0.85 0.86 0.89 0.87 0.90 0.88 0.88 0.89 0.81 0.82 0.88 0.85 0.86 0.86 0.87 0.87 0.78 0.79 0.87 0.82 0.84 0.84

USPS 0.96 0.96 0.95 0.96 0.96 0.97 0.97 0.96 0.96 0.95 0.95 0.95 0.96 0.96 0.93 0.95 0.96 0.95 0.94 0.95 0.95 0.96 0.94 0.95
MNIST 0.97 0.97 0.95 0.97 0.96 0.97 0.97 0.96 0.96 0.96 0.93 0.95 0.96 0.96 0.94 0.95 0.96 0.96 0.92 0.94 0.96 0.95 0.94 0.95

ASISTENTUR 0.94 0.95 0.94 0.93 0.94 0.94 0.95 0.93 0.91 0.90 0.88 0.89 0.92 0.91 0.88 0.89 0.89 0.89 0.84 0.86 0.91 0.88 0.85 0.87
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F1
  (Noise Rate: 20%) F1

  (Noise Rate: 25%)
Standard Classifiers Standard Classifiers

CCE
BCE ANN OAA Bagging ECOC Boosting OAO

CCE
BCE ANN OAA Bagging ECOC Boosting OAO

YEAST 0.57 0.54 0.55 0.56 0.59 0.48 0.59 0.57 0.58 0.56 0.56 0.57 0.59 0.51 0.59 0.58
GLASS 0.66 0.62 0.65 0.67 0.66 0.67 0.63 0.66 0.61 0.58 0.62 0.62 0.64 0.64 0.62 0.60

SHUTTLE 0.99 0.99 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 1.00 0.99
WINERED 0.59 0.58 0.59 0.59 0.59 0.58 0.59 0.59 0.58 0.57 0.58 0.58 0.58 0.58 0.58 0.58
VOWEL 0.78 0.60 0.72 0.77 0.77 0.79 0.76 0.77 0.77 0.57 0.69 0.75 0.74 0.75 0.75 0.75

PENDIGITS 0.97 0.93 0.92 0.98 0.94 0.97 0.97 0.97 0.97 0.93 0.93 0.97 0.94 0.98 0.97 0.96
SEGMENTATION 0.92 0.94 0.93 0.92 0.93 0.92 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.92 0.91

SATIMAGE 0.86 0.85 0.86 0.85 0.87 0.85 0.87 0.86 0.85 0.85 0.85 0.85 0.87 0.84 0.87 0.85
TEXTURE 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.97 0.98 0.98 0.99 0.99 0.99 0.98

SENSORLESS 0.92 0.83 0.91 0.90 0.92 0.90 0.93 0.91 0.92 0.82 0.91 0.90 0.92 0.89 0.93 0.89
SYNTHETIC 0.93 0.94 0.93 0.90 0.96 0.94 0.72 0.91 0.93 0.94 0.95 0.93 0.96 0.95 0.88 0.92
OPTDIGITS 0.97 0.97 0.92 0.91 0.97 0.95 0.96 0.96 0.97 0.97 0.91 0.89 0.96 0.95 0.96 0.95

AUTOMOBILE 0.59 0.58 0.56 0.56 0.57 0.31 0.55 0.58 0.56 0.46 0.54 0.54 0.55 0.56 0.50 0.56
LIBRAS 0.72 0.51 0.65 0.64 0.72 0.71 0.70 0.70 0.71 0.39 0.65 0.64 0.71 0.69 0.69 0.67

MFEAT-FAC 0.94 0.95 0.89 0.90 0.95 0.93 0.88 0.92 0.93 0.94 0.87 0.87 0.95 0.91 0.91 0.90
SEMEION 0.85 0.84 0.75 0.77 0.86 0.79 0.80 0.82 0.88 0.88 0.81 0.81 0.88 0.84 0.85 0.86

IMBALANCED 
SEMEION

0.86 0.84 0.75 0.76 0.86 0.80 0.82 0.84
0.83 0.84 0.72 0.73 0.83 0.76 0.78 0.80

USPS 0.96 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.93 0.94 0.95 0.95 0.95 0.94
MNIST 0.96 0.96 0.90 0.92 0.95 0.94 0.94 0.94 0.95 0.95 0.88 0.90 0.95 0.92 0.94 0.93

ASISTENTUR 0.87 0.86 0.80 0.83 0.89 0.85 0.81 0.85 0.84 0.85 0.77 0.80 0.87 0.83 0.79 0.83

Statistical comparison using Wilcoxon Signed-Ranks test shows that:
 In absence of labeling noise, CCE is statistically equivalent to ECOC and Boosting but statistically better than BCE, ANN, OAA, OAO and Bagging.
 In presence of labeling noise, CCE is statistically better than BCE, ANN, OAA, OAO, ECOC and Boosting and statistically equivalent to Bagging.
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