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Abstract

Major assumptions in computational intelligence and machine learning con-1

sist of the availability of a historical dataset for model development, and that2

the resulting model will, to some extent, handle similar instances during its3

online operation. However, in many real-world applications, these assumptions4

may not hold as the amount of previously available data may be insufficient5

to represent the underlying system, and the environment and the system may6

change over time. Also, as the amount of data increases, it is no longer feasible7

to process them efficiently using multiple passes, iterative algorithms. Evolv-8

ing modeling from data streams has emerged as a framework to address these9

issues properly by self-adaptation, single-pass learning steps and evolution as10

well as contraction of model components on demand and on the fly. This sur-11

vey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for12

clustering, classification and regression and system identification in online, real-13

time environments where learning and model development should be performed14

incrementally.15
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1. Introduction16

Progress of computer and communication technology has increased the capa-17

bility to produce large amount of heterogeneous data from distinct autonomous18

sources endlessly. The amount of data increases continuously and changes19

rapidly over time. These data sets are called data streams. Data streams are20

common in online trading, financial analysis, e-commerce and business, smart21

home, health care, transportation systems, global supply logistic chains, smart22

grids, industrial control, cyber-security, and many other areas.23

Data stream processing brings unique challenges which are not easily han-24

dled by many of the current computational intelligence and machine learning25

methods. Ideally, machine learning methods should readily adapt to changing26

situations. The data generation processes are emergent and dynamic, meaning27

that stream data processing methods must be capable to adapt to new situa-28

tions (such as system drifts or non-stationary environments). One important29

question is how to transform stream data into knowledge. Machine learning30

and computational intelligence algorithms may fail when they encounter a situ-31

ation that is distinct from the history embedded in historical data sets. Models32

are common in science and engineering, and development of domain meaningful33

models using data from non-stationary environments must allow models with34

the scope and granularity necessary to answer fundamental cause and effect35

relationships from new experiences.36

Online learning is a powerful way to deal with stream data. An online learn-37

ing algorithm observes a stream of examples to assemble a model and make38

predictions. It receives and uses immediate feedback about each prediction to39

improve performance. In contrast to machine learning and statistical learning40

schemes, online learning from data streams do not make assumptions on distri-41

butions of the observations because the behavior it tries to predict change over42

time in unforeseen ways, what causes concept drifts and shifts. Concept drift43
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means the way the data distribution changes gradually in time, and concept44

shift refers to a sudden, abrupt change of the nature of the data distribution.45

Because data may evolve over time, data streams endows temporal locality.46

At the model level, the challenge is to develop global models by combining lo-47

cally developed models to form a unifying knowledge. This requires carefully48

designed algorithms to verify local models correlations in the data-time space,49

and combination of the outputs from multiple local models into the best model.50

The impact of concept drift and shift in learning algorithms is enormous.51

While the effect of concept drift can be attenuated using e.g. model parame-52

ter adaptation procedures, concept shift may require search in the underlying,53

eventually distinct hypothesis space from the current one. The key difference of54

evolving systems to online incremental machine learning (inc-ML) is their ability55

to simultaneously manage any significant changes (drift, shifts, non-stationary56

behaviors, environmental conditions etc.) in the system by using parameter57

and structural adaptation algorithms to process a data item at most once, while58

in inc-ML typically only parameters are updated, but no intrinsic structural59

change in the model is conducted.60

Many types of stream data algorithms have been developed for clustering,61

classification, frequent pattern mining, anomaly detection, and numerous ap-62

plications in distinct domains such as sensor networks, real-time finance, fore-63

casting, control of unmanned vehicles, and diagnosis have been reported [1],64

[68], [168]. Several algorithms and applications of evolving intelligent systems65

in clustering, classification, forecasting, control, diagnosis, and regression are66

also found in the literature [19], [133].67

This paper gives a systematic survey on evolving systems, focusing on fuzzy68

classification and regression models. The purpose is to introduce the major69

ideas and concepts of fuzzy evolving systems, to overview their main structural70

components, models, and respective learning algorithms. The paper also at-71

tempts to guide the reader to the essential literature, the main methodological72

frameworks and its foundations, and the design principles needed to develop73

applications as well as advanced concepts to make evolving (neuro)-fuzzy sys-74
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tems, E(N)FS, more robust and better applicable in real-world scenarios. The75

remainder of the paper is organized as follows. In the next section, the evolv-76

ing systems are presented in general. An overview of evolving algorithms for77

regression and an overview of algorithms for classification are given. In Section78

III, the different mechanisms of adding clusters together with safety conditions79

and different ways of initialization of new cluster, merging cluster mechanisms,80

splitting and removing clusters mechanisms are discussed. Section IV discusses81

several important advanced concepts which were developed during recent years82

to improve robustness, generalization performance, usability and applicability83

of E(N)FS. At the end some future directions and conclusion are given.84

2. Evolving systems85

Many systems are characterized by complex behaviors that emerge as a result86

of nonlinear spatio-temporal interactions among their components. Adaptation87

gives a system flexibility to improve its short-term performance, and increases its88

chances to survive in the long-term despite of changes in the environment and in89

its own components. While small changes in system parameters can be handled90

as a form of uncertainty, and repaired using parameter estimation mechanisms,91

changes in system structure requires a higher level of adaptation. An adaptive92

system is a nonlinear system that evaluates its performance, assesses the op-93

erating conditions of its components, measures the state of the environment,94

and adapts its dynamics to continuously meet performance specifications. In95

addition to parameter estimation, adaptation requires maintenance actions for96

performance and goal achievement (also termed as model maintenance) when-97

ever large changes in system structure and in the environment occur.98

Adaptive and learning systems have been studied in science and engineering,99

especially in the area of adaptive control and system identification since early100

fifties [34], [183], [184]. In adaptive control, the term adaptive means a class of101

design techniques applicable when the system model is partially known. These102

techniques either subsume some form of parameter adjustment algorithm [73],103
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employ a set of finite local models and controllers with higher level supervisory104

switching [105], or use iterative learning techniques [3]. Adaptive control de-105

sign techniques are mostly model-based, equipped with data-driven parameter106

estimation and self-tuning algorithms.107

The field of evolving systems can be traced back to the year 1991 with the108

publication of the paper [149], where the method resource allocating network109

(RAN) was introduced. It deals with a neural-network adapted based on gra-110

dient descent learning and the chain rule to propagate errors backwards. Later111

[65] suggested the growing cell structure (GCS), a class of self-organizing neu-112

ral networks that control structural changes using supervised or unsupervised113

learning. These papers did not attract much attention, perhaps because neural114

networks were not sufficiently established as a scientific discipline. From that115

time forth, the field of evolving systems faced a tremendous development. Fig. 1116

overviews the different types of evolving intelligent systems.117

Evolving systems

Fuzzy Non-fuzzy

Rule-based Rule-basedTree Neural Neural Statistical

Linguistic Functional
Logic

neurons
Clasic

neurons

Figure 1: Types of evolving systems

Evolving systems are adaptive intelligent systems that, differently from adap-118

tive and machine learning systems of the last decade, learn their structure and119

parameters simultaneously using a stream of data. The structural components120

of evolving systems can be artificial neurons, production rules, fuzzy rules, data121

clusters, or sub-trees [122]. The structure of rule-based systems is identified by122

the nature and the number of rules. For instance, evolving fuzzy rule-based sys-123
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tems may use linguistic fuzzy rules, functional fuzzy rules, or their combination.124

The structure of neuro-fuzzy systems is in turn recognized by the nature of the125

neurons, the network topology, and the number of neurons in hidden layers.126

Evolving intelligent systems as a framework to embody recursive data pro-127

cessing, one-pass incremental learning, and methods to develop systems with128

enduring learning and self-organization capabilities were first conceptualized in129

[13] when the term was coined. The authors use the term evolving in the sense of130

gradual development of the system structure (rule-base or the architecture of the131

neural network that represents the system) and their parameters as Fig. 2 shows.132

The authors also contrast the name evolving with evolutionary as used in genetic133

algorithms and genetic programming: while evolutionary processes proceed with134

populations of individuals using recombination and variation mechanisms dur-135

ing generations (typically in a temporally static, off-line optimization context),136

evolving processes advance over time during the life span of the system.137

Inputs

Parameter estimation

Structural learning

System components

Outputs

Figure 2: Framework of evolving systems

Summing up, while adaptive systems in control and system theory deal pre-138

dominantly with parameter estimation, and evolutionary algorithms with popu-139
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lations of models to produce new models, evolving systems benefit from learning140

from experience, inheritance, gradual change and knowledge generation from141

(temporal) streams of data [72].142

Important milestones in the history of evolving systems can be mentioned143

such as the publication of the monographs: Evolving Connectionist Systems144

[98], Evolving Intelligent Systems [19], and Evolving Fuzzy Systems Methodolo-145

gies, Advanced Concepts and Applications [133] [141]; and the beginning of the146

international journal entitled Evolving Systems [21] by Springer in 2010.147

2.1. Evolving systems in clustering, regression, and identification148

This section overviews evolving algorithms for regression and identification.149

Emphasis is on systems that we face in real life, namely, systems that are non-150

linear in nature and dependent on the influence of the environment, which vary151

over time. This also means that the behavior of the systems changes over time.152

To deal with nonlinear and time-varying processes, the change of the behavior153

should be identified online, in real time. However, since the data are continu-154

ously generated from different sources, their amount is usually very large and155

samples can be highly heterogeneous and of very high dimension. Therefore,156

existing intelligent technologies should be adapted through the use of online157

learning algorithms so that big data streams can be processed in real time, [21]158

[68]. The use of off-line methods in this kind of problems is not possible, [10],159

neither it is in the case of significant dynamic system changes and non-stationary160

environments (often appearing in complex real-world scenarios) [168]. This is161

especially important when the model of such systems is used in control, pattern162

recognition, monitoring or supervision.163

In recent years, a number of successful evolving methods has been developed.164

The structure of the resulting models is usually based on fuzzy rules, neural165

networks or hybrid neuro-fuzzy concepts. Some important methods based on166

fuzzy models can be mentioned: eTS [10], xTS [28, 15], simple TS [14], +eTS167

[20], FLEXFIS [130], FLEXFIS+ [131], GS-EFS [140], IBeM [115],[108], FBeM168

[117, 114], and eFuMo [57].169
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Similarly, some of the most important neuro-fuzzy-based methods are: EFuNN170

[94, 93], DENFIS [95], eGNN [116, 118], GANFIS [30], SOFNN [123], SAFIS171

[162], SCFNN [128], NFCN [127], D-FNN [191], GD-FNN [192], SONFIN [89],172

NeuroFAST [186], RAN [149], ESOM [51], Neural Gas [66], ENFM [174], GAP-173

RBF [84], eFuMo [57], SOFMLS [164], PANFIS [152] and RIVMcSFNN [158].174

The majority of the evolving methods used in regression is based on neuro-175

fuzzy local RBF models (radial basis function models) or on their generalized176

form, GRBF (GANFIS). The basic RBF models have equal width of Gauss177

membership functions as proposed in [192] and the others suggest the use of178

ellipsoidal basis functions (EBF), which have different widths of membership179

functions. This kind of approach is given in GD-FNN [192], and in SOFNN180

[123]. In eGNN hyper-rectangles and trapezoidal membership functions with181

different widths are used. In [100] a new approach to evolving principal compo-182

nent clustering algorithm with a low run-time complexity for LRF data mapping183

is presented. In [179] a general evolving fuzzy-model based on supervised hi-184

erarchical clustering is shown in use for design of experiment (see also Section185

4.5). The general evolving fuzzy model in control is shown in [197]. It is also re-186

markable, that in SOFMLS an upper bound for the average of the identification187

error could be found.188

Evolving systems, similarly as adaptive neuro-fuzzy systems, learn using189

learning algorithms to adapt their parameters in an online manner [189]. The190

parameters in this case are subdivided into linear and nonlinear. The non-191

linear parameters, such as centers of clusters, width of radial basis functions192

or information granules, to mention a few, are related to the partition of the193

input-output space, whereas the linear parameters refer to the parameters of194

locally valid affine models. The partition of the input-output space is usually195

done by using different modifications of clustering and fuzzy clustering methods,196

which are adapted for online use from their off-line counterparts. This means197

that the methods are unsupervised and aim at granulating the input-output198

space. The eTS method, for example, uses recursive clustering with subtraction199

[11] (subtractive clustering [45]). The ENFM method – a recursive version of200
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the Gath-Geva clustering method – and eFuMo use recursive c-means and a201

recursive Gustafson-Kessel clustering algorithm [55]. To adapt local linear pa-202

rameters, generally a recursive version of the least squares method, eventually203

with regularization, forgetting or weighting factor is employed. For example,204

FBeM [117] uses a specificity-weighted recursive least squares method.205

Evolving fuzzy and neuro-fuzzy methods can also be divided according to the206

type of the model. Basically, the most frequent are the models that implement207

first-order Takagi-Sugeno fuzzy inference systems (SONFIN, D-FNN, GD-FNN,208

DENFIS, eTS, xTS, FLEXFIS(+), IBeM, FBeM, eGNN, NeuroFAST, SOFNN)209

or zero-order Takagi-Sugeno models (SCFNN, SAFIS, GAP-RBF, EFuNN). The210

essential difference between them is the use of a locally valid afine function or211

a constant in the consequent terms of the rules. Some evolving methods are212

based on generalized forms of fuzzy models, which consist of a combination213

of Mamdani, and first-order Takagi-Sugeno models (GANFIS, FBeM, eGNN,214

eMTSFIS [83]) and thus can achieve linguistic interpretation (due to Mamdani215

part) with solid or high precision (due to Takagi-Sugeno part).216

Evolving methods can also be distinguished regarding the ability of adapta-217

tion. Notice that some fuzzy and neuro-fuzzy methods need the initial structure218

of the model (for example: GANFIS, ANFIS), which is obtained by off-line clus-219

tering. In this case, the number of fuzzy rules is constant during online operation220

and therefore the methods are not considered evolving methods, but adaptive221

methods since only parameter adaptation is performed online. The first methods222

to change the structure of the model were called incremental methods. These223

methods are equipped with mechanisms to add new local models or rules on224

demand, however they do not have mechanisms to delete old, useless or inactive225

rules. These methods include RAN, SONFIN, SCFNN, NeuroFAST, DENFIS,226

eTS, FLEXFIS. Some methods are also supplied with mechanisms to merge or227

combine clusters that are similar in some sense (ENFM, SOFNN). The incre-228

mental methods that are provided with procedures to delete and merge clus-229

ters are seen as real evolving methods. Some important fuzzy and neuro-fuzzy230

evolving methods are ESOM, SAFIS, SOFNN, GAP-RBF, Growing Neural Gas231
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(GNG), EFuNN, IBeM, FBeM, eGNN, D-FNN, GD-FNN, ENFM, simpl eTS,232

xTS, +eTS, FLEXFIS+, eFuMo, to mention a few.233

At this point it is worth to mention alternative regression algorithms, in234

particular the incremental fuzzy linear regression tree algorithm of [121]. The235

algorithm starts with a single leaf with an affine model, and proceeds replacing236

leaves by sub-trees. The algorithm process data as a stream, and uses a recursive237

statistical model selection test to update the tree.238

2.2. Evolving systems in classification239

This section overviews evolving algorithms in classification. Classification is240

the problem of identifying in which category a new observation belongs. In [49],241

the classification task is described formally as follows:242

Given a set of training examples composed of pairs {xi, yi}, find a function243

f(x) that maps each attribute vector xi to its associated class yi, i = 1, 2, . . . , n,244

where n is the total number of training examples.245

An algorithm that performs classification is called a classifier. To train these246

classifiers, they receive as input a set of labeled data samples [82]. The training247

process can be carried out in off-line mode by considering all the data at once248

before the online operation of the classifier. In that case, it is assumed that a249

data set containing samples that represent all possible situations is available a250

priori. It is also assumed that changes of the trained classifier over time will251

not be required when new data arrive. This kind of classification approach is252

useful in some specific applications [33].253

However, it is important to remark that since the beginning of the 21st cen-254

tury, it has been needed to face not only the problem of processing large data255

sets, but also to handle data streams immediately after the examples arrive [54].256

As mentioned before, since the data are continuously generated from different257

sources, they are usually very large in size and of very high-dimension. In ad-258

dition, the data usually need to be processed in real time. Often, the training259

dataset becomes available in small batches over time because the acquisition260
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of these data continuously is expensive and time-consuming. For this reason,261

the development of classifiers able to manage continuous and high-volume data262

streams as they arrive has taken place. Big, diverse and rapidly-produced data263

has also presented novel challenges in classification that are required to be tack-264

led. These new data also provided opportunities to explore new scientific do-265

mains recently emerged [71].266

This new type of data and emerging needs are related to a kind of classifiers267

called incremental, which update their parameters with each new data sample.268

The development of incremental learning systems that can be trained over time269

from a data stream is a major open problem in the data mining area. An in-270

cremental classifier receives and integrates new examples without the need to271

perform a full learning phase from scratch. As discussed in a survey on super-272

vised classification from data streams [119], a learning algorithm is incremental273

if for any example x1, · · · , xn, it is able to generate hypotheses f1, · · · , fn, such274

that fi+1 depends only on fi and xi, the current example. The notion of cur-275

rent example can be considered as the latest processed example. Incremental276

classifiers must learn from data much faster then the off-line mode classifiers.277

Thus, most of the incremental classifiers read the examples just once so that278

they can efficiently process large amounts of data. In fact, the main properties279

of an incremental classifier are that it reads examples just once and it generates280

a similar model to the one obtained by a batch algorithm.281

Incremental classifiers have been implemented in many different frameworks:282

• In relation to decision trees, the first incremental versions emerged in the283

1980s. ID4 [119] and ID5R [187] concern incremental classifiers based on284

ID3 (Iterative Dichotomizer 3 ) [161] – a well-known algorithm proposed285

by Quinlan in 1986. Later, in 2006, [59] proposes a classification system286

based on decision rules that may store updated border examples to avoid287

unnecessary revisions when virtual drifts are presented in data. Consis-288

tent rules classify new test examples by covering, and inconsistent rules289

classify them by distance – as a nearest neighbor algorithm. The main290
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characteristic of this approach is that the model is incrementally updated291

according to the new environment conditions.292

• Incremental classifiers have been implemented using neural networks [198].293

An example of neural classifier is ARTMAP (Adaptive Resonance Theory)294

[39], a class of neural network architectures that performs incremental295

supervised learning in response to input vectors presented in arbitrary296

order. Later, a more general ARTMAP system [40] that learns to classify297

input data by a fuzzy set of features was introduced.298

• In relation to a probabilistic framework, the Bayesian classifier is an ef-299

fective methodology for solving classification problems when all features300

are considered simultaneously. However, sometimes, all the features do301

not contribute significantly to the classification. In addition, a huge com-302

putation is needed when the features are added one by one in a Bayesian303

classifier in batch mode using the forward selection method. For this304

reason, in [2] it was proposed an incremental Bayesian classifier for multi-305

variate normal distribution data sets. In [44], several incremental versions306

of Bayesian classifiers are addressed.307

• An SVM (Support Vector Machine) performs classification by constructing308

an n-dimensional hyperplane that optimally separates the data into two309

categories [188]. Support Vector Machine is one of the classical machine310

learning techniques that can help multi-domain applications in a big data311

environment [177]. However, the support vector machine is mathemati-312

cally complex and computationally expensive. A training process on new313

data, discarding previous data, gives not optimal, but approximate results314

only. Considering this aspect, [42] proposes an incremental procedure (an315

online recursive algorithm) for training SVM using one vector at a time.316

In [193], an incremental algorithm that utilizes the properties of support317

vector set and accumulates the distribution knowledge of the sample space318

through the adjustable parameters is proposed. The algorithm LASVM319

[38] is an online approach that incrementally selects a set of examples for320

12



SVM learning. A selection of different incremental SVM algorithms is321

proposed in [53].322

• In relation to lazy learning approaches, such as k-nearest neighbor (KNN),323

in [167], an incremental KNN algorithm is proposed, which is extended324

to a fuzzy version (respecting to provide fuzzy weights in the neighbors)325

in [77]. These kinds of algorithms are useful when a variable number of326

neighbors are required for each point in the data set. However, lazy learn-327

ing techniques are usually too slow to cope with (fast) online demands, as328

a new model is built from scratch locally around each new query point (in329

dependency of the new query, in fact).330

It is fundamental to remark that in these incremental methods, the structure331

of the resulting classifier (a set of neurons, rules, clusters, support vectors, leaves,332

etc.) is fixed, as previously chosen. However, new data samples may not follow333

the same distribution of the training data, and it is necessary to face issues such334

as overfitting, low generalization and drift and shift of the density in the data335

stream [132].336

Taking these considerations into account, the field of evolving intelligent337

classifiers started with the evolving fuzzy-rule based classifier eClass (evolving338

Classifier) [16], [17]. An important aspect of eClass is that it can cope with large339

amounts of data and process streaming data in real time and in online mode. In340

addition, the different algorithms of the eClass family are one-pass, recursive,341

and therefore, computationally light since they have low memory requirements.342

It is important to remark that evolving is not the same as incremental, adaptive343

or evolutionary.344

eClass can evolve/develop from the new data; it has the following properties:345

eClass can start learning from scratch; and the number of fuzzy rules and the346

number of classes do not need to be prespecified. These numbers vary by reading347

and analyzing the input data in the learning process. Thus, its structure is self-348

developed (evolved).349

In addition, eClass classifiers were categorized considering the consequent350
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part of the fuzzy rules that casts the classifiers. In this sense, eClass includes351

different architectures and online learning methods. The family of alternative352

architectures includes: eClass0, with the classifier consequents representing class353

label (zero-order) and eClass1, which uses a first-order classifier. It is remarkable354

that recently, the zero-order classifier (eClass0 ) was demonstrated to be fully355

unsupervised [47].356

eClass0 [17] is an FRB classifier and its structure follows the typical con-357

struct of an FRB classifier,358

Rulei : if (x1 is around x
1
i ) and . . .

. . . and (xn is around x
i
n) then L = (Li)

(1)

whereRulei represents the ith fuzzy rule of the FRB structure, x = [x1, x2, . . . , xn]T359

is the vector of features, xi denotes the prototype (existing sample) of the ith360

rule antecedent, and Li is the label of the class of the ith prototype.361

About the learning process of eClass, it is important to emphasize that FRB362

antecedent terms are formed from the data stream around highly descriptive363

prototypes in the input-output space per class. In the case of eClass0, its main364

difference to a conventional FRB classifier is that eClass0 has an open structure365

and uses an online learning mechanism that considers such flexible rule-base366

structure.367

eClass1 [17] is an FRB classifier whose architecture regresses over the feature368

vector using first-order multiple-input-multiple-output evolving Takagi-Sugeno369

(MIMO-eTS) fuzzy systems. The structure of an eClass1 rule is370

Rulei : if (x1 is around x
1
i ) and . . .

. . . and (xn is around x
i
n) then (yi = xTΘ),

(2)

whereRulei represents the ith fuzzy rule of the FRB structure, x = [x0, x1, . . . , xn]T371
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denotes the (n+ 1)-dimensional vector of features, and yi is the output.372

A main aspect in the learning process of eClass1 is the online identification373

of the parameters of the FRB structure. These parameters are updated with374

the arrival of new data sample carrying new information.375

In [31], a new family of evolving classifiers is presented, namely simpl eCLass0,376

which is an improvement of eClass. This family consists of two members:377

simpl eCLass0 and simpl eCLass1 (zero and first order classifiers). These clas-378

sifier structures have all the advantages of the eClass family but their structure379

adjustment phase is simplified significantly, reducing computational overhead.380

In the same way as eClass, simpl eCLass works in online mode updating the381

classifier/rules. In this case, the main differences of these two versions are the382

consequent part of the fuzzy rules, and their classification strategy, which is383

simplified based on the simpl eTS+ approach [18].384

A method for training single-model and multi-model fuzzy classifiers incre-385

mentally and adaptively was proposed in [129]. This method is called FLEXFIS-386

Class, as its core learning engine was based on several functionalities (including387

rule evolution concept) as contained in the original FLEXFIS approach [130].388

In [129], two variants for evolving fuzzy classification schemes were presented:389

• FLEXFIS-Class SM is an evolving scheme for the single-model case. It390

exploits a conventional zero-order fuzzy classification model architecture391

with Gaussian fuzzy sets in the antecedent terms, crisp class labels in the392

rule consequents and (fuzzy) confidence values for each class in each rule.393

• FLEXFIS-Class MM is based on a multi-model architecture that exploits394

the idea of nonlinear regression by an indicator matrix to evolve a Takagi-395

Sugeno fuzzy model for each separate class (receiving a label of 1 while396

all other classes receive a label of 0). To give a final classification state-397

ment, the maximal output value from all fuzzy models is elicited: the final398

class output corresponds to the argument maximum, i.e. it is the class399

represented by that model which produced the maximal output value.400

In [137], the authors extended FLEXFIS-Class to another multi-model vari-401
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ant in the case of multi-class classification problems by using the all-pairs tech-402

nique, then termed as EFC-AP (Evolving fuzzy classifiers with All-Pairs). For403

each class pair either a binary FLEXFIS-Class SM model (EFC-AP SC) or a404

Takagi-Sugeno fuzzy model (by regression on {0, 1}, EFC-AP TS) is established.405

For a new query point, a preference value for each class-pair is elicited (how406

much one class is preferred over the other according to the output confidence),407

which can be stored in a preference relation matrix. This matrix can be ana-408

lyzed to produce a final classification statement. Due to the all-pairs technique,409

the problem of class imbalance in stream learning (leading to deterioration in410

performance on under-represented classes) could be reduced. This could be411

successfully evaluated when introducing new classes on the fly in a streaming412

context for on-line visual inspection systems in [138]: significant increase in clas-413

sification accuracy trends on new classes (under-represented after their birth)414

could be observed when using EFC-AP, compared to FLEXFIS-Class SM/MM.415

In [22], a new method for defining the antecedent part of a fuzzy rule-based416

classification system, called AnYa, is proposed. The method removes the need417

to define the membership functions per variable using often artificial parametric418

functions such as triangular, Gaussian etc. Instead, it strictly follows the real419

data distribution by using the concept of data clouds, which can be applied to420

classification tasks. In addition, as it is based on vector forms, logical connec-421

tives are useless. Finally, it uses relative data density expressed in a form of a422

parameter-free (Cauchy type) kernel to derive the activation level of each rule,423

which are then fuzzily weighted to produce the overall output. In this case,424

AnYa-Class uses a single rule for each class since all the data of a class form425

a single data cloud. The number of rules is fixed so this classifier is incremen-426

tal, but not (fully) evolving. AnYa-Class, as the eClass family, is divided in427

two types: zero order if the consequent of each rule is a single class label, and428

first order if the consequents of the rules are linear. The concept was used in429

control to construct the Robust evolving cloud-based controller (Recco) [7] for430

heat-exchanger plant, and in [8] for real two-tank plant control. This kind of431

structure was also used in model identification of production control [6] and for432
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evolving model identification for process monitoring and prediction of nonlinear433

systems in general [9]. Monitoring of large-scale cyber attacks monitoring using434

evolving Cauchy possibilistic clustering is shown in [182]. Very successful imple-435

mentation is also reported for evolving cloud-based system for the recognition436

of drivers’ actions in [181]. The comparison of approaches for identification of437

all-data cloud-based evolving systems is presented in [36], the problems of iden-438

tification of cloud-based fuzzy evolving systems are studied and elaborated in439

[37] and a robust fuzzy adaptive law for evolving control systems is presented440

in [35].441

A different version of the eClass family, called AutoClassify, is proposed in442

[23]. As eClass, the AutoClass family works on a per-sample basis, and requires443

only the features of that sample plus a small amount of recursively updated444

information related to the density. In addition, depending on the form of the445

consequent part of the rules, AutoClassify includes:446

• AutoClassify0, which is a fully unsupervised method. The learning phase447

of AutoClassify0 is unsupervised and based on focal points by clustering448

or partitioning in data clouds. The term data clouds is proposed in AnYa449

[22] and refers to structures with no defined boundaries and shapes.450

• AutoClassify1 generally provides a better performance compared to its451

counterpart, but it is semi-supervised and takes advantage of more param-452

eters. AutoClassify1 can work as a MIMO type of model for multiclass453

classification problems. The learning phase of this classifier is based on the454

decomposition of the identification problem into: overall system structure455

design, and parameter identification. However, these tasks are performed456

in online mode, sample per sample.457

A systematic framework for data analytic is proposed in [91]. The underlying458

classifier is based on the typicality and eccentricity of the data, and it is called459

TEDAClass (Typically and Eccentricity based Data Analytics Classifier). This460

classifier is evolving, fully recursive, spatially-aware, non-frequentist and non-461
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parametric. TEDAClass is based on the TEDA method [25][92]. It uses local462

typicality and eccentricity to calculate the closeness to a fuzzy rule.463

In [163], an Extended Sequential Adaptive Fuzzy Inference System for Classi-464

fication, called ESAFIS, is presented. It is based on the original SAFIS approach465

[162], which itself is based on the functional equivalence between a radial basis466

function network and a fuzzy inference system. The SAFIS algorithm consists467

of two aspects: determination of the fuzzy rules and adjustment of the premise468

and consequent parameters in fuzzy rules. ESAFIS extends SAFIS to classifi-469

cation problems and proposes some modifications in calculating the influence of470

a fuzzy rule, adding fuzzy rules and especially a faster RLSE based estimation471

of consequent parameter to speed up the learning process. In [166], a new algo-472

rithm is proposed as the combination of SAFIS, and the stable gradient descent473

algorithm (SGD) [165]. The modified sequential adaptive fuzzy inference sys-474

tem (MSAFIS) is the SAFIS with the difference that the SGD is used instead475

of the Kalman filter for the updating of parameters.476

Evolving semi-supervised classification is discussed in [113],[107]. The gran-477

ulation method used to construct the antecedent part of evolving granular pre-478

dictors, often referred to as eGM (evolving Granulation Method), is applicable to479

the partition of unbalanced numerical and granular-valued partially-supervised480

streaming data subject to gradual and abrupt changes. If an unlabeled sample481

causes the creation of a granule, then the class of the granule remains unde-482

fined until a new labeled sample falls within its bounds. The class label of the483

new sample tags the granule. Contrarily, if an unlabeled sample rests within484

the bounds of an existing granule whose label is known, it borrows the granule485

label. Core and support parameters of trapezoidal fuzzy sets are adapted to486

represent the essence of the data. More abstract, high-level granules are easier487

to manage and interpret.488

Ensemble learning has also been used in evolving frameworks. Ensemble489

learning is a machine learning paradigm in which multiple learners are trained490

to solve the same problem [151] and where the diversity of so-called weak learn-491

ers (e.g., simple fuzzy classifiers with low number of rules) can improve the492
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prediction accuracy when being combined [150] — Learn++ was one of the first493

method to address ensemble learning in an incremental context, but it is not494

evolving. In this sense, [86] presents a method for constructing ensembles based495

on individual evolving classifiers. In [87], a scheme for constructing ensembles496

which are created considering the idea behind the stacking technique [190] is497

addressed. In addition, an evolving ensemble classifier, termed parsimonious en-498

semble (pENsemble) is proposed in [159], where local experts (base classifiers)499

are weighted according to their classification accuracy: models with low weights500

are discarded to make the ensemble more compact. Base classifiers are added501

on the fly whenever a drift is confirmed by a drift detector based on Hoeffding’s502

inequality. The base classifiers themselves are internally updated and evolved503

with the usage of pClass method [154]. It has been recently successfully applied504

in an extended variant for on-line tool condition monitoring in [160]. TEDA,505

eTS and xTS are combined as an ensemble in [173], where diversity among their506

outputs is exploited in order to improve classification accuracy.507

Since clustering can be defined as an unsupervised classification of observa-508

tions into groups (clusters) according to their similarity, it can be considered509

as a type of classification. This well-known unsupervised classification problem510

has been solved by a variety of off-line approaches such as k-Nearest Neighbor,511

fuzzy c-means, where the recursive version of this algorithm is first reported in512

[56] and in [55] in Gustafson-Kessel modification. Other well-known approaches513

are incremental/on-line, namely, Self-Organizing Maps, SOM [102], extended in514

[52] to an evolving approach or Adaptive Resonance Theory, ART [41]. How-515

ever, these approaches are not fully unsupervised and autonomous since some516

problem-specific thresholds and guesses on the number of clusters in the data517

set are required. In this respect, evolving methods are different since they can518

start learning from scratch with no need of initial information. Moreover, the519

number of clusters depends on the data.520

Considering these aspects, the notion of autonomous clustering was pio-521

neered with eClustering [12], an evolving clustering approach based on the po-522

tential/density of the data samples which is recursively calculated by using RDE523

19



[17]. In such clustering method, the first data sample represents the first cluster524

center. The density of the other data samples is calculated using RDE when525

they arrive. A new data sample represents a new cluster center if it has higher526

descriptive power than any of the other centers. In addition, the algorithm527

checks if the existing clusters should be removed or cluster parameters should528

be adapted. Similar to eClass, eClustering is one pass, non-iterative, recursive529

and can be used interactively. In [18], an improvement of eClustering, called530

eClustering+, which does not rely on user- or problem-specific thresholds is531

proposed. It estimates the density at a data point using a Cauchi function.532

In [96], an evolving clustering method (ECM) that employs a type of fuzzy533

inference, denoted as dynamic evolving neural-fuzzy inference system (DENFIS)534

is proposed. ECM does not ask for the number of clusters, and cluster centers535

are represented by evolved nodes. In this case, a threshold value to define the536

maximum distance between a data sample and cluster centers is required.537

An evolving version of the Gustafson-Kessel (GK) algorithm [74], called538

eGKL (evolving Gustafson-Kessel-like), is proposed in [61]. eGKL provides a539

methodology for adaptive, step-by-step identification of clusters that are similar540

to the GK cluster. In this sense, eGKL estimates the number of clusters and541

recursively updates its parameters based on the data stream. The algorithm542

is applicable to a wide range of practical time-varying issues such as real-time543

classification. In [180], the idea of evolving Gustafson-Kessel possibilistic c-544

means clustering (eGKPCM), as an extension of the PCM clustering algorithm,545

is introduced. PCM is given in [104].546

In [32], an on-line evolving clustering approach from streaming data that547

extends the mean-shift clustering algorithm is proposed. The algorithm is called548

Evolving Local Mean (ELM), because it uses the concept of non-parametric549

gradient estimate of a density function using local mean. An ELM prototype550

consists of a cluster center and a distance parameter. The approach is defined as551

evolving since the local mean is updated from the data stream and new clusters552

are added to its structure when the density pattern changes.553

Finally, autonomous split-and-merge techniques for assuring homogeneous554
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and compact prototype-based clusters in an incremental, single-pass learning555

context are proposed in [136] [139]. These are based on conventional and ex-556

tended evolving vector quantization (EVQ) concepts, the latter leading to arbi-557

trarily rotated and shaped clusters with the usage of a recursive estimation of558

local inverse covariance matrices.559

The next section discusses the main differences of evolving algorithms ac-560

cording to the mechanisms of adding, deleting, merging, and splitting local561

models.562

3. Different evolving mechanisms563

Evolving systems should change the structure of the model that describes the564

behavior of the data stream and should be able to adapt parameters associated565

to local models. The latter is generally dealt with by using some version of566

recursive or weighted recursive least-mean squares. The most challenging task,567

and also the basic feature of the evolving systems, is therefore related to adding,568

deleting, splitting and merging of clusters, neurons, granules or clouds, which569

delimit the bounds of local models.570

Basic constituting elements of evolving intelligent systems can be defined.571

Fundamentally, these systems consist of three basic blocks, as shown in Fig. 3.572

The main block is the a central decision logic block. This block calls the re-573

maining, adaptation and evolving, blocks whenever necessary. In the adaptation574

block, the local model, rule or cluster parameters are adapted according to the575

novelties in the incoming data samples that belong to the region of the data576

space covered by the local model. By contrary, in the evolution block, the577

structure of the global model is changed. In other words, parameter adapta-578

tion is useful to model gradual or slight changes of behavior (concept drift),579

while structural evolution is useful to fit new patterns or completely different580

behaviors or events into the model (concept shift).581

The basic ideas behind evolution mechanisms are very different and suitable582

for different tasks. Next, these mechanisms and corresponding algorithms are583
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discussed in more details.584

3.1. Adding clusters585

Cluster adding is the most essential mechanism of evolving systems. Usually,586

learning starts with no local models or clusters; they are added to the global587

model on the fly in order to expand its knowledge to new regions of interest588

in the feature space (reducing extrapolation likelihood for new query points).589

After adding a cluster, a very important task concerns the initialization of the590

parameters of the new local model. Another key decision is related to when and591

in which place of the data space to consider the cluster. Such decision usually592

depends on thresholds. These thresholds can be given according to (i) the output593

error – the error between the current measured output and the estimated model594

output; (ii) some distance, similarity or density metric regarding the current595

measured input data and cluster prototypes (centers generally); or (iii) the596

condition of ε-completeness, which is connected to the membership degree of597

the current sample in the current clusters.598

The criteria to add a new neuron in the case of evolving systems which599

are based on neural networks are quite different. In the case of GNG, [67],600
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the new neuron is added at each n-new samples where n stands for a user-601

defined constant. In many cases, a criterion is defined according to the Euclidean602

distance between the current sample and cluster centers. This criterion is used603

in the case of ESOM, [51], DENFIS and FLEXFIS. This means that such a604

criterion is used in an unsupervised manner. For supervised learning, adding605

criteria are generally based on the error between the measured and estimated606

outputs together with some logic and conditions regarding the distance to the607

cluster centers. This is taken into account in the following methods: EFuNN,608

D-FNN, GD-FNN, SAFIS [162], SCFNN. The condition for cluster addition609

can also be given in the form of ε-completeness, which is used in RAN, SCFNN,610

SONFIN, eTS. This condition defines the minimal allowed membership value611

for triggering of closest rule.612

In [78], DFKNN considers an adding mechanism based on the Euclidean613

distance from a sample to the cluster centers and on the change of the local614

variance caused by the sample. To add a new cluster, the distance and the615

variance should be greater than a given threshold. As additional condition, the616

number of samples that belongs to a cluster is monitored. If this number is617

greater than a threshold, defined by the user, then a new cluster is created.618

In [48], a dynamic data clustering algorithm is presented. Cluster addition619

takes into account the distance between the current sample and the cluster620

centers, which should be larger than half of the minimal distance between two621

cluster centers. Moreover, the membership degree of the sample in the clusters622

should be greater than a pre-defined threshold.623

In the case of DENFIS [95], cluster addition is based on a generalized Eu-624

clidian distance. If the current sample is within the radius of at least one of625

the clusters, then the model is not changed. Contrarily, the sum of the cluster626

radius and the distance between the current sample and the center of the chosen627

cluster is calculated. This is done for all clusters. If the minimal sum is larger628

than the double of a threshold value, then a new cluster is added, otherwise the629

parameters of the cluster are adapted. The threshold is equal to the maximum630

allowed cluster radius.631
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The algorithms D-FNN [191] and GD-FNN [192] are similar. Cluster addi-632

tion is realized according to the output error and the distance of the current633

sample to the current centers of the clusters. If only the output error is greater634

than a threshold, the parameters of the local models are adapted. If only the635

distance if larger that the threshold, the parameters of membership functions636

are adapted. Otherwise, if both are above the threshold, than a new cluster637

is added. The thresholds are adaptive. At the beginning, they assume higher638

values, which are reduced over the iterations. This means that initially a gen-639

eral model is obtained, which becomes more detailed with the time. This is640

accomplished by decreasing the thresholds. The difference between D-FNN and641

GD-FNN is the way the thresholds are adapted. The method RAN [149] is also642

similar, but it uses constant thresholds.643

The NeuralGas algorithm [66] monitors the accumulated error between the644

measured output and the output of the system model in the prescribed time645

interval. If such error exceeds a predefined threshold, then a new cluster is646

added. A very similar approach is performed by the NeuroFAST algorithm [186].647

The algorithms GAP-RBF [84] and SAFIS [162] add new clusters according648

to the output error and the distance to the active cluster. In the meantime,649

the improvement in case a new cluster is added to the position of the current650

measured sample is calculated. If these three criteria are fulfilled, namely the651

output error is larger than a threshold, the minimum distance to the cluster652

centers is larger than a threshold, and sufficient model improvement in relation653

to the reduction of the output error is observed, then a new cluster is added.654

The criterion for cluster addition in the case of EFuNN [94, 93] is based on655

sensitivity, which is a function of normalized distances. The NFCN [127], ENFM656

[174], SONFIN [89], SCFNN [128] and SOFNN [123] algorithms are based on657

the principle of ε-completeness, which means that the maximum membership658

degree considering the current sample and the clusters should not be smaller659

than a predefined threshold. The SOFNN and SCFNN algorithms take into660

account not only the ε-completeness criterion, but also an additional criterion661

based on the variation of the output error.662
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In the case of eTS [10], cluster addition is based on the potential of a current663

sample. The sample is accepted as the center of a new cluster if the distance to664

the closest center exceeds a predefined threshold and the potential of the sample665

is larger than the potential of the current clusters. If the distance condition is666

not fulfilled, the closest cluster centers move toward the sample. Otherwise, if667

the distance condition is fulfilled, but the potential of the candidate is lower668

than the potential of the centers, then only the parameters of the local models669

are adapted.670

Granular evolving methods, IBeM [115, 108], FBeM [117, 114] and eGNN671

[116, 118], consider a maximum expansion region (a hyper-rectangle) around672

information granules. Granules and expansion regions are time-varying. They673

may contract and enlarge independently for different attributes based on the674

data stream, the frequency of activation of granules and rules, and on the size675

of the rule base (IBeM, FBeM) or neuro-fuzzy network (eGNN). If a sample676

does not belong to the expansion region of the current granules, a new granule677

is created. In eGNN, the use of nullnorm and uninorm-based fuzzy aggregation678

neurons may provide granules with different geometries [116].679

FLEXFIS [130] and its classification versions FLEXFIS-Class SM and MM680

[129] add a new cluster according to the distance between a sample and the681

cluster centers. The cluster is added if the smallest distance exceeds a vigilance682

parameter which is normalized subject to the current input dimension in order683

to avoid too intense cluster growing due to curse of dimensionality. GS-EFS684

[140] adds a new cluster (in arbitrary position) according to the Mahalanobis685

distance between a sample and its nearest cluster. The statistical estimation of686

the so-called prediction interval by using an approximated, fast version of the687

Ξ2-quantile serves as tolerance region around the ellipsoidal cluster contour in688

order to decide whether a new (generalized) rule should be evolved or not.689

In the eFuMo algorithm [57], the decision about adding clusters can be based690

on the Euclidean or Mahalanobis distance regarding the current sample and the691

cluster centers. Calculations can be based on all or on just certain particular692

elements of the data and cluster vectors.693
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IN PANFIS [152], a new cluster is added whenever the model error on the694

new sample is high and also its significance to the PANFIS overall output is695

given (both factors are multiplied). The latter is measured by the integration of696

the winning rule (nearest one to the current samples) over the complete feature697

space, normalized by its range: in order to avoid the revisit of past samples,698

this can be approximated with determinant operations on covariance matrices699

representing the shapes and orientations of generalized rules.700

It is recommended to consider multiple criteria and different conditions for701

cluster addition. This is performed by NEUROFast and eFuMo. In eFuMo, the702

concept of delay of evolving mechanisms is introduced. The delay is an interval703

in which evolving mechanisms are not enabled. Only adaptation of centers and704

model parameters is conducted during the time interval. The delay of evolving705

mechanisms takes place after a change in the structure of the system performed706

by any evolving mechanism. The model should have a certain period to adapt707

on the new structure. The duration of the delay should be defined by the user708

and depends on the data and on the amount of data samples. Additional safety709

conditions are discussed next.710

3.1.1. Safety conditions711

When evolving algorithms are based on Euclidean distance, there may be712

regions inside a hypershpere with no representative data. This is not true if the713

Mahalanobis distance is used because the distances in this case are normalized714

by the variance of the attributes. This allows multiple ellipsoids to develop close715

to each other but oriented to different angles.716

In real-world data streams, some issues may arise when evolving models717

deal with outliers. Ideally, outliers should not cause the creation of a new718

cluster. Therefore, an additional safety condition is generally given, and should719

be tested before adding clusters to a model. In eFuMo, this condition is based720

on the number of output samples that do not belong to the current clusters. A721

delay is introduced into the adding mechanism, but the addition of unnecessary722

clusters is prevented. The safety condition is given as: a new cluster is added if723
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N consecutive output samples belong to a same cluster and fulfill the necessary724

criteria for cluster addition. The probability of adding a cluster as a result725

of outliers is decreased to P (x)N , where P (x) stands for the probability of726

forming a new cluster from an outlier. The number of samples N is usually727

chosen from 5 to 10. Similarly, FLEXFIS(-Class) and GS-EFS embed a rule-728

base procrastination option, where, after adding of new clusters, several samples729

are waited before the cluster becomes significant and thus alive as rule in the730

rule base (thus, also being using when predicting new samples).731

Some evolving methods accept the creation of clusters in a passive way. In732

this case, the cluster added to the model based on an outlier will probably not733

be activated for a number of iterations. Deleting procedures play a key role in734

these methods to keep the rule base concise and updated.735

3.1.2. Initialization of a new cluster736

When a sample fulfills all condition for cluster addition, usually it defines the737

new cluster center. A second parameter to be defined is the size of the cluster.738

In ellipsoid-based models, the size depends on the covariance matrix. In the739

literature, a number of different initialization approaches is given: the size of740

the new cluster depends on the distance to the closest cluster (DENFIS [95],741

D-FNN [191]); the initial covariance matrix is fixed and given as a user defined742

parameter (SCFNN [128], SONFIN [89]); it can also be given as the average of743

the covariance matrices of the existing clusters (xTS [28, 15]). In ENFM [174],744

the covariance matrix is equal to the covariance matrix of the closest cluster,745

and in FLEXFIS [130] it is set to a small value of ε to guarantee numerical746

stability of the rules and fuzzy sets. In GS-EFS [140], the inverse covariance747

matrix is initialized by a fraction of the range of the input feature space or by a748

weighted average of neighboring rules (where the weights are the support of the749

rules, i.e. number of data samples which formed them). In PANFIS [152], the750

covariance matrix is initialized as diagonal matrix in a way that ε-completeness751

is guaranteed (similarly as in SONFIN), i.e. achieving a minimal overlap degree752

of ε with any of the adjacent clusters. Initialization based on the distance to753
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the closest cluster is successful because it covers the gap between clusters. Gap754

covering was discussed, for example, in [106].755

Parameters of local linear models should also be initialized. In [10], the756

parameters are initialized as ‘zero’ in the case of using the local fuzzy least757

squares algorithm, and as the weighted average of the other local linear models758

for the case of using the global least-square algorithm. The weights are the759

membership values. In [95], the parameters of the new local model are equal to760

those of the closest local model.761

Initialization of local linear model parameters by weighted average [10] is762

common. Together with the initialization of local model parameters, covariance763

matrices can also be taken into account. Weights used to initialize the new local764

model parameters may consider the variance of a certain parameter. When a765

new local model is added, covariance matrices in recursive algorithms can be766

multiplied by a factor ρ = c2+1
c2 , where c is the number of current clusters. This767

makes further adaptations more sensitive.768

3.2. Merging clusters769

Cluster merging is necessary when cluster are moving together over time,770

thus becoming overlapping. This effect is called cluster fusion and is usually771

caused by samples successively filling up the gaps in-between two or more clus-772

ters, which seem to be disjoint at a former point of time in the data stream —773

but latter turn out that they are not, thus should be merged to eliminate over-774

lapping, redundant information. Merging of clusters not only provides a more775

accurate representation of the local data distributions, but also keeps E(N)FS776

more compact and thus better interpretable and faster adaptable.777

Different mechanisms for cluster merging are given in this section. In DKFNN,778

the algorithm monitors the positions of the clusters centers. If two of them ap-779

proach one another, the underlying clusters should be merged. A measure of780

cluster similarity, useful for merging, is given in [64]. The measure is based on781

the membership degree of samples in clusters and is similar to the correlation782

between the past activations. Merging based on correlation among previous783
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activations is also given in [94] (EFuNN). In this algorithm, merging is based784

on the maximum cluster radius. Neighbor clusters that present the sum of785

radii less than a maximum threshold are merged. In ENFM, two clusters are786

merged when the membership of the first cluster center into the second cluster is787

greater than the predefined threshold, and vice-versa. In SOFNN [123], clusters788

are merged when they exhibit the same centers, which is almost impossible in789

practice.790

The algorithm FLEXFIS+ [131] calculates the intersection of the member-791

ship functions in each dimension. This is the basis to define the index of over-792

lapping, which is then used to judge whether whole clusters (rules) should be793

merged or not. If the index is greater than a predefined threshold, then clusters794

are merged. Merging itself is conducted in the antecedents by an extended vari-795

ant of recursive variance formula and in the consequents by exploiting Yager’s796

participatory learning concept [194] in order to resolve possibly conflicting rules797

properly. GS-EFS adds a homogeneity condition among both, antecedent and798

consequent spaces, to decide whether two clusters should be merged: the an-799

gles between their hyper-planes should not be too small and their joint volume800

should not explode too much. This assures that clusters are not merged inap-801

propriately when they are actually needed to resolve the nonlinearity degree in802

the local regions where they are defined.803

The eFuMo algorithm merges clusters based on the normalized distance be-804

tween their centers. The distance is calculated based on the Mahalanobis mea-805

sure. The parameters of the merged cluster are initialized by weighted average806

[174] or using normal average, such as in [94], while the merged covariance ma-807

trix can be defined as proposed in [125]. The algorithm uses also the parameters808

of the local model similar to FLEXFIS+, but eFuMo also takes into account809

the prediction of the local models. Three conditions for merging are: angle810

condition, correlation condition, and distance ratio condition. Two clusters are811

merged if they fulfill one of these conditions. Additionally, a condition for the812

local model outputs is taken into account. The difference between two outputs813

should be less than a predefined threshold, and they should have support set814
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higher than a predefined value.815

An instantaneous similarity measure is introduced in FBeM [114, 113] for816

multidimensional trapezoidal fuzzy sets as817

S(Ai1 , Ai2) = 1− 1

4n

n∑
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(|li1j − l
i2
j |+ |λ
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i2
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j − L
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j |), (3)

where Ai = (li, λi,Λi, Li) is an n-dimensional trapezoid. Such measure is more818

discriminative than, for example, distance between centers of neighbor clusters,819

and its calculation is fast. If S(Ai1 , Ai2) is less than a maximum width allowed820

for clusters, the underlying clusters are merged. The cluster that results from821

the merging operation takes into account the bounds of the combined clusters822

to provide the highest level of data coverage.823

3.3. Splitting clusters824

The splitting of clusters is defined for a finer structuring of the data space825

and the model structure. Basically, an evolving algorithm should, in the case826

of regression and identification problems, accept a larger number of clusters in827

the region where the model output error (approximation or prediction error)828

is greater than the expected one or grows extraordinary. This can be because829

clusters may grow over time due to gradual drifts or due to inappropriately (too830

pessimistically) set cluster/rule evolution thresholds (parameters). Especially831

the latter can be the case when using evolving methods in a kind of plug-832

and-play manner for new applications with tuned (optimized) parameters on833

previous ones.834

The concept of splitting is proposed in [76] and in [50]. In the first, the835

Chernoff measure is used while the latter assumes a fidelity measure. The au-836

thor in [136] proposes a penalized BIC (Bayesian information criterion) to de-837

cide whether the current cluster structure should be kept or whether the latest838
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updated cluster should be split into two (the partition receiving a lower pe-839

nalized BIC value should be preferred). The penalization of the log-likelihood840

is extended with a product term which vanishes in case of close over-lapping841

clusters, thus punishing them more than clearly disjoint clusters. As also the842

punished BIC could not fully represent real cluster homogeneity versus cluster843

heterogeneity, the split approach in [139] extends this approach by applying a844

Gaussian mixture model estimation along each principal component direction845

of an updated cluster with two Gaussians and then checking whether any of the846

two Gaussians (in each direction) are significantly different (according to the847

Welch test): if so, a heterogeneous cluster is found (i.e. a cluster which inter-848

nally represents two disjoint data clouds), and thus it should be split. The split849

point is estimated through the cutting point of the adjacent (but statistically850

different) Gaussians.851

In NeuroFAST [186], clusters are split according to their mean square error852

(MSE). The algorithm calculates the error in each P steps and split the cluster853

and the local model with the greatest error. The mechanism of splitting in854

eFuMo is based on the relative estimation error, which is accumulated in a855

certain time interval. The error is calculated for each sample that falls in one856

of the existing clusters. The initialization of the resulting clusters is based on857

the eigenvectors of the cluster covariance matrix, as in [79].858

An innovative and efficient (fast) incremental rule splitting in the context859

of generalized evolving fuzzy systems (extending GS-EFS approach [140]) is860

presented in [144] for the purpose to split blown-up rules with high local errors861

over past samples into smaller ones to increase model precision. In this sense, it862

can autonomously compensate drifts which can not be automatically detected,863

see also Section 4.2.864

3.4. Removing clusters865

Mechanisms of removing clusters are convenient to delete old or inactive866

clusters, which are no longer valid. These mechanisms are of utmost impor-867

tance in classification and pattern recognition. In general, it happens that a868
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cluster is created in a part of the input-output space where there are just a few869

representative samples. This is justified by errors in measurements or due to870

a change of the system behavior so that a cluster is not useful after a number871

of iterations. These clusters can be removed from the model, because they do872

not help in the description of the data. Nonetheless, careful should be taken873

with seasonal behaviors since a cluster may be reactivated latter. Moreover, in874

anomaly detection problems, unusual and idle clusters may be more important875

than those highly operative, and therefore should not be removed.876

The mechanisms to remove clusters are mainly based on the following prin-877

ciples: the age of the rule (xTS, GNG, ESOM), the size of the support set of878

the cluster (+eTS), the contribution of the rule to the output error (SAFIS879

[162], GAP-RBF, D-FNN, GD-FNN), the combination of the age and the total880

number of activations (EFuNN, IBeM, FBeM, eGNN), or the minimal allowed881

distance between the cluster centers (ENFM). In [48], a cluster is removed from882

the model if no sample in a certain time interval rests within its bounds. The883

time interval is defined by the user. A drawback of this approach concerns long884

steady-state regimes. In this case, important clusters can be removed.885

In algorithms D-FNN [191], GD-FNN [192], GAP-RBF [84], SAFIS [162]886

and SOFNN [123] the removing of a cluster depends on the model output error.887

In D-FNN, an error reduction ratio is introduced to define the contribution of888

a certain local model to the overall output error. If the local model does not889

contribute significantly to the error reduction, the cluster is removed. A similar890

approach is addressed in GD-FNN [192]. Beside an error reduction ratio, a891

sensitivity index is introduced. The clusters are removed according to these two892

values. In SAFIS [162], an estimation of the change in the output error is given893

when the cluster is removed from the model structure. If this value is higher894

than a threshold, the cluster is removed. SOFNN [123] introduces a procedure895

to remove clusters according to the concept of optimal brain surgeon approach896

[81, 124]. This approach is based on the sensitivity of the model output error897

according to the change of local model parameters. If the sensitivity is greater898

than a user defined threshold, the cluster is removed. Very similar mechanisms899
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were introduced in [191] and [192].900

In [66] (NeuralGas), clusters are removed if they were generated k − amax901

iterations before, where k stands for the current iteration, and amax is a user-902

defined threshold.903

In [28, 15] (xTS), clusters are removed based on their support set and age.904

The support set is defined as the number of samples that belongs to a cluster.905

A sample always belongs to the closest cluster. The age of a cluster is defined906

as the ratio between the accumulated time of samples and the current time.907

Clusters are removed according to the ratio between the support set and the908

overall number of samples and age of clusters. The same condition is also used909

in +eTS [20], where the condition of utility is also used. The utility is defined as910

the ratio between the number of cluster activations and the time the cluster was911

added to the model. The cluster is removed when these values differ from the912

average value, where the confidence band is defined by the standard deviation.913

DFKNN [78] removes clusters if their support sets are not larger than a914

minimum value defined. The minimal support set is a user-defined parameter.915

A second condition is based on a time interval in which it is required that at916

least one new sample is within the cluster, otherwise the cluster is removed.917

In EFuNN [94, 93], a cluster is removed regarding the age and the sum918

of cluster activations. The age is defined as the number of samples from the919

creation of the cluster to the current iteration. If the age of the cluster is higher920

than a predefined threshold and its number of activations is less than the age of921

the cluster multiplied by a user defined constant in [0, 1], the cluster is removed.922

The eGNN approach in [116, 118] is closely related.923

In PANFIS [152], clusters are removed when they are inconsequential in924

terms of contributing very little to outputs on past samples and on possible925

future samples when observations grow to infinity. This can be reduced to a926

compact closed analytical form through u-fold numerical integration for any927

arbitrary probability density functions p(x) of the input data manifold.928

In eFuMo [57], the removing mechanism is a modification of that used in929

+eTS. It is based on the ration between the support set Npi , and the age of the930
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cluster, ai. The age of a cluster is defined as ai = k − ki, where k stands for931

the current time instant, and ki is the number of samples from the time instant932

when the i− th cluster was created. The minimal condition for the existence of933

the cluster is934

if Ntrh ≥ Npi(atrh), then remove cluster, (4)

where Ntrh stands for the minimal number of samples in the cluster (the support935

set), atrh is the threshold for the age of the cluster, and Npi(atrh) is the value of936

the support set when it reaches the age threshold atrh. All thresholds are defined937

by the user, but they have some commonly used default values. The condition938

to remove a cluster is given in the form of the ratio between the support set and939

the age of the cluster and is equal to940

Npi
ai

> εNa
1

c

c∑
i=1

Npi
ai

, (5)

where εNa stands for a user-defined constant, which is less than one, and c is the941

number of clusters. All clusters that fulfill this condition remain in the model942

structure, whereas the others are removed.943

In [113], the concept of half-life of a cluster or granule is introduced. Let944

Θi = 2(−ψ(h−hi
a)) (6)

be the activity factor associated to a cluster. The constant ψ is a decay rate, h945

the current time step, and hia the last time step that the cluster was activated.946

Factor Θi decreases exponentially when h increases. The half-life of a cluster947

is the time spent to reduce the factor Θi by half, that is, 1/ψ. Half-life 1/ψ948

is a value useful to remove inactive clusters. Large values of ψ express lower949

tolerance to inactivity and higher privilege of more compact structures. Small950

values of ψ add robustness and prevent catastrophic forgetting. ψ should be set951

in ]0, 1[ to keep model evolution active.952
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4. Advanced Aspects and Methodologies953

4.1. Advanced Architectures for Increased Performance and Representation954

Almost all of the aforementioned E(N)FS approaches employ the classical955

fuzzy model architecture regarding the antecedent space, which is the AND-956

connection of fuzzy sets in the single rules with the usage of a t-norm [101].957

Formally, a rule is thereby defined in the following way:958

Rulei: IF x1 is µi1 AND ... AND xp is µip

THEN yi = fi(~x). (7)

with p the dimensionality of the feature space and µi1, ..., µip linguistic terms959

(such as, e.g., high, intense, weak), formally represented by fuzzy sets [195],960

and fi(~x) the consequent part, which can be a real value, a function or a class961

label. Through the AND-connections, rule activation levels can be achieved,962

which are typically normalized in the inference process and aggregated over all963

rules (through a t-conorm) to achieve a final model output — which is either a964

fuzzy set or already a crisp value, depending on whether a Mamdani-type or a965

Takagi-Sugeno type fuzzy system is applied.966

The AND-connections in (7), when established through t-norms in order to967

achieve a rule activation level, induce axis-parallel rules. This prevents the possi-968

bility to model local correlations between input dimensions accurately and com-969

pactly, as t-norms do not allow arbitrarily rotated rules in the multi-dimensional970

input space. Either more rules are needed for an accurate representation of local971

data or inaccurate representations are obtained. Figure 4 gives a two dimen-972

sional example of this issue.973

Thereby, the authors in [120] proposed the use of generalized versions of974

fuzzy rules in evolving context. These are defined as:975

35



Figure 4: Different representations of a one-dimensional approximation problem by axis-
parallel (conventional) and generalized (arbitrarily rotated) rules. Notice the more compact
(while still accurate) representation of the left-most upwards trend by the generalized rule
(solid ellipsoid)

Rulei: IF ~x IS (about) µi THEN yi = fi(~x). (8)

µi denotes a high-dimensional kernel function, which, in accordance to the basis976

function networks spirit, is given by the multivariate Gaussian distribution:977

µi(~x) = exp(−1

2
(~x− ~ci)TΣ−1

i (~x− ~ci)) (9)

with ~ci the center and Σ−1
i the inverse covariance matrix of the ith rule, al-978

lowing rotation and spread of the rule. This generalized form of fuzzy rules979

has been also successfully used in GS-EFS [140] and PANFIS [152], where spe-980

cific projection concepts have been developed in order to gain an equivalent981

axis-parallel rule base with conventional fuzzy sets, to maintain linguistic inter-982

pretability [195]. In [138], generalized rules have been successfully integrated in983

the all-pairs technique (EFC-AP, see Section 2.2) for better representing rules984

in multi-class classification problems. In [5], generalized rules have been used in985

evolving TS neuro-fuzzy classifiers employing classical single model architecture.986
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An extension of classical EFS architecture has been proposed in [103], which987

defines the consequent of rules as a weighted combination of mercer kernels.988

Therefore, LS-SVM can be applied in order to estimate the weights as support989

vectors in each local region, which may provide more accuracy especially when990

there is intrinsic local nonlinearity.991

In order to address uncertainty contained in data streams (or even in expert992

knowledge) on a second level appearance, e.g., fuzzy data which is influenced993

by noise, [90] proposed an evolving type-2 fuzzy systems approach, termed as994

SEIT2-FNN. Type-2 fuzzy systems were invented by Lotfi Zadeh in 1975 [196]995

for the purpose of modeling the uncertainty in the membership functions of996

usual (type-1) fuzzy sets. Through this so-called footprint of uncertainty (FOU)997

[126], they are thus able to model such occurrences of second level uncertain998

fuzzy data. SEIT2-FNN uses classical interval-valued fuzzy sets, where the999

firing strength of type-2 fuzzy rules serves as motivation for rule and fuzzy1000

set evolution. Thereby, this approach assures ε-completeness with ε being the1001

threshold used for the maximal firing strength. It also embeds a fuzzy set1002

reduction method for strongly overlapping sets. It applies a rule-ordered Kalman1003

filter for consequent learning and an incremental gradient descent algorithm for1004

antecedent learning.1005

Latter, other techniques for evolving type-2 fuzzy systems have been sug-1006

gested in [185] (eT2FIS), in [176] (McIT2FIS), in [157] (eT2RFNN) and in [156]1007

(for classification), which significantly expand the original approach in [90] by1008

several concepts such as active learning for sample selection policies, curse of1009

dimensionality reduction by feature weighting and handling of cyclic drifts.1010

A new variant of neuro-fuzzy architecture has been proposed in [172], which1011

has been termed evolving neo-fuzzy neuronal network (ENFN). ENFN splits1012

the multi-dimensional input space to single uni-variate rules, which therefore1013

reduces error-proneness of the model due to curse of dimensionality effects on1014

structural basis in a natural way (see Section 4.3 below). Even more important,1015

the inference process and the learning is completely independent from the num-1016

ber of inputs; the former just applies the sum of functional activations of each1017
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single rule (thus, over all inputs) to a combined output. The functional activa-1018

tion of a single rule is given by a weighted average of activations of two fuzzy sets1019

more adjacent to the current query sample, where the weights are incrementally1020

learnt from data. New membership functions are created whenever the local1021

error exceeds the mean over the global error plus its standard deviation. ENFN1022

also removes unnecessary membership functions due to inactiveness [132].1023

Multi-model classifiers as discussed in Section 2.2 can also be seen as ad-1024

vanced architectures, contributing to less class imbalance due to class-decomposition1025

and the use of advanced techniques (from preference relation theory) for com-1026

bining the outputs and evolving models as weak classifiers.1027

Furthermore, recently evolving deep (fuzzy) rule-based classifiers have been1028

proposed [26]. They are based on the autonomous multi-model systems archi-1029

tecture (ALMMo) [27] and avoid the limitations of current deep learning neural1030

networks structures, which: i) are usually completely un-interpretable (apart1031

from some hierarchical feature representations with different zooms in the case1032

of context-based image data); and ii) require very high computational efforts in1033

batch off-line training cycles.1034

4.2. Drift Handling for Increased Flexibility1035

In predictive analytics and machine learning, the concept drift means that1036

the statistical properties of either the input or the target variable(s), change1037

over time in unforeseen ways. In particular, drifts either denote changes in the1038

underlying data distribution (input space drift), in the underlying relationship1039

between model inputs and targets (joint drift) or in the prior probabilities of1040

the target class resp. in the distribution of the target vector (target concept1041

drift) — see [99] for a recent comprehensive survey discussing several variants of1042

drifts. Drifts can happen because the system behavior, environmental conditions1043

or process states dynamically change during the online learning process, which1044

makes the (input/output) relations and dependencies contained in and modeled1045

from the old data samples ‘more obsolete’ as time passes.1046

As already pointed out at the beginning of Section 3, evolving modeling1047
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techniques are an adequate methodology to handle drifts in a natural way —1048

especially, when the drift is intense enough (abrupt drifts, shifts), new model1049

components (rules) are typically evolved automatically; such an automatic han-1050

dling within the learning procedure is also referred as passive drift handling [99],1051

which abandons the necessity of detecting drifts explicitly. On the other hand,1052

drifts may also be of lower intensity or of gradual nature [69], which typically1053

deteriorates the local rules and hence overall performance [79].1054

The pioneering study to handle such drift cases is [132]. The idea is in-1055

creasing the flexibility of the parameter updates through forgetting concepts.1056

Forgetting is achieved through exponentially outweighing older samples over1057

time with the use of a factor, whose value can be adapted according to the1058

intensity of a drift, measured with the usage of the concept of rule ages pro-1059

posed in [20]. Forgetting of both, antecedent and consequent parameters in1060

EFS was performed in [132] for achieving increased flexibility (of eTS+ and1061

FLEXFIS) and thus significantly increased performance on several real-world1062

(drifting) data sets. Many other EF(N)S methods also include the idea of for-1063

getting older samples, but typically solely in the consequent parameters when1064

being updated through recursive (fuzzily) weighted least squares (RFWLS) [10]1065

(an exception is the eFuMo approach [57] [197], which also performs forgetting1066

in the antecedent space). The RFWLS technique proposed in [10] is funda-1067

mental in many E(N)FS methods that rely on the update of linear consequent1068

parameters (see [141]).1069

Handling of local drifts, which are drifts that may appear with different1070

intensities in different parts of the feature space (thus affecting different rules1071

with varying intensity) has been considered in [171] — the idea of this approach1072

is that different forgetting factors are used for different rules instead of a global1073

factor. This steers the local level of flexibility of the model. Local forgetting1074

factors are adapted according to the local drift intensity (elicited by a modified1075

variant of the Page-Hinkley test [146]) and the contribution of the rules in1076

previous model errors.1077

Another form of drift is the cyclic drift, where changes in the (input/target)1078
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data distribution may happen at a certain point of time, but latter older dis-1079

tributions are re-visited. ENFS approaches to deal with such drift cases were1080

addressed in [157] [156] using type-2 recurrent (neuro-)fuzzy systems, termed as1081

eT2RFNN. The idea is to prevent re-learning of older local distributions from1082

scratch and thus increase the early significance of the rules.1083

Whenever a drift cannot be explicitly detected nor it implicitly triggers the1084

evolution of a new rule/neuron, a posteriori drift compensation is a promis-1085

ing option in order to (back-)improve the accuracy of the rules. This can be1086

achieved through incremental rule splitting [144]. ‘Blown-up’ rules with high1087

local errors and high volume are split into two smaller ones along the main1088

principal component axis (with the highest eigenvalue).1089

4.3. Curse of Dimensionality and Over-fitting Avoidance1090

High dimensionality of the data stream mining and modeling problem be-1091

comes apparent whenever a larger variety of features and/or system variables1092

are recorded, e.g., in multi-sensor networks, which characterize the dependencies1093

and interrelations contained in the system/problem to be modeled. Depending1094

on the ratio between the number of samples (seen so far) and the number of in-1095

put dimensions, the curse of dimensionality may become apparent, which usually1096

cause significant over-fitting effects [169] and thus affects the whole performance1097

of the model. This is especially the case for models including localization com-1098

ponents (granules) as is the case of E(N)FS (in terms of rules/neuron) [147]1099

[148], because in high-dimensional spaces, someone cannot speak about locality1100

any longer (on which these types of models rely), as all samples are moving to1101

the edges of the joint feature space — see the analysis in Chapter 1 in [82].1102

Therefore, the reduction of the dimensionality is highly desired. In a data-1103

stream modeling context, the goal is ambitious and much more sophisticated1104

than in batch learning, because, as in case of changing/drifting data distribu-1105

tions, also the importance of features for explaining the target may change over1106

time. This may be reflected in the ranks or weights of the features. A first work1107

for performing online dimension reduction in a data stream context has been1108
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proposed in [20], where the contribution of the features in the consequents of1109

the rules is measured in terms of their gradients in the hyper-planes: those fea-1110

tures whose contribution over all rules is negligible can be discarded. Thus, this1111

approach performs a crisp feature selection, but does not respect the possibility1112

that some features may become important again at a later stage, thus should1113

be also reactivated in the model. The same consideration goes to the approach1114

in [153] which extends the approach in [20] by also integrating the contribution1115

of the features in the antecedent space (regarding their significance in the rules1116

premise parts). In [4], online crisp feature selection was extended to a local vari-1117

ant, where for each rule a separate feature (importance) list was incrementally1118

updated. This achieves more flexibility due to a local feature selection charac-1119

teristics, thus features may become differently important in different parts of1120

the feature space, and requires a new design of the fuzzy inference process when1121

predicting new samples.1122

To overcome a crisp selection and to offer feature reactivation, the approach1123

in [134] proposes the incremental learning of feature weights ∈ [0, 1], where a1124

weight close to 1 denotes that the feature is important and a weight close to 01125

that it is unimportant. By updating the features weights with single samples1126

(achieved through an incremental version of Dy and Brodley’s separability crite-1127

rion [58]), slight changes in the weights are achieved over time. They prevent an1128

abrupt inclusion or exclusion of features. Therefore, a feature is able to become1129

reactivated automatically through weight updating, because the model is always1130

learnt on the same whole feature space (thus no input structure changes in the1131

model are needed which requires time-intensive re-training phases). Curse of1132

dimensionality reduction is then achieved i) by integrating the weights in the1133

incremental learning procedure to down-weigh the contributions of unimpor-1134

tant features in rule evolution criteria and parameter update, ii) by integrating1135

the weights in the inference process when producing predictions on new sam-1136

ples to down-weigh the contributions of unimportant features to the final model1137

output and iii) when showing the learnt model to the experts/operators (by1138

simply discarding features with low weights in the antecedents and consequent1139
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parts of the rules). The approach in [134] handles classification problems and1140

designs the incremental feature weighting method for evolving fuzzy classifiers1141

using single-model and all-pairs architectures (see Section 2.2). In [140], the1142

feature weighting concepts have been adopted to the regression case where a re-1143

scaled Mahalanobis distance measure had to be developed to integrate weights1144

in distance calculations consistently for generalized EFS.1145

Another possibility for a smooth input structure change has been proposed1146

in [145] for regression problems with the use of partial least squares (PLS).1147

PLS performs a transformation of the input space into latent variables (LVs)1148

by maximizing the covariance structure between inputs and the target [75].1149

The coordinate axes are turned into a position (achieving latent variables as1150

weighted linear combination of the original ones) that allows to better explain1151

the complexity of the modeling problem. Typically, a lower number of LVs1152

is needed to achieve accurate regression. Scores on the lower number of LVs1153

(projected samples) are used as input in the evolving models. LVs are updated1154

incrementally with new incoming samples. Previous works in [97] [43] and [60]1155

also perform incremental update of the LV space for evolving models, but using1156

unsupervised principal component analysis (PCA) [88].1157

4.4. Uncertainty and Reliability1158

Uncertainty arises during modeling whenever i) either data is affected sig-1159

nificantly by noise or is not dense enough (statistically insignificant), especially1160

at the start of the learning process; and ii) the input by humans (in the form of1161

fuzzy rules) is vague due to limited expertise level or forms of cognitive impair-1162

ments, e.g., distraction, fatigue, boredom, tiredness. Concern with uncertainty1163

is an important aspect especially during the inference process when predict-1164

ing and/or classifying new samples in order to indicate how reliable model and1165

predictions are. For instance, in a classification system, the certainty of the1166

predictions may support/influence the users/operators in a final decision.1167

The pioneering approach for achieving uncertainty in evolving fuzzy modeling1168

for regression problems was proposed in [178]. The approach is deduced from1169
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statistical noise and quantile estimation theory. The idea is to find a lower and1170

an upper fuzzy function for representing a confidence interval, i.e.,1171

f(~x∗k) ≤ f(~x∗k) ≤ f(~x∗k) ∀k ∈ {1, ..., N} (10)

with N the number of data samples seen so far. The main requirement is to1172

define the band to be as narrow as possible and to contain a certain percentage1173

of the data. This is based on the calculation of the expected covariance of the1174

residual between the model output and new data in local regions as modeled by1175

a linear hyper-plane. The following formulas for the local error (jth rule) were1176

obtained in [178] after deductions and reformulations:1177

f
j
(~x∗k) = Ψj(~x

∗
k)lj(~x

∗
k)± tα,Σ(N)−degσ̂

√
(~x∗kΨj(~x∗k))TPj(Ψj(~x∗k)~x∗k) (11)

where tα,Σ(N)−deg stands for the percentile of the t-distribution for 100(1− 2α)1178

percentage confidence interval (default α = 0.025) with Σ(N) − deg degrees of1179

freedom and Pj the inverse Hessian matrix. deg denotes the degrees of freedom1180

in a local model. The symbol σ̂ is the variance of model errors and the first1181

term denotes the prediction of the jth local rule. The sum over all fj ’s before1182

the ± symbol refers to the conventional TS fuzzy model output, with Ψj(.) the1183

normalized membership degree and lj the consequent function of the jth rule.1184

The term after ± provides the output uncertainty for ~x.1185

Another approach to address uncertainty in model outputs has been pro-1186

posed in [110] [111], where fuzzy rule consequents are represented by two terms,1187

a linguistic – containing a fuzzy set (typically of trapezoidal nature) – and a1188

functional – as in the case of TS fuzzy systems. The linguistic term offers a1189

direct fuzzy output which according to the widths of the learned fuzzy sets may1190

reflect more or less uncertainty in the active rules (i.e., those rules which have1191

non-zero or at least ε membership degree). A granular prediction is given by the1192

convex hull of those sets which belong to active rules. The width of the convex1193
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hull can be interpreted as confidence intervals and given as final model output1194

uncertainty. Evolving granular methods were successfully applied to financial1195

time-series forecasting [109], Parkinson’s telemonitoring [116], control of chaotic1196

systems [117], rainfall prediction [115] and autonomous robot navigation [112].1197

Uncertainty in classification problems using evolving fuzzy classifiers has1198

been addressed in [135], see subsequent section. The confidence in predicted1199

class labels is given by a combination of: i) the closeness of the sample to the1200

decision boundary (the closer, the more ambiguous the final classification state-1201

ment); ii) class overlap degrees (the more overlap, the more ambiguous the final1202

class) and iii) the novelty content calculated through the concept of ignorance1203

(the higher is the novelty, the higher is the unreliability in the final class). A1204

confidence vector is delivered additionally to the class label, representing the1205

confidences in all classes. These concepts are also applied for all-pairs classifi-1206

cation: i) by integrating confidence levels of pair-wise classifiers in a preference1207

relation matrix, see Section 2.2); and ii) where the final uncertainty is addition-1208

ally achieved through calculating the difference between the most and second1209

most supported class. It is interesting to notice that novelty content is also1210

implicitly handled in the error bars in [178] (see Eq. (11)) as for samples lying1211

in extrapolation regions, the statistically motivated error bars are wider.1212

Apart from model uncertainty, parameter uncertainty can be an important1213

aspect when deciding whether the model is stable and robust. Especially in the1214

cases of insufficient or poorly distributed data, parameter uncertainty typically1215

increases. Parameter uncertainty in EFS has been represented in [179] and [143]1216

in terms of the use of the Fisher information matrix [63], with the help of some1217

key measures extracted from it. In [179], parameter uncertainty is used for1218

guiding the design of experiments process in an online incremental manner. In1219

[143], it is used for guiding online active sample selection.1220

4.5. Online Active Learning and Design of Experiments1221

Most of the aforementioned ENFS methods require supervision in order to1222

guide the incremental and evolving learning mechanisms into the right direction,1223
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to maintain a predictive performance. This is especially true for the recursive1224

update of consequent parameters and input/output product-space clustering.1225

Alternatively, predictions may be used by the update mechanisms to reinforce1226

the model. However, erroneous and imprecise predictions may spread, sum up1227

over time and deteriorate model performance [168].1228

The problem in today’s industrial systems with increasing complexity is that1229

target values may be costly or even impossible to obtain and measure. For in-1230

stance, in decision support and classification systems, ground truth labels of1231

samples (from a training set, historic data base) have to be gathered by experts1232

or operators to establish reliable and accurate classifiers — which typically re-1233

quire time-intensive annotation and labeling cycles [29] [142]. Within a data1234

stream mining process, this problem becomes even more apparent as experts1235

have to provide a ground truth feedback quickly to meet real-time demands.1236

Therefore, it is important to decrease the number of samples for model up-1237

date using sample selection techniques: annotation feedbacks or measurements1238

for only those samples are required, which are expected to maintain or increase1239

accuracy. This task can be addressed by active learning [170], a technique where1240

the learner itself has control over which samples are used to update the models1241

[46]. However, conventional active learning approaches operate fully in batch1242

mode by iterating multiple times over a data base.1243

To select the most appropriate samples from data streams, single-pass active1244

learning (SP-AL) for evolving fuzzy classifiers has been proposed in [135]. It1245

relies on the concepts of conflict and ignorance [85]. The former addresses the1246

degree of uncertainty in the classifier decision in terms of the class overlaping1247

degree considering the local region where a sample falls within and in terms1248

of the closeness of the sample to the decision boundary. The latter addresses1249

the degree of novelty in the sample. A variant of SP-AL is given in [176] [175],1250

where a meta-cognitive evolving scheme that relies on the concepts of what-to-1251

learn, when-to-learn and how-to-learn is proposed. The what-to-learn aspect1252

is handled by a sample deletion strategy, i.e., a sample is not used for model1253

updates when the knowledge in the sample is similar to that of the model. Meta-1254
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cognitive learning has been further extended in [158] to regression problems1255

(with the use of a fuzzy neural network architecture) and in [155] with the1256

integration of a budget-based selection strategy. Such a budget-based learning1257

was demonstrated to be of great practical usability.1258

In case of regression problems, permanent measurements of the targets can1259

also be costly, e.g. in chemical or manufacturing systems that require manual1260

checking of product quality. Therefore, online active learning for regression has1261

been proposed in [143] for evolving generalized fuzzy systems (see Section 4.1)1262

using GS-EFS, which relies on: i) the novelty of a sample (ignorance); ii) the1263

predicted output uncertainty measured in terms of local errors (see Section 4.4);1264

and iii) the reduction of parameter uncertainty measured by the change in the1265

E-optimality of the Fisher information matrix [63].1266

In summary, it is not only a matter of deciding if targets should be mea-1267

sured/labeled for available samples, but which samples in the input space should1268

be gathered. The model should expand its knowledge or increase significance of1269

its parameters? Techniques from the field of design of experiments (DoE) [62]1270

[70] has been proposed. The pioneering online method for E(N)FS has been1271

proposed in [179]. It relies on a combination of pseudo-Monte Carlo sampling1272

algorithm (PM-CSA) [80] and max-min optimization criterion based on uni-1273

formly generated samples which are satisfying a membership degree criterion1274

for the worst local model.1275

5. Future Directions1276

A variety of methods have been proposed over the last 15 years to guide the1277

development and incremental adaptation of rule-based and neuro-fuzzy models1278

from data streams. Interesting and persuasive practical solutions have been1279

achieved. Nonetheless, propositions, lemmas, theorems and assurance that cer-1280

tain conditions will be fulfilled are still lacking in the field of evolving clustering1281

and evolving neuro-fuzzy and rule-based modeling from data streams. For in-1282

stance, necessary and sufficient conditions to guarantee short term adaptation1283
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and long term survivability still are to be found. This is a major challenge1284

because it will require the formalization of concept shift and concept drift, and1285

to show how they affect search in a hypothesis space from the point of view1286

of simultaneous parameter estimation and structural adaptation. Systematic1287

approaches to deal with the stability-plasticity trade-off to ensure short-term1288

adaptation and long term survivability still are lacking.1289

Missing data are common in real-world applications. They arise due to in-1290

complete observations, transfer problems, malfunction of sensors, incomplete1291

information obtained from experts or on public surveys. The missing data issue1292

in spite of having been extensively investigated in off-line settings, in nonsta-1293

tionary data stream environments it is still an open topic.1294

Further issues that remain unsatisfactorily addressed in the literature con-1295

cerns characterization, design of experimental setups, and construction of work-1296

flows to guide development, performance evaluation, testing, validation, and1297

comparison of algorithms in nonstationary environments. The evolution of1298

rough-set models, Dempster-Shafer models and also aggregation functions are1299

also important topics to expand the current scope of the area. Moreover, a vari-1300

ety of particularities of different applications and evolution aspects in hardware1301

are still to be addressed.1302

6. Conclusion1303

We presented a survey on evolving intelligent systems for regression and clas-1304

sification with emphasis on fuzzy and neuro-fuzzy methods. In-depth analyses1305

of research contributions, especially over the last 15 years, which are funda-1306

mental to the current state-of-the-art of the field were discussed. The objective1307

is guiding the readers to a clear understanding of the past and current chal-1308

lenges and relevant issues in the area. The survey discussed various evolution1309

mechanisms such as adding, removing, merging and splitting clusters and local1310

models in real-time. We highlighted open or partially addressed research direc-1311

tions, which we believe will help future investigations and developments in the1312
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Table .1: List of abbreviations and meanings.

Abbreviation Meaning
GNG Growing Neural Gas
ESOM Evolve Self-organizing Maps
DENFIS Dynamic Evolving Neural-Fuzzy Inference System
FLEXFIS Flexible Fuzzy Inference Systems
GS-EFS Generalized Smart Evolving Fuzzy Systems
EFuNN Evolving Fuzzy Neural Network
D-FNN Dynamic Fuzzy Neural Network
GD-FNN Genetic Dynamic Fuzzy Neural Network
SAFIS Sequential Adaptive Fuzzy Inference System
SCFNN Self-Constructing Fuzzy Neural Network
RAN Resource Allocating Network
GCS Growing Cell Structure
SONFIN Self Constructing Neural Fuzzy Inference Network
eTS Evolving Takagi-Sugeno
DFKNN Dynamic Fuzzy K-Nearest Neighbors
NeuroFAST Neuro Function Activity Structure and Technology
GAP-RBF Growing and Pruning Radial Basis Function
NFCN Neural Fuzzy Control Network
ENFM Evolving Neuro-Fuzzy Model
SOFNN Self Organizing Fuzzy Neural Network
SOFMLS Online Self-Organizing Fuzzy Modified Least-Squares Network
IBeM Interval-Based Evolving Modeling
FBeM Fuzzy set Based Evolving Modeling
eGNN Evolving Granular Neural Networks
eFuMO Evolving Fuzzy Model
RDE Recursive Density Estimation
GANFIS Generalized Adaptive Neuro-Fuzzy Inference Systems
NFCN Neural Fuzzy Control Network
PANFIS Parsimonious Network based on Fuzzy Inference System
RIVMcSFNN Recurrent Interval-Valued Metacognitive Scaffolding Fuzzy Neural Network
eT2RFNN Evolving Type-2 Recurrent Fuzzy Neural Network
SEIT2-FNN Self-evolving Interval Type-2 Fuzzy Neural Network
ENFN Evolving Neo-Fuzzy Neural Network
RBF Radial Basis Function models
ANFIS Adaptive Network-based Fuzzy Inference System
ESOM Evolving Self-Organizing Map
ID3 Iterative Dichotomizer 3
ID4 Iterative Dichotomizer 4
ID5R Incremental Decision Tree
LaSVM Online Support Vector Machine
AnYa Angelov and Yager system
TEDAClass Typically and Eccentricity based Data Analytics Classifier
TEDA Typically and Eccentricity based Data Analytics
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Table .2: List of abbreviations and meanings (continuation)

Abbreviation Meaning
EFC-AP Evolving Fuzzy Classifier using All-Pairs Technique
ALMMo Autonomous Multi-Model Systems Architecture
pClass Parsimonious Classifier
pEnsemble Parsimonious Ensemble
McIT2FIS Meta-cognitive Interval Type-2 Neuro-fuzzy Inference System
MSAFIS Modified Sequential Adaptive Fuzzy Inference System
eGM Evolving Granulation Method
SOM Self-Organizing Maps
ART Adaptive Resonance Theory
ECM Evolving Clustering Method
GK Gustafson-Kessel clustering
eGKL Evolving Gustafson-Kessel Like
eGKPCM Evolving Gustafson-Kessel Possibilistic C-Means clustering
ELM Evolving Local Mean
ARTMAP Adaptive Resonance Theory
BIC Bayesian Information Criterion
MSE Mean Square Error
GRBF Generalized Radial Basis Function
EBF Ellipsoidal Basis Function
SVM Support Vector Machine
KNN K-Nearest Neighbor
eClass Evolving Classifier
FRB Fuzzy Rule Based
MIMO Multi-Input Multi-Output
SGD Stable Gradient Descent Algorithm
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