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José Ángel Velasco Rodŕıguez
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.

“All we have to do is decide

what to do with the time

that is given to us”
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Abstract

One of the European Union Targets was to replace at least 80% of all traditional energy

meters with electronic smart meters by 2020. However, by the end of 2020, the European

region (EU 27 including the UK) had installed no more than 150 million smart electricity

meters, representing a penetration rate of 50% for smart meters. By 2026, It is expected

that there will be more than 227 million smart meters in households due to the updated

planning and target numbers, which will affect many European markets, including western

and northern Europe. This scenario would contribute to the general purpose of building

a more sustainable distribution system for the future.

This thesis contributes to the field of power losses estimation and optimization in

low-voltage (LV) smart grids in large-scale distribution areas. To contextualize the im-

portance of the research, it has been necessary to explain the unbalanced nature of low

voltage distribution networks where there is a huge deployment of smart meter rollout,

and there is also uncertainty related to renewable energy generation. Main results of the

thesis have been applied in two smart grid research projects: the national project OSIRIS

(Optimización de la Supervisión Inteligente de la Red de Distribución) and the European

project IDE4L (Ideal Grid For All).

Smart metering infrastructure allows distributor system operators (DSOs) to have de-

tailed information about the customers energy consumption or generation. Smart meters

measure the active and reactive energy consumption/generation of customers using dif-

ferent discrete time resolutions which range from 15-60 min. A large-scale smart meter

rollout allows service providers to gain information about the energy consumed and pro-

duced by each customer in near-real time. This knowledge can be used to compute the
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aggregated network power losses at any given time. In this case, network power losses

are calculated by means of customers’ smart meters measurements, in terms of both ac-

tive and reactive energy consumption, and by the energy measured by the smart meter

supervisor located at the secondary substation (SS).

The problem of network losses estimation becomes more challenging as a results of

the existence of not-technical losses due to electricity fraud or smart meter measurements

anomalous (null or extremely high) or even because there are customers’ smart meters

that can be out of service.

One of the differential keys of LV smart grids is the presence of single-phase loads

and unbalanced operation, which makes it necessary to adopt a complete three-phase

model of the LV distribution network to calculate the real value of the power losses. This

scenario makes the process of power loss estimation a computationally intensive problem.

The challenge is even greater when estimating the power losses of large-scale distribution

networks, composed of thousands of SSs.

In recent years, environmental concerns have led to the increasing integration of a con-

siderable number of distributed energy resources (DERs) into LV smart grids. This fact

prompts DSOs and regulators to provide the maximum energy efficiency in their networks

(i.e., the smallest power loss values) and maximum sustainable energy consumption. De-

tailed understanding of the network’s behavior in terms of power losses and the use of

electricity is necessary to achieve this energy efficiency.

However, the above scenario presents some drawbacks. The integration of DERs units,

such as photovoltaic (PV) panels, into distribution networks can produce an increment

of network power losses if the DERs units are not optimally located, coordinated, or con-

trolled. Additionally, the network can experience technical contingencies such as cable’s

overloads and nodal over-voltages or can lead to an inefficient system operation due to

high energy losses or cables that exceed thermal limits. Moreover, there is a great un-

certainty associated with the distributed power generation from PVs because its energy

generation depend on weather conditions, including ambient temperature and solar irra-

diance, which are highly intermittent and fluctuating. Uncertainty is also present in some

loads with stochastic behavior, such as plug-in electric vehicles (PEV), which adds an



uncertainty layer and makes their optimal integration more complex.

Therefore, DSOs require advanced methods to estimate power losses in unbalanced

large-scale LV smart grids under uncertain situations. Such estimations would facilitate

the deployment of policies and practices that lead to a safe and efficient integration of

DERs in the form of flexibility mechanisms. In this context, flexibility mechanisms are

essential to achieve optimal operation conditions under extreme uncertainty. Flexibility

mechanisms can be deployed to tackle the imbalance between generation and demand

that results from the uncertainty that is latent in LV smart grids.

These flexibility mechanisms are based on modifying the normal power consumption

(for the demand side) or power generation (for the generation side), according to a flexi-

bility scheduling at the request of the network operator.

In summary, DSOs face the challenge of managing network losses over large geograph-

ical areas where there are hundreds of secondary substations and thousands of feeders,

with multiple customers and an ever-increasing presence of renewable DERs. Power losses

estimation is thus paramount to improve network energy efficiency in the context of the

European Union energy policies. This situation is complicated by the unbalanced opera-

tion of those networks and the presence of uncertainty. To address these challenges, this

thesis focuses on the following objectives:

1. Power losses estimation in unbalanced LV smart grids under uncertainty.

2. Power losses estimation in unbalanced LV smart grids in large areas with a presence

of DERs.

3. Flexibility scheduling for power losses minimization in unbalanced smart grids under

uncertainty.

The mentioned objectives are achieved by taking advantage of smart metering infras-

tructures, machine and deep learning models and mathematical programming techniques

which allows DSOs to reduce their total power losses within the distribution network.

This approach entails using flexibility mechanisms to operate the distribution network

optimally and enhance the load management and DG expansion planning.



According to the objectives identified earlier, the main contributions of this thesis are

the following:

1. Power losses estimation in unbalanced LV smart grids under uncertainty conditions.

An optimization-based procedure to estimate load consumption of non-telemetered

customers.

A Markov chain-based process to estimate intra-hour load demand for data

having a low resolution and for non-telemetered customers or customers which

smart meters provide incorrect measurements.

2. Power losses estimation in unbalanced LV smart grids in large-scale areas with a

presence of DERs.

A data mining approach to reduce a high-dimensionality dataset in smart grids

to yield a reduced set of relevant features.

A clustering process to obtain representative feeders within a large-scale dis-

tribution area of smart grids.

A deep learning-based power losses estimator for large-scale LV smart grids.

The method is formulated as a deep neural network that uses as input features

the power load demand and power generation of a set of representative feeders.

The model gives, as output, the power losses of the whole area.

3. Flexibility scheduling for power losses minimization in unbalanced smart grids under

uncertainty.

A robust optimization model for the flexibility scheduling optimization model

for unbalanced smart grids with distributed resources, such as PV panels and

PEV devices.



Nomenclature

Variables expressed in upper case are expressed in real magnitude (A, kV, kW, kVA or

KVAr) meanwhile variables expressed in lower case are in per unit system. Variables with

brackets [U ] denotes a matrix meanwhile bold letters u denotes vectors. Magnitudes with

a flat bar on top ū = Re{u} + jIm{u} denotes a complex number. Note that the flat

bar used for mean value is different u. Subindex are used to indicate the belonging of a

variable to a specific set uk,∀k ∈ Ωk. Electrical magnitudes of voltage and current as well

as other time series has a temporal dependency, but to deliver a more readable notation,

that dependency is omitted in certain equations in this thesis in the following way: uk(t)

→ uk. Latin letters (x̄, s2, rx,y, . . . , etc.) are used for sampled variables while greek letters

(µ, σ2, ρx,y, . . . , etc.) for the statistics of the whole population.

As reference power SB is used the rating of the secondary substation transformer

(MV/LV), meanwhile the reference voltage UB it set to the nominal line-to-line voltage

(400V ). For the rest of principal electrical magnitudes, the reference current is IB =

SB/
√
3UB meanwhile the reference impedance is ZB = U2

B/SB (for star connection).

Acronyms

AI Artificial Intelligence

AP Aggregated Patterns

APE Absolute Percentage Error

AR Auto-Regressive

AIC Akaike Information Criteria

ARIMA Auto-Regressive Integrated Moving Average

ANN Artificial Neural Network
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σ2
y Variance of target variable y

ϵ Prediction error

ϵb Bias error

ϵv Variance error

ϵi Irreducible error

p̃p(k,•,t) Estimated power consumption/generation of customer (k) at time (t)

µp
(k,•,t) Expected value of power consumption/generation of customer (k) at time (t)

σp
(k,•,t) Dispersion of power consumption/generation of customer (k) at time (t)

ϕ(•) Kernel function for KDE method

πω Probability of scenario ω

χ∗
ω Optimal solution of scenario ω in stochastic optimization

χ∗
d Optimal solution of the deterministic optimization problem

dω,ω′ Distance between each pair of PDFs of scenarios ω and ω
′

Φu Uncertainty set for uncertainty vector parameter u

u Expected value for uncertainty vector parameter u

ūpk Phase voltage (complex) of node (k) and phase (p)
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īpk,j Complex current flow from node (k) to node (j) in phase (p)

s̄p,cali,k Calculated complex apparent power injection at node (k) in phase (p)

s̄p,spi,k Specified complex apparent power injection at node (k) in phase (p)

s̄pg,k Specified complex apparent power generation at node (k) in phase (p)

s̄pd,k Specified complex apparent power demand at node (k) in phase (p)

pp,spi,k Specified active power injection at node (k) in phase (p)

ppg,k Active power generation at node (k) in phase (p)

ppd,k Active power demand at node (k) in phase (p)

s̄pk,j Complex apparent power flow from node (k) to node (j) in phase (p)

ppk,j Active power flow from node (k) to node (j) in phase (p)

X State vector variable of the unbalanced power flow

ip,rek,j Real part of the current in phase (p) from node (k) to node (j)

ip,imk,j Imaginary part of the current in phase (p) from node (k) to node (j)

ppk,PEV,t Active power demand of PEV unit in node (k) phase (p) at time (t)

Cr Cluster Centroids

D(cr, ci) Euclidean distance between cluster centroids cr and ci

S(ci) Silhouette of the representative feeder associated to cluster centroid ci

αr Average Euclidean distance factor of representative feeder (r)

h Number of hidden layers

nk Number of neurons of the hidden layer (k)

Xd,r Scaled daily demand RP vector

Xg,r Scaled daily generation RP vector

pg,r(t) Daily generation RP vector of the feeder (r) at time (t)

pd,r(t) Daily demand RP vector of the feeder (r) at time (t)

zk Signal of the kth neuron

wj,k Edge weight that connects neuron jth and neuron kth



xxv

bk Bias factor of the kth neuron

ok Output of the kth neuron

L Loss function for the target DNN

Λ Accuracy of the supervised machine learning model



xxvi NOMENCLATURE



List of Figures

1.1 Urban layout of an LV smart grid . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Four-wires model in a simple-feeder . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Unbalance operation of a four-wires model in a simple-feeder . . . . . . . . 7

2.1 Low-voltage feeder illustration . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Low-voltage simple feeder with DER devices . . . . . . . . . . . . . . . . . 17

2.3 Low-voltage feeder with non-technical power losses . . . . . . . . . . . . . 19

2.4 Trade-off between bias and variance . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Ensemble method procedure illustration . . . . . . . . . . . . . . . . . . . 31

2.6 Sampling process for Monte Carlo simulation . . . . . . . . . . . . . . . . . 48

2.7 Distribution of the optimal function in probabilistic optimization . . . . . . 50

2.8 Scenarios tree in stochastic programming . . . . . . . . . . . . . . . . . . . 52

3.1 Low-voltage smart grid three-phase graph . . . . . . . . . . . . . . . . . . 60

3.2 Section of four-wires feeder section model . . . . . . . . . . . . . . . . . . . 61

3.3 Network model injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Operation of heating/cooling systems . . . . . . . . . . . . . . . . . . . . . 72

3.5 PV Inverter limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 PEV charging load pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 ECT curve estimated for non-telemetered customers . . . . . . . . . . . . . 78

3.8 WEC profile for non-telemetered customers . . . . . . . . . . . . . . . . . . 79

3.9 OSIRIS real low-voltage smart grid under study . . . . . . . . . . . . . . . 83

3.10 Communications layer illustration . . . . . . . . . . . . . . . . . . . . . . . 84

xxvii



xxviii LIST OF FIGURES

3.11 Hourly load demand histograms . . . . . . . . . . . . . . . . . . . . . . . . 85

3.12 PDFs and CDFs obtained for hourly load demand . . . . . . . . . . . . . . 86

3.13 Daily consumption tendency and hourly load demand . . . . . . . . . . . . 87

3.14 Intra-hour high-resolution load demand realisations . . . . . . . . . . . . . 88

3.15 Power losses box-plots and PDFs . . . . . . . . . . . . . . . . . . . . . . . 89

3.16 Power losses Montecarlo simulation . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Characterisation of the spatial location of the DG units along the feeder . . 97

4.2 Feeders’ cluster representation . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Deep neural network-based power losses model proposed . . . . . . . . . . 108

4.4 Schematic process for obtaining the daily representative patterns . . . . . . 111

4.5 Data communication between sequential layers . . . . . . . . . . . . . . . . 112

4.6 Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7 DNN computation example . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.8 Output power losses set calculation throw unbalance power flow . . . . . . 121

4.9 K-Fold Cross validation and hyper-parameter tunning procedure . . . . . . 127

4.10 PDFs and histograms of the feeders’ characteristics . . . . . . . . . . . . . 131

4.11 Correlation matrix of the feeder’s characteristics . . . . . . . . . . . . . . . 133

4.12 Boxplots of the normalised feeder’s characteristics . . . . . . . . . . . . . . 135

4.13 Variability captured by PCA analysis . . . . . . . . . . . . . . . . . . . . . 136

4.14 Selection of the optimal number of clusters . . . . . . . . . . . . . . . . . . 137

4.15 Feeder’s clustering results . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.16 Aggregated patterns combination for power losses estimation . . . . . . . . 139

4.17 Training data for the deep learning losses model . . . . . . . . . . . . . . . 140

4.18 Final architecture of the DNN model . . . . . . . . . . . . . . . . . . . . . 142

4.19 Active power losses estimation results on one daily basis . . . . . . . . . . 144

4.20 Power losses estimation at large-scale comparison . . . . . . . . . . . . . . 145

5.1 Prosumer with triplet BES-PV-PEV and energy flows . . . . . . . . . . . . 150

5.2 PV power production uncertainty . . . . . . . . . . . . . . . . . . . . . . . 151

5.3 Aggregated PEV charging uncertainty model . . . . . . . . . . . . . . . . . 152



LIST OF FIGURES xxix

5.4 European low-voltage test feeder topology representation . . . . . . . . . . 166

5.5 Aggregated customers load demand expected values . . . . . . . . . . . . . 167

5.6 PV Generation plot with uncertainty box . . . . . . . . . . . . . . . . . . . 168

5.7 PEV charging pattern duration and battery capacity scatterplot . . . . . . 169

5.8 PEV charging pattern expected value and uncertainty box . . . . . . . . . 170

5.9 Power losses of the network per phase without flexibility . . . . . . . . . . 171

5.10 Max. phase current magnitude without flexibility schedule . . . . . . . . . 172

5.11 Max. phase voltage magnitude without flexibility schedule . . . . . . . . . 173

5.12 Aggregated flexibility scheduling results . . . . . . . . . . . . . . . . . . . . 176

5.13 Flexibility scheduling comparison . . . . . . . . . . . . . . . . . . . . . . . 176

5.14 Max. phase voltage magnitude with flexibility schedule . . . . . . . . . . . 177

5.15 Maximum phase current with flexibility schedule . . . . . . . . . . . . . . . 178



xxx LIST OF FIGURES



List of Tables

1.1 Smart meter: share by type among networks studied in the OSIRIS project 3

1.2 Underground impedance reference values . . . . . . . . . . . . . . . . . . . 4

1.3 Aerial impedance reference values . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Smart Meter types in terms of measurement precision and phase connection 16

2.2 Features based on network operation for power losses estimation . . . . . . 24

2.3 Power losses estimation methods comparison . . . . . . . . . . . . . . . . . 44

3.1 Type of buses for power flow analysis . . . . . . . . . . . . . . . . . . . . . 69

3.2 Example of time series smart meter measurements . . . . . . . . . . . . . . 71

4.1 Low-voltage network properties for representative feeder’s clustering . . . . 95

4.2 Clustering techniques and performance comparison . . . . . . . . . . . . . 103

4.3 Candidate values of the hyper-parameters’ model for K-fold process. . . . 126

4.4 Case study data for large-scale power losses estimation . . . . . . . . . . . 129

4.5 Euclidean distance factors for feeder’s clustering . . . . . . . . . . . . . . . 136

4.6 Synthetic demand and generation APs formulas . . . . . . . . . . . . . . . 139

4.7 Hyper-parameter combinations with the highest accuracy for each split . . 142

5.1 Principal unbalanced network metrics without flexibility . . . . . . . . . . 167

5.2 Hourly prices for the flexibility scheduling . . . . . . . . . . . . . . . . . . 170

5.3 Flexibility results comparison . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.1 Data for the modified IEEE European LV test feeder . . . . . . . . . . . . 186

A.2 OSIRIS case study network data . . . . . . . . . . . . . . . . . . . . . . . . 187

xxxi



xxxii LIST OF TABLES



Contents

Acknowledgements vi

Published and Submitted Contents vii

Abstract xv

Nomenclature xv

List of Figures xxix

List of Tables xxxi

Contents xxxvi

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Technical and Non-Technical Losses . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Power Losses Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Methods Based on Power Flow & Analytical Equations . . . . . . . 21

2.3.2 Machine Learning-based methods . . . . . . . . . . . . . . . . . . . 23

xxxiii



xxxiv CONTENTS

2.3.3 Methods comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Optimization Techniques for Power Losses Minimisation . . . . . . . . . . 45

2.4.1 Probabilistic Optimisation . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.2 Stochastic Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.3 Robust Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Losses Estimation in Low Voltage Smart Grids 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Network Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Network Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Power Losses Equations . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.2 Customers Load Demand . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.3 Distributed Energy Resources (DERs) . . . . . . . . . . . . . . . . 72

3.3.4 Load Demand Modelling: Non-Telemetered Customers . . . . . . . 76

3.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Losses Estimation in Large-Scale Distribution Areas 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Data Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Features Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1 First Principal Component . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.2 Second Principal Component . . . . . . . . . . . . . . . . . . . . . 100

4.5.3 Subsequent Principal Components . . . . . . . . . . . . . . . . . . . 101

4.6 Feeder’s Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.1 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS xxxv

4.6.2 Clustering Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6.3 Representative Feeder’s Selection . . . . . . . . . . . . . . . . . . . 106

4.7 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7.2 Model Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7.3 Model Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.8 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.8.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5 Power Losses Minimisation in Smart Grids 147

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Flexibility Services for Power Losses Minimisation . . . . . . . . . . . . . . 148

5.2.1 Prosumer Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2.2 DERs Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2.3 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.2 Power Network Equations . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.3 Flexibility Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.4 Uncertainty Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.5 Statutory Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3.6 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4.2 Initial Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4.3 Methods Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 172



xxxvi CONTENTS

5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.5 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6 Conclusions 181

6.1 Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Appendix 183

A Network Data 185

References 188



Chapter 1

Introduction

1.1 Introduction

A low voltage (LV) smart grid is essentially a distribution network, which consists of a sec-

ondary substation (SS) with a transformer that steps down the voltage from the medium

voltage (MV) side (20 kV) to the LV side (400 V); it also has a set of feeders (individual

lines) that provide power supply to residential, commercial or industrial customers. The

feeders can be underground or aerial. A LV smart grid is characterized by the existence

of an advanced metering infrastructure (AMI), which provides a bidirectional channel of

communication among smart meters. The data collected by smart meters can be used

to improve distribution network operations such as network balancing, DR and energy

flexibility [McKenna et al., 2012].

LV distribution networks have evolved to smart grids due to the incorporation of a

communication layer, which is composed by the installation of the smart meters and

their associated infrastructure - known as ”smart metering infrastructure”. The vast

rollout of these infrastructures that has taken place in many European countries opens

new possibilities to gather precise information about the energy consumed by telemetered

customers and the power injected from DG units. This information can help to mitigate

the obstacles mentioned in [López et al., 2015].

Nonetheless, this deployment has not been completed in some LV distribution areas.

At present, it is common to find a high proportion of non-telemetered customers with

1
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contractual power above 15 kW [Nijhuis et al., 2017].

Smart metering infrastructure has become an essential aspect of the successful op-

eration of policies and practices to improve energy efficiency, such as demand response

(DR) programs for load flexibility. These infrastructures represent a bidirectional com-

munication channel between consumers who participate in the DR program and thus offer

demand flexibility. With this layer of smart communication, the LV distribution network

has been transformed into a smart grid. End users can become active users in the grid

and provide flexibility through modifying their energy consumption pattern.

The massive rollout of smart meters carried out by DSOs in distribution networks in

recent years has contributed to the digitalization of these networks. The global result has

been a better understanding of the customers’ load demands and an improved network ob-

servability. Nonetheless, considerable uncertainty regarding customers’ load demands still

remain, adding uncertainty in the network operations. This uncertainty is due to several

factors, such as smart meters’ incorrect measurements; the presence of non-telemetered

customers, especially large ones; and energy fraud, among other issues.

Smart grids and distribution networks have a radial topology, with a unique supply

point which corresponds to the secondary substation. From the secondary substation, one

or more feeders emerge and supply customers in a small area - less than a few kilometers.

The topology usually follows the urban layout of the streets in the case of residential and

commercial distribution areas, and in most cases, the feeder cables are underground.

In the case of an industrial or rural area, the feeders can adopt the aerial type, which is

either fixed in the walls of buildings or are routed through poles [Short, 2004]. This radial

topology has important consequences for the operation of the system since it determines

the capacity of the network to inject energy from customers to the network. The fact

that most networks are underground means that network reconfiguration is not possible

for this type of topology.

Low-voltage distribution networks are characterized by an unbalanced operation be-

cause the customers’ connections are mainly single-phase. These customers correspond

with the category of smart meter type 5, which comprises the largest fraction of most

LV distribution networks. Table 1.1 indicates the share of each type of smart meter in
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Figure 1.1: Urban layout of an LV smart grid

the networks studied in the OSIRIS project [UC3M et al., 2017] and the classification of

smart meters applied in the Spanish LV distribution networks. As customers are mainly

single-phase, the power demand is not uniformly spread between the three phases of the

network [Short, 2004].

Table 1.1: Smart meter: share by type among networks studied in the OSIRIS project

[UC3M et al., 2017]

SM Power contracted Share

Type 5 Pctd ≤ 5 kW 74.21 %

Type 5 Pctd ≤ 15 kW 95.90 %

Type 4 Pctd ≤ 43.5 kW 99.35 %

Also the condition is unbalanced since it no possible to balance in real-time the power

consumption in each phase neither the power injections coming from distributed energy

resources.

Therefore, a total quantity of active power injected in a given network node P can

be distributed in each phase, as indicated in (1.5)-(1.7), where xeq indicates the balance

between the total power injection between the phases, so that if the balance is xeq =
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1/3, the total power injected is equally divided among the three phases and the operation

results in a balanced condition.

However, if the balance results in a different quantity, xeq ̸= 1/3, the operation results

in an unbalanced condition’s and here, so the power total injected is not equally distributed

among phases. The unbalanced operation has consequences in terms of the power flow

dispatch between phases and the resulting power losses.

We consider a three-wire model for a single-feeder LV distribution network, illustrated

in Fig. 1.2. Three different loads are connected, one to each phase of the network. The

total power injected in each phase is modified from 0 to 1, in steps of 0.1. For each step,

the power flow equations were calculated to obtain the power loss for each phase. A total

power injection (consumption) of 100 kW with a unitary power factor was considered for a

1000-m single-feeder line. Nominal line-to-line voltage was fixed at 400 V and used as the

reference voltage, and a reference power of 100 kVA was used. An aluminum underground

conductor with a cross-section of 240 mm2 (Table 1.3 and Table 1.2) was considered for

the phases, and a conductor of 150 mm2 was considered for the neutral cable.

Table 1.2: Underground impedance reference values (cable Al XZ1 0.6/1kV)

[Union Fenosa Distribucion, 2011b]

Cross cable section

S (mm2)

Resistance r 20◦C

(Ω/km)

Resistance r 90◦C

(Ω/km)

Reactance x (Ω/km)

50 0.641 0.821 0.093

95 0.320 0.410 0.083

150 (AS) 0.206 0.264 0.099

240 0.125 0.160 0.079

240 (AS) 0.125 0.160 0.093

To consider Cooper (Cu) based conductors, the resistance can be calculated using the

electrical resistivity and the cross section as follow:

rCu,90◦ = ρCu,90◦ · S (1.1)
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Table 1.3: Aerial impedance reference values (cable Al RZ 0.6/1kV)

[Union Fenosa Distribucion, 2011b]

Cross cable section (S) Resistance r50
◦C Reactance x

50 mm2 0.718 Ω/km 0.1 Ω/km

95 mm2 0.359 Ω/km 0.1 Ω/km

150 mm2 0.231 Ω/km 0.1 Ω/km

240 mm2 - 0.1 Ω/km

Where:

ρCu,90◦ = ρCu,20◦ · (1 + αCu · (90◦ − 20◦)) (1.2)

ρCu,20◦ = 1/58 Ωmm2/m (1.3)

αCu = 0.00393 (1.4)

The results are indicated in Fig. 1.3, where in the upper plot, is indicated the load

fraction (in per unit) assigned to each phase for each balanced faction xeq. Note that for

xeq = 0.5 the operation of the single-feeder is balanced and the three phases have the

same power assignation. In the middle plot is shown the total power losses produced in

each phase for each balance fraction considered. Note that the extreme situations xeq = 0

and xeq = 1 leads to the maximum power losses in phases b and c respectively (since

phase a is considered always 1/3 of the total amount of load to be distributed). Finally,

in the lower plot is hosted the total power losses of the network which include the power

losses associated to the power flow in the three phases as well as the power flowing in the

neutral cable. It can be noted that for the equilibrium point xeq = 0.5, exists a minimum

of the total power losses. This is motivated by the fact that if the system is balanced,

the current flowing in the phases results in a lower magnitude compared to unbalanced

condition. This change affects dramatically to the power losses values since the calculation

is proportional to the square of the current.
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Figure 1.2: Four-wires model in a simple-feeder

pai =p
a
g − pad = P · 1/3 (1.5)

pbi =p
b
g − pbd = P · 2/3 · (1− xeq); xeq ∈ (0, 1) (1.6)

pci =p
c
g − pcd = P · 2/3 · (xeq); xeq ∈ (0, 1) (1.7)

1.2 Motivation

In recent years, LV distribution systems have experienced a vast rollout and deployment of

smart metering systems and increased integration of distributed energy resources (DERs)

such as Photovoltaic (PV) panels, plug-in electric vehicles (PEV) and battery energy

systems (BES) into the network. These aspects pose a challenge for the operation of

the system due to the increase of power losses and the possible technical contingencies,

such as overloading and over-voltages, if DERs are not properly allocated and integrated.

Moreover, there is much uncertainty associated with load demand variation of the power

generation from DERS. Nonetheless, environmental concerns require DSOs and regulators
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to provide maximal energy efficiency in the network, with the least possible power loss

values, as well as maximal sustainable energy consumption.

This produces a trade-off, because if renewable-based resources are not properly inte-

grated, their operation can increase the power losses. Therefore, DSOs require advanced

methods to estimate the power losses levels in large-scale LV smart grids under uncertain

and unbalanced situations. Such information can facilitate the deployment of policies

and practices that would lead to the safe and efficient integration of DERs in the form of

flexibility mechanisms.

1.3 Objectives

This thesis contributes to the field of power loss estimation and optimization for LV smart

grids in large-scale distribution areas. The main objectives of the thesis are the following:

1. Power losses estimation in unbalanced LV smart grids under uncertainty.

2. Power losses estimation in unbalanced LV smart grids in large areas with a presence

of DERs.
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3. Flexibility scheduling for power losses minimization in unbalanced smart grids under

uncertainty.

The above objectives can be achieved by taking advantage of smart metering infras-

tructures, machine learning models and mathematical programming. The fulfillment of

such objectives improves the knowledge about the energy lost in distribution networks.

This information also provides DSOs with operational tools to manage their power losses

in the whole distribution network through flexibility mechanisms.

1.4 Thesis Organisation

This document is organised in ten chapters as follows:

• Chapter 1 correspond with this introductory chapter where a background to the

research study is presented as well as thesis motivation, objectives and organisation.

• Chapter 2 presents a succinct literature review of the unbalanced low-voltage smart

grids topic tackled, taking particular care of the power losses estimation and the

power losses optimisation. The chapter include the state-of-the-art in power losses

estimation in unbalanced low-voltage smart grids as well as the optimization tech-

niques used in such networks.

• Chapter 3 presents the power losses estimation for unbalance low-voltage smart

grids, including load demand uncertainty characterisation, smart meter data han-

dling (smart metering data infrastructure, issues related to the data accuracy, qual-

ity and resolution) as well as non-telemetered customers. Additionally presents an

stochastic power losses analysis for non-telemetered customers based on a Markov

process model.

• Chapter 4 presents a two-stage deep learning-based power losses estimation model

for large-scale unbalanced low-voltage smart grids under uncertainty and with pres-

ence of distributed generation. A case study with numerical results is provided,

including a clustering process to select the most representative feeders from the

distribution area.
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• Chapter 5 presents a robust flexibility scheduling model for unbalanced smart grids

under uncertainty. The model addressed the load flexibility scheduling considering

demand response as a mechanism in the presence of distributed energy resources.

• Chapter 6 brings the thesis to a close summarising the overall conclusions and key

findings of the research conducted, to outline the direction for further research work.
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Chapter 2

Literature Review

2.1 Introduction

Traditionally, low-voltage distribution system has been operated with radial topologies

with a unique supply point (the SS), consequently, the power flow direction is defined from

the SS to each customer connection point. This operation mode makes that the energy

flow in one direction, in what it is known as the passive mode of a network. In that

situation, in a simple low-voltage feeder (Fig. 2.1) with smart meters at the customer’s

installation as well as at the SS (smart meter defined as supervisor) it could be expected

that active losses at certain time period in a low-voltage feeder (PLOSS) can be calculated

by adding up all active load demand imported by the customers (PD) as indicated in (2.1)

where (ΩC) is the set of customers connected to a feeder and connected to the different

phases {a, b, c}, and subtract them from the imported active power measured at the SS

smart meter (P S
IMP ) as indicated in (2.2).

Although the power losses of a specific feeder represent a low quantity (in the absence

of NTLs and massive presence of DERs) it may vary around 3% of the power delivered

to customers, when it comes to the power losses of a large-scale distribution area (>1000

feeders) the quantity of energy lost becomes a considerable amount in terms of energy

efficiency. Is indeed in this situation when it becomes interesting the power losses esti-

mation, because a better knowledge of how and where the energy is lost, contributes to

a better deployment of polices and practices that lead to higher rated energy efficiency

11
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[Usman et al., 2018]. Regarding this, a large distribution area could easily be composed of

hundreds of secondary substations and thousands of distribution feeders. Each feeder be-

longing to that area has different topological characteristics (such as cross section, length,

overhead/underground configuration) as well as different levels of DG presence, smart

meters coverage, voltage unbalance as well as load demand.

PD =
∑
k∈ΩC

∑
p∈{a,b,c}

P k,p
d (2.1)

PLOSS = P S
IMP − PD (2.2)

C-1 C-3

C-2

Supervisor
Meter

7 kW

3 kW 3 kW

4 kW

10 kW 3 kW

Smart
Meter

 (+0.3 kW)  (+0.2kW)  (+0.09kW)

Figure 2.1: Low-voltage feeder illustration

In terms of energy, the energy losses during a time period (τ) can also be calculated

as the difference between the energy imported to the network in the period of time (ES
D,τ )

and the aggregation of the energy consumed by all of the customers k ∈ ΩC supplied in

the same time (Ek
D,τ ).

ELOSS,τ = EIMP,τ − ED,τ = EIMP,τ −
∑
k∈ΩC

Ek
D,τ (2.3)

In this context, total system losses indicate how effectively and efficiently a distribution

system is delivering power to those customers.
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Therefore, at first sight, total system losses are the difference between the delivered

power to the system and the power consumed by customers. This approach leads to cal-

culate the balance between the energy delivered by the SS and the total energy registered

by customers smart meters.

It can be seen that smart meters data resolution and its mapping to the grid topology

constitutes a great influence in the accuracy of the power losses calculation. Feeder mon-

itoring produces high value information for low-voltage grid operation and maintenance

providing online updated network topology.

In Fig. 2.1 is described that in normal operating conditions (14:00 PM), customers 1

and 3 (C-1 and C-3, respectively) are demanding 3 kW and customer 2 (C-2) is demanding

4 kW (with unitary power factor all of them). In this situation the power supplied by

the SS is equal to the aggregated active power consumption of customers (10 kW) plus

the associated technical active power losses (estimated in 0.3 kW). This power losses are

associated to the joule effect and are calculated for each feeder section connecting each

pair of nodes i-j by means of the square of the current magnitude flowing in that feeder

section multiplied by the electrical resistance (Ω/m) and the length of the feeder section

(m) as indicates in (2.4). However the calculation of this expression requires to solve the

power flow problem which requires to have detailed information about network topology,

load demand and DG units.

PLOSS =
∑

∀i,j,i̸=j

i2i,j · ri,j · ℓi,j (2.4)

where:

• ii,j (A) is the the current flowing through the feeder conductor that connects nodes

i and j.

• ri,j (Ω/m) is the linear resistance of the feeder conductor. Depends on the material

ρ (Ω/mm2) and the cross section area S (mm2) by the relation r = ρ/S.

• ℓi,j (m) is the length of the feeder conductor.



14 CHAPTER 2. LITERATURE REVIEW

The total active power losses of distribution network can be calculated as the aggre-

gation of the power losses of all the feeders connected to that SS. Similarity, the active

power losses of a set of low-voltage distribution network distributed across a large-scale

distribution area is the aggregation of the losses of each single SS. However, this intuitive

scheme is only valid under the following situations:

1. All the customers are monitored through the smart metering infrastructure.

2. There is no presence of DER devices (such as PV panels).

3. There is no presence of electricity theft (no illegal connections and no manipulated

metering devices).

4. There are no loops, i.e.pure radial distribution network.

Power losses in a three-phase LV distribution network can be calculated as the aggre-

gation of the three phases power losses produced in each feeder phase as states (2.5).

PLOSS =
∑

p∈{a,b,c}

P p
LOSS =

∑
p∈{a,b,c}

∑
∀i,j,i̸=j

(ipi,j)
2 · rpi,j · ℓpi,j (2.5)

where:

• ipi,j (A) is the phase current magnitude

• ℓpi,j (m) is the length of the phase feeder section.

• rpi,j (Ω/m) is the longitudinal phase resistance of the feeder that connects the nodes

i and j.

This power losses magnitude of power losses can be expressed as a fraction of demand,

SD (2.6)-(2.9), using the loss factor Lp, which results in expression (2.9).

SD =

√
PD

2 +QD
2 =

√
PD

2 + sin(arccos(φ))2 (2.6)

PD =
∑

p∈{a,b,c}

Up
NI

p
T cos (φp) (2.7)
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QD =
∑

p∈{a,b,c}

Up
NI

p
T sin (φp) (2.8)

Lp =
PLOSS

SD

(2.9)

Where IpT is the total secondary substation phase current, cos(φp) is the power factor of

the phase p and Up
N is the secondary nominal phase voltage in the secondary substation.

The term Lp varies with the load demand of the network (affected by the distributed

generation), and under some equilibrium circumstances (xmin
eq ≤ xeq ≤ xmax

eq ) (1.5)-(1.7)

behaves linearly with the average phase current magnitude IpT , (2.10) where the parameter

KLOSS can be inferred for different demand/generation conditions. Note that, even if Lp

behaves linearly, it depends on the variation of the total phase current magnitude, which

depends non-linearly of the load demand and generation of the customers and distributed

resources.

Lp =

∑
p∈{a,b,c}

∑
∀i,j,i̸=j i

p
i,j

2 · rpi,j · ℓpi,j√
(
∑

p∈{a,b,c} U
p
NI

p
T cosφp)

2 + (
∑

p∈{a,b,c} U
p
NI

p
T sinφp)

2
∝ KLOSS(SD) · IpT (2.10)

In actual LV distribution networks, the majority of residential and small-size commer-

cial customers (contractual power less or equal to 15 kW) are telemetered but there are

still some commercial and industrial customers (with contractual power from 15 kW

to 50 kW) which are only required to provide energy consumption in monthly basis

[López et al., 2015]. Consequently, the power demand measured at the secondary sub-

station meter corresponds mainly to the aggregated power demand of commercial and

industrial customers and in a minor percentage of the aggregated demand by telemetered

residential customers, i.e. Pctd ≤ 15 kW (Table 2.1).

In this way, it becomes clear that the simple assumption of adding up all demand

smart meters measurements and subtract them from the injecting power measured at

the secondary substation’s meter is unacceptable for losses estimation in low-voltage net-

works, if there are non-telemetered customers. This assumption is neither valid if there

are distributed generation units in the low-voltage customer installations. Due to the ex-

istence of the customers that do not have an smart meter that reports power change with
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Table 2.1: Smart Meter types in terms of measurement precision and phase connection

SM Power Contracted Precision (P) Precision (Q) Connection

Type 5 Pctd ≤ 15 kW A (±2%) 3 (±1%) SP

Type 4 15 kW < Pctd ≤ 43,5 kW B (±1%) 2 (±2%) 3P

Type 3 Pctd > 43,5 kW B (±1%) 2 (±2%) 3P

SF: Single-Phase, 3P: Three-Phase, SM: Smart Meter Type [Union Fenosa Distribucion, 2011b,

Union Fenosa Distribucion, 2011a].

a high resolution and so it is necessary to split customers demand in demand telemetered

(P̃D) and estimated demand (P̂D).

PD = P̂D + P̃D (2.11)

In presence of DER devices such as PV panels (PPV ), as well as other PEVs or BES

devices, the direction of the power flow could be either from the SS point to the customers

connection point or from the customers to the SS point, and so it can exist power exported

to the MV network. Power generation in LV smart grids are mainly associated with PV

array panels. Note that power injections from PVs, power exchanges from BES units and

power consumption from PEVs are denoted with wide tilde (˜) due to the fact that are

uncertain quantities that have to be estimated.

Let’s supposes that in the low-voltage feeder showed in Fig. 2.1 all the three customers

are telemetered and additionally DG units are installed and connected to the customer

connection point as shown in Fig. 2.2.

In this new operating conditions customers C-1 and C-3 are demanding 3 kW and

have DG units (PV panels) that are generating 4 kW, so exists a net power injection

to the network of 2 kW. Moreover, the customer C-2 is demanding 4 kW and have a

PV facility injecting 2 kW. In this situation customer 2 absorb the excess of power of

customers 1 and 3, producing losses in the network due to the power flow in the segments

of line that connect customers C-1 and C-3 with C-2. However, in those circumstances

the supervisor meter, located at the secondary substation, does not measure any power

flow at the SS (consumption or generation) and so the losses estimation procedure based
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Secondary
Substation

C-1 C-3

C-2

Supervisor
Meter

PV-1
PV-3

PV-2

0 kW 1 kW

4 kW
3 kW

2 kW

4 kW 3 kW

4 kW

1 kW

Figure 2.2: Low-voltage simple feeder with DER devices

on energy balance (2.2) cannot be applied straightforward. Moreover, in this situation

the DSO is not capable to known in which segments of the network is taking place the

loss of power. Another inconvenient associated with massive injection of power generation

coming from distributed sources in low-voltage feeders, is that, if the power generated by

DG units are higher than the aggregated customers power demand, then, the supervisor

meter measures an exported power to the MV network and again the approach (2.2) fails.

So, with penetration of DERS, the energy balance to be applied is the indicated in (2.12).

PIMP − PEXP = PLOSS + PD − PPV (2.12)

Where the imported power PIMP and exported PEXP are measured by the smart meter

supervisor located at the SS. Total power demand by customers PD is composed by the

aggregated power consumption measured by the customers smart meters P̂D and by the

estimated P̃D power demand (2.11). PPV is the power injected from DG units (usually

PV panels). It has to be noted that power generation from PV units depends on solar

irradiation and ambient temperature which adds uncertainty in the estimation of PV

generation.

Equation (2.2) has to be extended if there are Plug-in Electric Vehicles (PEVs) and/or

Battery Energy Storage (BES) units connected to the grid. In this case, power consump-

tion at charging stations P̃PEV have to be added to the power balance equation as (2.13).
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Similarly, power consumption from PEV behaves in a similar way although demand less

power.

PIMP − PEXP = PLOSS + PD − P̃PV + P̃PEV (2.13)

In some cases, there are BES units along with the solar PV units to absorb energy

from PV units (charging) and inject energy during discharge. Consequently the power

balance equation is (2.14).

PIMP − PEXP = PLOSS + (PD + P̃+
BES)− (P̃PV + P̃−

BES) + P̃PEV (2.14)

PEV devices normally demand power directly from the grid, but other schemes are

possible, as shown in (2.15).

PIMP − PEXP = PLOSS + (PD)− (P̃PV + P̃−
BES) + (P̃PEV + P̃+

BES) (2.15)

2.2 Technical and Non-Technical Losses

Total active power losses are composed by Technical Losses (TLs) PLOSS,T which are

produced by joule effect, due to the normal operation of power systems and by Non-

Technical Losses (NTLs) pLOSS,NT witch are associated with unidentified losses due to

the unauthorized customers or undesirable operating condition (electricity theft, wrong

measurements, unauthorised use of supply/illegal connections and meter tampering or

meter bypass). In Fig. 2.3 it is shown a low-voltage feeder with metered and non-metered

customers, technical and non-technical power losses as well as the presence of DG units.
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Figure 2.3: Low-voltage feeder with non-technical power losses

PLOSS = PLOSS,T + PLOSS,NT (2.16)

TLs are produced by the current flow through the cables, and so it depends on the load

demand and power injections to the grid; the grid topology (radial or weakly meshed),

the feeders physical characteristics (conductors material, cross section) and also of the

calculated power flow equation. It depends also on the electrical connection point of cus-

tomers and DER units to the grid. TLs can be calculated from the power flow calculation

[Ljungberg, 2006].

PLOSS,T = f(PD, P̃PV , P̃PEV , P̃BES,G) (2.17)

Where G is the graph that represents the LV smart grid topology: number of vertices

(buses) and edges (lines), spatial distribution of customers and DERs (phase connection),

edge weight (conductor material and cross section).

NTLs are extremely difficult to evaluate due to the nature of their unexpected source

[Pedro, 2009] consequently they are estimated as the difference between the measured

total power losses and the calculated TLs. The accuracy of its estimation depends on the
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accuracy of the smart meters measurements, the metering systems state as well as the

confidence estimation of the uncertain parameters that affect TLs.

PLOSS,NT =

TOTAL  
PLOSS −PLOSS,T  

TLs

= (2.18)

=

TOTAL LOSSES  
PIMP − PEXP − P̂D  

MEASURED

− P̃D + P̃PV − P̃PEV − P̃BES  
ESTIMATED

−
TLs  

f(P̂D, P̃D, P̂PV , P̂PEV , P̂BES,G)  
CALCULATED

As it can be seen in (2.18) NTLs calculation requires accurate and reliable information

of the energy flow through network lines and entails a challenge for grid operators:

1. It is necessary to estimate the total power losses which are composed by TLs due

to the consumption and generation of known customers and DER units, and NTLs

due to the non-metered demand and uncertain injection coming from DERs (PV,

BES, PEV).

2. The calculation of TLs is not deterministic since it depends on uncertain quantities

such as the non-metered demand P̃D, the PV injections P̃PV , contribution of BES

P̃BES and the PEV consumption P̃PEV .

PLOSS =

BALANCE  
PIMP − PEXP − P̂D  

MEASURED

− P̃D + P̃PV − P̃PEV − P̃BES  
ESTIMATED

= (2.19)

=

TLs  
f(P̂D, P̃D, P̂PV , P̂PEV , P̂BES,G)  

CALCULATED

Therefore, according to 2.19, power losses in an unbalanced low-voltage smart grid with

presence of DERs such as PV, BES or PEV devices can be calculated by two approaches.

Firstly, power losses can be computed by the energy balance between the measurements

collected by the smart metering infrastructure and the estimated power injections (2.19).

The second one, is by solving the unbalanced power flow which also requires to estimate

the uncertain power injections mentioned.
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Intuitively those characteristics are highly correlated with the power losses and so

it is possible to discern groups or cluster of feeders that share common pattern and

are statistically similar regarding those characteristics. Moreover, within each cluster of

feeders it is possible to find representative feeders of the cluster, from which power losses

can be inferred and consequently extrapolated to the remanning feeders belonging to the

group which represent.

2.3 Power Losses Estimation Methods

2.3.1 Methods Based on Power Flow & Analytical Equations

The Empirical Loss Factor Method (ELFM) used by most utility engineers to calculate

energy loss was developed in [Buller and Woodrow, 1928]. Loss Factor Method (LFM)

can be defined as a quantity that, when multiplied by the peak losses, would yield an

average loss. This average loss, when multiplied by the hours in the time period being

analysed, would yield the energy losses.

Equation (2.20) define the ELFM and is used to determine loss factor (Lf ), requiring

inputs of load factor (LF ) and a variable coefficient (aloss), which would normally vary

between the range aloss ∈ (0.15, 0.3).

Lf = a · LF + (1− aloss) · LF
2 (2.20)

There are many inadequacies in using ELFM to determine losses, because this method

is intended to be used only during peak losses time, and during other specific time periods

it cannot be used. Variable coefficient aloss depends on the load shape. However, it

is difficult to know how this coefficient could be determined for any specific type of

application. Traditionally this coefficient has been developed by each utility over years,

most likely with no documented technical analysis. [Gustafson, 1983] presented a way to

calculate the loss factor Lf for the specific load on a system. The results of the method

proposed LFM can be used to verify the variable coefficient aloss.

Load factor LF is defined as the ratio of the average active power demand P̂t (kW)
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supplied during a designated period t (h) to the peak or maximum active power demand

Pmax
t (kW) occurring in that period. Load factor also may be derived by dividing the

active energy demanded (kWh) in the period by the product of maximum active power

demand (kW) and the number of hours in the period, equation (2.21).

LF =
P̂t

Pmax
t

=

∫ t

0
p(t)dt

t · Pmax
t

(2.21)

Taking into account the previous definition, Loss Factor Lf can be defined as the ratio

of the average active power losses P̂L,t (kW) in a period of time t to the peak active

power losses P̂max
L,t (kW) in that period. Also, Lf can be defined as the sum of the active

power demand squared and divided by the product of the hours in the time period and

the maximum active power demand, equation (2.22).

Lf =
P̂L,t

P̂max
L,t

=

∫ t

0
p(t)2dt

t · Pmax
t

(2.22)

However LFM is only suitable to calculate energy losses, while marginal losses and

no-load losses can not be calculated with the method. Energy losses can be calculated by

using Percent Loading (PrL) on the different components of the distribution system. PrL

is obtained by dividing the power flowing through a distribution component (Pf ) by the

power capacity of that component (Sn), equation (2.23).

PrL =
Pf

Sn

(2.23)

This PrL along with demand data is used to find the losses. In PLM a random

sampling plan is used. [Flaten, 1988] proposed PLM to estimate losses. Peak Losses

Energy (PLE) is defined as yearly energy generation, and demand losses are defined as

Peak Losses Demand (PLD). So PrL is defined for each kind of losses in (2.24) and (2.25).

PLE =
Ef,y/Th
Sn

(2.24)

PLD =
Ppl

Sn

(2.25)

where,



2.3. POWER LOSSES ESTIMATION METHODS 23

• Ef,y The yearly energy consumption per type of distribution equipment (MWh).

• Ppl The system peak load per type of distribution equipment (MW).

• Th Number of hours of the year (8760).

Equations (2.24) and (2.25) are calculated for each distribution system component

(transformers, lines, etc.). Energy losses in the period of time t in terms of PrL can be

written as:

Êloss,t = (PrL)2 · LL (2.26)

where

• PrL Percent Load, either, PLD or PLE.

• LL Distribution component rated active power loss at maximum current capacity

(kW).

Equation (2.26) can be applied to each component of the system in combination with

other correction factors such as: power factor, temperature correction or load profile cor-

rection. The limitations of the study are in the arduous random sampling conductor loads

process, in the accuracy of historical transformer loss data as well as neutral conductor

losses.

2.3.2 Machine Learning-based methods

Machine learning algorithms based on supervised learning, traditionally used for regression

problems, can be applied for power losses estimation [Geron, 2017]. Supervised machine

learning models are based on mathematical algorithms that train a model to learn from a

set of training data. As a result they are affected by bias and variance [Harrington, 2012].

The goal of any supervised machine learning algorithm is to best estimate the mapping

function (F) for the output variable Y, which in the case of this thesis is the power losses

estimation given the input data matrix X, which in this case is the set of features. The

mapping function is often called the target function because it is the function that a given
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supervised machine learning algorithm aims to approximate [Deisenroth et al., 2020]. Fea-

tures based on the network operation data can include the shown in Table 2.2.

Y = FN(X) (2.27)

Table 2.2: Features based on network operation for power losses estimation

Source Feature

Smart Meters Historical power consumption from smart meters

Smart Meters Smart Meters penetration (ratio of non-telemetered customers)

Smart Meters Customer consumption pattern

Network Area of the Network (Residential, Industrial, Commercial)

Network Network Topology characteristics

Network Energy tariff’s (influence in consumption patterns)

Network Contractual customer power (influence in consumption magnitude)

Network DG penetration and DERs presence

External Calendar days

External Weather data (temperature) and meteorological special events

Calendar days refer to: day of the week, holidays, non-working days, special days and events; Topology

characteristics refers to: feeder length, number of nodes and number of ramifications

Based on a historical data set, related to the network for which the power losses

estimation is desired, an appropriate definition of the features to be used can lead to

very accurate results without the need of performing traditional power flow calculations.

To achieve that is essential to manage the bias-variance trade-off, since the machine

learning model will learn from the data related to the operation of the unbalanced smart

grid in terms of power consumption, distributed generation, MV/LV power exchanges

at secondary substations, voltage unbalanced, etc. If this network operation data set is

not correctly defined the power losses predictions performed will lead to unfeasible and

unrealistic results.
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The following supervised machine learning models [Murphy, 2012] for regression tasks

can be considered as well-suited for the task of power losses estimation:

□ Linear regression models.

• Polynomial models [Chang et al., 2010].

• Ordinary Least Squares (OLS) [Goldberger, 1964].

• Weighted Least Squares (WLS) [Mandel, 1990].

• Generalised Linear Models (GLM) [Nelder and Wedderburn, 1972].

• Generalised Additive Models (GAM) [Hastie, 1990].

• RIDGE regression [Hoerl, 1970].

• LASSO (Least Absolute Shrinkage and Selection Operator) [Tibshirani, 1996].

• ELASTIC-NET regression [Zou and Hastie, 2005].

• Linear Discriminant Analysis (LDA) [McLachlan, 2004].

• Bayesian Linear regression [Goldstein and Wooff, 2007].

□ Statistical-based models.

• Logistic Regression [Hosmer and Lemeshow, 2000].

• Poisson Regression [Greene, 2003].

□ Support Vector Machines (SVM) Regressor [Cortes and Vapnik, 1995].

□ K-Nearest Neighbours (KNN) Regressor [Altman, 1992].

□ Artificial Neural Networks (ANN) [Simon S, 1999].

□ Decision Trees (DTs) [Quinlan, 1986].

□ Ensembles methods.

• Random Forest [Breiman, 2001].

• Gradient-Boosted Decision Trees (GBDT) [Hastie and Friedman, 1991].
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2.3.2.1 Model Performance

The following performance metrics are widely used in predictive modelling (regression

and classification tasks) within machine learning problems [Hastie and Friedman, 1991]:

Determination Coefficient (R2)

Given by equation (2.28) it provides a measure of how well predicted outcomes are repli-

cated by the model, based on the proportion of total variation of outcomes explained by

the model.

R2 =
σ2
ŷ,y

σ2
ŷ · σ2

y

=
n (
∑

i yi · ŷi)−
∑
yi ·
∑

i ŷi√
n
∑

i y
2
i − (

∑
i yi)

2 ·
√
n
∑

i ŷ
2
i − (

∑
i ŷi)

2
(2.28)

Where σ2
ŷ,y is the covariance between the prediction ŷ = (ŷ1, . . . , ŷn) and the target

variable y = (y1, . . . , yn), σ
2
y and σ2

ŷ are the variance of the target and the prediction

variables respectively and finally n is the number of samples predicted.

Root-Mean-Square Error (RMSE)

Given by equation (2.29) which provides the prediction errors by means of the standard

deviation (sd) of the residuals. It is a measure of how concentrated the data is around

the linear regression model fitted. Mean Square Error (MSE) is also used as a metric.

RMSE =

√
1

n

∑
i∈(1,...,n)

(yi − ŷi)
2 (2.29)

Average Percentage Error (APE)

It is the absolute value of the error prediction in relation to the magnitude of the real

variable to be predicted. It is a measure of how close the model is to the target. It can

be used only for non-negative target variables. If there exist null values in the target

variable, then it is necessary to apply scale factor for each time step i, so the APE metric

(2.30) is a time-series.

APEi =
|ŷi − y|
yi

; ∀i ∈ (1, . . . , n) (2.30)



2.3. POWER LOSSES ESTIMATION METHODS 27

Mean Average Percentage Error (MAPE)

It is the mean value of the Average Percentage Error (APE) (2.31).

MAPE =
1

n

∑
i∈(1,...,n)

APEi (2.31)

Precision

In classification problems, it is the fraction of relevant samples correctly classified (True

Positives) among the aggregation of TP samples and False Positive (FP) (samples labeled

by the predictive model as False but actually are True). In statistics, precision is also

known as Positive Prediction Value (PPV).

Precision =
TP

TP + FP
(2.32)

Recall

In classification problems, is the fraction of relevant samples correctly classified (True

Positives) among the aggregation of TP samples and False Negative (FN) (samples labeled

by the predictive model as True but actually are False). Recall is also known as sensitivity.

Recall =
TP

TP + FN
(2.33)

2.3.2.2 Model Assessment

The prediction error ϵ for any learning model can be discomposed into three components:

bias ϵb, variance ϵv and irreducible error ϵi as states (2.34).

ϵ = ϵb + ϵv + ϵi (2.34)

Irreducible Error

The irreducible error ϵi depends on how the regression problem is framed. It is manifested

in factory such as the fact of not including variables that are highly correlated with the

target variable and so influence the mapping of the remaining input features to the output
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target variable. A well-conducted and rigours data analysis can mitigate the probability

of having irreducible errors in the regression problem solved by machine learning models.

Bias Error

Bias error ϵb arises from the fact of representing a problem by a simpler model. For

example, linear models have a high bias which leads to learn faster than other complex

models and are easier to understand but generally they are less flexible and have a lower

predictive performance on real-life complex problems. As a result, it can be concluded

that:

1. Low-Bias error: The model makes very few and mild assumptions and hypothesis

about the nature of the mapping function F . For instance, an ANN adapts their

network topology and neurones to learn both the simplest linear mapping function

as well as a tough non-linear non-convex function. Machine learning models with

low-bias are: ANN, DT, KNN and SVM models.

2. High-Bias error: The model makes many and strong assumptions and hypothesis

about the nature of the target function Y. For instance, a linear model assumes

that exists a linear relationship between the target and the features. In the side of

high-bias machine learning models it can be included: Linear Regression models,

LDA and Logistic Regression.

Variance Error

Respect to the variance error ϵv is the amount by which the target function will change

if different input data is used. The target function is estimated from the used training

data, so it can be expected that the model will pose some variance when the training data

set change. If the variance of the model is low, the magnitude of the target function will

not deviate too much from the original input training dataset and so it will mean that

the model is appropriate at detecting the hidden underlying mapping between the input

variables and the output target variable. On the contrary, models with high variance are

strongly influenced by small changes in the training data set.
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Generally, non-linear machine learning models are quite flexible (i.e. they learn quite

well the underlying structure of the problem) but suffer from high variance (when the

input of the model change, the output change dramatically). For instance, decision trees

have high variance, that is even higher if the trees are not pruned before its use. It can

be concluded that:

1. Low-Variance error: Examples of low-variance machine learning models include the

family of Linear Regression models due to the strong assumption of linearity as well

as Linear Discriminant Analysis and Logistic Regression.

2. High-Variance error: Examples of high variance machine learning models include

Artificial Neural Networks, Decision Trees, k-Nearest Neighbours and Support Vec-

tor Machines.

Variance also is related to the concept of over-fitting, which means that a model is

completed adapted to the training data set in such a way that when it comes the time to

produce inference with a different dataset, the performance obtained is very poor, getting

target output with high deviation from the expected. This can be tackled with cross-

validation techniques such a K-fold cross validation [Hastie and Friedman, 1991]. It can

be seen that exist a trade-off between Bias-Variance when it comes to decide the model

to use. The goal of any supervised machine learning model is to achieve low bias and low

variance. In turn the algorithm should achieve good prediction performance. In general,

linear machine learning models often have a high-bias but a low-variance meanwhile Non-

linear machine learning algorithms often have a low-bias but a high-variance.

2.3.2.3 Bias-Variance trade-off

The parameterisation of machine learning model is often a task related to the balance of

bias and variance. For instance:

1. KNN models has low-bias and high-variance, but the trade-off can be changed by

increasing the number of neighbours (value of K) that contribute to the prediction

and in turn it increases the bias of the model [Murphy, 2012].
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2. ANN models has low-bias and high-variance, but the trade-off can be changed with

dropout regularisation (cancelling connections between neurones) [Murphy, 2012].

The relationship between bias and variance in machine learning is antagonist (Fig.

2.4) in the sense that increasing the bias decreases the variance, and inversely, increas-

ing the variance decreases the bias. In fact, the real bias and variance error terms can

not be determined analytically since the actual underlying target function is not known

[Bishop, 2006].

Test Error

Bias
Variance

Overfitting
(High Variance Models)

Model
 Complexity
(degrees of fredom)

Underfitting
(High Bias Models)

Figure 2.4: Trade-off between bias and variance

The challenge is to find a method that offers a relation low-bias and low-variance,

appropriate for the problem to be solved and the requirements. Ensemble methods deals

with the bias-variance trade-off. They rely on the machine learning paradigm where

multiple models (often called “weak learners”) are trained to solve the same problem and

their predictions are combined to get better results. The principal hypothesis is that

if weak models are properly combined, the resulting model is more accurate and robust.

Generally, basics machine learning models (such a linear models or decision trees) perform

very poorly either because they have a high bias (i.e low degree of freedom) or because

they have too much variance to be robust (i.e the final decision depends, considerably,

on the training data set). Then, the idea of ensemble methods is to try reducing the bias
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and/or variance of such weak learners by combining several of them (Fig. 2.5) to create

a strong learner (or ensemble model) that achieves better performances. There exist two

techniques to build ensemble methods: boosting and bagging.

Training
Data

Data 1

Data 2

Data m

Learner 2

Learner 1

Learner m

Model 2

Model 1

Model m

Model
Combiner

Final
Model

Figure 2.5: Ensemble method procedure illustration

Precision & Accuracy

Precision and accuracy are two terms that frequently are understood as synonyms, but

it it not right. Accuracy of a predictive model can be defined as the degree of closeness

of the prediction quantity respect to the true value. In contrast, the precision relates to

the reproducibility and repeatability of the prediction performed, i.e, it can be defined

as the degree to which repeated predictions under different circumstances provides the

same quantity. Precision and accuracy are related to bias and variance in the sense that

the amount of inaccuracy correspond to the level of bias (high-bias, low accuracy) and

the variability corresponds with the quantity of imprecision (the lack of precision, high-

variance, low precision).

Boosting Technique

Boosting is a machine learning technique that provides a prediction model based on an en-

semble of weak prediction models which usually are decision trees [Hastie and Friedman, 1991].
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However, they produce models with low interpretability and require large computational

effort. Adaptive boosting (adaboost) and Gradient Boosting are variants of the Boosting

technique. If they are applied to decision trees they receive the name of Gradient Boosted

Decision Trees (GBDT) which usually outperforms Random Forest ensemble. Finding

the best ensemble model is a difficult optimisation problem. Then, instead of trying to

solve it in one single-shot (finding directly all the coefficients and weak learners that give

the best overall additive model), it can be used an iterative optimisation process that is

much more tractable, even if it can lead to a sub-optimal solution. Gradient Boosting

casts the problem into a gradient descent one: In each iteration a weak learner is fitted

to the negative direction of the gradient of the current fitting error with respect to the

current ensemble model [Hastie and Friedman, 1991]. AdaBoost is a meta-estimator that

begins by fitting a regressor on the original dataset and then fits additional copies of the

regressor on the same dataset but where the weights of instances are adjusted according

to the error of the current prediction. The core principle of AdaBoost is to fit a sequence

of weak learners (i.e., models that are only slightly better than random guessing, such as

small decision trees) on repeatedly modified versions of the data. The predictions from

all of them are then combined through a weighted majority vote (or sum) to produce the

final prediction. The data modifications at each so-called boosting iteration consist of

applying weights to each of the training samples. Initially, those weights are all set to, so

that the first step simply trains a weak learner on the original data. For each successive

iteration, the sample weights are, individually, modified, and the learning algorithm is

reapplied to the reweighed data. At a given step, those training examples that were in-

correctly predicted by the boosted model induced at the previous step have their weights

increased, whereas the weights are decreased for those that were predicted correctly. As

iterations proceed, examples that are difficult to predict receive ever-increasing influence.

Each subsequent weak learner is thereby forced to concentrate on the examples that

are missed by the previous ones in the sequence. For non-linear problems, Stochastic

Gradient Descent (SGD) technique can be applied to the objective function of the predic-

tive task. SGD is an iterative method for optimising a loss function that poses suitable

smoothness properties such as differentiability. It can be understood as a stochastic ap-
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proximation of the gradient, since it replaces the actual gradient (calculated from the

entire data set) by an estimation (calculated from a random subset of the data). Espe-

cially in high-dimensional optimization problems this reduces the computational burden,

achieving faster iterations in trade for a lower convergence rate.

Bagging Technique

Bagging is a machine learning ensemble meta-algorithm designed to improve the stability

and accuracy of machine learning model, usually decision tree models. It also mitigates

variance and helps to deal with overfitting. The idea of bagging is the same as boosting,

which is that the aggregation of many weak learners typically outperforms a single learner

over the entire training set and has less overfit. Bagging also can be parallelised, as each

single bootstrap can be processed individually before to be combined with the rest. One

of the disadvantages of this technique is that for weak learners with high bias, bagging

technique will also lead to a model with high bias. In contrast to GBDT ensembles,

Random Forest applies the general technique of bagging to the decision tree learners.

Bagging and Boosting are similar techniques in the sense that both train a set of

combined weak learners to build a strong learner that obtains better performance than a

single learner and both of them can efficiently alleviate variance. Nonetheless, while in

the Bagging technique the learners are built independently, in Boosting the method tries

to add new models that perform better than the previous ones. Bagging and Boosting

generate several training data sets by random sampling and build the final decision by

combining the n learners. However, only Boosting specifies a data weighting policy to

scale the most difficult cases and Bagging it is the only one that reduces the probability

of overfitting problems.

Other ensemble methods

Other ensemble method is the Stacking model which considers heterogeneous weak learn-

ers, learns them in parallel and models are combined by training a meta-model to output

a prediction based on the different weak models predictions.
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Deep Learning-based methods

Deep-learning models are a type of machine learning models which are a subtype of artifi-

cial intelligence field in which the feature extraction process is performed automatically in

contrast to machine learning models. These deep learning methods such as Multi-Layer

Perceptron (MLP) or Long Short-Term Memory (LSTM) models can be used as well as

power losses estimators, presenting some advantages and disadvantages [Bishop, 2006].

MLPs are deep artificial neural networks which are inspired in the biological nervous sys-

tems. It combines multiple nonlinear processing layers, using simple elements operating

in parallel known as neurones. MLPs are composed by an input layer (where is fed the

relevant features), several hidden layers (where the learning process takes places) and

an output layer (which is the target output). All the layers are interconnected among

themselves through the neurons, in which a mathematical operation is performed and an

activation function is applied to obtain an output. Each hidden layer uses as input the

output of the previous layer [Simon S, 1999].

In regression tasks supervised machine learning models present advantages and dis-

advantages. Machine learning models are straightforward and easy to implement and

interpret [Russel and Norving, 1994]. Additionally, most of them are readily developed,

trained, and deployed by using standard hardware, they do not require high-performance

computing infrastructure. In this regard, a conventional laptop with common computer

power and memory specifications is enough to develop worthwhile models in short periods

of times. Moreover, in terms of data requirements, they do not require very large data

set to achieve reasonable results. However, they require knowledge about the relevant

features to be used as input variables in the regression problem (regressors). This implies

that a broad and deep problem-domain knowledge is required to define and select those

relevant features. The inappropriate selection of the input features can lead to inaccurate

predictions.

In addition, machine learning models have difficulties in learning some non-linear-

multivariate relationships. Although deep learning models can extract the relevant fea-

tures from high-dimensional data sets, they are able to learn complex non-linear rela-

tionships achieving in general better performance and accuracy than machine learning



2.3. POWER LOSSES ESTIMATION METHODS 35

models. Also, deep learning methods can capture very complex patterns with time-

sequential dependencies. As disadvantages, deep learning models are considered very

computationally expensive algorithms, requiring high-performance computers GPU for

training and validation. Furthermore, they require very large data set to extract mean-

ingful features for the regression task. In terms of software, the recent development

of powerful libraries based on cutting edge tools as Python has boosted the use of

machine learning and deep learning models in scientific production. For instance the

library Scikit-Learn [Pedregosa et al., 2011] provides access to a great variety of lin-

ear and non-linear machine learning models as well as the framework TensorFlow

[Abadi et al., 2015] or the library PyTorch [Paszke et al., 2019] does. Other libraries

for specific type of machine learning models are XGBoost [Chen and Guestrin, 2016] or

CatBoost [Anna Veronika Dorogush, 2018] for GBDT models. Both of them are based

on Python programming language.

Lastly, a new class of models is emerging. They combine physical models with machine

learning models and they are known as hybrid models. Examples of them are Hidden

Markov Models (HMM) [Zucchini et al., 2009] which are general-purpose models for time

series data based on a sequence on states and a probability of change (Markov Model).

These hybrid methods are useful and efficient in cases of lack of accurate data. However,

HMMs rely on strong assumptions and physical knowledge of the process to be predicted.

In the last decade, the use of load profiles and regression analysis has been proposed

for losses estimation [Queiroz et al., 2012, Fu et al., 2016, Ibrahim et al., 2017] which are

mainly applied to small-size balanced distribution networks. Nonetheless, these techniques

require an accurate network data (topology and demand). Consequently, their applica-

bility to large-scale distribution areas is limited because the accurate network data is not

always available. Loss Factor-based methods (LFM) consist of computing a quantity de-

fined as losses factor at representative feeders using as input data: the peak demand, the

customer’s load profile, and the feeder length. LSF methods have been applied in distribu-

tion networks using reduced network data [McKenna et al., 2012, Urquhart et al., 2015,

Poursharif et al., 2018]. However, they do not consider the connection of DG units, whose

presence is ever-increasing in LV distribution networks, mainly as rooftop PV Panels, with
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a relevant impact on network losses [C.T.Gaunt et al., 2017]. In this context, distribu-

tion systems behave as Active Distribution Networks (ADN) and their optimal operation

involves power losses estimation and management [Usman et al., 2018].

Depending on the DG penetration and the spatial-temporal correlation between de-

mand and DG, network losses can be reduced or increased. This fact aggravates the

process of network losses estimation using only the data recorded by customers’s smart

meters and the SS smart meter supervisor. Therefore, any losses estimation method has

to consider the presence of DG to provide an accurate losses estimation. To deal with the

lack of accurate network data, top-down and bottom-up approaches have been proposed

in [Dortolina and Nadira, 2005].

The application of these techniques to large areas is based on the definition of some

explanatory variables for each feeder. In the first step (top-down), the different areas are

clustered according to the selected explanatory variables, and representative feeders are

defined for each cluster group. In the second stage, by means of power flows, loss functions

are obtained for each representative feeder’s cluster. Losses for each feeder are obtained

according to the load that each feeder carries-out. However, the method has been applied

only in balanced MV distribution networks, where the network data is more homogeneous

and complete. Moreover, the cited method does not consider the unbalance operation of

the LV distribution networks so the application of this method to unbalanced low voltage

smart grids would provide incorrect results.

Notwithstanding, the concept of representative feeders within a large distribution area

seems to be a potential approach to infer power losses level in LV networks, considering

their singularities. Network Loss estimation accuracy depends on the closeness between

the representative feeders and all those who represent [Usman et al., 2018].

A recent overview of representative feeders works can be found in [Bletterie et al., 2018].

As distribution feeders have different topological structures and different characteris-

tics (e.g., number of clients, line length, energy supply), some authors have proposed

the application of a clustering process to obtain losses in a set of representative feed-

ers [Hong and Chao, 2002, Dashtaki and Haghifam, 2013]. In [Hong and Chao, 2002], a

Fuzzy C-Number (FCN) clustering technique is used to obtain a losses equation applying
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a cluster-wise fuzzy regression analysis. In [Dashtaki and Haghifam, 2013] a clustering-

based method is presented to find feeders that have similar characteristics. For each cluster

obtained, the mean feeder is selected to estimate the technical losses of the network. The

application to large-scale areas is achieved using an iterative process where random feeder

parameters are selected to create new network topologies. Although the method has been

designed for LV distribution areas, it does not consider the unbalanced operation of these

networks, consequently, the losses estimation provided by this method will be useful only

for balanced feeders. In [Mateo et al., 2018] a methodology to obtain the large-scale repre-

sentative networks is presented. However, unbalanced operation in LV distribution feeders

is not considered. Machine Learning (ML) algorithms have also been applied to esti-

mate losses [Monteiro et al., 2018, Wang et al., 2017, Hsu et al., 1995, Kang et al., 2006,

Leal et al., 2009, Chen et al., 2005, Li et al., 2019]. In [Wang et al., 2017] eXtreme Gra-

dient Boosting (XGBoost) is used for estimate statistical line losses parameters of dis-

tribution feeders. The method requires a high number of representative feeders and, to

simplify the process, a great amount of historical data is needed to apply the clustering

feeder stage. This is an important limitation for expanding its applicability to large-scale

areas with reduced network data available. In [Hsu et al., 1995], a feedforward Artificial

Neural Networks (ANNs) for feeder loss analysis is proposed. Key factors of feeder losses,

such a feeder loading, power factor, feeder length, and transformer capacity, are used as

input variables to the network. The proposed method provides accurate results, but it

requires a large and detailed training set to build up the neural network. Based on the

same idea, [Kang et al., 2006] proposed an ANN-based model to estimate power losses in

distribution and transmission networks. From the works cited, it has been proved that

ANN models are well suited to provide an estimation of power losses in distribution feeder

but only for a specific feeder (topology configuration) under particular operation condi-

tions. However, if the operation conditions of the LV feeder changes, the ANN model has

to be trained again to adapt itself to the new circumstances (such a weather conditions,

day of the week, etc.). Another aspect to be highlighted is that most of the ANN-based

methods analysed in the literature are static and do not consider dynamic changes of the

demand, therefore they are not applicable in real time operation. Additionally, following
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the process of power losses estimation by the ANN-based model (or with any model), it

is necessary to perform a statistical study to quantify the closeness of the power losses

estimation to the real losses because the representative feeder’s membership rely on the

fact that feeders have certain characteristics in common.

Unbalanced operation of the LV distribution networks plays a key role in the power

losses levels [Fang et al., 2019]. LV remains highly unexplored in terms of monitoring,

even with the large deployment of smart meters infrastructures [Fang et al., 2019]. For

instance, the phase connection of each customer is still a non-trivial question and remain

unknown in the majority of the networks [Xu et al., 2018].

Analytical equations for losses calculations in idealised feeders have been proposed

in the literature. In [Chang, 1968] idealised feeders were used considering uniformly dis-

tributed loads and Losses equations are formulated for lines, transformers, and regulators.

To generalise, in [Schultz, 1978] it is proposed the relationships between losses, topology

configurations and load level for MV radial networks with uniformly distributed loads.

However, the losses expressions provided are not applicable to some specific cases so the

applicability to real networks is unviable.

Other methods were formulated based on load profiles to estimate losses such as the

Percent Loading (PrL) method [Flaten, 1988]. The method consists of using an empir-

ical equation for losses estimation in each network equipment. However, the use of the

proposed equations requires a deep knowledge of the network. Empirical equations that

relate losses with demand was developed in [Gustafson and Baylor, 1989]. In this kind

of equation-based methods, simplified feeder models were used for losses calculation by

using load flows and then a curve fitting process was applied to obtain the coefficients

of the quadratic equations for losses estimation. Also, quadratic expression to estimate

losses, based on load flows, under step capacitor banks switching and transformer’s taps

changes were presented in [Baldick and Wu, 1991]. However, these methods do not pro-

vide information about marginal losses and no-load losses.

An approximate method based on the use of Daily Load Curves (DLCs) is presented

in [Shenkman, 1990] where the square-integrable load is obtained by applying the second

statistical moment of the representative DLC for each load. The method was improved
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in [Taleski and Rajicic, 1996] considering nodal voltages as variables. Nodal voltages are

calculated by load flow techniques for several scenarios of power demand. The use of nodal

voltages instead of network rated voltage increases the accuracy of the losses calculation.

However, the applicability of these methods to large distribution systems is limited.

Exact and simplified feeder models for power losses calculation are applied in the

Taipower distribution network [Chen et al., 1994]. The exact power losses model allows

calculating power losses with a high accuracy but a substantial effort is needed to prepare

the required input data. On the contrary, the simplified power losses model, based on

conventional regression techniques, allows estimating power losses using information of

feeder length, conductor size, loading level and power factor. Although the simplified

power losses model is quite simple to use, it does not provide an accurate estimation.

An extended approach to estimate losses is based on Loss Factor techniques. This

Factor, is multiplied with the peak demand to obtain the average losses of the system.

In [Mikić, 2007] energy losses are estimated by means of the calculation of load variance

and load mean losses using LFM. In [Queiroz et al., 2012] it is proposed to replace the

traditional LFM and the Equivalent Hours (EH) by a Loss Coefficient (LSC) and Equiv-

alent Hours of Losses (EHL), respectively, to improve the accuracy of losses estimation.

This is due to the fact that average demand refers to a period of time instead of the

maximum demand which is fixed to a time instant. In [Fu et al., 2016], Load Factor (LF)

and Minimum Load Factor (MLF) are used to propose two expressions for an improved

LSF. In [Ibrahim et al., 2017] reference feeder models for Medium Voltage (MV) networks

are used to estimate losses using LFM. The use of the Loss Factor as losses estimator is

justified because maximum demand is a quantity usually available. Therefore, LM is a

direct way to estimate losses. Despite the lately improvements, LFM still provides losses

estimation with low accuracy because the method is only based on the relationship be-

tween peak demand and peak losses and between peak losses and mean losses. Moreover,

the method heavily depends on load profiles ignoring the topology of the network.

LFM-based methods can be applied when accurate demand data is available. How-

ever, the lack of accurate demand data is one of the open unsolved challenges in loss

estimation, together with the no availability of accurate topology network data. In
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[Gustafson and Baylor, 1988] power losses calculation for the different components of the

system, which are useful in economical studies to determine the savings in power losses,

are calculated through demand response practices. In [Shenkman, 1990] a series of sta-

tistical moments to estimate power losses in distribution networks is proposed by using

the daily demand profile for different loads. In [Baldick and Wu, 1991] it is shown the

correlation between power losses and different network parameters. Also, it is suggested

its use in the studies related to the networks capacitors location to mitigate technical

contingencies. In [Chen et al., 1994] it is presented a power losses model based on linear

regression techniques using as information the customer’s demand. A Monte Carlo sim-

ulation is performed in which the network parameters are changed using different load

profiles. In [Taleski and Rajicic, 1996] it is proposed a method for power losses calcula-

tion in radial distribution networks based upon the power flow equations and using the

statistical moments. In [Chiang et al., 1997] it is shown a correlation between the power

losses estimation and the network parameters. In [Hong and Chao, 2002] it is presented

a method for estimating power losses based on fuzzy logic techniques such us (Fuzzy-C-

Number) or CWFR (Cluster-Wise Fuzzy Regression).

If accurate data for the network topology data and demand data is available, technical

losses can be calculated using load flow analysis. In [Sun et al., 1980] it is presented a

comprehensive loss estimation method using detailed feeder and load models in a load

flow program. The proposed three-phase load flow procedure, unlike the existing ones,

incorporate a Load Duration Curve (LDC) to calculate energy losses. Principal outcome of

the study is that losses estimation accuracy depends on the accuracy of the data and there

is a component of losses constant (without load demand) due to the transformers, and

other components that vary with demand. Nevertheless, the proposed method requires in-

depth knowledge of the system and modelling the distribution feeders, which is a difficult

and time-consuming task. A radial power flow method to find peak demand losses and

energy losses in distribution feeders in the Columbian Power System was presented in

[Cespedes et al., 1983] and simplified feeders’ models for power flows analysis to calculate

power losses were proposed in [Vempati et al., 1987]. Distribution feeders involve three-

phases lateral lines and/or two-phases and single-phase lateral lines. This variety of feeders
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makes difficult to generalise the losses estimation process for large distribution areas.

In [Grigoras and Scarlatache, 2013] decision trees were applied for losses estimation

where clustering feeders solved the problem of dealing with a variety of feeders improving

the accuracy of power losses estimation. In [Hong and Chao, 2002] the variety of feeders is

solved by using a Fuzzy C-Number (FCN) clustering technique with a cluster-wise fuzzy

regression to obtain a loss formula. In [Dashtaki and Haghifam, 2013] an alternative

approach for losses estimation with a great variety of feeders is presented. The method

is based on matching the feeder to study with a set of benchmark feeders. Various

features are considered such as: main feeder length, lateral branches length, number of

branches, number of clients and conductor size. In [Wang et al., 2017] a set of descriptive

variables for the feeders is defined where a statistical procedure to select a reduced group

of variables is applied. In this work the optimal number of clusters is obtained by the K-

medoids algorithm and the XGBoost model is applied for the estimation of the statistical

line loss of distribution feeders. Additionally, XGBoost model is compared with others

traditional machine learning methods such as decision trees, neural networks and random

forest and results showed that XGBoost outperforms all of them. A drawback of the

proposed method is that it requires the statistical value of losses in each feeder (from

historical records) and the load flow power losses values, so depth knowledge of the network

is essential which limits its applicability to large distribution areas. Furthermore, the

weakness of these methods is the difficulty of finding two feeders to be exactly equal and

consequently, the clustering proposed method or matching is not always possible

In [Rao and Deekshit, 2006] two schemes for estimating losses in HV and LV distri-

bution networks are proposed by means of load flow and classical equations using limited

data collected from feeders. However, the proposed methodology underestimate power

losses and so it results inadequate. In the proposed scheme a load flow model of the

feeder is used in combination with energy measured data to estimate the average loss cor-

responding to each feeder. The method is based on a mean loss curve based on a quadratic

function. Firstly, the losses for each feeder during each half hour interval were computed

based on the measured data of demand, using a load flow program. Secondly, a mean loss

curve is obtained for each feeder using regression approaches which provides the mean of
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the measured loss at all the loads, and consequently, energy losses of all the distribution

feeders can be estimated. For LV distribution feeders, phases currents’ measurements are

used to calculate losses in idealised feeders. Both methods exhibit a satisfactory accuracy,

but they require also accurate demand data. The time resolution of the load flow analysis

for losses estimation, typically, is 15, 30 and 60 min as reported in [Gouveia et al., 2021]

[McKenna et al., 2012]. This long-time resolution drives to an underestimation of the

losses, as it is pointed out in [Urquhart et al., 2015]. In [Poursharif et al., 2018] the time

interval of the consumed energy data is analysed. Different approaches are applied to

the losses estimation, Nevertheless, all of them are hardly applicable to large distribution

systems because of the need of highly accurate demand data.

Machine learning algorithms such as ANNs also were applied to estimate losses. In

[Hsu et al., 1995] a feedforward ANN for feeder loss analysis was proposed where feeder

loading, power factor, feeder length, and transformer capacity were used as input vari-

ables. the ANN training set included real losses calculated by Load flow techniques. The

proposed method had an appropriate performance in comparison with conventional re-

gression techniques and with real losses but an accurate and detailed training set was

necessary to set up the ANN.

Similarly, in [Kang et al., 2006] feeder loading, transformer capacity and conductor

length were used as input variables for a ANN-based simplified power loss model for

distribution feeders. The ANN models were developed both for overhead and underground

feeders and ANN models were used to estimate power losses in the Taipower distribution

network. However, the accuracy of the estimations was not verified. It has to be noted

that the use of ANNs to estimate losses could be useful in those situations in which the

connectivity between clients and the distribution feeders are not known. In some cases

ANNs provides power losses estimations with an accuracy superior to analytical methods

[Leal et al., 2009]. However this is achieved at the expense of an excessive computational

time. On the contrary, the simplification of the ANN reduces the computational task but

the precision of the estimation is smaller. Although most of the previous methods have

good accuracy, they depend excessively on the availability of accurate network demand

and topology data.
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2.3.3 Methods comparison

Losses in LV distribution systems are calculated by means of load flow when topology

network data and load demand data are known. However, when this information is

incomplete or unavailable, losses have to be estimated. LV Losses estimation methods

that have been proposed to date require a large amount of data (e.g. ANN requires

data for training) or make use of simplistic loss models. In this context, it is necessary

the development of losses estimation methods that take into account the uncertainty of

the load demand and the intermittent behaviour of the DERs. Moreover, the unbalance

operation of the LV distribution systems has to be taken into account for a precise losses

estimation.

All the losses allocations procedures presented make use of some arbitrariness because

of the non-linear relation between losses and power flow which complicate the explicit

allocation of losses among the end-users [Usman et al., 2018].

Given the presented literature review, it can be noticed that there are a large scien-

tific production published related to power losses estimation in low-voltage balanced and

deterministic distribution networks. However, very few tackle the issue considering the

three-phase model network neither account explicitly for the uncertainty present in form

of intermittent PV injections or unexpected changed in load demand. Existing solutions

are based in solving an equivalent single-phase power flow model of the low-voltage dis-

tribution network, assuming constant both demand and generation (if its accounted) and

calculating the power losses. That procedure leads to non-realistic power losses values

and to non-feasible energy efficiency policies and practices. The most relevant and recent

works in power losses estimation methods are summarised in Table 2.3.



Table 2.3: Power losses estimation methods comparison

Reference DERs Uncertainty NTM Unbalanced Resolution Approach Large-Scale Voltage Level Test Network

[Mikić, 2007] No Variance No No - AE-LSF No LV -/ - / 11 buses

[Leal et al., 2009] No No No No 15 min ML Yes MV -/ 608 feeders/ -

[Urquhart et al., 2015] No No No No 1min AE-LSF Yes LV -/ - / 22 buses

[Fu et al., 2016] DG No No No - AE-LSF Yes MV -/ - / 43 buses

[Ibrahim et al., 2017] No No No No - AE Yes LV 44.9 MW / 4 feeders / -

[Wang et al., 2017] No No No No - ML Yes MV - / 762 feeders / -

[Poursharif et al., 2018] No No No Yes 1-30 min AE-LSF No LV - / 3 feeders / 140 buses /

[Carvalho et al., 2018] No PDF No Yes 30 min PPFS No LV 400 kVA / 1 feeder / 67 buses

[Fang et al., 2019] No No No Yes - Clustering No MV-LV - / 800 feeders / -

[Gouveia et al., 2021] No PDF No Yes 1-15min PPFS 4No LV 400 kVA / 1 feeder/ 67 buses

DG: Distributed Generation; PFS: Power-Flow Simulation; NTM: Non-Telemetered Customers; SM: Smart Meters; AE: Analytical Equations; LF:

Loss Factor, Lf: Load Factor, TP-BT: Top-down/Botton up approach, PFr: Power flow analysis with regression models, ML: machine learning

techniques; AE: Analytical Equations
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2.4 Optimization Techniques for Power Losses Min-

imisation

Power Losses minimisation in LV unbalanced smart grids refers to the optimal decision

making in respect to the deployment of policies and practices that minimise certain ob-

jectives subject to technical constraints. These policies and practices correspond with

Flexibility mechanisms to balance power demand and power generation in such a way

that there is an adequate value of power losses keeping the network state in normal and

safety conditions.

Unbalanced Optimal Power Flow (UOPF) in smart grids is affected by uncertainties

such as: customer consumption, BES charging, PV power injections or energy prices.

Usually, aggregated household power demand is forecasted by means of time series models

or machine learning models providing an expected value for the customer aggregated

demand in each period of time. Moreover, the price of the energy consumed by customers

and the potential price of the potential flexibility, are variable and may change. They

depend both on the market clearing and the generation technologies involved adding

uncertainties in the smart grid optimal operation.

Similarly, PV generation involves uncertainties because solar irradiation is variable

affecting the expected power generation. Depending on how uncertainty is modelled the

optimisation problem can be categorised into:

• Deterministic Optimisation (DO).

• Non-deterministic Optimisation (NDO).

– Probabilistic Optimisation.

– Possibilistic Optimisation.

– Stochastic Optimisation (SO).

– Robust Optimisation (RO).

A variable or process is deterministic if it can take only one possible outcome (i.e, if

the next event in the sequence can be determined exactly from the current event). In
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contrast, a variable process is defined as random if it can take on one or more possible

outcomes or events. This means that for a optimisation problem, for instance (2.35), if

the parameters (A,b) are known and fixed, the optimal solution x∗ will always be the

same (for a given starting point x0 and using the same solver algorithm). In contrast, if

the parameters (A,b) are replaced by random variables (Ã, x̃) then the optimal solution

x̃∗ ̸= x∗ will not be the same since it is affected by the uncertainty in the input parameters

and then the optimisation problem is a non-deterministic problem.

min
x

c · x

s.t. A · x ≤ b

x ≥ 0

x = [x1, . . . , xn]
T

c = [c1, . . . , cn]

A ∈Mm×n

b = [b1, . . . , bm]
T

(2.35)

Non-deterministic optimisation problems may give different outcomes for the same

input, i.e there is uncertainty associated with the input parameters that affect the optimal

solution.

An optimisation model with stochastic variables, as parameters, is defined as a stochas-

tic optimisation model, because the model describes a mathematical process that use or

harness randomness. Common examples include Brownian motion and or Markov Pro-

cesses. In general, stochastic is a synonym for probabilistic and for random. A random

variable is stochastic if there is uncertainty or randomness involved with its outcomes (i.e

if the occurrence of events or outcomes involves randomness or uncertainty).

Moreover, an optimisation problem with probabilistic variables as parameters is de-

fined as a probabilistic optimisation model. A common example is Monte Carlo sampling

simulation. A random variable or process is probabilistic if it can be summarised and

analysed using the tools of probability (i.e if the occurrence of events or outcomes can

be defined with a probability). Most notably, the trajectory of a random variable over a

period can be described in terms of a probability distribution.
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We may choose to describe a variable as probabilistic over stochastic if we wish to

emphasise the probability of the sequence’s outcomes and the independence of the events.

Typically, probabilistic is used to refer to a lack of dependence between observations in a

sequence. For example, the rolls of a fair die are probabilistic, so are the flips of a fair coin.

A probabilistic variable or a probabilistic sequence can still be summarised using a prob-

ability distribution (for instance a Gaussian distribution). We may describe something as

stochastic over probabilistic if we are interested in focusing on the probabilistic nature of

the variable, such as a partial dependence between the next and the actual event.

Another technique to account for uncertainty is the possibilistic approach by which

the uncertainty variable is described using a membership function [Soroudi, 2011]. Within

this approach exist methods such us α-cut method with provides the membership function

of ỹ = f(x̃1, . . . , x̃n). The method is the defuzzification which is a mathematical process

for transforming a fuzzy number into a consistent number (without uncertainty).

2.4.1 Probabilistic Optimisation

In probabilistic optimization each variable affected by uncertainty is statistically charac-

terised in terms of finding the Probability Density Function (PDF) that best describes

the behaviour of the variables affected by the uncertainty. Compared to the deterministic

optimization, instead of producing a forecast for each variable during the period under

consideration obtaining (n) discrete expected values, a PDF is fitted to the historical

data for each variable. Once the best PDFs are fitted for the uncertain variables, a Monte

Carlo Simulation is performed (Fig. 2.6), subtracting in each simulation a sample from

the PDF of each variable and solving an instance of the optimization model. However, It

is necessary to carry out a considerable number of simulations until the final value of the

optimal function converges.

Each variable affected by uncertainty can be described in terms of a PDF that best

fit to the cumulated histogram of the historical data. This PDF can be a defined one

(gaussian normal, exponential, beta, etc.) or the probability density can be estimated

using the Kernel Density Estimation (KDE) method (2.36)-(2.38) with mean (µp
k,(•),t)

and a standard deviation (σp
k,(•),t) parameters.
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Figure 2.6: Sampling process for Monte Carlo simulation
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p̃pk,(•),t ≈ Φ(•)

(
µp
k,(•),t, σ

p
k,(•),t

)
, t ∈ Tn,∀k ∈ V (2.36)

Φ(•)(v) = (nh)−1
∑
i∈|v|

ϕ((v − vi)/h) (2.37)

h =

(
4 (σp

k,(•),t)
5

3n

)1/5

(2.38)

Where ϕ(•) is the kernel (window function), v is the set of data points related to

the variable, vi is the ith value of v, h is a smoothing parameter which depends on the

standard deviation of the data and the size of the data set.

In contrast with the deterministic optimization, in which a single optimal value is

obtained, what is obtained with the probabilistic optimization (Fig. 2.7) is a collection

of values for the optimal function (2.39), each one is the result of solving a deterministic

optimisation model with a sample extracted from the PDFs. Once the collection of values

for the optimal function is large enough to be considered as representative, the PDFs of the

objective function value is obtained, which is statistically correlated with the distribution

of the uncertain variables.

OF S =
{
OF (1), . . . , OF (Ns)

}
(2.39)

2.4.2 Stochastic Optimisation

Also known as Scenario based decision making it is actually a type of probabilistic op-

timization, since make use of the concept of probability and distribution function. In

stochastic optimisation uncertainty modelling is quantified using probability distributions.

Variability in DERs generation and customers demand (as well as any other variable in

the network affected by uncertainty) can be described in terms of stochastic variables

because the outcome (power generation, power demand) involves some randomness and

has some uncertainty. It is a mathematical term which is closely related to “randomness”

and “probabilistic” and can be considered as “’non-deterministic”.



50 CHAPTER 2. LITERATURE REVIEW

Density

Density

Density

Starting time

Hourly
PV

Production

Hourly
Cuatomer
Demand

BES
Starting

time
Sesion

8 12 204

Customers
Power demand (kW)

16

8 12 204

PV Power
generation (kW)

16

Sampling

Sampling

t

t

8 12 204

PEV
Charging
Sesion
(kW)

16 t

Density

Ending time

BES
Ending
Sesion

Sampling

Density

OF value

Distribution of the
optimal function

8x14

Figure 2.7: Distribution of the optimal function in probabilistic optimization

Having characterised the variables affected by uncertainty, the stochastic optimization

seeks to minimise the expected value of the objective function under consideration over

a limited set of statistically dependent scenarios (2.40)-(2.41). The expected value of the

optimal function is calculated over all plausible scenarios considered as the summation of

the products between the probability of the scenario (πω) and the objective function. A

considerable number of scenarios can be created but in order to keep tractability, scenario

reduction techniques need to be applied to reduce a large number of scenarios in a more

compact set maintaining the same statistical moments (i.e keeping the same statistical

information in less samples). The procedure consists in calculating the statistical moments

of the overall scenarios (expected value, standard deviation, skewness and kurtosis) and

reducing the number of randomly scenarios.

χω = ppk,(•),ω =
{
ppk,(•),ω,t0 , . . . , p

p
k,(•),ω,tn

}
(2.40)
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min
χω

Nω=Nλ·NPV ·NH∑
ω

πω ·OF (χω)

s. t. f (χω) = 0

g (χω) ≤ 0

χω ∈ R

(2.41)

Where πω is the probability of the scenario ω. The Value of the Stochastic Solution

(VSS) (2.42) is calculated as the difference between average value over scenarios of the

objective function evaluated with the stochastic solution of each scenario (Recourse Prob-

lem, REP) (2.43) and the average value over scenarios of the objective function evaluated

with the deterministic solution (Expectation of the expected Value Solution, EEV) (2.44),

random variables substituted by their respective values.

If the number of scenarios is too large, the stochastic optimisation problem can result

intractable. To solve this, the number of scenario can be reduced. This is carried out by

defining distance metric between each pair of probability distributions scenarios d(ω, ω
′
)

(such as Fortet-Mourier and Wasserstein [Henrion et al., 2009]) and then using this metric

and the probability of each scenario, obtaining a reduced set of scenarios Ω
′
Nω

⊂ ΩNω

keeping the statistical moments (expected value and variance) mostly constants. This

kind of technique alleviates the computational burden of the stochastic programming

problem but at expense of a loss of information. So it should be done in such a way that

a trade-off between the two facts is achieved.

V SS = EEV −REP (2.42)

REP =
1

Nω

Nω∑
ω

[OF (χ∗
ω)]ω (2.43)

EEV =
1

Nω

Nω∑
ω

[OF (χ∗
d)]ω (2.44)
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2.4.3 Robust Optimisation

Robust optimisation (RO) treats the input parameters as random variables considering

that they can take values within an uncertainty set and quantifying the total uncertainty

by means of an uncertainty budget [Ben-Tal et al., 2009]. In contrast with probabilistic

and stochastic optimization, RO does not require accurate probabilistic information nor

relies in a computational extensive discretisation of the uncertainty based on scenarios. In-

stead, RO models the uncertainty by decision variables within a pre-specified uncertainty

set in such a way that the optimal solution founded by RO is immune to all possible

situations of the uncertainty sources. In Stochastic Programming (SP) uncertainty is

described through a probability function but it suffers from the curse of dimensionality.

On the contrary, RO uncertainty is not stochastic (e.g., there are no random variables)

it is deterministic and based on bounded and convex sets. Moreover, in Stochastic Op-

timisation (SO) the solution obtained is feasible with some confidence interval and the

uncertainty is defined by their Probability Distribution Function (PDF), in RO the solu-

tion is feasible for any possible realisation of the uncertainty, which is defined as a given

set [Shafie-Khah et al., 2018b].

RO has emerged as a practical alternative framework to stochastic programming for

generation scheduling under uncertainty. For decision-making process that is repeated,

SO results more favourable due to the lower cost in expectation. On the other hand, RO

is more suitable for long term decision problems.

Robust Optimisation (RO) has been applied to properly model DERs and customers

uncertainties [Abdi et al., 2017]. In the presence of uncertainty, RO can capture the avail-

able flexibility to respond to any combinations of uncertain operations of DERs and power

demand (i.e. the system can cope with worst case conditions) and still the optimization

model can be computationally tractable.

There exist multiple ways to address and model RO formulations [Ben-Tal et al., 2009,

Bertsimas and Thiele, 2006]. The aim of applying RO is to find a solution for the opti-

mization of DERs in LV networks in such a way that the solution obtained is robust

enough to DERs uncertainties. This is modelled through the definition of an uncertainty

set, that accounts for the uncertainty of each parameter associated with DERs. Usu-



54 CHAPTER 2. LITERATURE REVIEW

ally, the uncertainty set is represented by the budget- constrained polyhedral approach

where boundaries are defined by means of linear inequality constraints. Each vertex of

the polyhedron is determined by the intersection of the constraints.

In robust optimisation the uncertainties are modelled using the worst-case scenario in

an uncertainty set. Depending on the number of decisions variables and the uncertainty

characterisation, RO can be also classified in:

• Single-stage Robust Optimisation.

• Adaptive Robust Optimisation (ARO).

• Adaptive Robust Stochastic Optimisation (ARSO).

• Distributionallly Robust Optimization (DRO).

• Adaptive Distributionallly Robust Optimization (ADRO).

Single-stage Robust Optimisation

Robust optimization is appropriate to identify optimal decisions under uncertainty if these

decisions are critical in economic and security terms. Robust optimization allows for ro-

bustness control, adapting the decisions to the required level of robustness (protection).

In contrast to this, Stochastic Programming is generally computability unstable. Ro-

bust optimization problems are generally tractable since their sizes do not depend on the

accuracy of the uncertainty description. Contrary to stochastic programming or proba-

bilistic programming where the size of the problem depends on the number of scenarios

considered or the number of simulations executed.

Uncertainty sources that can be considered are:

• Load customers demand: Every load demand customer forecast is attached with an

uncertainty set ΦH .

• Energy prices: the energy daily prices depends on the market and so it can fluctuate.

• PH/PEV demand: Every PH/PEV charging pattern demand forecast is bounded

with an uncertainty set ΦPEV .
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• PV generation: Every PV unit forecast is bounded with an uncertainty set ΦPV .

To deal with the variables affected by uncertainty (PV injections, load demand, fluc-

tuations or unexpected PEV demand) single-state robust UOPF is formulated. The ob-

jective is to find a solution that minimises the objective function OF between all the

feasible solutions for all situations of the uncertain sources. The uncertainty set is a non-

empty compact set, which means that the set is closed (containing all its limits points)

and bounded (having all its points lie within some fixed distance of each other). The

compactness assumption of the uncertainty set implies that the uncertainty is bounded,

which reflects the reality.

Unlike stochastic or probabilistic approaches, robust optimization does not rely on

statistical information nor depends on expensive discretisation of uncertainty in scenarios.

Instead, RO models uncertainty by decision variables within a pre-specified uncertainty

set. In such a way, it provides an optimal solution (χ∗
r) which is immune to all possible

realisations of the uncertainty sources within the defined uncertainty set (Φu). The worst-

case values are found on the extreme uncertainty set intervals.

Consequently, it is considered a budget-constrained polyhedral uncertainty set given

by equation (2.45) which provides tractable solutions, and it is based on the deviation of

the uncertainty parameters from their expected value.

Φu =

{
u ∈ Rq|uL ≤ ui ≤ uU :

q∑
i=1

ui − ū

ui
≤ ζu

}
(2.45)

Where: u is the uncertainty vector parameter under consideration, ui is the i
th entry

of the uncertain parameter u, uL is the lower bound of the uncertainty set given by

expression (2.46), uU is the upper bound, given by expression (2.49), and ζu is a user

defined parameter that represents the budget of uncertainty imposed to the total absolute

deviation of the uncertainty-related variables ui from their expected values (ūi).

uL = ū−∆u;∀i = (1 . . . , q) (2.46)

uU = ū +∆u;∀i = (1 . . . , q) (2.47)
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The process of building robust uncertainty sets requires to model the correlation of

these sets across time and space. For instance, power demand in a specific location and

time can vary in the interval (a; b), and this variation can be correlated with the variation

of the energy price in the interval (c; d). Note that if the uncertainty budget is ζu = 0, then

uncertainty set is a singleton Φu = ū which corresponds with the case of no-uncertainty.

As the uncertainty budget get larger, the robustness of the solution so does. If ζu = q,

then all entries of the uncertain parameter can simultaneously take their upper and lower

bounds. The uncertainty set chosen relies on the consideration of intervals centralised

around the expected value i.e., it assumes that the uncertain parameters follow a normal

distribution.

Uncertainty sets are similar to the envelope bound model from Information Gain

Decision Theory (IGDT), which is a non-probabilistic and non-fuzzy approach for quantify

the uncertainty [Haim, 2006]. In this approach uncertainty is defined as the distance

between the actual value of the variable and the expected value. In (2.48) it is defined

that within the uncertainty budget (a set) U(ρ, û) are included all the values of the

uncertain variable u which deviation from û is lower than ρ · û, where, ρ is the uncertainty
horizon of variable u (budget) and û is the expected value.

u ∈ U(ρ, û) =

⏐⏐⏐⏐u− û

û

⏐⏐⏐⏐ ≤ ρ (2.48)

In some cases, a two-stage robust optimisation can be applied. In the First-stage

decision variables known as ”here-and-now” are decided before uncertainties are realised.

In the Second-stage decision variables known as ”wait-and-see” are decided after the exact

model parameters have been observed.

In that scheme a preventive view is considered, since it is desired to be protected

against the worst realisation of the uncertain parameters u ∈ U . (i.e. the values for which

the objective function is maximised). For the worst uncertainty realisation, it is desired

to minimise the objective function OF (x, u) to get the optimal decision variable x∗ ∈ χ.

By this way, the model provides preventive protection against the worst realisation (from

an optimization point of view) within the uncertainty set. For instance, an objective

function related to the total flexibility cost would produce an optimal solution x∗ ∈ χ
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because the uncertain parameter related to the energy prices takes the highest value

within the defined uncertainty set for that variable. In the same way, in the case of the

objective function related to the total power losses it would produce an optimal solution

x∗ ∈ χ for the scenario in which an the PV generation produce the highest value within

the uncertainty set for the scenario in which the PV generation produces the highest value

within the uncertainty set and the load demand customers takes the lowest value inside

its uncertainty set.

So, in this robust optimization model exists two levels: in the first level the deci-

sion variable value is fixed and in the second level the objective function is maximised

considering the value of the adopted decision variable fixed in the upper level.

min
x∈X

max
u∈U

OF (x,u)

s. t. f(x,u) = 0

g(x,u) ≤ 0

(2.49)

In this problem, the decision variable x∗ ∈ χ can be the nodal phase voltage (real and

imaginary components). Meanwhile, uncertain parameters u ∈ U can be those variables

affected by uncertainty namely: customers demand, PV generation, energy prices and

PEV charging sessions.

Adaptive Robust Optimisation (ARO)

Usually, once the uncertainty realises it is possible to mitigate the potentially pernicious

effects of the uncertainty. This is tackled by the Adaptive Robust Optimization(ARO).

min
x∈X

max
u∈U

min
y∈Y (x,u)

OF (x,u,y)

s. t. f(x,u,y) = 0

g(x,u,y) ≤ 0

(2.50)

The overall purpose is to minimise the objective function value under the worst un-

certainty realisation within the robust set, but incorporating a corrective view after the

uncertainty materialise. This comprises three levels, the first-level represents a planning

strategy of the decision variable x ∈ χ prior to the uncertainty realisation u ∈ U and
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seeks to minimise the objective function value. The second level represents the uncer-

tainty realisation u ∈ U within an uncertainty set Φu, in the worst possible manner and

so it seeks to maximise the objective function value. The third level represents the op-

eration actions to mitigate effects of uncertainty, once it realises. Decision variables at

this level are represented by vector y ∈ Y (x,u) which generally depends on both first

decision variables x and uncertain parameter u. Therefore, the model provides both ex-

ante protection (planning decisions) and ex-post correction (operational decisions). On

the computational side, this represents a try-level problem with require a specific solution

algorithm that generally relies on merging the second and third level problem using du-

ality theory and solving the resulting bi-level problem through a Column-and-Constraint

Generation (CCG) algorithm [Ding et al., 2017].



Chapter 3

Power Losses Estimation in Low

Voltage Smart Grids

3.1 Introduction

One of the European Union Targets was to replace at least 80% of all traditional energy

meters with electronic-based smart meters by 2020 [European Comission, 2019]. However,

at the end 2020, the European region (EU 27 including UK) was capable to replace only up

to 150 million smart electricity meters, which corresponds to a penetration rate of 50% of

smart meters. It is expected to surpass 227 million of smart meters (Households) in 2026

[Ostling, 2021] due to the updated planning and target numbers that will be carried out

in many European markets such as Western and Northern Europe. This large-scale smart

meters roll-out would not only allow service providers to gain information about the energy

consumed and produced by each customer in real time but it would also allow them to

compute network power losses at any given time. Network power losses of smart grids can

be computed using customers’ measurements (active and reactive energy) and the energy

measurement measured by the low-voltage supervisor located at secondary substations.

The more accurate the load demand data are, the more precisely power losses can be

calculated. However, in some low-voltage networks, there are non-telemetered customers,

who do not provide more information about the energy they consume or produce in real

time. This complicates power losses calculations because this information is necessary for

59
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estimating the load demand of non-telemetered customers. Moreover, in some instances,

smart meter measurements do not have the required accuracy, the data they provide can

be anomalous (null or extremely high) or the device can even be out of service. These

challenges make it necessary to estimate load demand to perform any real-time power

analyses and, especially, power losses calculations.

3.2 Network Modelling

Consider a low-voltage smart grid in terms of a graph [Jungnikel, 2009] composed by a set

n nodes (or buses) V = {v1, . . . , vn} and a set of m edges (or lines) E = {e(k,j,p,ℓ)|∀k, j ∈
V, k ̸= j,∀p ∈ {a, b, c, n}, ℓ ∈ (1, . . . ,m)}. Since low-voltage networks are operated in ra-

dial configuration (no loops) the graph considered has a tree topology, normally composed

by a mean feeder with laterals (Fig. 3.1).
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Figure 3.1: Low-voltage smart grid three-phase graph

Moreover, in these networks, the presence of single-phase loads is noteworthy, and so

the system operation is performed, usually, in unbalanced conditions. Consequently, each
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individual feeder can be defined as a four-wires line section, so the edge e(k,j,p,ℓ) results in

a four-tuple of the three phases plus the neutral cable {a, b, c, n}.

3.3 Network Equations

Consider the four-wires line section showed in Fig. 3.2 between sending node k and

receiving node j. The relationship between the electrical magnitudes phase voltage, and

phase currents and the self-impedance and mutual impedances is defined by the network

equations. These equations are obtained by applying Ohm’s law to all the phases as it is

indicated in expression (3.1).
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Figure 3.2: Section of four-wires feeder section model
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⎡⎢⎢⎢⎢⎢⎢⎣
ūAk

ūBk

ūCk

ūNk

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
ūaj

ūbj

ūcj

ūnj

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
z̄aakj z̄abkj z̄ackj z̄ankj

z̄bakj z̄bbkj z̄bckj z̄bnkj

z̄cakj z̄cbkj z̄cckj z̄cnkj

z̄nakj z̄nbkj z̄nckj z̄nnkj

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
īaakj

ībbkj

īcckj

īnnkj

⎤⎥⎥⎥⎥⎥⎥⎦ (3.1)

The above expressions could be expressed in a more compact way by gathering the

phase components, (3.2). By this way, it is obtained the phase impedance matrix (3.3)

isolated from the neutral cable components (3.4) as well as the neutral cable impedance

z̄nnkj .

⎡⎣[Ūabc
k

]
ūNk

⎤⎦−

⎡⎣[Ūabc
j

]
ūNj

⎤⎦ =

⎡⎢⎣
[
Z̄abc

kj

] [
Z̄n

kj

]
[
Z̄n

kj

]T
z̄nnkj

⎤⎥⎦
⎡⎣[Īabckj

]
īnnkj

⎤⎦ (3.2)

Where:

[
Z̄abc

ij

]
=

⎡⎢⎢⎢⎣
z̄aakj z̄abkj z̄ackj

z̄bakj z̄bbkj z̄bckj

z̄cakj z̄cbkj z̄cckj

⎤⎥⎥⎥⎦ (3.3)

[
Z̄n

kj

]
=
[
z̄ankj z̄

bn
kj z̄

cn
kj

]T
(3.4)

[
Ūabc
k

]
=
[
ūAk ū

B
k ū

C
k

]T
(3.5)

[
Ūabc
j

]
=
[
ūaj ū

c
j ū

c
j

]T
(3.6)

[
Īabckj

]
=
[̄
iaakj ī

bb
kj ī

cc
kj

]T
(3.7)

Note that the phase impedance matrix (3.3) is complex and could be separated in real

and imaginary part corresponding with the resistance R and reactance X matrix (3.8).
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[
Z̄abc

kj

]
=
[
Rabc

kj

]
+ j

[
Xabc

kj

]
=⎡⎢⎢⎢⎣

raakj rabkj rackj

rbakj rbbkj rbckj

rcakj rcbkj rcckj

⎤⎥⎥⎥⎦+ j

⎡⎢⎢⎢⎣
xaakj xabkj xackj

xbakj xbbkj xbckj

xcakj xcbkj xcckj

⎤⎥⎥⎥⎦
(3.8)

It is assumed that all of the diagonal terms of the impedance matrix (3.3) are equal

as well as all of the mutual impedances.

This is a good enough approximation for distribution grids which makes the problem

more tractable [Short, 2004]. Therefore, the elements of the diagonal are replaced by the

self-impedance term (3.9) and the elements out of the diagonal are equal and could be

replaced by the mutual term (3.10).

z̄aakj = z̄bbkj = z̄cckj = z̄skj (3.9)

z̄abkj = z̄ackj = z̄bakj = z̄bckj = z̄cakj = z̄cbkj = z̄mkj (3.10)

Since the majority of the low-voltage distribution models have expressed the network

parameters in sequence terms [Short, 2004] the relationship between the phase impedance

terms z̄skj and z̄
m
kj and the sequence terms z̄okj and z̄

1
kj are indicated in (3.11).

z̄skj = (z̄okj + 2z̄1kj)/3

z̄mkj = (z̄okj − z̄1kj)/3

(3.11)

Assuming that the network distribution network is well-grounded (that is, null voltage

in neutral cable: ūnk = ūNj = 0) it is possible to apply Kron’s reduction technique and

working only with the phase components: {a,b,c}. Therefore, imposing the zero voltage

condition to the neutral cable in equation (3.2), allows to obtain the expression (3.12)

for the currents, which allows the clearing of the neutral cable current on function of the

phase currents, expression (3.13).

[
Z̄n

ij

]T [
Īabcij

]
+ Īnnij z̄

nn
ij = 0 (3.12)
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Īnnkj = − 1

z̄nnkj

[
Z̄n

kj

]T [
Īabckj

]
(3.13)

Therefore, the three phase components are used to calculate the network (3.14), and

then, the current in the neutral cable is calculated by means of (3.14).

⎡⎢⎢⎢⎣
ūAk

ūBk

ūCk

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
ūaj

ūbj

ūcj

⎤⎥⎥⎥⎦ =
[
Z̄abc

kj

]
⎡⎢⎢⎢⎣
īaakj

ībbkj

īcckj

⎤⎥⎥⎥⎦ (3.14)

Consider now the power injection at bus k depicted in Fig. 3.3 where
[
Īabci,k

]
is the

column vector of net phase currents injections at node k (3.15),
[
Ūabc
k′

]
is the column

vector of phase voltages (3.16) of the node k′ which belongs to the set of nodes connected

to node k: k′ ∈ Ωk = {1, . . . ,m}, and
[
Ȳ abc
kk

]
is the admittance matrix (3.17) of the

three-phase line between nodes k and k′ ∈ V .

I
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Figure 3.3: Network model injection

[
Ūabc
k′

]
=
[
ūak′ ū

b
k′ ū

c
k′

]T
(3.15)

[
Īabci,k

]
=
[̄
iai,k ī

b
i,k ī

c
i,k

]T
(3.16)
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[
Ȳ abc
kk′

]
=
[
Z̄abc

kk′

]−1
=

⎡⎢⎢⎢⎣
ȳaakk′ ȳabkk′ ȳackk′

ȳbakk′ ȳbbkk′ ȳbckk′

ȳcakk′ ȳcbkk′ ȳcckk′

⎤⎥⎥⎥⎦ (3.17)

The net current injection at node k for each phase p ∈ {a, b, c} could be calculated by

applying Kirchhoff’s current law [Sereeter et al., 2017] by means of the expression (3.18).

īpi,k =
∑
k′∈Ωk

∑
p′∈{a,b,c}

ȳpp
′

kk′ū
p′

k′ , k
′ ̸= k (3.18)

By extending the above expression to all nodes that constitute the network n = |V |
and all phases ∀p ∈ {a, b, c}, the vector of net currents injections is obtained by means of

the expression (3.19).

⎡⎢⎢⎢⎣
[
Īabc1

]
...[
Īabcb

]
⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
[
Ȳ abc
11

]
· · ·

[
Ȳ abc
1b

]
...

. . .
...[

Ȳ abc
b1

]
· · ·

[
Ȳ abc
bb

]
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
[
Ūabc
1

]
...[

Ūabc
b

]
⎤⎥⎥⎥⎦ (3.19)

Where the complex admittance ȳpp
′

kk′ could be separated in real and imaginary part, as it

is done in expression (3.20) obtaining by this way the conductance gpp
′

kk′ and the susceptance

bbb
′

kk′ . These magnitudes could be calculated from the resistance and reactance rpp
′

kk′ and

xpp
′

kk′ ∀p ∈ {a, b, c} as it is indicated in (3.20) and (3.21).

ȳpp
′

kk′ = gpp
′

kk′ + j · bpp′kk′ , k
′ ̸= k (3.20)

gpp
′

kk′ =
rpp

′

kk′

(rpp
′

kk′)
2 + (xpp

′

kk′)
2
, k′ ̸= k (3.21)

bpp
′

kk′ =
−xpp′kk′

(rpp
′

kk′)
2 + (xpp

′

kk′)
2
, k′ ̸= k (3.22)

Complex equations are decomposed in their real and imaginary parts such as phase

voltage (3.23), current injection (3.24) and current flow (3.25).

ūpk = up,rek + j · up,imk (3.23)
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īpk = ip,rek + j · ip,imk (3.24)

īpkj = ip,rekj + j · ip,imkj (3.25)

The network state is determined by solving the non-linear set of equations that con-

stitute the unbalanced power flow F (X ) = 0 : IRn → IRn (3.26) that constitutes the

power mismatch between the specified power injections (sp) and the calculated power

injections (cal). This non-linear and complex equation is divided into real (active power)

and imaginary (reactive power) components.

F (X ) = 0 =

⎡⎣Fp(X )

Fq(X )

⎤⎦ =

⎡⎣pp,spi,k + pp,cali,k

qp,spi,k + qq,cali,k

⎤⎦ (3.26)

where X is the state variable, indicated in expression (3.27) that corresponds with

the real and imaginary phase voltages {up,rek , up,imk }, ∀k ∈ V ∀p ∈ {a, b, c} indicated in

expressions (3.28) and (3.29) where b is the number of buses of the distribution grid.

X =

⎡⎣ [Xre]

[Xim]

⎤⎦ (3.27)

[Xre] =
[
ua,re1 ub,re1 uc,re1 . . . ua,reb ub,reb uc,reb

]T
(3.28)

[Xim] =
[
ua,im1 ub,re1 uc,im1 . . . ua,imb ub,imb uc,imb

]T
(3.29)

It can be noted that the calculated (cal) complex power injection in each node k and

phase p is given by expression (3.30).

s̄p,cali,k = ūpk
(̄
ipi,k
)∗

(3.30)

Working in the above expression and introducing the equation of current injection

(3.18) is possible to find an expression for the injected power in function of the lines’

parameters and nodal voltages as shown in (3.31).
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s̄p,cali,k = ūpk
∑
j∈Ωk

∑
p′∈{a,b,c}

(
ȳpp

′

kj

)(
ūp

′

j

)∗
(3.31)

Now, active and reactive power injections are obtained by extracting the complex

power injection in real and imaginary part as indicates expression (3.32).

s̄p,cali,k = pp,cali,k + j · qp,cali,k = Re{s̄p,cali,k }+ j · Im{s̄p,cali,k } (3.32)

Active and reactive power injections are expressed in terms of the real and imaginary

components of voltage and current injection as it is shown in expressions (3.33) and (3.34).

pp,cali,k = up,rek ip,rei,k + up,imk ip,imi,k
(3.33)

qp,cali,k = up,imk ip,imi,k − up,rek ip,imi,k
(3.34)

Where active and imaginary current injections ip,rei,k , ip,imi,k are obtained from (3.24)-

(3.25) and expressed in (3.35) and (3.36).

ip,rei,k =
∑
j∈Ωk

∑
p′∈{a,b,c}

gpp
′

kj u
p′,re
j − bpp

′

kj u
p′,im
j (3.35)

ip,imi,k =
∑
j∈Ωk

∑
p
′∈{a,b,c}

bpp
′

kj u
p′,im
j + gpp

′

kj u
p′,im
j (3.36)

Finally, expression (3.37) and (3.38) are reorganised introducing (3.36) and (3.41)

obtaining (3.39) and (3.40).

pp,cali,k = upk
∑
j∈Ωk

∑
p′∈{a,b,c}

up
′

j

[
gpp

′

kj cos(θp
′

kj) + bpp
′

kj sin(θp
′

kj)
]

(3.37)

qp,cali,k = upk
∑
j∈Ωk

∑
p′∈{a,b,c}

up
′

j

[
gpp

′

kj sin(θp
′

kj)− bpp
′

kj cos(θp
′

kj)
]

(3.38)

where θp
′

kj = θp
′

k − θp
′

j is the difference between the voltage angles, being ūp
′

k = up
′

k ∠θ
p′

k

and ūp
′

j = up
′

j ∠θ
p′

j the phasors of the phase voltage in the nodes of the line k − j.
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On the other hand, the specified (sp) power injections are determined by the power

balance between the positive power injected (generation) due to DER units, and the nega-

tive power injection (consumption) due to the customers demand, as indicates expression

(3.39).

s̄p,spi,k = s̄pg,k − s̄pd,k ∀p ∈ {a, b, c},∀k ∈ V (3.39)

Besides, the specified complex power injection s̄p,spi,k is separated in active and reactive

power injections as indicated in expressions (3.40) and (3.41).

pp,spi,k = pp,spg,k − pp,spd,k ∀p ∈ {a, b, c},∀k ∈ V (3.40)

qp,spi,k = qp,spg,k − qp,spd,k ∀p ∈ {a, b, c},∀k ∈ V (3.41)

The active and reactive power specified in each bus depends on the type of bus consid-

ered. To solve the power flow problem, one of the buses is chosen to be the slack − node

(denoted with k∗) and its power injections are equal to the net demand of the system in-

cluding the total power losses. This slack node corresponds to the low-voltage side of the

Secondary Substation, where the reference voltage is fixed to the rated value, which is the

same of the reference voltage so ūpk = 1∠0 p.u. The remaining network buses ∀k ∈ V/k∗

are considered as PQ nodes where phase voltage ūpk is variable and nodal power injections

are due to the DER power injection. These DER units can inject power as shown in Table

3.1. Note that active power generation coming from DERs involve uncertainty since it

depends on the weather conditions and so it requires to be estimated or forecasted. The

same happen to the load demand of non-telemetered customers.

The network state (3.42) can be obtained by solving the non-linear systems equations

indicated in (3.43) and (3.44).

s̄pkj = ūpk ī
p
kj ∀p ∈ {a, b, c},∀k, j ∈ V, j ̸= k (3.42)

ppkj = Re{s̄pkj} = up,rek ip,rekj + up,imk ip,imkj ∀p ∈ {a, b, c},∀k, j ∈ V, j ̸= k (3.43)
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Table 3.1: Type of buses for power flow analysis

Bus Type Voltage Generation Demand

Slack Fixed Variable Variable

PQ: Demand & Gen. Variable Parameter Parameter

PQ: Gen. Variable Parameter 0

PQ: Demand Variable 0 Parameter

Note that demand and generation parameters are input data that can be forecasted

based on smart meters measurement and weather measurements, or it can be considered

as uncertain variables (i.e. parameters which value is not certain quantity).

qpkj = Im{s̄pkj} = up,imk ip,imkj − up,rek ip,rekj ∀p ∈ {a, b, c},∀k, j ∈ V, j ̸= k (3.44)

Where current flows ip,rekj and ip,imkj are calculated using Kirchhoff’s current law (3.44)

decomposed in active and imaginary parts (3.45)-(3.46).

ip,rekj =
∑

p
′∈{a,b,c}

gpp
′

kj

(
up,rej − up,rek

)
− bpp

′

kj

(
up,imj − up,imk

)
(3.45)

ip,imkj =
∑

p′∈{a,b,c}

bpp
′

kj

(
up,rej − up,rek

)
+ gpp

′

kj

(
up,imj − up,imk

)
(3.46)

Meanwhile the power flows from j → k are obtained by (3.47) and (3.48).

ppjk = (−1)
(
up,rej ip,rekj + up,imj ip,imkj

)
(3.47)

qpjk = (−1)
(
up,imj ip,imkj + up,rej ip,rekj

)
(3.48)

3.3.1 Power Losses Equations

Active (technical) power losses of the low-voltage smart grid can be calculated as the

absolute value of the aggregation between the sending and receiving power in the other

extreme of the feeder section as indicates (3.49).
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PLOSS,T =
∑

e(k,j,p,ℓ)∈E

|ppkj + ppjk| (3.49)

Alternatively, active power losses can also be calculated by means of current flow in

each feeder and the feeder impedance: resistance rkj (Ω/m) as indicated in (3.50).

PLOSS,T =
∑

e(k,j,p,ℓ)∈E

rk,j · ℓk,j · (ipk,j)2 (3.50)

3.3.2 Customers Load Demand

Customer’s load demand have a dependency with the local bus voltage to which is con-

nected [Stephen et al., 2014], [Onen, 2016], so customer’s power demand is modelled by

means of a ZIP model (3.51).

pp,spd,k = p̃pd,k

[
cp,1p,k (u

p
k)

2 + cp,2p,k (u
p
k) + cp,3p,k

]
,∀k ∈ ΩC ,∀p ∈ {a, b, c} (3.51)

where:

• upk is the phase voltage magnitude in p.u.

• p̃pd,k = P̃ p
d,k/SB is the active power demand of the customer in p.u.

• cp,1p,k, c
p,2
p,k, c

p,3
p,k ∈ (0, 1) Are the active power demand sensibility coefficients that

determine the voltage dependency of the customer k connected to phase p. These

coefficients can be fitted by running multiple power flows with different voltage

levels.

Customers load demand p̃pd,k is represented as time series based on the smart meters’s

measurements with a τ sampling time (ranging from 15 minutes to 1 hour). In (3.52) it is

shown the power load demand from a customer k ∈ ΩC in the period of time from t = 0

to t = T .

p̃pd,k = [pd,k,t=0 + pd,k,t=τ + . . .+ pd,k,t=T−τ + pd,k,t=T ] (3.52)
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If smart meters measurements are sampled at each hour, it is required to estimate the

load demand at inferiors instants of time (for instance every 15 min).

Table 3.2: Example of time series smart meter measurements

Period Timestamp Demand (W) pd,k

t = 0 2020-12-03 00:00:00 2.755

t = τ 2020-12-03 00:15:00 2.876
...

...
...

t = T − τ 2020-12-03 13:10:00 2.948

t = T 2020-12-03 13:25:00 2.876

τ = 15min; T = 24 h · 60 min/h = 1440 min

For demand response actions it is interesting to know the power demand of individual

household appliances. Total customer demand (PD,i) (3.53) can be separated in power

demand dependent on temperature ppd,k,T (such a Air Conditioner (AC), Electrical heaters)

and the remaining household appliances’s demands (such as oven, computers, TV, fridge,

hot water, lightning, etc.) ppd,k,NT , which do not depend on the temperature.

ppd,k = ppd,k,NT + ppd,k,T (3.53)

ppd,k,T depends on the outdoor household temperature Text and the indoor temperature

Tint as indicated in Fig. 3.4 where Tint ∈ (Tmax, Tmin).

ppd,k,T = fc(Text, Tint) (3.54)
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T ext ºC( )

t (h)
T int ºC( )

AC/Heating

t (h)

t (h)

T int,max

T int,min

Comfort

Off Off

On OnDuty Cycle

Figure 3.4: Relationship between the heating and cooling devices operation with the

outdoor temperature and indoor temperature

3.3.3 Distributed Energy Resources (DERs)

DERs include:

1. Photovoltaic (PV) Panels.

2. Plug-in Electric Vehicles (PEV).

3. Battery Energy System (BES).
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Photovoltaic Panels

PV panels generate power depending on the solar irradiance G (W/m2) in the inclined

plane, ambient temperature Tamb as well as the orientation and inclination angle. The vari-

able power output of each PV facility is indicated in expression (3.55) [Lorenzo et al., 1994].

pp,spg,k,t = p̃ppv,k =
PPV,k

SB

· Ĝk

1000

{
1 + δPV (Tcell + 25)

}
, ∀k ∈ ΩPV (3.55)

where:

• PPV k
is the peak power output of the PV facility (number of PV panels multiplied

by the their peak power) in Standard Test Conditions (STC) which means under a

irradiation of G = 1000 W/m2 and ambient temperature of Tamb = 25◦C.

• Ĝk is the solar irradiance (W/m2) that receives the PV panel of the customer k on

the inclined plane. Notice that this component has a hat which indicates that this

variable is forecasted or estimated.

• δPV is the temperature coefficient of power (%/oC).

• T̂cell,k is the temperature (oC) of the panel surface witch depends on the ambient

temperature T̂amb,k and the solar irradiance Ĝk and the Nominal Operating Cell

Temperature (NOCT) (oC) (3.56)

T̂cell,k = T̂amb,k + Ĝk ·
(
NOCT − 20

800

)
, ∀k ∈ ΩPV (3.56)

Note that solar irradiation Ĝk and ambient temperature T̂amb,k use hat notation ˆ
because are two weather variables that have to be previously forecasted.

PV panels are connected to the grid through a PV inverter DC/AC (with rated ap-

parent power Siv) and they can be used to provide flexibility by means of PV energy cur-

tailment. This represent one of the mechanism to provide load flexibility in low-voltage

distribution networks with high penetration of distributed resources, and is known as PV

production curtailment. This is based in modify the power factor cos(ϕiv) of the inverter

devices AC/DC that connects the PV panel arrays with the network in such a way that
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the total active power injected in the network is lower than the rated capacity of the

inverter (Fig. 3.5) and the active power injected to the grid can be reduced (3.57) at the

expense of the injection of reactive power (3.57)-(3.58). In any case, the operating points

of PV inverters have to guarantee (3.59) as illustrated in Fig. 3.5.

p̃ppv,k = cos(ϕiv) · Siv, ∀k ∈ ΩPV (3.57)

q̃ppv,k = sin(ϕiv) · Siv, ∀k ∈ ΩPV (3.58)

(p̃ppv,k)
2 + (q̃ppv,k)

2 ≤ (Siv)
2 ,∀k ∈ ΩPV (3.59)

Where ϕiv is the power factor of the inverter which usually vary between 0.95 ≤
cos(ϕiv) ≤ 1.

1

0.5

0.75

0.25

ϕiv

p
pv,k

q
pv,k

10.750.50.25
0

0

0.87
0.62

0.8

Figure 3.5: PV Inverter limits
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Plug-in Electric Vehicles (PEV)

Plug-in Electric Vehicles (PEV) are vehicles that incorporate a Battery Energy System

(BES) with a capacity that range between 50 and 100 kWh. Each PEV unit can be con-

nected at the household’s connection point through a single-phase or three-phase charging

station (depending on the charging power). Additionally, PEVs can be connected to public

charging stations, however in this thesis, only household’ connection points are consid-

ered. PEV units are modelled in such a way that arrivals and charging sessions duration

have an stochastic component and depends on the type of the day (weekdays, weekends,

holidays or special events) and the time of the day, according to [Flammini et al., 2019].

In Fig. 3.6 it is shown the time evolution of the PEV charging session and the uncertainty

associated.

The Fig. 3.6 illustrates the expected value of the charging power demanded by the

PEV in real magnitude and the extreme bounds delimited by one standard deviation

(light grey) and two standard deviations (darker grey), which means that 68.27% of the

trajectories will fall within the light grey delimited area, and 99.73% of the charging

pattern will fall within the aggregation of the two areas.

To model the PEV charging pattern, the expression indicated in (3.60) is formulated,

which includes an expected value term (µp
k, PEV,t) and a deviation term (σp

k, PEV,t). Both

terms are characterised by a Probability Density Function (PDF) (f̂h) defined in (3.61)

according to the Kernel Density Estimation (KDE) method.

ppk,PEV,t = µp
k,PEV,t + σp

k,PEV,t, ∀t ∈ Tch,∀k ∈ ΩPEV (3.60)

ppk,PEV,t ≈ f̂PEV (v) = (nh)−1
∑
i∈|v|

ϕ((v − vi)/h) (3.61)

where: v is the variable to be represented (in this case the PEV charging pattern,

which is a set of data points of charging sessions), ϕ(•) is the gaussian function, vi is the

ith value of v, h is the smoothing parameter indicated in expression (3.62).

h =

(
4 σ5

3 |v|

)1/5

(3.62)
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where: σ is the standard deviation of the PEV charging patterns. The expected value

component of the PEV demand correspond with the nominal value of the PEV charging

point during the charging session Tch.
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Figure 3.6: PEV charging load pattern

3.3.4 Load Demand Modelling: Non-Telemetered Customers

To calculate technical power losses in low-voltage smart grids is required the customers

load demand, which is obtained from the customer’s smart meter measurements (active

and reactive energy) and the energy measurement registered by the low-voltage supervi-

sor’s smart meter deployed at secondary substations. However, the resolution of those

measurements not always is as lower as it would be desired (normally 1 hour) and in some

low-voltage networks, some customers meter report energy consumption in monthly basis.

This fact makes more challenging the process of calculation of the technical power losses

since an inaccurate load demand will lead to wrong power losses estimation. To tackle

this issue, in this section is presented a stochastic approach for the modelling of the load

demand under uncertainty (e.g., non-telemetered customers and uncertain smart meters
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readings). Load demand of non-metered customers is modelled by means of a top-down

approach. Intra-hour load demand profiles of customers are synthetically generated by

applying a Markov process. Finally, a case study is conducted to provide numerical results

of the framework proposed. The data and network used in the case study corresponds to

the roll-out deployed by the Spanish R&D (Research and Development) demonstration

project OSIRIS [UC3M et al., 2017].

In low-voltage smart grids there are telemetered customers for whom smart meters pro-

vide hourly measurements. There are also non-telemetered customers, who have monthly

energy meters. Moreover, in some situations, smart meters from telemetered customers

fails (not measurement) or they can provide false readings. Consequently, the hourly load

demand from non-telemetered and telemetered customers with missing measurements has

to be estimated. Non-telemetered customers have energy meters that provide measure-

ments of the energy consumed during the most recent months. For each non-telemetered

customer, historical monthly energy measurements are used to infer the hourly energy

consumption by applying a top-down approach using three levels of resolution:

• Upper Level: Monthly Energy Consumption.

• Middle Level: Daily Energy Consumption.

• Lower Level: Hourly Energy Consumption.

Upper-level: Monthly Energy Consumption

Available data from non-telemetered customers consist of historical monthly energy values

measured during the most recent months. This information for energy consumption during

the current month is typically lacking because it is collected once the month ends. To

estimate the current month’s energy consumption, an Energy Consumption Tendency

curve (ECT) curve is deduced using the historical monthly measurements. The monthly

energy consumed from the previous month (last available measurement) to the current

month (still unknown) is inferred through an interpolation process based on polynomial

functions (splines) [Massopust, 2010]. The ECT for the energy consumption of a non-

telemetered customer is shown Fig. 3.7.
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Figure 3.7: ECT curve for the historical measurements of a non-telemetered customer

from September 2012 to September 2013.

Middle-level: Daily Energy Consumption

Once the energy estimation for the current month is obtained, it is possible to estimate

each week’s consumption. This weekly estimation process is necessary in order to differ-

entiate the energy consumption of the working days from holidays. The weekly profile is

deduced from the weekly consumption registered by the smart meter located at the sec-

ondary substation. This secondary substation weekly profile is considered the reference

Weekly Energy Consumption (WEC) profile for the low-voltage network. In Fig. 3.8, the

estimated WEC profile for a non-telemetered customer is shown. The first three points

correspond to holidays, the next five points correspond to the work days and the last two

points correspond to Saturday and Sunday. The WEC therefore provides the daily energy

consumption for each day of the week.

Lower Level: Hourly Energy Consumption

At this level, the complete set of hourly values that are missing is estimated using an op-

timisation process. The procedure proposed is formulated as a Non-Linear Programming
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Figure 3.8: WEC profile of a non-telemetered customer in May 2013.

(NLP) optimization problem as described below in (3.63)-(3.66).

Minimise the objective function:

Min z =

{∑
i∈ΩC

∑
d∈Ωd

∑
t∈Td

(
Pi,t,d − P̂i,t,d

)2
+
∑
i∈Ω

c
′

∑
d∈Ωd

(
Ei,d − Êi,d

)2

+
∑
d∈Ωd

∑
t∈Td

(∑
i∈Ωc

Pi,t,d − P̂ S
t,d

)2}
(3.63)

Subject to: ∑
i∈ΩC

∑
t∈Td

Pi,t,d =
∑
i∈Ωc

Ei,d; ∀d ∈ Ωd (3.64)

∑
i∈ΩC

∑
t∈Td

Pi,t,d ≤
24∑
h=1

Ps,t,d; ∀d ∈ Ωd (3.65)

∑
i∈Ωc

Ei,d ≤ ÊS
d ; ∀d ∈ Ωd (3.66)

Where Td = (t1, . . . , tn) is the daily time horizon. The objective function (3.63)

is composed of three terms. The first term represents the total square error between
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the real hourly demand (Pi,t,d) and the hourly measurement (P̂i,t,d) for the 24 hours of

the day d. The second term refers to the square error between the real daily energy

consumption (Ei,d) and the measured daily value (Êi,d). The third term in the equation

refers to the square error related to the daily energy demanded from the complete set

of network customers (
∑

i=ΩC
Pi,t,d) and the daily energy registered at the secondary

substation (P̂ S
t,d). Constraint (3.64) equalises the 24-hour power consumption with the

daily energy consumption by each customer. Constraint (3.65) establishes that the 24-

hour power consumption registered at the secondary substation has to be greater than

the power demanded by the network customers. Finally, constraint (3.66) establishes the

energy constraint for consumption throughout the day.

Intra-hour load demand modelling

The modelling of intra-hour load demand for network customers is modelled as a stochas-

tic Markov process [Howard and Karlin, 1984]. Therefore, high-resolution load demand

customer profiles are modelled as a discrete time Markov chain (Xt), where t is the param-

eter running over an index set (T ) that corresponds to discrete units of time T = (t0, tn)

(where t0 starts the hour and tn finishes the hour), and the value that takes (Xt) is the

state of the Markov process [Pinsky and Karlin, 2011]. The Markov chains are charac-

terised by the property (3.67), which defines the probability of shifting from the state

Xt = i to the state Xt+1 = j in t discrete units of time, which only depends on the

previous state.

p
(t)
i,j = Prob

(
Xt+1 = j|Xt = i

)
= Prob

(
Xj+1 = j|Xt = i,Xt−1 = it−1, . . . , X0 = i0

) (3.67)

The probability function described in (3.68) is also called a one-step transition proba-

bility. To model a complete Markov process of k states, a transitional probability matrix

P had to be built, which constitutes a first-order Markov chain. This considers the current

state and that the probability of the next state. Since discrete time steps are considered

(e.g., 1 minute), the Markov chain is homogenous so that the entry p
(t)
i,j of the matrix P

provides the probability of shifting from state i to j.
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P =

⎛⎜⎜⎜⎝
p1,1 . . . pi,k

...
. . .

...

pk,1 . . . pk,k

⎞⎟⎟⎟⎠ ∈ IRk×k (3.68)

The ith row is the probability distribution of the values of Xt+1 under the condition

Xt = i. The number of rows of matrix P determines the number of states in the Markov

process. Note that the sum of all values in a single row (a group of states) is equal to the

unit.

A first-order Markov process is set up using the hourly load demand probability func-

tions for the hourly measurement, and the data are estimated from the low-voltage net-

work customers’s measurements. A transitional probability matrix P ∈ IR60×60 (with

1-min. resolution) is used to model intra-day and high-resolution load demand profiles.

The first state of the Markov chain sequence is chosen by means of a random variable

that selects values in the interval (0,1) [McLoughlin et al., 2010]. Next, the matrix P is

applied to determine the next states.

Load demand probability density functions (PDFs)

To determinate the entries pi,j for the transitional probability matrix P , the Probability

Density Functions (PDFs) and the Cumulative Distribution Functions (CDFs) have to

be determined. PDF and CDF are denoted with f (x) and F (x), respectively, and their

definitions are provided in (3.69) and (3.70) (where X denotes the Markov chain). This

describes the relationship between them [D. C. Montgomery, 1999].

Prob
(
i ≤ X ≤ j

)
=

∫ j

i

f(x)dx = F (i)− F (j) (3.69)

Prob
(
X ≤ j

)
=

∫ j

−∞
f(x)dx = F (j) (3.70)

Due to the difficulty associated with selecting a theoretical parametric distribution

(normal, log-normal, etc.), the Kernel Density Estimation (KDE) [D. C. Montgomery, 1999]

is chosen to carry out the fitting procedure. Recently, in the scientific literature, other

authors have used KDE to fit PDFs and CDFs to the continuous operational variables
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of the network, such as load demand in [Hyndman and Fan, 2010] or wind speed in

[Xu et al., 2015] and [Miao et al., 2016]. Therefore, to avoid making assumptions about

the statistical distribution of the load demand data, the KDE method is applied. The

non-parametric representation of the PDF of the load demand variable Sd is defined by

means of a smoothing function (3.71) as follows:

f̂(τ) =
1

nĥ

∫ 24

1

φ(τ)

(
τ − Sd(t)dt

ĥ

)
(3.71)

Where f̂(τ) is the estimated density function, τ is the time in hours, φ(τ) is the Gaus-

sian kernel (a standard normal probability density function [Hastie and Friedman, 1991])

and ĥ is the bandwidth (a positive smoothing parameter). One of the criteria used to

obtain the value for ĥ is the Mean Integrated Squared Error (MISE) (3.72).

MISE(ĥ) = E

[∫ (
y(τ)− y

′
(τ)
)2
dτ

]
(3.72)

Additionally, y
′
(τ) is the unknown real density function. Due to that fact, the MISE

formula cannot be applied in a straightforward fashion. Therefore, the most popular

solution for using an appropriate value for ĥ is to apply the Silverman’s rule of thumb

[Silverman, 1986] by means of (3.73).

ĥ =

(
4σ̂5

Sd

3n

)1/5

≈ σ̂Sd
1.06

n1/5
(3.73)

Where σ̂Sd
is the standard deviation of the variable Sd.

3.4 Case study

3.4.1 Description

The data and network used in process correspond to the roll-out deployed for the Spanish

R&D demonstration project OSIRIS (Optimizacion de la Supervision Inteligente de la Red

de DIstirbuticion), which is an innovative project to develop knowledge, tools and new

equipment for optimising the supervision of low-voltage Smart Grids [UC3M et al., 2017].
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The project scenario concerns a primary substation that supplies power to 25, 849 cus-

tomers in a region located in the south of Madrid (Spain). In Fig. 3.9 one of the low-

voltage distribution networks in the OSIRIS project is shown. The 680 kVA network has

eight low-voltage residential and commercial feeders with 32 load consumption points.

There are 22 telemetered customers (individual contractual power ≤ 15 kW) and 10 non-

telemetered customers with a total contractual power of 442 kW. Data related to cables

electrical properties (resistance and reactance) considered are indicated in Table A.1.

Concentrator
(Secondary Substation)

Telemetered
customers
Non-Telemetered
customers

Figure 3.9: OSIRIS real low-voltage smart grid under study

3.4.2 Data

Smart Metering Infrastructure

In the OSIRIS demonstration project, the communication infrastructure between smart

meters and the Meter Data Management System (MDMS) has been designed specifi-

cally for low-voltage networks. It is based on PoweRline Intelligent Metering Evolution

(PRIME) [López et al., 2015], (Fig. 3.10). Smart meters are associated with telemetered

customers, whereas the concentrators are located at the secondary substations. Con-

centrators send their data up to the so-called gateway, which manages communications

with the MDMS using the medium voltage infrastructure as a communication medium.

A much more detailed explanation of the communication architecture deployed in the

OSIRIS project can be found in [López et al., 2015].
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(Low Voltage cables)
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(Secondary
Substation)
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(Medium Voltage cables)

PRIME Network
(Low Voltage cables)

MDMS
(Metering Data
Management

System)

MDMS

Figure 3.10: Communications layer illustration

Smart Meters Data Acquisition

Each telemetered customer has an individual smart meter that registers the active load

energy (imported and exported), in addition to the reactive load demand (four quadrants).

This provides hourly and daily measurements. A smart meter supervisor is located at the

secondary substation. In this study, smart meter data from all the metered customers

have been collected by the concentrator of one of the seven networks operated by the

OSIRIS project from September 2013 to September 2014.

Statistical study of load demand data

A statistical study of the hourly demand consumption of the OSIRIS network is shown

in Fig. 3.10. The histograms describe power demand across different daily time-slots.

During the first hours of the day (01:00 and 06:00) and the last hours (20:00 and 22:00),

load demand is concentrated around a certain value and it displays a clear skewness.

Meanwhile, for the rest of the hours of the day (10:00 to 18:00), the load demand is

spread in a more heterogeneous fashion. Fig. 3.11 shows the PDFs (left) and CDF (right)
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distributions obtained by the KDE method, respectively.

Figure 3.11: Hourly load demand histograms

In Fig. 3.12-left is shown the daily energy consumption estimated for a particular

customer and it can be notice the points where energy demand estimation has been

carried out with the model (3.63)-(3.66). In Fig. 3.12-right is shown the hourly load

demand for the above customer and also it can be seen the estimated load demand points

as well as the working load pattern used.

For each customer (telemetered and non-telemetered), a stochastic high-resolution load

demand has been synthetically generated (Fig. 3.13-left). The initial point corresponds

to 9:00 AM, and the final point corresponds to 10:00 AM.

These points are known using the hourly load demand. Between these two hours, five

Markov realisations are presented as indicates Fig. 3.14-left. Fig. 3.14-right shows the

linear regression calculated for relative TLs. Points of the relative TLs for every stochastic

realisation are concentrated in the middle of the cloud. Moreover, the bandwidth error
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Figure 3.12: Left: PDFs obtained for hourly load demand; Right: CDFs obtained for

hourly load demand.

represents the variability with respect to the regression model prediction.

3.4.3 Results

Power Losses Estimation

Technical power posses have been calculated by the three-phase unbalanced power flow

with the full three-phase network model (explained in section 3.3 of this chapter) by

solving the state equation (3.26) for every stochastic high-resolution load demand profile

synthetically generated. Technical active power losses PLOSS,T (3.50) are expressed as a

fraction of the load demand SD (2.6) obtaining the relative active power losses Lp defined

previously in (2.9).

Fig.3.15-left shows the box-plot representation of the stochastic TLs for each per-

centage level of loading capacity at the secondary substation. Fig. 3.15-right shows the

PDF and CDF functions through KDE for the stochastic TLs obtained by means of the

Markov process. For this specific OSIRIS network, hourly TLs do not exceed 2% with a

high density in the interval 0-1.5 %.

The median values (middle line of the box) are distributed according to a linear evo-

lution [D. C. Montgomery, 1999]. Thus, linear regression is proposed as a method to fit
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Figure 3.13: Left:Daily energy consumption tendency, Right: Hourly load demand mod-

elling

stochastic TLs by means of the ordinary least squares model (3.74), where L′
p and S̃d are

the mean values of the relative active TLs and load demand, respectively, cov(Sd,Lp) is

the covariance of active TLs (Lp) and load demand Sd; and var(Sd) is the variance of

load demand Sd.

L′

p = βSd + α (3.74)

Where:

β =
cov(Sd,L′

p)

var(Sd)
(3.75)

α = L̃p − βS̃d (3.76)

Considering the PDFs obtained, a Monte Carlo Simulation is performed solving the

unbalanced three-phase power flow in each iteration of the network presented. For each

iteration of the simulation, the total power losses (active and reactive) are calculated

and the results of the simulation are indicated in 3.16 where it can be seen that the

distribution of the power losses (both active and reactive) are exponential, being the

highest value achieved (active power losses) around 3% of the total power demand of the

network.
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Figure 3.14: Left: Fifteen intra-hour high-resolution load demand realisations of the

Markov process. Right: Stochastic Power Losses obtained

3.5 Conclusions

In this chapter, power losses of a real smart grid have been stochastically analysed. Load

demand from the customers smart meters has been gathered through the communications

infrastructure. The existence of non-telemetered customers as well as the missing load de-

mands data have been taken into account in order to generate an estimate them by means

of a top-down approach. Missing load demand data have been estimated through an NLP

optimisation process. Additionally, intra-hour high-resolution load demand profiles have

been synthetically generated by means of Markov chains. For every stochastic realisation

of the Markov process, the technical power losses of the network has been calculated by

means of unbalanced power flow. Then, the evolution of technical power losses with the

demand have been statistically modelled throng a linear model, obtaining a losses model.
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Figure 3.15: Left:Box-plots for stochastic TLs, right: PDF and CDF obtained.
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Figure 3.16: Power losses Montecarlo simulation
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Chapter 4

Power Losses Estimation in

Large-Scale Distribution Areas

4.1 Introduction

Energy regulators incentivise utility companies to reduce power losses (low voltage and

medium voltage) to increase energy efficiency in distribution networks [CNMC, 2019]. In

this chapter, a deep learning-based power losses predictor model is built for power losses

estimation in large-scale low-voltage distribution areas.

Recently, a new group of machine learning models has been applied in power systems

analysis [Monteiro et al., 2018]. The application of these techniques has emerged due to

the increasing amount of data available and the increasing number of requirements related

to network operation. Moreover, these models can reveal hidden insights in the data

generated in the power network, something that traditional approaches cannot provide.

Power losses estimation can be considered as a regression learning problem, in which a

tradeoff between bias and variance has to be handled. Ensembles models and Deep Neural

Networks (DNN) are machine learning models well suited for that purpose [Grus, 2015].

In the the first group, the most widely used techniques are Random Forest and Gradi-

ent Boosted Decision Trees (GBDT) models, which provide accurate results but they are

computationally expensive. In the second group, appear the DNN models among other

models [Goodfellow et al., 2016b]. DNNs are artificial intelligence systems inspired by the

91
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biological neural networks that constitute human brains and are categorised as supervised

machine learning. Without any prior knowledge, they automatically identify the input to

provide some specific output in terms of the training received [Schmidhuber, 2015]. DNNs

are capable to capture complex non-linear relationships (such as power loss estimation)

and they represent a compromise between accuracy and performance. Within this type

of models, it can be found Long-Short Term Memory (LSTM) models or Convolution

Neural Networks (CNN) if the data flows from the input layer to the output layer and

back again, or Feedforward Neural Networks (FNN) where the data only flows in one

direction, from the input layer to the output layer. For simplicity the latest type is cho-

sen, without loss on performance or accuracy. FNNs are multi-purpose learning systems

offering high performance and accuracy, for that reason they are selected for the power

losses estimation.

The principal contributions and novelties of the presented work can be summarised as

follows:

• A novel deep learning methodology for loss estimation in large-scale low-voltage

smart grids with a high penetration of DG.

• The proposed model considers the unbalanced operation of low-voltage networks.

This aspect is not often considered in other literature.

• The proposed method can cope with uncertainty in the network, energy consump-

tion, and distribution generation production.

To the best of the authors’s knowledge, the estimation of power losses in unbalanced

large-scale low-voltage smart grids using deep learning techniques remains highly unex-

plored in the literature.

4.2 Methodology

This section provides the formulation of the proposed technical power losses estimation

methodology for large-scale low-voltage smart grids which could easily be composed of
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hundreds of SS and thousands of distribution feeders. Each feeder belonging to that area

can have different topological characteristics (such as cross-section, length, and overhead-

/underground configuration) and different levels of DG penetration, smart meter pene-

tration, voltage unbalance, and load demand. The methodology comprises the following

five steps:

1. Data Collection: low-voltage feeders’ data and smart meter measurements are col-

lected from the large-scale low-voltage distribution area under investigation. From

this step, a feeder’s data matrix containing the customised feeder’s characteristics

is obtained.

2. Data Normalisation: Due to the fact that feeder’s characteristics vary consider-

ably, a normalisation data process is performed to obtain the normalised feeder’s

data matrix.

3. Features Extraction: To deal with the curse dimensionality, a new feeder’s data

matrix with reduced dimensions is obtained, which contains the most discriminatory

information providing a meaningful system representation.

4. Feeder’s Clustering: The entire set of low-voltage feeders belonging to the large-

scale low-voltage distribution area is classified into feeder’s clusters where the rep-

resentative feeder is selected.

5. Deep Neural Network Power Losses Model: A novel deep learning model is

formulated to estimate technical power losses in the entire low-voltage area. To this

end, it is necessary to select the optimum hyper-parameters, to perform the training

and validation test sets as well as to select the network raw data.

4.3 Data Collection

Actual low-voltage distribution networks are characterised by a massive roll-out of smart

metering deployment among low-voltage residential customers [López et al., 2015].
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Large low-voltage distribution areas are characterised by high levels of variability such

as: feeder properties, number and spatial location of customers and number and spatial

location of DG units. Therefore, the network data input set to be applied to the deep

learning model has to be representative enough to describe the nature and behaviour

of the feeders, but it also has to be reduced to prevent overfitting the deep learning

model. The more relevant feeder’s characteristics are summarised in Table 4.1, which

include information regarding the level of unbalance, the presence of DG units, the ratio of

customers with smart meters as well as information regarding the physical configuration

of the feeders (length, section, configuration, etc.). Note that in total, there are 14

customised feeder characteristics, because characteristics with subindex p are defined for

each phase p ∈ {a, b, c}.
Xf

1,p repressed the power ratio between power contracted by customers connected to

phase p ∈ {a, b, c} of feeder f and power contracted by all the customers connected to

the same feeder. Xf
2 represents the ratio between power contracted by the customers

connected to the feeder f and power rating of the transformer located in the SS from

which the feeder belongs. Xf
3 represents the ratio between the number of telemetered

customers and the total number of customers connected to the feeder. Xf
4 represents the

ratio between the DG power and the power demand of customers connected to the feeder.

Xf
5 represents the the spatial-location of the DG units along the feeder using the projected

Euclidean distance respect to the location of the SS. Xf
6 represents the spatial-location

of the customers along the feeder using the projected Euclidean distance respect to the

location of the SS.Xf
7 represents the ratio between the average energy produced by the DG

unit of a customer and its average energy consumption. Xf
8 represents the the total feeder

impedance. Xf
9,p represents the the expected value (or mean Value, MV) of the power

demand of phase p ∈ {a, b, c} of the feeder f in Working days (WD). Xf
10,p represents the

dispersion (or Standard Deviation SD) of the power demand of phase p ∈ {a, b, c} of the

feeder f in WD. Xf
11,p represents the MV of the power demand of phase p ∈ {a, b, c} of

the feeder f in Non-Working days (NWD). Xf
12,p represents the SD of the power demand

of phase p ∈ {a, b, c} of the feeder f in NWD. Xf
13 represents the ratio between number

of customers connected to a feeder f and the total number of customers connected to the
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Table 4.1: Low-voltage network properties for representative feeder’s clustering

Property Definition Data source

Xf
1,p Unbalance power level phase p SM

Xf
2 Feeder loading level N

Xf
3 Smart meters deployment N

Xf
4 DG penetration level N

Xf
5 DG spatial location N

Xf
6 Customers spatial location N

Xf
7 Self-consumption ratio N

Xf
8 Impedance feeder path N

Xf
9,p Demand MV WD phase p SM

Xf
10,p Demand SD WD phase p SM

Xf
11,p Demand MV NWD phase p SM

Xf
12,p Demand SD NWD phase p SM

Xf
13 Ratio customers per feeder N

Xf
14,p Ratio customers per phase N

MV: Mean Value, SD: Standard Deviation, WD: Working days, NWD: Non-Working days,

SM: Smart Meters Data, N: Network Data. p is the index for phases: {a, b, c}
.

same SS. Finally Xf
14,p represents the ratio between the customers connected to the phase

p ∈ {a, b, c} of feeder f and the total number of customers connected to the same feeder

As the majority of low-voltage feeders have radial topology and the presence of loops

(weakly meshed topologies) is scarce, the location of the DG units along the feeder plays

a crucial role regarding the levels of power loss [Ochoa and Harrison, 2011].

Hence, the spatial location of the DG units (Xf
5 ) is determined based on the Euclidean

distance (d∗e) between the centroid of the DG unit coordinates and the SS coordinates.

The characteristic Xf
5 takes values according to expression (4.1). Depending on the value

of that characteristic, there are three possible situations: DG located at the main feeder

head, located at the feeder centre or located at the end of the feeder as illustrated in Fig.

4.1.
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Xf
5 =

d∗e
L

− 1

2
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1
2

if d∗e = 0 → Feeder Head

0 if d∗e =
L
2

→ Feeder Centre

1
2

if d∗e = L → Feeder Tail

(4.1)

Where L denotes the length of the feeder and d∗e is the Euclidean distance obtained

with (4.2).

d∗e =
√
(Xss −X∗)2 + (Yss − Y ∗)2 (4.2)

Where (Xss, Yss) are the GPS coordinates of the SS and (X∗, Y ∗) are the GPS coor-

dinates of the DG unit calculated with (4.3).

X∗ =

∑NDG,f

i=1 Xi

NDG,f

, Y ∗ =

∑NDG,f

i=1 Yi
NDG,f

(4.3)

And (Xi, Yi) are the coordinates of the ith DG units belonging to the feeder f , and

NDG,f is the number of DG units connected to feeder f .

The collection of feeder’s characteristics can be described in mathematical terms as a

feeder’s data matrix X ∈ IRn×p̃ where the columns are the feeder’s characteristics and the

rows are the feeders samples , i.e. each one of the feeders belonging to the distribution

area from where the data was collected (n feeders) as indicated in (4.4).

X =

⎛⎜⎜⎜⎜⎜⎜⎝
X1,1 X1,2 . . . X1,p̃

X2,1 X2,2 . . . X2,p̃

...
...

. . .
...

Xn,1 Xn,2 . . . Xn,p̃

⎞⎟⎟⎟⎟⎟⎟⎠ (4.4)

4.4 Data Normalisation

To obtain a more interpretable description of the feeder’s characteristics collected and

to give the same weight to all feeder properties, a normalisation process is carried out.

This is necessary due to the diverse nature of the properties [de Souto et al., 2008]. For

instance, the typical length of low-voltage feeders may vary between 50 and 500 meters,
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Figure 4.1: Characterisation of the spatial location of the DG units along the feeder

meanwhile, the typical phase unbalance may vary between 0.25 and 0.35. If there is no

data normalization stage, the phase unbalance variation will be negligible compared to

the feeder length.

The original feeder’s data matrix X is transformed into the normalised feeder’s data

matrix M by applying to each entry Xi,j of the matrix X a normalising function f :

IR → IR defined in expression (4.5) [Andrew Watters and Boslaugh, 2018]. This way the

maximum absolute value of the variable is scaled to unit size and vary from zero to one.

xi,j =
Xi,j − min{Xj}

max{Xj} − min{Xj}
, ∀i ∈ (1, . . . , n) ,∀j ∈ (1, . . . , p̃) (4.5)

Where:

• xi,j is the normalised entry Xi,j of the matrix X.
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• min{Xj} is the minimum value of the characteristic j, (i.e. the minimum value of

the column j of the matrix X).

• max{Xj} is the maximum value of the of the characteristic j.

The resulting normalised feeder’s data matrix M is indicated in (4.6).

M =

⎛⎜⎜⎜⎜⎜⎜⎝
x1,1 x1,i x1,p̃

x2,1 x2,i x2,p̃
... . . .

... . . .
...

xn,1 xn,i xn,p̃

⎞⎟⎟⎟⎟⎟⎟⎠ (4.6)

Note that each column of the matrix M corresponds with a normalised feeder charac-

teristicMj (4.7) of dimensions (1×n), that is, theMj vector contains the j
th characteristic

of the n feeders of the low-voltage smart grid.

Mj = (x1,j, . . . , xn,j)
T , ∀j ∈ (1, . . . , p̃) (4.7)

4.5 Features Extraction

One of the main aspects in which special attention have to be placed is in the input

features (predictors) used for training the power losses predictive model. Large-scale

low-voltage smart grids can be comprised of hundreds of substations and thousands of

feeders, consequently dealing with such a large dataset could lead to a high computational

burden and overfitting problems. In those situations, it becomes necessary to reduce the

dimensions of the problem retaining, and at the same time, the maximum original data

variability. One of the most well-known dimension reduction techniques is the Principal

Component Analysis (PCA) [Jolliffe, 2002], which has been used in different applications

such as finance or biology [Lu et al., 2013].

PCA is an unsupervised learning method that reduces the dimensionality of a corre-

lated set of variables into a set of linearly independent uncorrelated variables (which are

known as principal components), maintaining the majority of the variability existing in

the initial data set [Lu et al., 2013]. This transformation is done in the sense that the first
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component has the largest variance (e.g., it captures the maximum possible variability of

the initial data set) and the second component has the highest variance subject to the

constraint that it is orthogonal to the first component.

The objective is to find a linear mapping given by the projection matrix Ũ ∈ IRp̃×s

which transforms each row of the matrix M (i.e each normalised feeder’s observation)

expressed as the vectorMi = [xi,1, . . . , xi,p̃] ∈ IR1×p̃, ∀i ∈ (1, . . . , n), into a lower dimension

representation, M̃ ∈ IRp̃×s (4.8) with dimension s < p̃. Each column of the matrix M̃ is

called a Principal Component (PC). One advantage of using PCA is that the projected

feeder’s observations Mi are uncorrelated, in the sense that, the components of that

column vector are mutually independent [Lu et al., 2013].

M̃ = ŨTMT (4.8)

The number of PCs is usually chosen by defining the total variability to be captured.

The number of PCs chosen to capture at least η % of the cumulative variability captured

has to fulfil (4.9) where λk is the kth eigenvalue associated and βλ is the total number of

eigenvalues of the covariance matrix S.

argmin
s

{∑s
k=1 λk∑βλ

k=1 λk
> η(%)

}
(4.9)

The covariance matrix S ∈ IRp̃×p̃ (4.10) can be obtained by computing (in the diagonal

terms) the variances s2j of each variable (column) of the matrixM and, in the off diagonal

elements, the covariances sj,j′ , ∀j, j′ ∈ (1, . . . , p̃) , j′ ̸= j, among each pair of variables

(columns) of the matrix M . Note that the covariance matrix S is a square matrix that

measures the variability of the normalised feeder’s data matrix M .

S =

⎛⎜⎜⎜⎜⎜⎜⎝
s21 s1,2 . . . s1,p̃

s2,1 s22 . . .
...

...
...

. . .
...

sp̃,1 . . . . . . s2p̃

⎞⎟⎟⎟⎟⎟⎟⎠ (4.10)
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4.5.1 First Principal Component (k = 1)

The first projection vector Ũ1 has to be obtained by solving the optimisation problem

defined in (4.11) which includes the maximisation of the quantity ŨT
1 S Ũ1 and the nor-

malisation constraint ŨT
1 Ũ1 = 1.

argmax
Ũ1

{
ŨT
1 S Ũ1

}
subject to ŨT

1 Ũ1 = 1 (4.11)

This can be solved by using the technique of the Lagrarian multipliers, from which

the expression (4.11) is converted in (4.12) where λ1 is the Langrarian multiplier.

ψ1 = ŨT
1 S Ũ1 − λ1

(
ŨT
1 Ũ1 − 1

)
(4.12)

The expression (4.12) can be differentiated with respect to Ũ1 obtaining (4.13).

∂ψ1/∂Ũ1 = 0 ⇒ (S − λ1I) Ũ1 = 0 (4.13)

Where I ∈ IRp̃×p̃ is the identity matrix. By the definition of eigenvalues and eigen-

vectors, from (4.13), it is clear that λ1 is the eigenvalue of the covariance matrix S, and

Ũ1 the corresponding eigenvector. With the result obtained in (4.13) it can be concluded

that the first projection vector Ũ1 will be the eigenvector associated with the first large

eigenvalue λ1 of the covariance matrix S.

4.5.2 Second Principal Component (k = 2)

To find the second PC (i.e the second column of the reduced feeder’s data matrix M̃)

the eigenvector Ũk with k = 2 has to be determined, which also implies solving the

optimisation problem (4.11) but also including the constraint that the projection by Ũ2

are uncorrelated with Ũ1 as indicated in (4.14).

argmax
Ũ1

{
ŨT
1 S Ũ1

}
subject to

ŨT
1 Ũ1 = 1 ŨT

2 Ũ1 = 0

(4.14)
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Next, the Langrarian multipliers procedure is followed to obtain Ũ2, but in this case

there are two constraints to consider, thus, two multipliers has to be defined as indicated

in (4.15).

ψ2 = ŨT
2 S Ũ2 − λ2

(
ŨT
2 Ũ2 − 1

)
− µ2

(
ŨT
2 Ũ1

)
(4.15)

Differentiating (4.15) with respect to Ũ2 it is obtained (4.16).

∂ψ2/∂Ũ2 = 0 ⇒ SŨ2 − λ2Ũ2 − µ2Ũ1 = 0 (4.16)

Multiplying both sides of equation (4.16) by ŨT
1 result in (4.17).

ŨT
1 S Ũ2 − λ2

(
ŨT
1 Ũ2

)
− µ2

(
ŨT
1 Ũ1

)
= 0 → µ2 = 0 (4.17)

The first term of equation (4.17) as well as the second one are zero due to the zero-

correlation constraint. The third term is the unity due to the normalisation constraint.

Therefore, this results in µ2 = 0, which allows us to rewrite the expression (4.16) in the

reduced equation (4.18) where, it is concluded that λ2 is the second projection vector and

Ũ2 is the eigenvector associated with the second large eigenvalue of the covariance matrix

S.

∂ψ2/∂Ũ2 = 0 ⇒ (S − λ2I) Ũ2 = 0 (4.18)

4.5.3 Subsequent Principal Components (k > 2)

As a result, the subsequent projection vectors Ũk (k = 3, . . . , s) could be obtained as each

eigenvector associated with the kth large eigenvalue λk of the covariance matrix S.

4.6 Feeder’s Clustering

In this stage, the n feeders from the target large-scale low-voltage smart grids are parti-

tioned into a reduced number of feeder’s groups (i.e., clusters), where feeders belonging
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to the same cluster are similar [Ke-Lin and M. N. S., 2014]. Then, from each feeder’s

cluster, a representative feeder is chosen as the closest to the centroid of that cluster.

Clustering techniques can be broadly divided in hierarchical-based, partitional-based

and distribution-based clustering techniques [Ke-Lin and M. N. S., 2014]:

• Hierarchical clustering produces, as output, a binary tree in which the root

node represents the whole data, the leaf nodes represent the clusters obtained,

and the intermediate nodes represent the distance between clusters. Some algo-

rithms in this category are BIRCH (Balanced Iterative Reducing and Clustering

using Hierarchies) [Zhang et al., 1966], CURE (Clustering Using REpresentative)

[Sudipto et al., 1998], and ROCK (RObust Clustering using linKs) [Guha et al., 1999].

• Partitional clustering is based on building an initial set of clusters by parti-

tioning the original data set and then redistributing them iteratively by means of

calculating the centroid (cluster centre) of each cluster. This kind of technique pre-

sumes low time complexity and high efficiency [Ke-Lin and M. N. S., 2014]. Some

algorithms in this category are K-means++ [Hartigan and Wong, 1979] K-medoids++

[Leonard and Peter, 1990] and CLARANS (Clustering Large Applications based on

RANdom Search) [Ng and Han, 1998] being the first one the most popular squared

error-based clustering algorithm.

• Distribution-based clustering techniques are based on probability distribution

functions (PDF). By this, the clusters are found as the groups of elements that offer

similar probability distribution functions. One algorithm of this kind of technique is

known as the Gaussian Mixture Model (GMM) [Reynolds, 2009], which makes use

of the Expectation-Maximisation (EM) algorithm [P. et al., 1977]. The initial data

set is modelled with a fixed number of Gaussian distributions randomly initialised.

The parameters of those distribution functions are then optimised to fit the data

set achieving a local optimum. This algorithm produces complex models capturing

high correlation and dependence between attributes but depends on the statistical

model chosen [Theodoridis and Koutroumbas, 2008].
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Table 4.2: Clustering techniques and performance comparison

Technique Algorithm Time Complexity Scalability Large data sets Outliers Noise

H BIRCH O (n) High Yes Low Low

H CURE O (ñ2log (ñ)) High Yes Low Low

H ROCK O (n2) Medium No Low Low

PB K-means++ O
(
log(k̂)

)
Medium Yes High High

PB K-medoids++ O

(
k̂
(
n− k̂

)2)
Low No Low Low

PB CLARANS O (n2) Medium Yes Low Low

DB GMM O (ϵs3) Medium Yes - -

H: Hierarchical, PB: Partion-Based, DB: Distribution-Based, CLARANS: Clustering Large Applications

based on RANdom Search, CURE (Clustering Using REpresentative, ROCK: RObust Clustering using

linKs, Sens.: Sensibility, GMM: Gaussian Mixture Model, BIRCH: Balanced Iterative Reducing and

Clustering using Hierarchies

Table 4.2 summarises a comparison between the most extended algorithms of each

clustering technique where k̂ is the number of clusters, s is the dimension of the reduced

observation vector (columns of the matrix M̃), n is the number of samples (rows of the

matrix M̃) and ϵ is the number of iterations of the EM algorithm. It is also indicated the

sensibility of the technique to outliers and to the presence of noise.

According to [Rigoni et al., 2016] GMM and improved K-means++ are well suited can-

didates for clustering feeders with many feeder’s characteristics. Nevertheless, GMM

is characterized by a higher computational complexity in comparison with K-means++.

Therefore, in this thesis the n feeders gathered in the reduced feeder’s data matrix M̃

are clustered by means of the K-means++ algorithm, using the uncorrelated s Principal

Components obtained in the PCA analysis.

4.6.1 Clustering Algorithm

The K-means++ algorithm partitions the dimension-reduced feeder’s data matrix M̃ ∈
IRn×s of feeder’s characteristics (which have (n) feeders’ observations with (s) Principal
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Components) into k̂ separated subsets (i.e. feeders’ clusters) Cr = {c1, . . . , cnr}, ∀r ∈
(1, . . . , k̂). K-means++ has two steps: the initialization of the centroids and the assignment

step.

1. Centroid Initialization: The location of the k̂ centroids are chosen as follow:

a.1) Random selection of the rth cluster’s centroid, c
∗(0)
r = ci where ci ∈ M̃ is

selected from the feeders data points that compound the feeder’s PCs.

a.2) Computation of the Euclidean distance D between each feeder data point and

the centroid D(ci, c
∗(0)
r ) = ||ci − c

∗(0)
r ||2.

a.3) Updating of the centroid c
∗(0)
r+1 as the one that offers the highest probability

according to (4.19).

P
(
c
∗(0)
r+1 = cj

)
= D(cj, c

∗(0)
r )2/

∑
k,j ̸=k

D(ck, c
∗(0)
r ) (4.19)

a.4) Repeat a.2) and a.3) until k̂ centroids has been chosen.

2. Assignment step: After initialisation of the centroids, each feeder data point is

assigned to the closest centroid cluster by minimising the Mean Square Error (MSE)

according to (4.20).

MSE (C1, . . . , Ck̂) =
k̂∑

r=1

1

nr

nr∑
i=1

||ci − c∗(0)r ||2,

r ∈
(
1, . . . , k̂

) (4.20)

Then, the initial cluster set is updated by recalculating the centroids as the mean

of the samples of the clusters using (4.21).

c∗(0)r =
1

nr

nr∑
ci=1

ci, ∀r ∈ (1, . . . , k̂) (4.21)

The Assignment step (4.20)-(4.21) is repeated q times until the change in all c
∗(q)
r is

sufficiently small ε as indicated in (4.22).
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c∗(q)r − c∗(q−1)
r ≤ ε, ∀r ∈ (1, . . . , k̂) (4.22)

4.6.2 Clustering Evaluation

To evaluate whether a feeder’s sample has been appropriately associated with the right

cluster two index can be used: the Silhouette and the Global Silhouette (GS). The Silhou-

ette index is a coefficient that quantifies the similarity of the object (in this case, a feeder

sample) with the rest of the elements of the group belonging to its own cluster (in this

case, the feeders’ group) [Rousseeuw, 1987]. The values that could adopt the Silhouette

range from −1 (low relation) to +1 (high relation).

The Silhouette of the feeder sample ci is defined as S(ci) and is calculated according

to (4.23).

S(ci) =
b(ci)− a(ci)

max{a(ci), b(ci)}
≈ 1− a(ci)

b(ci)  
b(ci) > a(ci)

, ∀i ∈ (1, . . . , n) (4.23)

Where:

• a(ci) is the average distance between the feeder sample ci and all the other feeders

belonging to the same cluster.

• b(ci) is the smallest average distance between the feeder sample ci and all the others

feeders in all clusters. Notice that for b(ci) > a(ci) the expression (4.23) could be

reduced.

If a feeder sample ci have a Silhouette index value S(ci) ∼ 1, is because b(ci) ≫ a(ci)

which implies that the feeder sample is poorly related with its neighbouring clusters, so

the clustering configuration is appropriated. On the contrary, if the Silhouette index value

is S(ci) ∼ −1, then the feeder sample is likely to belong to a neighbour feeder cluster and,

so, the clustering has to be revised. Finally, S(ci) ∼ 0 indicates that the feeder sample ci

is on the border of two neighbouring clusters.

To evaluate the quality of the feeders’ cluster process, the Global Silhouette coefficient

is used (4.24). The GS coefficient is based on the Silhouette index and provides a general
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sense of the quality of the clustering process. The higher the GS coefficient value, the

higher the quality of the clustering.

GS =
1

k̂

k̂∑
r=1

1

nr

nr∑
i=1

S(ci) (4.24)

Where nr is the number of feeders belonging to the cluster Cr, ∀r ∈ (1, . . . , k̂).

4.6.3 Representative Feeder’s Selection

Once the appropriate clusters have been obtained, the representative feeders, denoted

with c̃r are chosen as the feeder sample closest to the centroid within each feeders’ cluster

by means of the minimum Euclidean Distance to the centroid c∗r, which is described in

(4.25).

c̃r = argmin
ci∈Cr

{
||ci − c∗r||2

}
, ∀r ∈

(
1, . . . , k̂

)
(4.25)

It must be noted that the representative feeder c̃r chosen from the cluster Cr evaluates

the power losses from the set of feeders belonging to that cluster.

To deal with the differences between the representative feeder c̃r and the different feed-

ers belonging to that cluster ci ∈ Cr (as it is illustrated in Fig.4.2) an average Euclidean

distance factor αr is used as a weighting factor to extrapolate the representative feeder to

the rest of the feeders inside the cluster Cr. This factor is based on the Euclidean distance

from each feeder to the reference feeder, in the cluster, according to (4.26).

αr =
1

nr

nr∑
i=1

||ci − c̃r||2, r ∈
(
1, . . . , k̂

)
(4.26)

4.7 Model Formulation

4.7.1 Model Architecture

The DNN-based power losses model proposed in this thesis is illustrated in Fig.4.3. The

model can be described physically as a collection of nodes called artificial neurons, which
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Figure 4.2: Feeders’ cluster representation

are the basic units of computation. These neurons are interconnected by weighted links

called edges. The input layer Lin receives the data input vector denoted by X, which

comprises the representative demand and generation conditions of the whole low-voltage

distribution area by means of the scaled demand and generation patterns of the represen-

tative feeders c̃r. The output layer Lo provides the model output Y which represents the

total technical losses of the large-scale low-voltage distribution area. Between the input

and the output layers are multiple hidden layers, k ∈ (1, . . . , h), with h being the number

of hidden layers, each one containing nk number of neurons.

The configuration of the hidden layer’s architecture through the connections between

the neurons determines the final behaviour of the model, as, in each hidden layer, a non-

linear transformation of the aggregate activation of the DNN takes place [Simon S, 1999].

It must be noted that as the size of the model increases, the greater the amount of

flexibility obtained. However, this requires a higher computational complexity.

Moreover, to avoid overfitting (when the model performs so closely to the training

data but fails with new data), some of the neurons of the model must be cancelled (i.e.:

no output). This is achieved by means of the “dropout” technique.
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4.7.2 Model Input

As the entire set of feeders belonging to the large-scale low-voltage distribution area has

been separated into feeders’ clusters, the daily Representative Patterns (RPs) for the

power demand and generation (DG) of each feeders’ cluster has to be defined and used

as input to the deep learning losses model. Fig. 4.3 illustrates the process of scaling each

daily APs of each representative feeder to obtain the daily RPs of each feeder cluster in

which the entire set feeders has been divided as indicates (4.27). Therefore, the model

input vector X defined in (4.27) describes the representative demand and generation

conditions of the entire low-voltage distribution area at one instant of time t. Specifically,

X contains the daily RPs of the demand and generation for each of the feeder’s clusters

in which the entire set of feeders has been separated.

X = [Xd,1 Xg,1 . . .Xd,k̂ Xg,k̂]
T (pu) (4.27)

Each demand and generation RP is obtained by means of the daily Aggregated Pattern

(AP) of the representative feeder, denoted as pd,r(t) (4.29) for demand AP and pg,r(t)

(4.31) for generation AP, scaled to the entire feeder’s cluster.

In the case of the daily demand RP denoted with Xd,r of each feeder cluster r, is

composed by the daily demand AP of the feeder r in the instant time t, which is denoted

with pd,r(t), scaled to the entire feeder’s cluster r by multiplying by the coefficient αr as

indicates (4.28).

Xd,r = αr · pd,r(t), ∀r ∈ (1, . . . , k̂) (4.28)

Where αr, defined previously in (4.26), is the extrapolation coefficient, that takes into

account the number of feeder’s in the cluster r as well as the distance from each one to

the reference feeder (centroid), pd,r(t) is the aggregation of the net active power demand

of the reference feeder r (i.e the sum of the net active power demand of each customer

connected to the reference feeder r) as indicates (4.29) where ℜ is the real part.

pd,r(t) =
1

SBr

∑
i∈Ωc,r

P
(i)
d,r(t) =

1

SBr

∑
i∈Ωc,r

ℜ{ST,d,r(t)}, (4.29)
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Where SBr is the power reference of the system of feeder r and Re{ST,d,r(t)} is the

net total active power demand of the feeder r in instant time t.

In the case of the daily generation RP denoted with Xg,r of each feeder cluster r, is

composed by the daily generation AP of the feeder r in the instant time t, which is denoted

with pg,r(t), scaled to the entire feeder’s cluster r by multiplying by the coefficient αr as

indicates (4.30).

Xg,r = αr · pg,r(t), ∀r ∈ (1, . . . , k̂) (4.30)

Where the daily generation AP pg,r(t) of the feeder r in the instant time t is the

aggregation of the net active power generation of the reference feeder r (i.e the sum of the

active power generation of each DG unit connected to the reference feeder r) as indicates

(4.31),

pg,r(t) =
1

SBr

∑
i∈Ωc,r

P (i)
g,r(t) =

1

Sb

Re{ST,g,r(t)} (pu) (4.31)

Where Re{ST,g,r(t)} is the net total active power generation (by the DG units) of the

feeder r in instant time t.

Therefore the input model X ∈ IR2k̂×1 represents the demand and generation conditions

at certain time instant t of the whole low-voltage distribution organised in 2k̂ References

Patterns as indicates (4.32).

X = [α1pd,1(t) α1pg,1(t) . . . αk̂pd,k̂(t) αk̂pg,k̂(t)]
T (pu) (4.32)

In Fig. 4.4 is illustrated the process of scaling each daily APs of each representative

feeder to obtain the daily RPs of each feeder cluster.

4.7.3 Model Output

On the other hand the model output Y ∈ IR corresponds with the total active power losses

of the whole low-voltage distribution area (ploss,T ) as indicates (4.33) and constitutes the

output layer Lo. It is obtained as the result of a mapping function FN of the model

configuration W (edge weights matrix) with the model input vector X.
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Figure 4.4: Schematic process for obtaining the daily representative patterns

Y = FN(W,X) = ploss,T (4.33)

where X is the input vector, which is the demand and generation conditions at instant

t of the whole low-voltage distribution due to expression (4.32), and is presented to the

model in the input layer Lin, and W is the edge weights matrix in such a way that

the element (j, k), denoted with wi,k, represents the weight associated to the edge that

connects neuron jth, denoted with Gj with the neuron kth of the, denoted with Gk. Note

that neurons of the same layer can not be connected. The predecessors neurons of the kth

are defined as those who are connected to the kth neuron but are placed in the previous

layer. The set of predecessor neurons of the kth neuron is denoted as Ωn,k, being ne,k the

number of predecessor neurons of the kth neuron. Each neuron of the model receives real-

valued signals coming from predecessor neurons, and produces a new real-value activation

signal which is sent again through the output edges of each neuron as illustrated in Fig.4.5.
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Therefore, given a matrix of edge weights W ∈ IRh+2k̂×max{nk} the function FN maps an

input vector X ∈ IR2k̂×1 obtaining the output Y ∈ IR.

The mapping function FN is defined over a finite set of neurons N given by (4.34) and

a finite set of directed edges E given by (4.35) which constitutes the connections among

neurons.

N = {Gk,i|∀k ∈ (in, 1, . . . , h, o) ,∀i ∈ (1, . . . , nk)} (4.34)

E ⊆ N ×N = {ei,k|∀i, j ∈ N} (4.35)

Each neuron of the model receives a compound of real-valued signals coming from

predecessor neurons, and produce a new real-value activation signal which is sent again

through the output edges of each neuron as illustrates Fig. 4.5.

w
o
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∑
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wj,k o
Ω

j
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zk = zk
n,k
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e,k

ne,k

bias factor
bk

+ bk f

Figure 4.5: Data communication between sequential layers

The kth neuron (Gk) processes the signal (zk) defined in (4.36), which is the sum of the

outputs of the ne,k predecessor neurons (oj) multiplied by the corresponding edge weights

(wj,k) plus a bias factor (bk), which controls the activation process.
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zk =
∑

j∈Ωn,k

wj,k oj + bk (4.36)

Then, the output of the kth neuron, defined as (ok), is calculated by means of the

activation function f(zk) ∈ (0, 1) as indicated in (4.37).

ok = f(zk) =
1

1 + e−zk
∈ (0, 1) (4.37)

Y = ploss,T (pu) (4.38)

For convenience, each neuron is identified within the layer which belongs, by the

number of layer Li, i ∈ (0, 1, . . . , h) and the number of neuron that represents with in the

layer Nk, k ∈ (1, . . . , sg), therefore Gi : NkLg,∀i ∈ (1, . . . , q). For instance, N3L2 indicates

the neuron 3 of hidden layer 2.

The set of edges E have an associated set of weights W ⊂ N ×N = {wi,j,∀i, j ∈ N}
where the value of each edge weight represents its relative importance in comparison with

other edges. The set of weights W is arranged in a squared matrix W in such a way that

the element (i, j) of the matrix W will be the edge weight of the edge that connects ith

neuron G(i) ∈ N with the jth neuron G(j) ∈ N .

There exist a wide collection of activation functions in the machine learning literature:

linear, piecewise-linear, threshold, hyperbolic tangent or sigmoid [Simon S, 1999]. The

last one is the most used in the field of machine learning because is a smooth s-shape and

bounded function (Fig. 4.6).

0.5

z0
0

1

k

ok

Figure 4.6: Sigmoid function
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For instance, consider a network with four hidden layers (i.e Lh = 4) with three

neurons per layer (i.e s1 = s2 = s3 = s4 = 3) showed in Fig. 4.7 the output of the each

neurone of the hidden layer k will be ok given by (4.37).

ok
kjd

ojodop
p

Figure 4.7: DNN computation example

The output of each neuron of the layer j is oj given by (4.39).

oj =
1

1 + e−zj
(4.39)

Where zj is the weighted sum of inputs that arrives at each neurone of layer j given

by (4.40).

zj =
3∑

d=1

wd,j · od (4.40)

The output of each neuron of the layer d is od given by (4.41).

od =
1

1 + e−zd
(4.41)

Where zd is the weighted sum of inputs that arrives at each neurone of layer d given

by (4.42).

zd =
3∑

p=1

wp,d · op (4.42)

Therefore the output of each neurone in the last hidden layer will we obtained by replacing

from expression (4.42) to (4.36), obtaining with that the expression (4.43).
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ok =
1

1 + e

−

⎛⎜⎜⎜⎜⎜⎝
∑3

j=1 wj,k·

⎛⎜⎜⎜⎜⎜⎝ 1

1+e

−

⎛⎜⎝∑3
d=1

wd,j ·

⎛⎜⎝ 1

1+e
−(∑3

p=1 wp,d·op)

⎞⎟⎠
⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

(4.43)

4.7.4 Model Training

The proposed power losses model is an artificial intelligence model with adjustable pa-

rameters that use the error between the actual output and target output to refine those

model parameters. Therefore, model training consist of adjusting the model parameters

(i.e. the edge weights of the matrix W) by using a training data set in such a way that

the model trained performs satisfactory if given a batch (π) of input demand and gen-

eration conditions gathered in the input vector Xπ, the model provides a power losses

output (p̂
(π)
loss,T ) close enough to the target power losses output (p

(π)
loss,T ). DNN models can

describe rare dependencies in the training data but this also could lead to a very common

problem in machine learning, overfitting. This problem is founded in the high level of

abstraction due to the number of the hidden layers. To minimise the impact of overfitting

Regularisation methods are used to select the network architecture [Bengio et al., 2013].

For instance, Bayesian Regularisation (BR) is one method, which restricts the magnitude

of the weights [Monteiro et al., 2018] or structural stabilisation which restricts the number

of hidden nodes and/or weights. Different transference functions are tested and compared

such as linear, Log-Sigmoid and Tangent-Sigmoid transfer functions, being the last one,

the one with the best performance. The adjustment is done by means of minimising the

mismatch between the model output when is feed with the known input (i.e the power

losses that the model estimate given input demand and generation conditions) and the

known output Ŷ (the known power losses). This paradigm used to train the model is

called supervised learning [Bishop, 2006]. By doing this, the active power losses output

mapping obtained from the input demand and generation conditions will implicitly con-

tains the knowledge about the problem domain, in this case the power flow equations

[Kumar et al., 2017].

To update the edge weights of the model, the most widely used technique is Back-
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Propagation (BP), a gradient descent-based algorithm that allows the training of the

model to perform a specific task through the calculation of the edge weights values

[Schmidhuber, 2015]. Gradient descent is a practical method to find the minimum of

difficult functions. BP allows to avoid overshooting by taking smaller steps if the gra-

dient of the function gets shallower. In this case BP minimises a loss function denoted

with L. The selection of the loss function depends on the learning paradigm (supervised,

unsupervised or reinforcement) and the activation function chosen [Simon S, 1999].

A widely-used loss function in supervised learning is the Mean-Squared Error (MSE),

indicated in (4.44) which consists of minimising the mean squared error between the

output power losses, and the target value of power losses for the π scenario.

L =
1

ν

ν∑
π=1

⏐⏐⏐p̂(π)loss,T − p
(π)
loss,T

⏐⏐⏐2 = L(wi,j) (4.44)

Where ν is the batch size, i.e the number of samples that are presented to the model

until the weight matrix is updated. Th edge weights are updated ∆wi,j by using the

gradient of the loss function with respect to the weights as indicates expression (4.45).

In the training stage, some parameters have to be considered regarding the size of the

DNN (by means of the number of hidden layers Nh and number of neurons per layer s)

and regarding the learning process by means of the learning rate η [Bishop, 2006].

The weight updates of BP can be done via stochastic gradient descent.

∆wi,j = wi,j(t̂+ 1)− wi,j(t̂) = η
∂L

∂wi,j

, ∀wi,j ∈ W (4.45)

Where η is the leaning rate and t̂ is a time discrete parameter that indicates the

iteration training step. The learning rate η influences the speed and quality of learning

and its selection is fundamental, since a high value can boost the learning process but

the risk of obtaining suboptimal solutions increases, while a too low value of the learning

rate could lead to a more accurate training at an expense of longer training operations.

From expression (4.45) it can be seen that the sign of the gradient (∂L/∂wi,j) indicates

how the error varies (whether directly with the weight or inversely). Therefore, the weight

must be updated in the opposite direction, ”descending” the gradient. By regulating the
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learning process through the value of η ensures that the model learn from the data reducing

the impact of outliers and/or noise.

The model training algorithm comprise the following steps:

1. Weight matrix initialisation: At first (t̂ = 0) all the edge weights wi,j(t̂) of the

edge weights matrix W(t̂) are randomly assigned as indicates (4.46).

W(t̂) ∼ U(wmin
i,j (0), wmax

i,j (0)) (4.46)

Where U(•) is the uniform distribution, wmin
i,j (0) is the lower bound for the initiali-

sation of the weights and wmax
i,j (0) is the upper bound.

2. Propagation of errors: The first batch (nν = 1) of demand and generation condi-

tions input samples X(π) = {X(1), . . . ,X(ν)}, belonging to the training data set, is pre-
sented to the model and it’s propagated forward through the model, layer by layer,

until it reaches the output layer, obtaining the corresponding output power losses

p̂
(π)
loss,T (t̂) = {p̂(1)loss,T (t̂), . . . , p̂

(ν)
loss,T (t̂)}. This calculated sequence of output power

losses is compared with the target power losses p
(π)
loss,T calculating the mean-squared

output error ϵ
(π,t̂)
o as indicates (4.47).

ϵ(π,t̂)o =
1

ν

ν∑
i=1

|p̂(i)loss,T (t̂)− p
(i)
loss,T |2 (4.47)

The output error is back propagated from the output layer to the previous layers ob-

taining the error of the hidden layer Lk,∀k ∈ {1, . . . , h} defined as ϵ
(π,t̂)
k which reflects

the contribution of that layer to the output error. This is calculated by the product

between the output error and the column Wk(t̂) ⊂ W(t̂) =
[
w1,k(t̂), . . . , wnk,k(t̂)

]T
(nk is the number of neurones of the layer Lk) of the edge weight matrix W(t̂)

corresponding to the hidden layer r as indicates (4.48).

ϵ
(π,t̂)
k = Wk(t̂) ϵ

(π,t̂)
o , ∀k ∈ (1, . . . , h) (4.48)

The error of the hidden layer ϵ
(π,t̂)
k is a column vector (nk×1) and contains the error

contribution of each neuron of the hidden layer.
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3. Gradient descent: The gradient of the loss function (which is the slope of the loss

function respect to the edge weights value) is obtained by applying the chain rule

to the expression (4.49) obtaining the expression (4.49) [Rashid, 2017].

∂L

∂Wk(t̂)
= −ϵ(π,t̂)k ·Ok(Ink

−Ok) ·OT
k−1, ∀k ∈ (1, . . . , h) (4.49)

Where Ok = [o1, . . . , onk
] is the neuron’s outputs of the layer Lk, Ink

is a unit vector

vector of size (1 × nk) and Ok−1 =
[
o1, . . . , onk−1

]
is the neuron’s outputs of the

hidden layer Lk−1.

4. Weights updating: The weights matrix is updated then column by column with

the corresponding loss function gradient calculated considering a learning rate η .

The updated edge weight column Wk(t̂+ 1) of the layer Lk is calculated as the old

one Wk(t̂) moving in the opposite direction to the gradient as is indicated in (4.50).

Wk(t̂+ 1) = Wk(t̂)− η
∂L

∂Wk(t̂)
, ∀k ∈ (1, . . . , h) (4.50)

5. Recalculate output: One the entire weight matrix W(t̂+1) has been updated for

the first batch, the next batch of samples (Nv = 2) is presented to the model and

propagated throw it, obtaining a new sequence of output power losses values. The

output error is then recalculated and if the difference between the actual error and

the previous one is below a maximum limit (ϵmax), the process is stopped and the

model is trained, if not the process go back to step 3.

ϵ
(π,t̂+1)
o − ϵ

(π,t̂)
o < ϵmax ⇒ Ok

ϵ
(π,t̂+1)
o − ϵ

(π,t̂)
o > ϵmax ⇒ Go to 3

(4.51)

Training data

The training data set is composed by a sequence of known inputs, i.e known demand and

generation conditions for each representative feeder, and a sequence of known outputs , i.e

the corresponding power losses associated with those demand and generation conditions,

which are calculated throw unbalanced power flows.
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One requisite of the DNN models is the need of a large training data set. That becomes

in a limitation if only available smart meters measurements are used. To tackle with this

limitation, demand-generation scenarios are synthetically created for the k̂ representative

feeders obtained in the clustering process. For each reference feeder a collection of APs

for the demand as well as for the generation are synthetically created based on the smart

meters measurements, which is gathered from the AMI systems of the whole distribution

area. With this, the need for a of large data set is fulfilled. These demand and generation

APs created for each representative feeder represents the aggregation of all the customers

connected to the feeder (in the case of demand), and all the DG units connected to the

feeder (in the case of generation) units connected to that feeder and consist of mean

expected value of each customer/DG unit plus a uncertainty component modelled with

the standard deviation.

Moreover, demand and generation are time dependent variables in the sense that their

values change over the season of the year and even over the different days (working days,

weekends and holidays). To consider this variability, synthetically created APs are created

for winter and summer season as well as for working-days and non-working days (holidays

and weekends).

Demand APs:

1. Demand AP for Winter & Working days pwi+wd
d,r (t).

2. Demand AP for Winter & Non-Working days pwi+nwd
d,r (t).

3. Demand AP for Summer & Working days psu+wd
d,r (t).

4. Demand AP for Summer & Non-Working days psu+nwd
d,r (t).

Generation APs:

1. Generation AP for Winter pwi
g,r(t).

2. Generation AP for Summer psug,r(t).

Those APs for demand and generation are obtained from the smart meter measure-

ment over a year. Then based on that, a large number of scenarios is synthetically
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produced using the mean expected value µ(•) of the original APs and adding a component

of uncertainty by means of the standard deviation σ(•) as indicates expression (4.52).

D1 : p
wi+wd(ω)
d,r (t) = µpwi+wd

d,r (t) ± σpwi+wd
d,r (t)

D2 : p
wi+nwd(ω)
d,r (t) = µpwi+nwd

d,r (t) ± σpwi+nwd
d,r (t)

D3 : p
su+wd(ω)
d,r (t) = µpsu+wd

d,r (t) ± σpsu+wd
d,r (t)

D4 : p
su+nwd(ω)
d,r (t) = µpsu+nwd

d,r (t) ± σpsu+nwd
d,r (t)

G1 : p
wi(ω)
g,r (t) = µpwi

g,r(t)
± σpwi

g,r(t)

G2 : p
su(ω)
g,r (t) = µpsug,r(t) ± σpsug,r(t)

(4.52)

Where ω ∈ (1, . . . , κ) is the index for demand and generation scenarios (which is a

daily AP) and κ is the total number of daily AP of each type produces (κ > 1000).

As the input vector contains both demand and generation tuples of each representative

feeder and has been defined 4 demand APs and 2 generation APs to take into account the

variability throw the year, its necessary to combine each demand AP (D1, D2, D3 and D4)

with the 2 generation APs (G1, G2), that is 8 pairs D1−G1, D1−G2, . . . , D4−G1, D4−G2,

where each block represents the κ APs produced. Therefore, for each representative feeder

a total number of scenarios ξ = 8 κ is synthetically produced as is illustrated in Fig. 4.8.

The input X(ω,1) includes the κ demand and generation daily APs of the combination

D1−G1 for each representative feeder (i.e 2k̂κ patterns). As there are 8 combinations, the

total input training data (denoted with ΩT,i) set will be composed by the 8(2k̂κ) demand

and generation daily APs as indicates (4.53) where ω denotes the index of APs scenarios

created ∀ω ∈ (1, . . . , κ).

ΩT,i = {X(ω,1),X(ω,2), . . . ,X(ω,7),X(ω,8)} (4.53)

Moreover, the output power losses training set (denoted with ΩT,o) will be composed

by the correspond active power losses daily patterns obtained by unbalanced power flow

algorithm based on the formulation presented in [Garcia et al., 2000]. As is illustrated in

Fig. 4.8 for each combination of demand and generation AP, it is calculated the active

power losses corresponding with the κ AP for each combination.
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ΩT,o = {p(ω,1)loss,T , p
(ω,2)
loss,T , . . . , p

(ω,7)
loss,T , p

(ω,8)
loss,T} (4.54)
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Figure 4.8: Output power losses set calculation throw unbalance power flow

Both input and output training sets together compose the training data set ΩT as

indicates (4.55).

ΩT,i ∪ ΩT,o := ΩT (4.55)

Model hyper-parameters

One of the more critical parts of the modelling of the DNN is the selection of the DNN

control parameters to characterise the model structure and performance. These con-

trol parameters are known as hyper-parameters and their configuration plays a crucial

role in the performance of the deep learning model. The configuration of the hidden

layers architecture through the connections between the neurons determines the final
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behaviour of the model since in each hidden layer takes place a non-linear transforma-

tion of the aggregate activation of the DNN [Simon S, 1999]. Regarding this, as the size

of the model increase, the more flexibility it is obtained to perform accurately however

this is at expense of a higher computationally expense. Moreover to avoid overfitting

(when the model perform so close to the training data but fails with new data) some

of the neurons of the model has to be cancelled (no output), this is achieved throw the

technique known as “Dropout”. Finding the best configuration for hyper-parameters

is not trivial [Bergstra and Bengio, 2012]. In the field on machine learning, there are

two main strategies for optimising hyper-parameters: Grid search and Random search

[Goodfellow et al., 2016a]. Grid search consists of searching exhaustively through a pre-

viously specified set of hyper-parameter candidate values which leads to the most accurate

model. On the other hand, random search consists of taking values randomly for each

hyper-parameter within an interval defined by an upper bound and a lower bound, and

retaining, consequently, the best combination found. It can be said that Random search

is very fast but does not guarantee the optimal combination of hyper-parameters. On

the contrary, grid search guarantees that the optimal combination of hyper-parameters

will be reached although the cost of the computational time increases. In this thesis, the

grid search strategy is adopted to tune the hyper-parameters of the deep learning model

because it is the method that provides the optimal combination.

Consequently, previously to the model training, a set of control parameters have to be

defined to characterise the model structure and performance which are the following:

• No. of hidden layers h: Larger deep neural networks are likely to obtain better

results since the model have more opportunities to learn independent representa-

tions.

• No. of neurons per hidden layer nk: A large number of neurons per hidden

layer increase accuracy but, a large number may lead the model to overfitting. In

contrast, to few neurons per hidden layer may lead the model to under-fitting.

• Dropout ζ: Is a regularisation technique to avoid overfitting which consist of can-

celling some neurons of the hidden layers [N.Srivastava et al., 2014]. A widely-use
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good starting point is to cancel between 20% of the hidden neurons. Cancelling a

low number of neurons produces minimal effect and cancelling a high number of

neurons may lead the model to under-learning. Neurons are randomly dropped out

during training. This means that their contribution to the activation of downstream

neurons is temporally removed on the forward pass and any weight updates are not

applied to the neuron during the backward pass. Neurons Weights are tuned for

specific features providing some specialisation. Neighbouring neurons rely on this

specialisation, which if taken too far can result in a fragile model too specialised to

the training data. The effect is that the network is capable of better generalisation

and is less likely to overfitting the training data.

• Learning rate η: is a coefficient to control how the model change depending on

the error response, since the weights of the deep learning model are updated based

on that error.

• Weights Initialisation {wmin
i,j (0), wmax

i,j (0)}: The weight initialisation scheme de-

pends on the activation function chosen. In this chapter sigmoid function is chosen

so in general wi,j ∈ (0, 1). The lower bound of the minimum weight could be de-

fined randomly as wmin
i,j (0) ∈ (0, 0.5) means while the upper bound of the maximum

weight could be defined randomly wmax
i,j (0) ∈ (0.5, 1).

• Number of epochs ϑ: Is the number of times that the complete training data

is presented to the model in the training stage. The number of epochs have to

be increased until the validation accuracy (i.e the output error obtained in the

validation stage) decreases (not in the case of the training accuracy because that

means overfitting).

• Batch size ν: Is the the number of training samples which are presented to the

model, before the edge weights are updated. The training data set can be divided

in one or more batches. Commonly used values for the batch sizes are 32, 64, and

128 samples. If the dataset cannot be divided evenly then some samples could be

ignored.
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The weights of a DNN have to be calculated via an empirical optimisation procedure

known as Stochastic Gradient Descent (SGD) [Robbins and Monro, 1951]. This procedure

is an optimisation algorithm that estimates the error gradient for the current state of the

model using samples from the training dataset, then updates the weights of the model

using the back-propagation algorithm. The optimisation problem addressed by SGD for

DNN is challenging and the space of solutions (sets of weights) may be comprised both

by global optimum solutions and also by many local optimum solutions [Brownlee, 2016].

One of the most important hyper-parameter to tune for the DNN is the learning rate

to achieve good performance. Learning rate controls how quickly or slowly the DNN

learns. The amount that the weights are updated during training is determined by the

step size or the learning rate. Given a perfectly configured learning rate, the model will

learn how to approximate the function, the best, given the available resources (the number

of layers and the number of nodes per layer) and the considered training epochs numbers

(passes through the training data). Generally, a large learning rate allows the model to

learn faster, at the cost of arriving to sub-optimal weights. A small learning rate value

allows the model to reach an optimal or even globally optimal set of weights but may take

significantly longer to train. Moreover, a learning rate that is too large will result in weight

updates that will be too large and the performance of the model (such as its loss on the

training dataset) will oscillate over training epochs. A learning rate that is too small may

never converge or may get stuck on a suboptimal solution. The range of values to consider

for the learning rate is from 0.01 to 106. During training, the back- propagation algorithm

estimates the error for which the node weights are involved. Instead of updating the weight

with the full amount, it is scaled by the learning rate. This means that a learning rate

of 0.1 would mean that weights are updated a 10%. Configuring the learning rate is

challenging and time-consuming. The learning rate hyper-parameter controls the rate

or speed at which the model learns. Specifically, it controls the weights updates during

the training and also the end of the training batch examples. The learning rate will

interact with many other aspects of the optimisation process, and the interactions may

be nonlinear. In general, low learning rates require more training epochs. Conversely,

large learning rates require fewer training epochs. Further, low batch sizes are better
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suited to low learning rates given the noisy estimate of the error gradient.

Diagnostic plots can be used to investigate how the learning rate impacts the rate

of learning and the learning dynamics of the model. Line plots can provide information

about the rate of learning over training epochs (fast/slow); if the model has learned too

quickly (sharp rise and plateau) or is learning too slowly (little or no change); If the

learning rate might be too large via oscillations in loss.

4.7.5 Model Validation

The model hyper-parameters tuning process involves finding the combination of model

hyper-parameter values that produces the most accurate model, i.e. the combination

that maximise the accuracy Λ of the model defined throw the APE (Absolute Percentage

Error) index [Goodfellow et al., 2016a] in expression (4.56)

Λ = 1− APE = 1− |ploss,T − p̂loss,T |
ploss,T

(4.56)

Where (p̂Loss,T ) is the value of active power losses estimated by the model and (ploss,T )

is the known active power losses value.

To obtain the combination of model hyper parameter values that produce the most ac-

curate model, for each model hyper parameter, a collection of n different candidate values

are defined as indicated in (4.57) and in Table (4.3). For instance, for the particular case

of the hyper-parameter ”number of hidden layers h”, its candidate values are uniformly

distributed between a minimum of two hidden layers and a maximum of 20 hidden layers.

It is well-known that validation is usually performed by dividing the data into training,

test, and validation sets [Kuhn and Johnson, 2013]. However, in some cases, this strat-

egy leads to suboptimal hyper-parameters [Russel and Norving, 1994]. In this thesis, is

proposed the K-Fold technique to validate the power losses model, which has been found

to produce a more accurate model because the variability of the data set is completely

considered. It must be noted that the selection of the number of K folds is not obvious.

The aim is that the number of K-Folds must be chosen in such an order as to be statis-

tically representative of the problem to solve. Large K values provide higher accuracy at

the expense of a higher computational effort. Meanwhile, small K values will be faster
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Table 4.3: Candidate values of the hyper-parameters’ model for K-fold process.

Hyper-parameters Candidate values

No. Hidden Layers (h) 2 3 5 10 20

No. Hidden neurons (nh) 4 6 8 12 16

Dropout (ζ) 0.05 0.10 0.20 0.25 0.5

Learning rate (η) 1e-6 1e-4 1e-3 1e-2 1e-1

Batch size (ν) 0.1ξ 0.25ξ 0.5ξ 1.0ξ 2ξ

Upper edge-weight wi,j(0) 0.6 0.7 0.8 0.9 1.0

Lower edge-weight wi,j(0) 0.1 0.2 0.3 0.4 0.5

but less accurate The number of K folds has to be chosen such that each train/test group

of data samples is large enough to be statistically representative. Values K =∈ (4, 10) are

very common in the field of applied machine learning [Hastie et al., 2017].

h = {h1, h2, . . . , hn−1, hn}
nk = {nk1 , nk2 , . . . , nkn−1 , nkn−1}, ∀k ∈ (1, . . . , h)

ζ = {ζ1, ζ2, . . . , ζn−1, ζn}
η = {η1, η2, . . . , ηn−1, ηn}
ν = {ν1, ν2, . . . , νn−1, νn}
wmin

i,j = {wmin
i,j 1

, wmin
i,j 2

, . . . , wmin
i,j n−1

, wmin
i,j n

}
wmax

i,j = {wmax
i,j 1

, wmax
i,j 2

, . . . , wmax
i,j n−1

, wmax
i,j n

}

(4.57)

The optimal number of epochs ϑ is chosen by applying the ”Early Stopping” technique

which consists of increasing the number of iterations for training the model as long as the

accuracy (Λ) keeps increasing.

K-fold technique consists of splitting the training data set into K subsets as follow:

ΩT := Ω
(1)
T,x ∪ . . . ∪ Ω

(κ)
T,x  

Input training data X

∪ Ω
(1)
T,p ∪ . . . ∪ Ω

(κ)
T,p  

Output training data Y

(4.58)

• Initially, the split 1 is formed by one test fold (Fold 1), subsets (K = 1) and the

remaining subsets are used as training data set K = (2, . . . ,K). For the training
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Figure 4.9: K-Fold Cross validation and hyper-parameter tunning procedure

data set, the n
nhp

hp hyper-parameter parameters combinations are explored to find

the most accurate model. This is done by means of building a model with each

one of these hyper-parameter’s combinations, and then training the model with

the training data set of the split 1. Each model is tested with the test data set

(Fold 1), obtaining the power losses accuracy given by (4.56). From all the hyper-

parameter combinations, the one that is chosen produces the highest accuracy. The

optimal hyper-parameter combination values, denoted by Υ(1), are retained and the

process continues with the next split split 2.

Υ(1) = {h(1)∗, n(1)∗
k , ζ(1)∗, η(1)∗, ν(1)∗, wmax

i,j
(1)∗, wmin

i,j

(1)∗} (4.59)

• In the split 2 the next fold is taking as test data K = 2 and the first fold and

the remaining ones are taking as training data K = (1, 3, . . . ,K). For this split the

operation is the same to obtain the second hyper-parameter combination values Υ(2)

that produces the most accurate model, i.e with he highest accuracy Λ(2).
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• The process is repeated with the upcoming splits until the split K, obtaining

K hyper-parameter combination values associated with K accuracy values. From

those accuracy scores, the hyper-parameter combination associated with the highest

is chosen for the finally trained model. The process is illustrated in Fig. 4.9

4.8 Case Study

In this section, the proposed methodology for power loss estimation has been applied to an

existing large-scale LV smart grids. The low-voltage distribution area under investigation

is located in Madrid (Spain) and the principal characteristics are indicated in Table 4.4.

The distribution area is composed of 147 SS with 1,256 feeders (so n = 1265). There

are 30,429 residential and commercial customers with a total contractual power of 546

MW. In this area, the contractual DG penetration level is 55% and they are based mainly

on rooftop PV panels, which are the typical DG source in Madrid region. The average

smart meter deployment is 88%, which provides hourly measurements from telemetered

customers. To deal with the connection of non-telemetered customers, the hourly power

demand is estimated as detailed in section 3.3.4 of this thesis. From the utility company,

it is known that the average power phase unbalance due to the unevenly distributed

single-phase customers has been found to be 13.8%. The geographical area corresponds

to a whole metropolitan ZIP code which covers 605 ha. Data related to cables electrical

properties (resistance and reactance) considered are indicated in Table 1.2 and 1.3.

4.8.1 Data

It can be noted that the whole area offers great variability in many parameters, such as:

• Feeder properties: length, impedance, type of connection (aerial, underground).

• Customers: phase connection (three-phase, single-phase), type of demand (residen-

tial, commercial, industrial), connection point.

• DG: phase connection (three-phase, single-phase), power rate, connection point.
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• Smart meter deployment: telemetered and non-telemetered customers.

• Phase unbalanced.

Table 4.4: Case study data for large-scale power losses estimation

Case study property Value

Geographical Area Covered (ha.) 605

No. Secondary Substations (No. SS) 147

No. Customers (three phase, single-phase)* 30429

No. Feeders (n) 1256

Power Contracted (MW) 546

Accumulated feeder Length (km) 273

Max. (PV-based) DG-presence level (%) 55

Aver. Smart Meter penetration level (%) 88

Aver. Power Phase Unbalance (%) 13.8

Aver. Ratio Customers/SS 207

Aver. Ratio Customers/Feeder 24

Network Type 100 % Urban

Cables Material 100 %Aluminium

Cables impedance (0.1 , 3) Ω/km

Network Configuration 80 %Underground

20 %Overhead

*residential, commercial and industrial

For that reason, the data set must be selected to represent the high network diversity

but focusing on the more relevant ones from the point of view of network power losses.

Fig. 4.10 shows the histograms of the p̃ feeders’s characteristics (according to Table 4.4)

and the Probability Density Function (PDF) with a red line. It can be seen that the

feeder’s characteristics follow three different PDFs:

• The characteristics related to power consumption (X1,a, X1,b, X1,c, X9,a, X9,b, X9,c,
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X10,a, X10,b, X10,c, X11,a, X11,b, X11,c, X12,a, X12,b, X12,c) presents a Gaussian distri-

bution.

• Meanwhile, the characteristics related to feeder properties (X2, X4, X7, X8 and X13)

are left-skewed.

• The rest of the characteristics such as smart meter penetration (X3), DG spatial

distribution (X5), and customers per phase (X14,a, X14,b, X14,c) are right-skewed.
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Figure 4.10: PDFs and histograms of the feeders’ characteristics
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From Fig.4.10, the following conclusions can be deduced:

• It can be seen that phase A is more loaded than the other phases. Consequently,

the large low-voltage distribution area is characterised by an unbalanced operation

(X1,a, X1,b, X1,c).

• The feeder loading level characteristic X2 varies from 5% to 75%, which means that

there are some heavily loaded feeders (75% of the power rating of the transformer)

but also that there are others with very reduced loading (5% of the power rating

of the SS transformer). It can be observed, through the histogram, that the PDF

is tilted to the left side. Then the power contracted by the customers is located

primarily between 10% and 50% of the power transformer rating (since the feeder

load level is defined as the ratio between power contracted and the power rating of

the SS transformer).

• The smart meter deployment (characteristic X3) varies from a minimum of 55% to

the maximum, which is 100%.

• The DG penetration level, which corresponds to the characteristic X4, is tilted to

the left in such a way that the majority of the feeder has a DG penetration of 50%

(ratio between power peak installed and power contracted). Related to this, the self-

consumption ratio (X7) shows that over half of the feeders have a self-consumption

ratio less than or equal to 50%.

• The spatial distribution of DG units, X5 units, and customer’s X6 are very close

because, usually, the DG facilities are allocated at the same customer’s connection

point (PV rooftop facilities).

Fig. 4.11 shows the correlation matrix of the feeder’s characteristics. As can be seen

the feeder’s characteristics related to load unbalance are correlated positively (X1,a−X1,b)

and negatively (X1,b−X1,c), which means that when more loading is added to one phase,

it comes at the expense of reducing the loading at other phases. Otherwise, the phases

will be balanced.
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Also positively correlated are the feeders’ characteristics (X2 − X3) and (X7 − X13).

Due to the fact that in Spain smart meter installations are mandatory for customers with

power contracted equal to or less than 15 kW, it is expected that highly loaded feeders

are prone to have customers with higher power contracted. In addition, it can be noted

that highly loaded feeders presented high correlation self-consumption ratios.
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Figure 4.11: Correlation matrix of the feeder’s characteristics
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4.8.2 Results

Principal Component Analysis

From Fig. 4.10 , it can be noted that there are some feeder characteristics that provide

very high values (X12) and others that present small values (X6). To give the same

weight to all feeder characteristics, a normalisation process is performed. In this case,

the feeder’s characteristics are normalised to vary in the range from 0 to 1. The box

plot of each normalised feeder characteristic is obtained and is shown in Fig. 4.12. Each

box plot indicates the median value (red medium vertical line in the box) and the inter-

quartile range defined by the upper limit, indicating the 75% percentile (Q3) and the

lower limit, indicating the 25% percentile (Q1). Also, extremes in values are shown

which are considered outliers (those feeder samples with a value of up to 50% of the Q1

and Q3 limits). It can be noted that the normalisation process maintains the statistical

behaviour of the feeder’s characteristics, allowing the comparison between them. The

feeder’s properties that exhibit a clear normal distribution (i.e., X1,a, X1,b, and X1,c) have

the inter-quantile range around the median zero. The feeder’s characteristics that have

skewed statistical behaviour keep maintaining the majority of the feeder’s samples in the

extremes (for instance, DG penetration level X4).

Because some of the feeder’s characteristics are correlated (Fig. 4.11), a feature ex-

traction process is carried out to obtain a reduced set of uncorrelated feeder’s features.

This is achieved through PCA analysis, as was explained in section 4.5. The objective of

the PCA is to capture the maximum data variability using a reduced number of uncor-

related variables. The selection of the PC projections is performed by (4.9). Fig. 4.13

shows the cumulated variability captured by each Principal Component. It can be seen

that the first PC (k = 1) is able to capture 53% of the data variability in the original

feeder’s characteristics. However, this percentage increases if the second projection PC

(k = 2) is added. The first and two PCs together capture up to 79% of the data variability

of the original feeder’s characteristics. It can also be seen that increasing the number of

PC projections does not notably increase the capture of data variability (≈ 10% each

additional PC projection added).
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Figure 4.12: Boxplots of the normalised feeder’s characteristics

Consequently, for this case, the PCA analysis allows for the reduction of the normalised

feeder’s data matrix to the two-dimensional feeder’s data matrix, considerably reducing

the computational burden but maintaining up to 79% of the original data variability.

Clustering and representative feeders selection

The n = 1256 feeders of the two-dimensional feeder’s data matrix M̃n×s are classified

into feeder’s clusters by means of the K-means++ procedure explained in section 4.6. The

selection of the optimal number of feeder’s clusters k̂ is not always straightforward but

comes from a compromise between a reduced number of clusters and a large value of the

Global Silhouette Coefficient (GS). The K-means++ algorithm has been executed 1,000

times using different initial centroid seeds.

Fig.4.14 shows the evolution of the GS coefficient as the number of clusters is increased

(red line), as well as the percentage of variance explained (blue line), which is calculated

using the statistic F-test [Hayter, 2012]. It can be appreciated that for k̂ = 2 clusters,

a maximum value of GSk̂=2 = 0.48 is achieved. However, the percentage of variance ex-
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Figure 4.13: Cumulated variability captured by Principal Component of the PCA analysis

plained by two clusters is very low (40%). Consequently, a compromise value of k̂ = 4

feeder’s clusters provides good percentage of variance explained [Hayter, 2012] and a good

GS value [Mateo et al., 2018, Rigoni et al., 2016, Bracale et al., 2012, Strunz et al., 2009].

Fig. 4.15.a) shows the scatter plot of the feeder’s data for each of the k̂ = 4 feeder’s

clusters. Within each feeder’s cluster, a representative feeder c̃r is chosen as the feeder

closest to the centroid’s cluster. Finally, Fig. 4.15.b) shows the silhouette index value

(4.23) for the chosen clustering configuration (i.e., k̂ = 4 feeder’s clusters). The vertical

red line indicates the Silhouette Index value for the chosen clustering configuration. As

can be seen, only a few feeder’s samples are below the zero limit.

Table 4.5 shows the Euclidean distance factor αr (used to scale each representative

feeder input in the model) as well as the number of feeder’s clusters assigned to each

cluster.

Table 4.5: Euclidean distance factor per feeder cluster and number of feeder’s per cluster

Representative Feeder c̃r Euclidean distance factor αr No. feeders per cluster nr

r = 1 1.43 314

r = 2 1.64 287

r = 3 1.75 345

r = 4 1.82 310
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Figure 4.14: Selection of the optimal number of clusters
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Figure 4.15: Feature extraction and clustering results: a) Scatter plot of the feeder’s

clusters obtained through first and second PCs, b) Silhouette Index Value plot for k̂ = 4

feeder’s clusters.

Model Training

The training data set ΩT has been synthetically produced using the smart meter data of

the Spanish large-scale low-voltage distribution area gathered over the period from 2014-
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2018 with a time resolution of 10 min. Moreover, the generation data from each of the

DG units for the same period of time is also available.

For each reference feeder, a collection of APs for the demand and generation has been

synthetically created based on yearly smart meter measurement data. These demand and

generation APs represent the aggregation of all the customers connected to the reference

feeder (in the case of demand APs), and the aggregation of all the DG units connected

to the reference feeder (in the case of generation APs).

Demand and generation APs are formed by means of the mean expected value µ(•)

of the time series of demand/generation of the representative feeders plus a uncertainty

component modelled through the standard deviation σ(•) of the same demand/generation

time series. With that mean expected value and standard deviation, a large number of

synthetic APs κ > 1000 are produced.

Moreover, to consider the variability of demand and generation throughout the year

(seasons, working days, holidays, etc.) the synthetically produced APs are discrimi-

nated for the winter and summer seasons as well as for Working-Days (WD) and Non-

Working Ways (NWD) (holidays and weekends) as indicated in Table 4.16. Each scenario

has been simulated in every representative feeder, and the corresponding active power

losses have been obtained by solving an unbalanced power flow problem (Fig. 4.16)

[Velasco et al., 2019]. Fig. 4.17 shows a daily sample of the training data produced.
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Table 4.6: Synthetic demand and generation APs formulas

Demand APs

Winter
WD D1 : p

wi+wd(ω)
d,r (t) = µpwi+wd

d,r (t) ± σpwi+wd
d,r (t)

NWD D2 : p
wi+nwd(ω)
d,r (t) = µpwi+nwd

d,r (t) ± σpwi+nwd
d,r (t)

Summer
WD D3 : p

su+wd(ω)
d,r (t) = µpsu+wd

d,r (t) ± σpwi+wd
d,r (t)

NWD D4 : p
su+nwd(ω)
d,r (t) = µpsu+nwd

d,r (t) ± σpsu+nwd
d,r (t)

Generation APs

Winter G1 : p
wi(ω)
g,r (t) = µpwi

g,r(t)
± σpwi

g,r(t)

Summer G2 : p
wi(ω)
g,r (t) = µpsug,r(t)

± σpsig,r(t)

ω ∈ (1, . . . , κ) is the index for demand and generation scenarios (which is a daily AP) and κ is the total

number of daily APs of each type synthetically generated.

Aggregated Patterns (APs)

Demand Generation

D1 D2 D3 D4 G1 G2

D1 G1

D1 G2

D2 G1

D2 G2

D3 G1

D3 G2

D4 G1

D4 G2

time

time

pg

ω=1

ω=κ

κ Demand

Aggregated
Patterns

pd

κ Generation

Aggregated
Patterns

ω=1

ω=κ

Figure 4.16: Combination of demand APs and generation APs for one representative

feeder
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Figure 4.17: Training data for the deep learning losses model
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Model Validation

For the K Cross-Validation procedure, a number of K = 4 folds have been chosen to split

the training data set [Hastie et al., 2017]. Table 4.7 shows the hyper-parameter values

associated with the highest accuracy score trajectories obtained. The model with the

higher accuracy corresponds to K-Fold 1, where the architecture of the model consists of

four layers: the input layer has eight input signals (aggregated demand and aggregated

generation for each cluster); the first hidden layer has six neurons; the second hidden layer

has four neurons; and, finally, the output layer generated the total power losses of the

large-scale area. It can be seen that a predominant batch size of 240 provides the model

with the highest accuracy. The final architecture is shown in Fig.4.18.
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Table 4.7: Hyper-parameter combinations with the highest accuracy for each split

Accuracy Λ K Fold Architecture (n1 : . . . : nh) Dropout ζ Learning rate η Weight initialisation (wmin
i,j , wmax

i,j ) Batch size ν

0.9365 1 (8:6:4:1) 0.24 1e-2 (0.06,0.75) 240

0.9271 2 (8:6:4:1) 0.32 1e-3 (0.27,0.52) 240

0.9205 3 (8:4:8:1) 0.41 1e-2 (0.35,0.60) 240

0.9200 4 (8:12:12:1) 0.38 1e-4 (0.02,0.72) 48

Input
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Y = pLoss,
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Layer 1

Ouput
Layer

1
L= 6
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L = 8

oL = 1

T

pd,1α1

pd,2α2Aggregated Demand
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pd,4α4
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pg,2α2Aggregated Generation
of each feeder's cluster pg,3α3

pg,4α4 Hidden
Layer 2

1
L= 4

X
Active power losses of
the whole LV area

Figure 4.18: Final architecture of the DNN model



4.8. CASE STUDY 143

DNN Power losses estimation in unbalanced networks

The power losses model presented in this chapter has been trained and validated using

Python programming language and the libraries scikit-learn [Pedregosa et al., 2011]

and TensorFlow [Abadi et al., 2015].

Once the deep learning losses model has been trained and validated, it can be applied

for the power losses estimation at large-scale for the whole set of low-voltage smart grid

networks for a 24-hour period with a time resolution of 10 min. (i.e., the model is fed

with the demand and generation data with a time resolution of 10 min.). Fig. 4.19

shows the technical losses estimation on a daily basis for the whole large area. Fig.

4.19.a) shows the aggregated power demand, Fig. 4.19.b) shows the aggregated power

generation coming from the PV-based units of each representative feeder. Fig. 4.19.c)

shows the losses estimation using the deep learning losses model for the large-scale low-

voltage distribution area (solid line); the dashed line shows the losses obtained by an

unbalanced power flow. Finally, Fig. 4.19.d) shows the accuracy of the model over

the day, which results in an average value of 88% outperforming the results obtained in

[Leal et al., 2009, Wang et al., 2017].

Fig. 4.20 shows the power losses estimation for the unbalanced large area by applying

the deep learning model proposed in the paper for a period of four weeks (solid line),

and the exact power losses obtained with the unbalanced power flow solution (dashed

line), it has to be highlighted that the power flow requires the exact network topology

and customer/generation data. It has to be noted that the overall accuracy of the deep

learning model over a four-week period is 87% compared to the exact power flow solution.

Moreover, the computational speed of the deep learning model is almost 10 times inferior

to that of the traditional approach (power flow), for this case study the power flow takes

1 hour and the DNN 7 minutes.

Comparative

As is pointed out in the introduction to this chapter, not many methodologies have

been proposed, in the literature, to evaluate the power losses in low-voltage large-scale

smart grids, considering both unbalanced operation as well as DG. However, to pro-
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Figure 4.19: Active power losses estimation results on one daily basis

vide a comparative result, the proposed deep learning loss model using out-of-the-box

demand and generation data is compared to the losses estimation method proposed by

[Heckmann et al., 2013]. It must be noted that [Heckmann et al., 2013] cannot be applied

to unbalanced networks.

Fig.4.20 shows the comparison among losses estimation for large low-voltage distri-

bution areas using the proposed deep learning losses model (solid line), the real losses

estimation using determinist power flow (dark dashed line), and the losses estimation

method proposed by [Heckmann et al., 2013] (grey dashed line). As can be seen in the

upper plot, the deep learning method outperforms the results of [Heckmann et al., 2013],
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Figure 4.20: Active power losses estimation comparison between the proposed method and

the method proposed in [Heckmann et al., 2013] under balanced situations (7-13 October,

2019)

which, due to the lack of an accurate consideration of DG generation, provides negative

values of power losses at certain times of the week. The lower plot of the same figure

shows the APE results of both methods (the proposed in this paper and the applied in

[Heckmann et al., 2013]) compared to the exact power flow results. It can be appreci-

ated that the deep learning method provides very small error values, showing its superior

accuracy.
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4.9 Conclusions

This chapter of the thesis presented a deep learning-based model for power losses esti-

mation in large-scale low-voltage distribution areas with presence of distributed resources

as well as unbalanced conditions. First, the architecture and the operational behaviour

of the low-voltage distribution networks have been described. Then, a feature extraction

process based on Principal Components Analysis is carried out obtaining a reduced set

of features that captures the majority of the variability of the feeder’s data. Following

that a k-means++ clustering process is applied to obtain the representative feeders as the

closest feeder’s to the centroids of the clusters obtained. After that, a supervised power

losses model based on a Deep Neural Network is formulated for the whole low-voltage

distribution area under study. To train the model, a set of demand-generation scenarios

has been synthetically created for those representative feeders, and their corresponding

power losses in unbalanced conditions has been calculated using the three-phase power

flow model depicted in this thesis. The learning process of the model is conducted follow-

ing the K-fold procedure obtaining at the same time the optimal combination of model’s

hyper-parameters. The model customised with the optimal hyper-parameters is then feed

with the demand and generation data coming from the metering infrastructure of the

representative feeders, scaled up to the number of feeder belonging to the feeder’s cluster

which represent. The power losses model has been applied to a real utility low-voltage

distribution area in Madrid (Spain) exhibiting a good performance as power losses esti-

mator. The proposed methodology has been proved to be a potential real-time operation

tool to improve energy efficiency level in large distribution areas with high penetration of

distributed resources.



Chapter 5

Power Losses Minimisation in

Unbalanced LV Smart Grids Under

Uncertainty

5.1 Introduction

Environmental concerns have led to an ever-increasing incorporation of renewable-based

Distributed Energy Resources (DERs) in actual distribution systems, in particularly in

the low-voltage levels.

Power losses growth and technical contingencies depends on the penetration level, lo-

cation, and DERs type as [Soroudi, 2012]. For instance, the integration of PEVs poses

potential contingencies in distribution networks since massive uncontrollable charging ses-

sions can produce technical problems on residential LV networks (e.g., thermal problems

on transformers/cables and/or significant voltage drops).

The appropriate amount and location of DERs into power networks, which is known

as Hosting Capacity (HC), can contribute to the reduction of Greenhouse emissions Levels

through a more sustainable energy. However, If the DER generation exceeds the network

hosting capacity limit (i.e. the resources are misplaced and wrongly sized), it could lead

to network’s contingencies, such as: over-voltages, overloads and power losses increments.

In the upcoming years, increasing penetration levels of DERs will require robust plan-

147
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ning and operation tools to assess the capabilities and requirements of the networks

[Keane et al., 2013]. Ideally, the objective would be to maximise the energy efficiency

level of the system (i.e., minimise the energy lost) and at the same time maximise the

renewable energy penetration.

Moreover, due to the intermittent behaviour of those renewable-based resources, un-

certainty has to be properly modelled in such a way that the operational conditions

obtained will be robust enough from changes in solar irradiation, electric vehicles charg-

ing schedules or unexpected customers behaviour changes [Olivier et al., 2016]. Those

circumstances make challenging the efficient and secure integration of DERs in smart

grids without producing technical contingencies such as over-loads and over-voltages.

For the aforementioned reasons, flexibility mechanisms are required to mitigate those

contingencies and at the same time to increase the integration of DERs into power net-

works. These mechanisms will be activated before the contingencies take place to keep

the system within normal operational conditions being robust against any uncertainty

sources (PV production or customers demand) [Soroudi and Amraee, 2013].

5.2 Flexibility Services for Power Losses Minimisa-

tion

Energy flexibility can be defined in terms of a schedule power sequence during certain

horizon time (hourly, day a-head or a week in advance) with certain time resolution

(from 10 minutes to 1 hour). When the flexibility is provided by a residential customer,

the mechanism is known as Demand Response (DR) and consists in the modification of

the customer pattern consumption (increasing or decreasing the load demand) at certain

time steps. When the flexibility is provided by distributed generators (for instance PV

panels) the mechanism is known as load curtailment and consists in limiting the quantity

of power injected to the network [Soroudi, 2012]. Other forms of flexibility are peak

shaving, which refers to the use of electricity stored in BES during peak hours, reducing

the consumption of power from the grid at peak times. The use of BES system for load

levelling is also known as “energy arbitrage” because it may be possible to earn a profit by
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storing inexpensive electricity when demand is low and using it when the price is higher

[Navarro-Espinosa et al., 2014].

When designing flexibility provider mechanisms, it has to be considered aspects related

to their functional and technical feasibility:

• Customer’s potential flexibility is related with the final energy use: space cool-

ing/heating, water heating, indoor lighting, and other home appliances such as

washing/dryer machine.

• DERs potential flexibility is related with their normal operation: PEV charging

session, BES charging/discharging events and PV injections.

Additionally, flexibility mechanisms are required to have the following characteristics:

• Sheddability, which refers to the technical potential to load decrease. For instance

if a prosumer/DER is supposed to decrease its power consumption/generation at

DSO requests, the flexibility action has to be proceeded in safety conditions both

for the customer/DER as well as for the network itself.

• Controllability, which refers to the capacity of the customer/DER to increase the

level of power consumption/generation to provide flexibility.

• Acceptability, which refers to the availability of the customers/DERs to provide

flexibility at a given time when requested.

5.2.1 Prosumer Flexibility

Nowadays LV distribution networks have been transformed into smart grids in which

the end-users become active users by modifying their energy consumption and provid-

ing flexibility services to the grid. Examples of recent research papers using DR as

flexibility providers can be found in [Shafie-Khah et al., 2018a, Shafie-khah et al., 2018,

Heydarian-Forushani et al., 2018b, Heydarian-Forushani et al., 2018a]. Although there

are works [Baran and Fernandes, 2016] which prevent DR to be a unique solution for

flexibility provision to the system.
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DR mechanisms encourage the reduction of customers load demand (incentive-based

programs) based on economic incentives [Carreiro et al., 2017]. DR mechanisms can be

implemented in different timescales, being the day-ahead the time period when Demand

bidding and load curtailment are scheduled.

To cope with the mentioned requirements, in this thesis customers are considered

prosumers which provide flexibility services. A prosumer is formed by a load consumption,

the PEV charging point, BES device (energy storage) and distributed energy generation

(by means of PV panels). With this approach, prosumers not only can demand energy

from the LV network (normal customer behaviour) but also can inject energy to the grid.

Within the proposed prosumer scheme, it is contemplated that each prosumer will have

a triplet BES-PEV-PV as indicated in Fig. 5.1 where energy flows are shown to provide

flexibility upon an operator request. The PV block (which represent an array of PV

panels), injects certain quantity of energy along the day following a daily pattern close

to a gaussian bell-shape which median value is around midday. It is considered that the

power generation from the PV block can follow three different paths depending on: a)

flexibility requirements, b) household appliance demand c) uncertainty levels or d) power

losses levels in the network.

Network/DSO

Household/
Prosumer

BES

PVPEV

(4)

(2)

(3)

(1)(5)

(7)

(6)

Figure 5.1: Prosumer with triplet BES-PV-PEV and energy flows
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In the case a), if the DSO requires to the prosumer to provide flexibility, for instance

by reducing the power consumption from the network (load curtailment), the prosumer

will reduce the power consumption from the network by demanding the required power

from the PV block, path (1). This is conditioned to the uncertainty related to the PV

block operation, since it is characterised by an intermittent behaviour of the weather

conditions (specifically solar irradiation and ambient temperature) which are intermittent

and fluctuating, as well as they depend on calendar season and hours of the day (Fig.

5.2).

6am 12am 6pm Time

PV power generation
(kW) Expected Value + 1 STD

Expected Value + 2 STD

Expected Value

Uncertainty gap

Uncertainty gap

Uncertainty gap

2

4

6

Figure 5.2: PV power production uncertainty

This PV block uncertainty implies a risk for the flexibility provision. Therefore, to

tackle with the PV uncertainty, path (2) is considered in which a certain fraction of the

PV power generation is used for storing the BES block (which is composed by an array of

BES units) and so the stored energy can be used as a power supply to the household, path

(3), under PV generation uncertainties. The charging of the BES block is subject to some

technical constraints related to its maximum storage capacity and maximum/minimum

energy discharge. When these constraints are close to be violated, the BES unit is allowed

to discharge energy to the prosumer or the PV unit directly injects the energy to the grid,
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path (4). In this case, this injection from the PV block to the network is also constrained

by some network constraints. Consequently, if the PV injection does not fulfil the technical

networks constraints, PV curtailment is performed to guarantee network constraints.

The prosumer uncertainty is associated to the customer demand, the PV generation,

the PEV connection times (arrival and departure), PEV arrival capacity and PEV re-

quired departure capacity. The PEV block (which consist of an PEV/PHEV charger

installed at the household) is modelled as a household appliance, which demand pattern

is characterised by a statistical distribution with an Expected Value (EV) and Standard

Deviation (STD). In this case, the PEV uncertainty is spread around the specific hour

time when the vehicle is connected to the charging station, and it finishes when the vehi-

cle leaves the household. Also, the PEV charging demand profile during the connection

period is considered (Fig. 5.3).

7am 12am 5pm 9pm4am9pm
Actual dayDay before

Time

PEV power demand (kW)

5

1

Expected Value + 1 STD
Expected Value + 2 STD

Expected Value

Uncertainty gap

Uncertainty gap

16x8

Figure 5.3: Aggregated PEV charging uncertainty model

The power consumption of the PHEV/PEV block is part of the aggregated power

consumption of the prosumer, path (5). However, under flexibility requests from the

operator, the PHEV/PEV power consumption can be affected. Consequently, to provide

the flexibility to the grid without interrupting the PHEV/PEV charging demand, the

stored energy at the BESS block will be used to charge the PHEV/PEV by path (6).
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Finally, path (7) indicates that the prosumer can import energy from the network and

behaves as a customer or it can export energy to the network acting as a generator.

Therefore, the coordinated control of the energy flow between the BES block and PV block

is used as a flexibility mechanism in the sense that when the customers are requested to

provide flexibility from the DSO, they provide that flexibility by the coordinated control

of the PV block energy stored in the BES unit as shown in Fig. 5.1. However, it has to

be noted that the proper operation of the triplet BES-PEV-PV is affected by uncertainty.

5.2.2 DERs Flexibility

DERs-side flexibility-mechanisms are found in the literature as effective flexibility mecha-

nisms to avoid technical contingencies. PV curtailment is proposed in [Franco et al., 2018]

were the optimal PV operation point (volt/var) is determined by solving a Three-phase

Optimal Power Flow (TOPF) considering a wide range of demand and PV generation

scenarios. The widespread presence of PV units in distribution systems leads to over-

voltages as is pointed out in [Gutierrez-Lagos et al., 2019] where an OPF-based CVR

(Conservative Voltage Reduction) scheme for unbalance distribution networks (MV and

LV) with high penetration of PVs is applied maintaining nodal voltages within statutory

limits and minimising the energy imports from the grid [Soroudi et al., 2017].

To address DERs integration issues controlled PEV charging schemes have been pro-

posed. The implementation of controlled PEV/PHEVs charging schemes, in particular

centralised schemes, have been proposed in [Quiros-Tortos et al., 2016] where PEV charg-

ing operation is optimised to solve current/voltage network’s contingencies. PEV Local

control schemes allow a greater penetration of PEV than uncontrolled charging oper-

ations, meanwhile PEV centralised control achieve a better utilisation of the network

capacity at the expense of implementing a significant network communications infras-

tructure [Richardson et al., 2013]. Regarding the impact of PHEV/PEVs in distribution

networks, in [Guo et al., 2019] is studied the coordination between Autonomous PEVs

charging/discharging with Network Reconfiguration (NR) to minimise power losses in

Medium Voltage (MV) grids. However, It has to be highlighted that PEV optimal charg-

ing control could affect the battery lifetime of these devices since these are designed and
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manufactured to be charged uninterruptedly [Hoke et al., 2011].

In contrast, dedicated BES systems can be used as flexibility energy providers. In

fact, Multi-stage approaches based on scenarios’ uncertainties provide accurate-enough

representation of the uncertainty and the flexibility. However, they can become computa-

tionally infeasible easily, because the required number of variables increases exponentially

with the number of stages considered. This inconvenient can be mitigated by selecting

representative scenarios using clustering techniques [Li et al., 2016].

5.2.3 Optimization Techniques

Optimal operation of DERs is usually modelled as deterministic problems but, there is an

uncertainty involved in the model due to the nature of DERs [Soroudi et al., 2016]. Thus,

it is required that some optimization methodologies have to be developed to overcome the

problem of DER integration into smart grids. In general, these approaches are based on

Optimal Power Flows (OPF) in which a certain Objective Function (OF) is minimised

subject to some technical constrains (power capacity, voltage and current limits, etc.). The

OF considered in the literature can be Power Losses Minimisation (PLM), Supply Cost

Minimisation (SCM), maximisation of renewable-based DG capacity in what is known

as Renewable Generation Harvesting Maximisation (RGHM). The control variables are

based on flexibility mechanisms. By solving the OPF, the optimal set points of the

controlled variables are obtained. Usually, these OPFs approaches have been formulated

in a multi-period fashion (typically for the day ahead basis, 24h) to cater with the daily

variability of power customers demand and DERs generation.

To achieve the optimal flexibility required to reduce power losses of the system as well

as solving network technical contingencies, it is necessary to model a complete three-phase

optimal power flow of the LV smart grid network. This requires modelling the phase con-

nection of each device in the network as well as determining the phase voltage and phase

current magnitudes, which increases the computational complexity. The optimisation

problem consists in a mathematical programming problem in which an objective function

is minimised (or maximised) and it is formulated together with a set of equality constrains

related to the full three-phase network equations, as well as inequality constraints related
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to technical reference values.

Additionally, the optimal operation of distribution networks has been investigated

considering DERs controllability, such as DG curtailment to deal with current and volt-

age constraints. Moreover, recently PLM have also been studied considering volt-var

control [Ricciardi et al., 2019] and reconfiguration [Guo et al., 2019]. As demonstrated in

[Ochoa and Harrison, 2011] PLM considering one single load condition hardly leads to an

overall power losses minimisation. Moreover, the sole objective of PLM tends to reduce

the potential DERs capacity that could be connected to distribution networks, hence a

trade-off among different objective functions must be found. The concept of rolling op-

timisation was presented in [O’Connell et al., 2014] in which the OF in solved in time

blocks, updating the demand and generation forecast for the upcoming blocks. Thus,

more accurate results are obtained due considering time-varying characteristics.

OPF formulations in the literature range from linear models to non-linear models.

The first have a straightforward implementation but at expense of a high computa-

tional cost as well as complex scalability [Franco et al., 2018]. For that reason, con-

vex formulations [Borghetti, 2013] have been proposed as semi-definite programming

[DallAnese et al., 2013] and quadratically constrained [Jabr et al., 2012]. These OPF-

based programs could help the DSOs to carry out extended analysis for congestion man-

agement (over voltages and over-loadings), impact of Conservative Voltage Reduction

(CVR), and the effects of regulatory policies.

One potential solution to counteract the over voltages due to PV injections is the

adoption of On-Load Tap Changers (OLTP) transformers. However, the efficient and

flexible nodal voltage control requires remote observability [Chen et al., 2005]. Also, to

account for the DERs weather uncertainty, probabilistic Monte Carlo simulations have

been applied [Li et al., 2019]. Nonetheless, these approaches are computational expensive

and time consuming.

Given the presented literature review, it can be noticed that a large scientific pro-

duction has been published related to DER optimization in LV distribution networks.

However, very few considers the three-phase model neither accounts, explicitly, the inter-

mittent PV uncertainty or the unexpected load demand variations. Existing solutions are
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based on solving an equivalent single-phase LV power flow assuming constant both de-

mand and generation. However, that procedure leads to non-realistic power losses values.

5.3 Formulation

The robust flexibility scheduling (FS) optimization model proposed for unbalanced LV

smart grids correspond with a mathematical Mixed-Integer Non-Linear Programming

(MINLP) problem stated in (5.1)-(5.20). It corresponds with a min-max optimization

problem in which the outer-level problem it’s a minimisation problem for the decision

vector variables x and y and the inner-level problem is a maximisation problem for the

uncertain vector variables u and z. Uncertainty variables u and z are allowed to take

values within a specified uncertainty sets. The value that the decision variables x and

y can take depends on the maximisation of the objective function given u and z (worst-

case). By this way the optimal value for the decision variables (x∗,y∗) is obtained for the

worst-case form the uncertainty variables (u∗, z∗) point of view.
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min
x,y

max
u,z

F :

{∑
t∈T

∑
k∈V

xpk,t · ξt + yp,+k,t · λt + yp,−k,t · λt
}

(5.1)

s.t. x =
[
xpk,t
]T ∈ (0, 1),∀k ∈ V ∗ ⊆ V, ∀t ∈ T,∀p ∈ (a, b, c) (5.2)

y+ =
[
yp,+k,t

]T ∈ (ymin
k , ymax

k ),∀k ∈ V ∗ ⊆ V, ∀t ∈ T,∀p ∈ (a, b, c) (5.3)

y− =
[
yp,−k,t

]T ∈ (ymin
k , ymax

k ),∀k ∈ V ∗ ⊆ V, ∀t ∈ T,∀p ∈ (a, b, c) (5.4)

y+ + y− = 0 (5.5)

u = [upk,t]
T ∈ Φu,t (5.6)

z = [zpk,t]
T ∈ Φz,t (5.7)

ϑ = [vp,rek,t vp,imk,t ]T ∈ R,∀k ∈ V, ∀t ∈ T,∀p ∈ (a, b, c) (5.8)

pp,spi,k,t(x,y,u, z) + pp,cali,k,t (ϑ) = 0 (5.9)

pp,spi,k,t(x,y,u, z) = upk,t − (pp,spd,k,t + ypk,t + zpk,t) (5.10)

ip,rei,k,t =
∑
k′∈Ωk

∑
q ∈(a,b,c)

gpqkk′ v
q,re
k′,t − bpqkk′ v

q,im
k′,t (5.11)

ip,imi,k =
∑
k′∈Ωk

∑
q ∈(a,b,c)

bpqkk′ u
q,im
k′ + gpqkk′ u

q,im
k′ (5.12)

xpk,t · ymin
k ≤ ypk,t ≤ xpk,t · ymax

k (5.13)

Lp  ∑
p∈(a,b,c)

∑
k,j∈V, i̸=j

[(
ip,rekj,t

)2
+
(
ip,imkj,t

)2]
rpk,j · epk,j ≤ LM

t (5.14)

ip,rekj,t = gpk,j
(
vp,rek − vp,rej

)
+ bpk,j

(
vp,imj − vp,imk

)
(5.15)

ip,imkj,t = gpk,j
(
vp,imk − vp,imj

)
+ bpk,j

(
vp,rek − vp,imj

)
(5.16)

Φu,t(µu,t, σu,t) =

{
upk,t ∈ R :

∑
∀k∈Nu

|upk,t − µu,t,k|
σu,t,k

≤ φu,t

}
(5.17)

Φz,t(µz,t, σz,t) =

{
zpk,t ∈ R :

∑
∀k∈Nz

|zpk,t − µz,t,k|
σz,t,k

≤ φz,t

}
(5.18)

(
ip,rekj,t

)2
+
(
ip,imkj,t

)2 ≤
(
imax
kj

)2
(5.19)(

vmin
)2 ≤ (vp,rek,t

)2
+
(
vp,imk,t

)2 ≤ (vmax)2 (5.20)

The problem can be formulated in compact form:
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minXmaxX F(X ) (5.21)

s.t. gi(X ) ≤ 0,∀i ∈ (1, . . . ,m) (5.22)

hj(X ) = 0,∀j ∈ (1, . . . , s) (5.23)

X = {x,y+,y−,u, z, ϑ} (5.24)

Which turns in to the following problem:

min max F(X ) (5.25)

s.t. Lp − LM
t ≤ 0 (5.26)

y+ + y− = 0 (5.27)(
vp,rek,t

)2
+
(
vp,imk,t

)2 − (vmax)2 ≤ 0 (5.28)(
vmin

)2 − (vp,rek,t

)2 − (vp,imk,t

)2 ≤ 0 (5.29)

pp,spi,k,t(X ) + pp,cali,k,t (X ) = 0 (5.30)

5.3.1 Objective Function

The objective function (5.1) is related with the total cost of the flexibility provided by a

set of customer participating in a demand response program. Decision variables x and y

are related with commitment decision (binary decision) of customers to provide flexibility

and the dispatch of the amount of flexibility required from them, respectively. The first

term of the objective function is related with the flexibility commitment cost ξt ($) and

the second term with the flexibility dispatch cost λt (c$/kWh) is the marginal cost of

the flexibility provided, i.e. is the cost associated to the flexibility provided over the

planning horizon which depends on the flexibility providers committed and the prices of

the flexibility. Decision variables of the problem are the following: y = [ykt,p]
T is a real-

continuous vector decision variable related to the amount of amount of load flexibility

dispatched in time instant t ∈ T to each customer k ∈ V ∗ connected to phase p ∈ (a, b, c)

participating in the demand response program for flexibility. Note that x =
[
xkt,p
]T

is
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a binary decision vector of flexibility decisions (i.e. which eligible customer k connected

to phase p will participate in the flexibility program) for each time interval t ∈ T of

the flexibility scheduling period, usually 24 h. The objective function (5.1) involves two

decision vector variables of the flexibility cost, which is composed by the cost associated

with the commitment of flexibility and the cost associated with the dispatch of flexibility.

Note that the dispatch decision variable is a real number which can take positive and

negative values, but the flexibility cost is a positive magnitude, so the absolute value is

used. This entails some computational issues since it is a non-linear function. Therefore,

the dispatch decision variable is splitted in positive and negative y = y+, y− in such a

way that if decision variable y is positive, then y− = 0 and y+ > 0, and if y is negative,

then y− > 0 and y+ = 0. The objective function is subject to a set of equality and

inequality constraints which correspond as follow: network non-linear unbalanced power

flow equations (5.9)-(5.13), power net injection per phase in each node (5.15)-(5.16),

maximum power losses limit (5.13)-(5.14), uncertainty constraints (5.17)-(5.18) technical

limits for current magnitude en each phase feeder lines and phase voltage magnitude in

(5.19)-(5.20) respectively.

5.3.2 Power Network Equations

Equality constraint (5.9) establishes that the specified (sp) power injections (which de-

pends on the decision variables) in each node (k), phase (p) and time instant (t) has to

be equal to the calculated (cal) power injections, which depends on vector state variable

ϑ defined in expression (3). Note that solving this power mismatch is equivalent to find-

ing the solution of F(ϑ,x, y) = 0 which entails a non-linear equation and provides the

network state. By this, the network state is constituted by the power mismatch between

the specified power injections (sp) at each node, phase and time-step, and the calculated

power injections (cal). The state variable is defined by the nodal phase voltage magnitude

(in each instant of time) separated in real and imaginary components. Calculated power

injections are defined by the three-phase network equation (5.10), in each node (k), phase

(p) and time instant (t). The calculated power injection is formed by taking the real

part of the complex power injection (S̄ = Ū Ī∗) and decomposed in real and imaginary
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parts. The result is a linear combination of the product between the real phase voltage

magnitude and phase current on the one hand, and on the other hand, the imaginary

phase voltage and phase current. Phase current magnitude can be expressed in terms

of the phase voltage magnitude (state variable) and the network admittance according

to the network equation (I = U · Y ), derived from Kirchhoff’s current law, as indicate

expressions (5.9)-(5.10).

This gives as result the real and imaginary components of the phase current in function

of the real and imaginary components of the phase voltage and the admittance matrix.

Note that the conductance gpqkk′ and the susceptance bpqkk′ correspond with the mutual ele-

ments (of the diagonal) of the admittance matrix. In this regard, it is assumed that all the

diagonal terms of the admittance matrix are equal as well as all the mutual impedances.

This is a good approximation for the network modelling and makes more tractable the

problem computation [Short, 2004]. Therefore, the power balance equation (5.9) and

power injection (5.11)-(5.12) define the network state of the unbalanced smart grid.

In this regard, network nodes are modelled as PQ loads, where phase voltage magni-

tude is variable, and the net power injection is fixed by the problem as a result of the

balance between specified and calculated power injections. In each node (k), phase (p)

and instant of time the power injection is defined as the difference between the power

generation (positive) and the power demand (negative) as shown in equation (5.10). Gen-

eration (PV injections) is considered as an uncertain variable and is defined as u. This

uncertain variable is specified at each node, phase and time instant.

The second component of the injection equation (5.10) is the total demand, composed

as follow: first term corresponds with the non-interruptible customer demand (pp,spd,k,t),

which is not affected by flexibility and it is forecasted from historic real data availability;

second component is the decision variable related to the flexibility dispatch (ypk,t) and it

is the amount of flexibility that the customer will provide to the network, i.e. specify how

much power demand is required to the customer to increase or decrease respect to the

non-interruptible customer demand, and finally the last term is related with the uncertain

variable of to the EV consumption z, which is an additional power consumption of the

customer affected by uncertainty due to the fact the EV charging sessions can materialise
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at request of the customer in any instant of time.

5.3.3 Flexibility Equations

Inequality constraint (5.13) is related with customer flexibility. This equation involves

both the dispatch decision variable y and the flexibility commitment decision variable

(binary decision) x with the upper and lower bounds for each customer in terms of flex-

ibility ymax
k , ymin

k . This equation works in such a way that if a customer connected to

a specific node and phase is committed to provide flexibility in a certain time-step, the

commitment variable will take unitary value and the dispatch decision is allowed to take

values between a maximum ymax
k bound and a minimum ymin

k bound for the flexibility

dispatch. Note that these bounds are constant in time and are fixed based on the capa-

bilities of the customer to provide flexibility. If a customer does not have a high value of

power contracted or does not have enough appliances to increase their power consump-

tion, that needs to be reflected in the definition of the upper bound. On the contrary,

if the customer have critical appliances, the upper bound will be a lower quantity. Note

that the dispatch variable has been separated in positive dispatch variable and negative

dispatch variable and so the equation (5.13) is formulated for both of them is such a way:

y+ ≤ xk,t · ymax
k and y− ≥ xk,t · ymin

k . The objective of the flexibility scheduling prob-

lem is to reduce power losses of the network and so it is explicitly defined in inequality

constraint (5.14). In that equation is defined that the total power losses in each time

period resulting from the flexibility scheduling implemented are constrained to be upper

bounded by a maximum allowed LM
t , which is a parameter fixed by the decision-maker.

Note that the average power losses levels in a unbalanced LV smart grids usually takes

values between 2-4% of the power supply, therefore the maximum power loses LM
t has to

be fixed below those threshold to activate the scheduling of flexibility. Power losses of the

network are calculated using the phase current flowing in each feeder section in real and

imaginary components. Power losses correspond with the product of the square of the

phase magnitude current that flows by the feeder section that connects nodes (r) and (j)

in phase (p) (calculated with the real component ip,rek,j defined in (5.15) and the imaginary

component ip,imk,j defined in (5.16) for the phase current), the linear resistance of the same
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phase feeder section rpk,j (Ω/m) and the length of the same phase feeder section, epk,j (m).

Real and imaginary components of the current that flows through the phase conductor

(p) from node (k) to node (j) can be described in terms of the phase voltages and admit-

tance line components (conductance and susceptance). These components are written in

terms of the state variable phase voltages as follow: gpk,j is the conductance of the feeder

section between nodes (k) and (j) of the phase (p), bpk,j is the susceptance of the feeder

section between nodes (k) and (j) of the phase (p), up,rej , up,imj are the real and imaginary

components (respectively) of the phase voltage magnitude of node (j), phase (p) and up,rek ,

up,imk are the real and imaginary components of the phase voltage magnitudes of node (k),

phase (p).

Regarding the solution of the unbalance power flow, one of the network buses is chosen

as the slack (and is denoted as k∗) and their specified (sp) power injection is fixed to be

equal to the net demand plus the power losses of the network. The slack node is assigned

to the LV side of the SS bus where voltage is fixed to the nominal value. In addition, the

voltage angle of the slack bus is fixed to zero.

5.3.4 Uncertainty Modelling

To deal with the uncertainty sources namely intermittent PV injections, and sudden

or unexpected EV load demand charging, in this section a Robust Optimization (RO)

approach is adopted. The objective with this is to find a solution (flexibility schedule,

both commitment and dispatch) that minimises the objective function for among all the

feasible solutions and for all the realisations of the uncertain sources (PV and EV). That

robust solution has a priori ensured feasibility when the uncertain sources vary within an

uncertainty set, which may be large. The uncertainty set is a non-empty compact set,

which means that the set is closed (containing all the limit points) and bounded (having all

its points lie within some fixed distance among each other). The compactness assumption

of the uncertainty set implies that uncertainty is bounded, which reflects the reality.

PV injections and EV demand are considered to be affected by uncertainty, meanwhile

flexibility is assigned to the customer demand, and results in decision variable to achieve

the optimal operation, being the output of the model the optimal day-ahead scheduling
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for that variables. Unlike Stochastic Optimization (SO) or Probabilistic Optimization

(PO), RO does not rely on statistical information nor depends on expensive discretisation

of uncertainty in scenarios. Instead, RO models uncertainty by decision variables which

are allowed to take values within a pre-specified uncertainty set. In such a way, RO

provides an optimal solution which is immune to all possible realisations of the uncertainty

variables (sources) within the defined uncertainty set. In the case of this work, it will

provide the flexibility schedule which is optimal (from the economic point of view of

the flexibility) and feasible (from the technical point of view) for any realisation of the

uncertainty sources (variable) under consideration. But more than that, the solution

found is optimal and feasible for the worst-case realisation of the uncertainty variables

(i.e. the combination of PV injections and EV demand that produce the maximum losses

and technical contingencies).

The uncertainty set represents all possible materialisations of the uncertain sources.

The worst-case values, are one of the extreme of the corresponding uncertainty set inter-

vals. Uncertainty sets are key building blocks of the proposed robust model. The first

step to build a robust model is to define the uncertainty sets for each uncertainty vari-

able under consideration, and this corresponds with the expressions (5.17)-(5.18). In the

flexibility scheduling problem the uncertain parameters are the PV injections and the EV

power consumption during charging sessions. Therefore each of these uncertainty param-

eters has to be described in terms of a uncertainty set. Considering that, in this thesis the

uncertainty set is modelled as a budget constrained polyhedral defined by equation (5.17)

in the case of the PV uncertain variable and by the equation (5.18) in the case of the EV

uncertain variable. The uncertainty set chosen it is based on the deviation of the uncer-

tainty parameters from their expected value. In those expressions Nz, Nu are the set of

nodes affected by the uncertain variables, µz,t, µu,t are the vectors of mean expected values

for the uncertain variables in each time period; and σu,t, σz,t are the vectors of standard

deviations for the uncertain variables in each time period. Note that each uncertain vari-

able zpk,t and u
p
k,t is allowed to take values in the range {µ(•),k,t − σ(•),k,t , µ(•),k,t + σ(•),k,t}

and the total variability in each time period is constrained by a uncertainty budget φd,t

which is a parameter to control the level of robustness allowed to the model. It takes
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values between 0 and N(•) and its purpose is to control the total deviation of all uncer-

tainty variables from their nominal values, weighted by the standard deviation. If the

uncertainty budget is null (φ(•) = 0), then the vector of uncertainty variables takes only

the expected values and the situation corresponds with the determinist case. Choosing a

low uncertainty budget leads to more deterministic solutions since the uncertainty vari-

ables takes values closer to their mean values, meanwhile large uncertainty budgets lead

to more conservative solutions and so more robust solutions against any feasible realisa-

tion of the uncertainty variables. As the uncertainty budget get larger, the uncertainty

set gets wider. For this reason, robust sets are generally modelled as boxes or polyhedral

constraints.

5.3.5 Statutory Limits

Finally equations (5.19) and (5.20) define the technical limits for the phase current mag-

nitude in each feeder line section and the phase voltage magnitude (respectively) in each

time instant. Note that both equations are expressed in terms of the real and imaginary

components of the phase current and the phase voltage, and additionally the phase cur-

rent can be expressed in terms of voltage magnitude by replacing with equations (5.11)

and (5.12).

5.3.6 Solution Procedure

The robust optimization problem presented in this chapter comprise equations (5.1)-

(5.20), and represents a max-min bilevel programming problem whose solution procedure

rely in decomposition techniques as well as iterative procedures [Conejo and Wu, 2021].

To formulate and solve the robust optimization model the Python based library RO-

Model [Wiebe and Misener, 2021] has been selected in which a cutting planes solver

is used to implement an iterative strategy for solving the robust model. This library

replaces each uncertain constraint and objective by a cut which contains the nominal

constraint. The solver iteratively solves the master problem (minimisation) and produces

cut off solutions which are not robustly feasible. A solution X ∗ is considered to be ro-
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bustly feasible when for each uncertain constraint gi(X ∗) ≤ 0 the value of the objective

function is smaller than some tolerance OFmin. The solver used in the master problem

is Couenne [Belotti et al., 2009] which is a branch&bound algorithm able to find global

optima of non-convex MINLPs. This solver implements linearisation, bound reduction,

and branching methods within a branch-and-bound framework.

F(X ) ≤ OFmin (5.31)

5.4 Case Study

5.4.1 Data

The test network chosen for implementing the robust flexibility scheduling is the modified

European LV Test Feeder (ELVTF) [Report, 2015] illustrated in Fig. 5.4. This feeder was

selected as an appropriate test for validating the proposed formulation since it represents

an appropriate benchmark for researchers who want to study unbalanced LV smart grids,

which are common in Europe Countries. The test feeder has a purely radial topology

with a single connection point to the SS. The single feeder have a length of 1.4 km with

53 buses (connections points). The nominal line-to-line feeder voltage level is 416 V(line-

to-line) with a base frequency of 50 Hz which is typical in the European LV distribution

networks. The feeder is connected to the MV system through a distribution transformer

located at the SS, which steps the voltage down from 11 kV to 416 V and has a power

rating of 630 kVA.

Electrical magnitudes are indicated in per unit values using the transformer power rat-

ing as power base and the nominal line to line voltage as voltage reference. The original

ELVTF network is modified to apply the robust flexibility scheduling model proposed.

It is considered that residential and commercial customers are connected to each bus.

Each customer have a contractual power that range from 3.45 kW to 9.20 kW (which

are the normalised power contracted in Spain). The load consumption patterns of res-

idential and commercial customers are extracted as baseline from the OSIRIS project

[UC3M et al., 2017] which includes a large-scale area of LV smart grids. The load con-
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Figure 5.4: European low-voltage test feeder topology representation

sumption data includes customer connection phase as indicated in Table A.2 (in Ap-

pendix) where it is indicated the node number in which the customer is connected, the

phase to which is connected (A, B, or C), the average load power consumption (active

power) and the daily expected value for PV generation and the EV consumption pattern.

PV facilities have a peak power that range between 1 kW to 4 kW (which results in a

realistic rooftop array between 4 and 16 PV panels respectively, each one of 250 W of peak

power). Meanwhile EV charging points are modelled to have nominal values between 2.3

and 3.3 kW. This last series is used to build the uncertainty boxes for the model. In Fig.

5.5 it is shown the hourly mean expected value for the load demand of the network per

phase, based on the historical data in [Velasco et al., 2020] which includes four years of

smart meters data. It can be seen that the aggregated load consumption in each phase

does not follow the same pattern since the load is not balanced between phases. This case

is specially more clear in the phase A (blue pattern).

In Table A.1 (in Appendix) it is indicated the main metrics for analysing the unbal-

ance situation in the network under study. In Table A.1 it can be seen that phases B

and C are more loaded than phase A. This results in unbalanced operation with leads

to over-voltage’s and overloading’s. The unbalance degree CIGRE-2 is calculated by the
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Figure 5.5: Aggregated customers load demand expected values

Table 5.1: Principal unbalanced network metrics without flexibility

Metric Value

Load Unbalance ratio phase A 29 %

Load Unbalance ratio phase B 35 %

Load Unbalance ratio phase C 36 %

Unbalance Degree CIGRE-2 DQV 3.45 %

Max. phase voltage mag. (p.u.) 1.14

Max. phase current mag. (p.u.) 0.16
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dispersion of the average phase voltage values respect to the nominal values, as indicate

(5.32)-(5.33), where (ûp ) is the expected phase voltage value in p.u. This unbalance de-

gree results in 3.45 % which clearly indicates a deviation for the desired balance conditions

(the maximum deviation allowed is 3%).

DQV =

√
(2/3) ·

∑
p∈(a,b,c)

δ2p (5.32)

δp = |ûp − 1| (5.33)

The historical data of the smart meters is used to forecast the load demand customers

of the day-ahead using a time rolling forecasting technique as is done in [Hyndman et al., 2018].

For simplicity, but without lack of accuracy, unitary power factor is considered in such

a way that the reactive power demand for each customer is zero, and PV injections are

considered purely active power. Regarding PV generation, in Fig. 5.6 is shown the un-

certainty model for the PV injection of the node 27, phase C. It can be seen that the

expected value for the PV injections is plotted in solid black line and the uncertainty box

is delimited by the upper and lower limits in dashed and dotted lines respectively. The

grey area delimits any possible day-ahead injection power.
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Figure 5.6: PV Generation expected value and uncertainty area covered by the uncertainty

box

PEV units are considered to have a nominal power charging that range between 2.3
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and 3.7 kW (which provides charging times between 7-3 hours respectively Fig. 5.7). This

corresponds with the average charging period for the current EV models in the European

market [Fotouhi et al., 2019].
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Figure 5.7: PEV charging pattern duration and battery capacity scatterplot

Regarding the modelling of the PEV devices, in Fig. 5.8 it is shown the expected

demand value (in solid black line) for the PEV unit connected to bus 30 phase C. The

uncertain box of the given PEV unit is delimited by the upper and lower limits in dashed

and dotted lines (respectively). Any of the points within the grey represents the uncer-

tainty box associated to the worst-case robust flexibility scheduling. As it can be seen,

users usually connect their vehicles when they arrive at home, consequently, the battery

is charged at night and they unplug the vehicle when they leave home in the morning.

The selection of the uncertainty budget is aligned with the spread of the data set of

each uncertainty unit. Related to the flexibility cost, Table 5.2 shows the prices for the

flexibility provided by customers, in terms of economic value per unit of energy. It can

be seen that the policy is that flexibility provided in central hours of the day is more

expensive that in early or lately hours of the day, due to the fact that in the middle of the

day, a higher amount of PV injections will take place and so the probability of technical

contingencies or high power losses increases.
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Figure 5.8: PEV charging pattern expected value and uncertainty box

Table 5.2: Hourly prices for the flexibility scheduling

Time interval λt (c$/kWh) Time interval λt (c$/kWh)

00:00 - 01:00 65 13:00 - 14:00 79

01:00 - 02:00 66 14:00 - 15:00 78

02:00 - 03:00 66 15:00 - 16:00 78

03:00 - 04:00 67 16:00 - 17:00 77

04:00 - 05:00 67 17:00 - 18:00 77

05:00 - 06:00 68 18:00 - 19:00 76

06:00 - 07:00 68 19:00 - 20:00 76

07:00 - 08:00 70 20:00 - 21:00 74

08:00 - 09:00 74 21:00 - 22:00 73

09:00 - 10:00 76 22:00 - 23:00 67

10:00 - 11:00 77 23:00 - 00:00 66

11:00 - 12:00 79

12:00 - 13:00 79
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5.4.2 Initial Situation

To have an idea of the initial situation of the network before the application of the robust

flexibility scheduling, an unbalanced power flow is carried out. The unbalanced power

flow entails to solve equations (5.9) and (5.10), considering the uncertain variables u and

z as input parameters. In particular, it is used the expected values for PV and PEV

shown in Fig. 5.6 and Fig. 5.8. By this way the total power losses, calculated by left side

of inequality (5.14), as well as phase voltage magnitude and phase current magnitudes

are calculated under the expected value conditions for demand (Fig. 5.5), PV injections

(Fig. 5.6) and PEV demand (Fig. 5.8). As a result, the unbalanced power flow gives the

following power losses pattern illustrated in Fig. 5.9. It can be noted that total power

losses are superior than 3% in the absence of any flexibility mechanism. Additionally, it

can be seen that peak power losses occur at midday according to the periods where PV

units injects more power to the grid.
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Figure 5.9: Power losses of the network per phase without flexibility

In Fig. 5.10 it is shown the maximum phase current magnitude of the network (node

34) as a result of the unbalance power flow calculation (in absence of any flexibility

mechanism). It can be seen that the network operates in unbalanced conditions and

surpass the thermal limit of the feeder section at midday (when the PV injects the power).

It can be seen that overloading’s and over-voltage are correlated with the power losses
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problem, and so alleviating technical contingencies is related to the problem of power losses

minimisation. Moreover, note that the resolution of the problem affects to the precision of

the solution achieved. In this sense, if a high resolution is used, the power losses as well as

the phase voltage and current unbalanced calculated will be more accurate and realistic.

One important fact to understand is that, after the robust flexibility scheduling is applied

the unbalanced situation will be minimised by mean of the flexibility calculated.
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Figure 5.10: Max. phase current magnitude without flexibility schedule

5.4.3 Methods Comparison

For comparison purposes a stochastic version of the flexibility scheduling model is ap-

plied and a deterministic version is also presented in which there is no uncertainty. The

stochastic version of the proposed model is composed by the minimisation of the expected

value using the same objective function (5.34) subject to the same constraints (5.2)-(5.6),

(5.8)-(5.16), (5.19)-(5.20) so excluding equations (5.17) and (5.18) where the uncertainty

boxes are defined, and (5.6)-(5.7) where the uncertain variables u and z are defined.

min
x,y

∑
ω∈Ωs

πω

{∑
t∈T
∑

k∈V x
p
k,t · ξt + yp,+k,t · λt + yp,−k,t · λt

}
(5.34)

Where Ωs is the set of scenarios considered and πω is the probability of scenario ω ∈ Ωs.
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Figure 5.11: Max. phase voltage magnitude without flexibility schedule

Instead of limiting the uncertainty variables u, z to take values within uncertainty boxes,

the variables are considered as parameters, in such a way that they take values given

a certain scenario. The objective function (5.34) minimises the expected value of the

costs over the scenarios considered. Fifteen scenarios are considered for the day-ahead,

one of them corresponds to the expected value of a SARIMA forecast and the remaining

scenarios correspond to variations of the forecasted values considering different forecasting

errors. The deterministic model corresponds with the expected values for load demand of

the customers, PV injections and EV charging demand. For the operation of the proposed

flexibility scheduling model, the load demand can be forecasted using a SARIMA model

[Hyndman et al., 2018] and the smart meter measurements are collected by the smart

metering infrastructure.

SARIMA is a widely used forecasting technique that combines Seasonal Auto-Regressive

models (AR) with Moving-Average (MA) applied for non-stationary time series by using

integrated moving average. Since PEV load demand and PV generation (solar irradiation

and temperature) are not-stationary processes, this model is chosen to perform the fore-

casting [Montgomery et al., 2008]. SARIMA is an extension to ARIMA that supports the

direct modelling of the seasonal component of the time-series. SARIMA(p, d, q)(P,D,Q, s)

process at time t+ τ (τ period in the future) can be expressed as is indicated in (5.35)
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ŷt+τ = δ +

p+d∑
i=1

ϕiyt+τ−i + εt+τ −
q∑

j=1

θjεt+τ−j (5.35)

Where:

• p and seasonal P : indicate the number of autoregressive terms (i.e lags of the

stationarized series).

• d and seasonal D: indicate differencing degrees required (i.e stationarize series).

• q and seasonal Q: indicate the number of moving average terms (i.e lags of the

forecast errors).

• s: indicates seasonal length in the data.

In the above expression, δ its a constant term that depends on the mean value of the

time series δ = µy (1− ϕ0), εt is a white noise process and yt+τ is the time series that

represents the variables to be forecasted. The value of the time series forecasted in time

τ is ŷt+τ (i.e. the time series variables to be forecasted such as ambient temperature

T̃amb or solar irradiance G̃ for the stochastic programming approach). The degree of the

model (p, d, q) is defined by p, which represents the order of the auto-regressive part, d

which denotes the degree of the first differencing involved and q which denotes the order

of the moving average. The degree of the model as well as the coefficients have to be

fitted using the python-based library Stats Models [Seabold and Perktold, 2010]. The

later, is an open-.source tool widely used in statistical studies. To select the appropriate

combination of the model parameters, a grid search evaluation of SARIMA models have

been carried out using the AIC statistic (Akaike Information Criteria) as a performance

metric indicated in the expression (5.36).

AIC = 2K − 2ln(L) (5.36)

Where K is the the number of parameters of the model and L is the value of the

maximum likelihood function of the SARIMA model. The AIC statistic quantifies the

goodness of fit as well as the simplicity of the model. Between two models, the one with

the lowest AIC value is the better to be fitted [Burnham and Anderson, 2002].



5.4. CASE STUDY 175

Weather data has been collected from several weather stations in the Madrid area pro-

vided by AEMET (Agecia Estatal de Meteorologia) [Agencia Estatal de Meteorologia, 2015].

By this way the DSO will have a day-ahead scheduling flexibility tool in which the only

model parameter will be the uncertainty budget for the uncertainty variables (PV and

PEV), being more expensive the flexibility as much as uncertainty budget is configured.

5.4.4 Results

The proposed robust flexibility scheduling formulation has been applied in the case study

and results are presented in this section. The formulation has been implemented us-

ing Python as the programming language and the optimisation model is formulated as a

MINLP using the python libraries PYOMO [Hart et al., 2011] as the optimization frame-

work to define the min-max problem as well as the ROmodel [Wiebe and Misener, 2021]

and Couenne [Belotti et al., 2009] that have been used as solvers. The optimization

problem is executed in a dual-core 2.5 GHz Intel Core i5 with 16 GB RAM memory.

In Fig. 5.12 it is shown the day-ahead aggregated flexibility scheduling (in p.u.) using

different uncertainty budgets for the uncertain variables. The first observation that has

to be made is that the dashed red line indicates the flexibility scheduling considering null

uncertainty budget, which corresponds with a deterministic case (i.e. using the expected

value of the PV injections and the PEV charging showed in Fig. 5.6 and Fig. 5.8 ,

respectively). As it can be seen, this case corresponds with the lower total flexibility

cost (denoted with Z). Then, if the uncertainty budget increases, the required amount

of flexibility will increase, since there is more uncertainty to tackle in the system, i.e.

the flexibility scheduler is more conservative and request more load flexibility just in case

the realisation of the uncertain sources lead to a worse situation. This same behaviour

continues until the maximum uncertainty budget is achieved, and so the one with the

maximum flexibility cost. The solid blue line indicates the chosen flexibility scheduling

since it results in a compromise between flexibility cost and uncertainty coverage.

Note that the flexibility scheduling follows a pattern similar to the aggregated PV

injections. This is motivated by the fact that a high amount of energy is being injected in

the network, and it has to be absorbed. In Table 5.3 is shown the main comparative results
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Figure 5.12: Aggregated flexibility scheduling for the day ahead with different uncertainty

budgets

among the implemented robust formulation, the deterministic version (without robust

treatment of uncertainty sources, i.e. null uncertainty budget) and the stochastic optimal

power flow with 5 scenarios . It can be noted that total power losses by the proposed

day-ahead robust formulation results lower values compared to both deterministic and

stochastic models.
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Figure 5.13: Flexibility scheduling comparison

Consequently, customers load demand (including flexibility and PEV realisation) is
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higher in the robust model, since the flexibility provided is positive in all the time horizon

(and all the customers) and so it means an increase in the power consumption. This

increase in the power consumption can be realised in the use of some household appliances

that works as an energy storage device such as hot water devices, or by load shifting

to the hours in which the load flexibility required. In terms of computation time, the

robust proposed model requires a higher amount of time in comparison with the (simple)

stochastic model and the deterministic (with no uncertainty treatment). In Fig. 5.14 and

Fig. 5.15 are shown day-ahead maximum phase voltage and current magnitudes when

the selected robust flexibility schedule is applied.
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Figure 5.14: Max. phase voltage magnitude with flexibility schedule

Regarding the statutory limits, In Table 5.3 it is indicated the principal unbalance

network metrics after the flexibility schedule is applied. Both robust and stochastic models

provide flexibility scheduling that keep voltage below the maximum limit. As well the

maximum phase current magnitudes obtained are below the maximum limited allowed. As

it can be seen, the unbalance situation has improved respect to the situation in which no

flexibility is applied. However, the reduction in overloading’s and over-voltage’s achieved

by the robust model is higher than the stochastic and the deterministic versions.
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Figure 5.15: Maximum phase current with flexibility schedule

Table 5.3: Results comparison between robust flexibility scheduling and deterministic

power flow

Robust FS Stochastic FS Deterministic FS

Total Power Losses (kWh) 197.52 229.40 238.67

Total Energy Imp. (kWh) 264.87 332.32 316.45

Total Load Demand (kWh) 1443.78 1314.21 1352.45

Total PV Production (kWh) 1617.20 1439.75 1464.21

Total Flexibility (kWh) 240.77 228.45 189.45

Computation time (min) 674 267 6

Max. phase voltage mag. (p.u.) 1.06 1.09 1.14

Max. phase current mag. (p.u.) 0.07 0.09 0.16

FS: Flexibility Scheduling
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5.5 Discussion & Conclusions

In this chapter, it is proposed a robust flexibility scheduling for LV unbalanced smart grids

considering uncertainty in PV injections as well in PEV consumption and considering

demand response as flexibility mechanism. The objective is to minimise the economic

cost associated to the required flexibility to reduce total power losses below a certain

maximum limit and at the same time to keep the system within safe operation conditions

in terms of voltage and current limits. The model considers fully unbalance operation

of the network and model uncertainty of PV and PEV devices through a polyhedral

uncertainty sets such as the cardinality-constrained uncertainty set which provides the

worst case uncertainty realisation in one of the polyhedron vertex that represent the set.

Although a simple demand response mechanism has been presented in this chapter, it

should be noted that the main solution procedure can incorporate other aspects related

to the generation, consumption and storage of electricity in terms of flexibility such as

considering the presence of BES systems which can provide more flexibility capacity and

efficiency. Future research will address the incorporation of those devices in the network

using ARO frameworks or Stochastic-Robust optimization frameworks.

These can help DSOs for decision-making operations about the optimal number of

BES units or their optimal locations. Moreover, the proposed methodology can be used

for dispatch decisions about the required flexibility to be provided in the network to keep

system within normal operation conditions in terms of voltage, current and power losses

and improving, at the same time, the PV hosting capacity under uncertain situations.

Additionally, further refinements of the model could be the modelling of correlation

between robust sets across time and space. For instance power demand in a specific

location and time can vary in a specific interval, and this variation is correlated with the

variation of the energy prices in the same place and time.

Relevant conclusions from this work are the following:

1. Modelling uncertainty in PV generation has been proved to result in a key com-

ponent in the success of flexibility scheduling since it strongly depends on the in-

termittent behaviour of the weather conditions such as solar radiation and ambient
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temperature, as well as other aspects such as cloudy conditions, orientation or main-

tenance. The uncertainty related to PEV consumption is also fundamental but due

to the valley charging period, it has no relevant impact in network performance.

2. A data-driven uncertainty sets proposed in this work enable a customised control

of robustness in combination with the choice of the uncertainty budget. Since the

uncertainty sets depends on uncertainty budget, which defines the limits, a rigorous

exploratory data analysis of the historic time series can improve the quality of such

uncertainty sets since it will be more realistic and hence the decision-making process

will be data-driven.

3. In terms of feasibility, it is worthy to mention that the proposed framework provides

feasible and implementable solutions in unbalanced smart grids which by definition

are ill-conditioned problems.

4. Demand response results in a well convenient mechanism to leverage flexibility in

order to increase the hosting capacity of smart grids and keep the system as efficient

as possible.



Chapter 6

Conclusions

6.1 Main Conclusions

This thesis contributes to the field of power loss estimation and optimization in low-voltage

(LV) smart grids in large-scale distribution areas. To contextualize the importance of the

research, it has been necessary to explain the unbalanced nature of low voltage distribution

areas where there is a huge deployment of smart meter rollout, and there is also uncertainty

related to renewable energy generation. Main results of the thesis have been applied in two

smart grid research projects: the national project OSIRIS (Optimización de la Supervisión

Inteligente de la Red de Distribución) and the European project IDE4L (Ideal Grid For

All).

The topic of the power losses optimization through the deployment of flexibility

scheduling was examined. Particular attention was paid to the uncertainty that involves

the intermittent behavior of DERs sources. An uncertainty characterization was per-

formed to model both the demand and generation sources of uncertainty.

A comprehensive and reliable power loss estimation method for unbalanced large-scale

LV smart grids under uncertainty was proposed. The method comprises a preliminary

data preprocessing step based on PCA, a K-means++ based clustering process for the LV

feeders and a deep neural network regressor to infer the values of power loss from a set of

representative feeders. The proposed method represents a timely tool for DSOs to infer

the power loss levels in large-scale distribution areas using big data and deep learning

181
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technologies.

A robust formulation for the flexibility scheduling in unbalanced LV smart grids was

also proposed. The aim is to reduce power losses allowing, at the same time, the maximum

integration of renewable-based distributed resources and keeping the system operation

within normal conditions. This formulation model explicitly examines the uncertainty of

demand and DERs sources.

6.2 Contributions

The main contributions of this thesis are the following:

• Objective 1: Power losses estimation in unbalanced LV smart grids under uncer-

tainty conditions.

An optimization-based procedure to estimate load consumption of non-telemetered

customers.

A Markov chain-based process to estimate intra-hour load demand for data

having a low resolution and for non-telemetered customers or customers which

smart meters provide incorrect measurements.

• Objective 2: Power losses estimation in unbalanced LV smart grids in large-scale

areas with a presence of DERs.

A data mining approach to reduce a high-dimensionality dataset in smart grids

to yield a reduced set of relevant features.

A clustering process to obtain representative feeders within a large-scale dis-

tribution area of smart grids.

A deep learning-based power losses estimator for large-scale LV smart grids.

The method is formulated as a deep neural network that uses as input features

the power load demand and power generation of a set of representative feeders.

The model gives, as output, the power losses of the whole area.
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• Objective 3: Flexibility scheduling for power losses minimization in unbalanced

smart grids under uncertainty.

A robust optimization model for the flexibility scheduling optimization model

for unbalanced smart grids with distributed resources, such as PV panels and

PEV devices.

6.3 Future Work

Regarding recommendations for future research in the area of unbalanced LV smart grids

under uncertainty and with the presence of DERs, the following topics seem a natural

extension of the current study:

• Non-technical losses modeling that is based on deep-learning anomaly detection

techniques.

• Modeling the massive integration of BES systems as flexibility providers to take full

advantage of the flexibility offered by LV customers.

• Modeling the flexibility in an MV network and the distributed resources connected

to that network.

• Modeling that incorporates air conditioners, heaters and hot water devices into the

flexibility equations. Here, the constraints could include comfort temperatures and

the dwelling’s consumption.
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Table A.1: Customers power contracted and DERs ratings for the modified IEEE Euro-

pean LV test feeder [Report, 2015]

Bus Phase ppd,k µ̃u,k µ̃z,k Bus Phase ppd,k µ̃u,k µ̃z,k

1 A 5.75 1.5 3.3 29 B 8.05 1.5 3.3

2 B 4.60 2.0 2.3 30 C 6.90 2.0 2.3

3 C 5.75 2.5 3.3 31 A 5.75 1.0 3.3

4 A 5.75 1.5 3.3 32 B 5.75 2.0 2.3

5 B 8.09 1.0 3.3 33 C 4.60 2.5 3.3

6 C 5.75 2.5 3.3 34 A 4.60 3.0 3.3

7 A 5.75 3.5 2.3 35 B 8.05 2.5 2.3

8 B 5.75 2.5 3.3 36 C 9.20 1.5 2.3

9 C 5.75 1.0 3.3 37 A 5.75 1.5 3.3

10 A 5.75 1.0 2.3 38 B 8.05 2.5 3.3

11 B 4.60 1.0 6.3 39 C 9.20 2.0 2.3

12 C 5.75 2.5 3.3 40 A 4.60 3.5 3.3

13 A 4.60 2.0 3.3 41 B 4.60 3.5 3.3

14 B 5.75 1.5 3.3 42 C 4.60 4.0 3.3

15 C 6.90 2.5 3.3 43 A 8.05 1.5 3.3

16 A 8.05 1.5 3.3 44 B 5.75 2.0 3.3

17 B 9.20 2.5 3.3 45 C 5.75 1.0 3.3

18 C 5.75 1.0 3.3 46 A 4.60 2.5 3.3

19 A 5.75 1.5 3.3 47 B 9.20 2.5 2.3

20 B 6.90 3.5 3.3 48 C 4.60 1.0 3.3

21 C 8.05 3.5 3.3 49 A 5.75 2.5 3.3

22 A 5.75 4.0 3.3 50 B 4.60 1.0 3.3

23 B 5.75 2.5 3.3 51 C 5.75 3.5 3.3

24 C 6.90 2.0 3.3 52 A 4.60 3.5 3.3

25 A 8.05 3.5 3.3 53 B 8.09 4.0 3.3

26 B 9.20 2.0 3.3

27 C 4.60 2.0 3.3

28 A 4.60 2.0 3.3
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Table A.2: OSIRIS Case Study Network Data [UC3M et al., 2017]

Feeder/Phase Sending Bus (i) Receiving Bus (j) Resistance (Ω) Reactance (Ω)
1 1 2 0,0048 0,0028
1 2 3 0,0033 0,0004
1 2 4 0,0005 0,0003
1 4 5 0,0021 0,0003
1 4 6 0,0015 0,0009
1 6 7 0,0021 0,0003
1 6 8 0,0008 0,0004
1 8 9 0,0021 0,0003
1 8 10 0,0015 0,0009
1 10 11 0,0021 0,0003
1 10 12 0,0007 0,0004
1 12 13 0,0021 0,0003
1 12 14 0,0017 0,0010
1 14 15 0,0021 0,0003
1 14 16 0,0007 0,0004
1 16 17 0,0021 0,0003
1 16 18 0,0016 0,0009
1 18 19 0,0021 0,0003
1 19 20 0,0004 0,0002
1 18 21 0,0006 0,0003
1 21 22 0,0021 0,0003
1 22 23 0,0025 0,0003
1 21 24 0,0017 0,0010
1 24 25 0,0021 0,0003
1 24 26 0,0007 0,0004
1 26 27 0,0021 0,0003
1 26 28 0,0016 0,0009
1 28 29 0,0021 0,0003
1 29 30 0,0028 0,0004
1 29 31 0,0028 0,0004
1 28 32 0,0006 0,0004
1 32 33 0,0021 0,0003
1 33 34 0,0028 0,0004
1 32 35 0,0016 0,0009
1 35 36 0,0021 0,0003
1 35 37 0,0004 0,0003
1 37 38 0,0006 0,0003
1 38 39 0,0041 0,0005
1 38 40 0,0006 0,0004
1 40 41 0,0014 0,0008
1 41 42 0,0004 0,0002
1 42 43 0,0059 0,0008
1 42 44 0,0010 0,0006
1 44 45 0,0076 0,0043
1 45 46 0,00212 0,0003
1 46 47 0,0035 0,0020
2 1 48 0,0086 0,0049
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2 48 53 0,0037 0,0021
2 48 49 0,0021 0,0003
2 49 50 0,0052 0,0007
2 49 51 0,0056 0,0007
2 49 52 0,0054 0,0007
2 53 54 0,0021 0,0003
2 53 55 0,0037 0,0021
2 55 56 0,0065 0,0037
2 56 57 0,0021 0,0003
2 56 58 0,0073 0,0042
3 1 59 0,0035 0,0020
3 59 60 0,0028 0,0004
3 59 61 0,0057 0,0032
3 61 62 0,0012 0,0007
3 62 63 0,0022 0,0003
3 62 64 0,0074 0,0042
3 64 65 0,0050 0,0007
4 1 66 0,0187 0,0107
4 66 67 0,0035 0,0005
4 66 68 0,0018 0,0010
4 68 69 0,0007 0,0004
4 68 70 0,0005 0,0003
5 1 71 0,0133 0,0076
5 71 72 0,0010 0,0005
6 1 73 0,0068 0,0039
6 73 74 0,0048 0,0006
6 73 75 0,0052 0,0007
6 73 76 0,0065 0,0009
7 1 77 0,0014 0,0008
7 77 78 0,0034 0,0005
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