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Summary and main contributions

The present dissertation will focus on a certain mixed-type Hermite-Padé approximation problem
for a Nikishin system of functions, that was introduced recently in [62]. This approximation
scheme appeared in the search of discrete solutions for the Degasperis-Procesi equation and is also
connected with Cauchy biorthogonal polynomials.

In [62, Def. 1.3] the following problem was posed: Let a Nikishin system of measures
N (𝜎1, . . . , 𝜎𝑚) and its associated Nikishin system of functions (ˆ︁𝑠1,1, . . . ,ˆ︁𝑠1,𝑚) (for details see
Definition 1.15 below) be given. Then, for each 𝑛 ∈ N, there exist polynomials 𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚,
with deg 𝑎𝑛, 𝑗 ≤ 𝑛 − 1, 𝑗 = 0, 1, . . . , 𝑚 − 1, deg 𝑎𝑛,𝑚 ≤ 𝑛, not all identically equal to zero, called
multi-level (ML) Hermite-Padé polynomials that verify:

A𝑛,0 :=

[︄
𝑎𝑛,0 +

𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠1,𝑘 ]︄ ∈ O

(︃
1
𝑧𝑛+1

)︃
A𝑛, 𝑗 :=

⎡⎢⎢⎢⎢⎣(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎤⎥⎥⎥⎥⎦ ∈ O

(︃
1
𝑧

)︃
, 𝑗 = 1, . . . , 𝑚 − 1.

Here and in the sequel O (·) is as 𝑧 → ∞ along paths non tangential to the support of the measures
involved. For completeness write A𝑛,𝑚 := (−1)𝑚𝑎𝑛,𝑚.

The text has been organized as follows:

• In Chapter 1, the basic aspects of Padé and Hermite-Padé approximation are introduced. In
addition, it is discussed the historical development of the most important notions and results
related to the present dissertation. In this way, the state of the art that precedes the present
research is also given.

• In Chapter 2 it is studied a rational perturbation of the Nikishin system of functions. More
precisely, given a fixed Nikishin system N (𝜎1, . . . , 𝜎𝑚). and for each 𝑛 ∈ N, there exist
polynomials 𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚, with deg 𝑎𝑛, 𝑗 ≤ 𝑛 − 1, 𝑗 = 0, 1, . . . , 𝑚 − 1, deg 𝑎𝑛,𝑚 ≤ 𝑛,
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not all identically equal to zero that verify:

A𝑛,0 :=

[︄
𝑎𝑛,0 +

𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘 (ˆ︁𝑠1,𝑘 + 𝑟𝑘)]︄ ∈ O

(︃
1
𝑧𝑛+1

)︃
A𝑛, 𝑗 :=

⎡⎢⎢⎢⎢⎣(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎤⎥⎥⎥⎥⎦ ∈ O

(︃
1
𝑧

)︃
, 𝑗 = 1, . . . , 𝑚 − 1.

Here, 𝑟𝑘 , 𝑘 = 1, . . . , 𝑚 are rational fractions with real coefficients, 𝑟𝑘 (∞) = 0 and poles
outside supp𝜎𝑚.

This chapter has two main theorems, the first deals with the uniform convergence of the
Hermite-Padé approximants (Theorem 2.2), while the second is devoted to the limit of the
zero counting measures of the linear forms A𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚 (Theorem 2.3).

Theorem 2.2 is situated in the tradition of Stieltjes-type theorems for simultaneous approxi-
mants. One important asset to obtain convergence results for Hermite-Padé approximants is
to have a good control on the location of the zeros of the linear forms A𝑛, 𝑗 , 𝑗 = 0, 1, . . . , 𝑚.
But the introduction of the rational fractions 𝑟𝑘 in the first level A𝑛,0 provokes that certain
amount of the zeros of 𝐴𝑛, 𝑗 have a “wild” behavior. Nevertheless, it was sufficient to add
some mild restrictions on the set of poles of 𝑟𝑘’s in order to prove that only a fixed number
of zeros of A𝑛, 𝑗 , independent of 𝑛, can leave supp𝜎𝑗 . Consequently, it could be proved the
uniform convergence of the fractions 𝑎𝑛, 𝑗/𝑎𝑛,𝑚, 𝑗 = 0, 1, . . . , 𝑚 − 1. This result is a natural
generalization of [62, Th. 1.6]. An important corollary of the convergence is to know the
limit behavior of the zeros of 𝑎𝑛, 𝑗 that leave supp𝜎𝑚.

Hereafter, it is studied the multiple orthogonality relations arising from this mixed-type
Hermite-Padé approximation problem. It is well known that Hermite-Padé approximation
of Nikishin systems are strongly related to multiple orthogonal polynomials. For ML
Hermite-Padé this fact was made explicit in [32, Lemma 2.4]. Given the perturbation of the
fractions 𝑟𝑘 some orthogonalities are lost, and the associated multi-orthogonal polynomials
satisfy incomplete orthogonality relations. This difficulty was overcome and the logarithmic
asymptotic of the multiple orthogonal polynomials is given in Theorem 2.3. A fundamental
consequence of Theorem 2.3 is the precise knowledge of the rates of convergence of the
fractions 𝑎𝑛, 𝑗/𝑎𝑛,𝑚, 𝑗 = 1, . . . , 𝑚 − 1. The aforementioned theorem extends [32, Th. 3.4].

• In Chapter 3 it is studied a modification made to ML Hermite-Padé approximation problem
by V.G. Lysov in [66]. There, it was considered a problem with more freedom in the
interpolation conditions at infinity. That is, given a Nikishin system N (𝜎1, . . . , 𝜎𝑚) and
a multi-index 𝑛⃗ = (𝑛1, . . . , 𝑛𝑚) ∈ Z𝑚+ , there exist polynomials 𝑎𝑛⃗,0, 𝑎𝑛⃗,1, . . . , 𝑎𝑛⃗,𝑚, where
deg 𝑎𝑛⃗, 𝑗 ≤ |𝑛⃗| − 1, 𝑗 = 0, 1, . . . , 𝑚 − 1, and deg 𝑎𝑛⃗,𝑚 ≤ |𝑛⃗|, not all identically equal to zero,
that verify

A𝑛⃗, 𝑗 (𝑧) := ⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘𝑎𝑛⃗,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎞⎟⎠ (𝑧) = O

(︃
1

𝑧𝑛 𝑗+1+1

)︃
, 𝑧 → ∞.
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Firstly, the Markov-type theorem [66, Prop. 1.2] is extended to a wider class of measures.
Previously, V.G. Lysov only considered measures 𝜎𝑗 , 𝑗 = 1, . . . , 𝑚 supported on compact
intervals Δ 𝑗 and 𝜎′

𝑗
> 0 a.e. on Δ 𝑗 , 𝑗 = 1, . . . , 𝑚. Then, Theorem 3.2 extends Lysov’s

convergence result, because the restrictions over the measures are weaker, namely 𝜎𝑗 has
constant sign on Δ 𝑗 , 𝑗 = 1, . . . , 𝑚.

Moreover, the asymptotic result presented in [66, Cor. 1.1] is complemented in this chapter
with the study of the ratio asymptotic of the multi-orthogonal polynomials associated to
the ML Hermite-Padé approximation problem. Hence, this theorem constitutes a direct
generalization of [32, Th. 1.2].

• Chapter 4 is devoted to the study of the strong asymptotic of Cauchy biorthogonal polyno-
mials (see Theorem 4.1), which were introduced in [14]. This family of polynomials has
appeared in various applications, like in the search of discrete solutions of the Degasperis-
Procesi equation [14]. In [15, 16], the strong asymptotic for Laguerre-type weights was
studied. Here, the goal is to obtain the strong asymptotic only imposing the Szegő condition
on measures supported on compact intervals of the real line.

In order to do so, first was needed the refinement of some previous results regarding the
asymptotic of orthogonal polynomials with varying weights. In this sense, Theorems 4.2
and 4.3 are improvements of [23, Th. 4] and [95, Th. 14.3], respectively. Afterwards,
it is discussed the connection of Cauchy biorthogonal polynomials with ML Hermite-Padé
polynomials for a Nikishin system of two measures. Thanks to this link, the main tool to
prove the aforementioned asymptotic is a technique developed by A.I. Aptekarev to find
the strong asymptotic behavior of multi-orthogonal polynomials with respect to Angelesco
and Nikishin systems (see [4, 5]). Aptekarev’s method relies on topological reasoning; in
particular, the Banach and Brouwer fixed point theorems.

Though the proof of Theorem 4.1 rests on Aptekarev’s ideas, it also contains important
simplifications (see Proposition 4.9 and compare with [5, Section 2.2]) with respect to
the one given in [5], mainly thanks to Theorem 4.3. On the other hand, some weaknesses
appearing in the demonstrations in [5] are corrected, particularly during the proof of Theorem
4.15.

• Finally, in Chapter 5 some open problems for future research are given.
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Chapter

1 Introduction

{ch:intro}

Approximation theory is a wide branch of Mathematical Analysis. It borrows techniques from
other areas such as Potential Theory, Real and Complex Analysis, and Functional Analysis. It finds
applications in other areas such as Differential Equations and Number Theory. One of the goals of
the present chapter is to introduce the theoretical framework that serves as a basis for the results
discussed along the dissertation. In addition, the mathematical tools given in the following pages
are complemented with some historical remarks, in order to explain the origin and context of this
research.

1.1 Padé approximation and orthogonality

The driving force behind approximation theory is, given a certain function 𝑓 to approximate it with
another function 𝑔, which is “simpler” than 𝑓 , and such that the “difference” between them is rather
“small”. Of course, the procedure has its pros and cons, on one hand 𝑔 is easier to manipulate than
𝑓 but, on the other hand, some information about 𝑓 in necessarily lost.

We will be concerned with the approximation of functions 𝑓 : Ω ⊂ C → C, holomorphic
on an open region Ω of the complex plane C. The historical development of complex function
theory has three different schools, following ideas of A.L. Cauchy, K. Weierstrass and B. Riemann,
respectively. Curiously, the equivalence of Weierstrass’ and Cauchy’s approach is given through
Taylor’s theorem: that is, every holomorphic function (in Cauchy’s sense) 𝑓 in a neighborhood of
𝑧0 ∈ C has a convergent power series expansion (Weierstrass’ approach), i.e. 𝑓 is analytic and vice
versa. So,

𝑓 (𝑧) =
∑︁
𝑘≥0

𝑓𝑘 (𝑧 − 𝑧0)𝑘 , 𝑓𝑘 =
𝑓 (𝑘) (𝑧0)
𝑘!

. (1.1) {taylor}{taylor}

Taylor’s theorem allows to construct a sequence of polynomials that approximates 𝑓 near 𝑧0 by
truncating the series expansion after 𝑛 terms:

𝑃𝑛 (𝑧) :=
𝑛∑︁
𝑘=0

𝑓𝑘 (𝑧 − 𝑧0)𝑘 .
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It is easy to see that these polynomials can be characterized by the asymptotic formula

𝑓 (𝑧) − 𝑃𝑛 (𝑧) = O
(︂
(𝑧 − 𝑧0)𝑛+1

)︂
, 𝑧 → 𝑧0.

It can be proved, as a consequence of Cauchy’s integral formula, that 𝑃𝑛 converges uniformly to 𝑓

in closed disks {𝑧 | |𝑧 − 𝑧0 | ≤ 𝑟}, 𝑟 < 𝑅𝑧0 ( 𝑓 ) where 𝑅𝑧0 ( 𝑓 ) stands for the radius of convergence
of the series (1.1).

This technique has a drawback. As polynomials are entire functions, they are not good if the
function to be approximated has singularities. It is well known that the Taylor series is convergent
only in the disk of radius equal to the distance from 𝑧0 to the nearest singular point of 𝑓 . The
simplest functions with singularities are rational functions so, it is natural to ask: Is it possible
to construct good rational approximations to a given analytic function 𝑓 ? This question was
formulated and –answered– by Henri Padé (1863-1953) in his doctoral thesis from 1892. It is
important to remark that this idea did not come “out of nowhere”, because many mathematicians
before Padé had studied variations of the same problem; for example, C. Hermite (1822-1901), L.
Kronecker (1823-1891), or G. Frobenius (1849-1917) to name a few (see [19, Section 5.2.5], for
more information).

The problem of the representation of an analytic function by rational fractions was suggested
to Padé by his doctoral advisor, Charles Hermite. As he pointed out: “we were led to deal with this
question by a word from Mr. Hermite, collected in one of his lessons, in which he gave a glimpse
of the riches that this theory undoubtedly still conceals” [80, p. 5]. The problem studied by Padé,
in modern terminology, is stated as follows [80, p. 9].{pr:pade}

Problem 1:
Given a formal power series about 𝑧 = 0

𝑓 (𝑧) ∼
∑︁
𝑛≥0

𝑓𝑛𝑧
𝑛,

and a pair of non-negative integers (𝑛, 𝑚), find polynomials 𝑃𝑛,𝑚 and 𝑄𝑛,𝑚 such that:

i) deg 𝑃𝑛,𝑚 ≤ 𝑛, deg𝑄𝑛,𝑚 ≤ 𝑚, 𝑄𝑛,𝑚 ≢ 0,

ii) (𝑄𝑛,𝑚 𝑓 − 𝑃𝑛,𝑚) (𝑧) = O (𝑧𝑛+𝑚+1), 𝑧 → 0.

Padé proved that this problem has solution, because it is equivalent to solving a homogeneous
system of 𝑛+𝑚 + 1 linear equations on 𝑛+𝑚 + 2 unknowns, and he easily deduced that 𝑃𝑛,𝑚/𝑄𝑛,𝑚
is uniquely determined. In his honor, the fraction 𝜋𝑛,𝑚( 𝑓 ) := 𝑃𝑛,𝑚/𝑄𝑛,𝑚 is called the Padé
approximant of type (𝑚, 𝑛) of 𝑓 . The main contribution made by Padé, was the systematic and
structural study of the properties of these approximants. This endeavor was possible in large part
thanks to another tool due to the French scholar: the Padé table, which resembles Cantor’s proof
that Q is countable.

The amount of problems related to the Padé table and Padé approximants are of cyclopean
dimensions. To mention a few, there is the question of the convergence of horizontal sequences

2



of Padé approximants and the location of the singularities of the approximated function. There is
a similar problem regarding the convergence of diagonal sequences of the Padé table, particularly
for a special kind of analytic functions: the so called Cauchy transforms of measures.

Let 𝜇 be a finite positive Borel measure, whose support supp 𝜇 is contained in R and has an
infinite set of points and set Δ = Co(supp 𝜇) (the convex hull of the support of 𝜇). Further, assume
that the sequence of moments {𝑐𝑛}𝑛≥0 is such that 𝑐𝑛 =

∫
𝑥𝑛 d 𝜇(𝑥) < ∞, for all 𝑛 ∈ Z+. Denote

this class of measures as M (Δ). The Markov function or the Cauchy transform of the measure 𝜇
is defined as ˆ︁𝜇(𝑧) :=

∫
d 𝜇(𝑥)
𝑧 − 𝑥 . (1.2) {def:cauchy}{def:cauchy}

It is not difficult to check that ˆ︁𝜇 ∈ H(C \ Δ), where H(Ω) stands for the set of holomorphic
functions on the open set Ω ⊂ C. Furthermore, we can associate to ˆ︁𝜇 its formal Taylor expansion
at infinity ˆ︁𝜇(𝑧) ∼ ∑︁

𝑛≥0

𝑐𝑛

𝑧𝑛+1 .

When Δ is a half-line (that is, an interval of the form [𝑎, +∞) or (−∞, 𝑎], 𝑎 ∈ R) the function ˆ︁𝜇 is
also called Stieltjes function.

This class of analytic functions is quite interesting. Many elementary functions can be written
in terms of Cauchy transforms of measures. In addition, if complex weights are considered, a large
number of analytic functions with a finite number of algebraic singularities can be represented in
that form.

For convenience, in the particular case of Markov and Stieltjes functions, the Taylor expansion
is usually taken at ∞. So, the rational function 𝜋𝑛 (ˆ︁𝜇) = 𝑃𝑛−1/𝑄𝑛 is called the 𝑛-th diagonal Padé
approximant of ˆ︁𝜇 if the pair of polynomials (𝑃𝑛−1, 𝑄𝑛), 𝑛 ≥ 1, verifies the following conditions:

i’) deg 𝑃𝑛−1 ≤ 𝑛 − 1, deg𝑄𝑛 ≤ 𝑛 with 𝑄𝑛 ≢ 0,

ii’) (𝑄𝑛ˆ︁𝜇 − 𝑃𝑛−1) (𝑧) = O (1/𝑧𝑛+1), 𝑧 → ∞.

The sequence of denominators {𝑄𝑛}𝑛≥1 is unique if we normalize 𝑄𝑛 to be monic. It satisfies
several interesting properties. First, the polynomial 𝑄𝑛 fulfills the orthogonality relations∫

𝑥𝜈𝑄𝑛 (𝑥) d 𝜇(𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 − 1.

That is, the sequence of denominators {𝑄𝑛}𝑛≥1 coincides with the sequence {𝑄𝑛 (·; 𝜇)}𝑛≥1 of monic
orthogonal polynomials with respect to the measure 𝜇. The associated orthonormal polynomials
are determined by

𝑞𝑛 (𝑥; 𝜇) := 𝛼𝑛𝑄𝑛 (𝑥; 𝜇), 𝛼𝑛 :=
(︃∫

𝑄2
𝑛 (𝑥) d 𝜇(𝑥)

)︃−1/2
. (1.3) {def:ortnor}{def:ortnor}

Consequently, deg𝑄𝑛 = 𝑛,𝑄𝑛 has 𝑛 simple zeros inside Δ [94, Th. 3.3.1], and the zeros of𝑄𝑛 and
𝑄𝑛+1 interlace [94, Th. 3.3.3]. Moreover, the polynomials 𝑃𝑛−1 can be expressed in terms of 𝑄𝑛

𝑃𝑛−1(𝑧) =
∫

𝑄𝑛 (𝑧) −𝑄𝑛 (𝑥)
𝑧 − 𝑥 d 𝜇(𝑥). (1.4) {def:2Kind}{def:2Kind}
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Some natural questions arise. Does the sequence {𝜋𝑛}𝑛≥0 converge? If it does, what is the
limit? Can we estimate the speed of convergence?

1.2 Convergence of diagonal Padé approximants

The first two problems stated above were answered by the Russian mathematician A.A. Markov
(1856-1922) in a short article from 1895, [68]. There, Markov studied the convergence of the
continued fractions of the function given by

ˆ︁𝑓 (𝑧) :=
∫ 𝑏

𝑎

𝑓 (𝑥) d 𝑥
𝑧 − 𝑥 ,

where 𝑓 is real and positive. Due to the uniqueness of the Padé approximants, the convergents
of the continued fraction associated with ˆ︁𝑓 coincide with the sequence {𝜋𝑛}𝑛≥0. Notice that, in
modern mathematical language, Markov’s proof requires that the measure d 𝜇(𝑥) := 𝑓 (𝑥) d 𝑥 be
absolutely continuous with respect to the Lebesgue measure but, as C. Berg said in [12], this is a
consequence of the historical context and it is not essential in the proof itself. So, Markov’s result
is valid for a more general class of measures.

Before the discussion of Markov’s theorem, some identities are needed.{remain:1}

Proposition 1.1:
Let 𝜇 ∈ M (Δ), then for 𝑧 ∈ C \ Δ

ˆ︁𝜇(𝑧) − 𝑃𝑛−1(𝑧)
𝑄𝑛 (𝑧)

=

∫
𝑄𝑛 (𝑥)
𝑄𝑛 (𝑧)

d 𝜇(𝑥)
𝑧 − 𝑥 =

∫
𝑄2
𝑛 (𝑥)

𝑄2
𝑛 (𝑧)

d 𝜇(𝑥)
𝑧 − 𝑥 .

Proof. From (1.4) it is immediate that

𝑃𝑛−1(𝑧) = 𝑄𝑛 (𝑧)ˆ︁𝜇(𝑧) − ∫
𝑄𝑛 (𝑥)
𝑧 − 𝑥 d 𝜇(𝑥), (1.5){mar:1}{mar:1}

which gives the first equality. Moreover, notice that, as a consequence of orthogonality

0 =

∫
𝑄𝑛 (𝑧) −𝑄𝑛 (𝑥)

𝑧 − 𝑥 𝑄𝑛 (𝑥) d 𝜇(𝑥).

Hence,

𝑄𝑛 (𝑧)
∫

𝑄𝑛 (𝑥)
𝑧 − 𝑥 d 𝜇(𝑥) =

∫
𝑄2
𝑛 (𝑥)
𝑧 − 𝑥 d 𝜇(𝑥),

Dividing this last expression by 𝑄𝑛 (𝑧), we get∫
𝑄𝑛 (𝑥)
𝑧 − 𝑥 d 𝜇(𝑥) = 1

𝑄𝑛 (𝑧)

∫
𝑄2
𝑛 (𝑥)
𝑧 − 𝑥 d 𝜇(𝑥).

Substituting this relation in (1.5) the second equality is easily deduced.

□
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Let {𝑥𝑛,𝑖}𝑛𝑖=1 denote the roots of the polynomial 𝑄𝑛. It is very well known the existence of
positive constants {𝜆𝑛,𝑖}𝑛𝑖=1, called Christoffel coefficients, such that∫

𝑝(𝑥) d 𝜇(𝑥) =
𝑛∑︁
𝑖=1

𝜆𝑛,𝑖𝑝(𝑥𝑛,𝑖), (1.6){Gauss_Jacobi}{Gauss_Jacobi}

for every polynomial 𝑝 with deg 𝑝 ≤ 2𝑛 − 1. The Christoffel coefficients are given by

𝜆𝑛,𝑖 =

∫
𝑄𝑛 (𝑥) d 𝜇(𝑥)
𝑄 ′
𝑛 (𝑥) (𝑥 − 𝑥𝑛,𝑖)

. (1.7){Christoffel}{Christoffel}

Formula (1.6) is called Gauss-Jacobi quadrature [94, Sec. 3.4] and from it we can infer a simple
representation for the fractions 𝜋𝑛 (ˆ︁𝜇). In fact, from the simplicity of the zeros of 𝑄𝑛 the partial
fraction decomposition of 𝜋𝑛 (ˆ︁𝜇) is written as

𝜋𝑛 (ˆ︁𝜇) (𝑧) = 𝑛∑︁
𝑖=1

𝛽𝑛,𝑖

𝑧 − 𝑥𝑛,𝑖
.

Using the residue theorem

𝛽𝑛,𝑖 =Res
[︁
𝜋𝑛 (ˆ︁𝜇), 𝑥𝑛,𝑖]︁ = lim

𝑧→𝑥𝑛,𝑖
(𝑧 − 𝑥𝑛,𝑖)𝜋𝑛 (ˆ︁𝜇) (𝑧)

= lim
𝑧→𝑥𝑛,𝑖

(𝑧 − 𝑥𝑛,𝑖)
∫

𝑄𝑛 (𝑧) −𝑄𝑛 (𝑥)
𝑄𝑛 (𝑧) (𝑧 − 𝑥)

d 𝜇(𝑥) =
∫

𝑄𝑛 (𝑥) d 𝜇(𝑥)
𝑄 ′
𝑛 (𝑥𝑛,𝑖) (𝑥 − 𝑥𝑛,𝑖)

= 𝜆𝑛,𝑖 .

Therefore, we get

𝜋𝑛 (ˆ︁𝜇; 𝑧) =
𝑛∑︁
𝑖=1

𝜆𝑛,𝑖

𝑧 − 𝑥𝑛,𝑖
. (1.8) {Pade:PFD}{Pade:PFD}

Now we are in conditions to prove Markov’s theorem. In the following, we denote by ∥ · ∥𝐾 the
sup-norm on the compact set 𝐾 . {Markov}

Theorem 1.2:
Let 𝜇 ∈ M (Δ). We have

lim sup
𝑛

∥ˆ︁𝜇 − 𝜋𝑛 (ˆ︁𝜇)∥1/2𝑛
𝐾

≤ ∥Ψ−1∥𝐾 ,

where 𝐾 is a compact subset of C \ Δ and Ψ is the conformal map from C \ Δ onto the exterior of
the unit disc such that Ψ(∞) = ∞,Ψ′(∞) > 0.

Proof. First, let us prove that the family {𝜋𝑛}𝑛≥0 is normal. Fix a compact 𝐾 ⊂ C \ Δ then, by
(1.8)

|𝜋𝑛 (ˆ︁𝜇; 𝑧) | ≤
𝑛∑︁
𝑖=1

𝜆𝑛,𝑖

|𝑧 − 𝑥𝑛,𝑖 |
≤ 1
𝑑 (Δ, 𝐾) ,

where 𝑑 (Δ, 𝐾) stands for the distance between 𝐾 and Δ.

Take the level curve Γ𝜌 = {𝑧 | |Ψ(𝑧) | = 𝜌}, 1 < 𝜌 < +∞ with 𝜌 close enough to 1 so that 𝐾
lies outside Γ𝜌. On the curve Γ𝜌 we get|︁|︁Ψ2𝑛+1(𝑧) (ˆ︁𝜇 − 𝜋𝑛 (ˆ︁𝜇)) (𝑧)|︁|︁𝑧∈Γ𝜌 ≤ 𝐶 (𝜌)𝜌2𝑛+1,
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where the constant𝐶 (𝜌) is independent from 𝑛, because {𝜋𝑛 (ˆ︁𝜇)}𝑛≥0 is normal. But the analyticity
of Ψ2𝑛+1(ˆ︁𝜇 − 𝜋𝑛 (ˆ︁𝜇)) on C \ Δ allows us to use the maximum modulus principle and assure that
the bound also holds on 𝐾 . Consequently,

| (ˆ︁𝜇 − 𝜋𝑛 (ˆ︁𝜇)) (𝑧) | ≤ 𝐶 (𝜌) |︁|︁|︁|︁ 𝜌

Ψ(𝑧)

|︁|︁|︁|︁2𝑛+1
, 𝑧 ∈ 𝐾.

This is equivalent to

∥ˆ︁𝜇 − 𝜋𝑛 (ˆ︁𝜇)∥𝐾 ≤ 𝐶 (𝜌)
(︂
𝜌∥Ψ−1∥𝐾

)︂2𝑛+1
.

Therefore, for all 𝜌 sufficiently near 1,

lim sup
𝑛

∥ˆ︁𝜇 − 𝜋𝑛 (ˆ︁𝜇)∥1/2𝑛
𝐾

≤ 𝜌∥Ψ−1∥𝐾 ,

and the statement readily follows letting 𝜌 → 1.

□

Markov’s theorem is a classical result in approximation theory and, as one can expect, it can
be proved in different ways. For a proof closer to Markov’s see [94, Sec. 3.5, Th. 3.5.4]. For an
alternative proof where measure-theoretical arguments are used, see [77, Ch. 2, §6].

On the other hand, since 1895 Markov’s theorem has been profusely studied and extended in
several directions. One of the directions explored has been to obtain analogous results for measures
with “larger” support, that is with measures supported on a half-line and on all R. Here appears a
connection between orthogonal polynomials, approximation theory, and moment problems, since
Markov’s theorem is strongly linked to moment problems.

Given a positive Borel measure 𝜆 with supp𝜆 ⊂ R its sequence of moments is defined as
𝑐𝑛 =

∫
𝑥𝑛 d𝜆, 𝑛 ∈ Z+. The moment problem is, given a sequence {𝑐𝑛}𝑛≥0 of real numbers to

find, should it exist, a measure 𝜆 whose moments are {𝑐𝑛}𝑛≥0. In case the moment problem is
solvable we say that the moment problem is determinate if the solution is unique; otherwise, it is
said to be indeterminate. The classical study of moment problems has three fundamental cases:
when the support of the measure is a finite interval (Hausdorff problem); the support is a half-line
(Stieltjes problem); and when supp𝜆 = R (Hamburger problem). In each one of these cases there
are necessary and sufficient conditions for the moment problem to be solvable see, for example
[89, 46].

It is well known that every solvable Hausdorff moment problem is determinate (see [89, p. xi]).
It is a direct consequence of the Weierstrass theorem on the uniform approximation by means of
polynomials of any continuous function on a bounded interval and the Riesz representation theorem
for continuous positive linear functionals on the space of continuous functions on a compact set.

However, there are striking differences between the moment problem when supp𝜆 is bounded
and when it is not. Stieltjes and Hamburger moment problems may be indeterminate. One of
the most remarkable works on the subject was due to T.J. Stieltjes (1856-1894) in the paper [93].

6



Here, Stieltjes introduced an enormous amount of very fruitful ideas (for more information related
to the importance of Stieltjes’ work see [96]). Among other things, he proved that if the moment
problem is determinate for a measure 𝜆 supported on a half-line (let us say R+) then, the sequence
of diagonal Padé approximants converges to ˆ︁𝜆. Since for measures of bounded support the moment
problem is alway determinate, Stieltjes’ theorem implies that of Markov.

Note that the problem studied by Stieltjes has an additional difficulty with respect to Markov’s.
In this case, the function to be approximated ˆ︁𝜆 is not holomorphic at the interpolation point (𝑧 = ∞).
Moreover, the restriction imposed over the measure, i.e. that the moment problem be determinate,
naturally leads to the following question (also posed by Stieltjes). Can we give a condition on the
sequence {𝑐𝑛}𝑛≥0 so that the (Stieltjes) moment problem be determinate? A sufficient condition
was given by the Swedish mathematician T. Carleman (1892-1949) in 1926 ([21]). The so called
Carleman condition

∞∑︁
𝑛=1

𝑐
−1/2𝑛
𝑛 = ∞ (1.9) {carl:cond}{carl:cond}

implies determinacy. So, the condition (1.9) complements Stieltjes’ theorem on the convergence
of Padé approximants for the Cauchy transform of a measure supported on a half-line.

Another important extension to Markov’s theorem, following the spirit of Stieltjes, is due to
H. Hamburger (1889-1956), who obtained it as part of his doctoral dissertation and appeared in
[43]. There, the German mathematician proved that the convergence of the Padé approximants toˆ︁𝜆, when 𝜆 is supported on the real line is equivalent to the determinacy of the Hamburger moment
problem. For a modern exposition of Hamburger’s method, the interested reader can consult
[12] and references therein. In addition, for a detailed discussion of Hamburger’s solution of the
moment problem and orthogonal polynomials see [77, Ch. 2 §7]. For a more classical approach
to the Stieltjes and Hamburger moment problems and orthogonal polynomials see [34, Ch. ii].

As is common in mathematics, the interest in Padé approximants was more or less dormant
during the first half of the xx-th century. But, by the seventies they attracted much attention,
particularly from members of the Soviet mathematical school led by A.A. Gonchar (1931-2012),
who became one of the most important specialists in approximation theory, orthogonal polynomials,
and Padé approximation.

1.3 Multipoint Padé approximants and Markov’s theorem

The study of rational interpolation of functions is a mathematical problem with a long history,
and can be traced back as far as the first half of the xix-th century (see, [19, Sec. 5.2.5]). In
[7, Sec. 1.1], rational interpolants are called multipoint Padé approximants, but are also called
𝑁-point Padé approximants. However, since the 1970’s grew a renewed interest in multipoint Padé
approximation. One of the reasons to this resurgence was the link that A.A. Gonchar observed
between these type of approximants and the rate of convergence of best rational approximants to
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Markov functions associated with measures of bounded support, see [38]. This connection led
Gonchar to study the following interpolation problem for a Markov function ˆ︁𝜇 as in (1.2), with Δ

a finite interval.{pr:MPade}

Problem 2:
Let {𝑤2𝑛}𝑛∈Z+ , deg𝑤2𝑛 = 2𝑛 be a sequence of monic polynomials with real coefficients, whose
zeros {𝑥2𝑛,𝑖}2𝑛

𝑖=1 (counting multiplicities) lie in C\Δ. Find a pair of polynomials (𝑃𝑛−1, 𝑄𝑛), 𝑛 ≥ 1
such that

{MPade:1}

1. deg 𝑃𝑛−1 ≤ 𝑛 − 1 and deg𝑄𝑛 ≤ 𝑛, 𝑄𝑛 ≢ 0;
{MPade:2}

2. O

(︃
1
𝑧𝑛+1

)︃
=

(𝑄𝑛ˆ︁𝜇 − 𝑃𝑛−1) (𝑧)
𝑤2𝑛 (𝑧)

∈ H(C \ Δ).

The fraction 𝑃𝑛−1/𝑄𝑛 is called the 𝑛-th multipoint Padé approximant of ˆ︁𝜇. From condition 1
we have 2𝑛 + 1 unknowns (the coefficients of the polynomials) and from 2 we have 2𝑛 equations.
So, the existence of the pair (𝑃𝑛−1, 𝑄𝑛) is reduced to solving a homogeneous linear system of
equations and by the Rouché-Frobenius Theorem it always has a solution. If we normalize 𝑄𝑛 to
be monic the solution is unique.

Given a smooth Jordan curve Γ, surrounding Δ and {𝑥𝑛,𝑖}2𝑛
𝑖=1 lying outside of it, by the Residue

and Fubini Theorems for 𝜈 = 0, 1, . . . , 𝑛 − 1 we have [38, §2.1]

0 =

∫
Γ

(𝑄𝑛ˆ︁𝜇 − 𝑃𝑛−1) (𝑧)
𝑤2𝑛 (𝑧)

𝑧𝜈 d 𝑧 =
∫
Γ

(𝑄𝑛ˆ︁𝜇) (𝑧)
𝑤2𝑛 (𝑧)

𝑧𝜈 d 𝑧 =
∫
Γ

∫
Δ

𝑧𝜈𝑄𝑛 (𝑧)
(𝑧 − 𝑥)𝑤2𝑛 (𝑧)

d 𝜇(𝑥) d 𝑧

=

∫
Δ

∫
Γ

𝑧𝜈𝑄𝑛 (𝑧)
(𝑧 − 𝑥)𝑤2𝑛 (𝑧)

d 𝑧 d 𝜇(𝑥) =
∫
Δ

𝑥𝜈𝑄𝑛 (𝑥)
d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

.

Consequently, the polynomial 𝑄𝑛 coincides with the 𝑛-th monic orthogonal polynomial with
respect to the measure (with differential notation) d 𝜇𝑛 := d 𝜇/|𝑤2𝑛 |. In order to avoid confusion
with 𝑄𝑛 (·; 𝜇), we use the notation 𝑄𝑛 (·; 𝜇𝑛) and {𝑄𝑛 (·; 𝜇𝑛)}𝑛≥0 is the sequence of orthogonal
polynomials with respect to the varying measure d 𝜇𝑛, and the respective orthonormal polynomials
are 𝑞𝑛 := 𝜏𝑛𝑄𝑛 where

𝜏𝑛 :=
(︃∫

𝑥𝜈𝑄𝑛 (𝑥)
d 𝜇𝑛 (𝑥)
𝑤2𝑛 (𝑥)

)︃−1/2
. (1.10){normal}{normal}

This connection revealed a series of useful facts: 𝑄𝑛 (·; 𝜇𝑛) has maximal degree; all its zeros are
real, simple and lie inside Δ and the polynomials 𝑃𝑛−1(·; 𝜇𝑛) and 𝑄𝑛 (·; 𝜇𝑛) are mutually prime.

At the same time, new questions originated from Gonchar’s paper because the introduction
of orthogonal polynomials with respect to varying measures posed new difficulties in order to
extend results such as the Markov and Stieltjes theorems. Both problems were attacked by one of
his students G. López Lagomasino, in [58] and [49, 50], respectively. One can corroborate the
difficulties added by varying measures comparing the proofs of a result analogous to Proposition
1.1 for multipoint Padé approximants. The original result can be found in [58], and the present
proof is inspired by [59, Lemma 2.1].
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{remain:2}

Proposition 1.3:
Let 𝜇 ∈ M (Δ) and 𝑤2𝑛 is a monic polynomial with real coefficients whose zeros {𝑥2𝑛,𝑖}2𝑛

𝑖=1 lie
outside Δ. For the polynomials 𝑄𝑛, 𝑃𝑛−1 defined by Problem 2 we get,

ˆ︁𝜇(𝑧) − 𝑃𝑛−1(𝑧)
𝑄𝑛 (𝑧)

=
𝑤2𝑛 (𝑧)
𝑄𝑛 (𝑧)

∫
𝑄𝑛 (𝑥)
𝑧 − 𝑥

d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

=
𝑤2𝑛 (𝑧)
𝑄2
𝑛 (𝑧)

∫
𝑄2
𝑛 (𝑥)
𝑧 − 𝑥

d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

, 𝑧 ∈ C \ Δ.

Proof. Write 𝐴𝑛 (𝑧) = (𝑄𝑛ˆ︁𝜇 − 𝑃𝑛−1) (𝑧). Then,

𝐴𝑛 (𝑧) = − 𝑃𝑛−1(𝑧) +
∫

𝑄𝑛 (𝑧)
d 𝜇(𝑥)
𝑧 − 𝑥 − 𝑤2𝑛 (𝑧)

∫
𝑄𝑛 (𝑥)
𝑧 − 𝑥

d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

+ 𝑤2𝑛 (𝑧)
∫

𝑄𝑛 (𝑥)
𝑧 − 𝑥

d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

= − 𝑃𝑛−1(𝑧) +
∫

𝑤2𝑛 (𝑥)𝑄𝑛 (𝑧) − 𝑤2𝑛 (𝑧)𝑄𝑛 (𝑥)
𝑧 − 𝑥 d 𝜇(𝑥) + 𝑤2𝑛 (𝑧)

∫
𝑄𝑛 (𝑥)
𝑧 − 𝑥

d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

.

Notice that ∫
𝑤2𝑛 (𝑥)𝑄𝑛 (𝑧) − 𝑤2𝑛 (𝑧)𝑄𝑛 (𝑥)

𝑧 − 𝑥 d 𝜇(𝑥)

is a polynomial in 𝑧. Consequently,

𝐿𝑛 (𝑧) = −𝑃𝑛−1(𝑧) +
∫

𝑤2𝑛 (𝑥)𝑄𝑛 (𝑧) − 𝑤2𝑛 (𝑧)𝑄𝑛 (𝑥)
𝑧 − 𝑥 d 𝜇(𝑥)

is also a polynomial and

𝐴𝑛 (𝑧) = 𝐿𝑛 (𝑧) + 𝑤2𝑛 (𝑧)
∫

𝑄𝑛 (𝑥)
𝑧 − 𝑥

d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

= 𝑤2𝑛 (𝑧)O
(︃

1
𝑧𝑛+1

)︃
.

Necessarily, deg 𝐿𝑛 < deg𝑤2𝑛 and at the same time 𝐿𝑛 equals zero at the roots of 𝑤2𝑛. Therefore,
𝐿𝑛 ≡ 0. From this, the first equality of the statement readily follows.

The second equality is obtained by orthogonality. Note that∫
𝑄𝑛 (𝑧) −𝑄𝑛 (𝑥)

𝑥 − 𝑧 𝑄𝑛 (𝑥)
d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

= 0.

Hence,

𝑄𝑛 (𝑧)
∫

𝑄𝑛 (𝑥)
𝑥 − 𝑧

d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

=

∫
𝑄2
𝑛 (𝑥)
𝑥 − 𝑧

d 𝜇(𝑥)
𝑤2𝑛 (𝑥)

,

and the statement is immediate.

□

The Markov-type theorem proved in [49, Th. 1] is the following. {LagoMar78}

Theorem 1.4:
Let {𝑤2𝑛}𝑛≥0 be a sequence of monic polynomials with real coefficients with zeros {𝑥2𝑛,𝑖}2𝑛

𝑖=1 and
let 𝑋 = ∪𝑛≥0{𝑥2𝑛,𝑖}. If (the accumulation points of 𝑋) 𝑋 ′ ⊂ C \ Δ, then for the rational fractions
𝑃𝑛−1/𝑄𝑛 defined by Problem 2 we have

lim
𝑛

𝑃𝑛−1(𝑧)
𝑄𝑛 (𝑧)

= ˆ︁𝜇(𝑧), 𝑧 ∈ C \ Δ,

and the convergence is uniform on compact subsets 𝐾 ⊂ C \ Δ with geometric rate.
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The ideas behind [38, 58] led to the extension of the Stieltjes theorem to the case of multipoint
Padé approximants in [50]. Let 𝜇R+ be a finite Borel measure on [0,∞) and assume that the set of
zeros of the polynomial 𝑤2𝑛 are contained in (−∞, 𝑎], 𝑎 < 0. If we write

𝑐𝑛,𝑘 =

∫ ∞

0

𝑥𝑘 d 𝜇R+ (𝑥)
𝑤𝑛,𝑘+1(𝑥)

, 𝑤𝑛,𝑘+1(𝑥) =
𝑘+1∏︂
𝑖=1

(1 − 𝑥−1
2𝑛,𝑖𝑥), 𝑘 = 0, 1, . . . , 2𝑛 − 1

the extension of the Carleman-Stieltjes theorem in [50, Th. 1] says that if

lim
𝑛

2𝑛−1∑︁
𝑘=1

1
2𝑛
√
𝑐𝑛,𝑘

= ∞, (1.11){carl:gen}{carl:gen}

we get uniform convergence of 𝑃𝑛−1/𝑄𝑛 to ˆ︁𝜇R+ on compact subsets ofC\ [0,∞). It is easy to check
that if 𝜇R+ satisfies Carleman’s condition (1.9) then (1.11) holds. Therefore, for measures satisfying
Carleman’s condition the multipoint Padé approximants converge to ˆ︁𝜇R+ no matter how you choose
the points 𝑥2𝑛,𝑖 ∈ (−∞, 𝑎], 𝑎 < 0. This is mentioned as a corollary. It is also mentioned that if the
zeros 𝑥2𝑛,𝑖 verify lim𝑛

∑︁𝑛
𝑖=1(1/

√︁
|𝑥2𝑛,𝑖 |) = ∞ then (1.11) takes place for any 𝜇R+ . Therefore, an

analogue of Markov’s theorem is valid for multipoint Padé approximants as well.

Another twist in the theory of Padé approximation was given in [20], where a more general
approximation scheme was introduced.{def:pade:inc}

Definition 1.5:
Let 𝜇 ∈ M (Δ) where Δ is contained in a half line of the real axis. Fix an arbitrary 𝜅 ≥ −1.
Consider a sequence of polynomials {𝑤𝑛}𝑛∈Λ, Λ ⊂ Z+, such that deg𝑤𝑛 = 𝜅𝑛 ≤ 2𝑛 + 𝜅 + 1,
whose zeros lie in R \Δ. Let 𝑅𝑛 = 𝑝𝑛/𝑞𝑛 be a sequence of rational functions with real coefficients
satisfying the following conditions for each 𝑛 ∈ Λ:

a) deg 𝑝𝑛 ≤ 𝑛 + 𝜅, deg 𝑞𝑛 ≤ 𝑛, 𝑞𝑛 ≢ 0,

b)
𝑞𝑛ˆ︁𝜇 − 𝑝𝑛
𝑤𝑛

(𝑧) = O

(︃
1

𝑧𝑛+1−𝑙

)︃
∈ H(C \ Δ), 𝑧 → ∞, where 𝑙 ∈ Z+ is fixed.

We say that {𝑅𝑛}𝑛∈Λ is a sequence of incomplete diagonal multi-point Padé approximants of ˆ︁𝜇.
The existence of incomplete diagonal multipoint Padé approximants is always guaranteed, but

they are not necessarily unique, as it happens with “complete” multipoint Padé approximants.
For sequences of this kind of rational approximants a Stieltjes-type theorem [20, Lemma 2]
was obtained in terms of (logarithmic) capacity. We rewrite it using 1-Hausdorff content. The
proof for 1-Hausdorff content is simpler, because this concept is easier to manipulate that the
logarithmic capacity. The aforementioned result will be fundamental in the following chapters,
and we enunciate it here. First we need to introduce the notion of 1-Hausdorff convergence.{def:hausdorff}

Definition 1.6:
Let 𝐴 be a subset of C. By U (𝐴) we denote the class of all coverings of 𝐴 by at most a numerable
set of disks.

10



i) Set

ℎ(𝐴) = inf

{︄ ∞∑︁
𝑖=1

|𝑈𝑖 | | {𝑈𝑖} ∈ U (𝐴)
}︄
,

where |𝑈𝑖 | stands for the radius of the disk𝑈𝑖 . The quantity ℎ(𝐴) is called the 1-dimensional
Hausdorff content of the set 𝐴.

ii) Let {𝜙𝑛}𝑛∈N be a sequence of complex-valued functions defined on a region 𝐷 ⊂ C and 𝜙
another function defined on 𝐷 (the value ∞ is permitted). We say that {𝜙𝑛}𝑛∈N converges in
Hausdorff content to the function 𝜙 inside 𝐷 if for each compact subset 𝐾 of 𝐷 and for each
𝜖 > 0, we have

lim
𝑛
ℎ{𝑧 ∈ 𝐾 | |𝜙𝑛 (𝑧) − 𝜙(𝑧) | > 𝜖} = 0

(by convention ∞±∞ = ∞). We denote this writing ℎ − lim𝑛 𝜙𝑛 = 𝜙 inside 𝐷.

Following, we have the Stieltjes-type result for incomplete diagonal multi-point Padé approxi-
mants. {lm:pade:incom}

Lemma 1.7:
Let 𝜇 ∈ M (Δ) be given, where Δ is contained in a half line. Assume that {𝑅𝑛}𝑛∈Λ, Λ ⊂ N satisfies
a)-b) in Definition 1.5 and either the number of zeros of 𝑤𝑛 lying on a bounded segment of R \ Δ
tends to infinity as 𝑛→ ∞, 𝑛 ∈ Λ or 𝜇 satisfies Carleman’s condition (1.9). Then

ℎ − lim
𝑛∈Λ

𝑅𝑛 = ˆ︁𝜇, inside C \ Δ.

1.3.1 Markov-type theorems for meromorphic functions

A central problem in the study of Padé approximants is its convergence to meromorphic functions.
Again, these questions can be studied with diagonal or horizontal sequences of the Padé table.
A very well known result on the convergence of horizontal sequences is Montessus de Ballore’s
theorem (see [72]), and it served as a starting point to further research in this topic. The convergence
of diagonal sequences of Padé approximants of meromorphic functions presented new challenges.
The first theorems on the convergence of diagonal (or near diagonal) sequences in measure or
capacity were obtained by J. Nuttal [78] and C. Pommerenke [81], respectively.

This problem attracted the attention of A.A. Gonchar, and in [36] solved it for a wide class
of meromorphic functions. He considered functions of the form 𝑓 = ˆ︁𝜇 + 𝑟 where 𝑟 is a rational
function with poles outside Δ = Co(supp 𝜇) and 𝑟 (∞) = 0. Then, if Δ is a real finite interval and
the sequence {𝑞𝑛}𝑛≥0 of orthonormal polynomials with respect to 𝜇 has ratio asymptotic

lim
𝑛→∞

𝑞𝑛+1(𝑧)
𝑞𝑛 (𝑧)

= Ψ(𝑧) (1.12) {ratio}{ratio}

uniformly on compact subsets of C \ Δ, we get

lim
𝑛
𝜋𝑛 ( 𝑓 ) (𝑧) = 𝑓 (𝑧) = ˆ︁𝜇(𝑧) + 𝑟 (𝑧), (1.13) {markov:rat}{markov:rat}
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where the convergence is uniform on compact subsets of the region C \ (Δ ∪ [𝑟 (𝑧) = ∞]) (with
the poles of 𝑟 deleted). To rightly assess Gonchar’s contribution we must comment one of the
difficulties he encountered to obtain (1.13). The “perturbation” introduced by the rational fraction
𝑟 makes it possible that some (or even all) zeros of 𝑄𝑛, i.e. the poles of 𝜋𝑛 ( 𝑓 ), abandon Δ. Hence,
the location of these “wild” zeros becomes a major question. He was able to tackle the problem
with sophisticated asymptotic relations and bounds, and he proved that each pole of 𝑟 attracts as
many zeros of 𝑄𝑛 as its multiplicity, and the remaining zeros accumulate on Δ. Gonchar’s proof
was later simplified in [56] thanks to a lemma proved by Gonchar in [37], which predates [36], but
not used there (!). Gonchar’s lemma allows to locate poles of Padé approximants of meromorphic
functions and, in addition, also serves to deduce uniform convergence from a weaker type of
convergence. This result is part of our theoretical background, so we will state it here.{lm:gonchar}

Lemma 1.8 (A.A. Gonchar):
Assume that ℎ − lim

𝑛
𝜙𝑛 = 𝜙 inside a region Ω.

i) If 𝜙𝑛 ∈ H(Ω) for all 𝑛, then
lim
𝑛
𝜙𝑛 = 𝜙, 𝐾 ⊂ Ω,

uniformly on compact subset 𝐾 ⊂ Ω and 𝜙 ∈ H(Ω) (more precisely, 𝜙 differs from a certain
𝜙0 ∈ H(Ω) at most on a set 𝐸 of null 1-Hausdorff content).

ii) If for all 𝑛 ∈ N, 𝜙𝑛 ∈ M𝑚(Ω) –the class of all meromorphic functions in Ω with at most 𝑚
poles counting multiplicity– then 𝜙 ∈ M𝑚(Ω).

iii) If for all 𝑛 ∈ N, 𝜙𝑛 ∈ M𝑚(Ω) and 𝜙 has exactly 𝑚 poles in Ω, then there exists 𝑛0 ∈ N such
that for all 𝑛 > 𝑛0 each 𝜙𝑛 has exactly 𝑚 poles in Ω. Moreover, if 𝜁 is a pole of 𝜙 of order
𝜈, then for each 𝜖 > 0 sufficiently small there exists 𝑛0(𝜁) such that for all 𝑛 > 𝑛0(𝜁) the
functions 𝜙𝑛 have exactly 𝜈 poles in the disk {𝑧 : |𝑧 − 𝜁 | < 𝜖}. We express this saying that the
poles of 𝜙𝑛 converge as 𝑛→ ∞ to the poles of 𝜙 in Ω according to their order. Finally,

lim
𝑛
𝜙𝑛 = 𝜙, 𝐾 ⊂ Ω′,

where Ω′ is the region obtained deleting from Ω the poles of 𝜙.

In [36], in order to guarantee that the sequence of orthonormal polynomials of 𝜇 verifies (1.12),
A.A. Gonchar imposed the Szegő condition∫ 𝑏

𝑎

ln 𝜇′(𝑥) d 𝑥√︁
(𝑏 − 𝑥) (𝑥 − 𝑎)

> −∞, Δ = [𝑎, 𝑏], (1.14){szego:cond}{szego:cond}

which implies the so called strong asymptotic of the sequence of orthonormal polynomials, see
[94, Th. 12.1.2]. However, as the author underlines, only (1.12) is used in the proof.

A natural problem was to find a condition weaker than Szegő’s which implied (1.12). A student
of Gonchar, E.A. Rakhmanov asserted in [83] that it was sufficient to require 𝜇′ > 0 a.e. in Δ,
where 𝜇′ stands for the Radon-Nikodym derivative of 𝜇 with respect to the Lebesgue measure.
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However, A. Maté and P. Nevai observed in [69] that there was a gap in Rakhmanov’s proof due to
a typo in formula (xiii. 10) of [35]. E.A. Rakhmanov removed the gap in [84]. Simplified proofs
of Rakhmanov’s theorem may be found in [85, 74].

In a separate paper, E.A. Rakhmanov showed in [82] that if the fraction 𝑟 has real coefficients
then, (1.13) can be obtained for arbitrary positive Borel measures supported on Δ (for multipoint
Padé approximants see [51]). In the same paper, he also showed that if 𝑟 has complex coefficients
the Padé approximants may fail to converge uniformly in C \ Δ with the poles of 𝑟 deleted, even
for very simple measures supported on two disjoint intervals of R. That is, in the complex case it
is mandatory to impose additional restrictions on the measure 𝜇.

The study of meromorphic functions of the form ˆ︁𝜇 + 𝑟 for measures supported in R+ was done
by G. López Lagomasino in two different papers. The first one (see [52]), dealt with the case of
rational fractions 𝑟 with real coefficients, poles outside the positive half-line, and 𝑟 (∞) = 0, while
the moments of the measure satisfy Carleman’s condition. If this extension of Gonchar’s result on
diagonal sequences of Padé approximants of Markov-type meromorphic functions appeared shortly
after Gonchar’s, the case of 𝑟 with complex coefficients appeared much later. The main reason
was that for measures with unbounded support the orthogonal polynomials do not verify ratio
asymptotic. It was necessary to translate the problem to one with orthogonal polynomials with
respect to varying measures with bounded support and extend for such sequences of orthogonal
polynomials Rakhmanov’s theorem on ratio asymptotic. The problem was finally settled in [56]
under the additional assumption, apart from Carleman’s condition, that 𝜇′ > 0 a.e. on R+.

As a final remark to the present section, we emphasize that the results obtained in [36, 82, 52, 56]
as extensions of the Markov and Stieltjes theorems show the importance of the study of the
asymptotic properties of orthogonal polynomials, with particular interest in orthogonal polynomials
with varying measures. They allow not only to estimate the rate of convergence, but also to prove
the convergence of Padé and multipoint Padé approximants in certain classes of meromorphic
functions.

1.4 Asymptotic of orthogonal polynomials

The study of the asymptotic properties of orthogonal polynomials, is a wide field where several
branches of mathematical analysis meet. Since the first decades of the xx-th century, this has been
a subject that has drawn a lot of attention, and rivers of ink have flowed around it. It is sufficient to
take a look at the extensive literature dedicated to orthogonal polynomials with respect to a “fixed”
measures and to “varying” measures see, for example, [98, 95], [77, Ch. 3] and [64, 79].

To fix ideas, let us recall that we are dealing, in general, with measures 𝜇 ∈ M (Δ), where
Δ = Co(supp 𝜇) ⊂ R with the additional assumption that Δ is compact. The analysis of the
asymptotic of “general” orthogonal polynomials is divided into the exterior asymptotic and the
interior asymptotic. The latter studies the sequence of orthogonal polynomials {𝑄𝑛}𝑛≥0 for 𝑥 ∈ Δ
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with respect to certain norm, usually 𝐿2(𝜇,Δ); and the former captures the behavior of {𝑄𝑛}𝑛≥0

in C \ Δ. Furthermore, exterior asymptotic can be divided into three types, each one imposing
different restrictions on the measure:

(L) Weak or logarithmic asymptotic. Here the sequence {|𝑄𝑛 (𝑧) |1/𝑛}𝑛≥0 is studied. It is also
known as 𝑛-th root asymptotic.

(R) Ratio asymptotic. The sequence under consideration is {𝑄𝑛+1/𝑄𝑛}𝑛≥0.

(S) Strong or Szegő asymptotic. The interest is focused on {𝑄𝑛/Φ𝑛}𝑛≥0 where Φ is a certain
analytic function on C \ Δ.

It is well known and easy to verify that

(S) ⇒ (R) ⇒ (L) and (L)⇏ (R)⇏ (S).

We will start by discussing an analytic function which plays a central role in the study of strong
asymptotic and some developments of this dissertation. Then, we are going to review the main
results related to the exterior asymptotic of orthogonal polynomials.

1.4.1 Szegő function
{Szego:fun}

Let Δ be a compact interval of R and 𝜇 a measure such that supp 𝜇 ⊂ Δ. If 𝜇 satisfies Szegő’s
condition: ∫

Δ

ln 𝜇′(𝑥) d 𝜂Δ(𝑥) > −∞, (1.15){szeg:cond}{szeg:cond}

we write 𝜇 ∈ S (Δ), where 𝜇′ denotes the Radon-Nikodym derivative of 𝜇 with respect to the
Lebesgue measure and

d 𝜂Δ(𝑥) :=
d 𝑥√︁

(𝑥 − 𝑎) (𝑏 − 𝑥)
(1.16){df:cheb}{df:cheb}

stands for the Chebyshev measure on the interval Δ = [𝑎, 𝑏].

Let 𝜇 ∈ S ( [−1, 1]). On the unit circle T, a symmetric measure 𝜎 can be defined such that
𝜎(𝐵) = 𝜇(𝐵∗) whenever 𝐵 is a Borel set contained either in the upper or lower half of the unit
circle and 𝐵∗ is its orthogonal projection on [−1, 1]. It readily follows that

𝜎′(𝑒𝑖𝑡 ) = | sin 𝑡 | 𝜇′(cos 𝑡), 𝑡 ∈ [0, 2𝜋]

where 𝜎′ and 𝜇′ denote the Radon-Nikodym derivatives of 𝜎 and 𝜇 with respect to the Lebesgue
measure on T and [−1, 1], respectively. If 𝜁 = 𝑒𝑖𝑡 and 𝑥 = Re(𝜁) = cos 𝑡, we can also write

𝜎′(𝜁) =
√︁

1 − 𝑥2 𝜇′(𝑥), 𝜁 ∈ T, 𝑥 = Re(𝜁).

Let
S(𝜎, 𝑧) := exp

[︃
1

4𝜋

∫
T

𝜁 + 𝑧
𝜁 − 𝑧 ln𝜎′(𝜁) | d 𝜁 |

]︃
,

14



be the (standard) Szegő function associated with the measure 𝜎. Note that if 𝜇 satisfies the Szegő
condition on [−1, 1] then

∫
T

ln𝜎′(𝜁) | d 𝜁 | > −∞; that is, 𝜎 verifies Szegő’s condition on T (and
vice versa).

In general, when supp 𝜇 = Δ = [𝑎, 𝑏] (not necessarily [−1, 1]), we define 𝜎 as it was done
before out of the measure ˜︁𝜇 supported on [−1, 1] such that ˜︁𝜇(𝐵) = 𝜇({𝑥 ∈ [𝑎, 𝑏] : 2

𝑏−𝑎

(︂
𝑥 − 𝑏+𝑎

2

)︂
∈

𝐵}), for every Borel set 𝐵 ⊂ [−1, 1]. In this case

𝜎′(𝑒𝑖𝑡 ) =
√︁
(𝑏 − 𝑥) (𝑥 − 𝑎)𝜇′(𝑥), 𝑥 =

𝑏 − 𝑎
2

cos 𝑡 + 𝑏 + 𝑎
2

.

We wish to define a Szegő function G(𝜇, ·) with respect to the measure 𝜇 so that

G(𝜇, 𝑢) = S(𝜎,Ψ(𝑢)), 𝑢 ∈ C \ Δ,

where Ψ is the conformal map defined previously. Then, from known properties of the Szegő
function for measures on the unit circle, we have

lim
𝑢→𝑥

|G(𝜇, 𝑢) |2 = lim
𝑢→𝑥

|S(𝜎,Ψ(𝑢)) |2 = 1/𝜎′(𝜁) = (
√︁
(𝑏 − 𝑥) (𝑥 − 𝑎) 𝜇′(𝑥))−1, a.e. on Δ,

(1.17) {Glimit}{Glimit}

where 𝜁 = Ψ(𝑥) (Ψ can be extended continuously to Δ as usual assuming that the interval has two
sides and since 𝜎 is symmetric with respect to the real line we can take 𝜁 either on the upper half
or the lower half of T). Straightforward calculations show that the explicit expression of G(𝜇, 𝑢)
(the Szegő function for 𝜇 supported on Δ) is

G(𝜇, 𝑢) := exp

[︄√︁
(𝑢 − 𝑏) (𝑢 − 𝑎)

2𝜋

∫
Δ

ln(
√︁
(𝑏 − 𝑥) (𝑥 − 𝑎) 𝜇′(𝑥))

𝑥 − 𝑢 d 𝜂Δ(𝑥)
]︄
. (1.18) {green}{green}

The square root outside the integral is taken to be positive for 𝑢 > 𝑏 and those inside the integral
are positive when 𝑥 ∈ (𝑎, 𝑏).

The property stated in (1.17) also serves to characterize the Szegő function associated with a
measure 𝜇 ∈ S (Δ) by a boundary value problem. This is, given 𝜇 ∈ S (Δ) find a holomorphic
function 𝑔 in C \ Δ such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑔(𝑢) ≠ 0 for 𝑢 ∈ C \ Δ;

𝑔(∞) > 0;

lim𝑢→𝑥 |𝑔(𝑢) |2 = (
√︁
(𝑏 − 𝑥) (𝑥 − 𝑎) 𝜇′(𝑥))−1, a.e. on Δ.

(1.19) {szego:BVP}{szego:BVP}

This problem has as solution 𝑔(𝑢) = G(𝜇, 𝑢) (for an expanded exposition see [94, Ch.xvi]).

When ℎ is a function on Δ such that ln ℎ is integrable with respect to d 𝜂Δ(𝑥) we also write

G(ℎ, 𝑢) = exp

[︄√︁
(𝑢 − 𝑏) (𝑢 − 𝑎)

2𝜋

∫
Δ

ln ℎ(𝑥)
𝑥 − 𝑢 d 𝜂Δ(𝑥)

]︄
, 𝑢 ∈ C \ Δ.

These functions are related with outer functions (see [87, Def. 17.14]) whose analytical represen-
tation is

𝑔(ℎ, 𝑢) = 𝑐 exp

[︄√︁
(𝑢 − 𝑏) (𝑢 − 𝑎)

𝜋

∫
Δ

ln ℎ(𝑥)
𝑥 − 𝑢 d 𝜂Δ(𝑥)

]︄
, 𝑢 ∈ C \ Δ,
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where |𝑐 | = 1.

Notice that in the definition of the Szegő function (which squared is an outer function) with
respect to a measure 𝜇 we do not take the Radon-Nikodym derivative 𝜇′ of 𝜇 with respect to the
Lebesgue measure d 𝑥 but instead with respect to d 𝜂Δ(𝑥) which is precisely

√︁
(𝑏 − 𝑥) (𝑥 − 𝑎)𝜇′(𝑥).

1.4.2 Asymptotic

The study of the strong asymptotic of general orthogonal polynomials was initiated by G. Szegő
(1895-1985) and S. Bernstein (1880-1968), although results in this direction were obtained earlier
for classical orthogonal polynomials. Anyway, the work of Szegő has a remarkable generality and
an intrinsic beauty due to the elegance of his arguments. The core of Szegő’s method is to study
the orthogonal polynomials on the unit circle instead of Δ, and using the tools from Hardy space
theory he was able to obtain the strong asymptotic of these kind of polynomials. Afterwards, with
a very clever ploy he established a direct connection between orthogonal polynomials on a real
interval and orthogonal polynomials on the unit circle. Nowadays [94, Ch. xi, Ch. xii] is still a
basic reference on the subject, that can be complemented and expanded with [90].

With the previous discussion we are in condition to state Szegő’s theorem on the strong
asymptotic of orthogonal polynomials (see [94, Th. 12.1.2]).{szeg:th}

Theorem 1.9 (Szegő):
Let 𝜇 ∈ S (Δ) and {𝑞𝑛 (·, 𝜇)}𝑛≥0 the sequence of orthonormal polynomials with respect to 𝜇 (see
(1.3)). Moreover, let G be defined as in (1.18) and Ψ be the conformal map from C \ Δ onto
{|𝑧 | > 1} with Ψ(∞) = ∞ and Ψ′(∞) > 0. Then,

lim
𝑛

𝑞𝑛 (𝑧; 𝜇)
Ψ𝑛 (𝑧) =

1
√

2𝜋
G(𝑧, 𝜇), 𝑧 ∈ C \ Δ

where the limit is uniform on compact subsets of C \ Δ. In addition,

lim
𝑛
𝛼𝑛 cap𝑛 (Δ) = 1

√
2𝜋

G(∞, 𝜇),

where cap(Δ) = 1/Ψ′(∞) denotes the logarithmic capacity of Δ and 𝛼𝑛 is the leading coefficient
of 𝑞𝑛.

Later, L.Ya. Geronimus (1898-1984) established an equivalence between the existence of
asymptotic formulas as the ones in Theorem 1.9 and Szegő’s condition (see [35, Th. 9.2]). This
is, if a subsequence of {𝛼𝑛 cap𝑛 (Δ)}𝑛≥0 is bounded above or, for some 𝑧 ∈ C \ Δ a subsequence
of {𝑞𝑛 (𝑧; 𝜇)/Ψ𝑛 (𝑧)} is bounded, then (1.15) must hold. Although the statement of Theorem 1.9 is
given for general measures in the class S (Δ), Szegő originally proved it for absolutely continuous
measures, A.N. Kolmogorov (1903-1987) and M.G. Krein (1907-1989) obtained it for more general
measures. Furthermore, a general treatment can be found in G. Freud’s book ([34, §v.2]), though
Szegő’s theorem is relatively hidden.
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A research as complete as Szegő’s was published by H. Widom (1932-2021) in a lengthy article
from 1969, [99]. There, he studied sequences of orthogonal polynomials on a system of Jordan
curves and arcs, among other related subjects as extremal polynomials. One of the problems
Widom overcame was the multi-valuedness of the functions appearing in the asymptotic formulas,
using powerful techniques from complex analysis and potential theory.

According to [64], it seems that P. Erdős (1913-1996) and P. Turán (1910-1976) were the first
interested in the study of the 𝑛-th root asymptotic and the zero distribution of general orthogonal
polynomials, while they were researching the convergence of Lagrange interpolation ([27]). The
Hungarian mathematicians proved that given a measure 𝜇 verifying the so called Erdős-Turán
condition, i.e., 𝜇′ > 0 a.e. on Δ, then

lim
𝑛

|𝑞𝑛 (𝑧; 𝜇) |1/𝑛 = |Ψ(𝑧) |, 𝑧 ∈ C \ Δ, (1.20) {eq:root}{eq:root}

where the convergence is uniform on compact subsets of C \ Δ, and

lim
𝑛
𝛼

1/𝑛
𝑛 =

1
cap(Δ) .

An interesting consequence of Erdős-Turán’s result is the following. Let 𝛿𝑥 denote Dirac’s delta at
𝑥, and {𝑥𝑛, 𝑗}𝑛𝑗=1 the zeros of the polynomial 𝑄𝑛 (𝑧, 𝜇). Define the 𝑛-th zero counting measure:

𝜇𝑛 :=
1
𝑛

𝑛∑︁
𝑗=1
𝛿𝑥𝑛, 𝑗 . (1.21) {def:zero_count}{def:zero_count}

Then,

∗ − lim
𝑛
𝜇𝑛 =

1
𝜋

d 𝑥√︁
(𝑥 − 𝑎) (𝑏 − 𝑥)

where the convergence is considered in the weak-* topology of measures. This is, the asymptotic
zero distribution converges to the unitary Chebyshev measure, independently of the measure 𝜇.

Much research has been done related to logarithmic asymptotic, we suggest the general survey
[64] and references therein, as well as the monograph [92]. In particular, the latter introduced an
important notion in the study of the logarithmic asymptotic of orthogonal polynomials: the regular
(𝑛-th root) asymptotic behavior. Taking into account [92, Th. 3.1.1] and [92, Def. 3.1.2], we give
the following definition. {Reg}

Definition 1.10:
Let 𝜇 be a finite positive Borel measure with compact support. Let 𝛼𝑛 be as in (1.3). We say that
𝜇 is regular, and write 𝜇 ∈ Reg, if

lim
𝑛
𝛼

1/𝑛
𝑛 =

1
cap(supp 𝜇) .

In [92] it is proved that when 𝜇 ∈ Reg then the sequence {𝑞𝑛}𝑛≥0 of orthonormal polynomials
with respect to 𝜇 have what is called regular 𝑛-th root asymptotic behavior (this is a formula similar
to (1.20) with an appropriate right hand side).
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It is curious that strong and 𝑛-th root asymptotic attracted so much attention in the first half of
the xx-th century while no one showed interest for ratio asymptotic, at least as far as the known
literature is concerned. According to [64], P. Nevai (1948-) was the first to look at this type of
asymptotic, though he was primarily interested in the behavior of the coefficients of the recurrence
relation associated with the sequence of orthogonal polynomials. Recall that if {𝑞𝑛 (·, 𝜇)}𝑛≥0 is
the sequence of orthonormal polynomials associated with 𝜇, then

𝑥𝑞𝑛 (𝑥) = 𝐴𝑛+1𝑞𝑛+1(𝑥) + 𝐵𝑛𝑞𝑛 (𝑥) + 𝐴𝑛𝑞𝑛−1(𝑥), 𝑛 = 1, 2, . . . ,

where 𝐴𝑛 > 0 and 𝐵𝑛 ∈ R. In the book [73] P. Nevai introduced what is known today as the Nevai
class. It is said that 𝜇 is in the Nevai class M (𝐴, 𝐵) if

lim
𝑛
𝐴𝑛 = 𝐴 > 0, lim

𝑛
𝐵𝑛 = 𝐵.

Nevai was able to prove that if 𝜇 ∈ M (𝐴, 𝐵) then supp 𝜇 equals an interval Δ = [𝐵 − 2𝐴, 𝐵 + 2𝐴]
plus a denumerable set of isolated points in R \ Δ. Additionally,

lim
𝑛

𝑞𝑛+1(𝑧, 𝜇)
𝑞𝑛 (𝑧, 𝜇)

= Ψ(𝑧), 𝑧 ∈ C \ supp(𝜇) (1.22){nevai}{nevai}

uniformly on compact subsets of C \ supp(𝜇) and Ψ is the conformal map from C \ Δ onto the
complement of the unit disk defined above. Moreover, if (1.22) is verified pointwise for {𝑧𝑚}𝑚≥0

with 𝑧𝑚 −→
𝑚

∞, then the measure 𝜇 is in the Nevai class.

As was mentioned earlier in the analysis of Gonchar’s extension of Markov’s Theorem, E.A.
Rakhmanov proved that the Erdős-Turán condition implies ratio asymptotic and, therefore, such
measures belong to the Nevai class.

1.5 Asymptotic for varying measures
{subsection1.5}

The interesting properties and many applications of orthogonal polynomials with respect to varying
measures revealed by the research of A.A. Gonchar and his circle of collaborators, worked as a
catalytic to the study of the asymptotic properties of these polynomial sequences.

It seems that the path was opened in [40] (originally published in Russian in 1984), a seminal
research that definitely linked the weak asymptotic as well as the asymptotic zero distribution
of orthogonal polynomials with potential theory. Before continuing we need to introduce some
potential theoretic notions. The main references for potential theory and its connection with
approximation theory are [77, 86, 88].

Let M1(𝐾) be the class of all unitary positive Borel measures such that supp 𝜇 ⊂ 𝐾 , where 𝐾
is a compact subset of C. The (logarithmic) potential of the measure 𝜇 is defined by

𝑉 𝜇 (𝑧) :=
∫

ln
1

|𝑡 − 𝑧 | d 𝜇(𝑡), 𝑧 ∈ C.
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It is well known that 𝑉 𝜇 is superharmonic on C and subharmonic on C \ supp 𝜇. The energy of the
measure is given by

𝐼 (𝜇) :=
∫
𝑉 𝜇 (𝑧) d 𝜇(𝑧) =

∬
ln

1
|𝑡 − 𝑧 | d 𝜇(𝑡) d 𝜇(𝑧).

Let 𝐾 be a compact subset of the complex plane and consider the class M1(𝐾). Define the
Robin’s constant of 𝐾 as

𝐼 (𝐾) := inf{𝐼 (𝜇) | 𝜇 ∈ M1(𝐾)},

and the logarithmic capacity of the compact 𝐾 by

cap(𝐾) := exp(−𝐼 (𝐾)).

If a compact 𝐾 ⊂ C verifies cap(𝐾) > 0 then, there exist a unique measure 𝜇 ∈ M1(𝐾) such that
𝐼 (𝜇) = 𝐼 (𝐾), and this measure is called the equilibrium measure of 𝐾 (see [86, Th. 3.7.6]).

A very important result in potential theory is O. Frostman’s (1907-1977) theorem, also known
as the fundamental theorem of potential theory, which describes the behavior of the equilibrium
measure’s potential. {frostman}

Theorem 1.11 (Frostman):
Let 𝐾 ⊂ C be compact with cap(𝐾) > 0. Then, there exists a unique measure 𝜆 ∈ M1(𝐾) and a
constant 𝛾 such that

𝑉𝜆(𝑧)
⎧⎪⎪⎨⎪⎪⎩
≤ 𝛾 𝑧 ∈ C

= 𝛾 𝑧 ∈ 𝐾 \ 𝐴,
(1.23)

where 𝐴 is a Borel set with cap(𝐴) = 0. Moreover, 𝜆 = 𝜇 and 𝛾 = 𝐼 (𝜇).

Potential theoretic considerations found fruitful applications in the study of orthogonal poly-
nomials, see for example [92]. In particular, it was proved that if 𝜇 ∈ Reg and 𝜇 is supported on
the real line, then

lim
𝑛

|𝑄𝑛 (𝑧; 𝜇) |1/𝑛 = 𝑒−𝑉
𝜆 (𝑧) ,

uniformly on compact subsets ofC\Δ, where 𝜆 is the equilibrium measure of supp 𝜇 and Δ denotes
the smallest interval which contains supp 𝜇. This result is the potential theoretic reformulation of
(1.20).

The appearance of varying measures was a call to look for new techniques in order to obtain
asymptotic results for its associated orthogonal polynomials. Gonchar and Rakhmanov’s research
revived the study of potentials with external fields. Fix a compact 𝐸 ⊂ R, by an external field
acting on 𝐸 we mean a continuous function 𝜑 : 𝐸 → R. In [40], without a detailed proof, the
following result was stated. {lm:extfield}

Lemma 1.12:
Let 𝐸 ⊂ R be a regular compact set (with respect to the Dirichlet problem) and 𝜑 a continuous
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function on 𝐸 . Then, there exists a unique measure 𝜆 ∈ M1(𝐸) and a constant 𝛾 such that

(𝑉𝜆 + 𝜑) (𝑧)
⎧⎪⎪⎨⎪⎪⎩
≤ 𝛾, 𝑧 ∈ supp𝜆

≥ 𝛾, 𝑧 ∈ 𝐸
.

A detailed proof (with a slightly more general formulation) can be found in [88, Th. i.1.3].
Notice that if 𝜑 ≡ 0, Lemma 1.12 reduces to Theorem 1.11. From Lemma 1.12, Gonchar and
Rakhmanov were able to obtain the 𝑛-th root asymptotic for orthogonal polynomials with varying
measures, in a more general setting than the one associated to multipoint Padé approximation,
assuming that 𝜇′ > 0 a.e. on the interval of orthogonality. A more relaxed version of the result
was published in [92, Th. 3.3.3], but it does not cover the class of external fields we need in the
present dissertation. The extension we need appeared in [33, Lemma 4.2].{th:vw:lasym}

Lemma 1.13:
Assume that 𝜇 ∈ Reg and supp 𝜇 ⊂ R is regular. Let {𝜑𝑛}𝑛∈Λ⊂Z+ be a sequence of positive
continuous functions on supp 𝜇 such that

lim
𝑛∈Λ

1
2𝑛

ln
1

𝜑𝑛 (𝑥)
= 𝜑(𝑥) > −∞, (1.24){th:vw:lasym_1}{th:vw:lasym_1}

uniformly on supp 𝜇. Let {𝑞𝑛}𝑛∈Λ be a sequence of monic polynomials such that deg 𝑞𝑛 = 𝑛 and∫
𝑥𝜈𝑞𝑛 (𝑥)𝜑𝑛 (𝑥) d 𝜇(𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 − 1.

Then
∗ − lim

𝑛∈Λ
𝜇𝑞𝑛 = 𝜆, (1.25){th:vw:lasym_2}{th:vw:lasym_2}

and

lim
𝑛∈Λ

(︃∫
|𝑞𝑛 (𝑥) |2𝜑𝑛 (𝑥) d 𝜇(𝑥)

)︃1/2𝑛
= 𝑒−𝛾 , (1.26){th:vw:lasym_3}{th:vw:lasym_3}

where 𝜆 and 𝛾 are the equilibrium measure and equilibrium constant in the presence of the external
field 𝜑 on supp 𝜇, and 𝜇𝑞𝑛 is as in (1.21). We also have

lim
𝑛∈Λ

(︄
|𝑞𝑛 (𝑧) |

∥𝑞𝑛𝜑1/2
𝑛 ∥𝐸

)︄1/𝑛

= exp
(︂
𝛾 −𝑉𝜆(𝑧)

)︂
, 𝐾 ⊂ C \ Δ, (1.27){th:vw:lasym_4}{th:vw:lasym_4}

where ∥ · ∥𝐸 denotes the sup-norm on 𝐸 = supp 𝜇 and Δ = Co(supp 𝜇).

A year after [40] appeared, G. López Lagomasino in [53] proved a result on the ratio asymptotic
of orthogonal polynomials with respect to varying measures. Assuming that 𝑄𝑛 (·, 𝜇𝑛) is the 𝑛-th
monic orthogonal polynomial with respect to d 𝜇(𝑥)/𝑤2𝑛 where 𝜇′ > 0 a.e. on supp 𝜇 = [−1, 1]
and 𝑤2𝑛 is a polynomial of degree ≤ 2𝑛 whose zeros lie on an interval 𝐽 disjoint from supp 𝜇 (for
all 𝑛 ∈ Z+), then

lim
𝑛

𝑄𝑛+1(𝑧, 𝜇𝑛+1)
𝑄𝑛 (𝑧, 𝜇𝑛)

=
1
2
(𝑧 +

√︁
𝑧2 − 1), 𝑧 ∈ C \ [−1, 1] .

Later, the restrictions over the varying part of the measure were weakened in [55].

By the end of the 1980s the first results on the strong asymptotic of orthogonal polynomials with
varying measures were obtained in [54], being later improved in [24]. The authors imposed certain
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restrictions on the varying part of the measures, which we need to complement to achieve more
accurate results. We will consider sequences of measures {(𝜇𝑛, 𝑤2𝑛)}𝑛∈Z+ , where 𝜇𝑛 ∈ M (Δ)
and, 𝑤2𝑛 are polynomials with real coefficients and deg𝑤2𝑛 ≤ 2𝑛 verifying:

{S1}

(S1). There exists a finite positive Borel measure 𝜇 supported on Δ such that lim𝑛 𝜇𝑛 = 𝜇 in the
weak star topology of measures, whose absolutely continuous part satisfies 𝜇′ > 0 a.e. on
Δ, and

lim
𝑛

∫
|𝜇′𝑛 − 𝜇′ | d 𝑥 = 0.

{S2}

(S2). The measure 𝜇 satisfies Szegő’s condition on Δ; that is,∫
Δ

ln 𝜇′(𝑥) d 𝜂Δ(𝑥) > −∞,

and
lim inf

𝑛

∫
ln 𝜇′𝑛 (𝑥) d 𝜂Δ(𝑥) ≥

∫
ln 𝜇′(𝑥) d 𝜂Δ(𝑥).

{S3}

(S3). Let Ψ be the conformal map from Ω = C \ Δ onto the exterior of the unit circle such that
Ψ(∞) = ∞ and Ψ′(∞) > 0. The zeros of the polynomials 𝑤2𝑛 verify

lim
𝑛→∞

2𝑛∑︁
𝑖=1

(︃
1 − 1

|Ψ(𝑥2𝑛,𝑖) |

)︃
= ∞.

By convention, 𝑥2𝑛,𝑖 = ∞, 1 ≤ 𝑖 ≤ 2𝑛 − 𝑖𝑛, when 𝑖𝑛 < 2𝑛.
{S4}

(S4). There exist non negative continuous functions 𝜑 and 𝜓 on (𝑎, 𝑏), Δ = [𝑎, 𝑏], such that

lim
𝑛
𝜑𝑛 (𝑥) |𝑤2𝑛 (𝑥) | = 1/𝜓(𝑥) (1.28) {def:psi}{def:psi}

uniformly on compact subsets of (𝑎, 𝑏) and

lim
𝑛→∞

∫ 𝑏

𝑎

ln(𝜑𝑛 (𝑥) |𝑤2𝑛 (𝑥) |) d 𝜂Δ(𝑥) = −
∫ 𝑏

𝑎

ln𝜓(𝑥) d 𝜂Δ(𝑥) < +∞. (1.29) {rest_var_w}{rest_var_w}

The main result in [24] compares the asymptotic behavior of the orthonormal polynomials
𝑞𝑛 with respect to d 𝜇𝑛/|𝑤2𝑛 | with the sequence 𝑤2𝑛. The limit relation depends on Blaschke
products. Let 𝑥2𝑛,𝑖 , 2𝑛 − 𝑖𝑛 + 1 ≤ 𝑖 ≤ 2𝑛, denote the zeros of 𝑤2𝑛. If 𝑖𝑛 < 2𝑛 we define 𝑥2𝑛,𝑖 = ∞,
1 ≤ 𝑖 ≤ 2𝑛 − 𝑖𝑛. Set

𝐵2𝑛 (𝑧) :=
2𝑛∏︂
𝑖=1

Ψ(𝑧) − Ψ(𝑥2𝑛,𝑖)
1 − Ψ(𝑥2𝑛,𝑖)Ψ(𝑧)

.

When 𝑥2𝑛,𝑖 = ∞ the corresponding factor in the Blaschke product is replaced by 1/Ψ(𝑧). {th:st:blasch}

Theorem 1.14:
Let {(𝜇𝑛, 𝑤2𝑛)}𝑛∈Z+ be a sequence of measures verifying (S1)-(S3) on Δ and 𝑞𝑛 is the 𝑛-th
orthonormal polynomial such that∫

Δ

𝑥𝜈𝑞𝑛 (𝑥)
d 𝜇𝑛 (𝑥)
|𝑤2𝑛 (𝑥) |

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 1,
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and ∫
Δ

𝑞2
𝑛 (𝑥)

d 𝜇𝑛 (𝑥)
|𝑤2𝑛 (𝑥) |

= 1.

Then,

lim
𝑛

𝑞2
𝑛 (𝑧)

𝑤2𝑛 (𝑧)
𝐵2𝑛 (𝑧) =

1
2𝜋

G2(𝜇, 𝑧)

uniformly on compact subsets of C \ Δ.

The applications of the asymptotic properties of orthogonal polynomials with varying measures
were unleashed with the study of a hard problem in approximation theory; namely, the simultaneous
approximation of analytic functions.

1.6 Hermite-Padé approximation

Hermite’s proof of the irrationality of 𝜋 is a landmark in the history of mathematics; not only
because of the importance of the problem itself, but also for the fruitfulness of the techniques
developed for the proof. There, Hermite introduced simultaneous rational approximation of
systems of exponentials to crack a centuries old problem. The book [44] marked a definitive
inflection in the application of complex analysis to solve hard number theory problems.

The study of simultaneous approximation of systems of analytic functions stayed more or less
dormant until the 1930’s when in a series of lectures delivered at Rijksuniversiteit Groningen, Kurt
Mahler (1903-1988) gave a systematic approach. Mahler’s lectures were published decades later
in [67]. Further contributions to the subject were made by two mathematicians closely acquainted
with Mahler: J. Coates (1945-) and H. Jager (1933-) in [67] and [45], respectively. Mahler’s
approach, seen from a more modern point of view, is to study the following two approximation
problems, known as Type i and Type ii Hermite-Padé approximants, though according to Mahler’s
terminology they were called Latin and German polynomials, respectively.

Let 𝑓⃗ = ( 𝑓1, . . . , 𝑓𝑚) be a family of analytic functions on a certain domain 𝐷 ⊂ C, such that
∞ ∈ 𝐷. Fix a non-zero multi-index 𝑛⃗ = (𝑛1, . . . , 𝑛𝑚) ∈ Z𝑚+ , |𝑛⃗| = 𝑛1 + · · · + 𝑛𝑚.{pr:type:i}

Problem 3 (Type i):
There exist polynomials 𝑎𝑛⃗,1, . . . , 𝑎𝑛⃗,𝑚, not all identically equal to zero, such that

{I.i}

i.i. deg 𝑎𝑛⃗, 𝑗 ≤ 𝑛 𝑗 − 1, 𝑗 = 2, . . . , 𝑚 (deg 𝑎𝑛⃗, 𝑗 ≤ −1 means 𝑎𝑛⃗, 𝑗 ≡ 0);
{I.ii}

i.ii. 𝑎𝑛⃗,0(𝑧) +
∑︁𝑚
𝑗=1 𝑎𝑛⃗, 𝑗 (𝑧) 𝑓 𝑗 (𝑧) = O (1/𝑧 |𝑛⃗ |), 𝑧 → ∞

for some polynomial 𝑎𝑛⃗,0.{pr:type:ii}

Problem 4 (Type ii):
There exist a polynomial 𝑄 𝑛⃗ ≢ 0 such that

{II.i}

ii.i. deg𝑄 𝑛⃗ ≤ |𝑛⃗|;
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{II.ii}

ii.ii. 𝑄 𝑛⃗ (𝑧) 𝑓 𝑗 (𝑧) − 𝑃𝑛⃗, 𝑗 (𝑧) = O (1/𝑧𝑛 𝑗+1), 𝑧 → ∞, 𝑗 = 1, . . . , 𝑚.

for some polynomials 𝑃𝑛⃗, 𝑗 , 𝑗 = 1, . . . , 𝑚.

Notice that if𝑚 = 1 Problems 3 and 4 coincide and both are equivalent to Problem 1. Apart from
that, the polynomials 𝑎𝑛⃗,0 and 𝑃𝑛⃗, 𝑗 , 𝑗 = 1, . . . , 𝑚 are uniquely determined once their counterparts
are found. From an algebraic point of view both constructions are closely related as it was pointed
out in [67], [45] and [22].

After Hermite’s proof of the irrationality of 𝜋, Type i, Type ii and a combination of both (called
mixed type) have been used to prove the irrationality of other numbers. We may cite F. Beukers’
paper [17], where he showed that R. Apéry’s proof of 𝜁 (3) ∉ Q can be interpreted in terms of a
mixed type Hermite-Padé approximation. For further information in this line of applications we
recommend [97].

A very important question related with Hermite-Padé approximation is to know if the associated
polynomials attain the maximal degree possible. So, we say that a multi-index 𝑛⃗ is normal for the
system 𝑓⃗ for Type i approximation (respectively, for Type ii) if deg 𝑎𝑛⃗, 𝑗 = 𝑛 𝑗 − 1, 𝑗 = 1, . . . , 𝑚
(respectively, deg𝑄 𝑛⃗ = |𝑛⃗|). If every multi-index 𝑛⃗ is normal, the system of functions 𝑓⃗ , is said to
be perfect.

An easy consequence of perfectness is that (𝑎𝑛⃗,1, . . . , 𝑎𝑛⃗,𝑚) and 𝑄 𝑛⃗ are uniquely determined
up to a constant factor. Hence, if the system 𝑓⃗ is perfect, the orders of interpolation at infinity in
Problems 3 and 4 are exact for every 𝑛⃗. There are a few systems known to be perfect, for example
(𝑒𝑤1𝑧 , . . . , 𝑒𝑤𝑚𝑧) with 𝑤𝑖 ≠ 𝑤 𝑗 for 𝑖 ≠ 𝑗 and ((1− 𝑧)𝑤1 , . . . , (1− 𝑧)𝑤𝑚) with 𝑤𝑖−𝑤 𝑗 ∉ Z, where in
both cases the interpolation conditions are taken at the origin. Other examples of perfect systems
may be constructed in terms of Markov functions.

1.6.1 Angelesco and Nikishin systems

Between 1918 and 1919 M.A. Angelesco introduced an interesting type of system of functions (see
[1, 2]), which in his honor are called Angelesco system. They are constructed as follows. Consider
the family of pairwise disjoint bounded intervals Δ 𝑗 ⊂ R, 𝑗 = 1, . . . , 𝑚 and a system of measures
𝜎𝑗 , 𝑗 = 1, . . . , 𝑚 such that Co(supp𝜎𝑗) = Δ 𝑗 . Then, the system of 𝑚 Markov functions

𝑓⃗ 𝐴 := (ˆ︁𝜎1, . . . ,ˆ︁𝜎𝑚) = (︃∫
d𝜎1(𝑥)
𝑧 − 𝑥 , . . . ,

∫
d𝜎𝑚(𝑥)
𝑧 − 𝑥

)︃
is the Angelesco system generated by (𝜎1, . . . , 𝜎𝑚). Angelesco’s papers remained unnoticed for
over 60 years until they were rediscovered by the Russian mathematician E.M. Nikishin (1945-
1986). In [75], Nikishin deduced some of the formal properties of such systems.

Fix a multi-index 𝑛⃗ ∈ Z𝑚+ and consider the Type ii Hermite-Padé approximants for (ˆ︁𝜎1, . . . ,ˆ︁𝜎𝑚).
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It is not difficult to obtain that∫
𝑥𝜈𝑄 𝑛⃗ (𝑥) d𝜎𝑗 (𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 𝑗 − 1, 𝑗 = 1, . . . , 𝑚.

An easy consequence of the above orthogonality conditions verified by𝑄 𝑛⃗ is that𝑄 𝑛⃗ has 𝑛 𝑗 simple
zeros in each interval Δ 𝑗 . Hence, deg𝑄 𝑛⃗ = |𝑛⃗| and the Angelesco systems are perfect for Type ii
approximation.

Angelesco systems do not have a nice behavior in terms of convergence (about the asymptotic
we will return later). In this respect, another system of functions, built in terms of Markov functions
too, are much more interesting and they are at the core of this dissertation.

Almost right after the rediscovery of Angelesco systems, Nikishin introduced in [76] (the
original Russian version is from 1980) what he called MT-systems, but renamed after him as
Nikishin systems. Let Δ𝛼, Δ𝛽 be two intervals contained in the real line such that Δ𝛼 ∩ Δ𝛽 = ∅.
Consider the measures 𝜎𝛼 ∈ M (Δ𝛼), 𝜎𝛽 ∈ M (Δ𝛽), ˆ︁𝜎𝛽 ∈ 𝐿1(𝜎𝛼). With these two measures we
construct a third one as follows (using differential notation)

d⟨𝜎𝛼, 𝜎𝛽⟩(𝑥) := ˆ︁𝜎𝛽 (𝑥) d𝜎𝛼 (𝑥).

When we consider consecutive products of measures, a.e. ⟨𝜎𝛼, 𝜎𝛽 , 𝜎𝛾⟩ := ⟨𝜎𝛼, ⟨𝜎𝛽 , 𝜎𝛾⟩⟩
we implicitly assume not only that ˆ︁𝜎𝛾 ∈ 𝐿1(𝜎𝛽), but also ⟨𝜎𝛽 , 𝜎𝛾ˆ︁⟩ ∈ 𝐿1(𝜎𝛼), where ⟨𝜎𝛽 , 𝜎𝛾ˆ︁⟩
denotes the Cauchy transform of ⟨𝜎𝛽 , 𝜎𝛾⟩. It is important to remark that this product is neither
commutative nor associative.{def:nikishin}

Definition 1.15:
Take a collection Δ 𝑗 , 𝑗 = 1, . . . , 𝑚 of intervals such that

Δ 𝑗 ∩ Δ 𝑗+1 = ∅, 𝑗 = 1, . . . , 𝑚 − 1.

Let (𝜎1, . . . , 𝜎𝑚) be a system of measures such thatCo(supp𝜎𝑗) = Δ 𝑗 ,𝜎𝑗 ∈ M (Δ 𝑗), 𝑗 = 1, . . . , 𝑚.
We say (𝑠1,1, . . . , 𝑠1,𝑚) = N (𝜎1, . . . , 𝜎𝑚), where

𝑠1,1 = 𝜎1, 𝑠1,2 = ⟨𝜎1, 𝜎2⟩, . . . , 𝑠1,𝑚 = ⟨𝜎1, ⟨𝜎2, . . . , 𝜎𝑚⟩⟩

is the Nikishin system of measures generated by (𝜎1, . . . , 𝜎𝑚). The vector 𝑠⃗ = (ˆ︁𝑠1,1, . . . ,ˆ︁𝑠1,𝑚) is
called the Nikishin system of functions.

Notice that any sub-system of (𝜎1, . . . , 𝜎𝑚) of consecutive measures is also a generator of
some Nikishin system. In the sequel for 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑚 we will write

𝑠 𝑗 ,𝑘 := ⟨𝜎𝑗 , 𝜎𝑗+1, . . . , 𝜎𝑘⟩, 𝑠𝑘, 𝑗 := ⟨𝜎𝑘 , 𝜎𝑘−1, . . . , 𝜎𝑗⟩.

The perfectness of Nikishin systems was not a simple problem. Fix 𝑛⃗ ∈ Z𝑚+ and consider Type
ii approximation for the system (ˆ︁𝑠1,1, . . . ,ˆ︁𝑠1,𝑚). It is not difficult to check that∫

𝑥𝜈𝑄 𝑛⃗ (𝑥) d 𝑠1, 𝑗 (𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 𝑗 − 1, 𝑗 = 1, . . . , 𝑚.
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The main difference with Angelesco systems is that all the measures 𝑠1, 𝑗 , 𝑗 = 1, . . . , 𝑚 have the
same support, and it is not obvious that deg𝑄 𝑛⃗ = |𝑛⃗|.

In [76], Nikishin stated without proof, that the multi-indices 𝑛⃗ ∈ Z𝑚+ verifying 𝑛1 ≥ 𝑛2 ≥ · · · ≥
𝑛𝑚, 𝑛1 − 𝑛𝑚 ≤ 1 are normal for type ii approximation. Since then, the perfectness of Nikishin
systems remained as an important open problem. Nikishin’s assertion was proved by K. Driver
and H. Stahl (1942-2013) in [26, Th. 4.1] and later slightly improved in [18]. Finally, the problem
was solved in [30]. For the case of generating measures with unbounded and/or touching supports
see also [31].

Among approximation problems of mixed-type, very recently was introduced the following
one in [62] for Nikishin system of functions: {pr:ML_HP}

Problem 5 (ML Hermite-Padé):
Given aNikishin systemN (𝜎1, . . . , 𝜎𝑚), for each 𝑛 ∈ N, there exist polynomials 𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚,
with deg 𝑎𝑛, 𝑗 ≤ 𝑛 − 1, 𝑗 = 0, 1, . . . , 𝑚 − 1, deg 𝑎𝑛,𝑚 ≤ 𝑛, not all identically equal to zero, called
multi-level (ML) Hermite-Padé polynomials that verify:

A𝑛,0 :=

[︄
𝑎𝑛,0 +

𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠1,𝑘 ]︄ ∈ O

(︃
1
𝑧𝑛+1

)︃
A𝑛, 𝑗 :=

⎡⎢⎢⎢⎢⎣(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎤⎥⎥⎥⎥⎦ ∈ O

(︃
1
𝑧

)︃
, 𝑗 = 1, . . . , 𝑚 − 1.

Here and in the sequel O (·) is as 𝑧 → ∞ along paths non tangential to the support of the measures
involved. For completeness write A𝑛,𝑚 := (−1)𝑚𝑎𝑛,𝑚.

Notice that in this scheme of approximation the interpolation conditions involve all Nikishin
systems of the “inner levels”, i.e. N (𝜎1, . . . , 𝜎𝑚), N (𝜎2, . . . , 𝜎𝑚), . . . , N (𝜎𝑚) = (𝑠𝑚,𝑚).
Finding the polynomials 𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚 is equivalent to solving a homogeneous linear system
of 𝑛(𝑚 + 1) equations, given by the interpolation conditions, on 𝑛(𝑚 + 1) + 1 unknowns, corre-
sponding with the coefficients of the polynomials. Consequently, the system of equations has a
non trivial solution.

1.7 Markov-type theorems and asymptotic for Nikishin systems

When E.M. Nikishin introduced the homonymous system of functions, he was able to prove the
convergence of Type ii approximants for 𝑚 = 2 (see [76, Th. 4]). Since then, the question of
convergence remained open until the early 90’s when G. López Lagomasino and J. Bustamante
succeeded to extend Nikishin’s result for systems with 𝑚 > 2 measures ([20]) and sequences of
multi-indices Λ ⊂ Z+ satisfying 𝑛𝑖 ≥ |𝑛⃗|/𝑚 − 𝑐, 𝑖 = 1, . . . , 𝑚, where 𝑐 is a constant independent of
𝑛⃗ ∈ Λ and 𝑖 = 1, . . . , 𝑚. For a larger class of multi-indices the convergence was obtained in capacity.
An important ingredient in the proof was to show that to a great extent the convergence can be
reduced to that of multipoint Padé approximation of Stieltjes type functions. This occurs due to the
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appearance of extra interpolation points which are not implicit in the definition. This phenomenon
was discovered by A.A. Gonchar in the case of Nikishin systems of two measures. This idea leads
to the introduction of so called incomplete multipoint Padé approximants in Definition 1.5 and
Lemma 1.7 which constitute important tools in the proof of convergence theorems. Improvements
of the results in [20] may be found in [29].

In [41] a general system of functions was introduced constructed as combinations of Nikishin
and Angelesco systems, and were called generalized Nikishin systems. The authors proved the
normality for certain sets of multi-indices and the convergence of Type ii approximants assuming
that the generating measures verify the Erdős-Turán condition. Convergence was derived after
proving the logarithmic asymptotic of the associated Hermite-Padé polynomials.

Regarding Type i approximation of Nikishin systems the first results were obtained in [59].
This article was followed by an extensions in the spirit of Gonchar’s result on the convergence of
Padé approximants to meromorphic functions of the form ˆ︁𝜇 + 𝑟 (see [60, 61]), where 𝑟 is a rational
function with real coefficients to vector function of the form 𝑠⃗ + 𝑟 , where 𝑠⃗ is a Nikishin system of
functions and 𝑟 is a vector of rational fractions, where the component have disjoint sets of poles.

The path to the study of weak asymptotic of multi-orthogonal polynomials associated to
Nikishin systems was started by a A.A. Gonchar and E.A. Rakhmanov, where they linked this type
of asymptotic with equilibrium problems with vector potentials. They used this technique first
in [39] to study the convergence of Type ii approximants of Angelesco systems, and later with
strong restrictions on the generating measures they used it to describe the weak asymptotic and
the convergence of generalized Nikishin systems in [41]. A clear exposition of the logarithmic
asymptotic of multiple orthogonal polynomials associated to Type ii approximation can be found
in [57, Th. 5].

The ratio asymptotic was studied in [6], and some other important results were obtained also, for
example, the interlacing property of the zeros of the multiple orthogonal polynomials associated to
Type ii approximation of Nikishin systems. Later, the aforementioned research was supplemented
in [47].

On the other hand, the strong asymptotic of multi orthogonal polynomials with respect to
Angelesco and Nikishin systems were described in two articles by A.I. Aptekarev, separated each
other by a period of ten years: [4] and [5]. Aptekarev’s approach to tackle this problem relies
heavily on fixed point theorems and topological reasoning. A recommended survey on this topic
and weak asymptotic, previous to Aptekarev’s article of 1999, is [3].
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Chapter

2 Rational perturbation of multi-level
Hermite-Padé polynomials

{ch:pert}

In the present chapter, as we stated previously, we deal with the proof of Markov [68] and Stieltjes
[93] type theorems for the convergence of simultaneous Padé approximants of a certain class of
meromorphic functions. We have seen that this study was started in [36], in the context of Padé
approximation. We also commented that in [62] a new approximation scheme was introduced (see
Problem 5) motivated by the study of peakon solutions of the Degasperis-Procesi equation (see,
for example, [65]).

The aforementioned works inspired us to study the convergence of such interpolation processes
for the case of general Nikishin systems. We wish to see the consequences of perturbing a Nikishin
system with rational functions with real coefficients. A similar question was raised and solved in
[60] for Type i Hermite-Padé approximation (see also [61]).

2.1 Statement of the problem and auxiliary results

In the sequel, we will restrict to Borel measures 𝜇 ∈ M (Δ). Consider a collection of intervals Δ 𝑗 ,
𝑗 = 1, . . . , 𝑚 such that Δ 𝑗 ∩Δ 𝑗+1 = ∅ for 𝑗 = 1, . . . , 𝑚−1. Fix a system of measures (𝜎1, . . . , 𝜎𝑚)
with Co(supp𝜎𝑗) ⊂ Δ 𝑗 , 𝜎𝑗 ∈ M (Δ 𝑗), 𝑗 = 1, . . . , 𝑚. With these elements at hand we construct
the Nikishin system of measures N (𝜎1, . . . , 𝜎𝑚) (see Definition 1.15) and its associated Nikishin
system of functions (ˆ︁𝑠1,1,ˆ︁𝑠1,2, . . . ,ˆ︁𝑠1,𝑚).
2.1.1 Convergence of the approximants

Now we are in position to describe the approximation objects. {def:ML:per}

Definition 2.1:
Consider the Nikishin system N (𝜎1, . . . , 𝜎𝑚). Let 𝑟 𝑗 =

𝑣 𝑗

𝑡 𝑗
, 𝑘 = 1, . . . , 𝑚, be rational fractions

with real coefficients, deg 𝑣𝑘 < deg 𝑡𝑘 = 𝑑𝑘 , (𝑣𝑘 , 𝑡𝑘) = 1 (coprime) for all 𝑘 = 1, . . . , 𝑚. For each
𝑛 ∈ N, there exist polynomials 𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚, with deg 𝑎𝑛, 𝑗 ≤ 𝑛 − 1, 𝑗 = 0, 1, . . . , 𝑚 − 1,
deg 𝑎𝑛,𝑚 ≤ 𝑛, not all identically equal to zero, called multi-level (ML) Hermite-Padé polynomials
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that verify

A𝑛,0 :=

[︄
𝑎𝑛,0 +

𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘 (ˆ︁𝑠1,𝑘 + 𝑟𝑘)]︄ ∈ O

(︃
1
𝑧𝑛+1

)︃
, (2.1) {ML:per:1}{ML:per:1}

A𝑛, 𝑗 :=
⎡⎢⎢⎢⎢⎣(−1) 𝑗𝑎𝑛, 𝑗 +

𝑚∑︁
𝑘= 𝑗+1

(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎤⎥⎥⎥⎥⎦ ∈ O

(︃
1
𝑧

)︃
, 𝑗 = 1, . . . , 𝑚 − 1. (2.2) {ML:per:2}{ML:per:2}

Here and in the sequel O (·) is as 𝑧 → ∞ along paths non tangential to the support of the measures
involved. For completeness we denote A𝑛,𝑚 := (−1)𝑚𝑎𝑛,𝑚.

When 𝑟𝑘 ≡ 0, 𝑘 = 1, . . . , 𝑚, this construction coincides with the one in Problem 5. Recall
that in this scheme of approximation the interpolation conditions involve all Nikishin systems of
the “inner levels”, i.e. N (𝜎1, . . . , 𝜎𝑚), N (𝜎2, . . . , 𝜎𝑚), . . . , N (𝜎𝑚) = (𝑠𝑚,𝑚). To find the
vector polynomial (𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚) is equivalent to solving a homogeneous linear system of
𝑛(𝑚 + 1) equations on 𝑛(𝑚 + 1) + 1 unknowns. Therefore, the system of equations has a non trivial
solution. However, the solution does not need to be unique.

Let 𝑇 = lcm(𝑡1, . . . , 𝑡𝑚), deg𝑇 = 𝐷, where lcm stands for least common multiple.{Th:conv:unif}

Theorem 2.2:
For each 𝑛 ∈ N let 𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚 be Hermite-Padé polynomials associated with the Nikishin
system N (𝜎1, . . . , 𝜎𝑚) and (𝑟1, . . . , 𝑟𝑚) such that (2.1) and (2.2) holds. Assume that the zeros of
the polynomial 𝑇 lie in the complement of Δ1 ∪ Δ𝑚 and 𝑓 has exactly 𝐷 poles in C \ Δ𝑚, where

𝑓 := ˆ︁𝑠𝑚,1 − 𝑚−1∑︁
𝑘=1

(−1)𝑘ˆ︁𝑠𝑚,𝑘+1𝑟𝑘 − (−1)𝑚𝑟𝑚.

Suppose that either the sequence of moments of 𝜎𝑚 satisfies Carleman’s condition (1.9) or Δ𝑚−1

is a bounded interval. Then,

lim
𝑛

𝑎𝑛, 𝑗

𝑎𝑛,𝑚
= ˆ︁𝑠𝑚, 𝑗+1, 𝑗 = 1, . . . , 𝑚 − 1, (2.3){convergencia}{convergencia}

and
lim
𝑛

𝑎𝑛,0

𝑎𝑛,𝑚
= 𝑓 , (2.4){polos}{polos}

uniformly on each compact subset of C \ (Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}). For all sufficiently large 𝑛,
deg 𝑎𝑛,𝑚 = 𝑛, 𝑎𝑛,𝑚 has exactly 𝑛 − 𝐷 simple zeros in the interior of Δ𝑚 and 𝐷 zeros in C \ Δ𝑚
which converge to the poles of 𝑓 in this region according to their order. For 𝑗 = 1, . . . , 𝑚 − 1 and
all sufficiently large 𝑛 the polynomial 𝑎𝑛, 𝑗 has at least 𝑛 − 𝐷 − 𝑚 + 𝑗 sign changes in Δ𝑚 and at
least 𝐷 zeros in C \ Δ𝑚 of which 𝐷 converge to the zeros of 𝑇 according to their multiplicity and
the remaining ones accumulate on Δ𝑚 ∪ {∞}.

The fact that deg 𝑎𝑛,𝑚 = 𝑛 for 𝑛 large enough implies that for such indices the vector polynomial
(𝑎𝑛,0, . . . , 𝑎𝑛,𝑚) is unique up to a constant factor. Indeed, from two non-collinear solutions of
(2.1)-(2.2) one can construct a non-trivial solution whose last polynomial has degree smaller that
𝑛.
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Notice that 𝑓 (𝑧) ≡ ˆ︁𝑠𝑚,1 when 𝑟𝑘 ≡ 0, 𝑘 = 1, . . . , 𝑚, and Theorem 2.2 gives the main
statement in [62]; namely, relation (1.23) of Theorem 1.6. The expressions of the limit relations in
Theorem 2.2 are similar to those in [60, Theorem 1.2] where Type i Hermite-Padé approximants
of meromorphic functions were studied.

Obviously, the poles of 𝑓 in C \ Δ𝑚 are the zeros of 𝑇 . Therefore, the total number of poles of
𝑓 in that region equals 𝐷 if and only if for each zero 𝜁 of 𝑇 , say of multiplicity 𝜏, we have

lim
𝑧→𝜁

(𝑧 − 𝜁)𝜏 𝑓 (𝑧) = −
𝑚−1∑︁
𝑘=1

(−1)𝑘ˆ︁𝑠𝑚,𝑘+1(𝜁) lim
𝑧→𝜁

(𝑧 − 𝜁)𝜏𝑟𝑘 (𝑧) − (−1)𝑚 lim
𝑧→𝜁

(𝑧 − 𝜁)𝜏𝑟𝑚(𝑧) ≠ 0.

Therefore, sufficient conditions for 𝑓 to have 𝐷 poles in C \ Δ𝑚 is that (𝑡 𝑗 , 𝑡𝑘) = 1, 1 ≤ 𝑗 , 𝑘 ≤ 𝑚

or, more generally, that for each 𝜁, 𝑇 (𝜁) = 0, there is only one polynomial 𝑡𝑘 which has 𝜁 as zero of
degree 𝜏. Indeed, in this case all the terms in the previous sum cancel except one which is trivially
different from zero. (The functions ˆ︁𝑠𝑚, 𝑗 , 𝑗 = 1, . . . , 𝑚, are never zero in C \ Δ𝑚.)

2.1.2 Logarithmic asymptotic

To obtain the general asymptotic of the ML Hermite-Padé polynomials we restrain ourselves to the
case when the intervals Δ 𝑗 (in particular Δ𝑚) are bounded. In addition, we assume that supp𝜎𝑘
is a regular compact set for 𝑘 = 1, . . . , 𝑚; that is, Green’s function of the region C \ supp𝜎𝑘 with
singularity at ∞ can be extended continuously to supp𝜎𝑘 . Let M1(supp𝜎𝑘) be the subclass of
probability measures in M (supp𝜎𝑘). Define

M1 = M1(supp𝜎1) × · · · × M1(supp𝜎𝑚).

It is well known (see, for example, [11, Section 4]), that there exists a unique vector measure
𝜆⃗ = (𝜆1, . . . , 𝜆𝑚) ∈ M1 and a unique vector constant 𝜔𝜆⃗ = (𝜔𝜆⃗1 , . . . , 𝜔

𝜆⃗
𝑚) such that

−1
2
𝑉 𝜆⃗𝑗−1(𝑥) +𝑉

𝜆⃗
𝑗 (𝑥) −

1
2
𝑉 𝜆⃗𝑗+1(𝑥) = 𝜔

𝜆⃗
𝑗 , 𝑥 ∈ supp𝜆 𝑗 , 𝑗 = 1, . . . , 𝑚. (2.5) {vecequil}{vecequil}

(By convention 𝑉 𝜆⃗0 ≡ 𝑉 𝜆⃗
𝑚+1 ≡ 0.) The vector measure 𝜆⃗ is called equilibrium measure for the

system of compact sets supp𝜎𝑘 , 𝑘 = 1, . . . , 𝑚 with interaction matrix CN =
(︁
𝑐 𝑗 ,𝑘

)︁
, 1 ≤, 𝑗 , 𝑘 ≤ 𝑚,

where 𝑐 𝑗 , 𝑗 = 1, 𝑗 = 1, . . . , 𝑚, 𝑐 𝑗−1, 𝑗 = −1/2, 𝑗 = 2, . . . , 𝑚, 𝑐 𝑗 , 𝑗+1 = −1/2, 𝑗 = 1, . . . , 𝑚 − 1, and
the rest of the entries equal zero. Notice that the left hand of (2.5) is the product of the 𝑗-th row of
CN times the vector potential (𝑉 𝜆⃗1 , . . . , 𝑉

𝜆⃗
𝑚).

The vector equilibrium measure allows to describe the normalized distribution of the zeros of
the polynomials 𝑎𝑛,𝑚 and the roots of the forms A𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚 − 1. In this section, we also
require that the zeros of 𝑇 lie in the complement of Δ1 ∪ Δ𝑚. From Theorem 2.2 we know that
under these conditions for all sufficiently large 𝑛 > 𝑁:

• deg 𝑎𝑛,𝑚 = 𝑛 with exactly 𝑛 − 𝐷 simple zeros on Δ𝑚 and the remaining 𝐷 zeros of 𝑎𝑛,𝑚
converge to the poles of 𝑓 in C \ Δ𝑚 according to their multiplicity.
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• A𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚 − 1, has exactly 𝑛 − 𝐷 zeros in C \ Δ 𝑗+1 they are simple and lie in Δ 𝑗 .

Let 𝑄𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚 be the monic polynomial of degree 𝑛 − 𝐷 whose zeros are the roots of
A𝑛, 𝑗 on Δ 𝑗 . (Recall that A𝑛,𝑚 = (−1)𝑚𝑎𝑛,𝑚.)

H𝑛, 𝑗 :=
𝑄𝑛, 𝑗+1𝑇A𝑛, 𝑗

𝑄𝑛, 𝑗
, 𝑗 = 0, 1, H𝑛, 𝑗 :=

𝑄𝑛, 𝑗+1A𝑛, 𝑗

𝑄𝑛, 𝑗
, 𝑗 = 2, . . . , 𝑚.

By convention 𝑄𝑛,0 ≡ 𝑄𝑛,𝑚+1 ≡ 1 and Δ𝑚+1 = ∅. Notice that A𝑛, 𝑗/𝑄𝑛, 𝑗 ∈ H(C \ Δ 𝑗+1),
𝑗 = 0, . . . , 𝑚. Recall that 𝜇𝑄 is the zero counting measure of 𝑄 (see (1.21)).{teo:1}

Theorem 2.3:
Assume that all the zeros of 𝑇 lie in the complement of Δ1 ∪ Δ𝑚, and 𝑓 has exactly 𝐷 poles in
C \ Δ𝑚. Suppose that 𝜎𝑗 ∈ Reg and supp𝜎𝑗 , 𝑗 = 1, . . . , 𝑚. Then,

∗ lim
𝑛→∞

𝜇𝑄𝑛, 𝑗
= 𝜆 𝑗 , 𝑗 = 1, . . . , 𝑚 (2.6){weak_Qnj}{weak_Qnj}

where 𝜆⃗ = (𝜆1, . . . , 𝜆𝑚) ∈ M1 is the vector equilibrium measure determined by the matrix CN on
the system of compact sets supp𝜎𝑗 , 𝑗 = 1, . . . , 𝑚. Moreover,

lim
𝑛→∞

|︁|︁|︁|︁∫ 𝑄2
𝑛, 𝑗 (𝑥)

H𝑛, 𝑗 (𝑥) d𝜎𝑗 (𝑥)
𝑄𝑛, 𝑗−1(𝑥)𝑄𝑛, 𝑗+1(𝑥)

|︁|︁|︁|︁1/2𝑛 = exp ⎛⎜⎝−
𝑚∑︁
𝑘= 𝑗

𝜔𝜆⃗𝑘
⎞⎟⎠ , (2.7){limit_nesimo}{limit_nesimo}

where 𝜔𝜆⃗ = (𝜔𝜆⃗1 , . . . , 𝜔
𝜆⃗
𝑚) is the vector equilibrium constant.

From this result the logarithmic asymptotic behavior of the forms A𝑛, 𝑗 can be derived.{logarithmic_asymptotic_Anj}

Theorem 2.4:
Suppose that the assumptions of Theorem 2.3 are satisfied. Then,

lim
𝑛→∞

|A𝑛, 𝑗 (𝑧) |1/𝑛 = 𝐴 𝑗 (𝑧), K ⊂ C \ (Δ 𝑗 ∪ Δ 𝑗+1), 𝑗 = 1, . . . , 𝑚 − 1 (2.8){limit_nrooth_Anj}{limit_nrooth_Anj}

where

𝐴 𝑗 (𝑧) = exp ⎛⎜⎝𝑉𝜆 𝑗+1 (𝑧) −𝑉𝜆 𝑗 (𝑧) − 2
𝑚∑︁

𝑘= 𝑗+1
𝜔𝜆⃗𝑘

⎞⎟⎠ , 𝑗 = 1, . . . , 𝑚 − 1.

Moreover,

lim
𝑛→∞

|A𝑛,𝑚(𝑧) |1/𝑛 = exp
(︂
−𝑉𝜆𝑚 (𝑧)

)︂
, K ⊂ C \ (Δ𝑚 ∪ 𝑍)

where 𝑍 = {𝑧 : 𝑇 (𝑧) = 0}, and

lim
𝑛→∞

|A𝑛,0(𝑧) |1/𝑛 = exp

(︄
𝑉𝜆1 (𝑧) − 2

𝑚∑︁
𝑘=1

𝜔𝜆⃗𝑘

)︄
, K ⊂ C \ (Δ1 ∪ 𝑍).

Here, 𝜆⃗ = (𝜆1, . . . , 𝜆𝑚) is the vector equilibrium measure and (𝜔𝜆⃗1 , . . . , 𝜔
𝜆⃗
𝑚) is the vector equilib-

rium constant for the vector potential problem determined by the interaction matrix CN acting on
the system of compact sets supp𝜎𝑗 , 𝑗 = 1, . . . , 𝑚.
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2.1.3 Auxiliary results

In this subsection we introduce some definitions and results needed in our developments. We start
with a useful Lemma whose proof in the case of measures with bounded support is a straightforward
consequence of Cauchy’s integral formula and Fubini’s theorem but in the unbounded case is more
elaborated and can be found in [59, Lemma 2.1]. {lm:rem:t-i}

Lemma 2.5:
Let (𝑠1,1, . . . , 𝑠1,𝑚) = N (𝜎1, . . . , 𝜎𝑚) be given. Assume that there exist polynomials with real
coefficients 𝑎0, . . . , 𝑎𝑚 and a polynomial 𝑤 with real coefficients whose zeros lie in C \ Δ1 such
that

A (𝑧)
𝑤(𝑧) ∈ H(C \ Δ1) and

A (𝑧)
𝑤(𝑧) = O

(︃
1
𝑧𝑁

)︃
, 𝑧 → ∞,

where A := 𝑎0 +
𝑚∑︁
𝑘=1

𝑎𝑘ˆ︁𝑠1,𝑘 and 𝑁 ≥ 1. Let A1 := 𝑎1 +
𝑚∑︁
𝑘=2

𝑎𝑘ˆ︁𝑠2,𝑘 . Then,
A (𝑧)
𝑤(𝑧) =

∫
A1(𝑥)
𝑧 − 𝑥

d𝜎1(𝑥)
𝑤(𝑥) . (2.9) {relint}{relint}

If 𝑁 ≥ 2, we also have ∫
𝑥𝜈A1(𝑥)

d𝜎1(𝑥)
𝑤(𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑁 − 2. (2.10) {lm:rem:orth}{lm:rem:orth}

In particular, A1 has at least 𝑁 − 1 sign changes in Δ̊1 (the interior of Δ1 in R with the usual
topology).

In the following, we need some relations involving reciprocals and ratios of Cauchy transforms
of measures. It is well known that for each measure 𝜎 ∈ M (Δ), where Δ is contained in a half
line (that is, an interval of the form [𝑐, +∞) or (−∞, 𝑐], 𝑐 ∈ R), there exist a measure 𝜏 ∈ M (Δ)
and a polynomial ℓ(𝑧) = 𝑎𝑧 + 𝑏, 𝑎 = 1/|𝜎 |, 𝑏 ∈ R, such that

1ˆ︁𝜎(𝑧) = ℓ(𝑧) + ˆ︁𝜏(𝑧),
where |𝜎 | is the total variation of the measure 𝜎. For more information in the case of measures
with compact support see [46, Appendix] and [89, Theorem 6.3.5], when the measure is supported
in a half line see [31, Lemma 2.3]. If 𝜎 satisfies Carleman’s condition

∑︁∞
𝑛=0 |𝑐𝑛 |−1/2𝑛 = ∞, then 𝜏

satisfies the same condition, [59, Theorem 1.5]. We call 𝜏 the inverse measure of 𝜎.

Such measures appear frequently in our arguments, so we will fix a notation to differentiate
them. In relation with the measures denoted by 𝑠 they will carry over to them the corresponding
sub-indices. The same goes for the polynomials ℓ. For example,

1ˆ︁𝑠 𝑗 ,𝑘 (𝑧) = ℓ 𝑗 ,𝑘 (𝑧) + ˆ︁𝜏𝑗 ,𝑘 (𝑧). (2.11) {inv:cauchy:tr}{inv:cauchy:tr}

We also use
1ˆ︁𝜎𝛼 (𝑧) = ℓ𝛼 (𝑧) + ˆ︁𝜏𝛼 (𝑧).
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On some occasions, we write ⟨𝜎𝛼, 𝜎𝛽ˆ︁⟩ in place of ˆ︁𝑠𝛼,𝛽. In the paper [30, Lemma 2.10] (see also
[31]) several formulas involving Cauchy transforms of measures were proved. For our reasoning,
the most important ones establish thatˆ︁𝑠1,𝑘ˆ︁𝑠1,1 =

|𝑠1,𝑘 |
|𝑠1,1 |

− ⟨𝜏1,1, ⟨𝑠2,𝑘 , 𝜎1⟩ˆ︁⟩, (2.12) {rat:cauchy:tr}{rat:cauchy:tr}

where |𝑠 | denotes the total variation of the measure 𝑠.

2.2 General properties of the zeros

Now will focus on the location of the zeros of the polynomials 𝑎𝑛, 𝑗 and the forms A𝑛, 𝑗 . As above
𝑇 = lcm(𝑡1, . . . , 𝑡𝑚) and 𝐷 = deg𝑇 .{lm:zeros:a_nm}

Lemma 2.6:
For each 𝑛 ≥ 2𝐷, the form A𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚, has at least 𝑛 − 2𝐷 sign changes in Δ̊ 𝑗 and at most
𝑛 zeros in C \ Δ 𝑗+1 (Δ𝑚+1 = ∅). If the zeros of 𝑇 lie outside of Δ1 then A𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚, has at
least 𝑛 − 𝐷 sign changes in Δ̊ 𝑗 . The form A𝑛,0 has at most 2𝐷 zeros in C \ Δ1 and this number
reduces to 𝐷 should the zeros of 𝑇 lie in the complement of Δ1. If the zeros of 𝑇 lie outside Δ1 and
for some 𝑛 we know that 𝑎𝑛,𝑚 has exactly 𝑛 − 𝐷 sign changes on Δ𝑚 then, A𝑛,0 cannot have zeros
in C \ Δ1 and A𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚 − 1, has exactly 𝑛 − 𝐷 zeros in C \ Δ 𝑗+1 they are all simple and
lie on Δ 𝑗 .

Proof. Fix 𝑛 ≥ 2𝐷. Consider the linear form

L𝑛,0(𝑧) :=𝑇 (𝑧)A𝑛,0(𝑧) =
[︄
𝑎𝑛,0𝑇 +

𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘𝑇𝑟𝑘 +
𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘𝑇ˆ︁𝑠1,𝑘 ]︄ (𝑧)
=

[︄
𝑝𝑛,0 +

𝑚∑︁
𝑘=1

(−1)𝑘 𝑝𝑛,𝑘ˆ︁𝑠1,𝑘 ]︄ (𝑧) = O

(︃
1

𝑧𝑛−𝐷+1

)︃
,

where

𝑝𝑛,0 = 𝑎𝑛,0𝑇 +
𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘𝑇𝑟𝑘 , 𝑝𝑛,𝑘 = 𝑎𝑛,𝑘𝑇, 𝑘 = 1, . . . , 𝑚. (2.13){ps}{ps}

Using Lemma 2.5, in particular (2.10), we obtain the following orthogonality relations∫
𝑥𝜈L𝑛,1(𝑥) d𝜎1(𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 − 𝐷 − 1,

and L𝑛,1 := −𝑝𝑛,1 +
∑︁𝑚
𝑘=2(−1)𝑘 𝑝𝑛,𝑘ˆ︁𝑠2,𝑘 has at least 𝑛 − 𝐷 sign changes on Δ̊1.

Notice that

L𝑛,1 = −𝑝𝑛,1 +
𝑚∑︁
𝑘=2

(−1)𝑘 𝑝𝑛,𝑘ˆ︁𝑠2,𝑘 = −𝑇𝑎𝑛,1 +
𝑚∑︁
𝑘=2

(−1)𝑘𝑇𝑎𝑛,𝑘ˆ︁𝑠2,𝑘 = A𝑛,1𝑇.

Therefore, A𝑛,1 has at least 𝑛 − 2𝐷 sign changes in the interior of Δ1 (𝐷 sign changes may be on
account of 𝑇). However, if the zeros of 𝑇 are in the complement of Δ1 then we can affirm that A𝑛,1

32



has at least 𝑛 − 𝐷 sign changes in the interior of Δ1. These two situations are accountable for the
different statements on the number of sign changes of A𝑛, 𝑗 on Δ 𝑗 .

Let 𝑤𝑛,1 be a polynomial with simple zeros at the points of sign change of A𝑛,1 on Δ̊1. In
general deg𝑤𝑛,1 ≥ 𝑛 − 2𝐷, but deg𝑤𝑛,1 ≥ 𝑛 − 𝐷 if the zeros of 𝑇 lie outside Δ1. Therefore,

H(C \ Δ2) ∋
A𝑛,1

𝑤𝑛,1
= O

(︃
1

𝑧deg(𝑤𝑛,1)+1

)︃
.

Notice that A𝑛,1 and 𝑤𝑛,1 satisfy the hypothesis of Lemma 2.5, so

A𝑛,1(𝑧)
𝑤𝑛,1(𝑧)

=

∫
A𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
𝑤𝑛,1(𝑥)

,

and ∫
𝑥𝜈A𝑛,2(𝑥)

d𝜎2(𝑥)
𝑤𝑛,1(𝑥)

= 0, 𝜈 = 0, 1, . . . , deg(𝑤𝑛,1) − 1.

This yields A𝑛,2 has at least deg(𝑤𝑛,1) sign changes in the interior of Δ2.

Again, let 𝑤𝑛,2 be a polynomial with simple zeros at the points of sign change of A𝑛,2 in Δ2.
Hence, deg(𝑤𝑛,2) ≥ deg(𝑤𝑛,1) and

H(C \ Δ3) ∋
A𝑛,2

𝑤𝑛,2
= O

(︃
1

𝑧deg(𝑤𝑛,1)+1

)︃
.

Then, we have deduced the same conclusions for A𝑛,2 that we had for A𝑛,1, and we can repeat
the same reasoning inductively obtaining that for each 𝑗 = 1, . . . , 𝑚 − 1, there exists a polynomial
𝑤𝑛, 𝑗 , deg(𝑤𝑛, 𝑗) ≥ deg(𝑤𝑛,1), with simple zeros at the points of sign change of A𝑛, 𝑗 on Δ 𝑗 such
that

H(C \ Δ 𝑗+1) ∋
A𝑛, 𝑗

𝑤𝑛, 𝑗
= O

(︃
1

𝑧deg(𝑤𝑛,1)+1

)︃
. (2.14) {Amj}{Amj}

For 𝑗 = 𝑚 − 1, we have

H(C \ Δ𝑚) ∋
𝑎𝑛,𝑚ˆ︁𝑠𝑚,𝑚 − 𝑎𝑛,𝑚−1

𝑤𝑛,𝑚−1
(𝑧) = O

(︃
1

𝑧deg(𝑤𝑛,1)+1

)︃
, (2.15) {HP_s_mm}{HP_s_mm}

and using again Lemma 2.5, we obtain∫
𝑥𝜈𝑎𝑛,𝑚(𝑥)

d 𝑠𝑚,𝑚(𝑥)
𝑤𝑛,𝑚−1(𝑥)

= 0, 𝜈 = 0, 1, . . . deg(𝑤𝑛,1) − 1.

Whence, 𝑎𝑛,𝑚 has at least deg(𝑤𝑛,1) sign changes onΔ𝑚. Recall that in general deg(𝑤𝑛,1) ≥ 𝑛−2𝐷
and its degree is ≥ 𝑛 − 𝐷 if the zeros of 𝑇 lie outside Δ1. This settles the question on the number
of sign changes of the forms on the different intervals.

Now let us consider the question of an upper bound on the total number of zeros that A𝑛, 𝑗 , 𝑗 =

0, . . . , 𝑚 − 1, may have in C \Δ 𝑗+1. The arguments are pretty much the same. We will play on the
fact that deg(𝑎𝑛,𝑚) ≤ 𝑛 and 𝑎𝑛,𝑚 ≢ 0.

Assume that 𝑎𝑛,𝑚 ≡ 0. From (2.9) with 𝑤 ≡ 1 it follows that for each 𝑗 = 1, . . . , 𝑚 − 1,

A𝑛, 𝑗 (𝑧) =
∫

A𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥 d𝜎𝑗+1(𝑥).
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Since A𝑛,𝑚 = (−1)𝑚𝑎𝑛,𝑚, this formula with 𝑗 = 𝑚 − 1 readily implies that 𝑎𝑛,𝑚−1 ≡ 0 and
A𝑛,𝑚−1 ≡ 0 if 𝑎𝑛,𝑚 ≡ 0. Going down on the indices 𝑗 we conclude that 𝑎𝑛, 𝑗 ≡ 0 and A𝑛, 𝑗 ≡ 0 for
all 𝑗 = 1, . . . , 𝑚. Formula (2.9) also implies that

L𝑛,0(𝑧) =
∫

L𝑛,1(𝑥)
𝑧 − 𝑥 d𝜎1(𝑥).

If A𝑛,1 ≡ 0 so too L𝑛,1 ≡ 0; consequently, L𝑛,0 ≡ 0 and 𝑎𝑛,0 ≡ 0. In particular, should 𝑎𝑛,0 ≡ 0
then necessarily 𝑎𝑛, 𝑗 ≡ 0, 𝑗 = 0, . . . , 𝑚. However, we explicitly excluded the trivial solution in
Definition 2. So 𝑎𝑛,𝑚 ≢ 0.

Suppose that A𝑛,0 has at least 2𝐷 + 1 zeros in C \ Δ1. Then, there exists a polynomial with
real coefficients 𝑤𝑛,0 of degree ≥ 2𝐷 + 1 whose zeros lie in C \ Δ1 such that

L𝑛,0(𝑧)
𝑤𝑛,0(𝑧)

=
𝑇 (𝑧)A𝑛,0(𝑧)
𝑤𝑛,0(𝑧)

= O

(︃
1

𝑧𝑛+𝐷+2

)︃
∈ H(C \ Δ1).

Using 2.10, we obtain ∫
𝑥𝜈L𝑛,1(𝑥)

d𝜎1(𝑥)
𝑤𝑛,0(𝑥)

= 0, 𝜈 = 0, 1, . . . , 𝑛 + 𝐷.

This means that L𝑛,1 has at least 𝑛 +𝐷 + 1 sign changes on Δ1 and A𝑛,1 at least 𝑛 + 1 sign changes
on Δ1. Continuing as in the proof of the first part of the lemma we arrive at the conclusion that
𝑎𝑛,𝑚 has at least 𝑛 + 1 sign changes on Δ𝑚 which is not possible since it is a polynomial of degree
≤ 𝑛 not identically equal to zero. Therefore, A𝑛,0 has at most 2𝐷 zeros in C\Δ1. Notice that when
the zeros of 𝑇 are in the complement of Δ1 in order to conclude that A𝑛,1 has 𝑛 + 1 sign changes
on Δ1 it is sufficient to assume that deg(𝑤𝑛,0) ≥ 𝐷 + 1, so in this case one can prove that A𝑛,0 has
at most 𝐷 zeros in C \ Δ1.

Suppose that A𝑛,𝑘 has at least 𝑛 + 1 zeros in C \Δ𝑘+1 for some specific 𝑘 ∈ {1, . . . , 𝑚 − 1} and
𝑛. Then there exists a polynomial 𝑤𝑛,𝑘 with real coefficients of degree ≥ 𝑛 + 1 such that

A𝑛,𝑘 (𝑧)
𝑤𝑛,𝑘 (𝑧)

= O

(︃
1
𝑧𝑛+2

)︃
∈ H(C \ Δ𝑘+1),

which, reasoning as above, implies that A𝑛,𝑘+1 has at least 𝑛 + 1 sign changes on Δ𝑘+1. Continuing
the process one proves that for 𝑗 = 𝑘 +1, . . . , 𝑚, the forms A𝑛, 𝑗 also have at least 𝑛+1 sign changes
on Δ 𝑗 which contradicts the fact that 𝑎𝑛,𝑚 cannot have more than 𝑛 zeros.

Finally, suppose that for some 𝑛 we know that 𝑎𝑛,𝑚 has exactly 𝑛 − 𝐷 sign changes on Δ𝑚 and
A𝑛,𝑘 has at least 𝑛 − 𝐷 + 1 zeros in C \ Δ𝑘+1 for some 𝑘 ∈ {1, . . . , 𝑚 − 1}. Then there exists a
polynomial 𝑤𝑛,𝑘 with real coefficients with zeros in C \ Δ𝑘+1 and degree ≥ 𝑛 − 𝐷 + 1 such that

A𝑛,𝑘 (𝑧)
𝑤𝑛,𝑘 (𝑧)

= O

(︃
1

𝑧𝑛−𝐷+2

)︃
∈ H(C \ Δ𝑘+1).

Repeating the arguments used above it follows that for 𝑗 = 𝑘 + 1, . . . , 𝑚, the forms A𝑛, 𝑗 have at
least 𝑛 − 𝐷 + 1 sign changes on Δ 𝑗 . In particular, 𝑎𝑛,𝑚 would have 𝑛 − 𝐷 + 1 sign changes on Δ𝑚

against our assumption. Thus, A𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚 − 1 has at most 𝑛 − 𝐷 zeros on C \ Δ 𝑗+1. Since
it has 𝑛 − 𝐷 sign changes on Δ 𝑗 the statement readily follows. That A𝑛,0 has no zeros in C \ Δ1 is
proved analogously.

□
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2.3 Convergence results

We underline that in the next result no assumption is made on the rational functions 𝑟𝑘 except that
they have real coefficients. {th:conv:H}

Theorem 2.7:
For each 𝑛 ≥ 2𝐷, let 𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚 be the Hermite-Padé polynomials associated with the
Nikishin system N (𝜎1, . . . , 𝜎𝑚) and (𝑟1, . . . , 𝑟𝑚) such that (2.1) and (2.2) holds. Suppose that
either 𝜎𝑚 satisfies Carleman’s condition (1.9) or Δ𝑚−1 is a bounded interval. Then,

ℎ − lim
𝑛→∞

𝑎𝑛, 𝑗

𝑎𝑛,𝑚
= ˆ︁𝑠𝑚, 𝑗+1, ℎ − lim

𝑛→∞

𝑎𝑛,𝑚

𝑎𝑛, 𝑗
= ˆ︁𝑠−1

𝑚, 𝑗+1, 𝑗 = 1, . . . , 𝑚 − 1,

and

ℎ − lim
𝑛→∞

𝑎𝑛,0

𝑎𝑛,𝑚
= 𝑓 = ˆ︁𝑠𝑚,1 − 𝑚−1∑︁

𝑘=1
(−1)𝑘ˆ︁𝑠𝑚,𝑘+1𝑟𝑘 − (−1)𝑚𝑟𝑚, (2.16) {limit_an0_anm}{limit_an0_anm}

on each compact subset K ⊂ C \ Δ𝑚. Moreover, the polynomial 𝑎𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚 − 1, has at
least 𝑛 − 2𝐷 − 𝑚 + 𝑗 sign changes on Δ𝑚. If the zeros of the polynomial 𝑇 lie in the complement
of Δ1 then the polynomial 𝑎𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚 − 1, has at least 𝑛 − 𝐷 − 𝑚 + 𝑗 sign changes in Δ𝑚.

Proof. Let us point out that if 𝜎𝑚 satisfies Carleman’s condition so do the measures 𝑠𝑚, 𝑗 and
𝜏𝑚, 𝑗 , 𝑗 = 1, . . . , 𝑚, see [59, Theorem 1.5]. We reduce the proof of the limit relations to Lemma
1.7.

Assume that 𝑛 ≥ 2𝐷. Notice that (2.15) means that the polynomials 𝑎𝑛,𝑚−1, 𝑎𝑛,𝑚 and 𝑤𝑛,𝑚−1

satisfy the conditions of Definition 1.5. Therefore, the rational fractions 𝑎𝑛,𝑚−1/𝑎𝑛,𝑚 form a
sequence of incomplete diagonal multi-point Padé approximants of ˆ︁𝑠𝑚,𝑚.

Using Lemma 1.7 we have convergence in Hausdorff content on each compact subset ofC\Δ𝑚.
That is,

ℎ − lim
𝑛

𝑎𝑛,𝑚−1

𝑎𝑛,𝑚
= ˆ︁𝑠𝑚,𝑚.

Dividing A𝑛,𝑚−1
𝑤𝑛,𝑚−1

by ˆ︁𝑠𝑚,𝑚 = ˆ︁𝜎𝑚 and using (2.11), we obtain

(𝑎𝑛,𝑚−1ℓ𝑚 − 𝑎𝑛,𝑚) + 𝑎𝑛,𝑚−1ˆ︁𝜏𝑚
𝑤𝑛,𝑚−1

(𝑧) = O

(︃
1

𝑧𝑛−𝐷

)︃
.

So, we have again a sequence of incomplete multi-point approximants of ˆ︁𝜏𝑚 and, consequently,

ℎ − lim
𝑛

(︃
ℓ𝑚 −

𝑎𝑛,𝑚

𝑎𝑛,𝑚−1

)︃
= ˆ︁𝜏𝑚,

which is equivalent to

ℎ − lim
𝑛

𝑎𝑛,𝑚

𝑎𝑛,𝑚−1
= ˆ︁𝜎−1

𝑚

on compact subsets of C \ Δ𝑚.
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Now, using (2.11) and (2.12), for 𝑗 = 1, . . . , 𝑚 − 2, we have

A𝑛, 𝑗ˆ︁𝜎𝑗+1
=

⎛⎜⎝(−1) 𝑗ℓ 𝑗+1𝑎𝑛, 𝑗 + (−1) 𝑗+1𝑎𝑛, 𝑗+1 +
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘

|𝑠 𝑗+1,𝑘 |
|𝜎𝑗+1 |

𝑎𝑛,𝑘
⎞⎟⎠

+ (−1) 𝑗𝑎𝑛, 𝑗ˆ︁𝜏𝑗+1 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛,𝑘 ⟨𝜏𝑗+1, ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1⟩ˆ︁⟩.

The quotient A𝑛, 𝑗ˆ︁𝜎 𝑗+1
has the same structure as A in Lemma 2.5. Moreover, using (2.14), we obtain

A𝑛, 𝑗 (𝑧)
(ˆ︁𝜎𝑗+1𝑤𝑛, 𝑗) (𝑧)

= O

(︃
1

𝑧𝑛−2𝐷

)︃
∈ H(C \ Δ 𝑗+1),

and, as consequence of (2.10), for 𝜈 = 0, . . . , 𝑛 − 2𝐷 − 2, it follows that

0 =

∫
Δ 𝑗+1

𝑥𝜈
⎛⎜⎝(−1) 𝑗𝑎𝑛, 𝑗 −

𝑚∑︁
𝑘= 𝑗+2

(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩⎞⎟⎠ (𝑥)
d 𝜏𝑗+1(𝑥)
𝑤𝑛, 𝑗 (𝑥)

.

The expression in parenthesis under the integral sign has at least 𝑛 − 2𝐷 − 1 sign changes in Δ̊ 𝑗+1.
Thus, there exists a polynomial 𝑤∗

𝑛, 𝑗
of degree 𝑛 − 2𝐷 − 1 whose zeros are simple and lie in Δ̊ 𝑗+1

such that
1
𝑤∗
𝑛, 𝑗

⎛⎜⎝(−1) 𝑗𝑎𝑛, 𝑗 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩⎞⎟⎠ ∈ H(C \ Δ 𝑗+2).

Direct computation or [62, Lemma 2.1] allows to deduce

A𝑛, 𝑗 −ˆ︁𝑠 𝑗+1, 𝑗+1A𝑛, 𝑗+1 = (−1) 𝑗𝑎𝑛, 𝑗 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩.

From the statement of our problem we know that A𝑛, 𝑗 −ˆ︁𝑠 𝑗+1, 𝑗+1A𝑛, 𝑗+1 is O (1/𝑧). Hence,

1
𝑤∗
𝑛, 𝑗

(𝑧)
⎛⎜⎝(−1) 𝑗𝑎𝑛, 𝑗 −

𝑚∑︁
𝑘= 𝑗+2

(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩⎞⎟⎠ (𝑧) = O

(︃
1

𝑧𝑛−2𝐷

)︃
, 𝑧 → ∞.

Notice that if 𝑗 = 𝑚 − 2 we have

𝑎𝑛,𝑚−2 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚,𝑚−1

𝑤∗
𝑛, 𝑗

(𝑧) = O

(︃
1

𝑧𝑛−2𝐷

)︃
.

Thus, 𝑎𝑛,𝑚−2/𝑎𝑛,𝑚 is an incomplete diagonal multi-point Padé approximant of ˆ︁𝑠𝑚,𝑚−1 and we
obtain convergence in Hausdorff convergence on compact subsets of C \ Δ𝑚

ℎ − lim
𝑛→∞

𝑎𝑛,𝑚−2

𝑎𝑛,𝑚
= ˆ︁𝑠𝑚,𝑚−1.

Dividing by ˆ︁𝑠𝑚,𝑚−1 and arguing as we did above it also follows that

ℎ − lim
𝑛→∞

𝑎𝑛,𝑚

𝑎𝑛,𝑚−2
= ˆ︁𝑠−1

𝑚,𝑚−1.
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Using the identity ⟨𝑠 𝑗+2,𝑘 , 𝑠 𝑗+1, 𝑗+1⟩ = ⟨𝑠 𝑗+2, 𝑗+1, 𝑠 𝑗+3,𝑘⟩ for 𝑘 = 𝑗 + 3, . . . , 𝑚, we deduce

(−1) 𝑗𝑎𝑛, 𝑗 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩

= (−1) 𝑗𝑎𝑛, 𝑗 − (−1) 𝑗+2𝑎𝑛, 𝑗+2ˆ︁𝑠 𝑗+2, 𝑗+1 −
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+2, 𝑗+1, 𝑠 𝑗+3,𝑘ˆ︁⟩. (2.17){Prep_Elim}{Prep_Elim}

Since we wish to eliminate ˆ︁𝑠 𝑗+2, 𝑗+1 in the right hand side of (2.17), we divide both sides by it and
use again (2.11) and (2.12). Then,

⎛⎜⎝(−1) 𝑗𝑎𝑛, 𝑗ℓ 𝑗+2, 𝑗+1 − (−1) 𝑗+2𝑎𝑛, 𝑗+2 −
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘

|⟨𝑠 𝑗+2, 𝑗+1, 𝑠 𝑗+3,𝑘⟩|
|𝑠 𝑗+2, 𝑗+1 |

⎞⎟⎠+
(−1) 𝑗𝑎𝑛, 𝑗ˆ︁𝜏𝑗+2, 𝑗+1 +

𝑚∑︁
𝑘= 𝑗+3

(−1)𝑘𝑎𝑛,𝑘 ⟨𝜏𝑗+2, 𝑗+1, ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1⟩ˆ︁⟩
which is a linear form as those in Lemma 2.5. Thus

H(C \ Δ 𝑗+2) ∋
1

(𝑤∗
𝑛, 𝑗

ˆ︁𝑠 𝑗+2, 𝑗+1)
⎛⎜⎝(−1) 𝑗𝑎𝑛, 𝑗 +

𝑚∑︁
𝑘= 𝑗+3

(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩⎞⎟⎠ ∈ O

(︃
1

𝑧𝑛−2𝐷−1

)︃
.

Moreover, for 𝜈 = 0, 1, . . . , 𝑛 − 2𝐷 − 3,∫
𝑥𝜈

⎛⎜⎝(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩⎞⎟⎠ (𝑥)

d 𝜏𝑗+2, 𝑗+1(𝑥)
𝑤∗
𝑛, 𝑗

(𝑥) = 0.

So, the expression in parenthesis has at least 𝑛 − 2𝐷 − 2 sign changes in the interior of Δ 𝑗+2, and
we can assure the existence of a polynomial 𝑤∗

𝑛, 𝑗+1, deg𝑤∗
𝑛, 𝑗+1 = 𝑛 − 2𝐷 − 2, with simple zeros

located at the points of sign change inside Δ 𝑗+2 so that

1
𝑤∗
𝑛, 𝑗+1

⎛⎜⎝(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩⎞⎟⎠ ∈ H(C \ Δ 𝑗+3).

Using [62, Lemma 2.1] with 𝑟 = 𝑗 + 2 (or direct calculation), we have

(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩ = A𝑛, 𝑗 −ˆ︁𝑠 𝑗+1, 𝑗+1A𝑛, 𝑗+1 +ˆ︁𝑠 𝑗+1, 𝑗+1A𝑛, 𝑗+2,

and taking into account the definition of the forms A𝑛, 𝑗 the right hand side is O (1/𝑧); thus,

1
𝑤∗
𝑛, 𝑗+1(𝑧)

⎛⎜⎝(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩⎞⎟⎠ (𝑧) = O

(︃
1

𝑧𝑛−2𝐷−1

)︃
.

In particular, if 𝑗 = 𝑚 − 3, it is not difficult to see that the fraction 𝑎𝑛,𝑚−3/𝑎𝑛,𝑚 is an incom-
plete diagonal multi-point Padé approximant of ˆ︁𝑠𝑚,𝑚−2 from where we can deduce the Hausdorff
convergence on compact subsets of C \ Δ𝑚

ℎ − lim
𝑛

𝑎𝑛,𝑚−3

𝑎𝑛,𝑚
= ˆ︁𝑠𝑚,𝑚−2,
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and similarly
ℎ − lim

𝑛

𝑎𝑛,𝑚

𝑎𝑛,𝑚−3
= ˆ︁𝑠−1

𝑚,𝑚−2.

This process can be continued inductively. After 𝑚 − 𝑗 − 1 reductions we obtain the existence
of a polynomial ˜︁𝑤𝑛, 𝑗 with degree ≥ 𝑛 − 2𝐷 − 𝑚 + 𝑗 with simple zeros inside Δ𝑚−1 such that

𝑎𝑛, 𝑗 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚, 𝑗+1˜︁𝑤𝑛, 𝑗 (𝑧) = O

(︃
1

𝑧𝑛−2𝐷−𝑚+ 𝑗+2

)︃
∈ H(C \ Δ𝑚), 𝑧 → ∞, (2.18) {sign_changes}{sign_changes}

which allows us to deduce that
ℎ − lim

𝑛

𝑎𝑛, 𝑗

𝑎𝑛,𝑚
= ˆ︁𝑠𝑚, 𝑗+1,

on compact subsets of C \ Δ𝑚.

It readily follows that
𝑎𝑛, 𝑗 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚, 𝑗+1ˆ︁𝑠𝑚, 𝑗+1˜︁𝑤𝑛, 𝑗 (𝑧) = O

(︃
1

𝑧𝑛−2𝐷−𝑚+ 𝑗+1

)︃
∈ H(C \ Δ𝑚), 𝑧 → ∞,

but
𝑎𝑛, 𝑗 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚, 𝑗+1ˆ︁𝑠𝑚, 𝑗+1

= 𝑎𝑛, 𝑗ˆ︁𝜏𝑚, 𝑗+1 − (𝑎𝑛,𝑚 − ℓ𝑚, 𝑗+1𝑎𝑛, 𝑗).

Hence, ∫
𝑥𝜈𝑎𝑛, 𝑗 (𝑥)

d 𝜏𝑚, 𝑗+1(𝑥)˜︁𝑤𝑛, 𝑗 (𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 − 2𝐷 − 𝑚 + 𝑗 − 1.

Therefore, the polynomial 𝑎𝑛, 𝑗 has at least 𝑛 − 2𝐷 − 𝑚 + 𝑗 sign changes in Δ̊𝑚. Also, we obtain

ℎ − lim
𝑛

𝑎𝑛,𝑚

𝑎𝑛, 𝑗
= ˆ︁𝑠−1

𝑚, 𝑗+1

on compact subsets of C \ Δ𝑚.

To find the limit of the sequence 𝑎𝑛,0/𝑎𝑛,𝑚, 𝑛 ≥ 0, we change a little our previous arguments.
It is easy to check that the reasoning above do not change substantially if we consider the linear
forms L𝑛, 𝑗 := 𝑇 (𝑧)A𝑛, 𝑗 (𝑧) instead of A𝑛, 𝑗 . The main differences are in the asymptotic orders and
in the bounds for the number of sign changes in Δ𝑚, but not in the conclusions.

In consequence, the following holds (see (2.13))
𝑝𝑛,0 − 𝑝𝑛,𝑚ˆ︁𝑠𝑚,1˜︁𝑤𝑛,0 (𝑧) = O

(︃
1

𝑧𝑛−2𝐷−𝑚+ 𝑗−1

)︃
∈ H(C \ Δ𝑚),

and we conclude that
ℎ − lim

𝑛

𝑝𝑛,0

𝑝𝑛,𝑚
= ˆ︁𝑠𝑚,1.

However,
𝑝𝑛,0

𝑝𝑛,𝑚
=
𝑎𝑛,0𝑇 + ∑︁𝑚

𝑘=1(−1)𝑘𝑎𝑛,𝑘𝑇𝑟𝑘
𝑎𝑛,𝑚𝑇

=
𝑎𝑛,0

𝑎𝑛,𝑚
+

𝑚∑︁
𝑘=1

(−1)𝑘
𝑎𝑛,𝑘

𝑎𝑛,𝑚
𝑟𝑘 .

Therefore, (2.16) readily follows.

Throughout the proof, if the zeros of 𝑇 lie outside Δ1 then in the right hand side of (2.14) we
can write O

(︁
1/𝑧𝑛−𝐷+1)︁ and we can replace 2𝐷 with 𝐷 obtaining 𝑛 − 𝐷 − 𝑚 + 𝑗 sign changes on

Δ𝑚 for 𝑎𝑛, 𝑗 as indicated in the final statement.

□
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Once we have proved Theorem 2.7, the statement of Theorem 2.2 follows rather easily.

Proof of Theorem 2.2. In the hypothesis of this theorem the zeros of the polynomial 𝑇 lie outside
Δ1; consequently, according to the last statement of Lemma 2.6 the rational functions 𝑎𝑛,0

𝑎𝑛,𝑚
have at

most 𝐷 poles in C \Δ𝑚. On the other hand, we are assuming that 𝑓 has exactly 𝐷 poles in C \Δ𝑚.
From (2.16) and Lemma 1.8, we obtain that for all sufficiently large 𝑛 ∈ N the fractions 𝑎𝑛,0

𝑎𝑛,𝑚
have

exactly 𝐷 poles outside Δ𝑚. Moreover, Gonchar’s lemma asserts that each pole of 𝑓 in C \ Δ𝑚
attracts as many zeros of 𝑎𝑛,𝑚 as its order; that is, if 𝜁 ∈ C \ Δ𝑚 is a pole of 𝑓 of order 𝜏 then for
each 𝜀 > 0, there exists 𝑛0(𝜁) ∈ N such that for all 𝑛 ≥ 𝑛0(𝜁) the polynomial 𝑎𝑛,𝑚 has exactly 𝜏
zeros in the disk {𝑧 : |𝑧 − 𝜁 | < 𝜀}. Thus the statements about the zeros of 𝑎𝑛,𝑚 take place.

Fix 𝜀 > 0 and let 𝐷 𝜀 be C \ Δ𝑚 minus an 𝜀 neighborhood of each pole of 𝑓 in this region.
Then, there exists 𝑛0 such that for all 𝑛 ≥ 𝑛0 and 𝑗 = 0, . . . , 𝑚 − 1, the rational functions 𝑎𝑛, 𝑗/𝑎𝑛,𝑚
are analytic in 𝐷 𝜀 . From [37, Lemma 1] it follows that the limits in Lemma 2.7 hold uniformly on
each compact subset of 𝐷 𝜀 . Since 𝜀 > 0 is arbitrary, we obtain the limits in Theorem 2.2.

Fix 𝑗 = 1, . . . , 𝑚 − 1. Let 𝜁 be a zero of 𝑇 of multiplicity 𝜏. Choose 𝜀 > 0 small enough and 𝑁
sufficiently large such that 𝑎𝑛,𝑚 has no zero on {|𝑧 − 𝜁 | = 𝜀} and exactly 𝜏 zeros inside the circle
{|𝑧 − 𝜁 | = 𝜀} for 𝑛 ≥ 𝑁 . As the function ˆ︁𝑠𝑚, 𝑗+1 is holomorphic and has no zeros in C \ Δ𝑚, by the
uniform convergence we get

lim
𝑛→∞

∫
|𝑧−𝜁 |=𝜀

(𝑎𝑛, 𝑗/𝑎𝑛,𝑚) ′

𝑎𝑛, 𝑗/𝑎𝑛,𝑚
(𝑧) d 𝑧 =

∫
|𝑧−𝜁 |=𝜀

(ˆ︁𝑠𝑚, 𝑗+1) ′ˆ︁𝑠𝑚, 𝑗+1
(𝑧) d 𝑧 = 0.

Since 𝑎𝑛,𝑚 has exactly 𝜏 zeros inside {|𝑧 − 𝜁 | = 𝜀} for all sufficiently large 𝑛, from the argument
principle we obtain that 𝑎𝑛, 𝑗 , 𝑗 =, . . . , 𝑚 − 1 also has exactly 𝜏 zeros inside that disk for all
sufficiently large 𝑛.

Thus, in the circle {|𝑧− 𝜁 | < 𝜀} the number of zeros of 𝑎𝑛, 𝑗 and 𝑎𝑛,𝑚 coincide, i.e. 𝜁 attracts as
many zeros of 𝑎𝑛, 𝑗 as its order. We can extend this idea to a smooth Jordan curve Γ that surrounds
all zeros of 𝑇 and lies in C \ Δ𝑚. Then 𝐷 zeros of 𝑎𝑛, 𝑗 accumulate at the zeros of 𝑇 counting
multiplicities and the remaining ones accumulate on Δ𝑚 ∪ {∞}.

□

Theorem 2.2 has some consequences on the convergence of the forms A𝑛, 𝑗 . {conforms}

Corollary 2.8:
Under the assumptions of Theorem 2.2, we have

lim
𝑛→∞

A𝑛, 𝑗

𝑎𝑛,𝑚
= 0, 𝑗 = 0, . . . , 𝑚 − 1,

uniformly on each compact subset of C \ (Δ 𝑗+1 ∪ Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}).

Proof. From Theorem 2.2 and the expression of the forms A𝑛, 𝑗 it follows that for 𝑗 = 1, . . . , 𝑚−1,

lim
𝑛→∞

A𝑛, 𝑗

𝑎𝑛,𝑚
= (−1) 𝑗ˆ︁𝑠𝑚, 𝑗+1 +

𝑚−1∑︁
𝑘= 𝑗+1

(−1)𝑘ˆ︁𝑠𝑚,𝑘+1ˆ︁𝑠 𝑗+1,𝑘 + (−1)𝑚ˆ︁𝑠 𝑗+1,𝑚 ≡ 0,
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uniformly on compact subsets of C \ (Δ 𝑗+1 ∪Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}). The equivalence to zero of the
last expression is a consequence of a well known formula appearing in [31, Lemma 2.9]. Similarly,

lim
𝑛→∞

A𝑛,0

𝑎𝑛,𝑚
= 𝑓 +

𝑚−1∑︁
𝑘=1

(−1)𝑘ˆ︁𝑠𝑚.𝑘+1(ˆ︁𝑠1,𝑘 + 𝑟𝑘) + (−1)𝑚(ˆ︁𝑠1,𝑚 + 𝑟𝑚) ≡ 0,

uniformly on compact subsets of C \ (Δ1 ∪ Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}). In proving the equality to zero
aside from the identity in [31, Lemma 2.9] one uses the expression of 𝑓 .

□

2.3.1 Rate of convergence

Throughout this subsection we assume that the conditions of Theorem 2.2 are in place. We will
begin showing that when Δ𝑚 is a finite interval convergence takes place with geometric rate. We
will derive this result using Theorem 2.2 and the maximum principle. Similar arguments were
employed in [29] in the case of Type ii Hermite-Padé approximation. First, we introduce some
concepts to be used in the sequel.

Let 𝜑𝑡 , 𝑡 ∈ C \ Δ𝑚, be the conformal representation of C \ Δ𝑚 onto {𝑤 : |𝑤 | < 1} such that
𝜑𝑡 (𝑡) = 0, 𝜑′𝑡 (𝑡) > 0. It is easy to verify that |𝜑𝑡 (𝑧) | can be extended continuously to C

2
in the two

variables 𝑧, 𝑡 and equals zero only when 𝑧 = 𝑡. In fact

|𝜑𝑡 (𝑧) | =
|︁|︁|︁|︁|︁ 𝜑∞(𝑧) − 𝜑∞(𝑡)
1 − 𝜑∞(𝑡)𝜑∞(𝑧)

|︁|︁|︁|︁|︁ .
Let 0 < 𝜌 < 1 and

𝛾𝜌 := {𝑧 : |𝜑∞(𝑧) | = 𝜌}.

Fix a compact set K ⊂ C \ (Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}). Take 𝜌 sufficiently close to 1 so that K lies in
the unbounded connected component of the complement of 𝛾𝜌. Set

𝜅𝜌 := inf{|𝜑𝑡 (𝑧) | : 𝑡 ∈ Δ𝑚−1, 𝑧 ∈ 𝛾𝜌}, 𝛿(K ) = max{|𝜑𝑡 (𝑧) | : 𝑡 ∈ Δ𝑚−1, 𝑧 ∈ K }. (2.19){delta}{delta}

From the continuity of |𝜑𝑡 (𝑧) | in the two variables it readily follows that

lim
𝜌→1

𝜅𝜌 = 1, 𝛿(K ) < 1.

As usual, ∥ · ∥K denotes the uniform norm on K .{cor:4}

Corollary 2.9:
Under the hypothesis of Theorem 2.2, if we assume additionally that Δ𝑚 is bounded then

lim sup
𝑛

∥︁∥︁∥︁∥︁ 𝑎𝑛, 𝑗𝑎𝑛,𝑚
−ˆ︁𝑠𝑚, 𝑗+1

∥︁∥︁∥︁∥︁1/𝑛

K

≤ 𝛿(K )∥𝜑∞∥K < 1, 𝑗 = 1, . . . , 𝑚 − 1, (2.20){rate3}{rate3}

and

lim sup
𝑛

∥︁∥︁∥︁∥︁ 𝑎𝑛,0𝑎𝑛,𝑚
− 𝑓

∥︁∥︁∥︁∥︁1/𝑛

K

≤ 𝛿(K )∥𝜑∞∥K < 1 (2.21){polos*}{polos*}

for every compact set K ⊂ C \ (Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}) and 𝛿(K ) is defined in (2.19).
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Proof. Fix K ⊂ C \ (Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}). According to Theorem 2.2, for all sufficiently large
𝑛 > 𝑁 the polynomials 𝑎𝑛,𝑚 have exactly 𝐷 zeros in C \Δ𝑚 and they lie at a positive distance from
K (independent of 𝑛 > 𝐷). In the sequel we only consider such 𝑛’s.

Let 𝑞𝑛,𝑚 =
∏︁𝐷

1 (𝑧 − 𝑥𝑛,𝑘) be the monic polynomial of degree 𝐷 whose zeros are the roots of
𝑎𝑛,𝑚 outside Δ𝑚. From Theorem 2.2 we know that lim𝑛→∞ 𝑞𝑛,𝑚 = 𝑇 . Fix 𝑗 = 1, . . . , 𝑚. Assume
that ˜︁𝑤𝑛, 𝑗 (𝑧) =

∏︁deg( ˜︁𝑤𝑛, 𝑗 )
𝑘=1 (𝑧 − 𝜁𝑛, 𝑗,𝑘), where ˜︁𝑤𝑛, 𝑗 is the polynomial introduced in the proof of

Theorem 2.7 (see (2.18)). Set

𝜑𝑛, 𝑗 (𝑧) :=
deg( ˜︁𝑤𝑛, 𝑗 )∏︂
𝑘=1

𝜑𝜁𝑛, 𝑗,𝑘 (𝑧), 𝜓𝑛 (𝑧) :=
𝐷∏︂
𝑘=1

𝜑𝑥𝑛,𝑘 (𝑧).

From (2.18) it follows that

𝜓𝑛
(𝑎𝑛, 𝑗/𝑎𝑛,𝑚) −ˆ︁𝑠𝑚, 𝑗+1

𝜑𝑛∞𝜑𝑛, 𝑗
∈ H(C \ Δ𝑚).

Take 𝜌 sufficiently close to 1 so that K lies in the unbounded connected component of the
complement of 𝛾𝜌. On 𝛾𝜌, for all sufficiently large 𝑛 > 𝑁1 ≥ 𝑁 , we have∥︁∥︁∥︁∥︁𝜓𝑛 (𝑎𝑛, 𝑗/𝑎𝑛,𝑚) −ˆ︁𝑠𝑚, 𝑗+1

𝜑𝑛∞𝜑𝑛, 𝑗

∥︁∥︁∥︁∥︁
𝛾𝜌

≤ 𝜌−𝑛𝜅
− deg ˜︁𝑤𝑛, 𝑗

𝜌 . (2.22) {rate}{rate}

Indeed, |𝜓𝑛 (𝑧) | ≤ 1 for all 𝑧 ∈ C \Δ𝑚, 𝜑𝜁𝑛, 𝑗,𝑘 (𝑧) ≥ 𝜅𝜌 for all 𝜁𝑛, 𝑗,𝑘 ∈ Δ𝑚−1, and for all sufficiently
large 𝑛 ≥ 𝑁2 ≥ 𝑁1, ∥(𝑎𝑛, 𝑗/𝑎𝑛,𝑚) −ˆ︁𝑠𝑚, 𝑗+1∥𝛾𝜌 ≤ 1 since by Theorem 2.2 the function under the
norm sign converges to zero on 𝛾𝜌.

Using the maximum principle, from (2.22) it follows that for all 𝑧 ∈ K|︁|︁|︁|︁ 𝑎𝑛, 𝑗 (𝑧)𝑎𝑛,𝑚(𝑧)
−ˆ︁𝑠𝑚, 𝑗+1(𝑧)

|︁|︁|︁|︁ ≤ |𝜑𝑛, 𝑗 (𝑧)
|𝜓𝑛 (𝑧) |

𝜑𝑛∞(𝑧)
𝜌𝑛𝜅

deg( ˜︁𝑤𝑛, 𝑗 )
𝜌

≤
∥𝜑∞∥𝑛

K

|𝜓𝑛 (𝑧) |𝜌𝑛

(︃
𝛿(K )
𝜅𝜌

)︃deg( ˜︁𝑤𝑛, 𝑗 )
. (2.23) {rate2}{rate2}

Since the points 𝑥𝑛,1, . . . , 𝑥𝑛,𝐷 remain bounded away from K independently of 𝑛, we obtain that

inf
𝑛>𝑁3

{|𝜓𝑛 (𝑧) | : 𝑧 ∈ K } ≥ 𝐶 > 0,

where 𝑁3 ≥ 𝑁2 is sufficiently large. On the other hand, recall that 𝑛−2𝐷−𝑚+ 𝑗 ≤ deg(˜︁𝑤𝑛, 𝑗) ≤ 𝑛;
consequently, using (2.23), we obtain

lim sup
𝑛

∥︁∥︁∥︁∥︁ 𝑎𝑛, 𝑗𝑎𝑛,𝑚
−ˆ︁𝑠𝑚, 𝑗+1

∥︁∥︁∥︁∥︁1/𝑛

K

≤ 𝛿(K )∥𝜑∞∥K

𝜌𝑛𝜅𝜌
.

From here we get (2.20) since lim𝜌→1 𝜅𝜌 = 1.

The proof of (2.21) is basically the same.

□

We wish to point out that if Δ𝑚 is unbounded but Δ𝑚−1 is bounded then it is also possible to
prove convergence with geometric rate modifying slightly the arguments. Of course, the estimate
of the rate of convergence will differ from the one above.
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{cor5}

Corollary 2.10:
Under the hypothesis of Theorem 2.2 if we assume additionally that Δ𝑚 is bounded, then

lim sup
𝑛→∞

∥︁∥︁∥︁∥︁A𝑛, 𝑗

𝑎𝑛,𝑚

∥︁∥︁∥︁∥︁1/𝑛

K

≤ 𝛿(K )∥𝜑∞∥K , 𝑗 = 0, . . . , 𝑚 − 1,

for every compact K ⊂ C \ (Δ 𝑗+1 ∪ Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}).

Proof. Indeed, for 𝑗 = 1, . . . , 𝑚 − 1,

A𝑛, 𝑗

𝑎𝑛,𝑚
= (−1) 𝑗

𝑎𝑛, 𝑗

𝑎𝑛,𝑚
+

𝑚∑︁
𝑘= 𝑗+1

(−1)𝑘
𝑎𝑛,𝑘

𝑎𝑛,𝑚
ˆ︁𝑠 𝑗+1,𝑘 =

(−1) 𝑗
(︃
𝑎𝑛, 𝑗

𝑎𝑛,𝑚
−ˆ︁𝑠𝑚, 𝑗+1

)︃
+

𝑚−1∑︁
𝑘= 𝑗+1

(−1)𝑘
(︃
𝑎𝑛,𝑘

𝑎𝑛,𝑚
−ˆ︁𝑠𝑚,𝑘+1

)︃ ˆ︁𝑠 𝑗+1,𝑘

because, according to [31, Lemma 2.9]

(−1) 𝑗ˆ︁𝑠𝑚, 𝑗+1 +
𝑚−1∑︁
𝑘= 𝑗+1

(−1)𝑘ˆ︁𝑠𝑚.𝑘+1ˆ︁𝑠 𝑗+1,𝑘 + (−1)𝑚ˆ︁𝑠 𝑗+1,𝑚 ≡ 0

for all 𝑧 ∈ C \ (Δ 𝑗+1 ∪Δ𝑚). Now it remains to use (2.20) and trivial estimates. The proof for 𝑗 = 0
is similar.

□

When the measures generating the Nikishin system are regular (see Definition 1.10), then more
precise estimates of the rate of convergence may be given.

2.4 Multi-orthogonality relations

We begin by obtaining some integral representations which will be needed.{zeros_A_nj}

Lemma 2.11:
Assume that all the zeros of 𝑇 lie in the complement of Δ1 ∪ Δ𝑚, 𝑓 has exactly 𝐷 poles in C \ Δ𝑚,
and 𝑛 > 𝑁 ≥ 𝐷. Then, for each 𝑗 = 1, . . . , 𝑚 − 1,

A𝑛, 𝑗

𝑄𝑛, 𝑗
(𝑧) =

∫
Δ 𝑗+1

A𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)

(2.24){A_njQ_nj_1}{A_njQ_nj_1}

and
𝑇 (𝑧)A𝑛,0(𝑧) =

∫
Δ1

A𝑛,1(𝑥)𝑇 (𝑥)
𝑧 − 𝑥 d𝜎1(𝑥). (2.25){A_njQ_nj_2}{A_njQ_nj_2}

Moreover, for 𝑗 = 1, . . . , 𝑚 − 1∫
Δ 𝑗+1

𝑥𝜈A𝑛, 𝑗+1(𝑥)
d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 𝐷 − 1. (2.26){OrthA_njQ_nj_1}{OrthA_njQ_nj_1}

and ∫
Δ1

𝑥𝜈A𝑛,1(𝑥)𝑇 (𝑥) d𝜎1(𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 − 𝐷 − 1. (2.27){OrthA_njQ_nj_2}{OrthA_njQ_nj_2}
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Proof. Notice that 𝑇A𝑛,0 = O (1/𝑧𝑛−𝐷+1) ∈ H(C \ Δ1). Let Γ be a positively oriented closed
Jordan curve which surrounds Δ1 so that Δ2 and 𝑧 remain in the unbounded connected component
of the complement of Γ. We have

𝑇 (𝑧)A𝑛,0(𝑧) =
1

2𝜋𝑖

∫
Γ

(𝑇A𝑛,0) (𝜁)
𝑧 − 𝜁 d 𝜁

=
1

2𝜋𝑖

∫
Γ

(𝑇𝑎𝑛,0 +
∑︁𝑚
𝑘=1(−1)𝑘𝑎𝑛,𝑘𝑇𝑟𝑘) (𝜁)
𝑧 − 𝜁 d 𝜁 + 1

2𝜋𝑖

∫
Γ

(𝑇 ∑︁𝑚
𝑘=1(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠1,𝑘) (𝜁)

𝑧 − 𝜁 d 𝜁

(2.28) {zeros_A_nj:1}{zeros_A_nj:1}

=

∫
1

2𝜋𝑖

∫
Γ

(−𝑇𝑎𝑛,1 + 𝑇
∑︁𝑚
𝑘=2(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠2,𝑘) (𝜁)

(𝑧 − 𝜁) (𝜁 − 𝑥) d 𝜁 d𝜎1(𝑥) =
∫ (𝑇A𝑛,1) (𝑥)

𝑧 − 𝑥 𝑑𝜎1(𝑥).

Indeed the first equality comes from Cauchy’s integral formula for the complement of Γ. The
second equality is trivial. Since (𝑇𝑎𝑛,0 +

∑︁𝑚
𝑘=1(−1)𝑘𝑎𝑛,𝑘𝑇𝑟𝑘) (𝜁)/(𝑧 − 𝜁) is analytic with respect

to 𝜁 inside Γ, the first integral in (2.28) is zero. Substituting in the second integral ˆ︁𝑠1,𝑘 with its
integral representation and using Fubini’s theorem you get the third equality. The last equality
comes from the use of Cauchy’s integral formula inside Γ. Thus we obtain (2.25).

Similarly, since 𝑧𝜈𝑇A𝑛,0 = O (1/𝑧2) ∈ H(C \ Δ1), 𝜈 = 0, . . . , 𝑛 − 𝐷 − 1, we obtain

0 =
1

2𝜋𝑖

∫
Γ

𝜁 𝜈 (𝑇A𝑛,0) (𝜁) d 𝜁

=

∫
1

2𝜋𝑖

∫
Γ

𝜁 𝜈 (−𝑇𝑎𝑛,1 + 𝑇
∑︁𝑚
𝑘=2(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠2,𝑘) (𝜁)

(𝜁 − 𝑥) d 𝜁 d𝜎1(𝑥)

=

∫
𝑥𝜈 (𝑇A𝑛,1) (𝑥)𝑑𝜎1(𝑥).

which is (2.27).

In order to derive (2.24) and (2.26) one proceeds analogously. It is sufficient to use that
𝑧𝜈A𝑛, 𝑗/𝑄𝑛, 𝑗 = O (1/𝑧2) ∈ H(C \ Δ 𝑗+1), 𝑗 = 1, . . . , 𝑚 − 1, 𝜈 = 0, . . . , 𝑛 − 𝐷 − 1 and take Γ

a positively oriented closed Jordan curve which surrounds Δ 𝑗+1 so that Δ 𝑗+2 (Δ𝑚+1 = ∅) and 𝑧
remain in the unbounded connected component of the complement of Γ.

□

The previous lemma can be reformulated as follows.

Lemma 2.12:
Assume that all the zeros of 𝑇 lie in the complement of Δ1 ∪ Δ𝑚, 𝑓 has exactly 𝐷 poles in C \ Δ𝑚,
and 𝑛 > 𝑁 ≥ 𝐷. For each fixed 𝑗 = 0, . . . , 𝑚 − 1,∫

𝑥𝜈𝑄𝑛, 𝑗+1(𝑥)
H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+2(𝑥)

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 𝐷 − 1. (2.29) {Orth_H_nj}{Orth_H_nj}

Moreover, for 𝑗 = 0, 2, 3, . . . , 𝑚 − 1

H𝑛, 𝑗 (𝑧) =
∫ 𝑄2

𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+2(𝑥)

, (2.30) {H_mjIdentity_1}{H_mjIdentity_1}
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and

H𝑛,1(𝑧) = 𝑇 (𝑧)
∫

𝑄2
𝑛,2(𝑥)
𝑧 − 𝑥

H𝑛,2(𝑥) d𝜎2(𝑥)
𝑄𝑛,1(𝑥)𝑄𝑛,3(𝑥)

. (2.31) {H_mjIdentity_2}{H_mjIdentity_2}

Recall that by convention 𝑄𝑛,0 ≡ 𝑄𝑛,𝑚+1 ≡ 1.

Proof. Formula (2.29) is a restatement of (2.26) and (2.27) using the notation of the functions
H𝑛, 𝑗 .

Since deg𝑄𝑛, 𝑗+1 = 𝑛 − 𝐷, from (2.29) we deduce that for 𝑗 = 0, . . . , 𝑚 − 1∫
𝑄𝑛, 𝑗+1(𝑧) −𝑄𝑛, 𝑗+1(𝑥)

𝑧 − 𝑥 𝑄𝑛, 𝑗+1(𝑥)
H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+2(𝑥)

= 0.

This last identity can be rewritten as

𝑄𝑛, 𝑗+1(𝑧)
∫

𝑄𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+2(𝑥)

=

∫ 𝑄2
𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+2(𝑥)

.

For 𝑗 = 2, . . . , 𝑚 − 1∫
𝑄𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+2(𝑥)

=

∫
A𝑛, 𝑗 (𝑥)
𝑧 − 𝑥

d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)

=
A𝑛, 𝑗 (𝑧)
𝑄𝑛, 𝑗 (𝑧)

and (2.30) immediately follows for 𝑗 = 2, . . . , 𝑚 − 1. In the case 𝑗 = 1, notice that∫
𝑄2
𝑛,2(𝑥)
𝑧 − 𝑥

H𝑛,2(𝑥) d𝜎2(𝑥)
𝑄𝑛,1(𝑥)𝑄𝑛,3(𝑥)

=
𝑄𝑛,2(𝑧)
𝑄𝑛,1(𝑧)

A𝑛,1(𝑧) =
H𝑛,1(𝑧)
𝑇 (𝑧) ,

which is equivalent to (2.31). For 𝑗 = 0 we proceed as for (2.30), 𝑗 = 2, . . . , 𝑚 − 1.

□

The previous lemma indicates that the polynomial 𝑄𝑛, 𝑗 , 𝑗 = 1, . . . , 𝑚, is orthogonal with
respect to the varying measure

H𝑛, 𝑗 (𝑥) d𝜎𝑗 (𝑥)
𝑄𝑛, 𝑗−1(𝑥)𝑄𝑛, 𝑗+1(𝑥)

.

This varying measure has constant sign because 𝑄𝑛, 𝑗−1 and 𝑄𝑛, 𝑗+1 have constant sign on Δ 𝑗 and
H𝑛, 𝑗 also has constant sign since 𝑄𝑛, 𝑗 takes away the zeros of A𝑛, 𝑗 on Δ̊ 𝑗 .

2.5 Proof of general asymptotic results

For the proof of Theorem 2.3 we make use of a technique introduced in [41] for the study of the
weak asymptotic of Type ii multiple orthogonal polynomials associated with generalized Nikishin
systems (see also [28, 32, 33]).

Proof of Theorem 2.3. The unit ball in the cone of positive Borel measures is weak star compact;
therefore, it is sufficient to show that each sequence of measures

(︂
𝜇𝑄𝑛, 𝑗

)︂
𝑛≥𝑁

, 𝑗 = 1, . . . , 𝑚, has
only one accumulation point which coincides with the corresponding component of the vector
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equilibrium measure 𝜆⃗ determined by the matrix CN on the system of compact sets supp𝜎𝑗 ,
𝑗 = 1, . . . , 𝑚.

Let Λ be a sequence indices such that for each 𝑗 = 1, . . . , 𝑚

∗ lim
𝑛∈Λ

𝜇𝑄𝑛, 𝑗
= 𝜇 𝑗 .

Notice that 𝜇 𝑗 ∈ M1(𝐸 𝑗), 𝑗 = 1, . . . , 𝑚. Taking into account that all the zeros of 𝑄𝑛, 𝑗 lie in Δ 𝑗 , it
follows that

lim
𝑛∈Λ

|𝑄𝑛, 𝑗 (𝑧) |1/𝑛 = exp (−𝑉 𝜇 𝑗 (𝑧)) , (2.32) {limit_nesimo_Qnj}{limit_nesimo_Qnj}

uniformly on compact subsets of C \ Δ 𝑗 .

The generating measures 𝜎𝑗 , 𝑗 = 1, . . . , 𝑚, have constant sign. Without loss of generality we
can assume that they are positive. Notice that A𝑛,𝑚 = ±𝑄𝑛,𝑚𝑇𝑛, where𝑇𝑛 ⇒ 𝑇 on compact subsets
of C (recall that 𝑎𝑛,𝑚 is monic). Hence, formula (2.29), when 𝑗 = 𝑚 − 1 becomes∫

𝑥𝜈𝑄𝑛,𝑚(𝑥)
𝑇𝑛 (𝑥) d𝜎𝑚(𝑥)
𝑄𝑛,𝑚−1(𝑥)

, 𝜈 = 0, 1, . . . , 𝑛 − 𝐷 − 1.

In order to use Lemma 1.13, write 𝜙𝑛 = 𝑇𝑛/𝑄𝑛,𝑚−1. Then,

lim
𝑛∈Λ

1
2𝑛

log 𝜙𝑛 (𝑥) = lim
𝑛∈Λ

(︃
1
2𝑛

log𝑄𝑛,𝑚−1 −
1
2𝑛

log𝑇𝑛
)︃
.

As 𝑇𝑛 ⇒ 𝑇 on supp𝜎𝑚, where the polynomial 𝑇 has no zeros, we conclude that 0 < 𝑏 ≤ |𝑇𝑛 | ≤ 𝐵,
and 1

2𝑛 log𝑇𝑛 ⇒ 0 uniformly on supp𝜎𝑚. According to (2.32) we get

lim
𝑛∈Λ

1
2𝑛

log |𝑄𝑛,𝑚−1(𝑥) | = −1
2
𝑉 𝜇𝑚−1 (𝑥),

uniformly on supp𝜎𝑚. So,

lim
𝑛∈Λ

1
2𝑛

log 𝜙𝑛 (𝑥) = −1
2
𝑉 𝜇𝑚−1 (𝑥) > −∞.

Thus, from Lemma 1.13 we deduce that 𝜇𝑚 is the unique solution of the extremal problem

𝑉 𝜇𝑚 (𝑥) − 1
2
𝑉 𝜇𝑚−1 (𝑥)

⎧⎪⎪⎨⎪⎪⎩
= 𝑤𝑚, 𝑥 ∈ supp(𝜇𝑚),

≥ 𝑤𝑚, 𝑥 ∈ supp(𝜎𝑚),
(2.33) {extremal_Qnm}{extremal_Qnm}

and

lim
𝑛∈Λ

(︄∫
𝑄2
𝑛,𝑚(𝑥)

|𝑄𝑛,𝑚−1(𝑥) |
d𝜎𝑚(𝑥)

)︄1/2𝑛

= 𝑒𝑤𝑚 . (2.34) {log_asymp_Qnm}{log_asymp_Qnm}

Next, we prove by induction on decreasing values of 𝑗 , that for all 𝑗 = 1, . . . , 𝑚

𝑉 𝜇 𝑗 (𝑥) − 1
2
𝑉 𝜇 𝑗−1 (𝑥) − 1

2
𝑉 𝜇 𝑗+1 (𝑥) + 𝑤 𝑗+1

⎧⎪⎪⎨⎪⎪⎩
= 𝑤 𝑗 , 𝑥 ∈ supp 𝜇 𝑗 ,

≥ 𝑤 𝑗 , 𝑥 ∈ supp𝜎𝑗 ,
(2.35) {extremal_Qnj}{extremal_Qnj}

where 𝑉 𝜇0 ≡ 𝑉 𝜇𝑚+1 ≡ 0, 𝑤𝑚+1 = 0, and

lim
𝑛∈Λ

(︃∫
𝑄2
𝑛, 𝑗 (𝑥)

|H𝑛, 𝑗 (𝑥) | d𝜎𝑗 (𝑥)
|𝑄𝑛, 𝑗−1(𝑥)𝑄𝑛,𝑚+1(𝑥) |

)︃1/2𝑛
= 𝑒−𝑤𝑗 (2.36) {limit_norm2_Qnj}{limit_norm2_Qnj}
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where 𝑄𝑛,0 ≡ 𝑄𝑛,𝑚+1 ≡ 1.

Notice that for 𝑗 = 𝑚 these relations are (2.34) and (2.33), and the initial step of the induction
is settled. Suppose that the statement is true for 𝑗 + 1 ∈ {3, . . . , 𝑚} and let us prove it for 𝑗 . The
step from 𝑗 = 2 to 𝑗 = 1 will be treated separately afterwards.

For 𝑗 = 1, . . . , 𝑚 the orthogonality relations (2.29) can be expressed as∫
𝑥𝜈𝑄𝑛, 𝑗 (𝑥)

H𝑛, 𝑗 (𝑥) d𝜎𝑗 (𝑥)
𝑄𝑛, 𝑗−1(𝑥)𝑄𝑛, 𝑗+1(𝑥)

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 𝐷 − 1, (2.37){Orth_H_nj_rewritten}{Orth_H_nj_rewritten}

and using (2.30), 𝑗 = 2, . . . , 𝑚∫
𝑥𝜈𝑄𝑛, 𝑗 (𝑥)

(︄∫ 𝑄2
𝑛, 𝑗+1(𝑡)
𝑥 − 𝑡

H𝑛, 𝑗+1(𝑡) d𝜎𝑗+1(𝑡)
𝑄𝑛, 𝑗 (𝑡)𝑄𝑛, 𝑗+2(𝑡)

)︄
d𝜎𝑗 (𝑥)

𝑄𝑛, 𝑗−1(𝑥)𝑄𝑛, 𝑗+1(𝑥)
= 0,

for 𝜈 = 0, 1, . . . , 𝑛 − 𝐷 − 1.

The limit in (2.32) gives us that

lim
𝑛∈Λ

1
2𝑛

log |𝑄𝑛, 𝑗−1(𝑥)𝑄𝑛, 𝑗+1(𝑥) | = −1
2
𝑉 𝜇 𝑗−1 (𝑥) − 1

2
𝑉 𝜇 𝑗+1 (𝑥),

uniformly on Δ 𝑗 .

Set

𝐾𝑛, 𝑗+1 :=
(︃∫

𝑄2
𝑛, 𝑗+1(𝑡)

|H𝑛, 𝑗+1(𝑡) | d𝜎𝑗+1(𝑡)
|𝑄𝑛, 𝑗 (𝑡)𝑄𝑛, 𝑗+2(𝑡) |

)︃−1/2
.

It follows that for 𝑥 ∈ Δ 𝑗

1
𝛿∗
𝑗+1𝐾

2
𝑛, 𝑗+1

≤
∫ 𝑄2

𝑛, 𝑗+1(𝑡)
|𝑥 − 𝑡 |

|H𝑛, 𝑗+1(𝑡) | d𝜎𝑗+1(𝑡)
|𝑄𝑛, 𝑗 (𝑡)𝑄𝑛, 𝑗+2(𝑡) |

≤ 1
𝛿 𝑗+1𝐾

2
𝑛, 𝑗+1

where 0 < 𝛿 𝑗+1 = inf{|𝑥 − 𝑡 | : 𝑡 ∈ Δ 𝑗+1, 𝑥 ∈ Δ 𝑗} ≤ max{|𝑥 − 𝑡 | : 𝑡 ∈ Δ 𝑗+1, 𝑥 ∈ Δ 𝑗} = 𝛿∗
𝑗+1 < ∞.

Taking into consideration these inequalities, from the induction hypothesis, we obtain that

lim
𝑛∈Λ

(︄∫ 𝑄2
𝑛, 𝑗+1(𝑡)
|𝑥 − 𝑡 |

|H𝑛, 𝑗+1(𝑡) | d𝜎𝑗+1(𝑡)
|𝑄𝑛, 𝑗 (𝑡)𝑄𝑛, 𝑗+2(𝑡) |

)︄1/2𝑛

= 𝑒−𝑤𝑗+1 . (2.38){limit_exp_wj+1}{limit_exp_wj+1}

Taking (2.5) and (2.38) into account, Lemma 1.13 yields that 𝜇 𝑗 is the unique solution of the
extremal problem (2.35) and

lim
𝑛∈Λ

(︄∬ 𝑄2
𝑛, 𝑗+1(𝑡)
|𝑥 − 𝑡 |

|H𝑛, 𝑗+1(𝑡) | d𝜎𝑗+1(𝑡)
|𝑄𝑛, 𝑗 (𝑡)𝑄𝑛, 𝑗+1(𝑡) |

𝑄2
𝑛, 𝑗

(𝑥) d𝜎𝑗 (𝑥)
|𝑄𝑛, 𝑗−1(𝑥)𝑄𝑛, 𝑗+1(𝑥) |

)︄1/2𝑛

= 𝑒−𝑤𝑗 .

As a consequence of (2.30), 𝑗 = 2, . . . , 𝑚 − 1, the above formula reduces to (2.36).

For 𝑗 = 1 formula (2.37) becomes∫
𝑥𝜈𝑄𝑛,1(𝑥)

(︄
𝑇 (𝑥)

∫
𝑄2
𝑛,2(𝑡)
𝑥 − 𝑡

H𝑛, 𝑗 (𝑡) d𝜎2(𝑡)
𝑄𝑛,1(𝑡)𝑄𝑛,3(𝑡)

)︄
d𝜎1(𝑥)
𝑄𝑛,2(𝑥)

= 0, 𝜈 = 0, . . . , 𝑛 − 𝐷 − 1.
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From (2.32) we have lim𝑛∈Λ
1

2𝑛 log |𝑄𝑛,2(𝑥) | = − 1
2𝑉

𝜇2 (𝑥) uniformly on Δ1. Recall that 0 < 𝑏 ≤
𝑇 (𝑥) ≤ 𝐵 in Δ1, thus it follows that for 𝑥 ∈ Δ1:

𝑏

𝛿∗2𝐾
2
𝑛,2

≤ |𝑇 (𝑥) |
∫

𝑄2
𝑛,2(𝑡)
|𝑥 − 𝑡 |

|H𝑛, 𝑗 (𝑡) | d𝜎2(𝑡)
|𝑄𝑛,1(𝑡)𝑄𝑛,3(𝑡) |

≤ 𝐵

𝛿2𝐾
2
𝑛,2
.

From here on, all the arguments used before work as well and the induction process is completed.

We can rewrite (2.35) as

𝑉 𝜇 𝑗 (𝑥) − 1
2
𝑉 𝜇 𝑗−1 − 1

2
𝑉 𝜇 𝑗+1 (𝑥)

⎧⎪⎪⎨⎪⎪⎩
= 𝑤′

𝑗
, 𝑥 ∈ supp 𝜇 𝑗 ,

≥ 𝑤′
𝑗
, 𝑥 ∈ supp𝜎𝑗 ,

(2.39){vecequil2}{vecequil2}

for 𝑗 = 1, . . . , 𝑚, where

𝑤′
𝑗 = 𝑤 𝑗 − 𝑤 𝑗+1, 𝑤𝑚+1 = 0. (2.40) {relations_ws}{relations_ws}

(Recall that the terms with𝑉 𝜇0 and𝑉 𝜇𝑚+1 do not appear when 𝑗 = 0 and 𝑗 = 𝑚, respectively). Now,
(2.39) adopts the form of (2.5) which has only one solution. If follows that 𝜆⃗ = (𝜇1, . . . , 𝜇𝑚) is the
equilibrium solution for the vector potential problem determined by the interactions matrix CN

on the system of compact sets supp𝜎𝑗 , 𝑗 = 1, . . . , 𝑚 and 𝜔𝜆⃗ = (𝑤′
1, . . . , 𝑤

′
𝑚) is the corresponding

vector equilibrium constant. This is for any convergent subsequence; since the equilibrium problem
does not depend on Λ and the solution is unique we obtain (2.6).

From the uniqueness of the vector equilibrium constant and (2.36), we get

lim
𝑛→∞

(︃∫
𝑄2
𝑛, 𝑗 (𝑥)

|H𝑛, 𝑗 (𝑥) | d𝜎𝑗 (𝑥)
|𝑄𝑛, 𝑗−1(𝑥)𝑄𝑛, 𝑗+1(𝑥) |

)︃1/2𝑛
= 𝑒−𝑤𝑗 ,

On the other hand, from (2.40) it follows that 𝑤𝑚 = 𝜔𝜆⃗𝑚 when 𝑗 = 𝑚. Suppose that 𝑤 𝑗+1 =∑︁𝑚
𝑘= 𝑗+1 𝜔

𝜆⃗
𝑘

where 𝑗 + 1 ∈ {2, . . . , 𝑚}. Then, according to (2.40)

𝑤 𝑗 = 𝑤
′
𝑗 + 𝑤 𝑗+1 = 𝜔𝜆⃗𝑗 + 𝑤 𝑗+1 =

𝑚∑︁
𝑘= 𝑗

𝜔𝜆⃗𝑘

and (2.7) immediately follows.

□

Now we are ready to give a proof of Theorem 2.4.

Proof of Theorem 2.4. Since A𝑛,𝑚 = ±𝑄𝑛,𝑚𝑇𝑛 and𝑇𝑛 ⇒ 𝑇 on compact subsets of C, (2.6) implies

lim
𝑛→∞

|A𝑛,𝑚(𝑧) |1/𝑛 = exp
(︂
−𝑉𝜆𝑚

)︂
, 𝑧 ∈ K ⊂ C \ (Δ𝑚 ∪ 𝑍).

For 𝑗 = 1, . . . , 𝑚 − 1, from (2.30) we have

A𝑛, 𝑗 (𝑧) =
𝑄𝑛, 𝑗 (𝑧)
𝑄𝑛, 𝑗+1(𝑧)

∫ 𝑄2
𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+2(𝑥)

, (2.41) {Anj_Integral}{Anj_Integral}
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where 𝑄𝑛,0 ≡ 𝑄𝑛,𝑚+1 ≡ 1. Now, (2.6) implies

lim
𝑛→∞

|︁|︁|︁|︁ 𝑄𝑛, 𝑗 (𝑧)𝑄𝑛, 𝑗+1(𝑧)

|︁|︁|︁|︁1/𝑛 = exp
(︂
𝑉𝜆 𝑗+1 (𝑧) −𝑉𝜆 𝑗 (𝑧)

)︂
, K ⊂ C \ (Δ 𝑗 ∪ Δ 𝑗+1)

(we also use that the zeros of 𝑄𝑛, 𝑗 and 𝑄𝑛, 𝑗+1 lie in Δ 𝑗 and Δ 𝑗+1, respectively). It remains to find
the 𝑛-th root asymptotic behavior of the integral.

Fix a compact set K ⊂ C \ Δ 𝑗+1. It is easy to verify that

𝐶1

𝐾2
𝑛, 𝑗+1

≤
|︁|︁|︁|︁|︁∫ 𝑄2

𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+1(𝑥)

|︁|︁|︁|︁|︁ ≤ 𝐶2

𝐾2
𝑛, 𝑗+1

, (2.42){bounds_integral}{bounds_integral}

where
𝐶1 =

min{max{|𝑢 − 𝑥 |, |𝑣 | : 𝑧 = 𝑢 + 𝑖𝑣} : 𝑧 ∈ K , 𝑥 ∈ Δ 𝑗+1}
max{|𝑧 − 𝑥 |2 : 𝑧 ∈ K , 𝑥 ∈ Δ 𝑗+1}

and
𝐶2 =

1
min{|𝑧 − 𝑥 | : 𝑧 ∈ K , 𝑥 ∈ Δ 𝑗+1}

< ∞.

Taking into account (2.7) we get

lim
𝑛→∞

|︁|︁|︁|︁|︁∫ 𝑄2
𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)𝑄𝑛, 𝑗+2(𝑥)

|︁|︁|︁|︁|︁1/𝑛 = exp ⎛⎜⎝−2
𝑚∑︁

𝑘= 𝑗+1
𝜔𝜆⃗𝑘

⎞⎟⎠ . (2.43){limit_integral}{limit_integral}

From (2.41)-(2.43) we deduce (2.8). Finally, notice that

lim
𝑛→∞

|𝑇 (𝑧)A𝑛,0(𝑧) |1/𝑛 = lim
𝑛→∞

|A𝑛,0(𝑧) |1/𝑛

for all 𝑧 ∈ C \ (Δ1 ∪ 𝑍), in case that the first limit exists. This last statement holds, and its proof
follows easily using the same arguments as above.

□

2.6 Outcomes of Theorem 2.3

Let us find the logarithmic asymptotic of the polynomials 𝑎𝑛, 𝑗 , 𝑗 = 0, . . . , 𝑚.

Corollary 2.13:
Under the assumptions of Theorem 2.3,

lim
𝑛→∞

|𝑎𝑛, 𝑗 (𝑧) |1/𝑛 = 𝐴𝑚(𝑧), 𝑗 = 1, . . . , 𝑚, (2.44){limit_nrooth_anj}{limit_nrooth_anj}

uniformly on compact subsets of C \ (Δ𝑚 ∪ 𝑍).

Proof. In the proof of Theorem 2.4 we obtained (2.44) for 𝑗 = 𝑚. Now, recall that the functionˆ︁𝑠𝑚, 𝑗+1 never equals zero in C \ (Δ𝑚 ∪ 𝑍); therefore, for the remaining values of 𝑗 , the limit (2.44)
is an immediate consequence of (2.44) for 𝑗 = 𝑚 and (2.3).

□
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Regarding (2.44) for 𝑗 = 0, aside from 𝑍 we would have to exclude from C \ Δ𝑚 all the points
where 𝑓 = 0.

Our next goal is to produce estimates of the rate of convergence in (2.3). First we prove {corollary_logarithmic_asym}

Corollary 2.14:
Under the assumptions of Theorem 2.3, for 𝑘 = 1, . . . , 𝑚 and 𝑗 = 0, . . . , 𝑘 − 1, we have

lim sup
𝑛→∞

|︁|︁|︁|︁A𝑛, 𝑗 (𝑧)
A𝑛,𝑘 (𝑧)

|︁|︁|︁|︁1/𝑛 ≤ exp ⎛⎜⎝−𝑉𝜆𝑘+1 (𝑧) +𝑉𝜆𝑘 (𝑧) +𝑉𝜆 𝑗+1 (𝑧) −𝑉𝜆 𝑗 (𝑧) − 2
𝑘∑︁

ℓ= 𝑗+1
𝜔𝜆⃗ℓ

⎞⎟⎠ , (2.45) {inequality_nrooth_ratio_Anj}{inequality_nrooth_ratio_Anj}

uniformly on compact subsets K ⊂ C \ (Δ𝑘 ∪ Δ 𝑗+1), and

lim
𝑛→∞

|︁|︁|︁|︁A𝑛, 𝑗 (𝑧)
A𝑛,𝑘 (𝑧)

|︁|︁|︁|︁1/𝑛 = exp ⎛⎜⎝−𝑉𝜆𝑘+1 (𝑧) +𝑉𝜆𝑘 (𝑧) +𝑉𝜆 𝑗+1 (𝑧) −𝑉𝜆 𝑗 (𝑧) − 2
𝑘∑︁

ℓ= 𝑗+1
𝜔𝜆⃗ℓ

⎞⎟⎠ , (2.46) {limit_nrooth_ratio_Anj}{limit_nrooth_ratio_Anj}

uniformly on compact subsets of K ⊂ C \ (Δ 𝑗 ∪ Δ 𝑗+1 ∪ Δ𝑘 ∪ Δ𝑘+1). If 𝑗 = 0 or 𝑘 = 𝑚 we must
also delete from C the zeros of 𝑇 in order that (2.45) and (2.46) remain valid. For 𝑘 = 1, . . . , 𝑚

−𝑉𝜆𝑘+1 (𝑧) + 2𝑉𝜆𝑘 (𝑧) −𝑉𝜆𝑘−1 (𝑧) − 2𝜔𝜆⃗𝑘 < 0, 𝑧 ∈ C \ Δ𝑘 (2.47) {potentials_inequality_0}{potentials_inequality_0}

(by convention, 𝑉𝜆0 ≡ 𝑉𝜆𝑚+1 ≡ 0). If 𝑘 > 𝑗 + 1

−𝑉𝜆𝑘+1 (𝑧) +𝑉𝜆𝑘 (𝑧) +𝑉𝜆 𝑗+1 (𝑧) −𝑉𝜆 𝑗 (𝑧) − 2
𝑘∑︁

ℓ= 𝑗+1
𝜔𝜆⃗ℓ < 0, 𝑧 ∈ C, (2.48) {inequality_sumpotentials}{inequality_sumpotentials}

which implies that the sequence {A𝑛, 𝑗/A𝑛,𝑘 } converges to zero with geometric rate on each
compact subset of C \ (Δ𝑘 ∪ Δ 𝑗+1) (C \ (Δ𝑘 ∪ Δ 𝑗+1 ∪ 𝑍 if 𝑘 = 𝑚 or 𝑗 = 0).

Proof. Fix 𝑘 ∈ {1, . . . , 𝑚 − 1} and 𝑗 ∈ {1, . . . , 𝑘 − 1}. Using (2.41) we get

A𝑛, 𝑗 (𝑧)
A𝑛,𝑘 (𝑧)

=
𝑄𝑛, 𝑗 (𝑧)𝑄𝑛,𝑘+1(𝑧)
𝑄𝑛, 𝑗+1(𝑧)𝑄𝑛,𝑘 (𝑧)

∫ 𝑄2
𝑚, 𝑗+1 (𝑧)
𝑧−𝑥

H𝑛, 𝑗 (𝑥) d 𝜎 𝑗+1 (𝑧)
𝑄𝑛, 𝑗 (𝑧)𝑄𝑛, 𝑗+2 (𝑧)∫ 𝑄2

𝑚,𝑘+1 (𝑧)
𝑧−𝑥

H𝑛,𝑘 (𝑥) d 𝜎𝑘+1 (𝑧)
𝑄𝑛,𝑘 (𝑧)𝑄𝑛,𝑘+2 (𝑧)

(2.49) {ratio_Anj_integralrep*}{ratio_Anj_integralrep*}

From (2.6) it follows that uniformly on each compact subset K ⊂ C \ (Δ 𝑗 ∪ Δ 𝑗+1 ∪ Δ𝑘 ∪ Δ𝑘+1)
we have

lim
𝑛→∞

|︁|︁|︁|︁𝑄𝑛, 𝑗 (𝑧)𝑄𝑛,𝑘+1(𝑧)
𝑄𝑛, 𝑗+1(𝑧)𝑄𝑛,𝑘 (𝑧)

|︁|︁|︁|︁1/𝑛 = exp
(︂
−𝑉𝜆𝑘+1 (𝑧) +𝑉𝜆𝑘 (𝑧) +𝑉𝜆 𝑗+1 (𝑧) −𝑉𝜆 𝑗

)︂
,

and taking into account (2.43), from (2.49) we deduce (2.46).

Now, from the principle of descent (see [92, Appendix iii]), locally uniformly on C we have

lim sup
𝑛→∞

|𝑄𝑛, 𝑗 (𝑧)𝑄𝑛,𝑘+1 |1/𝑛 ≤ exp
(︂
−𝑉𝜆𝑘+1 (𝑧) −𝑉𝜆 𝑗 (𝑧)

)︂
.

Using the lower bound in (2.42) (with 𝑗 replaced by 𝑘) to estimate the integral in the denominator
of (2.49) from below and the previous remarks, (2.45) readily follows.
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If 𝑘 = 𝑚 and 𝑗 = 1, . . . , 𝑚 − 1 in place of (2.49) we use the representation|︁|︁|︁|︁ A𝑛, 𝑗 (𝑧)
A𝑛,𝑚(𝑧)

|︁|︁|︁|︁ = |︁|︁|︁|︁|︁ 𝑄𝑛, 𝑗 (𝑧)
𝑄𝑛, 𝑗+1(𝑧)𝑄𝑛,𝑚(𝑧)𝑇𝑛 (𝑧)

∫ 𝑄2
𝑚, 𝑗+1(𝑧)
𝑧 − 𝑥

H𝑛, 𝑗 (𝑥) d𝜎𝑗+1(𝑧)
𝑄𝑛, 𝑗 (𝑧)𝑄𝑛, 𝑗+2(𝑧)

|︁|︁|︁|︁|︁ ,
where 𝑇𝑛 ⇒ 𝑇 and then argue as above. If 𝑗 = 0 and 𝑘 = 1, . . . , 𝑚 the treatment is similar.

According to (2.35), for 𝑘 = 1, . . . , 𝑚 we have

−𝑉𝜆𝑘+1 (𝑧) + 2𝑉𝜆𝑘 (𝑧) −𝑉𝜆𝑘−1 (𝑧) − 2𝜔𝜆⃗𝑘 = 0, 𝑧 ∈ supp𝜆𝑘 . (2.50) {potentials_equality_0}{potentials_equality_0}

Recall that all the measures 𝜆𝑘 are probabilities, hence for each 𝑘 = 2, . . . , 𝑚 − 1 the function
−𝑉𝜆𝑘+1 (𝑧) + 2𝑉𝜆𝑘 (𝑧) − 𝑉𝜆𝑘−1 (𝑧) − 2𝜔𝜆⃗

𝑘
is harmonic at 𝑧 = ∞, and is subharmonic in C \ supp𝜆𝑘 .

Using the maximum principle for subharmonic functions we obtain (2.47).

When 𝑘 = 1, the left hand of (2.50) becomes −𝑉𝜆2 (𝑧) + 2𝑉𝜆1 − 2𝜔𝜆⃗1 which is subharmonic in
C \ supp𝜆1 and also subharmonic at ∞ since

lim
𝑛→∞

(︂
−𝑉𝜆2 (𝑧) + 2𝑉𝜆1 − 2𝜔𝜆⃗1

)︂
= −∞.

Therefore, we can also use the maximum principle to derive (2.47). The case 𝑘 = 𝑚 is completely
analogous to the case 𝑘 = 1.

When 𝑘 > 𝑗 + 1 we can write

−𝑉𝜆𝑘+1 (𝑧) +𝑉𝜆𝑘 (𝑧) +𝑉𝜆 𝑗+1 (𝑧) −𝑉𝜆 𝑗 (𝑧) − 2
𝑚∑︁

ℓ= 𝑗+1
𝜔𝜆⃗𝑘 =

𝑘∑︁
ℓ= 𝑗+1

(︂
−𝑉𝜆ℓ+1 (𝑧) + 2𝑉𝜆ℓ (𝑧) −𝑉𝜆ℓ−1 (𝑧) − 2𝜔𝜆⃗ℓ

)︂
,

and this sum contains at least two terms because 𝑘 > 𝑗 + 1. Each term is less than or equal to zero
in all C and so too the whole sum. To prove that it is strictly negative it is sufficient to show that at
each point there is at least one negative term in the sum. Let us assume that there is a 𝑧0 ∈ C such
that

−𝑉𝜆ℓ+1 (𝑧0) + 2𝑉𝜆ℓ (𝑧0) −𝑉𝜆ℓ−1 (𝑧0) − 2𝜔𝜆⃗ℓ = 0, ℓ = 𝑗 + 1, . . . , 𝑘 .

By what was proved above, this implies that 𝑧0 ∈ ∩𝑘
ℓ= 𝑗+1Δℓ . However, this is impossible because

consecutive intervals in a Nikishin system are disjoint. From (2.45) and (2.48) the final statement
is deduced.

□

Using Corollary 2.14 we can recover the functions ˆ︁𝑠𝑚−1, 𝑗+1, 𝑗 = 1, . . . , 𝑚 − 2.{corallary_logarithmic_asym1}

Corollary 2.15:
Under the assumptions of Theorem 2.4, for each 𝑗 = 1, . . . , 𝑚 − 2 we have

lim
𝑛→∞

(𝑎𝑛, 𝑗 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚, 𝑗+1) (𝑧)
(𝑎𝑛,𝑚−1 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚,𝑚) (𝑧) = ˆ︁𝑠𝑚−1, 𝑗+1(𝑧), (2.51){recover_measures}{recover_measures}
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and

lim
𝑛→∞

(︁
𝑎𝑛,0 +

∑︁𝑚
𝑘=1(−1)𝑘𝑎𝑛,𝑘𝑟𝑘

)︁
− 𝑎𝑛,𝑚ˆ︁𝑠𝑚,1

(𝑎𝑛,𝑚−1 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚,𝑚) (𝑧) = ˆ︁𝑠𝑚−1,1 (2.52){recover_measures_0}{recover_measures_0}

uniformly on each compact subset of C \ ∪𝑚
ℓ= 𝑗+1Δℓ .

Proof. Direct computation or [62, Lemma 2.1] allows to deduce the formula

A𝑛, 𝑗 +
𝑚−1∑︁
𝑘= 𝑗+1

(−1)𝑘− 𝑗ˆ︁𝑠𝑘, 𝑗+1A𝑛,𝑘 = (−1) 𝑗 (𝑎𝑛, 𝑗 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚, 𝑗+1). (2.53) {identity_for_recover}{identity_for_recover}

The formula holds at all points where both sides are meaningful. Dividing by A𝑛,𝑚−1 we get

A𝑛, 𝑗

A𝑛,𝑚−1
+

𝑚−2∑︁
𝑘= 𝑗+1

(−1)𝑘− 𝑗ˆ︁𝑠𝑘, 𝑗+1
A𝑛,𝑘

A𝑛,𝑚−1
+ (−1)𝑚−1− 𝑗ˆ︁𝑠𝑚−1, 𝑗+1 =

(−1)𝑚−1+ 𝑗 (𝑎𝑛, 𝑗 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚, 𝑗+1) (𝑧)
(𝑎𝑛,𝑚−1 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚,𝑚) (𝑧) .

In order to obtain (2.51), it remains to take limit on both sides and make use of the fact that the
ratios A𝑛,𝑘/A𝑛,𝑚−1 uniformly tend to zero on compact subsets of C \ ∪𝑚

ℓ= 𝑗+1Δℓ .

To prove (2.52) instead of (2.53) we use the formula

A𝑛,0 +
𝑚−1∑︁
𝑘=1

(−1)𝑘ˆ︁𝑠𝑘,1A𝑛,𝑘 =

(︄
𝑎𝑛,0 +

𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘𝑟𝑘

)︄
− 𝑎𝑛,𝑚ˆ︁𝑠𝑚,1, (2.54) {nth_root_An0}{nth_root_An0}

which is obtained similarly. Dividing by A𝑛,𝑚−1 and taking limit we complete the proof.

□

We wish to mention that the convergence in (2.51)-(2.52) occurs with geometric rate, as a result
of (2.45) and (2.48).

Using Corollary 2.15 we can give explicit expressions for the exact rate of convergence of the
limits (2.3). {convergence_speed}

Theorem 2.16:
Under the assumptions of Theorem 2.3, for each 𝑗 = 1, . . . , 𝑚 − 1:

lim
𝑛→∞

|︁|︁|︁|︁ 𝑎𝑛, 𝑗 (𝑧)𝑎𝑛,𝑚(𝑧)
−ˆ︁𝑠𝑚, 𝑗+1(𝑧)

|︁|︁|︁|︁1/𝑛 = exp
(︂
2𝑉𝜆𝑚 (𝑧) −𝑉𝜆𝑚−1 (𝑧) − 2𝜔𝜆⃗𝑚

)︂
(2.55) {geometric_speed}{geometric_speed}

and

lim sup
𝑛→∞

|︁|︁|︁|︁ 𝑎𝑛,0(𝑧)𝑎𝑛,𝑚(𝑧)
− 𝑓 (𝑧)

|︁|︁|︁|︁1/𝑛 ≤ exp
(︂
2𝑉𝜆𝑚 (𝑧) −𝑉𝜆𝑚−1 (𝑧) − 2𝜔𝜆⃗𝑚

)︂
(2.56) {geometric_speed_an0}{geometric_speed_an0}

uniformly on each compact subset K ⊂ C \ (∪𝑚
ℓ= 𝑗+1Δℓ ∪ 𝑍).

Proof. Our starting point is (2.53), but now we divide it by A𝑛,𝑚 = (−1)𝑚𝑎𝑛,𝑚. We get|︁|︁|︁|︁|︁|︁ A𝑛, 𝑗

A𝑛,𝑚

+
𝑚−1∑︁
𝑘= 𝑗+1

(−1)𝑘− 𝑗ˆ︁𝑠𝑘, 𝑗+1
A𝑛,𝑘

A𝑛,𝑚

|︁|︁|︁|︁|︁|︁ =
|︁|︁|︁|︁ 𝑎𝑛, 𝑗𝑎𝑛,𝑚

−ˆ︁𝑠𝑚, 𝑗+1

|︁|︁|︁|︁ ,
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which is equivalent to|︁|︁|︁|︁A𝑛,𝑚−1

A𝑛,𝑚

|︁|︁|︁|︁
|︁|︁|︁|︁|︁|︁ A𝑛, 𝑗

A𝑛,𝑚−1
+

𝑚−1∑︁
𝑘= 𝑗+1

(−1)𝑘− 𝑗ˆ︁𝑠𝑘, 𝑗+1
A𝑛,𝑘

A𝑛,𝑚−1

|︁|︁|︁|︁|︁|︁ =
|︁|︁|︁|︁ 𝑎𝑛, 𝑗𝑎𝑛,𝑚

−ˆ︁𝑠𝑚, 𝑗+1

|︁|︁|︁|︁ .
Now, ˆ︁𝑠𝑚−1, 𝑗+1(𝑧) ≠ 0, 𝑧 ∈ C \ Δ𝑚−1; consequently, lim𝑛→∞ |ˆ︁𝑠𝑚−1, 𝑗+1(𝑧) |1/𝑛 = 1 uniformly on
compact subsets of C \ Δ𝑚−1. Therefore,

lim
𝑛→∞

|︁|︁|︁|︁|︁|︁ (−1) 𝑗A𝑛, 𝑗

A𝑛,𝑚−1
+

𝑚−1∑︁
𝑘= 𝑗+1

(−1)𝑘ˆ︁𝑠𝑘, 𝑗+1
A𝑛,𝑘

A𝑛,𝑚−1

|︁|︁|︁|︁|︁|︁
1/𝑛

= 1,

uniformly on compact subsets of C \ ∪𝑚
ℓ= 𝑗+1Δℓ . On the other hand, from (2.46)

lim
𝑛→∞

|︁|︁|︁|︁A𝑛,𝑚−1

A𝑛,𝑚

|︁|︁|︁|︁1/𝑛 = exp
(︂
2𝑉𝜆𝑚 (𝑧) −𝑉𝜆𝑚−1 (𝑧) − 2𝜔𝜆⃗𝑚

)︂
,

uniformly on compact subsets of C \ (Δ𝑚−1 ∪ Δ𝑚 ∪ 𝑍). These relations together imply (2.55).

To estimate the speed of convergence of the quotients 𝑎𝑛,0/𝑎𝑛,𝑚 we use equality (2.54).
Dividing it by A𝑛,𝑚 we get|︁|︁|︁|︁A𝑛,𝑚−1

A𝑛,𝑚

|︁|︁|︁|︁ |︁|︁|︁|︁|︁ A𝑛,0

A𝑛,𝑚−1
+
𝑚−1∑︁
𝑘=1

(−1)𝑘ˆ︁𝑠𝑘,1 A𝑛,𝑘

A𝑛,𝑚−1

|︁|︁|︁|︁|︁ =
|︁|︁|︁|︁|︁ 𝑎𝑛,0𝑎𝑛,𝑚

+
𝑚∑︁
𝑘=1

(−1)𝑘
𝑎𝑛,𝑘

𝑎𝑛,𝑚
𝑟𝑘 −ˆ︁𝑠𝑚,1|︁|︁|︁|︁|︁ .

Arguing as above this equality implies that

lim
𝑛→∞

|︁|︁|︁|︁|︁ 𝑎𝑛,0(𝑧)𝑎𝑛,𝑚(𝑧)
+

𝑚∑︁
𝑘=1

(−1)𝑘
𝑎𝑛,𝑘 (𝑧)
𝑎𝑛,𝑚(𝑧)

𝑟𝑘 (𝑧) −ˆ︁𝑠𝑚,1(𝑧)|︁|︁|︁|︁|︁1/𝑛 = exp
(︂
2𝑉𝜆𝑚 (𝑧) −𝑉𝜆𝑚−1 (𝑧) − 2𝜔𝜆⃗𝑚

)︂
,

(2.57){geometric_speed-1}{geometric_speed-1}

uniformly on each compact subset K ⊂ C \ (∪𝑚
ℓ=1Δℓ ∪ 𝑍).

On the other hand, using the formula for 𝑓 , we obtain|︁|︁|︁|︁|︁ 𝑎𝑛,0𝑎𝑛,𝑚
+

𝑚∑︁
𝑘=1

(−1)𝑘
𝑎𝑛,𝑘

𝑎𝑛,𝑚
𝑟𝑘 −ˆ︁𝑠𝑚,1|︁|︁|︁|︁|︁ =

|︁|︁|︁|︁|︁(︃ 𝑎𝑛,0𝑎𝑛,𝑚
− 𝑓

)︃
+
𝑚−1∑︁
𝑘=1

(−1)𝑘
(︃
𝑎𝑛,𝑘

𝑎𝑛,𝑚
−ˆ︁𝑠𝑚,𝑘+1

)︃
𝑟𝑘

|︁|︁|︁|︁|︁ ≥|︁|︁|︁|︁ 𝑎𝑛,0𝑎𝑛,𝑚
− 𝑓

|︁|︁|︁|︁ − 𝑚−1∑︁
𝑘=1

|︁|︁|︁|︁(︃ 𝑎𝑛,𝑘𝑎𝑛,𝑚
−ˆ︁𝑠𝑚,𝑘+1

)︃
𝑟𝑘

|︁|︁|︁|︁ ;
that is,|︁|︁|︁|︁ 𝑎𝑛,0(𝑧)𝑎𝑛,𝑚(𝑧)

− 𝑓 (𝑧)
|︁|︁|︁|︁ ≤|︁|︁|︁|︁|︁ 𝑎𝑛,0(𝑧)𝑎𝑛,𝑚(𝑧)

+
𝑚∑︁
𝑘=1

(−1)𝑘
𝑎𝑛,𝑘 (𝑧)
𝑎𝑛,𝑚(𝑧)

𝑟𝑘 (𝑧) −ˆ︁𝑠𝑚,1(𝑧)|︁|︁|︁|︁|︁ + 𝑚−1∑︁
𝑘=1

|︁|︁|︁|︁(︃ 𝑎𝑛,𝑘 (𝑧)𝑎𝑛,𝑚(𝑧)
−ˆ︁𝑠𝑚,𝑘+1(𝑧)

)︃
𝑟𝑘 (𝑧)

|︁|︁|︁|︁
This inequality, together with (2.55) and (2.57), implies (2.56).

□
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Chapter

3 A generalization of multi-level
Hermite-Padé polynomials

{ch:gen}

In the present chapter we are going to study Markov and Stieltjes-type theorems, but for an extension
of Problem 5 introduced very recently in [66]. There, the author allowed that the interpolation
conditions at infinity for the linear forms A𝑛, 𝑗 , 𝑗 = 0, 1, . . . , 𝑚 − 1 vary in certain range. With
these variation he was able to prove the convergence of the method and the logarithmic asymptotic
of the corresponding Hermite-Padé polynomials.

Here, we extend a little further the results obtained in [66], permitting the Nikishin systems
to be generated by a wider class of measures. Furthermore, as we stated in the introduction,
we study the ratio asymptotic of the associated multi-orthogonal polynomials, as well as for the
corresponding multi-level Hermite-Padé polynomials.

3.1 Statement of the problem

In the sequel, unless stated differently, we use the definition given in [66, Problem A].

Let (Z𝑚+ )∗ be the set of all 𝑚-dimensional vectors with non-negative integer components not
identically equal to zero. For 𝑛⃗ = (𝑛1, . . . , 𝑛𝑚) ∈ (Z𝑚+ )∗ we define |𝑛⃗| = 𝑛1 + · · · + 𝑛𝑚. {df:HP:ly}

Definition 3.1:
Consider the Nikishin system N (𝜎1, . . . , 𝜎𝑚) and 𝑛⃗ = (𝑛1, . . . , 𝑛𝑚) ∈ (Z𝑚+ )∗. There exist polyno-
mials 𝑎𝑛⃗,0, 𝑎𝑛⃗,1, . . . , 𝑎𝑛⃗,𝑚, where deg 𝑎𝑛⃗, 𝑗 ≤ |𝑛⃗| −1, 𝑗 = 0, 1, . . . , 𝑚−1, and deg 𝑎𝑛⃗,𝑚 ≤ |𝑛⃗|, not all
identically equal to zero, called multi-level (ML) Hermite-Padé polynomials of N (𝜎1, . . . , 𝜎𝑚)
with respect to 𝑛⃗, that verify

A𝑛⃗, 𝑗 (𝑧) := ⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘𝑎𝑛⃗,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎞⎟⎠ (𝑧) = O

(︃
1

𝑧𝑛 𝑗+1+1

)︃
, 𝑧 → ∞, (3.1) {df:HP:ly:1}{df:HP:ly:1}

where 𝑗 = 0, . . . , 𝑚 − 1 (the asymptotic expansion of A𝑛⃗, 𝑗 at ∞ begins with 𝑧−𝑛 𝑗+1−1, or higher).
For completeness, set A𝑛⃗,𝑚 := (−1)𝑚𝑎𝑛⃗,𝑚.

We warn the reader that with our terminology in [66, Problem A] the ML Hermite-Padé
polynomials were defined with respect to the system N (𝜎𝑚, . . . , 𝜎1).
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When𝑚 = 1 the definition reduces to that of classical Padé approximation, which plays a central
role in the solution of the inverse spectral problem for a discrete string with Dirichlet boundary
condition, see [10, 93]. When 𝑚 = 2 and 𝑛⃗ = (𝑛, 0) definition 3.1 reduces to the Hermite-Padé
approximation problem used in the solution of the inverse spectral problem for the discrete cubic
string, see [65]. For an arbitrary 𝑚 and 𝑛⃗ = (𝑛, 0, . . . , 0), one obtains the original definition of ML
Hermite-Padé polynomials given in [62].

This scheme of approximation keeps many properties of the one originally introduced in
[62]. These are: the interpolation conditions involve all the Nikishin systems of the “inner
levels”, i.e. N (𝜎1, . . . , 𝜎𝑚), N (𝜎2, . . . , 𝜎𝑚), . . ., N (𝜎𝑚) = (𝑠𝑚,𝑚); finding the polynomials
𝑎𝑛⃗,0, 𝑎𝑛⃗,1, . . . , 𝑎𝑛⃗,𝑚 reduces to solving a homogeneous linear system of |𝑛⃗| (𝑚 + 1) equations on
|𝑛⃗| (𝑚 + 1) + 1 unknowns, corresponding with the coefficients of the polynomials. Consequently,
the system of equations has a non trivial solution.

Following Mahler’s terminology [67], a multi-index 𝑛⃗ ∈ (Z𝑚+ )∗ is said to be normal if deg 𝑎𝑛⃗, 𝑗 =
|𝑛⃗|−1, 𝑗 = 0, . . . , 𝑚−1, and deg 𝑎𝑛⃗,𝑚 = |𝑛⃗|. The system of functions is said to be perfect when all the
multi-indices are normal. In [66, Theorem 1.1], it was proved that the Nikishin system of functions
is perfect for this approximation problem. Normality implies that the vector (𝑎𝑛⃗,0, . . . , 𝑎𝑛⃗,𝑚) is
uniquely determined up to a multiplicative factor. In the sequel, we normalize this vector so that
𝑎𝑛⃗,𝑚 has leading coefficient equal to one.

A sequence of multi-indices Λ ⊂ (Z𝑚+ )∗ is called a ray sequence when lim𝑛⃗∈Λ 𝑛 𝑗/|𝑛⃗| exists for
all 𝑗 = 1, . . . , 𝑚. When the Δ 𝑗 are bounded non-intersecting intervals, and 𝜎′

𝑗
≠ 0, a.e. in Δ 𝑗 ,

𝑗 = 1, . . . , 𝑚, in [66, Theorem 1.2] the logarithmic asymptotic of ray sequences of ML polynomials
was obtained. Using that result, it was also proved [66, Proposition 1.2] that

lim
𝑛⃗∈Λ

𝑎𝑛⃗, 𝑗

𝑎𝑛⃗,𝑚
= ˆ︁𝑠𝑚, 𝑗+1, 𝑗 = 0, . . . , 𝑚 − 1 (3.2){lim:markov}{lim:markov}

uniformly on each compact subset of C \ Δ𝑚 (with geometric rate). Notice that the limits belong
to the Nikishin system of functions corresponding to N (𝜎𝑚, . . . , 𝜎1). It should be said that the
proof of these results given in [66] may be adapted to the case when the measures 𝜎𝑗 ∈ Reg (see
Definition 1.10).

We provide a convergence result such as (3.2) in which the intervals Δ 𝑗 may be unbounded and
consecutive intervals can have a common end point. This situation appears in [15] in relation with
the study of the two matrix model.

When theΔ 𝑗 are bounded non-intersecting intervals, and𝜎′
𝑗
≠ 0 a.e. inΔ 𝑗 , we also give a result

about the asymptotic of sequences of ratios of polynomials 𝑎𝑛⃗, 𝑗 corresponding to consecutive multi-
indices which resembles E.A. Rakhmanov’s celebrated theorem on the ratio asymptotic of standard
orthogonal polynomials (see [83, 84, 85, 70]). With the original definition of ML Hermite-Padé
polynomials introduced in [62] the ratio asymptotic was obtained in [32].
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3.1.1 Statement of the main results

Recall that a measure 𝑠 ∈ M (Δ) is said to satisfy Carleman’s condition when the sequence of its
moments {𝑐𝑛}𝑛≥0 verifies

∞∑︁
𝑛=0

|𝑐𝑛 |−1/2𝑛 = ∞.

When Δ is either R+ of R−, this condition implies that there is only one measure whose collection
of moments is {𝑐𝑛}𝑛≥0. In turn, if the moment problem for 𝑠 is determinate then the sequence
of diagonal Padé approximants converges to ˆ︁𝑠 on each compact subset of C \ Δ. We prove the
following Carleman-Stieltjes type theorem in the context of ML Hermite-Padé approximants. {th:ML:Ly:Conv}

Theorem 3.2:
LetΛ ⊂ (Z𝑚+ )∗ be an infinite sequence of distinct multi-indices for which there exist ℓ ∈ {0, . . . , 𝑚−
2} and a (fixed) non-negative integer 𝑁 such that 𝑛 𝑗+1 ≤ 𝑛 𝑗 +𝑁 for all ℓ+1 ≤ 𝑗 ≤ 𝑚−1 and 𝑛⃗ ∈ Λ.
Consider the sequence of vector polynomials (𝑎𝑛⃗,0, . . . , 𝑎𝑛⃗,𝑚)𝑛⃗∈Λ associated withN (𝜎1, . . . , 𝜎𝑚).
For 𝑗 = ℓ, . . . , 𝑚 − 2 the polynomial 𝑎𝑛⃗, 𝑗 has at least |𝑛⃗| − 2𝑚 − 𝑁 𝑚(𝑚+1)

2 sign changes in Δ̊𝑚.
The polynomials 𝑎𝑛⃗,𝑚−1 and 𝑎𝑛⃗,𝑚 have, respectively, |𝑛⃗| − 1 and |𝑛⃗| interlacing simple zeros in
Δ̊𝑚. Suppose that either the sequence of moments of 𝜎𝑚 satisfies Carleman’s condition or Δ𝑚−1

is a bounded interval which does not intersect Δ𝑚; then (3.2) holds uniformly on each compact
subset of C \ Δ𝑚 for 𝑗 = ℓ, . . . , 𝑚 − 1. If Λ ⊂ (Z𝑚+ )∗ is an arbitrary infinite sequence of distinct
multi-indices and 𝜎𝑚 satisfies Carleman’s condition or, Δ𝑚−1 is a bounded interval which does not
intersect Δ𝑚 and lim𝑛⃗∈Λ(𝑛1 + · · · + 𝑛𝑚−1) = ∞, then (3.2) takes place for 𝑗 = 𝑚 − 1.

If Λ is a sequence of distinct multi-indices whose components are decreasing, the (first)
condition on Λ in Theorem 3.2 is verified with ℓ = 0 and 𝑁 = 0. More precise information
regarding the zeros of the polynomials 𝑎𝑛⃗, 𝑗 , 𝑗 = 0, . . . , 𝑚 − 2 will be given in Section 3.2.

Let 𝑛⃗ ∈ Z𝑚+ and 𝑙 ∈ {1, . . . , 𝑚}. Define

𝑛⃗
𝑙 := (𝑛1, . . . , 𝑛𝑙 + 1, . . . , 𝑛𝑚) ,

the multi-index obtained adding 1 to the 𝑙-th component of 𝑛⃗. {th:ratiom}

Theorem 3.3:
Consider the Nikishin system N (𝜎1, . . . , 𝜎𝑚) where the Δ𝑘 , 𝑘 = 1, . . . , 𝑚, are bounded, disjoint
intervals, and 𝜎′

𝑘
≠ 0 a.e. in Δ𝑘 . Let Λ ⊂ (Z𝑚+ )∗ be an infinite sequence of distinct multi-indices

for which there exists a non-negative integer 𝑁 such that 𝑛 𝑗+1 ≤ 𝑛 𝑗 + 𝑁 for all 1 ≤ 𝑗 ≤ 𝑚 − 1 and
𝑛⃗ ∈ Λ. Then for 𝑘 = 0, . . . , 𝑚

lim
𝑛⃗∈Λ

𝑎
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑎𝑛⃗,𝑘 (𝑧)
=

𝜓
(𝑙)
𝑚 (𝑧)

(𝜓 (𝑙)
𝑚 ) ′(∞)

, (3.3) {left*}{left*}

uniformly on each compact subset of C \ Δ𝑚, where 𝜓 (𝑙)
𝑚 ∈ H(C \ Δ𝑚) is defined in (3.17).
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3.2 Convergence of the ML Hermite-Padé approximants
{sec:conv}

First, we study the location of the zeros of the linear forms A𝑛⃗, 𝑗 , 𝑗 = 0, . . . , 𝑚. Given 𝑛⃗ =

(𝑛1 . . . , 𝑛𝑚) ∈ Z𝑚+ , set
𝜂𝑛⃗, 𝑗 := 𝑛1 + · · · + 𝑛 𝑗 .{lm:zeros}

Lemma 3.4:
The form A𝑛⃗,0 has no zero in C \ Δ1. For 𝑗 = 1, . . . , 𝑚, A𝑛⃗, 𝑗 has exactly 𝜂𝑛⃗, 𝑗 zeros in C \ Δ 𝑗+1,
(Δ𝑚+1 = ∅), they are all simple and lie in Δ̊ 𝑗 . If 𝑤𝑛⃗, 𝑗 , 𝑗 = 1, . . . , 𝑚 − 1, denotes the monic
polynomial whose roots are the simple zeros which A𝑛⃗, 𝑗 has in Δ̊ 𝑗 then

A𝑛⃗, 𝑗

𝑤𝑛⃗, 𝑗
= O

(︃
1

𝑧𝜂𝑛⃗, 𝑗+1+1

)︃
∈ H(C \ Δ 𝑗+1), 𝑧 → ∞. (3.4){forma*}{forma*}

For each 𝑗 = 0, . . . , 𝑚 − 1 the order of interpolation at infinity prescribed in (3.1) is exact.

Proof. From (3.1) for 𝑗 = 0, using Lemma 2.5 with 𝑤 ≡ 1, we obtain∫
𝑥𝜈A𝑛⃗,1(𝑥) d𝜎1(𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛1 − 1.

Therefore, A𝑛⃗,1 has at least 𝑛1 sign changes in Δ̊1.

Let 𝑤𝑛⃗,1 be a polynomial whose roots lie in C \ Δ2 and contain all the points where A𝑛⃗,1

changes sign in Δ̊1. Then, deg𝑤𝑛⃗,1 ≥ 𝑛1 and taking into account (3.1) for 𝑗 = 1, we obtain

A𝑛⃗,1(𝑧)
𝑤𝑛⃗,1(𝑧)

= O

(︃
1

𝑧𝜂𝑛⃗,2+1

)︃
∈ H(C \ Δ2).

Notice that A𝑛⃗,1 and 𝑤𝑛⃗,1 satisfy the hypothesis of Lemma 2.5, so∫
𝑥𝜈A𝑛⃗,2(𝑥)

d𝜎2(𝑥)
𝑤𝑛⃗,1(𝑥)

= 0, 𝜈 = 0, 1, . . . , 𝑛1 + 𝑛2 − 1.

This implies that A𝑛⃗,2 has, at least, 𝑛1 + 𝑛2 sign changes in Δ̊2.

Let 𝑤𝑛⃗,2 be a polynomial whose roots lie in C \ Δ3 and contain all the points where A𝑛⃗,2

changes sign in Δ̊2. Then, deg𝑤𝑛⃗,2 ≥ 𝑛1 + 𝑛2 and taking into account (3.1) for 𝑗 = 2, we obtain

A𝑛⃗,2(𝑧)
𝑤𝑛⃗,2(𝑧)

= O

(︃
1

𝑧𝜂𝑛⃗,3+1

)︃
∈ H(C \ Δ3).

We have deduced analogous conclusions for A𝑛⃗,2 as we had for A𝑛⃗,1.

We can repeat these arguments inductively and obtain that for each 𝑗 = 0, . . . , 𝑚 − 1 there
exists a polynomial 𝑤𝑛⃗, 𝑗 , deg𝑤𝑛⃗, 𝑗 ≥ 𝑛1 + · · · + 𝑛 𝑗 = 𝜂𝑛⃗, 𝑗 (𝑤𝑛⃗,0 ≡ 1) whose roots lie in C \ Δ 𝑗+1

and contain all the points where A𝑛⃗, 𝑗 changes sign in Δ̊ 𝑗 and (3.4) takes place.

For 𝑗 = 𝑚 − 1, we get

𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚,𝑚 − 𝑎𝑛⃗,𝑚−1

𝑤𝑛⃗,𝑚−1
(𝑧) = O

(︃
1

𝑧𝜂𝑛⃗,𝑚+1

)︃
∈ H(C \ Δ𝑚) (3.5){HP_s_mm3}{HP_s_mm3}
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and using again Lemma 2.5∫
𝑥𝜈𝑎𝑛⃗,𝑚(𝑥)

d 𝑠𝑚,𝑚(𝑥)
𝑤𝑛⃗,𝑚−1(𝑥)

= 0, 𝜈 = 0, 1, . . . , |𝑛⃗| − 1.

This implies that 𝑎𝑛⃗,𝑚 has at least |𝑛⃗| sign changes in Δ̊𝑚. Since deg 𝑎𝑛⃗,𝑚 ≤ |𝑛⃗| we get that 𝑎𝑛⃗,𝑚 is
either identically equal to zero or it has exactly |𝑛⃗| simple zeros, all in Δ̊𝑚. The first situation cannot
occur since from (3.1) it would follow that (𝑎𝑛⃗,0 . . . , 𝑎𝑛⃗,𝑚) ≡ 0⃗. So, only the second statement is
possible.

Notice that if A𝑛⃗,0 has a zero in C \ Δ1, or for some 𝑗 = 1, . . . , 𝑚 − 1, A𝑛⃗, 𝑗 has more than
𝜂𝑛⃗, 𝑗 zeros in C \ Δ 𝑗+1, we can get an extra order of interpolation in (3.5). This also occurs if for
some 𝑗 = 0, . . . , 𝑚 − 1 the order of interpolation at ∞ in (3.1) is higher than the one imposed. This
entails one more orthogonality relation for 𝑎𝑛⃗,𝑚 implying that this polynomials is identically equal
to zero which is not possible. The statements of the lemma readily follow.

□

In order to prove Theorem 3.2, we need relations similar to (3.5) for 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚, 𝑗+1 − 𝑎𝑛⃗, 𝑗 ,
𝑗 = 0, . . . , 𝑚 − 1. For this purpose, some transformations involving reciprocals and ratios of
Cauchy transforms of measures will be employed, and were introduce in Chapter 2, see (2.11) and
(2.12).

We also state a formula which connects forms of different levels of Nikishin systems. A proof
appears in [62, Lemma 2.1]. Consider the linear forms with polynomial coefficients

L 𝑗 := 𝑎 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
𝑎𝑘ˆ︁𝑠 𝑗+1,𝑘 , 𝑗 = 0, . . . , 𝑚 − 1, L𝑚 := 𝑎𝑚

where 𝑎 𝑗 are arbitrary polynomials. {lm:levels}

Lemma 3.5:
Let (𝑠1,1, . . . , 𝑠1,𝑚) = N (𝜎1, . . . , 𝜎𝑚) be given. Then, for each 𝑗 = 0, . . . , 𝑚 − 2, and 𝑟 =

𝑗 + 1, . . . , 𝑚 − 1

L 𝑗 +
𝑟∑︁

𝑘= 𝑗+1
ˆ︁𝑠𝑘, 𝑗+1L𝑘 = 𝑎 𝑗 + (−1)𝑟− 𝑗

𝑚∑︁
𝑘=𝑟+1

𝑎𝑘 ⟨𝑠𝑟+1,𝑘 , 𝑠𝑟 , 𝑗+1ˆ︁⟩. (3.6) {levels}{levels}

Given 𝑛⃗ = (𝑛1, . . . , 𝑛𝑚) ∈ Z𝑚+ , set

𝜒𝑛⃗, 𝑗 ,𝑘 := min{𝑛 𝑗 + 1, 𝑛 𝑗+1 + 2, . . . , 𝑛𝑘 + 2}, 𝑗 < 𝑘.

We are ready to prove {lm:asym_MP}

Lemma 3.6:
Given 𝑛⃗ ∈ (Z𝑚+ )∗ let 𝑎𝑛⃗,0, 𝑎𝑛⃗,1, . . . , 𝑎𝑛⃗,𝑚 be the Hermite-Padé polynomials associated with the
Nikishin system N (𝜎1, . . . , 𝜎𝑚) such that (3.1) holds. Then for each 𝑗 = 0, . . . , 𝑚 − 2

𝑎𝑛⃗, 𝑗 − 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚, 𝑗+1

𝑤∗
𝑛⃗, 𝑗

(𝑧) = O

(︃
𝑧
−
(︂
𝜂𝑛⃗, 𝑗+1+

∑︁𝑚− 𝑗−1
𝑘=1 𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1−2𝑚+2 𝑗+3

)︂ )︃
∈ H(C \ Δ𝑚), 𝑧 → ∞, (3.7) {orden}{orden}
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where 𝑤∗
𝑛⃗, 𝑗

is a monic polynomial with real coefficients of degree
∑︁𝑚− 𝑗−2
𝑘=1 𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 + 𝜂𝑛⃗, 𝑗+1 −

2𝑚 + 2 𝑗 + 3 (the sum is empty when 𝑗 = 𝑚 − 2). The polynomial 𝑎𝑛⃗, 𝑗 , 𝑗 = 0, . . . , 𝑚 − 2, has at
least

∑︁𝑚− 𝑗−1
𝑘=1 𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 + 𝜂𝑛⃗, 𝑗+1 − 2𝑚 + 2 𝑗 + 1 sign changes in Δ̊𝑚.

Proof. Fix 𝑗 ∈ {0, . . . , 𝑚 − 2}, using (2.11) and (2.12), we have

A𝑛⃗, 𝑗ˆ︁𝜎𝑗+1
=

⎛⎜⎝(−1) 𝑗ℓ 𝑗+1𝑎𝑛⃗, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘

|𝑠 𝑗+1,𝑘 |
|𝜎𝑗+1 |

𝑎𝑛⃗,𝑘
⎞⎟⎠

+ (−1) 𝑗𝑎𝑛⃗, 𝑗ˆ︁𝜏𝑗+1 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝜏𝑗+1, ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1⟩ˆ︁⟩.

The quotient A𝑛⃗, 𝑗ˆ︁𝜎 𝑗+1
has the same structure as A in Lemma 2.5. Moreover, from (3.4),

A𝑛⃗, 𝑗 (𝑧)
(ˆ︁𝜎𝑗+1𝑤𝑛⃗, 𝑗) (𝑧)

= O

(︃
1

𝑧𝜂𝑛⃗, 𝑗+1

)︃
∈ H(C \ Δ 𝑗+1)

and, as a consequence of (2.10), for 𝜈 = 0, . . . , 𝜂𝑛⃗, 𝑗+1 − 2, we obtain the orthogonality relations

0 =

∫
Δ 𝑗+1

𝑥𝜈
⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 −

𝑚∑︁
𝑘= 𝑗+2

(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩⎞⎟⎠ (𝑥)
d 𝜏𝑗+1(𝑥)
𝑤𝑛⃗, 𝑗 (𝑥)

.

Therefore, the expression in parentheses under the integral sign has at least 𝜂𝑛⃗, 𝑗+1 − 1 sign changes
in Δ̊ 𝑗+1. Thus, there exists a polynomial 𝑤𝑛⃗, 𝑗 ,1 of degree 𝜂𝑛⃗, 𝑗+1 − 1 whose zeros are simple and lie
in Δ̊ 𝑗+1 such that

1
𝑤𝑛⃗, 𝑗 ,1

⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩⎞⎟⎠ ∈ H(C \ Δ 𝑗+2).

We can use Lemma 3.5 choosing 𝑟 = 𝑗 + 1 and obtain

A𝑛⃗, 𝑗 −ˆ︁𝑠 𝑗+1, 𝑗+1A𝑛⃗, 𝑗+1 = (−1) 𝑗𝑎𝑛⃗, 𝑗 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩.

From (3.1) we know that A𝑛⃗, 𝑗 −ˆ︁𝑠 𝑗+1, 𝑗+1A𝑛⃗, 𝑗+1 is O
(︁
𝑧−min{𝑛 𝑗+1+1,𝑛 𝑗+2+2})︁ , 𝑧 → ∞. Hence,

1
𝑤𝑛⃗, 𝑗 ,1(𝑧)

⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩⎞⎟⎠ (𝑧) = O

(︃
1

𝑧𝜒𝑛⃗, 𝑗+1, 𝑗+2+𝜂𝑛⃗, 𝑗+1−1

)︃
.

Notice that if 𝑗 = 𝑚 − 2 we obtain

𝑎𝑛⃗,𝑚−2 − 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚,𝑚−1

𝑤𝑛⃗,𝑚−2,1
(𝑧) = O

(︃
1

𝑧𝜒𝑛⃗,𝑚−1,𝑚+𝜂𝑛⃗,𝑚−1−1

)︃
which is (3.7) for this value of 𝑗 taking 𝑤∗

𝑛⃗,𝑚−2 = 𝑤𝑛⃗,𝑚−2,1.

Using the identity ⟨𝑠 𝑗+2,𝑘 , 𝑠 𝑗+1, 𝑗+1⟩ = ⟨𝑠 𝑗+2, 𝑗+1, 𝑠 𝑗+3,𝑘⟩ for 𝑘 = 𝑗 + 3, . . . , 𝑚, we deduce

(−1) 𝑗𝑎𝑛⃗, 𝑗 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩

= (−1) 𝑗𝑎𝑛⃗, 𝑗 − (−1) 𝑗+2𝑎𝑛⃗, 𝑗+2ˆ︁𝑠 𝑗+2, 𝑗+1 −
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+2, 𝑗+1, 𝑠 𝑗+3,𝑘ˆ︁⟩. (3.8){Prep_Elim3}{Prep_Elim3}
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We wish to eliminate the term with ˆ︁𝑠 𝑗+2, 𝑗+1 from the right hand side of (3.8); therefore, we divide
both sides of (3.8) by ˆ︁𝑠 𝑗+2, 𝑗+1 and use again (2.11) and (2.12). The right hand side becomes

⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗ℓ 𝑗+2, 𝑗+1 − (−1) 𝑗+2𝑎𝑛⃗, 𝑗+2 −
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘

|⟨𝑠 𝑗+2, 𝑗+1, 𝑠 𝑗+3,𝑘⟩|
|𝑠 𝑗+2, 𝑗+1 |

𝑎𝑛⃗,𝑘
⎞⎟⎠+

(−1) 𝑗𝑎𝑛⃗, 𝑗ˆ︁𝜏𝑗+2, 𝑗+1 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝜏𝑗+2, 𝑗+1, ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1⟩ˆ︁⟩

which is a linear form like A in Lemma 2.5, and

1
(𝑤𝑛⃗, 𝑗 ,1ˆ︁𝑠 𝑗+2, 𝑗+1) (𝑧)

⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 −
𝑚∑︁

𝑘= 𝑗+2
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+2,𝑘 , 𝜎𝑗+1ˆ︁⟩⎞⎟⎠ (𝑧) =

O

(︃
1

𝑧𝜒𝑛⃗, 𝑗+1, 𝑗+2+𝜂𝑛⃗, 𝑗+1−2

)︃
∈ H(C \ Δ 𝑗+2).

Therefore, for 𝜈 = 0, 1, . . . , 𝜒𝑛⃗, 𝑗+1, 𝑗+2 + 𝜂𝑛⃗, 𝑗+1 − 4,

∫
𝑥𝜈

⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩⎞⎟⎠ (𝑥)

d 𝜏𝑗+2, 𝑗+1(𝑥)
𝑤𝑛⃗, 𝑗.1(𝑥)

= 0.

So, the expression in parenthesis under the integral sign has at least 𝜒𝑛⃗, 𝑗+1, 𝑗+2 + 𝜂𝑛⃗, 𝑗+1 − 3
sign changes in Δ̊ 𝑗+2, and we can guarantee the existence of a polynomial 𝑤𝑛⃗, 𝑗 ,2, deg𝑤𝑛⃗, 𝑗 ,2 =

𝜒𝑛⃗, 𝑗+1, 𝑗+2 + 𝜂𝑛⃗, 𝑗+1 − 3, with simple zeros located inside Δ 𝑗+2 such that

1
𝑤𝑛⃗, 𝑗 ,2

⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩⎞⎟⎠ ∈ H(C \ Δ 𝑗+3).

On the other hand, using Lemma 3.5 with 𝑟 = 𝑗 + 2 and the definition of ML Hermite-Padé
approximant, we get

A𝑛⃗, 𝑗 −ˆ︁𝑠 𝑗+1, 𝑗+1A𝑛⃗, 𝑗+1 +ˆ︁𝑠 𝑗+1, 𝑗+1A𝑛⃗, 𝑗+2 =

(−1) 𝑗𝑎𝑛⃗, 𝑗 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩ ∈ O

(︃
1

𝑧𝜒𝑛⃗, 𝑗+1, 𝑗+3

)︃
.

Thus,

1
𝑤𝑛⃗, 𝑗 ,2

⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 +
𝑚∑︁

𝑘= 𝑗+3
(−1)𝑘𝑎𝑛⃗,𝑘 ⟨𝑠 𝑗+3,𝑘 , 𝑠 𝑗+2, 𝑗+1ˆ︁⟩⎞⎟⎠ ∈ O

(︃
1

𝑧𝜒𝑛⃗, 𝑗+1, 𝑗+3+𝜒𝑛⃗, 𝑗+1, 𝑗+2+𝜂𝑛⃗, 𝑗+1−3

)︃
.

In particular, if 𝑗 = 𝑚 − 3, we get

(𝑎𝑛⃗,𝑚−3 − 𝑎𝑛,𝑚ˆ︁𝑠𝑚,𝑚−2) (𝑧)
𝑤𝑛⃗,𝑚−3,2(𝑧)

= O

(︃
1

𝑧𝜒𝑛⃗,𝑚−2,𝑚+𝜒𝑛⃗,𝑚−2,𝑚−1+𝜂𝑚−2−3

)︃
,

which gives us (3.7) with 𝑤∗
𝑛⃗,𝑚−3 = 𝑤𝑛⃗,𝑚−3,2 when 𝑗 = 𝑚 − 3.
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This process can be continued inductively, and after 𝑚 − 𝑗 − 1 reductions we guarantee the
existence of a polynomial 𝑤𝑛⃗, 𝑗 ,𝑚− 𝑗−1 of degree

∑︁𝑚− 𝑗−2
𝑘=1 𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 + 𝜂𝑛⃗, 𝑗+1 − 2𝑚 + 2 𝑗 + 3 with

simple zeros in Δ̊𝑚−1 such that

𝑎𝑛⃗, 𝑗 − 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚, 𝑗+1

𝑤𝑛⃗, 𝑗 ,𝑚− 𝑗−1
(𝑧) = O

(︃
𝑧
−
(︂∑︁𝑚− 𝑗−1

𝑘=1 𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1+𝜂𝑛⃗, 𝑗+1−2𝑚+2 𝑗+3
)︂ )︃

∈ H(C \ Δ𝑚), 𝑧 → ∞,

which allows us to deduce (3.7) taking 𝑤∗
𝑛⃗, 𝑗

= 𝑤𝑛⃗, 𝑗 ,𝑚− 𝑗−1.

As an immediate consequence we have

𝑎𝑛⃗, 𝑗 − 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚, 𝑗+1ˆ︁𝑠𝑚, 𝑗+1𝑤
∗
𝑛⃗, 𝑗

(𝑧) = O

(︃
𝑧
−
(︂∑︁𝑚− 𝑗−1

𝑘=1 𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1+𝜂𝑛⃗, 𝑗+1−2𝑚+2 𝑗+2
)︂ )︃

∈ H(C \ Δ𝑚), 𝑧 → ∞,

but
𝑎𝑛⃗, 𝑗 − 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚, 𝑗+1ˆ︁𝑠𝑚, 𝑗+1

= 𝑎𝑛⃗, 𝑗ˆ︁𝜏𝑚, 𝑗+1 − (𝑎𝑛⃗,𝑚 − ℓ𝑚, 𝑗+1𝑎𝑛⃗, 𝑗).

Hence, ∫
𝑥𝜈𝑎𝑛⃗, 𝑗 (𝑥)

d 𝜏𝑚, 𝑗+1(𝑥)
𝑤∗
𝑛⃗, 𝑗

(𝑥) = 0, 𝜈 = 0, 1, . . . ,
𝑚− 𝑗−1∑︁
𝑘=1

𝜒𝑛⃗, 𝑗 , 𝑗+𝑘 + 𝜂𝑛⃗, 𝑗 − 2𝑚 + 2 𝑗 ,

and the polynomial 𝑎𝑛⃗, 𝑗 has at least
∑︁𝑚− 𝑗−1
𝑘=1 𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 + 𝜂𝑛⃗, 𝑗+1 − 2𝑚 + 2 𝑗 + 1 sign changes in Δ̊𝑚

which is the last statement of the lemma.

□

Now we are ready to prove the convergence of the approximants associated to the ML Hermite-
Padé approximation scheme.

Proof of Theorem 3.2. Let us begin with the simplest case when 𝑗 = 𝑚 − 1. Let Λ ⊂ (Z𝑚+ )∗ be an
arbitrary sequence of multi-indices. According to (3.4) (recall that 𝑛1 + · · · + 𝑛𝑚 = |𝑛⃗|)

𝑎𝑛⃗,𝑚−1 − 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚,𝑚
𝑤𝑛⃗,𝑚−1

(𝑧) = O

(︃
1

𝑧 ( |𝑛⃗ |+1)

)︃
∈ H(C \ Δ𝑚), 𝑧 → ∞,

and deg𝑤𝑛⃗,𝑚−1 = 𝜂𝑛⃗,𝑚−1 < 2|𝑛⃗|. Since deg 𝑎𝑛⃗,𝑚 ≤ |𝑛⃗|, deg 𝑎𝑛⃗,𝑚−1 ≤ |𝑛⃗| − 1, it follows that
𝑎𝑛⃗,𝑚−1/𝑎𝑛⃗,𝑚 is the standard multipoint Padé approximant ofˆ︁𝑠𝑚,𝑚 with respect to𝑤𝑛⃗,𝑚−1 (see [50]).
This implies that 𝑎𝑛⃗,𝑚 is the |𝑛⃗|-th monic orthogonal polynomial with respect to d 𝑠𝑚,𝑚/𝑤𝑛⃗,𝑚−1

and 𝑎𝑛⃗,𝑚−1 the corresponding polynomial of second kind. This implies that the zeros of these
polynomials lie in Δ̊𝑚 and interlace. Now, (3.2) for 𝑗 = 𝑚 − 1 readily follows from [50, Theorem
1] (see [50, Corollary 1]) in the case that the sequence of moments of 𝜎𝑚 verifies Carleman’s
condition. When Δ𝑚−1 is a compact interval bounded away from Δ𝑚 and lim𝑛⃗∈Λ 𝜂𝑛⃗,𝑚−1 = ∞ then
the number of interpolation conditions on Δ𝑚−1 (at the zeros of 𝑤𝑛⃗,𝑚−1) suffice to guarantee the
convergence of the sequence, which follows from ([50, Theorem 1, Corollary 2]).

For other values of 𝑗 , there is some defect in the order of interpolation on the right hand of
(3.7) and we cannot ensure that 𝑎𝑛⃗, 𝑗/𝑎𝑛⃗,𝑚 is an |𝑛⃗|-th multipoint Padé approximant. That is the
reason for restricting the sequence of multi-indices in that part of the statement of Theorem 3.2.
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In the sequel, we assume that Λ ⊂ (Z𝑚+ )∗ is an infinite sequence of distinct multi-indices such
that there exist ℓ ∈ {0, . . . , 𝑚 − 2} and a non-negative integer 𝑁 such that 𝑛 𝑗+1 ≤ 𝑛 𝑗 + 𝑁 for all
ℓ + 1 ≤ 𝑗 ≤ 𝑚 − 1. In this case, we automatically have lim𝑛⃗∈Λ 𝜂𝑛⃗,𝑚−1 = +∞. Indeed, assume
that lim sup𝑛⃗∈Λ 𝜂𝑛⃗,𝑚−1 < +∞. In particular, this implies that there exists a constant 𝐶 such that
𝑛𝑚−1 ≤ 𝐶, 𝑛⃗ ∈ Λ. However, lim𝑛⃗∈Λ 𝑛𝑚 = +∞ because lim𝑛⃗∈Λ |𝑛⃗| = ∞ since the multi-indices are
distinct; therefore, it is impossible that 𝑛𝑚 ≤ 𝑛𝑚−1 + 𝑁 , 𝑛⃗ ∈ Λ.

For 𝑗 = 𝑚 − 1 the proof of (3.2) was carried out above. Fix 𝑗 ∈ {ℓ, . . . , 𝑚 − 2}. We have

deg𝑤∗
𝑛⃗, 𝑗

=

𝑚− 𝑗−2∑︁
𝑘=1

𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 + 𝜂𝑛⃗, 𝑗+1 − 2𝑚 + 2 𝑗 + 3

≤𝜂𝑛⃗, 𝑗+1 − 2𝑚 + 2 𝑗 + 3 +
𝑚− 𝑗−2∑︁
𝑘=1

(𝑛 𝑗+𝑘+1 + 2)

=𝜂𝑛⃗,𝑚−1 − 2𝑚 + 2 𝑗 + 3 + 2(𝑚 − 𝑗 − 2) ≤ 𝜂𝑛⃗,𝑚−1 − 1 < 2|𝑛⃗|

for all 𝑛⃗ ∈ Λ. Due to the assumptions imposed of the sequence Λ, we have

𝑛 𝑗+𝑘+1 ≤ 𝑛 𝑗+𝑘 + 𝑁 ≤ · · · ≤ 𝑛 𝑗+1 + 𝑘𝑁.

Therefore,
𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 ≥ min{𝑛 𝑗+1, . . . , 𝑛 𝑗+𝑘+1} ≥ 𝑛 𝑗+𝑘+1 − 𝑘𝑁

Consequently,

𝜂𝑛⃗, 𝑗+1 +
𝑚− 𝑗−1∑︁
𝑘=1

𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 − 2𝑚 + 2 𝑗 + 1 ≥ |𝑛⃗| − 2𝑚 −𝑁
𝑚− 𝑗−1∑︁
𝑘=1

𝑘 ≥ |𝑛⃗| − 2𝑚 −𝑁𝑚(𝑚 + 1)
2

. (3.9) {numberzeros}{numberzeros}

Combined with the last statement of Lemma 3.6 this inequality gives the lower bound on the
number of sign changes of 𝑎𝑛⃗, 𝑗 on Δ̊𝑚.

From (3.9) and (3.7), it follows that there exists a constant 𝜅 ∈ Z+ such that for all 𝑛⃗ ∈ Λ and
𝑗 = ℓ, . . . , 𝑚 − 2

𝑎𝑛⃗, 𝑗 − 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚, 𝑗+1

𝑤∗
𝑛⃗, 𝑗

(𝑧) = O

(︃
1

𝑧 |𝑛⃗ |+1−𝜅

)︃
∈ H(C \ Δ𝑚), 𝑧 → ∞. (3.10) {multiPade}{multiPade}

We also have deg 𝑎𝑛⃗, 𝑗 ≤ |𝑛⃗|−1, deg 𝑎𝑛⃗,𝑚 ≤ |𝑛⃗| and deg𝑤∗
𝑛⃗,𝑚

≤ 2|𝑛⃗|. This means that for each fixed

𝑗 , ℓ ≤ 𝑗 ≤ 𝑚 − 2,
{︂
𝑎𝑛⃗, 𝑗

𝑎𝑛⃗.𝑚

}︂
𝑛⃗∈Λ

is a sequence of incomplete diagonal multipoint Padé approximants
of ˆ︁𝑠𝑚. 𝑗+1 which satisfies (3.10). It is easy to verify that if the sequence of moments of 𝜎𝑚 verifies
Carleman’s condition then for all 𝑗 , 0 ≤ 𝑗 ≤ 𝑚−1, the sequence of moments of 𝑠𝑚, 𝑗+1 also verifies
Carleman’s condition. Also, recall that in the present situation lim𝑛⃗∈Λ 𝜂𝑛⃗,𝑚−1 = +∞ takes place.
Using the assumptions imposed on the moments of 𝜎𝑚 or on Δ𝑚−1 from [20, Lemma 2], it follows
that

{︂
𝑎𝑛⃗, 𝑗

𝑎𝑛⃗.𝑚

}︂
𝑛⃗∈Λ

converges toˆ︁𝑠𝑚, 𝑗+1 in 1-Hausdorff content (Definition 1.6) on each compact subset

of C \ Δ𝑚. Convergence in 1-Hausdorff content means that for each compact 𝐾 ⊂ C \ Δ𝑚 and for
each 𝜀 > 0, we have

lim
𝑛⃗∈Λ

ℎ

{︃
𝑧 ∈ 𝐾 :

|︁|︁|︁|︁ 𝑎𝑛⃗, 𝑗 (𝑧)𝑎𝑛⃗.𝑚(𝑧)
−ˆ︁𝑠𝑚, 𝑗+1(𝑧)

|︁|︁|︁|︁ > 𝜀}︃ = 0 (3.11) {convH}{convH}
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The rational functions 𝑎𝑛⃗, 𝑗

𝑎𝑛⃗.𝑚
are holomorphic in C \ Δ𝑚 because the zeros of 𝑎𝑛⃗,𝑚 lie in Δ𝑚.

This together with (3.11) imply that the convergence is uniform on each compact subset of C \Δ𝑚
according to Lemma 1.8.

If Δ𝑚 is bounded, we still have to consider those compact subsets of C \ Δ𝑚 which contain ∞.
Due to the fact that the rational functions andˆ︁𝑠𝑚, 𝑗+1 equal zero at ∞ this situation is obtained from
the general case using the maximum principle. The proof is complete.

□

The last statement of Lemma 3.6, (3.9) gives a lower bound on the number of zeros which
𝑎𝑛⃗, 𝑗 has in Δ̊𝑚 when 𝑛⃗ ∈ Λ and Λ verifies the conditions of Theorem 3.2. If we impose greater
restrictions on Λ more can be said in this regard.{cor:comp}

Theorem 3.7:
LetΛ ⊂ (Z𝑚+ )∗ be an infinite sequence of distinct multi-indices for which there exists ℓ ∈ {0, . . . , 𝑚−
2} such that 𝑛 𝑗 ≥ 𝑛 𝑗+1 + 1 for all ℓ + 1 ≤ 𝑗 ≤ 𝑚 − 1 and 𝑛⃗ ∈ Λ. Consider the sequence of vector
polynomials (𝑎𝑛⃗,0, . . . , 𝑎𝑛⃗,𝑚)𝑛⃗∈Λ associated with N (𝜎1, . . . , 𝜎𝑚). Then, 𝑎𝑛⃗, 𝑗 , 𝑗 = ℓ, . . . , 𝑚 − 1,
has exactly |𝑛⃗| − 1 simple zeros which interlace the zeros of 𝑎𝑛⃗,𝑚.

Proof. We prove this by showing that for all 𝑗 = ℓ, . . . , 𝑚 − 1 and 𝑛⃗ ∈ Λ, the rational function
𝑎𝑛⃗, 𝑗/𝑎𝑛⃗,𝑚 is a diagonal multipoint Padé approximant of ˆ︁𝑠𝑚. 𝑗+1. Due to (3.7) we achieve this if we
show that

𝑚− 𝑗−1∑︁
𝑘=1

𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 + 𝜂𝑛⃗, 𝑗+1 − 2𝑚 + 2 𝑗 + 3 = |𝑛⃗| − 𝑙 + 1 with 𝑙 = 0.

Notice that

𝑚− 𝑗−1∑︁
𝑘=1

𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 + 𝜂𝑛⃗, 𝑗+1 − 2𝑚 + 2 𝑗 + 3 =

𝑚− 𝑗−1∑︁
𝑘=1

𝜒𝑛⃗, 𝑗+1, 𝑗+𝑘+1 + |𝑛⃗| −
𝑚∑︁

𝑖= 𝑗+2
𝑛𝑖 − 2𝑚 + 2 𝑗 + 3.

Combining these two relations, canceling out common terms and making a change of parameter
in the indices of the sums, we obtain the equation

𝑙 = 2(𝑚 − 𝑗 − 1) −
𝑚∑︁

𝑘= 𝑗+2
(𝜒𝑛⃗, 𝑗+1,𝑘 − 𝑛𝑘).

Taking into account that 𝑛 𝑗 ≥ 𝑛 𝑗+1 + 1, ℓ + 1 ≤ 𝑗 ≤ 𝑚 − 1, it readily follows that 𝜒𝑛⃗, 𝑗+1,𝑘 = 𝑛𝑘 + 2.
Consequently,

𝑚∑︁
𝑘= 𝑗+2

(𝜒𝑛⃗, 𝑗+1,𝑘 − 𝑛𝑘) = 2(𝑚 − 𝑗 − 1)

and thus 𝑙 = 0 as needed.

Hence,
(𝑎𝑛⃗, 𝑗 − 𝑎𝑛⃗,𝑚ˆ︁𝑠𝑚, 𝑗+1) (𝑧)

𝑤∗
𝑛⃗, 𝑗

(𝑧) = O

(︃
1

𝑧 |𝑛⃗ |+1

)︃
, 𝑗 = ℓ, . . . , 𝑚 − 1,
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and deg𝑤∗
𝑛⃗, 𝑗

≤ 2|𝑛⃗|. Consequently, 𝑎𝑛⃗, 𝑗/𝑎𝑛⃗,𝑚 is the |𝑛⃗|-th diagonal multipoint Padé approximant
with respect toˆ︁𝑠𝑚, 𝑗+1 with interpolation points at the zeros of𝑤∗

𝑛⃗, 𝑗
and at∞ of order 2|𝑛⃗|−deg𝑤∗

𝑛⃗, 𝑗
.

So, the fraction 𝑎𝑛⃗, 𝑗/𝑎𝑛⃗,𝑚 is the |𝑛⃗|-th diagonal multipoint Padé approximation ofˆ︁𝑠𝑚, 𝑗+1. From
the theory of diagonal multipoint Padé approximation (or simply using (2.10)) we know that 𝑎𝑛⃗,𝑚
is the |𝑛⃗| − 𝑡ℎ monic orthogonal polynomials with respect to the varying measure d 𝑠𝑚, 𝑗+1/𝑤∗

𝑛⃗, 𝑗

and 𝑎𝑛⃗, 𝑗 is the corresponding polynomial of the second kind whose zeros interlace those of 𝑎𝑛⃗,𝑚.
We are done.

□

3.3 Ratio asymptotic
{sec:ratio}

Throughout this section 𝑄 𝑛⃗, 𝑗 , 𝑗 = 1, . . . , 𝑚, denotes the monic polynomial whose roots coincide
with the zeros of A𝑛⃗, 𝑗 in C \ Δ 𝑗+1 (Δ𝑚+1 = ∅). In Lemma 3.4, these polynomials were denoted
𝑤𝑛⃗, 𝑗 . From that lemma it follows that deg𝑄 𝑛⃗, 𝑗 = 𝜂𝑛⃗, 𝑗 = 𝑛1 + · · · + 𝑛 𝑗 , its zeros are simple and
lie in Δ̊ 𝑗 . We will show that these polynomials satisfy full orthogonality relations with respect to
certain varying measures. This fact plays an important role in the study of ratio asymptotic.

3.3.1 Multi-orthogonality relations

From Lemma 2.5 and (3.4) in Lemma 3.4 it readily follows that for 𝑗 = 0, . . . , 𝑚 − 1

A𝑛⃗, 𝑗 (𝑧)
𝑄 𝑛⃗, 𝑗 (𝑧)

=

∫
A𝑛⃗, 𝑗+1(𝑥)
𝑧 − 𝑥

d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)

, (3.12) {int_Anj}{int_Anj}

where 𝑄 𝑛⃗,0 ≡ 1, and∫
𝑥𝜈A𝑛⃗, 𝑗+1(𝑥)

d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)

= 0, 𝜈 = 0, 1, . . . 𝜂𝑛⃗, 𝑗+1 − 1. (3.13) {orth_Anj}{orth_Anj}

Set

H𝑛⃗, 𝑗 :=
𝑄 𝑛⃗, 𝑗+1A𝑛⃗, 𝑗

𝑄 𝑛⃗, 𝑗
, 𝑗 = 0, . . . , 𝑚 − 1, (3.14) {Hnj}{Hnj}

where 𝑄 𝑛⃗,0 ≡ 𝑄 𝑛⃗,𝑚+1 ≡ 1. Since A𝑛⃗,𝑚 = (−1)𝑚𝑎𝑛⃗,𝑚 and 𝑎𝑛⃗,𝑚 is monic, we take H𝑛⃗,𝑚 = (−1)𝑚. {mult_orth}

Lemma 3.8:
Consider the Nikishin system N (𝜎1, . . . , 𝜎𝑚). For each fixed 𝑛⃗ ∈ (Z𝑚+ )∗ and 𝑗 = 0, . . . , 𝑚 − 1∫

𝑥𝜈𝑄 𝑛⃗, 𝑗+1(𝑥)
H𝑛⃗, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)𝑄 𝑛⃗, 𝑗+2(𝑥)

= 0, 𝜈 = 0, . . . , 𝜂𝑛⃗, 𝑗+1 − 1 (3.15) {orth_Qnj}{orth_Qnj}

and

H𝑛⃗, 𝑗 (𝑧) =
∫ 𝑄2

𝑛⃗, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛⃗, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)𝑄 𝑛⃗, 𝑗+2(𝑥)

. (3.16) {Hnj_int}{Hnj_int}
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Proof. Formula (3.15) is (3.13) rewritten with the new notation. Since deg𝑄 𝑛⃗, 𝑗+1 = 𝜂𝑛⃗, 𝑗+1, (3.15)
implies that ∫

𝑄 𝑛⃗, 𝑗+1(𝑧) −𝑄 𝑛⃗, 𝑗+1(𝑥)
𝑧 − 𝑥 𝑄 𝑛⃗, 𝑗+1(𝑥)

H𝑛⃗, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)𝑄 𝑛⃗, 𝑗+2(𝑥)

= 0.

Consequently,

𝑄 𝑛⃗, 𝑗+1(𝑧)
∫

𝑄 𝑛⃗, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛⃗, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)𝑄 𝑛⃗, 𝑗+2(𝑥)

=

∫ 𝑄2
𝑛⃗, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛⃗, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)𝑄 𝑛⃗, 𝑗+2(𝑥)

.

Taking into account (3.14) and (3.12) we get∫
𝑄 𝑛⃗, 𝑗+1(𝑥)
𝑧 − 𝑥

H𝑛⃗, 𝑗+1(𝑥) d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)𝑄 𝑛⃗, 𝑗+2(𝑥)

=

∫
A𝑛⃗, 𝑗+1(𝑥)
𝑧 − 𝑥

d𝜎𝑗+1(𝑥)
𝑄 𝑛⃗, 𝑗 (𝑥)

=
A𝑛⃗, 𝑗 (𝑧)
𝑄 𝑛⃗, 𝑗 (𝑧)

.

Therefore, (3.16) holds.

□

Given 𝑛⃗ ∈ (Z∗+)∗ and 𝑙 ∈ {1, . . . , 𝑚}, by 𝑛⃗𝑙 we denote the multi-index obtained adding 1 to the
𝑙-th component of 𝑛⃗. In the next lemma, we prove that the zeros of the polynomials𝑄 𝑛⃗, 𝑗 and𝑄

𝑛⃗
𝑙
, 𝑗

interlace. The idea of the proof was borrowed from [6, Theorem 2.1].{lm:interlace}

Lemma 3.9:
Consider the Nikishin system N (𝜎1, . . . , 𝜎𝑚). For each 𝑛⃗ ∈ (Z𝑚+ )∗ and 𝑗 = 1, . . . , 𝑚, the zeros of
the forms A𝑛⃗, 𝑗 and A

𝑛⃗
𝑙
, 𝑗
in Δ̊ 𝑗 interlace.

Proof. Fix 𝑛⃗ ∈ Z𝑚+ and 𝑗 ∈ {1, . . . , 𝑚}. Let 𝛼, 𝛽 ∈ R be such that 𝛼2 + 𝛽2 ≠ 0. Define the linear
form

D𝑛⃗, 𝑗 := 𝛼A𝑛⃗, 𝑗 + 𝛽A𝑛⃗
𝑙
, 𝑗
.

Repeating the arguments in the proof of Lemma 3.4 we deduce that the form D𝑛⃗, 𝑗 has at least
𝜂𝑛⃗, 𝑗 sign changes in Δ̊ 𝑗 , and at most 𝜂𝑛⃗, 𝑗 + 1 zeros in C \ Δ 𝑗+1 (Δ𝑚+1 = ∅). Consequently, all the
zeros of D𝑛⃗, 𝑗 in C \ Δ 𝑗+1 are real and simple.

From this assertion, we deduce that the forms A𝑛⃗, 𝑗 and A
𝑛⃗
𝑙
, 𝑗

cannot have common zeros. If
such a point 𝑦 exists, the function

D𝑛⃗, 𝑗 (𝑥) = A𝑛⃗, 𝑗 (𝑥) −
A ′
𝑛⃗, 𝑗

(𝑦)
A ′
𝑛⃗
𝑙
, 𝑗
(𝑦)A𝑛⃗

𝑙
, 𝑗
(𝑥)

would have a double zero at 𝑦. But this last statement contradicts what we already know.

Fix 𝑦 ∈ R \ Δ 𝑗+1, and consider the form

D𝑛⃗, 𝑗 ,𝑦 (𝑥) = A
𝑛⃗
𝑙
, 𝑗
(𝑦)A𝑛⃗, 𝑗 (𝑥) − A𝑛⃗, 𝑗 (𝑦)A𝑛⃗

𝑙
, 𝑗
(𝑥).

By construction D𝑛⃗, 𝑗 ,𝑦 (𝑦) = 0, and thus D ′
𝑛⃗, 𝑗 ,𝑦

(𝑦) ≠ 0. Take two consecutive zeros 𝑦1, 𝑦2 of A
𝑛⃗
𝑙
, 𝑗

in R \ Δ 𝑗+1 and suppose that 𝑦1 < 𝑦2. The zeros of A
𝑛⃗
𝑙
, 𝑗

are simple; therefore, A ′
𝑛⃗
𝑙
, 𝑗
(𝑦1) ≠ 0 and
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A ′
𝑛⃗
𝑙
, 𝑗
(𝑦2) ≠ 0. Since A

𝑛⃗
𝑙
, 𝑗

and A𝑛⃗, 𝑗 have no common zero, we also get that A𝑛⃗, 𝑗 (𝑦1) ≠ 0 and
A𝑛⃗, 𝑗 (𝑦2) ≠ 0. Thus,

D ′
𝑛⃗, 𝑗 ,𝑦1

(𝑦1) = −A𝑛⃗, 𝑗 (𝑦1)A ′
𝑛⃗
𝑙
, 𝑗
(𝑦1) ≠ 0,

D ′
𝑛⃗, 𝑗 ,𝑦2

(𝑦2) = −A𝑛⃗, 𝑗 (𝑦2)A ′
𝑛⃗
𝑙
, 𝑗
(𝑦2) ≠ 0.

However, the function D ′
𝑛⃗, 𝑗 ,𝑦

(𝑦) preserves the same sign all along the interval [𝑦1, 𝑦2]. Notice that
A ′
𝑛⃗
𝑙
, 𝑗
(𝑦) changes sign when 𝑦 moves from 𝑦1 to 𝑦2, so A𝑛⃗, 𝑗 must also change sign. By Bolzano’s

theorem A𝑛⃗, 𝑗 has a zero in (𝑦1, 𝑦2). The proof is complete.

□

3.3.2 The Riemann surface

The ratio asymptotic of the ML multiple orthogonal polynomials is described in terms of the
branches of a conformal mapping defined on a Riemann surface associated with the geometry of
the problem. In the sequel, we assume that Δ𝑘 is a closed bounded interval for all 𝑘 = 1, . . . , 𝑚.
Let us briefly describe the Riemann surface of interest.

Let R denote the compact Riemann surface

R =

𝑚⋃︂
𝑘=0

R𝑘

formed by the 𝑚 + 1 consecutively “glued” sheets

R0 := C \ Δ1, R𝑘 := C \ (Δ𝑘 ∪ Δ𝑘+1), 𝑘 = 1, . . . , 𝑚, R𝑚 := C \ Δ𝑚,

where the upper and lower banks of the slits of two neighboring sheets are identified. This surface
is of genus zero. For this and other notions of Riemann surfaces as well as meromorphic functions
defined on them we recommend [71].

Let 𝜋 : R −→ C be the canonical projection from R to C and denote by 𝑧 (𝑘) the point on R𝑘

satisfying 𝜋(𝑧 (𝑘) ) = 𝑧, 𝑧 ∈ C. For a fixed 𝑙 ∈ {1, . . . , 𝑚}, let 𝜓 (𝑙) : R −→ C denote a conformal
mapping whose divisor consists of one simple zero at the point ∞(0) ∈ R0 and one simple pole
at ∞(𝑙) ∈ R𝑙. This mapping exists and is uniquely determined up to a multiplicative constant.
Denote the branches of 𝜓 (𝑙) by

𝜓
(𝑙)
𝑘
(𝑧) := 𝜓 (𝑙) (𝑧 (𝑘) ), 𝑘 = 0, . . . , 𝑚, 𝑧 (𝑘) ∈ R𝑘 . (3.17) {branches}{branches}

From the properties of 𝜓 (𝑙) , we have

𝜓
(𝑙)
0 (𝑧) = 𝐶1,𝑙/𝑧 +𝑂 (1/𝑧2), 𝑧 → ∞, 𝜓

(𝑙)
𝑙

(𝑧) = 𝐶2,𝑙 𝑧 +𝑂 (1), 𝑧 → ∞, (3.18) {divisorcond}{divisorcond}

where 𝐶1,𝑙, 𝐶2,𝑙 are non-zero constants.

65



It is well known and easy to verify that the function
∏︁𝑚
𝑘=0 𝜓

(𝑙)
𝑘

admits an analytic continuation
to the whole extended plane C without singularities; therefore, it is constant. Multiplying 𝜓 (𝑙) if
necessary by a suitable non-zero constant, we may assume that 𝜓 (𝑙) satisfies the conditions

𝑚∏︂
𝑘=0

𝜓
(𝑙)
𝑘

= 𝐶, |𝐶 | = 1, 𝐶1,𝑙 > 0.

Let us show that with this normalization, 𝐶 is either +1 or −1.

Indeed, for a point 𝑧 (𝑘) ∈ R𝑘 on the Riemann surface we define its conjugate 𝑧 (𝑘) := 𝑧 (𝑘) .
Now, let 𝜓 (𝑙) : R −→ C be the function defined by 𝜓 (𝑙) (𝜁) := 𝜓 (𝑙) (𝜁). It is easy to verify that
𝜓
(𝑙) is a conformal mapping of R onto C with the same divisor as 𝜓 (𝑙) . Therefore, there exists a

constant 𝑐 such that 𝜓 (𝑙)
= 𝑐𝜓 (𝑙) . The corresponding branches satisfy the relations

𝜓
(𝑙)
𝑘 (𝑧) = 𝜓 (𝑙)

𝑘
(𝑧) = 𝑐𝜓 (𝑙)

𝑘
(𝑧), 𝑘 = 0, . . . , 𝑚.

Comparing the Laurent expansions at ∞ of 𝜓 (𝑙)
0 (𝑧) and 𝑐𝜓 (𝑙)

0 (𝑧), using the fact that 𝐶1,𝑙 > 0, it
follows that 𝑐 = 1. Then

𝜓
(𝑙)
𝑘
(𝑧) = 𝜓 (𝑙)

𝑘
(𝑧), 𝑘 = 0, . . . , 𝑚.

This in turn implies that for each 𝑘 = 0, . . . , 𝑚, all the coefficients, in particular the leading one,
of the Laurent expansion at infinity of 𝜓 (𝑙)

𝑘
are real numbers. Obviously, 𝐶 is the product of these

leading coefficients. Therefore, 𝐶 is real, and |𝐶 | = 1 implies that 𝐶 equals 1 or −1 as claimed.
So, we can assume in the following that

𝑚∏︂
𝑘=0

𝜓
(𝑙)
𝑘

≡ 𝑒, 𝐶1,𝑙 > 0, (3.19){normconfmap}{normconfmap}

where 𝑒 is either 1 or −1. It is easy to see that conditions (3.18) and (3.19) determine 𝜓 (𝑙) uniquely.

We will need the following lemma. Its proof can be found in [6, Lemma 4.2]{lm:BVP}

Lemma 3.10:
Set

𝐹
(𝑙)
𝑘

:=
𝑚∏︂
𝜈=𝑘

𝜓
(𝑙)
𝜈 (3.20){boundary3}{boundary3}

where the algebraic functions𝜓 (𝑙)
𝜈 are defined by (3.17)-(3.19). The collection of functions 𝐹 (𝑙)

𝑘
, 𝑘 =

1, . . . , 𝑚, is the unique solution of the system of boundary value problems

1) 𝐹 (𝑙)
𝑘
, 1/𝐹 (𝑙)

𝑘
∈ H (C \ Δ𝑘)

2a) 𝐹 (𝑙)
𝑘

(∞) > 0, 𝑘 = 1, . . . , 𝑙 − 1

2b)
(︂
𝐹

(𝑙)
𝑘

)︂ ′
(∞) > 0, 𝑘 = 𝑙, . . . , 𝑚

3)
|︁|︁|︁𝐹 (𝑙)
𝑘

(𝑥)
|︁|︁|︁2 1|︁|︁|︁(︂𝐹 (𝑙)

𝑘−1𝐹
(𝑙)
𝑘+1

)︂
(𝑥)

|︁|︁|︁ = 1, 𝑥 ∈ Δ𝑘

where 𝐹 (𝑙)
0 ≡ 𝐹 (𝑙)

𝑚+1 ≡ 1.
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3.3.3 Proof of Theorem 3.3

Theorem 3.3 will be derived from Theorem 3.2 and the next result which gives the ratio asymptotic
of the polynomials𝑄 𝑛⃗, 𝑗 . In proving Theorem 3.11, we adapt the scheme developed in [6, Theorem
1.2] for the study of the ratio asymptotic of type ii Hermite-Padé polynomials of Nikishin systems.

Given an arbitrary function 𝐹 (𝑧) which has in a neighborhood of infinity a Laurent expansion
of the form 𝐹 (𝑧) = 𝐶𝑧𝑘 + O

(︁
𝑧𝑘−1)︁ , 𝐶 ≠ 0, and 𝑘 ∈ Z, we denote

˜︁𝐹 :=
𝐹

𝐶
.

{th:ratio}

Theorem 3.11:
Consider the Nikishin system N (𝜎1, . . . , 𝜎𝑚) where the intervals Δ𝑘 , 𝑘 = 1, . . . , 𝑚, are bounded
and 𝜎′

𝑘
≠ 0 a.e. in Δ𝑘 . Let Λ ⊂ (Z𝑚+ )∗ be an infinite sequence of distinct multi-indices for which

there exists a non-negative integer 𝑁 such that 𝑛 𝑗+1 ≤ 𝑛 𝑗 + 𝑁 for all 1 ≤ 𝑗 ≤ 𝑚 − 1 and 𝑛⃗ ∈ Λ.
Then for 𝑘 = 1, . . . , 𝑚

lim
𝑛⃗∈Λ

𝑄
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑄 𝑛⃗,𝑘 (𝑧)
= ˜︁𝐹 (𝑙)

𝑘
(𝑧), (3.21) {left}{left}

uniformly on each compact subset of C \ Δ𝑘 .

Proof of Theorems 3.11 and 3.3. From Lemma 3.9 we know that, for each 𝑘 = 1, . . . , 𝑚 the zeros
of 𝑄 𝑛⃗,𝑘 and 𝑄

𝑛⃗
𝑙
,𝑘

interlace on Δ̊𝑘 . Consequently, the family of functions (𝑄
𝑛⃗
𝑙
,𝑘
/𝑄 𝑛⃗,𝑘)𝑛⃗∈Λ is

uniformly bounded on each compact subset of C \ Δ𝑘 . Therefore, there exists Λ′ ⊂ Λ such that

lim
𝑛⃗∈Λ′

𝑄
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑄 𝑛⃗,𝑘 (𝑧)
= 𝐺𝑘 (𝑧), 𝑘 = 1, . . . , 𝑚, (3.22) {ratio:ch3}{ratio:ch3}

uniformly on each compact subset of C \ Δ𝑘 , where 𝐺𝑘 ∈ H(C \ Δ𝑘). In principle, the limiting
functions 𝐺𝑘 may depend on Λ′. In order to prove the existence of limit along all Λ, it is sufficient
to show that 𝐺𝑘 = ˜︁𝐹 (𝑙)

𝑘
regardless of Λ′. Our goal will be accomplished with the aid of Lemma

3.10.

First, it is obvious that the functions 𝐺𝑘 (𝑧) and their reciprocals are analytic in C \ Δ𝑘 .
Therefore, condition 1 of Lemma 3.10 is fulfilled. On the other hand, considering the degrees of
the polynomials 𝑄 𝑛⃗,𝑘 and 𝑄

𝑛⃗
𝑙
,𝑘

, for all 𝑛⃗ ∈ Λ the rational functions on the left of (3.21) at infinity
are either equal to 1 when 𝑘 = 1, . . . , 𝑙 − 1, or their derivative equals 1 for 𝑘 = 𝑙, . . . , 𝑚; hence, the
limit functions must satisfy either 2𝑎) or 2𝑏) depending on 𝑘 . Thus, any normalization of these
functions obtained by means of a multiplication by positive constants also satisfies 1), and 2𝑎) or
2𝑏).

Now, to prove the boundary conditions 3 it is necessary to use some tools developed for the
study of ratio and relative asymptotic of polynomials orthogonal with respect to varying measures.
The main sources are [24], [53] and [56].
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Define the constants

𝐾𝑛⃗,𝑘−1 :=
(︃∫

𝑄2
𝑛⃗,𝑘

(𝑥)
|H𝑛⃗,𝑘 (𝑥) | | d𝜎𝑘 (𝑥) |
|𝑄 𝑛⃗,𝑘−1(𝑥)𝑄 𝑛⃗,𝑘+1(𝑥) |

)︃−1/2
, 𝑘 = 1, . . . , 𝑚, (3.23) {K_nk}{K_nk}

𝐾𝑛⃗,𝑚 :=1,

𝜅𝑛⃗,𝑘 :=
𝐾𝑛⃗,𝑘−1

𝐾𝑛⃗,𝑘
, 𝑘 = 1, . . . , 𝑚.

Set

𝑞𝑛⃗,𝑘 := 𝜅𝑛⃗,𝑘𝑄 𝑛⃗,𝑘 , ℎ𝑛⃗,𝑘 := 𝐾2
𝑛⃗,𝑘

H𝑛⃗,𝑘 , 𝑘 = 1, . . . , 𝑚, ℎ𝑛⃗,0 := 𝐾2
𝑛⃗,0H𝑛⃗,0. (3.24){orthonormal}{orthonormal}

With this notation the expression (3.15) is equivalent to∫
𝑥𝜈𝑄 𝑛⃗,𝑘 (𝑥)

|ℎ𝑛⃗,𝑘 (𝑥) | | d𝜎𝑘 (𝑥) |
|𝑄 𝑛⃗,𝑘−1(𝑥)𝑄 𝑛⃗,𝑘+1(𝑥) |

= 0, 𝜈 = 0, . . . , 𝜂𝑛⃗,𝑘 − 1.

Recall that 𝜎𝑘 has constant sign and notice that 𝑄 𝑛⃗,𝑘 , 𝑄 𝑛⃗,𝑘−1 and H𝑛⃗,𝑘 have constant sign on Δ𝑘 .
Therefore, 𝑄 𝑛⃗,𝑘 is the 𝜂𝑛⃗,𝑘−1-th monic orthogonal polynomial with respect to the varying measure

d 𝜌𝑛⃗,𝑘 (𝑥) :=
|ℎ𝑛⃗,𝑘 (𝑥) | | d𝜎𝑘 (𝑥) |

|𝑄 𝑛⃗,𝑘−1(𝑥)𝑄 𝑛⃗,𝑘+1(𝑥) |
,

and 𝑞𝑛⃗,𝑘 is the 𝜂𝑛⃗,𝑘−1-th orthonormal polynomial with respect to the same varying measure.

With an analogous reasoning, we have 𝑄
𝑛⃗
𝑙
,𝑘

is the 𝜂
𝑛⃗
𝑙
,𝑘−1-th monic orthogonal polynomial

with respect to the varying measure

|ℎ
𝑛⃗
𝑙
,𝑘
(𝑥) | | d𝜎𝑘 (𝑥) |

|𝑄
𝑛⃗
𝑙
,𝑘−1(𝑥)𝑄 𝑛⃗𝑙 ,𝑘+1(𝑥) |

=
|ℎ
𝑛⃗
𝑙
,𝑘
(𝑥) |

|ℎ𝑛⃗,𝑘 (𝑥) |
|𝑄 𝑛⃗,𝑘−1(𝑥)𝑄 𝑛⃗,𝑘+1(𝑥) |
|𝑄
𝑛⃗
𝑙
,𝑘−1(𝑥)𝑄 𝑛⃗𝑙 ,𝑘+1(𝑥) |

d 𝜌𝑛⃗,𝑘 (𝑥). (3.25){Varying_measure}{Varying_measure}

Using (3.22), we deduce

lim
𝑛⃗∈Λ′

|𝑄 𝑛⃗,𝑘−1(𝑥)𝑄 𝑛⃗,𝑘+1(𝑥) |
|𝑄
𝑛⃗
𝑙
,𝑘−1(𝑥)𝑄 𝑛⃗𝑙 ,𝑘+1(𝑥) |

=
1

|𝐺𝑘−1(𝑧)𝐺𝑘+1(𝑧) |
, 𝑘 = 1, . . . , 𝑚, (3.26){limit_Qn_Qn}{limit_Qn_Qn}

where the convergence is uniform on Δ𝑘 . On the other hand, from (3.16) it follows that

|ℎ𝑛⃗,𝑘 (𝑧) | =
|︁|︁|︁|︁|︁∫ 𝑞2

𝑛⃗,𝑘+1(𝑥)
𝑧 − 𝑥

|ℎ𝑛⃗,𝑘+1(𝑥) | | d𝜎𝑘+1(𝑥) |
|𝑄 𝑛⃗,𝑘 (𝑥)𝑄 𝑛⃗,𝑘+2(𝑥) |

|︁|︁|︁|︁|︁ , 𝑘 = 0, . . . , 𝑚 − 1. (3.27){h_nk}{h_nk}

Moreover, we have the following relation between the degrees of the polynomials𝑄 𝑛⃗,𝑘 ,𝑄 𝑛⃗,𝑘+2 and
𝑞𝑛⃗,𝑘+1

deg𝑄 𝑛⃗,𝑘𝑄 𝑛⃗,𝑘+2 − 2 deg 𝑞𝑛⃗,𝑘+1 =𝜂𝑛⃗,𝑘−1 + 𝜂𝑛⃗,𝑘+1 − 2𝜂𝑛⃗,𝑘

=𝑛𝑘+1 − 𝑛𝑘 ≤ 𝑁,

where 𝑁 is the constant given in the assumptions which is independent of 𝑛⃗ ∈ Λ. Consequently,
taking into account [24, Theorem 9], we obtain

lim
𝑛⃗∈Λ

|ℎ𝑛⃗,𝑘 (𝑧) | =
1

|
√︁
(𝑧 − 𝑏𝑘+1) (𝑧 − 𝑎𝑘+1) |

, 𝑘 = 0, . . . , 𝑚 − 1, (3.28){lim_hnj}{lim_hnj}
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uniformly on each compact subset of C \ Δ𝑘+1, where Δ𝑘+1 = [𝑎𝑘+1, 𝑏𝑘+1] (in particular on Δ𝑘

when 𝑘 = 1, . . . 𝑚 − 1).

The proof of (3.28) is carried out by induction for decreasing values of 𝑘 . Indeed, if 𝑘 = 𝑚−1,
since ℎ𝑛⃗,𝑚 ≡ (−1)𝑚, (3.27) reduces to

|ℎ𝑛⃗,𝑚−1(𝑧) | =
|︁|︁|︁|︁|︁∫ 𝑞2

𝑛⃗,𝑚
(𝑥)

𝑧 − 𝑥
| d𝜎𝑚(𝑥) |
|𝑄 𝑛⃗,𝑚−1(𝑥) |

|︁|︁|︁|︁|︁ ,
and using [24, Theorem 9], we obtain

lim
𝑛⃗∈Λ

|ℎ𝑛⃗,𝑚−1(𝑧) | =
|︁|︁|︁|︁|︁ 1𝜋 ∫ 𝑏𝑚

𝑎𝑚

1
𝑧 − 𝑥

d 𝑥√︁
(𝑏𝑚 − 𝑥) (𝑥 − 𝑎𝑚)

|︁|︁|︁|︁|︁ = 1
|
√︁
(𝑧 − 𝑎𝑚) (𝑧 − 𝑏𝑚) |

pointwise for 𝑧 ∈ C \ Δ𝑚. However, it is easy to verify that the family of functions (ℎ𝑛⃗,𝑚−1)𝑛⃗∈Λ is
uniformly bounded on compact subsets of C \Δ𝑚 and uniform convergence on compact subsets of
that region follows from pointwise convergence. Now, let 1 ≤ 𝑘 + 1 ≤ 𝑚 and assume that (3.28)
holds for 𝑘 + 1. Then, using (3.27) we can apply once more [24, Theorem 9] to obtain (3.28) for 𝑘
pointwise on C \ Δ𝑘+1 and uniform convergence follows as before.

Similar arguments give

lim
𝑛⃗∈Λ

|ℎ
𝑛⃗
𝑙
,𝑘
(𝑧) | = 1

|
√︁
(𝑧 − 𝑏𝑘+1) (𝑧 − 𝑎𝑘+1) |

, 𝑘 = 0, . . . , 𝑚 − 1, (3.29) {lim_hnj2}{lim_hnj2}

uniformly on compact subsets of C \ Δ𝑘+1.

By construction ℎ𝑛⃗,𝑚 ≡ ℎ
𝑛⃗
𝑙
,𝑚

≡ (−1)𝑚. Therefore, using (3.28) and (3.29) it follows that

lim
𝑛⃗∈Λ

|ℎ
𝑛⃗
𝑙
,𝑘
(𝑥) |

|ℎ𝑛⃗,𝑘 (𝑥) |
= 1, 𝑘 = 1, . . . , 𝑚, (3.30) {limitQuot_hnk}{limitQuot_hnk}

uniformly on Δ𝑘 . Putting together (3.30) and (3.26), we have

lim
𝑛⃗∈Λ′

|ℎ
𝑛⃗
𝑙
,𝑘 (𝑥) |

|ℎ𝑛⃗,𝑘 (𝑥) |
|𝑄 𝑛⃗,𝑘−1(𝑥)𝑄 𝑛⃗,𝑘+1(𝑥) |
|𝑄
𝑛⃗
𝑙
,𝑘−1(𝑥)𝑄 𝑛⃗𝑙 ,𝑘+1(𝑥) |

=
1

|𝐺𝑘−1(𝑥)𝐺𝑘+1(𝑥) |
, 𝑘 = 1, . . . , 𝑚, (3.31) {limit_varying}{limit_varying}

uniformly on the interval Δ𝑘 . The function on the right hand side of the previous expression is
different from zero on Δ𝑘 .

Fix 𝑘 = 1, . . . , 𝑚. We distinguish two cases. If 𝑘 = 1, . . . , 𝑙 − 1 (𝑙 ≥ 2), then deg𝑄
𝑛⃗
𝑙
,𝑘

=

deg𝑄 𝑛⃗,𝑘 = 𝜂𝑛⃗,𝑘 . Using (3.25) and (3.31), the result on relative asymptotic of orthogonal polyno-
mials with respect to varying measures which appears in [9, Theorem 2] implies that

lim
𝑛⃗∈Λ′

𝑄
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑄 𝑛⃗,𝑘 (𝑧)
= 𝐺𝑘 (𝑧) =

S𝑘 (𝑧)
S𝑘 (∞) , 𝑘 = 1, . . . , 𝑙 − 1, (3.32) {ratio_S}{ratio_S}

where S𝑘 is the Szegő function on C \ Δ𝑘 with respect to the weight function

|𝐺𝑘−1(𝑧)𝐺𝑘+1(𝑧) |−1, 𝑥 ∈ Δ𝑘 .

Consequently,
|S𝑘 (𝑥) |2 |𝐺𝑘−1(𝑧)𝐺𝑘+1(𝑧) |−1 = 1, 𝑥 ∈ Δ𝑘 . (3.33) {Sk_Gk}{Sk_Gk}
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and for 𝑥 ∈ Δ𝑘
|𝐺𝑘 (𝑥) |2

|𝐺𝑘−1(𝑥)𝐺𝑘+1(𝑥) |
=

1
S2
𝑘
(∞)

, 𝑘 = 1, . . . , 𝑙 − 1. (3.34) {boundary1}{boundary1}

Now, if 𝑘 = 𝑙, . . . , 𝑚, then deg𝑄
𝑛⃗
𝑙
,𝑘

= deg𝑄 𝑛⃗,𝑘 + 1 = 𝜂𝑛⃗,𝑘 + 1. Let 𝑄∗
𝑛⃗,𝑘

be the 𝜂𝑛⃗,𝑘-th monic
orthogonal polynomial with respect to the varying measure (3.25). Take

𝑄
𝑛⃗
𝑙
,𝑘

𝑄 𝑛⃗,𝑘
=
𝑄
𝑛⃗
𝑙
,𝑘

𝑄∗
𝑛⃗,𝑘

𝑄∗
𝑛⃗,𝑘

𝑄 𝑛⃗,𝑘
.

For the second factor, reasoning as above, we get

lim
𝑛⃗∈Λ′

𝑄∗
𝑛⃗,𝑘

(𝑧)
𝑄 𝑛⃗,𝑘 (𝑧)

=
S𝑘 (𝑧)
S𝑘 (∞) , (3.35){ratio_S^*}{ratio_S^*}

where S𝑘 is the same Szegő function we had before. In the first factor, we have the ratio of two
monic polynomials of consecutive degrees orthogonal with respect to the same varying measure
and with the help of the theorem on ratio asymptotic of orthogonal polynomials with respect to
varying measures [24, Theorem 6] we deduce

lim
𝑛⃗∈Λ′

𝑄
𝑛⃗
𝑙
,𝑘

𝑄∗
𝑛⃗,𝑘

(𝑧) = 𝜑𝑘 (𝑧)
𝜑′
𝑘
(∞) , (3.36){ratio_phi}{ratio_phi}

uniformly on compact subsets of C \ Δ 𝑗 , where 𝜑𝑘 is the conformal representation of C \ Δ𝑘 onto
the exterior of the unit disc such that 𝜑𝑘 (∞) = ∞ and 𝜑′

𝑘
(∞) > 0. Combining (3.22) with (3.36)

and (3.35) we have

lim
𝑛⃗∈Λ′

𝑄
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑄 𝑛⃗,𝑘 (𝑧)
= 𝐺𝑘 (𝑧) =

S𝑘 (𝑧)𝜑𝑘 (𝑧)
S𝑘 (∞)𝜑′

𝑘
(∞) , 𝑘 = 𝑙, . . . , 𝑚, (3.37){Qnk_Gk_SK}{Qnk_Gk_SK}

and using (3.33) it follows that for 𝑥 ∈ Δ𝑘 ,

|𝐺𝑘 (𝑥) |2
|𝐺𝑘−1(𝑥)𝐺𝑘+1(𝑥) |

=
1

(S𝑘 (∞)𝜑′
𝑘
(∞))2 , 𝑘 = 𝑙, . . . , 𝑚. (3.38){boundary2}{boundary2}

Putting together (3.34) and (3.38) we have proved that the collection of functions (𝐺𝑘)𝑚𝑘=1

satisfies the conditions of Lemma 3.10, where the right hand side of 3) is 1/𝑤𝑘

𝑤𝑘 =

{︄
(S𝑘 (∞))2, 𝑘 = 1, . . . , 𝑙 − 1,
(S𝑘 (∞)𝜑′

𝑘
(∞))2, 𝑘 = 𝑙, . . . , 𝑚,

(3.39){wk}{wk}

(instead of 1).

Let ˜︁𝐺𝑘 = 𝑐𝑘𝐺𝑘 , where 𝑐𝑘 , 𝑘 = 1, . . . , 𝑚, are constants chosen appropriately so that

𝑐2
𝑘

𝑤𝑘𝑐𝑘−1𝑐𝑘+1
= 1, 𝑘 = 1, . . . , 𝑚 (𝑐0 = 𝑐𝑚+1 = 1).

Such constants exist. Indeed, taking logarithm we obtain the linear system of equations (in ln 𝑐𝑘)

2 ln 𝑐𝑘 − ln 𝑐𝑘−1 − ln 𝑐𝑘+1 = ln𝑤𝑘 , 𝑘 = 1, . . . , 𝑚, (3.40){linear_sys}{linear_sys}
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which has a solution because the determinant of the system is different from zero. It is easy to
verify that the collection of functions (˜︁𝐺𝑘)𝑚𝑘=1 satisfies all the conditions of Lemma 3.10. Since
that system of boundary value problems has only one solution, it follows that

˜︁𝐺𝑘 = 𝑐𝑘𝐺𝑘 = 𝐹 (𝑙)
𝑘
, 𝑘 = 1, . . . , 𝑚.

Now, 𝐺𝑘 (∞) = 1 when 𝑘 = 1, . . . , 𝑙 − 1 (𝑙 ≥ 2), and 𝐺 ′
𝑘
(∞) = 1 when 𝑘 = 𝑙, . . . , 𝑚; therefore,

taking limit as 𝑧 → ∞ it follows that

𝑐𝑘 =

{︄
𝐹

(𝑙)
𝑘

(∞), 𝑘 = 1, . . . , 𝑙 − 1,
(𝐹 (𝑙)
𝑘

) ′(∞), 𝑘 = 𝑙, . . . , 𝑚.
(3.41) {ck}{ck}

In any case, we have shown that independent of the subsequence Λ′ ⊂ Λ taken such that (3.22)
takes place the limiting functions are

𝐺𝑘 = ˜︁𝐹 (𝑙)
𝑘
, 𝑘 = 1, . . . , 𝑚,

and (3.21) follows. With this we conclude the proof of Theorem 3.11.

Since 𝑎𝑛⃗,𝑚 = 𝑄 𝑛⃗,𝑚 for all 𝑛⃗, (3.3) is a direct consequence of (3.21) and (3.20) when 𝑘 = 𝑚.
Now, fix 𝑘 ∈ {0, . . . , 𝑚 − 1} and 𝜀 > 0. Consider the positively oriented closed curve Γ which
surrounds Δ𝑚 at distance 𝜀. From (3.2) and the argument principle it follows that

lim
𝑛⃗∈Λ

1
2𝜋𝑖

∫
Γ

(𝑎𝑛⃗,𝑘/𝑎𝑛⃗,𝑚) ′(𝜁)
(𝑎𝑛⃗,𝑘/𝑎𝑛⃗,𝑚) (𝜁)

d 𝜁 =
1

2𝜋𝑖

∫
Γ

ˆ︁𝑠′
𝑚,𝑘+1(𝜁)ˆ︁𝑠𝑚,𝑘+1(𝜁)

d 𝜁 = 1

because ˆ︁𝑠𝑚,𝑘+1 has a simple zero at ∞ and no other zero or pole in all C \ Δ𝑚. The integrals
on the left hand side only take integer values so they must be constantly equal to 1 for all
𝑛⃗ ∈ Λ such that |𝑛⃗| is sufficiently large. Now, deg 𝑎𝑛⃗,𝑚 = |𝑛⃗| and its zeros lie on Δ𝑚 and
deg 𝑎𝑛⃗,𝑘 ≤ |𝑛⃗| − 1, 𝑘 = 0, . . . , 𝑚 − 1. It readily follows that for all 𝑛⃗ ∈ Λ with |𝑛⃗| sufficiently large,
deg 𝑎𝑛⃗,𝑘 = |𝑛⃗| − 1 and 𝑎𝑛⃗,𝑘 has no zeros in the unbounded connected component of C \ Γ. Since
𝜀 > 0 is arbitrary, we also obtain that the zeros of 𝑎𝑛⃗,𝑘 accumulate on Δ𝑚.

Now, using (3.2) and (3.3) (for 𝑘 = 𝑚) it follows that

lim
𝑛⃗∈Λ

𝑎
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑎𝑛⃗,𝑘 (𝑧)
= lim
𝑛⃗∈Λ

𝑎
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑎
𝑛⃗
𝑙
,𝑚
(𝑧)

𝑎𝑛⃗,𝑚(𝑧)
𝑎𝑛⃗,𝑘 (𝑧)

𝑎
𝑛⃗
𝑙
,𝑚
(𝑧)

𝑎𝑛⃗,𝑚(𝑧)
=

𝜓
(𝑙)
𝑚 (𝑧)

(𝜓 (𝑙)
𝑚 ) ′(∞)

,

uniformly on each compact subset of C \ Δ𝑚 and (3.3) follows for 𝑘 = 0, . . . , 𝑚 − 1.

□

The next result complements Theorem 3.11.

Corollary 3.12:
Assume that the conditions of Theorem 3.11 hold. Let (𝑞𝑛⃗,𝑘 = 𝜅𝑛⃗,𝑘𝑄 𝑛⃗,𝑘)𝑚𝑘=1, 𝑛⃗ ∈ Λ, be the system
of orthonormal polynomials defined in (3.24) and (𝐾𝑛⃗,𝑘)𝑚𝑘=1, 𝑛⃗ ∈ Λ, the values given in (3.23).
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Then, for each fixed 𝑘 = 1, . . . , 𝑚 we have

lim
𝑛⃗∈Λ

𝜅
𝑛⃗
𝑙
,𝑘

𝜅𝑛⃗,𝑘
=𝜅𝑘 , (3.42) {kappa}{kappa}

lim
𝑛⃗∈Λ

𝐾
𝑛⃗
𝑙
,𝑘−1

𝐾𝑛⃗,𝑘−1
=𝜅𝑘 · · · 𝜅𝑚, (3.43) {Knk_asym}{Knk_asym}

and

lim
𝑛⃗∈Λ

𝑞
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑞𝑛⃗,𝑘 (𝑧)
= 𝜅𝑘 ˜︁𝐹 (𝑙)

𝑘
(𝑧), (3.44) {q_kappa_F}{q_kappa_F}

uniformly on compact subsets of C \ Δ𝑘 , where

𝜅𝑘 =
𝑐𝑘√

𝑐𝑘−1𝑐𝑘+1
, 𝑐𝑘 =

{︄
𝐹

(𝑙)
𝑘

(∞), 𝑘 = 1, . . . , 𝑙 − 1,
(𝐹 (𝑙)
𝑘

) ′(∞), 𝑘 = 𝑙, . . . , 𝑚,
(3.45){def_ck}{def_ck}

and 𝑐0 = 𝑐𝑚 = 1. We also have

lim
𝑛

|︁|︁|︁|︁|︁A𝑛⃗
𝑙
,𝑘
(𝑧)

A𝑛⃗,𝑘 (𝑧)

|︁|︁|︁|︁|︁ = 1
𝜅2
𝑘+1 · · · 𝜅

2
𝑚

|︁|︁|︁|︁|︁ ˜︁𝐹 (𝑙)
𝑘

(𝑧)˜︁𝐹 (𝑙)
𝑘+1(𝑧)

|︁|︁|︁|︁|︁ , 𝑘 = 0, . . . , 𝑚 − 1, (3.46){ratio_Anj}{ratio_Anj}

uniformly on compact subsets of C \ (Δ𝑘 ∪ Δ𝑘+1). When 𝑘 = 0, Δ0 = ∅.

Proof. From (3.21) it follows that in place of (3.31) we can write

lim
𝑛⃗∈Λ

|ℎ
𝑛⃗
𝑙
,𝑘
(𝑥) |

|ℎ𝑛⃗,𝑘 (𝑥) |
|𝑄 𝑛⃗,𝑘−1(𝑥)𝑄 𝑛⃗,𝑘+1(𝑥) |
|𝑄
𝑛⃗
𝑙
,𝑘−1(𝑥)𝑄 𝑛⃗𝑙 ,𝑘+1(𝑥) |

=
1

|˜︁𝐹 (𝑙)
𝑘−1(𝑥)˜︁𝐹 (𝑙)

𝑘+1(𝑥) |
, 𝑘 = 1, . . . , 𝑚.

By the same token, (3.32) and (3.37) hold with the limit taken along all Λ.

With the same arguments that led to (3.32) and (3.37), but in connection with orthonormal
polynomials (see [9] and [24]) it follows that

lim
𝑛⃗∈Λ

𝑞
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑞𝑛⃗,𝑘 (𝑧)
=

{︄
S𝑘 (𝑧), 𝑘 = 1, . . . , 𝑙 − 1,
S𝑘 (𝑧)𝜑𝑘 (𝑧), 𝑘 = 𝑙, . . . , 𝑚.

(3.47){ortonormal}{ortonormal}

uniformly on compact subsets of C \ Δ 𝑗 . Now, dividing (3.47) by (3.32) or (3.37), we obtain

lim
𝑛

𝜅
𝑛⃗
𝑙
,𝑘

𝜅𝑛⃗,𝑘
=
√
𝑤𝑘 =

𝑐𝑘√
𝑐𝑘−1𝑐𝑘+1

:= 𝜅𝑘 ,

where 𝑤𝑘 is given by (3.39) and the 𝑐𝑘 are the normalizing constants found solving the linear
system of equations (3.40) whose values were given in (3.41). Therefore, formulas (3.42) and
(3.45) take place. Now, (3.43) follows from (3.42) because

𝐾
𝑛⃗
𝑙
,𝑘−1

𝐾𝑛⃗,𝑘−1
=
𝜅
𝑛⃗
𝑙
,𝑘
· · · 𝜅

𝑛⃗
𝑙
,𝑚

𝜅𝑛⃗,𝑘 · · · 𝜅𝑛⃗,𝑚

and (3.44) from (3.42) and (3.21) since

𝑞
𝑛⃗
𝑙
,𝑘

𝑞𝑛⃗,𝑘
=
𝜅
𝑛⃗
𝑙
,𝑘
𝑄
𝑛⃗
𝑙
,𝑘

𝜅𝑛⃗,𝑘𝑄 𝑛⃗,𝑘
.
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From (3.14), (3.16), and (3.24), we deduce

A𝑛⃗,𝑘 (𝑧) =
1

𝐾2
𝑛⃗,𝑘

𝑄 𝑛⃗,𝑘 (𝑧)
𝑄 𝑛⃗,𝑘+1(𝑧)

∫ 𝑞2
𝑛⃗,𝑘+1

𝑧 − 𝑥
ℎ𝑛⃗,𝑘+1(𝑥) d𝜎𝑘+1(𝑥)
𝑄 𝑛⃗,𝑘 (𝑥)𝑄 𝑛⃗,𝑘+2(𝑥)

, 𝑘 = 0, . . . , 𝑚 − 1,

and similarly

A
𝑛⃗
𝑙
,𝑘
(𝑧) = 1

𝐾2
𝑛⃗
𝑙
,𝑘

𝑄
𝑛⃗
𝑙
,𝑘
(𝑧)

𝑄
𝑛⃗
𝑙
,𝑘+1(𝑧)

∫ 𝑞2
𝑛⃗
𝑙
,𝑘+1

𝑧 − 𝑥
ℎ
𝑛⃗
𝑙
,𝑘+1(𝑥) d𝜎𝑘+1(𝑥)

𝑄
𝑛⃗
𝑙
,𝑘
(𝑥)𝑄

𝑛⃗
𝑙
,𝑘+2(𝑥)

, 𝑘 = 0, . . . , 𝑚 − 1,

Dividing the second expression by the first, taking absolute values, and the limit over 𝑛⃗ ∈ Λ from
(3.21), (3.43), (3.27), and (3.30), formula (3.46) readily follows. □
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Chapter

4 Strong asymptotic of Cauchy
biorthogonal polynomials

{ch:strong}

In [14] pairs of polynomials {(𝑃𝑚, 𝑄𝑛)}𝑚,𝑛∈Z+ were introduced which satisfy certain biorthogo-
nality relations (that we will discuss in the following pages). These kind of polynomials have a
particular interest in the study of partial differential equations and the two matrix model.

Our approach to study their strong asymptotic was to exploit their relationship with the multi-
level Hermite-Padé polynomials. Once in the context of Hermite-Padé polynomials we attack
the problem using ideas introduced by A.I. Aptekarev to study the strong asymptotic of Type ii
multi-orthogonal polynomials with respect to Angelesco and Nikishin systems.

4.1 Statement of the main results

4.1.1 Cauchy biorthogonal polynomials

Let 𝚫 = (Δ1,Δ2) be a pair of intervals, contained in the real lineR, which have at most one common
point. By M (𝚫) we denote the cone of all pairs (𝜎1, 𝜎2) of Borel measures with constant sign and
finite moments whose supports verify supp𝜎𝑘 ⊂ Δ𝑘 and∫ ∫

d𝜎1(𝑥) d𝜎2(𝑦)
|𝑥 − 𝑦 | < ∞.

Fix (𝜎1, 𝜎2) ∈ M (𝚫). For each pair of non negative integers (𝑚, 𝑛) ∈ Z2
≥0 there exists a pair

(𝑃𝑚, 𝑄𝑛) of monic polynomials whose degrees verify deg 𝑃𝑚 ≤ 𝑚, deg𝑄𝑛 ≤ 𝑛, and∫
Δ1

∫
Δ2

𝑃𝑚(𝑥)𝑄𝑛 (𝑦)
d𝜎1(𝑥) d𝜎2(𝑦)

𝑥 − 𝑦 = 𝐶𝑛𝛿𝑚,𝑛, 𝐶𝑛 ≠ 0. (4.1){biort}{biort}

(As usual, 𝛿𝑚,𝑛 = 0, 𝑚 ≠ 𝑛, 𝛿𝑛,𝑛 = 1.) These polynomials were introduced in [14] and called
Cauchy biorthogonal polynomials. The original definition uses the kernel (𝑥 + 𝑦)−1 (and measures
supported in the positive real line to avoid singularities in the kernel except when 𝑥 = 𝑦 = 0), but
we find it more convenient to employ (𝑥 − 𝑦)−1 instead, since it adapts better to our presentation.
Some interesting properties were revealed. In particular, it was shown that deg 𝑃𝑛 = 𝑛, its zeros
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are simple, interlace for consecutive values of 𝑛, and lie in Δ̊1 (the interior of Δ1 with the Euclidean
topology of R). The same goes for the 𝑄𝑛 on Δ2.

Cauchy biorthogonal polynomials appear in the analysis of the two matrix model [13, 15] and
were used to find discrete solutions of the Degasperis-Procesi equation [14] through a Hermite-
Padé approximation problem for two discrete measures. In [15], the authors apply the nonlinear
steepest descent method to a class of 3 × 3 Riemann-Hilbert problems introduced in connection
with the Cauchy two-matrix random model, solve the Riemann-Hilbert problem, and establish
strong asymptotic results for the Cauchy biorthogonal polynomials for a class of measures given
by weights with exponential decay at infinity (of Laguerre type). The results obtained in [15] were
later extended in [16].

Our goal is to prove strong asymptotic results for Cauchy biorthogonal polynomials when the
intervals Δ𝑘 = [𝑎𝑘 , 𝑏𝑘], 𝑘 = 1, 2 are bounded non intersecting intervals and the measures 𝜎1, 𝜎2

verify Szegő’s condition

∫
Δ𝑘

ln𝜎′
𝑘 (𝑥) d 𝜂Δ𝑘

(𝑥) > −∞, 𝑘 = 1, 2, (4.2) {szego}{szego}

where 𝜎′ denotes the Radon-Nikodym derivative of 𝜎 with respect to the Lebesgue measure and
d 𝜂Δ(𝑥) the Chebyshev measure on the interval Δ = [𝑎, 𝑏] (see (1.16)). In this case we write
(𝜎1, 𝜎2) ∈ S (𝚫). Therefore, we extend Szegő’s theory on the strong asymptotic of orthogonal
polynomials supported on a bounded interval of the real line to the context of Cauchy biorthogonal
polynomials. In the sequel, the intervals Δ1,Δ2 are bounded and do not intersect. {mainbiort}

Theorem 4.1:
Let (𝜎1, 𝜎2) ∈ S (𝚫) and {𝑃𝑛}𝑛≥0, {𝑄𝑛}𝑛≥0 be the sequences of monic polynomials determined
by (4.1). Then

lim
𝑛

𝑃𝑛 (𝑧)
Φ𝑛1 (𝑧)

=
G∗

1(𝑧)
G∗

1(∞) , lim
𝑛

𝑄𝑛 (𝑧)
Φ𝑛2 (𝑧)

=
G2(𝑧)
G2(∞) , (4.3) {asinbio}{asinbio}

uniformly on each compact subset of Ω1 = C \ Δ1 and Ω2 = C \ Δ2, respectively, where Φ𝑘 ∈
H(Ω𝑘), 𝑘 = 1, 2, (holomorphic in Ω𝑘) is the exponential of a complex potential constructed from
a vector equilibrium problem (see (4.40) and (4.42)), and G∗

1,G2 are Szegő functions obtained
as components of fixed points of the maps 𝑇w𝑃

and 𝑇w𝑄
, respectively (see Def. 4.12, (4.72) and

(4.66)).

The logarithmic and ratio asymptotic of biorthogonal polynomials were obtained in [32] for
more general Cauchy type kernels involving 𝑚 ≥ 2 measures. As in [32], we reduce the study
of the strong asymptotic of Cauchy biorthogonal polynomials to that of polynomials arising from
an associated mixed type Hermite-Padé approximation problem. The Hermite-Padé polynomials
turn out to be orthogonal with respect to varying measures. So, the strong asymptotic of such
sequences of orthogonal polynomials play a central role in our discussion.
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4.1.2 Orthogonal polynomials with varying measures

Let Δ = [𝑎, 𝑏] ⊂ R. Consider a sequence {d 𝜇𝑛/𝑤2𝑛}𝑛≥0 where 𝜇𝑛 is a finite positive Borel
measure supported on Δ and 𝑤2𝑛 is a polynomial with real coefficients, deg𝑤2𝑛 = 𝑖𝑛 ≤ 2𝑛,
whose zeros {𝑥2𝑛,𝑖}2𝑛

𝑖=2𝑛−𝑖𝑛+1 lie in C \ Δ. This is called a sequence of varying measures. Let
𝐿𝑛 (𝑥) = 𝑥𝑛 + · · · be the 𝑛-th monic orthogonal polynomial satisfying∫

𝑥𝜈𝐿𝑛 (𝑥)
d 𝜇𝑛 (𝑥)
|𝑤2𝑛 (𝑥) |

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 1. (4.4){def:Ln}{def:Ln}

The sequence {𝐿𝑛}𝑛≥0 is called the sequence of monic orthogonal polynomials with respect to the
given varying measures. A common normalization is to take

𝜏𝑛 :=
(︃∫

𝐿2
𝑛 (𝑥)

d 𝜇𝑛 (𝑥)
|𝑤2𝑛 (𝑥) |

)︃−1/2
,

and define 𝑙𝑛 (𝑥) := 𝜏𝑛𝐿𝑛 (𝑥) as the orthonormal polynomial of degree 𝑛.

In the context of multipoint Padé and Hermite-Padé approximation, orthogonal polynomials
with respect to varying measures arise naturally (see, for example, [5, 8, 20, 41, 56]). Recall
that depending on the type of asymptotic one wishes to obtain for the sequence {𝐿𝑛}𝑛≥0 (or
(𝑙𝑛)𝑛≥0), some conditions must be imposed on the varying measures. In this chapter we will use
combinations of (S1)-(S4) (see Subsection 1.5).

In many applications, d 𝜇𝑛 = ℎ𝑛 d 𝜇, 𝜇′ > 0 a.e. on Δ, where {ℎ𝑛}𝑛≥0 is a sequence of positive
continuous functions which converges uniformly on Δ to a positive continuous function ℎ, and the
zeros of the polynomials {𝑤2𝑛}𝑛≥0 are uniformly bounded away from Δ in which case (S1) and
(S3) are immediate, and (S2) holds if 𝜇 verifies Szegő’s condition.

Conditions (S1)-(S3) are sufficient to prove strong asymptotic for {𝐿𝑛}𝑛≥0. The first result in
this direction appeared in [54] and was later improved in [24] and [9]. An alternative proof of the
main result in [54] may be found in [91]. The answer in [54] is given in terms of a Szegő function
associated with 𝜇 and a Blaschke product in which the zeros of 𝑤2𝑛 intervene (see (4.13) below).
We wish to replace the Blaschke product in the asymptotic formula by the 𝑛-th power of a fixed
function (as in Szegő’s classical result). In order to achieve this, some knowledge of the asymptotic
behavior of the polynomials 𝑤2𝑛 is required and condition (S4) comes in.

Let 𝜑 be a positive continuous function on Δ. Let 𝜆𝜑 be the (unitary) equilibrium measure
supported on Δ which solves the equilibrium problem for the logarithmic potential with external
field −1

2 ln 𝜑. It is well known that 𝜆𝜑 is uniquely determined by the equilibrium conditions on Δ

(see [88, Theorem i.3])

𝑉𝜆𝜑 (𝑥) −
1
2

ln 𝜑(𝑥)
⎧⎪⎪⎨⎪⎪⎩
≤ 𝛾, 𝑥 ∈ supp𝜆𝜑 ,

≥ 𝛾, 𝑥 ∈ Δ \ 𝑒, cap(𝑒) = 0,
(4.5){equilibrium}{equilibrium}

where 𝛾 is a constant, cap(𝑒) denotes the logarithmic capacity of 𝑒, and

𝑉𝜆𝜑 (𝑢) =
∫

ln
1

|𝑢 − 𝑥 | d𝜆𝜑 (𝑥)
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denotes the logarithmic potential of 𝜆𝜑 . We will assume that 𝜑 is such that supp𝜆𝜑 = Δ. (This is
true, for example, if 1

2 ln 𝜑 = 𝑉𝜌 is the logarithmic potential of a measure 𝜌, of total mass 𝑐 ≤ 1,
supported on an interval disjoint from Δ. In this case, 𝜆𝜑 is the balayage of 𝜌 on Δ plus (1 − 𝑐)
times d 𝜂Δ/𝜋, and equality is attained in (4.5) on all Δ due to the regularity of the interval Δ with
respect to the Dirichlet problem.)

Set

Φ(𝑢) := 𝑒−𝑣𝜑 (𝑢) , 𝑣𝜑 := 𝑉𝜆𝜑 + 𝑖˜︁𝑉𝜆𝜑 , 𝐶 := 𝑒𝛾 , (4.6) {PhiC}{PhiC}

where ˜︁𝑉𝜆𝜑 denotes the harmonic conjugate of 𝑉𝜆𝜑 in C \ Δ (which equals zero when 𝑢 > 𝑏,Δ =

[𝑎, 𝑏]). Though ˜︁𝑉𝜆𝜑 is multi-valued, it has an increment of 2𝜋 if we surround once the interval Δ
in the positive direction; consequently, Φ is a single-valued analytic function in C\Δ with a simple
pole at ∞ since Φ(𝑢) = 𝑢 + O (1), 𝑢 → ∞.

We write 𝜇 ∈ S (Δ) when 𝜇 verifies Szegő’s condition on Δ. Recall that the Szegő function
of 𝜇 is defined as

G(𝜇, 𝑢) := exp

[︄√︁
(𝑢 − 𝑏) (𝑢 − 𝑎)

2𝜋

∫
Δ

ln(
√︁
(𝑏 − 𝑥) (𝑥 − 𝑎) 𝜇′(𝑥))

𝑥 − 𝑢 d 𝜂Δ(𝑥)
]︄
.

The square root outside the integral is taken to be positive for 𝑢 > 𝑏 and those inside the integral
are positive when 𝑥 ∈ (𝑎, 𝑏). The Szegő function is characterized in terms of a boundary value
problem (for details see Section 1.4.1). {main_th}

Theorem 4.2:
Assume that {(𝜇𝑛, 𝑤2𝑛)}𝑛≥0 verifies (S1)-(S4) and supp𝜆𝜑 = Δ (see (4.5)). Then,

lim
𝑛

𝑙𝑛 (𝑢)
𝐶𝑛Φ𝑛 (𝑢) =

1
√

2𝜋
G(𝜓𝜇, 𝑢), (4.7) {strong}{strong}

uniformly on compact subsets of Ω, 𝜓𝜇 is the measure with differential expression 𝜓 d 𝜇, and 𝜓 is
given by (1.28). Moreover,

lim
𝑛

𝜏𝑛

𝐶𝑛
=

1
√

2𝜋
G(𝜓𝜇,∞), (4.8) {constante}{constante}

and

lim
𝑛

𝐿𝑛 (𝑢)
Φ𝑛 (𝑢) =

G(𝜓𝜇, 𝑢)
G(𝜓𝜇,∞) (4.9) {asintc}{asintc}

uniformly on compact subsets of Ω.

The following result is obtained from Theorem 4.2. It is in the spirit of [95, Theorem 14.3].
The assumptions have points in common but they are not the same. In some regards the conditions
in [95] are more general, in others our assumptions are weaker. The most notable difference is that
in [95, Theorem 14.3] the measure 𝜇 is required to be absolutely continuous with respect to the
Lebesgue measure whereas we do not need this restriction. {cor:a}

Theorem 4.3:
Let {𝜇𝑛}𝑛≥0 be a sequence of measures verifying (S1)-(S2). Let 𝜏, d 𝜏 = 𝑣 d 𝑥, be a probability
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measure on Δ such that supp 𝜏 = Δ, 𝑣 is continuous on Δ, and let there be constants 𝐴, 𝛽 > −1,
and 𝛽0 such that

𝐴−1((𝑏 − 𝑥) (𝑥 − 𝑎))𝛽0 ≤ 𝑣(𝑥) ≤ 𝐴((𝑏 − 𝑥) (𝑥 − 𝑎))𝛽 , 𝑥 ∈ (𝑎, 𝑏). (4.10) {cond:a}{cond:a}

Set

Φ𝜏 (𝑢) = exp (−𝑉𝜏 (𝑢) − 𝑖˜︁𝑉𝜏 (𝑢)),
where ˜︁𝑉𝜏 is the harmonic conjugate in C \ Δ of the logarithmic potential 𝑉𝜏 . Then

lim
𝑛

𝑝𝑛 (𝑢)
Φ𝑛𝜏 (𝑢)

=
1

√
2𝜋

G(𝜇, 𝑢), (4.11){strong:a}{strong:a}

uniformly on compact subsets of Ω, where 𝑝𝑛 is the 𝑛-th orthonormal polynomial verifying∫
𝑝𝑚(𝑥)𝑝𝑛 (𝑥)

d 𝜇𝑛 (𝑥)
|Φ2𝑛
𝜏 (𝑥) |

=

{︄
0, 𝑚 < 𝑛,

1, 𝑚 = 𝑛.

Due to the extension and technical difficulties of the proof of the main results, we begin with a
brief description of the present chapter.

4.1.3 Outline and structure of the proofs

Section 4.2 is dedicated to the proof of Theorems 4.2 and 4.3. These results are used in Section
4.3 in the proof of Theorem 4.1 but they have independent interest and may be employed to obtain
exact estimates of the rate of convergence of multipoint Padé and Hermite-Padé approximations.

Section 4.3 is devoted to the study of the strong asymptotic of a sequence of Hermite-Padé
polynomials intimately connected with the Cauchy biorthogonal polynomials defined above. The
proof of Theorem 4.1 is not simple because it requires several steps some of which are quite
technical. A brief description of the idea of the proof is helpful for a better understanding of it.

In [62] the authors noticed the connection between Cauchy biorthogonal polynomials and a
so called multilevel Hermite-Padé approximation problem. For convenience of the reader, we
summarize this relationship in subsection 4.3.1. In subsections 4.3.2 and 4.3.3 we prove some
useful formulas verified by these approximants and their associated polynomials. In particular,
the biorthogonal polynomials {(𝑃𝑛, 𝑄𝑛)}𝑛≥0 are identified with certain Hermite-Padé polynomials
which turn out to be orthogonal with respect to varying measures. So the initial problem is reduced
to finding the strong asymptotic of the associated Hermite-Padé polynomials.

The results in [62] clearly indicate which functions Φ1,Φ2 must be taken to compare the
Hermite-Padé polynomials to establish their strong asymptotic behavior. This is explained in detail
in subsection 4.3.4. These functions are the exponentials of the complex potentials associated
with the equilibrium measures of the vector equilibrium problem used to describe the logarithmic
asymptotic of the same polynomials.
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Because of the definition of biorthogonality, if the role of the measures 𝜎1, 𝜎2 is interchanged
then the polynomials 𝑃𝑛, 𝑄𝑛 are also interchanged; therefore, if the strong asymptotic of the
sequence {𝑄𝑛}𝑛≥0 is obtained then that of the sequence {𝑃𝑛}𝑛≥0 readily follows. Thus, we focus
on {𝑄𝑛}𝑛≥0; more precisely, on their associated Hermite-Padé polynomials.

To obtain their strong asymptotic we adapt a very clever method devised by A.I. Aptekarev to
obtain the strong asymptotic of Type ii Hermite-Padé polynomials for Angelesco [4] and Nikishin
[5] systems of measures using fixed point theorems. To understand what this is about, we need to
advance some formulas.

We show that for each 𝑛 ≥ 1 there exist polynomials 𝑄𝑛,1, 𝑄𝑛,2, with 𝑄𝑛,2 = 𝑄𝑛, and a
continuous function ℎ𝑛,1 on Δ1 such that

0 =

∫
𝑥𝜈𝑄𝑛,2(𝑥)

d𝜎2(𝑥)
|𝑄𝑛,1(𝑥) |

, 0 =

∫
𝑥𝜈𝑄𝑛,1(𝑥)

|ℎ𝑛,1(𝑥) |d𝜎1(𝑥)
|𝑄𝑛,2(𝑥) |

, 𝜈 = 0, . . . , 𝑛 − 1

where lim𝑛 |ℎ𝑛,1(𝑥) | = (
√︁
𝑥 − 𝑎2) (𝑏2 − 𝑥))−1 uniformly on Δ1. Theorem 4.2 cannot be used

directly because the polynomial which in one relation is orthogonal in the other relation appears
in the denominator of the varying part of the measure. To handle this, we (temporarily) unlink this
inter dependence. For that purpose, for each 𝑛 ≥ 0 a (non-linear) operator ˜︁𝑇𝑛 is introduced, defined
on the set of all pairs (ˆ︁𝑄1, ˆ︁𝑄2) of monic polynomials with real coefficients of degree 𝑛 with zeros
in the complement of Δ2 and Δ1, respectively, such that 𝑇̃𝑛 (ˆ︁𝑄1, ˆ︁𝑄2) = (𝑄∗

1, 𝑄
∗
2) verifies

0 =

∫
𝑥𝜈𝑄∗

2(𝑥)
d𝜎2(𝑥)
|ˆ︁𝑄1(𝑥) |

, 0 =

∫
𝑥𝜈𝑄∗

1(𝑥)
|ℎ𝑛,1(𝑥) |d𝜎1(𝑥)

|ˆ︁𝑄2(𝑥) |
, 𝜈 = 0, . . . , 𝑛 − 1. (4.12) {relort}{relort}

Notice that (𝑄𝑛,1, 𝑄𝑛,2) is a fixed point of 𝑇̃𝑛. (Indeed, in subsection 4.3.6 a more general operator
is defined where it is only required that the sequence ( |ℎ𝑛,1 |)𝑛≥0 converges uniformly to a positive
continuous function on Δ1. This extension allows to cover other possible applications we have in
mind.)

Take sequences of denominators (ˆ︁𝑄𝑛,1)𝑛≥1, (ˆ︁𝑄𝑛,2)𝑛≥1, and their associated by (4.12) orthog-
onal polynomials (𝑄∗

𝑛,1)𝑛≥0, (𝑄∗
𝑛,2)𝑛≥1. If we suppose that ˆ︁𝑔1,ˆ︁𝑔2 are the uniform limits on Δ2 and

Δ1, respectively, of the sequences (ˆ︁𝑄𝑛,1/Φ𝑛1 )𝑛≥0, (ˆ︁𝑄𝑛.2/Φ𝑛2 )𝑛≥0, using Theorem 4.2 in subsection
4.3.6 we obtain the strong asymptotic (𝑔∗1, 𝑔

∗
2) of (𝑄∗

𝑛,1/Φ
𝑛
1 )𝑛≥0, (𝑄∗

𝑛.2/Φ
𝑛
2 )𝑛≥0. Previously, in sub-

section 4.3.5 using Theorem 4.3 we show that any pair (ˆ︁𝑔1,ˆ︁𝑔2) of Szegő functions onC\Δ1,C\Δ2,
respectively, can be obtained as strong limits of the initial pair of sequences. From the boundary
properties verified by Szegő functions it turns out that (ˆ︁𝑔1,ˆ︁𝑔2) and (𝑔∗1, 𝑔

∗
2) are connected by the

boundary value equations

|𝑔∗1(𝑥) |
2 =

ˆ︁𝑔2(𝑥)
√︁
(𝑏2 − 𝑥) (𝑥 − 𝑎2)√︁

(𝑏1 − 𝑥) (𝑥 − 𝑎1)𝜎′
1(𝑥)

, a.e. on [𝑎1, 𝑏1] = Δ1,

|𝑔∗2(𝑥) |
2 =

ˆ︁𝑔1(𝑥)√︁
(𝑏2 − 𝑥) (𝑥 − 𝑎2)𝜎′

2(𝑥)
, a.e. on [𝑎2, 𝑏2] = Δ2

where (𝜎1, 𝜎2) ∈ 𝑆(𝚫). This motivates the introduction of another operator in subsection 4.3.7
𝑇 (ˆ︁𝑔1,ˆ︁𝑔2) = (𝑔∗1, 𝑔

∗
2) which on an appropriate metric space of functions is contractive and due to
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Banach’s fixed point theorem it has a unique fixed point. (Indeed in subsection 4.3.7 a more general
situation is considered but we limit ourselves here to the operator which is relevant in the case of
multi level Hermite-Padé polynomials.) The final step consists in showing that any neighborhood
of the fixed point of the operator 𝑇 contains fixed points of the operators 𝑇̃𝑛 for all sufficiently large
𝑛. This is done in Theorem 4.15 of subsection 4.3.8 using Brouwer’s fixed point theorem. Theorem
4.16 is a simple corollary of Theorem 4.15 applied to multi level Hermite Padé polynomials.

In subsection 4.3.10 we return to the biorthogonal polynomials. Since 𝑄𝑛 = 𝑄𝑛,2, Theorem
4.16 gives directly the asymptotic of the𝑄𝑛. Then, we briefly discuss what needs to be done for the
polynomials 𝑃𝑛. In subsection 4.3.10 we derive the strong asymptotic of other functions related
with the multi level Hermite Padé approximation problem and the final section 4.3.11 contains a
different approach for defining the comparison functions Φ1,Φ2 on the basis of a three sheeted
Riemann surface of genus zero.

4.2 Strong asymptotic of orthogonal polynomials with varying mea-
sures

{sec:str:var}

As mentioned above our goal here is to prove Theorems 4.2 and 4.3. They are essential in the
proof of Theorem 4.1, but have independent interest and may find other applications. We begin
explaining our choice of Szegő function for measures supported on an interval of the real line.

4.2.1 A starting point

Let 𝑥2𝑛,𝑖 , 2𝑛 − 𝑖𝑛 + 1 ≤ 𝑖 ≤ 2𝑛, denote the zeros of 𝑤2𝑛. If 𝑖𝑛 < 2𝑛 we define 𝑥2𝑛,𝑖 = ∞, 1 ≤ 𝑖 ≤
2𝑛 − 𝑖𝑛. Set

𝐵2𝑛 (𝑢) :=
2𝑛∏︂
𝑖=1

Ψ(𝑢) − Ψ(𝑥2𝑛,𝑖)
1 − Ψ(𝑥2𝑛,𝑖)Ψ(𝑢)

.

When 𝑥2𝑛,𝑖 = ∞ the corresponding factor in the Blaschke product is replaced by 1/Ψ(𝑢).

In [24, Theorem 4] a strong asymptotic result is given. We state it as a lemma for convenience
of the reader and further reference.{LB_Blaschke}

Lemma 4.4:
Assume that {(𝜇𝑛, 𝑤2𝑛}𝑛≥0 verifies (S1)-(S3) and 𝑙𝑛 is the 𝑛-th orthonormal polynomial associated
with (4.4). Then

lim
𝑛

𝑙2𝑛 (𝑢)
𝑤2𝑛 (𝑢)

𝐵2𝑛 (𝑢) =
1

2𝜋
G2(𝜇, 𝑢), (4.13){asintb}{asintb}

uniformly on compact subsets of Ω.

We wish to point out that in [24, Theorem 4] there is a typo when writing the condition (S2).
There, it appears in terms of the Lebesgue measure d 𝑥 instead of the Chebyshev measure d 𝜂Δ.
Except for that, the proof given is correct.
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When 𝜇𝑛 = 𝜇 is fixed and 𝑤2𝑛 ≡ 1 (so that 𝐵2𝑛 ≡ 1/Ψ2𝑛) we retrieve the standard result for the
strong asymptotic of orthogonal polynomials with respect to 𝜇 ∈ S (Δ). The drawback of Lemma
4.4 is the appearance of the Blaschke product on the left hand side of (4.13), but nothing can be
done to simplify the expression unless some restriction is imposed on the asymptotic behavior of
the sequence of polynomials {𝑤2𝑛}𝑛≥0.

If d 𝜇𝑛 = ℎ𝑛 d 𝜇, where 𝜇 is a fixed measure satisfying Szegő’s condition on Δ, {ℎ𝑛}𝑛≥0 is
a sequence of positive continuous functions such that lim𝑛 ℎ𝑛 = ℎ, and lim𝑛→∞ |𝑤2𝑛 (𝑥) |𝜑𝑛 (𝑥) =
1/𝜓(𝑥) > 0 uniformly on Δ, the right hand side of (4.7) becomes 1√

2𝜋
G(𝜓ℎ𝜇, 𝑢).

4.2.2 Proof of Theorem 4.2

We begin with an auxiliary lemma. {l1}

Lemma 4.5:
Assume that the sequence of polynomials {𝑤2𝑛}𝑛≥0 verifies (S4). Then

lim
𝑛→∞

𝐶2𝑛Φ2𝑛 (𝑢) 𝐵2𝑛 (𝑢)
𝑤2𝑛 (𝑢)

= G−2(𝜓, 𝑢) (4.14) {eq:a}{eq:a}

uniformly on compact subsets of C \ Δ, where Φ and 𝐶 are defined as in (4.6).

Proof. Notice that

𝐶2𝑛Φ2𝑛 (𝑢) 𝐵2𝑛 (𝑢)
𝑤2𝑛 (𝑢)

=

(︃
𝐶2𝑛Φ2𝑛 (𝑢)
Ψ2𝑛 (𝑢)

)︃ (︃
Ψ2𝑛 (𝑢)𝐵2𝑛 (𝑢)

𝑤2𝑛 (𝑢)

)︃
(4.15) {eq:b}{eq:b}

and consider each factor in parentheses on the right hand side separately.

Define the function
𝑓2𝑛,𝑖 (𝑢) :=

Ψ(𝑢)
𝑢 − 𝑥2𝑛,𝑖

Ψ(𝑢) − Ψ(𝑥2𝑛,𝑖)
1 − Ψ(𝑥2𝑛,𝑖)Ψ(𝑢)

.

It is easy to verify that this function is holomorphic and never vanishes in C \ Δ. Also, | 𝑓2𝑛,𝑖 | can
be extended continuously to Δ with boundary values | 𝑓2𝑛,𝑖 (𝑥) | = |𝑥 − 𝑥2𝑛,𝑖 |−1, 𝑥 ∈ Δ. Moreover,

𝑓2𝑛,𝑖 (𝑢) =
Ψ(𝑢)
𝑢

1
1 − 𝑥2𝑛,𝑖𝑢−1

1 − Ψ(𝑥2𝑛,𝑖)Ψ−1(𝑢)
Ψ−1(𝑢) − Ψ(𝑥2𝑛,𝑖)

,

thus 𝑓2𝑛,𝑖 (∞) = −Ψ′(∞)/Ψ(𝑥2𝑛,𝑖). As | 𝑓2𝑛,𝑖 | is continuous and different from zero in C, it follows
that 𝑓2𝑛,𝑖 and 𝑓 −1

2𝑛,𝑖 are in 𝐻1(C \ Δ) with respect to the Chebyshev measure on Δ; consequently,
𝑓2𝑛,𝑖 is an outer function (see [87, Chap. 17, Ex. 19]). Then,

𝑓2𝑛,𝑖 (𝑢) = 𝑐𝑖 exp

[︄√︁
(𝑢 − 𝑎) (𝑢 − 𝑏)

𝜋

∫
Δ

ln |𝑥 − 𝑥2𝑛,𝑖 |
𝑥 − 𝑢 d 𝜂Δ(𝑥)

]︄
,

(see (1.17)) where 𝑐𝑖 is a constant, |𝑐𝑖 | = 1. Should 𝑤2𝑛 be monic, an easy consequence of this
representation is

(Ψ2𝑛𝐵2𝑛) (𝑢)
𝑤2𝑛 (𝑢)

=

2𝑛∏︂
𝑖=1

𝑓2𝑛,𝑖 (𝑢) = exp

[︄√︁
(𝑢 − 𝑎) (𝑢 − 𝑏)

𝜋

∫
Δ

ln |𝑤2𝑛 (𝑥) |
𝑥 − 𝑢 d 𝜂Δ(𝑥)

]︄
. (4.16) {eq:c}{eq:c}
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(The product of all the constants 𝑐𝑖 gives 1.) If 𝑤2𝑛 is not monic then the same representation
holds due to the fact that for any positive constant 𝜅

exp

[︄√︁
(𝑢 − 𝑎) (𝑢 − 𝑏)

𝜋

∫
Δ

ln 𝜅
𝑥 − 𝑢 d 𝜂Δ(𝑥)

]︄
=

1
𝜅
.

On the other hand, (𝐶Φ)2/Ψ2 is analytic and different from zero in C \ Δ. Moreover,
|𝐶Φ(𝑥)/Ψ(𝑥) |2 = exp(2𝛾−2𝑉𝜆𝜑 (𝑥)), 𝑥 ∈ Δ, and using the equilibrium condition |𝐶Φ(𝑥)/Ψ(𝑥) |2 =

exp (− ln 𝜑(𝑥)) = 1/𝜑(𝑥), 𝑥 ∈ Δ. Consequently, 𝐶2Φ2/Ψ2 is an outer function and we have

𝐶2𝑛Φ2𝑛 (𝑢)
Ψ2𝑛 (𝑢)

= exp

(︄√︁
(𝑢 − 𝑎) (𝑢 − 𝑏)

𝜋

∫
Δ

𝑛 ln 𝜑(𝑥)
𝑥 − 𝑢 d 𝜂Δ(𝑥)

)︄
. (4.17){asymptotic3}{asymptotic3}

Putting together (4.15), (4.16), and (4.17), we have

𝐶2𝑛Φ2𝑛 (𝑢) 𝐵2𝑛 (𝑢)
𝑤2𝑛 (𝑢)

= exp

(︄√︁
(𝑢 − 𝑎) (𝑢 − 𝑏)

𝜋

∫
Δ

ln( |𝑤2𝑛 (𝑥) |𝜑𝑛 (𝑥))
𝑥 − 𝑢 d 𝜂Δ(𝑥)

)︄
.

To deduce (4.14) it remains to use (1.29) and the definition of G(𝜓, 𝑢). □

With Lemma 4.5 at hand Theorem 4.2 is easy to derive.

Proof of Theorem 4.2. Note that

𝑙2𝑛 (𝑢)
𝐶2𝑛Φ2𝑛 (𝑢)

=
𝑙2𝑛 (𝑢)𝐵2𝑛 (𝑢)
𝑤2𝑛 (𝑢)

𝑤2𝑛 (𝑢)
𝐶2𝑛Φ2𝑛 (𝑢)𝐵2𝑛 (𝑢)

.

As 𝑛 → ∞, the limit of the first factor on the right is given by Lemma 4.4 and that of the second
one by Lemma 4.5. The proof of (4.7) has been concluded.

Next, we deduce the asymptotic behavior of the monic orthogonal polynomials 𝐿𝑛 and the
leading coefficients 𝜏𝑛 of 𝑙𝑛. It is easy to see that

Φ(𝑢) = 𝑒−𝑣𝜆𝜑 (𝑢) = 𝑢 + O (1), 𝑢 → ∞.

Using (4.7) at 𝑢 = ∞, we obtain (4.8). Then, (4.9) follows directly from (4.7) and (4.8). □

4.2.3 Proof of Theorem 4.3

We wish to express the orthogonality relations of the polynomials 𝑝𝑛 in such a way that we can
apply Theorem 4.2.

Notice that |Φ𝜏 (𝑥) |−1 = exp𝑉𝜏 (𝑥). According to [95, Theorem 10.2] (see also [95, Lemma
9.1]), there exists a sequence of polynomials {𝐻𝑛−1}𝑛≥0, deg𝐻𝑛−1 ≤ 𝑛 − 1, which do not vanish
on Δ whose zeros verify condition (S3) (see assertion on page 94 in [95]) such that

|𝐻𝑛−1(𝑥)/Φ𝑛𝜏 (𝑥) | ≤ 1, 𝑥 ∈ (𝑎, 𝑏), (4.18){eq:d}{eq:d}
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lim
𝑛

|𝐻𝑛−1(𝑥)/Φ𝑛𝜏 (𝑥) | = 1, (4.19){eq:e}{eq:e}

uniformly on compact subsets of (𝑎, 𝑏), and

lim
𝑛

∫ 𝑏

𝑎

ln( |𝐻𝑛−1(𝑥)/Φ𝑛𝜏 (𝑥) |) d 𝜂Δ(𝑥) = 0. (4.20){eq:f}{eq:f}

Now, the orthogonality relations satisfied by the polynomials 𝑝𝑛 can be rewritten as∫
𝑝𝑚(𝑥)𝑝𝑛 (𝑥)

|𝐻2
𝑛−1(𝑥) |

|Φ2𝑛
𝜏 (𝑥) |

d 𝜇𝑛 (𝑥)
|𝐻2
𝑛−1(𝑥) |

=

{︄
0, 𝑚 < 𝑛,

1, 𝑚 = 𝑛.

Let us check that the sequence {︄
|𝐻2
𝑛−1(𝑥) | d 𝜇𝑛
|Φ2𝑛
𝜏 (𝑥) |

, 𝐻2
𝑛−1(𝑥)

}︄
𝑛≥0

verifies (S1)-(S4). Indeed, the zeros of the polynomials 𝐻𝑛−1, and thus of the polynomials
𝐻2
𝑛−1, deg𝐻2

𝑛−1 ≤ 2𝑛, verify condition (S3). On the other hand, (4.18), (4.19), and condition
(S1) for the sequence of measures {𝜇𝑛}𝑛≥0 imply condition (S1) for the sequence of measures
{(|𝐻2

𝑛−1 | d 𝜇𝑛/|Φ
2𝑛
𝜏 |)}𝑛≥0 and

lim inf
𝑛

∫
ln

(︄
|𝐻2
𝑛−1(𝑥) |

|Φ2𝑛
𝜏 (𝑥) |

𝜇′𝑛 (𝑥)
)︄

d 𝜂Δ(𝑥) ≥
∫

ln 𝜇′(𝑥) d 𝜂Δ(𝑥);

therefore, (S2) takes place. Take 𝑤2𝑛 = 𝐻2
𝑛−1 and 𝜑 = 𝑒2𝑉𝜏 . Using (4.20) we obtain (S4) with

𝜓 ≡ 1. The equilibrium condition corresponding to this case is the trivial one

𝑉𝜏 (𝑥) −𝑉𝜏 (𝑥) ≡ 0

and the equilibrium constant is 𝛾 = 0; therefore 𝐶 = 1. Applying Theorem 4.2 the thesis of
Theorem 4.3 readily follows. □

4.2.4 Applications to rational approximation

Let 𝜇 be a positive measure with supp 𝜇 = Δ that satisfies Szegő’s condition and its Markov
function ˆ︁𝜇, as in (1.2). (In this section we take ℎ𝑛 ≡ 1, 𝑛 ≥ 0.) Consider a sequence of polynomials
{𝑤2𝑛}𝑛≥0 as above, positive on Δ.

From Problem 2 it is known that for each 𝑛 ≥ 1, there exists a rational function 𝑅𝑛 =
𝐿∗
𝑛−1
𝐿𝑛

,
deg 𝐿∗

𝑛−1 ≤ 𝑛 − 1 and deg 𝐿𝑛 ≤ 𝑛 such that

(𝐿𝑛ˆ︁𝜇 − 𝐿∗𝑛−1) (𝑧)
𝑤2𝑛 (𝑧)

=
𝐴𝑛

𝑧𝑛+1 + · · · , 𝑧 → ∞

where the function on the left hand side is analytic in C \ Δ. Recall that 𝑅𝑛 is called the 𝑛-th
multi-point Padé approximant of ˆ︁𝜇 with respect to 𝑤2𝑛.
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Moreover, we have already seen that 𝐿𝑛 is an 𝑛-th orthogonal polynomial with respect to the
varying measure 𝜇/𝑤2𝑛 and it can be taken to be monic. The remainder of ˆ︁𝜇 − 𝑅𝑛 has the integral
expression (see 1.3)

(ˆ︁𝜇 − 𝑅𝑛) (𝑧) = 𝑤2𝑛 (𝑧)
𝐿2
𝑛 (𝑧)

∫
Δ

𝐿2
𝑛 (𝑥) d 𝜇(𝑥)

𝑤2𝑛 (𝑥) (𝑧 − 𝑥)
=
𝑤2𝑛 (𝑧)
𝑙2𝑛 (𝑧)

∫
Δ

𝑙2𝑛 (𝑥) d 𝜇(𝑥)
𝑤2𝑛 (𝑥) (𝑧 − 𝑥)

,

where 𝑙𝑛 denotes the corresponding orthonormal polynomial.

Taking into account [23, Theorem 8], we know that

lim
𝑛

∫
Δ

𝑙2𝑛 (𝑥) d 𝜇(𝑥)
|𝑤2𝑛 (𝑥) | (𝑧 − 𝑥)

=
1√︁

(𝑧 − 𝑏) (𝑧 − 𝑎)
,

uniformly on compact subsets of C \Δ, where the square root is chosen to be positive when 𝑧 > 𝑏.
So, a direct consequence of Lemma 4.4 and Theorem 4.2 is the next result.

Corollary 4.6:
Assume that (S1)-(S3) take place where ℎ𝑛 ≡ 1, 𝑛 ≥ 0. We have

lim
𝑛

(ˆ︁𝜇 − 𝑅𝑛) (𝑧)
𝐵2𝑛 (𝑧)

=
2𝜋G−2(𝜇, 𝑧)√︁
(𝑧 − 𝑎) (𝑧 − 𝑏)

.

If, additionally, (S4) holds and supp𝜆𝜑 = Δ, then

lim
𝑛

(𝐶Φ)2𝑛 (𝑧) (ˆ︁𝜇 − 𝑅𝑛) (𝑧)
𝑤2𝑛 (𝑧)

=
2𝜋G−2(𝜓𝜇, 𝑧)√︁
(𝑧 − 𝑎) (𝑧 − 𝑏)

.

The limits are uniform on compact subsets of Ω.

4.3 Biorthogonal polynomials and multi level Hermite Padé polyno-
mials

{sec:bio:ML}

4.3.1 Multilevel HP polynomials
{subsec:ML_HP}

Let Δ1,Δ2 be non-intersecting closed intervals of the real line. Let (𝜎1, 𝜎2) ∈ M (𝚫) where
𝚫 = (Δ1,Δ2). Consider the Nikishin system N (𝜎1, 𝜎2) := (𝑠1,1, 𝑠1,2), and recall that 𝑠1,1 = 𝜎1

and d 𝑠1,2(𝑥) = ˆ︁𝜎2(𝑥) d𝜎1(𝑥) (see Definition 1.15 and (1.2)). Inverting the role of the measures we
define similarly 𝑠2,1, d 𝑠2,1(𝑥) = ˆ︁𝜎1(𝑥) d𝜎2(𝑥), and keep in mind that N (𝜎1, 𝜎2) ≠ N (𝜎2, 𝜎1).

Nikishin system have found numerous applications in different areas of mathematics. In
particular, the ones generated by two measures appear in the analysis of the two matrix model
[13, 15] and in finding discrete solutions of the Degasperis-Procesi equation [14] through a Hermite-
Padé approximation problem for two discrete measures. Motivated in [14], the approximation
problem was extended in [62] for arbitrary 𝑚 ≥ 2 and general measures proving the convergence
of the method. We will focus on the case of two measures.
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Though some elements appearing next have been discussed in previous chapters, we esteem
convenient to repeat them in the particular case of two measures. For each 𝑛 ∈ N, there exists a
vector polynomial (𝑎𝑛,0, 𝑎𝑛,1, 𝑎𝑛,2), not identically equal to zero, with deg 𝑎𝑛,0 ≤ 𝑛−1, deg 𝑎𝑛,1 ≤
𝑛 − 1, and deg 𝑎𝑛,2 ≤ 𝑛, that satisfies

A𝑛,0(𝑧) :=
(︁
𝑎𝑛,0 − 𝑎𝑛,1ˆ︁𝑠1,1 + 𝑎𝑛,2ˆ︁𝑠1,2)︁ (𝑧) = O (1/𝑧𝑛+1), (4.21){JLS1}{JLS1}

A𝑛,1(𝑧) :=
(︁
−𝑎𝑛,1 + 𝑎𝑛,2ˆ︁𝑠2,2)︁ (𝑧) = O (1/𝑧). (4.22){JLS2}{JLS2}

Here and below, the symbol O (·) is taken as 𝑧 → ∞. By extension we take A𝑛,2 ≡ 𝑎𝑛,2. The
polynomials 𝑎𝑛,0, 𝑎𝑛,1, 𝑎𝑛,2 are called multilevel Hermite-Padé polynomials.

It can be shown that deg 𝑎𝑛,2 = 𝑛 and the vector polynomial can be normalized taking 𝑎𝑛,2
monic. With this normalization (𝑎𝑛,0, 𝑎𝑛,1, 𝑎𝑛,2) is unique. Moreover, all the zeros of 𝑎𝑛,2 are
simple and lie in the interior Δ̊2 (with the Euclidean topology of R) of the interval Δ2. For more
details, see [62, Theorem 1.4] and Lemma 4.7 below.

Combining Cauchy’s theorem, Fubini’s theorem, and Cauchy’s integral formula, from (4.21)
it follows that ∫

𝑥𝜈A𝑛,1(𝑥) d𝜎1(𝑥) = 0, 𝜈 = 0, . . . , 𝑛 − 1,

and from (4.22) we get the integral representation

A𝑛,1(𝑥) =
∫

𝑎𝑛,2(𝑦) d𝜎2(𝑦)
𝑥 − 𝑦 .

Therefore, ∫ ∫
𝑥𝜈𝑎𝑛,2(𝑦)
𝑥 − 𝑦 d𝜎1(𝑥) d𝜎2(𝑦) = 0, 𝜈 = 0, . . . , 𝑛 − 1.

Consequently 𝑎𝑛,2, normalized to be monic, verifies the same orthogonality relations as the
biorthogonal polynomial 𝑄𝑛 (see (4.1)) and coincides with it.

Analogously, for each 𝑛 ∈ N, there exists a vector polynomial (𝑏𝑛,0, 𝑏𝑛,1, 𝑏𝑛,2), not identically
equal to zero, with deg 𝑏𝑛,0 ≤ 𝑛 − 1, deg 𝑏𝑛,1 ≤ 𝑛 − 1, and deg 𝑏𝑛,2 ≤ 𝑛, that satisfies

B𝑛,0(𝑧) :=
(︁
𝑏𝑛,0 − 𝑏𝑛,1ˆ︁𝑠2,2 + 𝑏𝑛,2ˆ︁𝑠2,1)︁ (𝑧) = O (1/𝑧𝑛+1), (4.23) {JLS1*}{JLS1*}

B𝑛,1(𝑧) :=
(︁
−𝑏𝑛,1 + 𝑏𝑛,2ˆ︁𝑠1,1)︁ (𝑧) = O (1/𝑧). (4.24) {JLS2*}{JLS2*}

By extension we take B𝑛,2 ≡ 𝑏𝑛,2. Normalizing 𝑏𝑛,2 to be monic, we have 𝑏𝑛,2 = 𝑃𝑛 (the other
biorthogonal polynomial in (4.1)).

Therefore, in order to prove Theorem 4.1, we need to find the strong asymptotic of the sequences
of polynomials {𝑎𝑛,2}𝑛≥0 and {𝑏𝑛,2}𝑛≥0. Because of the symmetry of the problem, it suffices to
analyze the first sequence and the results for the second one are immediate.

Indeed, we will give the strong asymptotic of the forms A𝑛,0,A𝑛,1 and the polynomials
𝑎𝑛,0, 𝑎𝑛,1, 𝑎𝑛,2, as 𝑛 → ∞, under the assumption that the generating measures 𝜎1, 𝜎2 are in the
Szegő class; that is, (𝜎1, 𝜎2) ∈ S (𝚫) (see (4.2)). For general Nikishin systems of𝑚 ≥ 2 measures,
the logarithmic and ratio asymptotic of ML Hermite-Padé polynomials was studied in [32] (see
also [66]).
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4.3.2 Some useful properties
{subsec:use}

The forms A𝑛,𝑘 , 𝑘 = 0, 1, 2, are interlinked and satisfy interesting orthogonality relations which
will be of great use. The following result, is a special case (𝑚 = 2) of [32, Lemma 2.4]. It is stated
here for convenience of the reader.{l2}

Lemma 4.7:
Consider the Nikishin system N (𝜎1, 𝜎2). For each fixed 𝑛 ∈ Z+ and 𝑗 = 1, 2, A𝑛, 𝑗 has exactly
𝑛 zeros in C \ Δ 𝑗+1 they are all simple and lie in Δ̊ 𝑗 (Δ3 = ∅). A𝑛,0 has no zero in C \ Δ1. Let
𝑄𝑛, 𝑗 , 𝑗 = 1, 2, denote the monic polynomial of degree 𝑛 whose zeros are those of A𝑛, 𝑗 in Δ 𝑗 . For
𝑗 = 0, 1,

A𝑛, 𝑗 (𝑧)
𝑄𝑛, 𝑗 (𝑧)

=

∫
A𝑛, 𝑗+1(𝑥)
𝑧 − 𝑥

d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)

, (4.25){int1}{int1}

where 𝑄𝑛,0 ≡ 1, and ∫
𝑥𝜈A𝑛, 𝑗+1(𝑥)

d𝜎𝑗+1(𝑥)
𝑄𝑛, 𝑗 (𝑥)

= 0, 𝜈 = 0, . . . , 𝑛 − 1. (4.26){int2}{int2}

The orthogonality relations involving the linear forms A𝑛, 𝑗 stated in (4.26) can be rewritten in
terms of orthogonal polynomials with varying measures. That is

0 =

∫
𝑥𝜈𝑄𝑛,2(𝑥)

d𝜎2(𝑥)
𝑄𝑛,1(𝑥)

, 𝜈 = 0, . . . , 𝑛 − 1. (4.27){int3}{int3}

and
0 =

∫
𝑥𝜈𝑄𝑛,1(𝑥)H𝑛,1(𝑥)

d𝜎1(𝑥)
𝑄𝑛,2(𝑥)

, 𝜈 = 0, . . . , 𝑛 − 1. (4.28){int4}{int4}

where, using (4.25) with 𝑗 = 0 and (4.27)

H𝑛,1(𝑧) :=
𝑄𝑛,2(𝑧)A𝑛,1(𝑧)

𝑄𝑛,1(𝑧)
= 𝑄𝑛,2(𝑧)

∫
𝑄𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
𝑄𝑛,1(𝑥)

=

∫
𝑄2
𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
𝑄𝑛,1(𝑥)

. (4.29){hn1}{hn1}

{prop1}

Proposition 4.8:
There is a unique pair of monic polynomials with real coefficients (𝑄𝑛,1, 𝑄𝑛,2) each one of degree
𝑛, whose zeros lie in C \ Δ2 and C \ Δ1, respectively, satisfying (4.27)-(4.28) with

H𝑛,1(𝑧) =
∫

𝑄2
𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
𝑄𝑛,1(𝑥)

.

Proof. The existence of such polynomials is guaranteed by Lemma 4.7. We must show that if
(𝑄𝑛,1, 𝑄𝑛,2) is a pair of monic polynomials of degree 𝑛 which satisfy (4.27)-(4.28) with H𝑛,1 as
indicated then we can construct forms A𝑛,0,A𝑛,1,A𝑛,2 verifying (4.21)-(4.22) whose zeros are
those of the polynomials 𝑄𝑛,1, 𝑄𝑛,2.

So, let (𝑄𝑛,1, 𝑄𝑛,2) be an arbitrary pair of monic polynomials of degree 𝑛 which satisfy
(4.27)-(4.28). Take A𝑛,2 = 𝑎𝑛,2 := 𝑄𝑛,2 and

𝑎𝑛,1(𝑧) :=
∫

𝑄𝑛,2(𝑧) −𝑄𝑛,2(𝑥)
𝑧 − 𝑥 d𝜎2(𝑥).
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Obviously, 𝑎𝑛,1 is a polynomial of degree ≤ 𝑛 − 1. Rearranging this equality and using (4.27), we
get

A𝑛,1(𝑧) := (−𝑎𝑛,1 + 𝑎𝑛,2ˆ︁𝑠2,2) (𝑧) = ∫ (𝑄𝑛.1𝑄𝑛,2) (𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
𝑄𝑛,1(𝑥)

= 𝑄𝑛,1(𝑧)
∫

𝑄𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
𝑄𝑛,1(𝑥)

.

The first equality tells us that A𝑛,1(𝑧) = O (1/𝑧), so that (4.22) takes place, and the last equality
implies that the zeros of A𝑛,1 in C \ Δ2 coincide with the simple roots that 𝑄𝑛,1 has in the interior
of Δ1. Moreover, these relations together with (4.27)-(4.28) imply that for each 𝜈 = 0, 1, . . . , 𝑛 − 1∫

𝑥𝜈A𝑛,1(𝑥) d𝜎1(𝑥) =
∫

𝑥𝜈𝑄𝑛,1(𝑥)
∫

𝑄𝑛,2(𝑡)
𝑥 − 𝑡

d𝜎2(𝑡)
𝑄𝑛,1(𝑡)

d𝜎1(𝑥) =

∫
𝑥𝜈𝑄𝑛,1(𝑥)

∫
𝑄2
𝑛,2(𝑡)
𝑥 − 𝑡

d𝜎2(𝑡)
𝑄𝑛,1(𝑡)

d𝜎1(𝑥)
𝑄𝑛,2(𝑥)

=

∫
𝑥𝜈𝑄𝑛,1(𝑥)H𝑛,1(𝑥)

d𝜎1(𝑥)
𝑄𝑛,2(𝑥)

= 0.

These orthogonality relations verified by A𝑛,1 in turn imply that∫
A𝑛,1(𝑥)
𝑧 − 𝑥 d𝜎1(𝑥) =

1
𝑧𝑛

∫
𝑥𝑛A𝑛,1(𝑥)
𝑧 − 𝑥 d𝜎1(𝑥) = O (1/𝑧𝑛+1). (4.30) {orderAn0}{orderAn0}

Using the definition of A𝑛,1(𝑥), we get

𝑎𝑛,0(𝑧) := 𝑎𝑛,1(𝑧)ˆ︁𝑠1,1(𝑧) − 𝑎𝑛,2(𝑧)ˆ︁𝑠1,2(𝑧) + ∫
A𝑛.1(𝑥)
𝑧 − 𝑥 d𝜎1(𝑥) =∫

𝑎𝑛,1(𝑧) − 𝑎𝑛,1(𝑥)
𝑧 − 𝑥 d𝜎1(𝑥) −

∫
𝑎𝑛,2(𝑧) − 𝑎𝑛,2(𝑥)

𝑧 − 𝑥 d 𝑠1,2(𝑥),

which is obviously a polynomial of degree ≤ 𝑛 − 1. Rearranging this equality and taking account
of (4.30), it follows that

A𝑛,0(𝑧) := 𝑎𝑛,0(𝑧) − 𝑎𝑛,1(𝑧)ˆ︁𝑠1,1(𝑧) + 𝑎𝑛,2(𝑧)ˆ︁𝑠1,2(𝑧) = ∫
A𝑛.1(𝑥)
𝑧 − 𝑥 d𝜎1(𝑥) = O (1/𝑧𝑛+1).

Thus, A𝑛,0 verifies (4.21).

From our findings, we deduce that the vector polynomial (𝑎𝑛,0, 𝑎𝑛,1, 𝑎𝑛,2) defined previously
is the unique solution of (4.21)-(4.22). In particular, 𝑎𝑛,2 = 𝑄𝑛,2 is uniquely determined and by
(4.28) so is 𝑄𝑛,1 since the measure (H𝑛,1 d𝜎1)/𝑄𝑛,2 has constant sign on Δ1. We are done. □

4.3.3 Normalization
{subsec:norm}

Set

𝜅−2
𝑛,2 :=

∫
𝑄2
𝑛,2(𝑥)

d𝜎2(𝑥)
|𝑄𝑛,1(𝑥) |

, (𝜅𝑛,1𝜅𝑛,2)−2 :=
∫

𝑄2
𝑛,1(𝑥)

|H𝑛,1(𝑥) | d𝜎1(𝑥)
|𝑄𝑛,2(𝑥) |

. (4.31) {kappa:4}{kappa:4}

Take
𝑞𝑛,1 := 𝜅𝑛,1𝑄𝑛,1, 𝑞𝑛,2 := 𝜅𝑛,2𝑄𝑛,2, ℎ𝑛,1 := 𝜅2

𝑛,2H𝑛,1. (4.32) {Qs}{Qs}

Notice that
𝜅−2
𝑛,1 :=

∫
𝑄2
𝑛,1(𝑥)

|ℎ𝑛,1(𝑥) | d𝜎1(𝑥)
|𝑄𝑛,2(𝑥) |

.
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We can rewrite (4.27)-(4.28) as

0 =

∫
𝑥𝜈𝑞𝑛,2(𝑥)

d𝜎2(𝑥)
|𝑄𝑛,1(𝑥) |

= 0, 𝜈 = 0, . . . , 𝑛 − 1, (4.33) {int5}{int5}

and

0 =

∫
𝑥𝜈𝑞𝑛,1(𝑥)

|ℎ𝑛,1(𝑥) | d𝜎1(𝑥)
|𝑄𝑛,2(𝑥 |)

, 𝜈 = 0, . . . , 𝑛 − 1. (4.34) {int6}{int6}

We also have ∫
𝑞2
𝑛,2(𝑥)

d𝜎2(𝑥)
|𝑄𝑛,1(𝑥) |

= 1, (4.35){int7}{int7}

and ∫
𝑞2
𝑛,1(𝑥)

|ℎ𝑛,1(𝑥) | d𝜎1(𝑥)
|𝑄𝑛,2(𝑥) |

= 1. (4.36){int8}{int8}

Consequently, 𝑞𝑛,1 and 𝑞𝑛,2 are the 𝑛-th orthonormal polynomials with respect to the varying
measures |ℎ𝑛,1 | d 𝜎1

|𝑄𝑛,2 | and d 𝜎2
|𝑄𝑛,1 | , respectively. Recall that the zeros of 𝑄𝑛, 𝑗 lie in Δ̊ 𝑗 = (𝑎 𝑗 , 𝑏 𝑗), 𝑗 =

1, 2.

From [23, Theorem 8] it follows that if 𝜎′
2 > 0 a.e. on Δ2, then for any bounded measurable

function 𝑔2 on Δ2,

lim
𝑛

∫
𝑔2(𝑥)𝑞2

𝑛,2(𝑥) d𝜎2(𝑥)
|𝑄𝑛,1(𝑥) |

=
1
𝜋

∫ 𝑏2

𝑎2

𝑔2(𝑥) d 𝜂Δ2 (𝑥). (4.37){int9}{int9}

Taking into account (4.29) and using (4.37) with 𝑔2(𝑥) = |𝑡 − 𝑥 |−1, 𝑡 ∈ Δ1, and (4.29), it follows
that

lim
𝑛

|ℎ𝑛,1(𝑡) | = lim
𝑛

∫
𝑞2
𝑛,2(𝑥) d𝜎2(𝑥)

|𝑡 − 𝑥 | |𝑄𝑛,1(𝑥) |
= (4.38){int12}{int12}

=
1
𝜋

∫ 𝑏2

𝑎2

d 𝜂Δ2 (𝑥)
|𝑡 − 𝑥 | =

1√︁
|𝑡 − 𝑎2 | |𝑡 − 𝑏2 |

=: ℎ(𝑡),

uniformly for 𝑡 ∈ Δ1. Then (4.36), (4.38), and [23, Theorem 8] imply that if 𝜎′
1 > 0 a.e. on Δ1,

then for any bounded Borel measurable function 𝑔1 on Δ1 we have

lim
𝑛

∫
𝑔1(𝑥)𝑞2

𝑛,1(𝑥) |ℎ𝑛,1(𝑥) |d𝜎1(𝑥)
|𝑄𝑛,2(𝑥) |

=
1
𝜋

∫ 𝑏1

𝑎1

𝑔1(𝑥) d 𝜂Δ1 (𝑥). (4.39){int10}{int10}

4.3.4 The comparison functions
{subsec:comp}

The logarithmic asymptotic of general ML Hermite-Padé polynomials was studied in [32, Section
3]. In particular, it was proved that this asymptotic behavior can be described in terms of the
solution of a vector equilibrium problem which, in the case we are dealing with, reduces to finding
a pair of probability measures (𝜆1, 𝜆2), supp𝜆1 ⊂ Δ1, supp𝜆2 ⊂ Δ2, and a pair of constants (𝛾1, 𝛾2)
such that ⎧⎪⎪⎨⎪⎪⎩

𝑉𝜆1 (𝑥) − 1
2𝑉𝜆2 (𝑥) ≡ 𝛾1, 𝑥 ∈ Δ1,

𝑉𝜆2 (𝑥) − 1
2𝑉𝜆1 (𝑥) ≡ 𝛾2, 𝑥 ∈ Δ2.

(4.40){vector_equil}{vector_equil}
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It is well known that this problem has a unique solution. From [32, Theorem 3.4] it follows that
if 𝜎1 and 𝜎2 are regular measures (for the definition and properties of regular measures, see [92,
Chap. 3]) then for 𝑘 = 1, 2 we have

lim
𝑛

|𝑄𝑛,𝑘 |1/𝑛 = exp(−𝑉𝜆𝑘 ), lim
𝑛
𝜅

1/𝑛
𝑛,𝑘

= 𝛾𝑘 , (4.41){weak}{weak}

where the first limit is uniform on compact subsets of C \ Δ𝑘 .

Since strong asymptotic implies weak asymptotic, (4.41) reveals that the functions with which
one must compare the polynomials 𝑞𝑛,1, 𝑞𝑛,2 in order to have strong asymptotic (should it exist)
are tightly connected with the potentials 𝑉𝜆1 , 𝑉𝜆2 and the constants 𝛾1, 𝛾2. With this in mind (see
(4.6)), we define

Φ𝑘 (𝑧) := 𝑒−(𝑉𝜆𝑘 +𝑖˜︁𝑉𝜆𝑘 ) (𝑧) , 𝐶𝑘 := 𝑒𝛾𝑘 , 𝑘 = 1, 2, (4.42) {compfunc}{compfunc}

where ˜︁𝑉𝜆𝑘 denotes the harmonic conjugate of 𝑉𝜆𝑘 in C \ Δ𝑘 . For a different expression of the
comparison functions see (4.85).

In (4.27)-(4.28) we see that the orthogonality relations verified by the polynomials 𝑄𝑛,1, 𝑄𝑛,2
are interconnected. This prevents the direct use of Theorem 4.2 to obtain their asymptotic because
to give the asymptotic of one of the sequences one must know that of the second, and vice versa.
So, as indicated in the introduction, we will follow an indirect approach devised by A.I. Aptekarev
to attack analogous problems in [4] and [5].

4.3.5 Prescribed asymptotic behavior
{subsec:pres}

An important ingredient of the method consists in being capable of producing a sequence of
functions of the form 𝑃𝑛,𝑘/Φ𝑛𝑘 , 𝑘 = 1, 2, where 𝑃𝑛,𝑘 is a polynomial of degree 𝑛, whose limit is a
predetermined Szegő function.

Let (𝜆1, 𝜆2) be the solution of the vector equilibrium problem (4.40). From [25, Theorem 1.34]
it follows that d𝜆𝑘 = 𝑣𝑘 d 𝑥 on Δ𝑘 , 𝑘 = 1, 2, and the weights 𝑣1, 𝑣2 verify the assumptions relative
to 𝑣 in Theorem 4.3 on the intervals Δ1,Δ2, respectively. In the sequel

Ω𝑘 := C \ Δ𝑘 , 𝑘 = 1, 2.
{prop2}

Proposition 4.9:
Assume that (𝜇1, 𝜇2) ∈ S (𝚫) and for each 𝑛 ≥ 0, (𝑞̃𝑛,1, 𝑞̃𝑛,2) is the pair of polynomials of degree
𝑛 such that ∫

𝑞̃𝑛,𝑘 (𝑥)𝑞̃𝑚,𝑘 (𝑥)
d 𝜇𝑘 (𝑥)
|Φ2𝑛
𝑘
(𝑥) |

=

{︄
0, 0 ≤ 𝑚 < 𝑛,

1, 𝑚 = 𝑛,
𝑘 = 1, 2. (4.43) {poltilde}{poltilde}

Then

lim
𝑛→∞

𝑞̃𝑛,𝑘 (𝑧)
Φ𝑛
𝑘
(𝑧) =

G(𝜇𝑘 , 𝑧)√
2𝜋

, (4.44) {predet}{predet}
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and

lim
𝑛→∞

𝑄̃𝑛,𝑘 (𝑧)
Φ𝑛
𝑘
(𝑧) =

G(𝜇𝑘 , 𝑧)
G(𝜇𝑘 ,∞) , (4.45) {predet*}{predet*}

uniformly on each compact subset of Ω𝑘 , 𝑘 = 1, 2, where the Φ𝑘 were introduced in (4.42) and
𝑄̃𝑛,𝑘 , 𝑘 = 1, 2 is 𝑞̃𝑛,𝑘 renormalized to be monic.

Proof. As was mentioned above, [25, Theorem 1.34] guarantees that the components of the
equilibrium measures (𝜆1, 𝜆2) are absolutely continuous with respect to the Lebesgue measure on
the corresponding intervals and their weights 𝑣1, 𝑣2 verify (4.10) with parameters 𝛽 = 𝛽0 = −1/2
on the intervals Δ1,Δ2, respectively. The assumptions of Theorem 4.3 are verified and (4.44)
follows directly from (4.11). If 𝜅̃𝑛,𝑘 is the leading coefficient of 𝑞̃𝑛,𝑘 , applying (4.44) at 𝑧 = ∞ we
get

lim
𝑛
𝜅̃𝑛,𝑘 =

G(𝜇𝑘 ,∞)
√

2𝜋
and (4.45) follows at once. □

4.3.6 The operator 𝑇̃𝑛
{subsec:op:tilde}{oper_Tn}

Definition 4.10:
Let (𝜎1, 𝜎2) ∈ M (𝚫). Let P𝑛,𝑘 , 𝑘 = 1, 2, be the set of all monic polynomials with real coefficients
of degree 𝑛 whose zeros lie in C \ Δ2 when 𝑘 = 1 and in C \ Δ1 when 𝑘 = 2. Define an operator

𝑇̃𝑛 : P𝑛,1 × P𝑛,2 −→ P𝑛,1 × P𝑛,2

where, for every (ˆ︁𝑄𝑛,1, ˆ︁𝑄𝑛,2) ∈ P𝑛,1 × P𝑛,2

𝑇̃𝑛 (ˆ︁𝑄𝑛,1, ˆ︁𝑄𝑛,2) := (𝑄∗
𝑛,1, 𝑄

∗
𝑛,2), (4.46){Tn}{Tn}

being (𝑄∗
𝑛,1, 𝑄

∗
𝑛,2) the unique pair of monic polynomials of degree 𝑛 constructed recursively as

follows. First, find the polynomial 𝑄∗
𝑛,2 verifying∫

𝑥𝜈𝑄∗
𝑛,2(𝑥)

d𝜎2(𝑥)ˆ︁𝑄𝑛,1(𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 − 1.

Second, define H ∗
𝑛,2 ≡ 1 and

H ∗
𝑛,1(𝑧) :=

∫ (𝑄∗
𝑛,2(𝑥))

2

𝑧 − 𝑥
d𝜎2(𝑥)ˆ︁𝑄𝑛,1(𝑥) .

Third, find the polynomial 𝑄∗
𝑛,1 verifying∫

𝑥𝜈𝑄∗
𝑛,1(𝑥)

H ∗
𝑛,1(𝑥) d𝜎1(𝑥)ˆ︁𝑄𝑛,2(𝑥) = 0, 𝜈 = 0, 1, . . . , 𝑛 − 1.

Finally, set

𝐾∗
𝑛,2 := 1, 𝐾∗

𝑛,𝑘−1 :=

(︄∫
(𝑄∗

𝑛,2(𝑥))
2 d𝜎2(𝑥)
|𝑄̃𝑛,1(𝑥) |

)︄−1/2

, 𝜅∗𝑛,𝑘 :=
𝐾∗
𝑛,𝑘−1

𝐾∗
𝑛,𝑘

, 𝑘 = 1, 2; (4.47){kappa*}{kappa*}

and take
𝑞∗𝑛,𝑘 := 𝜅∗𝑛,𝑘𝑄

∗
𝑛,𝑘 , ℎ∗𝑛,𝑘 := (𝐾∗

𝑛,𝑘)
2H ∗

𝑛,𝑘 , 𝑘 = 1, 2. (4.48){hn}{hn}
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Remark: Due to [23, Theorem 8] an easy consequence of the definition of ℎ∗
𝑛,1 is that

lim
𝑛→∞

|ℎ∗𝑛,1(𝑧) | =
1

|
√︁
(𝑧 − 𝑎𝑘+1) (𝑧 − 𝑏𝑘+1) |

, (4.49)

uniformly on compact subsets of C \ Δ𝑘+1.

Let us prove the continuity of the operator 𝑇̃𝑛, for each fixed 𝑛 ≥ 0. Given Q1 = (𝑄1,1, 𝑄1,2),
Q2 = (𝑄2,1, 𝑄2,2) ∈ P𝑛,1 × P𝑛,2 define the metric 𝑑𝑛 as follows

𝑑𝑛 (Q1,Q2) = max{∥𝑄1,1 −𝑄1,2∥Δ2 , ∥𝑄2,1 −𝑄2,2∥Δ1}

where ∥ · ∥Δ denotes the sup-norm on the interval Δ. Suppose that

lim
𝑚→∞

𝑑𝑛 (Q𝑚,Q) = 0

and Q𝑚 = (𝑄𝑚,1, 𝑄𝑚,2),Q = (𝑄1, 𝑄2) ∈ P𝑛,1 × P𝑛,2. From the location of the zeros of the
polynomials it readily follows that

lim
𝑚→∞

∥𝑄−1
𝑚,1 −𝑄

−1
1 ∥Δ2 = 0, lim

𝑚→∞
∥𝑄−1

𝑚,2 −𝑄
−1
2 ∥Δ1 = 0.

Therefore, for each fixed 𝜈 ≥ 0

lim
𝑚→∞

∫
𝑥𝜈

d𝜎1
|𝑄𝑚.2 |

=

∫
𝑥𝜈

d𝜎1
|𝑄2 |

=: 𝑐𝜈 (4.50) {moments}{moments}

and similarly for the other sequence of polynomials. If𝑄∗
1 is the 𝑛-th monic orthogonal polynomial

with respect to d 𝜎1
|𝑄2 | , the determinantal formula for the orthogonal polynomials allows to write

𝑄∗
1(𝑥) = 𝐶

−1
𝑛

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

𝑐0 𝑐1 · · · 𝑐𝑛

𝑐1 𝑐2 · · · 𝑐𝑛+1
...

...
. . .

...

𝑐𝑛−1 𝑐𝑛 · · · 𝑐2𝑛−1

1 𝑥 · · · 𝑥𝑛

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
, 𝐶𝑛 =

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
𝑐0 𝑐1 · · · 𝑐𝑛−1

𝑐1 𝑐2 · · · 𝑐𝑛
...

...
. . .

...

𝑐𝑛−1 𝑐𝑛 · · · 𝑐2𝑛−2

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
≠ 0,

and similarly for the other 𝑛-th orthogonal polynomials𝑄∗
𝑚,1,𝑄∗

𝑚,2,𝑄∗
2. The determinantal formula

shows that the orthogonal polynomials depend continuously on the moments of the corresponding
measure. This together with (4.50) clearly imply that

lim
𝑚→∞

𝑑𝑛 (Q∗
𝑚,Q∗) = 0.

From Proposition 4.8 it follows that

𝑇̃𝑛 (𝑄𝑛,1, 𝑄𝑛,2) = (𝑄𝑛,1, 𝑄𝑛,2),

where (𝑄𝑛,1, 𝑄𝑛,2) is the unique pair of polynomials of degree 𝑛 verifying (4.33)-(4.36). Therefore,
(𝑄𝑛,1, 𝑄𝑛,2) is a fixed point of the operator 𝑇̃𝑛. In the case of arbitrary ℎ̃𝑛 it is not difficult to prove
that 𝑇̃𝑛 also has fixed points. (In general, it may not be unique.)
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Indeed, given 𝑛 if (𝑄̃𝑛,1, 𝑄̃𝑛,2) is a fixed point then the 𝑛 zeros of 𝑄̃𝑛,1 must lie in Δ1 and the
𝑛 zeros of 𝑄̃𝑛,2 must be in Δ2. Consequently, it is sufficient to restrict the operator 𝑇̃𝑛 to the class
P̃𝑛,1 × P̃𝑛,2 of all pairs of monic polynomials whose first component has all its zeros on Δ1 and
the second has its zeros on Δ2. Suppose that

𝑄̃𝑛,1(𝑥) =
𝑛∏︂
𝑗=1

(𝑥 − 𝑥𝑛, 𝑗), 𝑄̃𝑛,2(𝑥) =
𝑛∏︂
𝑗=1

(𝑥 − 𝑦𝑛, 𝑗).

Assume that the zeros are indexed in such a way that

𝑎1 ≤ 𝑥𝑛,1 ≤ · · · ≤ 𝑥𝑛,𝑛 ≤ 𝑏1, 𝑎2 ≤ 𝑦𝑛,1 ≤ · · · ≤ 𝑦𝑛,𝑛 ≤ 𝑏2.

There is a canonical homeomorphism between P̃𝑛,1 × P̃𝑛,2 and Δ̃1 × Δ̃2, where Δ̃𝑘 , 𝑘 = 1, 2, is
the subset of Δ𝑛

𝑘
made up of all points whose coordinates are increasing, given by

(𝑄̃𝑛,1, 𝑄̃𝑛,2) −→ ((𝑥𝑛,1, . . . , 𝑥𝑛,𝑛), (𝑦𝑛,1, . . . , 𝑦𝑛,𝑛))

The operator 𝑇̃𝑛 induces an operator from Δ̃1 × Δ̃2 into itself, where the image is determined by
the zeros of (𝑄∗

𝑛,1, 𝑄
∗
𝑛,2) = 𝑇̃𝑛 (𝑄̃𝑛,1, 𝑄̃𝑛,2). The induced operator is continuous and Δ̃1 × Δ̃2 is a

convex compact subset of R𝑛 × R𝑛; therefore, by Brouwer’s fixed point theorem [42, Th. 7.2 (3)]
the induced operator has at least one fixed point. Consequently, so does 𝑇̃𝑛.

We are ready to use Theorem 4.2.{prop3}

Proposition 4.11:
Assume that (𝜇1, 𝜇2) ∈ S (𝚫) and for each 𝑛 ≥ 0, (𝑄̃𝑛,1, 𝑄̃𝑛,2) is the pair of monic polynomials of
degree 𝑛 which satisfies (4.45). Let (𝜎1, 𝜎2) ∈ S (𝚫) and let (𝑄∗

𝑛,1, 𝑄
∗
𝑛,2) = 𝑇̃𝑛 (𝑄̃𝑛,1, 𝑄̃𝑛,2) where

{ℎ̃𝑛}𝑛≥0 fulfills (4.48). Then

lim
𝑛

𝑞∗
𝑛,1(𝑧)

𝐶𝑛1 Φ
𝑛
1 (𝑧)

=
1

√
2𝜋

G( 𝑓 −1
2 ℎ̃𝜎1, 𝑧), lim

𝑛

𝑞∗
𝑛,2(𝑧)

𝐶𝑛2 Φ
𝑛
2 (𝑧)

=
1

√
2𝜋

G( 𝑓 −1
1 𝜎2, 𝑧), (4.51){limfund1}{limfund1}

uniformly on compact subsets of Ω1 and Ω2, respectively, 𝑓𝑘 = G(𝜇𝑘 , ·)/G(𝜇𝑘 ,∞), 𝑘 = 1, 2,
and 𝑞∗

𝑛,𝑘
= 𝜅∗

𝑛,𝑘
𝑄∗
𝑛,𝑘

is the corresponding orthonormal polynomial of degree 𝑛 (see (4.47)).
Additionally,

lim
𝑛

𝜅∗
𝑛,1

𝐶𝑛1
=

1
√

2𝜋
G( 𝑓 −1

2 ℎ̃𝜎1,∞), lim
𝑛

𝜅∗
𝑛,2

𝐶𝑛2
=

1
√

2𝜋
G( 𝑓 −1

1 𝜎2,∞), 𝑘 = 1, 2. (4.52){conductor1}{conductor1}

Consequently,

lim
𝑛

𝑄∗
𝑛,1(𝑧)
Φ𝑛1 (𝑧)

=
G( 𝑓 −1

2 ℎ̃𝜎1, 𝑧)
G( 𝑓 −1

2 ℎ̃𝜎1,∞)
, lim

𝑛

𝑄∗
𝑛,2(𝑧)
Φ𝑛2 (𝑧)

=
G( 𝑓 −1

1 𝜎2, 𝑧)
G( 𝑓 −1

1 𝜎2,∞)
. (4.53){limfund*1}{limfund*1}

Proof. It is easy to see that the sequences ( ℎ̃𝑛 d𝜎1, 𝑄̃𝑛,2)𝑛≥0, (d𝜎2, 𝑄̃𝑛,1)𝑛≥0 verify (S1)-(S4) on
the intervals Δ1 and Δ2. Therefore, the assumptions of Theorem 4.2 are fulfilled. Consequently,
(4.51)-(4.53) follow directly from Proposition 4.9 and Theorem 4.2 taking into account the equi-
librium equations (4.40) verified by the equilibrium measures and the defining formulas (4.42) for
the functions Φ𝑘 and constants 𝐶𝑘 , 𝑘 = 1, 2. □
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Formulas (4.51)-(4.53) describe the strong asymptotic behavior of the components of the image
of 𝑇̃𝑛. In the next section, we give an operator approach to interpret the limiting functions appearing
in these relations.

4.3.7 The operator 𝑇w
{subsec:op:T}

The Szegő functions which describe the limits (4.51)-(4.53) verify the boundary equations (see
(1.17)-(1.19))

|G( 𝑓 −1
2 ℎ̃𝜎1, 𝑥) |2 =

| 𝑓2(𝑥) |√︁
(𝑏1 − 𝑥) (𝑥 − 𝑎1) ( ℎ̃𝜎′

1) (𝑥)
, a.e. on [𝑎1, 𝑏1] = Δ1, (4.54) {boundeq1}{boundeq1}

and

|G( 𝑓 −1
1 𝜎2, 𝑥) |2 =

| 𝑓1(𝑥) |√︁
(𝑏2 − 𝑥) (𝑥 − 𝑎2)𝜎′

2(𝑥)
, a.e. on [𝑎2, 𝑏2] = Δ2. (4.55) {boundeq2}{boundeq2}

The functions 𝑓1, 𝑓2 themselves are expressed in terms of Szegő functions and ℎ̃ is a positive
continuous function on Δ1. The Szegő functions above are symmetric with respect to the real line,
never equal zero, and are positive at infinity. Consequently, on the real line, outside of the intervals
supporting their defining measures, they are positive. Relations (4.54)-(4.55) suggest the definition
of an operator.

Let 𝚫 = (Δ1,Δ2). We denote by C𝚫 the space of all pairs g = (𝑔1, 𝑔2) of real valued functions
such that 𝑔1 is continuous on Δ2 and 𝑔2 is continuous on Δ1. The functions 𝑔1 and 𝑔2 could be
defined on certain supersets of Δ2 and Δ1, respectively, but for the time being we only need to
specify their analytic properties as indicated. Set

∥g∥C𝚫 := max{∥𝑔1∥Δ2 , ∥𝑔2∥Δ1},

where ∥ · ∥𝑋 denotes the sup norm on 𝑋 . Obviously (C𝚫, ∥ · ∥C𝚫) is a Banach space. Consider
the cone C+

𝚫 of all the vectors in C𝚫 such that 𝑔1 is positive on Δ2 and 𝑔2 is positive on Δ1. The
application (𝑔1, 𝑔2) ↦→ (ln 𝑔1, ln 𝑔2) establishes a homeomorphism between C+

𝚫 and C𝚫. Given
g(1) = (𝑔 (1)1 , 𝑔

(1)
2 ), g(2) = (𝑔 (2)1 , 𝑔

(2)
2 ) ∈ C+

𝚫, set

𝑑 (g(1) , g(2) ) := max{∥ ln(𝑔 (1)1 /𝑔 (2)1 )∥Δ2 , ∥ ln(𝑔 (1)2 /𝑔 (2)2 )∥Δ1}.

It is easy to check that (C+
𝚫, 𝑑) is a complete metric space. Certainly, on C+

𝚫 we can also consider
the norm ∥ · ∥C𝚫 but C+

𝚫 is not complete with that norm; however, given a sequence (g(𝑛) )𝑛≥0 ⊂ C+
𝚫

and g ∈ C+
𝚫, we have

lim
𝑛

∥g(𝑛) − g∥C𝚫 = 0 ⇔ lim
𝑛
𝑑 (g(𝑛) , g) = 0. (4.56) {equiv}{equiv}

Now we are in a position to give a precise definition of the operator hinted by relations
(4.54)-(4.55).
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{oper_T}

Definition 4.12:
Let 𝑤1 and 𝑤2 be two integrable functions satisfying Szegő’s condition on Δ1 and Δ2, respectively,
and write w = (𝑤1, 𝑤2). Define the operator

𝑇w : C+
𝚫 −→ C+

𝚫,

where 𝑇w(𝑔1, 𝑔2) = (𝑔∗1, 𝑔
∗
2) is the pair of Szegő functions, 𝑔

∗
𝑘
∈ H(Ω𝑘), 𝑘 = 1, 2, verifying

|𝑔∗1(𝑥) |
2 =

𝑔2(𝑥)
𝑤1(𝑥)

, a.e. on [𝑎1, 𝑏1] = Δ1,

|𝑔∗2(𝑥) |
2 =

𝑔1(𝑥)
𝑤2(𝑥)

, a.e. on [𝑎2, 𝑏2] = Δ2.

From the definition of the Szegő function it readily follows that 𝑔∗1 is positive and continuous
on R \ Δ1 ⊃ Δ2 and 𝑔∗2 is positive and continuous on R \ Δ2 ⊃ Δ1.

Finding 𝑔∗
𝑘
, 𝑘 = 1, 2, reduces to solving the Dirichlet problems for a harmonic function 𝑢𝑘 in

Ω𝑘 , with boundary values integrable on Δ𝑘 and equal to 1
2 ln(𝑔2/𝑤1) a.e. on Δ1 in the case of 𝑢1

and 1
2 ln(𝑔1/𝑤2) a.e. on Δ2 in the case of 𝑢2, and the subsequent problem of finding their harmonic

conjugates ˜︁𝑢𝑘 ,˜︁𝑢𝑘 (∞) = 0, in Ω𝑘 . Then

𝑔∗𝑘 = exp(𝑢𝑘 + 𝑖˜︁𝑢𝑘), 𝑘 = 1, 2.

Set 𝛀 = (Ω1,Ω2). Let h𝛀 be the set of pairs of harmonic functions in Ω1 and Ω2, respectively,
with integrable boundary values. Given g = (𝑔1, 𝑔2) ∈ C+

𝚫 let 𝜒 = (𝜒1, 𝜒2) = (ln 𝑔1, ln 𝑔2) ∈ C𝚫.
The map 𝑇w induces the map

𝑡w : C𝚫 −→ h𝛀 ⊂ C𝚫,

where
𝑡w(𝜒) :=

1
2
(𝑃(𝜒) + 𝛽), 𝜒 = (𝜒1, 𝜒2)𝑡 ∈ C𝚫,

𝛽 = (𝛽1, 𝛽2)𝑡 is the (column) vector made up of harmonic functions with boundary values

𝛽𝑘 (𝑥) = − ln𝑤𝑘 (𝑥), a.e. on Δ𝑘 , 𝑘 = 1, 2

and 𝑃 is the linear operator

𝑃 :=

(︄
0 𝑃1,2

𝑃2,1 0

)︄
,

such that 𝑃1,2(𝜒2) is the harmonic function on Ω1 with boundary values equal to 𝜒2 on Δ1, and
𝑃2,1(𝜒1) is the harmonic function on Ω2 with boundary values equal to 𝜒1 on Δ2.

The following result is contained in [5, Proposition 1.1].{prop4}

Proposition 4.13:
The operator 𝑇w (see Def. 4.12) is a contraction in C+

𝚫 with respect to the metric 𝑑. More precisely

𝑑 (𝑇w(g(1) ), 𝑇w(g(2) )) ≤ 1
2
𝑑 (g(1) , g(2) ), g(1) , g(2) ∈ C+

𝚫.

Therefore, the map 𝑇w has a unique fixed point in C+
𝚫.
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Proof. The proof is simple so, for completeness, we include it. As mentioned above, (C+
𝚫, 𝑑) is a

complete metric space so the second statement follows from the first.

Set 𝜒 (𝑘) := (ln 𝑔 (𝑘)1 , ln 𝑔 (𝑘)2 ), 𝑘 = 1, 2. From the definitions of 𝑑, 𝑇w, and 𝑡w it follows that

𝑑 (𝑇w(g(1) ), 𝑇w(g(2) )) = ∥𝑡w(𝜒 (1) ) − 𝑡w(𝜒 (2) )∥C𝚫 =
1
2
∥𝑃(𝜒 (1) ) − 𝑃(𝜒 (2) )∥C𝚫 ≤

1
2
∥𝑃∥∥𝜒 (1) − 𝜒 (2) ∥C𝚫 =

1
2
𝑑 (g(1) , g(2) ),

where in the last inequality the maximum principle is used to establish that ∥𝑃∥ = 1. □

Consider now the particular case 𝑇˜︁w where

˜︁w :=
(︂√︁

(𝑏1 − 𝑥) (𝑥 − 𝑎1) ( ℎ̃𝜎′
1) (𝑥),

√︁
(𝑏2 − 𝑥) (𝑥 − 𝑎2)𝜎′

2(𝑥)
)︂
. (4.57) {oper_T_tilde}{oper_T_tilde}

Here ℎ̃, 𝜎1, 𝜎2 are the same as in (4.48), (4.54) and (4.55). Then, let G = (G1,G2) be the unique
fixed point of the operator 𝑇˜︁w. That is

𝑇˜︁w(G) = G

and the components of G are characterized by the system of boundary values

|G1(𝑥) |2 =
G2(𝑥)√︁

(𝑏1 − 𝑥) (𝑥 − 𝑎1) ( ℎ̃𝜎′
1) (𝑥)

, a.e. on [𝑎1, 𝑏1] = Δ1,

and
|G2(𝑥) |2 =

G1(𝑥)√︁
(𝑏2 − 𝑥) (𝑥 − 𝑎2)𝜎′

2(𝑥)
, a.e. on [𝑎2, 𝑏2] = Δ2.

Obviously, the components of G are Szegő functions in Ω1 and Ω2, respectively.

Now, we must show that any neighborhood of a fixed point of the operator 𝑇˜︁w determines fixed
points of the operators 𝑇̃𝑛 for all sufficiently large 𝑛. By Proposition 4.8, when we take ℎ̃𝑛 = |ℎ𝑛,1 |
as in (4.32), the operator 𝑇̃𝑛 has only one fixed point. We need one last ingredient. {prop5}

Proposition 4.14:
Let (𝑄̃𝑛,1, 𝑄̃𝑛,2)𝑛≥0 be an arbitrary sequence of vector polynomials such that (𝑄̃𝑛,1, 𝑄̃𝑛,2) ∈
P𝑛,1 × P𝑛,2. Set

f (𝑛) =

(︄
𝑄̃𝑛,1

Φ𝑛1
,
𝑄̃𝑛,2

Φ𝑛2

)︄
.

Assume that there exists f = ( 𝑓1, 𝑓2) ∈ C+
𝚫 and a sequence of non-negative integers Λ such that

lim
𝑛∈Λ

∥f (𝑛) − f∥C𝚫 = 0. (4.58) {limden}{limden}

Let (𝜎1, 𝜎2) ∈ S (𝚫) and let (𝑄∗
𝑛,1, 𝑄

∗
𝑛,2) = 𝑇̃𝑛 (𝑄̃𝑛,1, 𝑄̃𝑛,2) where ( ℎ̃𝑛)𝑛≥0 fulfills (4.48). Then

lim
𝑛∈Λ

𝑞∗
𝑛,1(𝑧)

𝐶𝑛1 Φ
𝑛
1 (𝑧)

=
1

√
2𝜋

G( 𝑓 −1
2 ℎ̃𝜎1, 𝑧), lim

𝑛∈Λ

𝑞∗
𝑛,2(𝑧)

𝐶𝑛2 Φ
𝑛
2 (𝑧)

=
1

√
2𝜋

G( 𝑓 −1
1 𝜎2, 𝑧), (4.59) {limfund}{limfund}

uniformly on compact subsets of Ω1 and Ω2, respectively. Additionally,

lim
𝑛∈Λ

𝜅∗
𝑛,1

𝐶𝑛1
=

1
√

2𝜋
G( 𝑓 −1

2 ℎ̃𝜎1,∞), lim
𝑛∈Λ

𝜅∗
𝑛,2

𝐶𝑛2
=

1
√

2𝜋
G( 𝑓 −1

1 𝜎2,∞), 𝑘 = 1, 2.
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Consequently,

lim
𝑛∈Λ

𝑄∗
𝑛,1(𝑧)
Φ𝑛1 (𝑧)

=
G( 𝑓 −1

2 ℎ̃𝜎1, 𝑧)
G( 𝑓 −1

2 ℎ̃𝜎1,∞)
, lim

𝑛∈Λ

𝑄∗
𝑛,2(𝑧)
Φ𝑛2 (𝑧)

=
G( 𝑓 −1

1 𝜎2, 𝑧)
G( 𝑓 −1

1 𝜎2,∞)
. (4.60) {limfund*}{limfund*}

Proof. The proof is identical to that of Proposition 4.11. In that proof, it is not used that the full
sequences of indices is considered and the result only depends on the asymptotic behavior of the
sequences of denominators of the varying part of the measures of orthogonality on the intervals
Δ1 and Δ2, respectively, for which assumption (4.58) was included. The details are omitted. □

4.3.8 Proof of Theorem 4.15
{subsec:3.8}

Let G = (G1,G2) be the fixed point of the operator 𝑇˜︁w (see Def. 4.12 and (4.57)). The function
G𝑘 , 𝑘 = 1, 2 is a Szegő function in Ω𝑘 ; therefore, the value G𝑘 (∞) is well defined. Set

𝐻+,𝑛 :=
{︃(︃

G1(∞)𝑃𝑛,1
Φ𝑛1

,
G2(∞)𝑃𝑛,2

Φ𝑛2

)︃
: 𝑃𝑛,𝑘 ∈ P𝑛,𝑘 , 𝑘 = 1, 2

}︃
.

(Recall that P𝑛,𝑘 is the set of all monic polynomials of degree 𝑛 with real coefficients whose zeros
lie in Ω 𝑗 , 𝑗 ≠ 𝑘, 𝑗 , 𝑘 = 1, 2.)

Let 𝑇̃𝑛,1 and 𝑇̃𝑛,2 be the operators defined on P𝑛,1 × P𝑛,2 which determine the components
of 𝑇̃𝑛; that is, 𝑇̃𝑛 = (𝑇̃𝑛,1, 𝑇̃𝑛,2) (see (4.46)). Define

𝑇𝑛 : 𝐻+,𝑛 −→ 𝐻+,𝑛

where

𝑇𝑛

(︃
G1(∞)𝑃𝑛,1

Φ𝑛1
,

G2(∞)𝑃𝑛,2
Φ𝑛2

)︃
=

(︃
G1(∞)𝑇̃𝑛,1(𝑃𝑛,1, 𝑃𝑛,2)

Φ𝑛1
,

G1(∞)𝑇̃𝑛,2(𝑃𝑛,1, 𝑃𝑛,2)
Φ𝑛2

)︃
.

Notice that any fixed point of 𝑇𝑛 generates a fixed point of 𝑇̃𝑛. The continuity of 𝑇̃𝑛 implies the
continuity of 𝑇𝑛.{main}

Theorem 4.15:
Let (𝜎1, 𝜎2) ∈ S (𝚫) and {ℎ̃𝑛}𝑛≥0 fulfills (4.48). Then, there exists a sequence {(𝑄𝑛,1, 𝑄𝑛,2)}𝑛≥0,
where (𝑄𝑛,1, 𝑄𝑛,2) is a fixed point of 𝑇̃𝑛, such that

lim
𝑛

𝑄𝑛,𝑘 (𝑧)
Φ𝑛
𝑘
(𝑧) =

G𝑘 (𝑧)
G𝑘 (∞) , 𝑘 = 1, 2, (4.61){limfund***}{limfund***}

uniformly on compact subsets of Ω𝑘 , where G = (G1,G2) is the fixed point of 𝑇˜︁w and Φ𝑘 are as in
(4.42). Additionally, if

(𝜅𝑛,2)−2 :=
∫

𝑄2
𝑛,2(𝑥)

d𝜎2(𝑥)
|𝑄𝑛,1(𝑥) |

, (𝜅𝑛,1)−2 :=
∫

𝑄2
𝑛,1(𝑥)

ℎ̃𝑛 (𝑥)d𝜎1(𝑥)
|𝑄𝑛,2(𝑥) |

,

and 𝑞𝑛,𝑘 = 𝜅𝑛,𝑘𝑄𝑛,𝑘 , 𝑘 = 1, 2, then

lim
𝑛

𝜅𝑛,𝑘

𝐶𝑛
𝑘

=
1

√
2𝜋

G𝑘 (∞),
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and

lim
𝑛

𝑞𝑛,𝑘 (𝑧)
𝐶𝑛
𝑘
Φ𝑛
𝑘
(𝑧) =

1
√

2𝜋
G𝑘 (𝑧), 𝑘 = 1, 2, (4.62){limfund2}{limfund2}

uniformly on compact subsets of Ω𝑘 .

Proof. Due to the way in which 𝐻+,𝑛, 𝑇𝑛, and 𝑇˜︁w were defined, the statements (4.61)-(4.62) follow
directly from Proposition 4.14 if we show that there exists a sequence {g(𝑛) }𝑛≥𝑛0 , where g(𝑛) is a
fixed point of 𝑇𝑛, such that

lim
𝑛≥𝑛0

∥g(𝑛) − G∥C𝚫 = 0. (4.63) {fixed}{fixed}

The components of G are Szegő functions in Ω𝑘 , 𝑘 = 1, 2, respectively. Let K = (𝐾1, 𝐾2) be a
pair of non intersecting closed disks, symmetric with respect to R, whose interior in the Euclidean
topology of C verify

Δ2 ⊂ 𝐾̊1, Δ1 ⊂ 𝐾̊2.

By 𝐻+(K) we denote the cone of all pairs (𝑔1, 𝑔2) of functions such that 𝑔𝑘 is holomorphic and
different from zero in 𝐾̊𝑘 , and positive on 𝐾̊𝑘 ∩ R. For g = (𝑔1, 𝑔2) ∈ 𝐻+(K) we define

∥g∥K := max{{sup |𝑔𝑘 (𝑧) | : 𝑧 ∈ 𝐾̊𝑘 } : 𝑘 = 1, 2} (≤ ∞),

and

min
𝚫

g := min{min
𝑥∈Δ2

𝑔1(𝑥), min
𝑥∈Δ1

𝑔2(𝑥)}.

Fix a constant 𝐶 > 0. Define

𝐻+(K, 𝐶) := {g ∈ 𝐻+(K) : ∥g∥K ≤ 𝐶,min
𝚫

g ≥ 𝐶−1}.

Take 𝐶 sufficiently large so that G ∈ 𝐻+(K, 𝐶).

Let g(1) , g(2) ∈ 𝐻+(K, 𝐶) and let 0 ≤ 𝛽 ≤ 1, then

∥𝛽g(1) + (1 − 𝛽)g(2) ∥K ≤ 𝛽∥g(1) ∥K + (1 − 𝛽)∥g(2) ∥K ≤ 𝐶,

and

min
𝚫

(︂
𝛽g(1) + (1 − 𝛽)g(2)

)︂
≥ 𝛽min

𝚫
g(1) + (1 − 𝛽) min

𝚫
g(2) ≥ 𝐶−1.

Therefore, 𝛽g(1) + (1 − 𝛽)g(2) ∈ 𝐻+(K, 𝐶). This shows that 𝐻+(K, 𝐶) is convex.

On the other hand, if (g(𝑛) )𝑛≥0 is an arbitrary sequence of elements in 𝐻+(K, 𝐶). Then the
components form normal families in 𝐾̊1 and 𝐾̊2, respectively. Therefore, there exists a sequence
of indices Λ such that (g(𝑛) )𝑛∈Λ converges componentwise to some vector function g uniformly
on each compact subset of 𝐾̊1 and 𝐾̊2, respectively. The components of g are, therefore, analytic
on 𝐾̊1 and 𝐾̊2, respectively. The uniform limit of holomorphic functions which never equal zero
must either be identically equal to zero or never zero. The first case is not possible because

min
𝚫

g = lim
𝑛∈Λ

min
𝚫

g(𝑛) ≥ 𝐶−1.
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Also
∥g∥K = lim

𝑛∈Λ
∥g(𝑛) ∥K ≤ 𝐶.

Consequently, g ∈ 𝐻+(K, 𝐶). We conclude that 𝐻+(K, 𝐶) is compact.

Fix an arbitrary 𝜃 > 0. Let

𝜔(𝜃) = {g ∈ 𝐻+(K, 𝐶) : ∥g − G∥C𝚫 ≤ 𝜃}.

This is a closed subset of 𝐻+(K, 𝐶) and, therefore, it is compact. Obviously, it is convex.
Analogously, for every 𝜀 > 0, set

𝜔𝜀 := {g ∈ 𝐻+(K, 𝐶) : 𝑑 (g,G) ≤ 𝜀}.

There exists 𝜀0 such that
𝜔𝜀 ⊂ 𝜔(𝜃), 0 < 𝜀 ≤ 𝜀0,

for, otherwise, we could find a sequence of vector functions in 𝐻+(K, 𝐶) ⊂ C+
𝚫 which converges

to G in the 𝑑 metric but not in the ∥ · ∥C𝚫 norm which would contradict (4.56).

Take
𝜔𝜀,𝑛 = 𝜔𝜀 ∩ 𝐻+,𝑛.

For each fixed 𝑛 the set 𝜔𝜀,𝑛 is a closed, bounded subset of a finite dimensional space, therefore it
is compact.

Let 𝜇𝑘 be the representing measure of G𝑘 so that G𝑘 (𝑧) = G(𝜇𝑘 , 𝑧), 𝑧 ∈ Ω𝑘 . From Proposition
4.9, using (4.44) and (4.56) it follows that

lim
𝑛
𝑑 (g(𝑛) ,G) = 0,

where

g(𝑛) :=

(︄
G1(∞)𝑄̃𝑛,1

Φ𝑛1
,

G2(∞)𝑄̃𝑛,2
Φ𝑛2

)︄
and 𝑄̃𝑛,𝑘 , 𝑘 = 1, 2, is given by (4.43). Consequently, for every fixed 𝜀, 0 < 𝜀 ≤ 𝜀0, there exists 𝑛0

such that 𝜔𝜀,𝑛 ≠ ∅ for all 𝑛 ≥ 𝑛0. Using the structure of the elements of 𝐻+,𝑛, the definition of
the metric 𝑑, and the monotonicity of the logarithm, it is easy to verify that 𝜔𝜀,𝑛 is convex.

Let us show that 𝑇𝑛 (𝜔𝜀,𝑛) ⊂ 𝜔𝜀,𝑛 for all sufficiently large 𝑛. We claim that there exists 𝑛0

such that for all 𝑛 ≥ 𝑛0 and g ∈ 𝜔𝜀,𝑛, we have

𝑑 (𝑇𝑛 (g), 𝑇˜︁w(g)) < 𝜀/2. (4.64){desig}{desig}

Should this not occur, we could find a sequence {g(𝑛) }𝑛∈Λ, g(𝑛) ∈ 𝜔𝜀,𝑛, such that

𝑑 (𝑇𝑛 (g(𝑛) ), 𝑇˜︁w(g(𝑛) )) ≥ 𝜀/2 (4.65){contra}{contra}

The elements of 𝜔𝜀,𝑛 belong to 𝐻+(𝐾,𝐶); therefore, {g(𝑛) }𝑛∈Λ is uniformly bounded in the ∥ · ∥K

norm. Consequently, there exists g ∈ 𝐻+(𝐾,𝐶) and a subsequence of indices Λ′ ⊂ Λ such that

lim
𝑛∈Λ′

∥g(𝑛) − g∥K = 0.
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In particular,
lim
𝑛∈Λ′

∥g(𝑛) − g∥C𝚫 = 0.

Then, according to (4.60) in Proposition 4.14

lim
𝑛∈Λ′

∥𝑇𝑛 (g(𝑛) ) − 𝑇˜︁w(g)∥C𝚫 = 0

which contradicts (4.65) due to (4.56).

Using the triangle inequality and (4.64) for every 𝑛 ≥ 𝑛0 and g ∈ 𝜔𝜀,𝑛

𝑑 (G, 𝑇𝑛 (g)) ≤ 𝑑 (𝑇˜︁w(G), 𝑇˜︁w(g)) + 𝑑 (𝑇˜︁w(g), 𝑇𝑛 (g)) < 1
2
𝑑 (G, g) + 1

2
𝜀 ≤ 𝜀.

Consequently, 𝑇𝑛 (𝜔𝜀,𝑛) ⊂ 𝜔𝜀,𝑛 as claimed. Now, using Brouwer’s fixed point Theorem [42, Th.
7.2 (3)] we obtain that for all 𝑛 ≥ 𝑛0 the operator 𝑇𝑛 has a fixed point in 𝜔𝜀,𝑛.

Since 𝜃 > 0 is arbitrary, we have shown that (4.63) is true and we conclude the proof. □

To apply Theorem 4.15 to the case of ML Hermite-Padé polynomials we need to select
ℎ̃𝑛 = |ℎ𝑛,1 |, ℎ̃ = ℎ (see (4.32) and (4.38)), and

w̃ = w𝑄 := (
√︁
(𝑏1 − 𝑥) (𝑥 − 𝑎1) (ℎ𝜎′

1) (𝑥),
√︁
(𝑏2 − 𝑥) (𝑥 − 𝑎2)𝜎′

2(𝑥)), (4.66) {oper_TQ}{oper_TQ}

to determine the operator 𝑇w𝑄
(see Def. 4.12). {ML}

Theorem 4.16:
Let (𝜎1, 𝜎2) ∈ S (𝚫). Let (𝑄𝑛,1, 𝑄𝑛,2)𝑛≥0 be the sequence of ML Hermite-Padé polynomials
defined by (4.27)-(4.29) and let 𝜅𝑛,1, 𝜅𝑛,2, 𝑞𝑛,1, 𝑞𝑛,2, and ℎ𝑛,1 be defined as in (4.31)-(4.32). Finally,
let G = (G1,G2) be the fixed point of the operator 𝑇w𝑄

, as in Definition 4.12 and (4.66). Then

lim
𝑛

𝑄𝑛,𝑘 (𝑧)
Φ𝑛
𝑘
(𝑧) =

G𝑘 (𝑧)
G𝑘 (∞) , 𝑘 = 1, 2,

uniformly on compact subsets of Ω𝑘 . Additionally,

lim
𝑛

𝜅𝑛,𝑘

𝐶𝑛
𝑘

=
1

√
2𝜋

G𝑘 (∞), (4.67) {conductor*}{conductor*}

and
lim
𝑛

𝑞𝑛,𝑘 (𝑧)
𝐶𝑛
𝑘
Φ𝑛
𝑘
(𝑧) =

1
√

2𝜋
G𝑘 (𝑧), 𝑘 = 1, 2, (4.68) {limfund**}{limfund**}

uniformly on compact subsets of Ω𝑘 .

Proof. It is sufficient to apply Theorem 4.15 with ℎ̃𝑛 = |ℎ𝑛,1 |, taking note that (4.38) takes place
and that according to Proposition 4.8 the operator 𝑇̃𝑛 has a unique fixed point in all of P𝑛,1 ×P𝑛,2

which coincides with (𝑄𝑛,1, 𝑄𝑛,2) □

Our method differs from Aptekarev’s in two aspects. Proposition 4.9, which plays a key
role, is derived using arguments from complex function theory. The corresponding result in [5,
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Theorem 2] uses a quite intricate approximative construction on a Riemann surface which is not
very transparent. Secondly, in [5], Widom’s approach introduced in [99] is followed closely to
obtain 𝐿2 estimates, on segments of the real line, of the asymptotic behavior of the multiple
orthogonal polynomials. Thus, the results are obtained for measures in the Szegő class which are
absolutely continuous with respect to the Lebesgue measure. We use instead the results obtained in
Section 2 on orthogonal polynomials with respect to varying measures and do not need to restrict to
absolutely continuous measures. In consequence, we only give the asymptotic in the complement
of the intervals.

4.3.9 Proof of Theorem 4.1

Recall that the biorthogonal polynomial𝑄𝑛 coincides with𝑄𝑛,2. Consequently, the second relation
in (4.3) follows directly from (4.60).

To obtain the asymptotic of the biorthogonal polynomials 𝑃𝑛 we need a result similar to
Theorem 4.16 working with the definition (4.23)-(4.24) corresponding to the Nikishin system
N (𝜎2, 𝜎1). We outline the main ingredients.

From Lemma 4.7 and Proposition 4.8 it follows that there exist a unique pair (𝑃𝑛,1, 𝑃𝑛,2) of
monic polynomials of degree 𝑛, where 𝑃𝑛,2 = 𝑏𝑛,2 = 𝑃𝑛, such that∫

𝑥𝜈𝑃𝑛,2(𝑥)
d𝜎1(𝑥)
𝑃𝑛,1(𝑥)

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 1, (4.69){orth_P2}{orth_P2} ∫
𝑥𝜈𝑃𝑛,1(𝑥)

L𝑛,1(𝑥) d𝜎2(𝑥)
𝑃𝑛,2(𝑥)

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 1, (4.70){orth_P1}{orth_P1}

where

L𝑛,1(𝑧) :=
B𝑛,1(𝑧)𝑃𝑛,2(𝑧)

𝑃𝑛,1(𝑧)
= 𝑃𝑛,2(𝑧)

∫
𝑃𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎1(𝑥)
𝑃𝑛,1(𝑥)

=

∫
𝑃2
𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎1(𝑥)
𝑃𝑛,1(𝑥)

.

The normalization in this case is

𝜉−2
𝑛,2 =

∫
𝑃2
𝑛,2(𝑥)

d𝜎1(𝑥)
|𝑃𝑛,1(𝑥) |

, (𝜉𝑛,1𝜉𝑛,2)−2 =

∫
𝑃2
𝑛,1(𝑥)

|L𝑛,1(𝑥) | d𝜎2(𝑥)
|𝑃𝑛,2(𝑥) |

.

Take,
𝑝𝑛,1 = 𝜉𝑛,1𝑃𝑛,1, 𝑝𝑛,2 = 𝜉𝑛,2𝑃𝑛,2, ℓ𝑛,1 = 𝜉2

𝑛,2L𝑛,1.

Then, the orthogonality relation (4.69) and (4.70) can be restated as∫
𝑥𝜈𝑝𝑛,2(𝑥)

d𝜎1(𝑥)
|𝑃𝑛,1(𝑥) |

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 1,∫
𝑥𝜈𝑝𝑛,1(𝑥)

|ℓ𝑛,1(𝑥) | d𝜎2(𝑥)
|𝑃𝑛,2(𝑥) |

= 0, 𝜈 = 0, 1, . . . , 𝑛 − 1,

and the polynomials 𝑝𝑛,2 and 𝑝𝑛,1 are orthonormal with respect to the corresponding varying
measures. Following the same arguments that led us to (4.38), we obtain

lim
𝑛

|ℓ𝑛,1(𝑡) | =
1√︁

|𝑡 − 𝑎1 | |𝑡 − 𝑏1 |
=: ℓ(𝑡) (4.71){ell}{ell}
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uniformly for 𝑡 ∈ Δ2.

The operator 𝑇w𝑃
: C+

𝚫 −→ C+
𝚫 which is relevant to describe the strong asymptotic of the

polynomials 𝑃𝑛,2, 𝑃𝑛,1 and their orthonormal versions 𝑝𝑛,2, 𝑝𝑛,1 is the one determined by

w𝑃 := (
√︁
(𝑏1 − 𝑥) (𝑥 − 𝑎1)𝜎′

1(𝑥),
√︁
(𝑏2 − 𝑥) (𝑥 − 𝑎2) (ℓ𝜎′

2) (𝑥)). (4.72){oper_TP}{oper_TP}

In other words, 𝑇w𝑃
(𝑔1, 𝑔2) = (𝑔∗1, 𝑔

∗
2) is the pair of Szegő functions, 𝑔∗

𝑘
∈ H (Ω𝑘), 𝑘 = 1, 2,

verifying
|𝑔∗1(𝑥) |

2 =
𝑔2(𝑥)√︁

(𝑏1 − 𝑥) (𝑥 − 𝑎1)𝜎′
1(𝑥)

, a.e. on [𝑎1, 𝑏1] = Δ1, (4.73) {boundeq3*}{boundeq3*}

and
|𝑔∗2(𝑥) |

2 =
𝑔1(𝑥)√︁

(𝑏2 − 𝑥) (𝑥 − 𝑎2) (ℓ𝜎′
2) (𝑥)

, a.e. on [𝑎2, 𝑏2] = Δ2, (4.74) {boundeq4*}{boundeq4*}

where ℓ is given in (4.71).

Following the same reasoning as before, if (G∗
1,G

∗
2) is the fixed point of the operator 𝑇w𝑃

defined through (4.73)-(4.74), we have

lim
𝑛

𝑃𝑛,1(𝑧)
Φ𝑛2 (𝑧)

=
G∗

2(𝑧)
G∗

2(∞) , lim
𝑛

𝑃𝑛,2(𝑧)
Φ𝑛1 (𝑧)

=
G∗

1(𝑧)
G∗

1(∞) (4.75) {lim_P*}{lim_P*}

uniformly on compact subsets of Ω2 and Ω1, respectively. Since 𝑃𝑛 = 𝑃𝑛,2, the second limit in
(4.75) gives us the strong asymptotic of the sequence (𝑃𝑛)𝑛≥0, We are done. □

Naturally, the asymptotic of the sequence of normalizing coefficients and of the orthonormal
polynomials 𝑝𝑛,1, 𝑝𝑛,2 can also be given. We leave the details to the reader.

4.3.10 Asymptotic of ML Hermite-Padé polynomials
{subsec:asym:ML}

In this subsection, as an easy consequence of the strong asymptotic of the polynomials 𝑄𝑛,1 and
𝑄𝑛,2, we obtain the strong asymptotic of A𝑛, 𝑗 , and 𝑎𝑛, 𝑗 , 𝑗 = 0, 1. Recall that 𝑄𝑛,2 ≡ 𝑎𝑛,2 ≡ A𝑛,2.

Let 𝑓 be a function which has a constant sign on some interval Δ ⊂ R. We define

sgΔ( 𝑓 ) :=

{︄
1, 𝑓 > 0 on Δ,

−1, 𝑓 < 0 on Δ.
{asym_forms}

Corollary 4.17:
Let (𝜎1, 𝜎2) ∈ S (𝚫) and A𝑛, 𝑗 , 𝑗 = 0, 1, is defined by (4.21)–(4.22). Then,

lim
𝑛

sgΔ2
(𝑄𝑛,1)

𝜅2
𝑛,2A𝑛,1(𝑧)

(Φ1/Φ2)𝑛 (𝑧)
=

G2(∞)
G1(∞)

G1(𝑧)
G2(𝑧)

1√︁
(𝑧 − 𝑏2) (𝑧 − 𝑎2)

, (4.76) {asym_An1}{asym_An1}

and
lim
𝑛

sgΔ1

(︃
ℎ𝑛,1

𝑄𝑛,2

)︃ (𝜅𝑛,1𝜅𝑛,2)2A𝑛,0(𝑧)
Φ−𝑛

1 (𝑧) =
G1(𝑧)
G1(∞)

1√︁
(𝑧 − 𝑎1) (𝑧 − 𝑏1)

, (4.77) {asym_An0}{asym_An0}

where the limits are uniform on compact subsets of C \ (Δ1 ∪ Δ2) and C \ Δ1, respectively.
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Proof. Formula (4.29) can be rewritten as

A𝑛,1(𝑧) =
𝑄𝑛,1(𝑧)
𝑄𝑛,2(𝑧)

∫
𝑄2
𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
𝑄𝑛,1(𝑥)

,

where the equality holds in Ω2. Then,

sgΔ2
(𝑄𝑛,1)

𝜅2
𝑛,2A𝑛,1(𝑧)

(Φ1/Φ2)𝑛 (𝑧)
=
𝑄𝑛,1(𝑧)
Φ𝑛1 (𝑧)

Φ𝑛2 (𝑧)
𝑄𝑛,2(𝑧)

∫
𝑞2
𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
|𝑄𝑛,1(𝑥) |

, 𝑧 ∈ C \ (Δ1 ∪ Δ2). (4.78){asym_An1_1}{asym_An1_1}

From (4.37) with 𝑔2(𝑥) = (𝑧 − 𝑥)−1, we have

lim
𝑛

∫
𝑞2
𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
|𝑄𝑛,1(𝑥) |

=
1√︁

(𝑧 − 𝑏2) (𝑧 − 𝑎2)
, (4.79){asym_An1_3}{asym_An1_3}

uniformly on compact subsets of Ω2. This, together with (4.60) and (4.78), gives us (4.76).

Combining (4.25) for 𝑗 = 0 with (4.29) we get

A𝑛,0(𝑧) =
∫

𝑄𝑛,1(𝑥)
𝑧 − 𝑥

H𝑛,1(𝑥) d𝜎1(𝑥)
𝑄𝑛,2(𝑥)

.

By orthogonality, we have

𝑄𝑛,1(𝑧)
∫

𝑄𝑛,1(𝑥)
𝑧 − 𝑥

H𝑛,1(𝑥) d𝜎1(𝑥)
𝑄𝑛,2(𝑥)

=

∫
𝑄2
𝑛,1(𝑥)
𝑧 − 𝑥

H𝑛,1(𝑥) d𝜎1(𝑥)
𝑄𝑛,2(𝑥)

.

Therefore,

A𝑛,0(𝑧) =
1

𝑄𝑛,1(𝑧)

∫
𝑄2
𝑛,1(𝑥)
𝑧 − 𝑥

H𝑛,1(𝑥) d𝜎1(𝑥)
𝑄𝑛,2(𝑥)

,

where the equality holds for 𝑧 ∈ Ω1. So,

sgΔ1

(︃
ℎ𝑛,1

𝑄𝑛,2

)︃ (𝜅𝑛,1𝜅𝑛,2)2A𝑛,0(𝑧)
Φ−𝑛

1 (𝑧) =
Φ𝑛1 (𝑧)
𝑄𝑛,1(𝑧)

∫
𝑞2
𝑛,1(𝑥)
𝑧 − 𝑥

|ℎ𝑛,1(𝑥) | d𝜎1(𝑥)
|𝑄𝑛,2(𝑥) |

. (4.80){asym_An0_1}{asym_An0_1}

From (4.39) with 𝑔1(𝑥) = (𝑧 − 𝑥)−1, it follows that

lim
𝑛

∫
𝑞2
𝑛,1(𝑥)
𝑧 − 𝑥

|ℎ𝑛,1(𝑥) | d𝜎1(𝑥)
|𝑄𝑛,2(𝑥) |

=
1√︁

(𝑧 − 𝑎1) (𝑧 − 𝑏1)
,

uniformly on compact subsets ofΩ1. This formula combined with (4.80) and (4.60) gives us (4.77).
We have completed the proof. □

Regarding the sign functions in (4.76) and (4.77) it is easy to deduce the following (see (4.29))

sgΔ2

(︁
𝑄𝑛,1

)︁
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, 𝑛 is even,
1, 𝑛 is odd, 𝑏1 < 𝑎2,

−1, 𝑛 is odd, 𝑏2 < 𝑎1,

sgΔ1

(︃
ℎ𝑛,1

𝑄𝑛,2

)︃
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−1, 𝑛 is even, 𝑏1 < 𝑎2,

1, 𝑛 is even, 𝑏2 < 𝑎1,

1, 𝑛 is odd, 𝑏1 < 𝑎2,

−1, 𝑛 is odd, 𝑏2 < 𝑎1.

Notice that

ˆ︁𝜎2(𝑧) −
𝑎𝑛,1(𝑧)
𝑎𝑛,2(𝑧)

=
A𝑛,1(𝑧)
𝑄𝑛,2(𝑧)

=
𝑄𝑛,1(𝑧)
𝑞2
𝑛,2(𝑧)

∫
𝑞2
𝑛,2(𝑥)
𝑧 − 𝑥

d𝜎2(𝑥)
𝑄𝑛,1(𝑥)

.
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Therefore, using (4.60), (4.68), and (4.79), we obtain

lim
𝑛

|︁|︁|︁|︁|︁𝐶2
2Φ

2
2(𝑧)

Φ1(𝑧)

|︁|︁|︁|︁|︁𝑛 |︁|︁|︁|︁ˆ︁𝜎2(𝑧) −
𝑎𝑛,1(𝑧)
𝑎𝑛,2(𝑧)

|︁|︁|︁|︁ = 2𝜋 |G1(𝑧) |
G1(∞)|G2

2(𝑧) |
√︁
|𝑧 − 𝑎2 | |𝑧 − 𝑏2 |

, (4.81){cero}{cero}

uniformly on compact subsets of C \ (Δ1 ∪ Δ2). The definition of Φ1,Φ2, and 𝐶2 imply|︁|︁|︁|︁|︁𝐶2
2Φ

2
2(𝑧)

Φ1(𝑧)

|︁|︁|︁|︁|︁ = exp
(︁
−(2𝑉𝜆2 (𝑧) −𝑉𝜆1 (𝑧) − 2𝛾2)

)︁
.

The second equilibrium equation in (4.40) and the maximum principle for subharmonic function
entail

2𝑉𝜆2 (𝑧) −𝑉𝜆1 (𝑧) − 2𝛾2 < 0, 𝑧 ∈ Ω2.

Consequently, (4.81) gives a precise description of the rate with which (𝑎𝑛,1/𝑎𝑛,2)𝑛≥0 converges toˆ︁𝜎2. Exactly the same formula can be obtained substituting in (4.81)ˆ︁𝜎2−𝑎𝑛,1/𝑎𝑛,2 byˆ︁𝑠2,1−𝑎𝑛,0/𝑎𝑛,2.
However, we will not dwell into this because it requires the introduction of new transformations
which drive us off track.

From [62, Th. 1.6], we know that, for 𝑗 = 0, 1

lim
𝑛

𝑎𝑛, 𝑗 (𝑧)
𝑎𝑛,2(𝑧)

= ˆ︁𝑠2, 𝑗+1(𝑧),

where the limit is uniform on compact subsets of Ω2. {asym_pol_anj}

Corollary 4.18:
Let (𝜎1, 𝜎2) ∈ S (𝚫). Then, for 𝑗 = 0, 1

lim
𝑛

𝑎𝑛, 𝑗 (𝑧)
Φ𝑛2 (𝑧)

=
G2(𝑧)
G2(∞)ˆ︁𝑠2, 𝑗+1(𝑧),

where the limit is uniform on compact subsets of Ω2.

Proof. Since 𝑎𝑛,2 ≡ 𝑄𝑛,2, we have

lim
𝑛

𝑎𝑛, 𝑗 (𝑧)
Φ𝑛2 (𝑧)

Φ𝑛2 (𝑧)
𝑄𝑛,2(𝑧)

= ˆ︁𝑠2, 𝑗+1(𝑧).

Taking into account (4.68) the proof readily follows. □

Results analogous to Corollaries 4.17 and 4.18 for the forms B𝑛,0,B𝑛,1, and the polynomials
𝑏𝑛,0, 𝑏𝑛,1, follow immediately considering the Nikishin system N (𝜎2, 𝜎1). The details are left to
the reader.

4.3.11 A different expression for the functions Φ1,Φ2 and the constants 𝐶1, 𝐶2
{subsec:otro}

In [32, Theorem 4.2] the ratio asymptotic of general ML Hermite-Padé polynomials was given.
The limit was expressed in terms of the branches of a conformal map of a certain Riemann surface.
Since strong asymptotic implies ratio asymptotic, we can use that result to interpret the comparison
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functions Φ1,Φ2 and the constants 𝐶1, 𝐶2 in a different way. (Which coincides with the form in
which they were defined in [5].)

We introduce the Riemann surface which is relevant in our case of two measures. Let R denote
the compact Riemann surface

R =

2⋃︂
𝑘=0

R𝑘

formed by 3 consecutively “glued" copies of the extended complex plane

R0 := C \ Δ1, R1 := C \ (Δ1 ∪ Δ2), R2 := C \ Δ2.

The upper and lower banks of the slits of two neighboring sheets are identified.

Let 𝜋 : R −→ C be the canonical projection from R to C and denote by 𝑧 (𝑘) the point on R𝑘

verifying 𝜋(𝑧 (𝑘) ) = 𝑧, 𝑧 ∈ C. Let 𝜙 : R −→ C denote a conformal mapping whose divisor consists
of one simple zero at ∞(0) ∈ R0 and one simple pole at ∞(2) ∈ R2. This mapping exists and is
uniquely determined up to a multiplicative constant. Denote the branches of 𝜙 by

𝜙𝑘 (𝑧) := 𝜙(𝑧 (𝑘) ), 𝑘 = 0, 1, 2, 𝑧 (𝑘) ∈ R𝑘 .

From the properties of 𝜙, we have

𝜙0(𝑧) = 𝑐1/𝑧 + O (1/𝑧2), 𝜙2(𝑧) = 𝑐2 𝑧 + O (1), 𝑧 → ∞, (4.82){divisorcond:4}{divisorcond:4}

where 𝑐1, 𝑐2 are non-zero constants.

Let 𝑥 ∈ Δ𝑘 , 𝑘 = 1, 2. We write 𝑧 → 𝑥+ when 𝑧 ∈ C approaches 𝑥 from above the real line.
Analogously, 𝑧 → 𝑥− means that 𝑧 approaches 𝑥 from below the real line. Let us define

𝜙𝑘 (𝑥+) := lim
𝑧→𝑥+

𝜙𝑘 (𝑧) = lim
𝑧→𝑥+

𝜙(𝑧 (𝑘) )

and
𝜙𝑘 (𝑥−) := lim

𝑧→𝑥−
𝜙𝑘 (𝑧) = lim

𝑧→𝑥−
𝜙(𝑧 (𝑘) ).

Except when 𝑥 is an end point of Δ𝑘 , these limits are different due to the fact that lim𝑧→𝑥+ 𝑧
(𝑘) ≠

lim𝑧→𝑥− 𝑧
(𝑘) on R. However, due to the identification made of the points on the slits it is easy to

verify that
𝜙𝑘 (𝑥+) = 𝜙𝑘+1(𝑥−), 𝜙𝑘 (𝑥−) = 𝜙𝑘+1(𝑥+), 𝑘 = 0, 1, (4.83){identif}{identif}

because
lim
𝑧→𝑥+

𝑧 (𝑘) = lim
𝑧→𝑥−

𝑧 (𝑘+1) , lim
𝑧→𝑥−

𝑧 (𝑘) = lim
𝑧→𝑥+

𝑧 (𝑘+1) .

Taking account of the way in which the functions 𝜙𝑘 were extended to Δ𝑘 and (4.83) it
follows that

∏︁2
𝑘=0 𝜙𝑘 is a single-valued analytic function on C without singularities; therefore, by

Liouville’s theorem, it is constant. We normalize 𝜙 so that

2∏︂
𝑘=0

𝜙𝑘 = 𝑐, |𝑐 | = 1, 𝑐1 > 0.
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Let us show that with this normalization 𝑐 is +1.

Indeed, for a point 𝑧 (𝑘) ∈ R𝑘 on the Riemann surface we define its conjugate 𝑧 (𝑘) := 𝑧 (𝑘) . For
a points 𝑧 (𝑘) on the upper bank of the slit Δ𝑘 the conjugate is the one corresponding to the lower
bank. Now, we define 𝜙∗ : R −→ C as follows 𝜙∗(𝜁) := 𝜙(𝜁). It is easy to verify that 𝜙∗ is a
conformal mapping of R onto C with the same divisor as 𝜙. Therefore, there exists a constant 𝜅
such that 𝜙∗ = 𝜅𝜙. The corresponding branches satisfy the relations

𝜙∗𝑘 (𝑧) = 𝜙𝑘 (𝑧) = 𝜅𝜙𝑘 (𝑧), 𝑘 = 0, 1, 2.

Comparing the Laurent expansions at ∞ of 𝜙0(𝑧) and 𝜅𝜙0(𝑧), using the fact that 𝑐1 > 0, it follows
that 𝜅 = 1. Then

𝜙𝑘 (𝑧) = 𝜙𝑘 (𝑧), 𝑘 = 0, 1, 2.

This in turn implies that for each 𝑘 = 0, 1, 2 all the coefficients, in particular the leading one, of the
Laurent expansion at infinity of 𝜙𝑘 are real numbers. Obviously, 𝑐 is the product of these leading
coefficients. Since they are real numbers 𝑐 is real and since it is of module 1, it has to be either
1 or −1. Analyzing the Laurent expansion of the branches at ∞ one easily concludes that indeed
𝑐 = 1. So, we can assume in the following that

2∏︂
𝑘=0

𝜙𝑘 ≡ 1, 𝑐1 > 0. (4.84) {normconfmap:4}{normconfmap:4}

It is easy to see that conditions (4.82) and (4.84) determine 𝜙 uniquely.

The question of finding explicit expressions for conformal representations of three sheeted
Riemann surfaces of genus zero depending on the values of the end points of the intervals Δ1,Δ2

was considered in [63]. This problem is not solvable in closed form. [63, Theorem 3.1] gives an
expression in terms of the solution of a system of two nonlinear equations of higher order. Already
the simpler case of two intervals of equal length requires the solution of a bicuartic equation [63,
Theorem 3.3]. A numerical method for solving the system of equations is given in [63, Theorem
6.1].

In [6, Lemma 4.2] the authors proved the following result. {uniqueness}

Lemma 4.19:
Their exists a unique pair of functions (𝐹1, 𝐹2) such that for 𝑘 = 1, 2

1. 𝐹𝑘 , 1/𝐹𝑘 ∈ H(C \ Δ𝑘),

2. 𝐹 ′
𝑘
(∞) > 0,

3. |𝐹𝑘 (𝑥) |2
|𝐹𝑘−1 (𝑥)𝐹𝑘+1 (𝑥) | = 1, 𝑥 ∈ Δ𝑘 ,

(𝐹0 ≡ 𝐹3 ≡ 1). The functions may be expressed by the formulas

𝐹𝑘 :=
2∏︂
𝜈=𝑘

𝜙𝜈 , 𝑘 = 1, 2.
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The boundary conditions for the functions 𝐹𝑘 , 𝑘 = 1, 2 are

|𝐹1(𝑥) |2 =|𝐹2(𝑥) |, 𝑥 ∈ Δ1,

|𝐹2(𝑥) |2 =|𝐹1(𝑥) |, 𝑥 ∈ Δ2.

Compare with (4.40) after taking logarithm.

From [32, Theorem 4.2, Corollary 4.3] we know that for 𝑘 = 1, 2,

lim
𝑛→∞

𝑄𝑛+1,𝑘 (𝑧)
𝑄𝑛,𝑘 (𝑧)

=
𝐹𝑘 (𝑧)
𝐹 ′
𝑘
(∞) ,

uniformly on compact subsets of Ω𝑘 and

lim
𝑛→∞

𝜅𝑛+1,𝑘

𝜅𝑛,𝑘
=

𝐹 ′
𝑘
(∞)√︁

𝐹 ′
𝑘−1(∞)𝐹 ′

𝑘+1(∞)
,

where by definition we take 𝐹 ′
0 (∞) = 𝐹 ′

3 (∞) = 1. On the other hand, (4.60) and (4.67) imply that

lim
𝑛→∞

𝑄𝑛+1,𝑘 (𝑧)
Φ𝑛+1
𝑘

(𝑧)
Φ𝑛
𝑘
(𝑧)

𝑄𝑛,𝑘 (𝑧)
=

1
Φ𝑘 (𝑧)

lim
𝑛→∞

𝑄𝑛+1,𝑘 (𝑧)
𝑄𝑛,𝑘 (𝑧)

= 1,

uniformly on compact subsets of Ω𝑘 and

lim
𝑛→∞

𝜅𝑛+1,𝑘

𝐶𝑛+1
𝑘

𝐶𝑛
𝑘

𝜅𝑛,𝑘
=

1
𝐶𝑘

lim
𝑛→∞

𝜅𝑛+1,𝑘

𝜅𝑛,𝑘
= 1.

Consequently

Φ𝑘 (𝑧) ≡
𝐹𝑘 (𝑧)
𝐹 ′
𝑘
(∞) , 𝐶𝑘 =

𝐹 ′
𝑘
(∞)√︁

𝐹 ′
𝑘−1(∞)𝐹 ′

𝑘+1(∞)
, 𝑘 = 1, 2. (4.85){otro}{otro}
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Chapter

5 Conclusions and Future Research

{ch:future}

If the 1970’s marked the rebirth of the interest in rational approximation, in particular of Padé
type, nowadays we witness its good health. The connection of rational approximation with other
branches of mathematical research and its very own development keep it as a living an attractive
subject.

In the present dissertation we have focused on simultaneous rational approximation, in par-
ticular we have studied a mixed-type Hermite-Padé approximation problem which is known in
the literature as multi-level Hermite-Padé. In the following pages we summarize the main results
presented in the previous chapters. Furthermore, we discuss briefly some problems we consider
interesting and might be attractive for future research as well.

5.1 Conclusions

Let Δ 𝑗 ⊂ R, 𝑗 = 1, . . . , 𝑚 be a collection of intervals such that Δ 𝑗 ∩ Δ 𝑗+1 = ∅, 𝑗 = 1, . . . , 𝑚 − 1.
Consider a vector of measures (𝜎1, . . . , 𝜎𝑚) with Co(supp𝜎𝑗) = Δ 𝑗 and 𝜎𝑗 ∈ M (Δ 𝑗) (the family
of Borel measures with constant sign and finite moments supported on Δ 𝑗). With this we construct
the Nikishin system of measures (𝑠1,1, 𝑠1,2, . . . , 𝑠1,𝑚) = N (𝜎1, . . . , 𝜎𝑚) (see Definition 1.15), and
the Nikishin system of functions (ˆ︁𝑠1,1, . . . ,ˆ︁𝑠1,𝑚) defined as the Markov functions of the measures
𝑠𝑖, 𝑗 (see (1.2)).

Since their introduction in [76], Nikishin systems have received great attention, because they
are very well suited to extend “naturally” the results of classical orthogonality to multi-orthogonal
polynomials. Moreover, Nikishin system have proved to be nice systems of functions to study the
convergence properties of Hermite-Padé simultaneous approximants.

Recently, in [62] was introduced a mixed-type Hermite-Padé approximation problem (see
Problem 5 for details). Given a Nikishin system N (𝜎1, . . . , 𝜎𝑚), for each 𝑛 ∈ N, there exist
polynomials 𝑎𝑛,0, 𝑎𝑛,1, . . . , 𝑎𝑛,𝑚, with deg 𝑎𝑛, 𝑗 ≤ 𝑛 − 1, 𝑗 = 0, 1, . . . , 𝑚 − 1, deg 𝑎𝑛,𝑚 ≤ 𝑛, not all
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identically equal to zero, called multi-level (ML) Hermite-Padé polynomials that verify:

A𝑛,0 :=

[︄
𝑎𝑛,0 +

𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠1,𝑘 ]︄ ∈ O

(︃
1
𝑧𝑛+1

)︃
A𝑛, 𝑗 :=

⎡⎢⎢⎢⎢⎣(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎤⎥⎥⎥⎥⎦ ∈ O

(︃
1
𝑧

)︃
, 𝑗 = 1, . . . , 𝑚 − 1.

The study of different properties of multi-level Hermite-Padé polynomials, specially conver-
gence of the approximants and asymptotic, has served as the backbone of the present thesis.

5.1.1 Chapter 2. Rational perturbation of multi-level Hermite-Padé polynomials

The goal of Chapter 2 was to obtain a result in the spirit of Gonchar’s theorem ([36]) on the
convergence of the Padé approximants to meromorphic functions of the form ˆ︁𝜇 + 𝑟 , where 𝜇 is a
finite Borel measure with constant sign and compact support on the real line, while 𝑟 is a rational
fraction with real coefficients, 𝑟 (∞) = 0 and poles outside of supp 𝜇. The natural precedents in the
case of simultaneous approximation are [60, 61].

The starting point was to consider a perturbed multi-level Hermite-Padé approximation problem
in the following way:

A𝑛,0 :=

[︄
𝑎𝑛,0 +

𝑚∑︁
𝑘=1

(−1)𝑘𝑎𝑛,𝑘 (ˆ︁𝑠1,𝑘 + 𝑟𝑘)]︄ ∈ O

(︃
1
𝑧𝑛+1

)︃
A𝑛, 𝑗 :=

⎡⎢⎢⎢⎢⎣(−1) 𝑗𝑎𝑛, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘𝑎𝑛,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎤⎥⎥⎥⎥⎦ ∈ O

(︃
1
𝑧

)︃
, 𝑗 = 1, . . . , 𝑚 − 1.

Here, each 𝑟𝑘 = 𝑣𝑘/𝑡𝑘 is an irreducible rational fraction with real coefficients, 𝑟𝑘 (∞) = 0 and its
poles are in the complement of Δ𝑚. Notice that we only introduced the perturbation in the first
level, this is, solely the linear form A𝑛,0 has been modified with respect to the original formulation
of the problem. Recall that 𝑇 = lcm(𝑡1, . . . , 𝑡𝑚), 𝐷 = deg𝑇 .

1. Firstly, we study some general properties of the zeros of the linear forms A𝑛, 𝑗 , 𝑗 = 0, 1, . . . , 𝑚
in Lemma 2.6. We could prove that each A𝑛, 𝑗 has, at least, 𝑛 − 2𝐷 zeros in the interval Δ̊ 𝑗 ,
𝑗 = 1, . . . , 𝑚. If 𝑇 has its zeros away of Δ1, then A𝑛, 𝑗 has 𝑛 − 𝐷 sign changes inside Δ 𝑗 .
Regarding A𝑛,0 we can say that it has, at most, 2𝐷 zeros in C \ Δ1. This amount of “wild”
zeros reduces to 𝐷 if the zeros of 𝑇 are outside Δ1.

2. Theorem 2.7 establishes the convergence in Hausdorff content of
{︁
𝑎𝑛, 𝑗/𝑎𝑛,𝑚

}︁
𝑛∈N, 𝑗 =

0, 1, . . . , 𝑚 − 1 in compact subsets of C \ Δ𝑚. Moreover, we proved in the same theorem
that each ML polynomial 𝑎𝑛, 𝑗 has at least 𝑛 − 2𝐷 − 𝑚 + 𝑗 sign changes in Δ𝑚. The bound
on the amount of sign changes of 𝑎𝑛, 𝑗 improves if the zeros of 𝑇 are outside Δ1. In this case
the 𝑎𝑛, 𝑗 has at least 𝑛 − 𝐷 − 𝑚 + 𝑗 sign changes in Δ𝑚.
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3. Finally, assuming that the zeros of𝑇 lie outsideΔ1∪Δ𝑚, Theorem 2.2 is an easy consequence
of the previous results together with Gonchar’s lemma (see Lemma 1.8). In this Stieltjes-
type theorem we obtain the uniform convergence of the sequence

{︁
𝑎𝑛, 𝑗/𝑎𝑛,𝑚

}︁
𝑛∈N, 𝑗 =

0, 1, . . . , 𝑚 − 1 in compact subsets of C \ (Δ𝑚 ∪ {𝑧 : 𝑇 (𝑧) = 0}). Furthermore, we also got
that for large 𝑛 the polynomials 𝑎𝑛, 𝑗 , 𝑗 = 0, 1, . . . , 𝑚 have maximal degree, together with
the location of their zeros.

4. The final part of the chapter was devoted to finding the logarithmic asymptotic of the
ML Hermite-Padé polynomials, and to obtain better estimates for the rate of convergence
of the approximants. Having accomplished these tasks, we study the multi-orthogonal
polynomials associated to the approximation problem at hand, and after that we state a
vector equilibrium problem, whose solutions allow us to describe the general asymptotic
behavior of the polynomials 𝑎𝑛, 𝑗 , 𝑗 = 0, 1, . . . , 𝑚 as well as of the linear forms A𝑛, 𝑗 ,
𝑗 = 0, 1, . . . , 𝑚 − 1.

5.1.2 Chapter 3. A generalization of multi-level Hermite-Padé polynomials

Very recently, V.G. Lysov proposed a generalization on the multi-level Hermite-Padé approximation
problem [66]. He proposed to consider more general interpolation conditions at infinity. Given
a multi-index 𝑛⃗ = (𝑛1, . . . , 𝑛𝑚) ∈ (Z𝑚+ )∗ (the set of all 𝑚-dimensional vectors with non-negative
integer components not identically equal to zero), let

A𝑛⃗, 𝑗 (𝑧) := ⎛⎜⎝(−1) 𝑗𝑎𝑛⃗, 𝑗 +
𝑚∑︁

𝑘= 𝑗+1
(−1)𝑘𝑎𝑛⃗,𝑘ˆ︁𝑠 𝑗+1,𝑘

⎞⎟⎠ (𝑧) = O

(︃
1

𝑧𝑛 𝑗+1+1

)︃
, 𝑧 → ∞.

for 𝑗 = 0, . . . , 𝑚 − 1.

In Chapter 3 we extended Lysov’s result on the convergence of the approximants for a wider
class of measures, and we complemented Lysov’s asymptotic study by finding the ratio asymptotic
of the polynomials 𝑎𝑛⃗, 𝑗 and the linear forms A𝑛⃗, 𝑗 . So, we also extended the theorems previously
proven for the original definition of the ML Hermite-Padé polynomials in [62, 32].

1. Firstly, we studied the general properties of the zeros of the linear forms A𝑛⃗, 𝑗 , 𝑗 = 0, . . . , 𝑚.
Here we proved that each form has 𝑛1+· · ·+𝑛 𝑗 simple zeros in the intervalΔ 𝑗 and the order of
interpolation at infinity is exact (see Lemma 3.4). Taking ray sequences of multi-indices we
got the convergence of the approximants (see Theorem 3.2). This part constitutes a natural
generalization of [62, Th. 1.6] and [66, Prop. 1.2].

2. As intermediate step was to prove that the zeros of the forms A𝑛⃗, 𝑗 and A
𝑛⃗
𝑙
, 𝑗

interlace
𝑗 = 1, . . . , 𝑚 (see Lemma 3.9), and constructed a Riemann surface which is essential to
describe the ratio asymptotic of the associated multi-orthogonal polynomials. In this way,
we extend [32, Lemma 2.7].
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3. Finally, we have adapted the proofs of [32, Th. 4.2] and [6, Th. 2.1] to obtain the ratio
asymptotic of the polynomials𝑄 𝑛⃗, 𝑗 , 𝑗 = 1, . . . , 𝑚 (see Theorem 3.3). This result generalizes
[32, Th. 4.2].

5.1.3 Chapter 4. Strong asymptotic of Cauchy biorthogonal polynomials

Previously, we have mentioned how Cauchy biorthogonal polynomials have found countless appli-
cations recently. Their strong asymptotic behavior had been studied for measures of Laguerre type
supported on a half line (see [14]). We studied the strong asymptotic of Cauchy biorthogonal poly-
nomials for measures with compact support adapting a previous idea developed by A.I. Aptekarev
in [4, 5].

1. Firstly, we studied the strong asymptotic of orthogonal polynomials with respect to varying
measures. With Theorem 4.2 we refined its natural precedent, [24, Th. 4]. On the other
hand, Theorem 4.3 gives the asymptotic for orthogonal polynomials associated to varying
measures of a particular kind. Though in the spirit of [95, Th. 14.3], our theorem covers a
more general class of measures.

2. Secondly, we discuss the connection between Cauchy biorthogonal polynomials and multi-
level Hermite-Padé polynomials associated to Nikishin systems generated by two measures
(Section 4.3). We exploit this link in order to use Aptekarev’s methodology. Among other
interesting properties, we remark the fact that multilevel Hermite-Padé polynomials are
uniquely determined by the recursive nature of multi-orthogonality relations associated to
Nikishin systems and Hermite-Padé approximation (see Proposition 4.8).

3. After we give a convenient normalization, we found a pair of sequences of orthogonal
polynomials with varying measures with a prescribed asymptotic behavior. This is, given
certain Szegő type functions we can give a pair of sequences whose strong asymptotic is
described by those Szegő functions (Proposition 4.9). This step is fundamental to simplify
Aptekarev’s methodology, because his approach relies heavily in an intricate construction
of a sequence of polynomials over a Riemann surface [5, Sec. 2.2].

4. Thanks to a topological reasoning we are able to give the strong asymptotic of the multiple
orthogonal polynomials associated to multilevel Hermite-Padé approximation to a Nikishin
system of two measures. The method is based on Banach’s and Brouwer’s fixed point
theorems. An immediate consequence is the strong asymptotic of Cauchy biorthogonal
polynomials (see Theorem 4.1).
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5.2 Some open problems

As one can expect, during the preparation of the present dissertation we have found some interesting
problems, which are connected with the ones we solved. In the present section we discuss some
open questions that we consider attractive enough to bring further attention.

• A natural extension of Theorem 2.2 is to consider rational perturbations 𝑟 𝑗 , 𝑗 = 1, . . . , 𝑚 with
complex coefficients. That is, given a Nikishin system N (𝜎1, . . . , 𝜎𝑚) study a multilevel
Hermite-Padé approximation problem like the one in Definition 2.1, but the rational fractions
𝑟 𝑗 , 𝑗 = 1, . . . , 𝑚 with complex coefficients instead. This question is in the line initiated by
A.A. Gonchar in [36] and continued by G. López Lagomasino in [56]. We can conjecture
that first it is necessary to solve the same problem but for Type i approximants.

• On the other hand, an obvious question is to analyse the strong asymptotic of the Cauchy
biorthogonal polynomials when the sequence is generated by 𝑚 measures (see [32, Sec. 1]).
The problem here is that the associated operator 𝑇w is not contractive but non-expansive.
So, it is impossible to extend directly the ideas discussed in Chapter 4. Anyway, we think
that with a suitable modification Aptekarev’s method still works.

• Another interesting direction is to study the relative asymptotic of multilevel Hermite-Padé
polynomials when the generating measures are modified by a “nice” rational function. More
precisely, given the Nikishin systems N (𝜎1, . . . , 𝜎𝑚) and N (𝑟1𝜎1, . . . , 𝑟𝑚𝜎𝑚), where 𝑟 𝑗 ,
𝑗 = 1, . . . , 𝑚 are rational fractions with real coefficients and whose zeros and poles are
outside Δ 𝑗 . A similar problem was studied in [48] for Type ii polynomials.

• The results obtained in Chapter 4 can be refined strengthening the restrictions over the
measures and using other techniques. In this case, an interesting path is to make a Riemann-
Hilbert analysis of multilevel Hermite-Padé polynomials. This would allow to describe the
asymptotic of the polynomials around the endpoints of the intervals.
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