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. Summary and main contributions

The present dissertation will focus on a certain mixed-type Hermite-Padé approximation problem
for a Nikishin system of functions, that was introduced recently in [62]. This approximation
scheme appeared in the search of discrete solutions for the Degasperis-Procesi equation and is also

connected with Cauchy biorthogonal polynomials.

In [62, Def. 1.3] the following problem was posed: Let a Nikishin system of measures
N (o, ...,0) and its associated Nikishin system of functions (571, ..., 51,,) (for details see
Definition 1.15 below) be given. Then, for each n € N, there exist polynomials a0, an 1, - - - » an,m>
withdega, ; <n-1,j=0,1,...,m—1,dega, » < n, not all identically equal to zero, called

multi-level (ML) Hermite-Padé polynomials that verify:

eﬁ(l)
Zn+1

m
g = | (D g+ D) (D ansFn eﬁ’(
k=j+1

[ m
— k =
0 = |an,0 +Z(—1) An kS1,k
i =1

1
z

),j=1,...,m—1.

Here and in the sequel &'(+) is as z — oo along paths non tangential to the support of the measures

involved. For completeness write .27, ,,, 1= (—1)"a, n.

The text has been organized as follows:

* In Chapter 1, the basic aspects of Padé and Hermite-Padé approximation are introduced. In
addition, it is discussed the historical development of the most important notions and results
related to the present dissertation. In this way, the state of the art that precedes the present

research is also given.

 In Chapter 2 it is studied a rational perturbation of the Nikishin system of functions. More
precisely, given a fixed Nikishin system .4 (o7, ...,0y). and for each n € N, there exist

polynomials a, 0, an,1,. . .,anm, Wwithdega, ; <n-1,j=0,1,...,m—1,dega, » < n,

vii



not all identically equal to zero that verify:

[ m
~ 1
EQ{n,O = an,0+Z(_1)kan,k(sl,k +I"k) € ﬁ(ZnH)
k=1
- - 1
Jan,j = (—1)-’an,j + Z (—1)kan,k3‘\j+1’k €E0 (—) ,j =1,...,m-1.
i k=j+1 2
Here, ry, kK = 1,...,m are rational fractions with real coefficients, ri(c0) = 0 and poles

outside supp o,.

This chapter has two main theorems, the first deals with the uniform convergence of the
Hermite-Padé approximants (Theorem 2.2), while the second is devoted to the limit of the

zero counting measures of the linear forms o7, j»J=1,...,m (Theorem 2.3).

Theorem 2.2 is situated in the tradition of Stieltjes-type theorems for simultaneous approxi-
mants. One important asset to obtain convergence results for Hermite-Padé approximants is
to have a good control on the location of the zeros of the linear forms 7, ;, j =0,1,...,m.
But the introduction of the rational fractions ry in the first level .27, o provokes that certain
amount of the zeros of A, ; have a “wild” behavior. Nevertheless, it was sufficient to add
some mild restrictions on the set of poles of r¢’s in order to prove that only a fixed number
of zeros of <7, ;, independent of n, can leave supp o-;. Consequently, it could be proved the
uniform convergence of the fractions a,,_j/an m, j =0,1,...,m — 1. This result is a natural
generalization of [62, Th. 1.6]. An important corollary of the convergence is to know the

limit behavior of the zeros of a,, ; that leave supp oy,.

Hereafter, it is studied the multiple orthogonality relations arising from this mixed-type
Hermite-Padé approximation problem. It is well known that Hermite-Padé approximation
of Nikishin systems are strongly related to multiple orthogonal polynomials. For ML
Hermite-Padé this fact was made explicit in [32, Lemma 2.4]. Given the perturbation of the
fractions ry some orthogonalities are lost, and the associated multi-orthogonal polynomials
satisfy incomplete orthogonality relations. This difficulty was overcome and the logarithmic
asymptotic of the multiple orthogonal polynomials is given in Theorem 2.3. A fundamental
consequence of Theorem 2.3 is the precise knowledge of the rates of convergence of the

fractions a,,j/an m, j = 1,...,m — 1. The aforementioned theorem extends [32, Th. 3.4].

In Chapter 3 it is studied a modification made to ML Hermite-Padé approximation problem

by V.G. Lysov in [60]. There, it was considered a problem with more freedom in the

interpolation conditions at infinity. That is, given a Nikishin system .4 (o7, ..., 0y,) and
a multi-index 7 = (ny,...,n,) € Z', there exist polynomials aj o, a5 1, . - . , a5 . Where
degay ; < || -1,j=0,1,...,m~1, and deg aj; ,, < [7], not all identically equal to zero,
that verify

. uli _ 1
Ay (2) = (=1)az ; + Z (—D)*az 1 5j1k | (2) = ﬁ(—) Z — oo.

n-+1+1
k=j+1 L
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Firstly, the Markov-type theorem [66, Prop. 1.2] is extended to a wider class of measures.
Previously, V.G. Lysov only considered measures o, j = 1,...,m supported on compact
intervals A; and 0']'- > 0ae. onAj, j=1,...,m. Then, Theorem 3.2 extends Lysov’s
convergence result, because the restrictions over the measures are weaker, namely o; has

constant signon A;, j =1,...,m.

Moreover, the asymptotic result presented in [66, Cor. 1.1] is complemented in this chapter
with the study of the ratio asymptotic of the multi-orthogonal polynomials associated to
the ML Hermite-Padé approximation problem. Hence, this theorem constitutes a direct

generalization of [32, Th. 1.2].

* Chapter 4 is devoted to the study of the strong asymptotic of Cauchy biorthogonal polyno-
mials (see Theorem 4.1), which were introduced in [14]. This family of polynomials has
appeared in various applications, like in the search of discrete solutions of the Degasperis-
Procesi equation [14]. In [15, 16], the strong asymptotic for Laguerre-type weights was
studied. Here, the goal is to obtain the strong asymptotic only imposing the Szegd condition

on measures supported on compact intervals of the real line.

In order to do so, first was needed the refinement of some previous results regarding the
asymptotic of orthogonal polynomials with varying weights. In this sense, Theorems 4.2
and 4.3 are improvements of [23, Th. 4] and [95, Th. 14.3], respectively. Afterwards,
it is discussed the connection of Cauchy biorthogonal polynomials with ML Hermite-Padé
polynomials for a Nikishin system of two measures. Thanks to this link, the main tool to
prove the aforementioned asymptotic is a technique developed by A.l. Aptekarev to find
the strong asymptotic behavior of multi-orthogonal polynomials with respect to Angelesco
and Nikishin systems (see [4, 5]). Aptekarev’s method relies on topological reasoning; in

particular, the Banach and Brouwer fixed point theorems.

Though the proof of Theorem 4.1 rests on Aptekarev’s ideas, it also contains important
simplifications (see Proposition 4.9 and compare with [5, Section 2.2]) with respect to
the one given in [5], mainly thanks to Theorem 4.3. On the other hand, some weaknesses
appearing in the demonstrations in [5] are corrected, particularly during the proof of Theorem
4.15.

* Finally, in Chapter 5 some open problems for future research are given.

iX






1 Intro
1.1
1.2

1.3

1.4

1.5

1.6

Contents

duction

Padé approximation and orthogonality . . . . . .. ... ... ... ... ...,

Convergence of diagonal Padé approximants . . . . . ... ... ... ......

Multipoint Padé approximants and Markov’s theorem . . . . . . ... ... ...

1.3.1 Markov-type theorems for meromorphic functions . . .. ... ... ..

Asymptotic of orthogonal polynomials . . . . . . . ... ... .. ... ... ..

1.4.1 Szegé function . . .

1.4.2  Asymptotic . . . . .

Asymptotic for varying measures . . . . . . . ... .o e e e e

Hermite-Padé approximation

1.6.1 Angelesco and Nikishin systems . . . . . .. ... ... ... ......

1.7 Markov-type theorems and asymptotic for Nikishin systems . . . . . . .. .. ..

2.1

2.2

23

24

Rational perturbation of multi-level Hermite-Padé polynomials

Statement of the problem and auxiliary results . . . . . . .. ... ... ... ..

2.1.1 Convergence of the approximants . . . . ... ... ... ........

2.1.2  Logarithmic asymptotic . . . . . . . . . . . . ... ...

2.1.3 Auxiliary results . .

General propertiesof thezeros . . . . . . . . ... ... ...

Convergence results . . . . .
2.3.1 Rate of convergence

Multi-orthogonality relations

11
13
14
16
18
22
23

25

27
27
27
29
31
32

35

X1



2.5 Proof of general asymptoticresults . . . . . . .. ... Lo

2.6 Outcomes of Theorem 2.3 . .

A generalization of multi-level Hermite-Padé polynomials

3.1

3.2

33

Statement of the problem . . .

3.1.1

Statement of the mainresults . . . . . . . . . . . .. ... ... .. ...

Convergence of the ML Hermite-Padé approximants . . . . . . . ... ... ...

Ratio asymptotic . . . . . ..

33.1

332

333

Multi-orthogonality relations . . . . . . . .. ... ... ... ......

The Riemann surface .

Proof of Theorem 3.3 .

Strong asymptotic of Cauchy biorthogonal polynomials

4.1

4.2

4.3

Statement of the main results .

4.1.1

Cauchy biorthogonal polynomials . . . . . .. ... ... ........

4.1.2  Orthogonal polynomials with varying measures . . . . . ... ... ...

4.1.3 Outline and structure of the proofs . . . . . . . . ... ... ... ....

Strong asymptotic of orthogonal polynomials with varying measures . . . . . . .

4.2.1

422

423

A starting point . . . .
Proof of Theorem 4.2 .

Proof of Theorem 4.3 .

4.2.4  Applications to rational approximation . . . . . . . . ... .. ... ...

Biorthogonal polynomials and multi level Hermite Padé polynomials . . . . . . .

4.3.1

432

433

434

435

4.3.6

4.3.7

4.3.8

Multilevel HP polynomials . . . . . . .. ... ... .. ... ......

Some useful properties

Normalization . . . .

The comparison functions . . . . . .. ... ... ... .........

Prescribed asymptotic behavior . . . . . ... ... ...,

The operator 7, . . . .
The operator Ty . . . .

Proof of Theorem 4.15

53

53

55

56

63

63

65

67

74

74

74

76

78

80

80

81

82

83

84

84

86

87

88

89

90

93

96

Xii



439 Proofof Theorem4.1 . ... ... ... ... ... ... ... ...... 100
4.3.10 Asymptotic of ML Hermite-Padé polynomials . . . . . .. ... .. ... 101

4.3.11 A different expression for the functions @, ®, and the constants C;,C; . 103

5 Conclusions and Future Research 107
5.1 Conclusions . . . . . . . . . e e 107

5.1.1  Chapter 2. Rational perturbation of multi-level Hermite-Padé polynomials 108

5.1.2  Chapter 3. A generalization of multi-level Hermite-Padé polynomials . . 109

5.1.3 Chapter 4. Strong asymptotic of Cauchy biorthogonal polynomials . . . . 110

5.2 Someopenproblems . . . . . ... . 111
Bibliography 112

xiii






CHAPTER

Introduction

Approximation theory is a wide branch of Mathematical Analysis. It borrows techniques from
other areas such as Potential Theory, Real and Complex Analysis, and Functional Analysis. It finds
applications in other areas such as Differential Equations and Number Theory. One of the goals of
the present chapter is to introduce the theoretical framework that serves as a basis for the results
discussed along the dissertation. In addition, the mathematical tools given in the following pages
are complemented with some historical remarks, in order to explain the origin and context of this

research.

1.1 Padé approximation and orthogonality

The driving force behind approximation theory is, given a certain function f to approximate it with
another function g, which is “simpler” than f, and such that the “difference” between them is rather
“small”. Of course, the procedure has its pros and cons, on one hand g is easier to manipulate than

f but, on the other hand, some information about f in necessarily lost.

We will be concerned with the approximation of functions f : Q ¢ C — C, holomorphic
on an open region € of the complex plane C. The historical development of complex function
theory has three different schools, following ideas of A.L. Cauchy, K. Weierstrass and B. Riemann,
respectively. Curiously, the equivalence of Weierstrass’ and Cauchy’s approach is given through
Taylor’s theorem: that is, every holomorphic function (in Cauchy’s sense) f in a neighborhood of
zo € C has a convergent power series expansion (Weierstrass’ approach), i.e. f is analytic and vice

versa. So,

P (z)

F@ =) ez =20k fi=

k>0

(1.1)

Taylor’s theorem allows to construct a sequence of polynomials that approximates f near zg by

truncating the series expansion after n terms:

Pa(2) = ) fi(z = 20).
k=0

{ch:intro}

{taylor}



{pr:pade}

It is easy to see that these polynomials can be characterized by the asymptotic formula

f(@) = Pa(2) = 6 (2= 20"™") . 2 > 0.

It can be proved, as a consequence of Cauchy’s integral formula, that P, converges uniformly to f
in closed disks {z | |z — zo| < r}, r < R4 (f) where R, (f) stands for the radius of convergence
of the series (1.1).

This technique has a drawback. As polynomials are entire functions, they are not good if the
function to be approximated has singularities. It is well known that the Taylor series is convergent
only in the disk of radius equal to the distance from z( to the nearest singular point of f. The
simplest functions with singularities are rational functions so, it is natural to ask: Is it possible
to construct good rational approximations to a given analytic function f? This question was
formulated and —answered— by Henri Padé (1863-1953) in his doctoral thesis from 1892. It is
important to remark that this idea did not come “out of nowhere”, because many mathematicians
before Padé had studied variations of the same problem; for example, C. Hermite (1822-1901), L.
Kronecker (1823-1891), or G. Frobenius (1849-1917) to name a few (see [19, Section 5.2.5], for

more information).

The problem of the representation of an analytic function by rational fractions was suggested
to Padé by his doctoral advisor, Charles Hermite. As he pointed out: “we were led to deal with this
question by a word from Mr. Hermite, collected in one of his lessons, in which he gave a glimpse
of the riches that this theory undoubtedly still conceals” [0, p. 5]. The problem studied by Padé,

in modern terminology, is stated as follows [80, p. 9].

Problem 1:
Given a formal power series about z = 0
F@)~ D fad
n>0

and a pair of non-negative integers (n, m), find polynomials P, ,, and Qp m such that:

l) deg Pn’m S n; deg Qn,m S mJ Qn,m $ 0)

i) (Onmf — Pnm)(2) = O™, z > 0.

Padé proved that this problem has solution, because it is equivalent to solving a homogeneous
system of n+m + 1 linear equations on n + m + 2 unknowns, and he easily deduced that P, ,,,/OQn.m
is uniquely determined. In his honor, the fraction 7, ,(f) := Pnm/Qnm is called the Padé
approximant of type (m,n) of f. The main contribution made by Padé, was the systematic and
structural study of the properties of these approximants. This endeavor was possible in large part
thanks to another tool due to the French scholar: the Padé table, which resembles Cantor’s proof

that Q is countable.

The amount of problems related to the Padé table and Padé approximants are of cyclopean

dimensions. To mention a few, there is the question of the convergence of horizontal sequences



of Padé approximants and the location of the singularities of the approximated function. There is
a similar problem regarding the convergence of diagonal sequences of the Padé table, particularly

for a special kind of analytic functions: the so called Cauchy transforms of measures.

Let u be a finite positive Borel measure, whose support supp i is contained in R and has an
infinite set of points and set A = Co(supp u) (the convex hull of the support of w). Further, assume
that the sequence of moments {c, },>0 is such that ¢, = f x"d u(x) < oo, for all n € Z,. Denote

this class of measures as .7 (A). The Markov function or the Cauchy transform of the measure u

ii(2) ::/ dux) (1.2)

Z—X

is defined as

It is not difficult to check that 7 € H(C \ A), where H(Q) stands for the set of holomorphic

functions on the open set Q c C. Furthermore, we can associate to y its formal Taylor expansion

—~ Cn
u(z) ~ Z g

n>0

at infinity

When A is a half-line (that is, an interval of the form [a, +o0) or (=0, a], a € R) the function i is

also called Stieltjes function.

This class of analytic functions is quite interesting. Many elementary functions can be written
in terms of Cauchy transforms of measures. In addition, if complex weights are considered, a large
number of analytic functions with a finite number of algebraic singularities can be represented in

that form.

For convenience, in the particular case of Markov and Stieltjes functions, the Taylor expansion
is usually taken at co. So, the rational function 7, (i) = P,—1/Q, is called the n-th diagonal Padé

approximant of z if the pair of polynomials (P,_1,Q,),n > 1, verifies the following conditions:
i) degP,-1 <n-1,degQ, <nwithQ, %0,
i) (Quil = Pu1)(2) = O0(1/2"), z — oo,

The sequence of denominators {Q,},>1 is unique if we normalize Q,, to be monic. It satisfies

several interesting properties. First, the polynomial Q,, fulfills the orthogonality relations

/x"Qn(x)d,u(x)ZO, yv=0,1,...,n—1.

That s, the sequence of denominators {Q,, },,>1 coincides with the sequence {Q,, (+; ¢) } 1 of monic
orthogonal polynomials with respect to the measure u. The associated orthonormal polynomials

are determined by

-1/2
qn(x;p) = @pQn(x;p), ap = (/ Qi(X)du(x)) : (1.3)

Consequently, deg Q,, = n, O, has n simple zeros inside A [94, Th. 3.3.1], and the zeros of Q,, and
Q,+1 interlace [94, Th. 3.3.3]. Moreover, the polynomials P,_; can be expressed in terms of Q,,

/ Qn(Z) - Qn(x)
Z—X

Pu_1(2) = d p(x). (1.4)

{def:cauchy}

{def:ortnor}

{def:2Kind}



{remain:1}

{mar:1}

Some natural questions arise. Does the sequence {7, },>0 converge? If it does, what is the

limit? Can we estimate the speed of convergence?

1.2 Convergence of diagonal Padé approximants

The first two problems stated above were answered by the Russian mathematician A.A. Markov
(1856-1922) in a short article from 1895, [68]. There, Markov studied the convergence of the

continued fractions of the function given by

flo= [ 100

where f is real and positive. Due to the uniqueness of the Padé approximants, the convergents

of the continued fraction associated with fcoincide with the sequence {7, },>0. Notice that, in
modern mathematical language, Markov’s proof requires that the measure d u(x) := f(x) dx be
absolutely continuous with respect to the Lebesgue measure but, as C. Berg said in [12], this is a
consequence of the historical context and it is not essential in the proof itself. So, Markov’s result

is valid for a more general class of measures.

Before the discussion of Markov’s theorem, some identities are needed.

Proposition 1.1:
Let u € A (A), then for z € C\ A

Puci(z) [ Qu(x)du(x) Q%,(x)dﬂ(x)

=5 =) v z-x ") 0@ z-x

Proof. From (1.4) it is immediate that

Pt (@) = 0u(07() - [ £ au, (15)

which gives the first equality. Moreover, notice that, as a consequence of orthogonality

0= [ 2200 (4,

Hence,

2
0n() [ 22 a0 = [ 2 ay),

Dividing this last expression by Q,(z), we get

0 (x) 1 07 (x)
/ 7-x dulo = Qn(z)/ Z—x dp(x).

Substituting this relation in (1.5) the second equality is easily deduced.




{Gauss_Jacobi}

{Christoffel}

Let {x,i}!_, denote the roots of the polynomial Q,. It is very well known the existence of

positive constants {1, ;}" ,, called Christoffel coefficients, such that

i=1’

n
[ peanco =Y duapten, (1.6
i=1
for every polynomial p with deg p < 2n — 1. The Christoftel coefficients are given by
d
m [ e 0
07 (x)(x = xpn 1)

Formula (1.6) is called Gauss-Jacobi quadrature [94, Sec. 3.4] and from it we can infer a simple
representation for the fractions 7, (). In fact, from the simplicity of the zeros of Q,, the partial

fraction decomposition of 7, (1) is written as

O B

Z_xnl

ﬂn(m(z) =

Using the residue theorem

ﬁn,i =Res [ﬂ'n(ﬁ),xn,i] = lim _(Z _xn,i)ﬂn(m(z)

— lim (Z _x ) Qn(Z) Qn(x) / n(x) d,u(x) -1
AR | G -m ¢ On (i) (x = xn1) "
Therefore, we get
< /ln i
(it 2) = —. 1.8
n(:2) ;Z_xmi (1.8)
Now we are in conditions to prove Markov’s theorem. In the following, we denote by || - || the

sup-norm on the compact set K.

Theorem 1.2:
Let u € M (A). We have
2 _
lim sup 7 - (@I < 197"k

where K is a compact subset of C\ A and ¥ is the conformal map from C \ A onto the exterior of
the unit disc such that ¥ (o0) = oo, ¥’ (c0) > 0.

Proof. First, let us prove that the family {7, },>0 is normal. Fix a compact K c C \ A then, by

(1.8)

1
b (12:2)] < Z|z—xn,| d(AK)’

where d (A, K) stands for the distance between K and A.

Take the level curve I', = {z | [¥(2)| = p}, 1 < p < +oco with p close enough to 1 so that K

lies outside I';,. On the curve I, we get

|¥21 (2) (7 = 700 (D) (2, o, < C(p)P*™,

{Pade:PFD}

{Markov}



where the constant C(p) is independent from n, because {7, (i) },>0 is normal. But the analyticity
of W21 (7 — 7, (@) on C \ A allows us to use the maximum modulus principle and assure that

the bound also holds on K. Consequently,

2n+1

L , z€K.

¥(2)

|(i = () (2)] < C(p) ‘

This is equivalent to
R _1 2n+l
7= ma(@ ik < Cp) (pI¥ "l

Therefore, for all p sufficiently near 1,

. P P 1/2 _
limsup || - 7, (DI < oYk,
n

and the statement readily follows letting p — 1.

Markov’s theorem is a classical result in approximation theory and, as one can expect, it can
be proved in different ways. For a proof closer to Markov’s see [94, Sec. 3.5, Th. 3.5.4]. For an

alternative proof where measure-theoretical arguments are used, see [77, Ch. 2, §6].

On the other hand, since 1895 Markov’s theorem has been profusely studied and extended in
several directions. One of the directions explored has been to obtain analogous results for measures
with “larger” support, that is with measures supported on a half-line and on all R. Here appears a
connection between orthogonal polynomials, approximation theory, and moment problems, since

Markov’s theorem is strongly linked to moment problems.

Given a positive Borel measure 4 with suppd C R its sequence of moments is defined as
Cp = / x"dA, n € Z,. The moment problem is, given a sequence {c,},>0 of real numbers to
find, should it exist, a measure 1 whose moments are {c,},>0. In case the moment problem is
solvable we say that the moment problem is determinate if the solution is unique; otherwise, it is
said to be indeterminate. The classical study of moment problems has three fundamental cases:
when the support of the measure is a finite interval (Hausdor{f problem); the support is a half-line
(Stieltjes problem); and when supp A = R (Hamburger problem). In each one of these cases there

are necessary and sufficient conditions for the moment problem to be solvable see, for example

[89, 46].

It is well known that every solvable Hausdorff moment problem is determinate (see [89, p. X1]).
It is a direct consequence of the Weierstrass theorem on the uniform approximation by means of
polynomials of any continuous function on a bounded interval and the Riesz representation theorem

for continuous positive linear functionals on the space of continuous functions on a compact set.

However, there are striking differences between the moment problem when supp A is bounded
and when it is not. Stieltjes and Hamburger moment problems may be indeterminate. One of

the most remarkable works on the subject was due to T.J. Stieltjes (1856-1894) in the paper [93].



Here, Stieltjes introduced an enormous amount of very fruitful ideas (for more information related
to the importance of Stieltjes’ work see [960]). Among other things, he proved that if the moment
problem is determinate for a measure A supported on a half-line (let us say R, ) then, the sequence
of diagonal Padé approximants converges to A. Since for measures of bounded support the moment

problem is alway determinate, Stieltjes’ theorem implies that of Markov.

Note that the problem studied by Stieltjes has an additional difficulty with respect to Markov’s.
In this case, the function to be approximated Aisnot holomorphic at the interpolation point (z = o).
Moreover, the restriction imposed over the measure, i.e. that the moment problem be determinate,
naturally leads to the following question (also posed by Stieltjes). Can we give a condition on the
sequence {c, }n>0 so that the (Stieltjes) moment problem be determinate? A sufficient condition
was given by the Swedish mathematician T. Carleman (1892-1949) in 1926 ([21]). The so called

Carleman condition

[ee)

Z V= 0o (1.9)

n=1
implies determinacy. So, the condition (1.9) complements Stieltjes’ theorem on the convergence

of Padé approximants for the Cauchy transform of a measure supported on a half-line.

Another important extension to Markov’s theorem, following the spirit of Stieltjes, is due to
H. Hamburger (1889-1956), who obtained it as part of his doctoral dissertation and appeared in
[43]. There, the German mathematician proved that the convergence of the Padé approximants to
A, when A is supported on the real line is equivalent to the determinacy of the Hamburger moment
problem. For a modern exposition of Hamburger’s method, the interested reader can consult
[12] and references therein. In addition, for a detailed discussion of Hamburger’s solution of the
moment problem and orthogonal polynomials see [77, Ch. 2 §7]. For a more classical approach

to the Stieltjes and Hamburger moment problems and orthogonal polynomials see [34, Ch. 11].

As is common in mathematics, the interest in Padé approximants was more or less dormant
during the first half of the xx-th century. But, by the seventies they attracted much attention,
particularly from members of the Soviet mathematical school led by A.A. Gonchar (1931-2012),
who became one of the most important specialists in approximation theory, orthogonal polynomials,

and Padé approximation.

1.3 Multipoint Padé approximants and Markov’s theorem

The study of rational interpolation of functions is a mathematical problem with a long history,
and can be traced back as far as the first half of the xix-th century (see, [19, Sec. 5.2.5]). In
[7, Sec. 1.1], rational interpolants are called multipoint Padé approximants, but are also called
N-point Padé approximants. However, since the 1970’s grew a renewed interest in multipoint Padé
approximation. One of the reasons to this resurgence was the link that A.A. Gonchar observed

between these type of approximants and the rate of convergence of best rational approximants to

{carl:cond}



{pr:MPade}

{MPade:1}

{MPade:2}

{normal}

Markov functions associated with measures of bounded support, see [38]. This connection led
Gonchar to study the following interpolation problem for a Markov function i as in (1.2), with A

a finite interval.

Problem 2:

Let {wan}nez,, degwa, = 2n be a sequence of monic polynomials with real coefficients, whose
zeros {xz,l,i}%fl (counting multiplicities) lie in C\ A. Find a pair of polynomials (Py—1,Qy), n = 1
such that

1. degP,-1 <n—1anddegQ, <n, O, #0;

5 ﬁ( 1 ): (Qni = Pp-1)(2) cH(T\ A).

dan w2, (2)

The fraction P,_1/Q,, is called the n-th multipoint Padé approximant of ii. From condition 1
we have 2n + 1 unknowns (the coeflicients of the polynomials) and from 2 we have 2n equations.
So, the existence of the pair (P,—1, Q) is reduced to solving a homogeneous linear system of
equations and by the Rouché-Frobenius Theorem it always has a solution. If we normalize Q,, to

be monic the solution is unique.

Given a smooth Jordan curve I', surrounding A and {xn,i}fjl lying outside of it, by the Residue

and Fubini Theorems for v =0,1,...,n — 1 we have [38, §2.1]

o [(@iE=Pu)@ o [(@DQ) // 0@ 4 dz
A

W2 (2) r owan(z) (z = x)w2,(2)
270n(2) _ v d u(x)
//@—x)mn( dzduto = [0t (KT

Consequently, the polynomial Q, coincides with the n-th monic orthogonal polynomial with

respect to the measure (with differential notation) d u,, := d u/|wa,|. In order to avoid confusion
with Q,(-; 1), we use the notation Q,(+; u,) and {Q, (-; tx) }ns0 is the sequence of orthogonal

polynomials with respect to the varying measure d u,,, and the respective orthonormal polynomials

“12
T = (/ x"Qn(x)d’u"(x)) . (1.10)

are ¢, = 1,0, where

Wan (X)
This connection revealed a series of useful facts: Q,,(-; i) has maximal degree; all its zeros are

real, simple and lie inside A and the polynomials P,_;(-; i) and Q,,(-; u,,) are mutually prime.

At the same time, new questions originated from Gonchar’s paper because the introduction
of orthogonal polynomials with respect to varying measures posed new difficulties in order to
extend results such as the Markov and Stieltjes theorems. Both problems were attacked by one of
his students G. Lopez Lagomasino, in [58] and [49, 50], respectively. One can corroborate the
difficulties added by varying measures comparing the proofs of a result analogous to Proposition
1.1 for multipoint Padé approximants. The original result can be found in [58], and the present

proof is inspired by [59, Lemma 2.1].



{remain:2}
Proposition 1.3:
Let u € #(N) and wy, is a monic polynomial with real coefficients whose zeros {x2n,i}%£1 lie
outside A. For the polynomials Q,, P,_1 defined by Problem 2 we get,

Pu1(2) _wan(2) [ Qn(x) du(x) _ wan(2) Q% (x) du(x)
On(z)  Ou(2) 7=x wa(x)  Q2%(2) Z—x wa(x)’

a(z) - e C\A.

Proof. Write A, (z) = (Quit — P—1)(2). Then,

dux) Qn(x) dp(x) Qn(x) du(x)

@) == Par @)+ [ 010 ZED —wny (o) [ ZEL LD (o) [ S0 D
s / wzn(x)Qn(zz_;Vzn(Z)Qn(X) 4 6) 4w (2 / an_@;) 358

Notice that

/ Wan (X)Qn(2) = wan(2)Qn(x)

—X

d u(x)
is a polynomial in z. Consequently,

Won (X)Q0n(2) = w2n(2)Qn(x)

Z—X

La(2) = Por(2) + / dpu(x)

is also a polynomial and

Necessarily, deg L,, < degws, and at the same time L,, equals zero at the roots of wy,,. Therefore,

An(Z) = Ln(Z) + w2, (2)

L, = 0. From this, the first equality of the statement readily follows.

The second equality is obtained by orthogonality. Note that

/Qn(Z) 0n(x) ), dpux) _
Zn(x)

On(x)

Hence,
On(x) du(x) [ Qn(x) du(x)

X =2 W2n(x) - X =2 W2n(x),

0n(2)

and the statement is immediate.

The Markov-type theorem proved in [49, Th. 1] is the following. {LagoMar78}
Theorem 1.4:
Let {wa, }n>0 be a sequence of monic polynomials with real coefficients with zeros {xzn,i}ffl and
let X = Upso{xon.i}. If (the accumulation points of X) X' c C\ A, then for the rational fractions
P,.-1/0Qy defined by Problem 2 we have

lim Py 1(2)

and the convergence is uniform on compact subsets K C C \ A with geometric rate.

i(2), z€C\A,
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The ideas behind [38, 58] led to the extension of the Stieltjes theorem to the case of multipoint
Padé approximants in [50]. Let ug, be a finite Borel measure on [0, co) and assume that the set of

zeros of the polynomial wy,, are contained in (—co,a], a < 0. If we write

© ok d g, (x) e
Cn.k =/ ——, Whr+1(x) = 1_[(1 —Xx5,,X%), k=0,1,...,2n-1
0

Wh k+1 (X) ’ i=1

the extension of the Carleman-Stieltjes theorem in [50, Th. 1] says that if

2n—1 1

lim = 00, (1.11)
n ; K?Cn,k

we get uniform convergence of P,,_1/Q,, to ug, on compact subsets of C\ [0, c0). Itis easy to check
thatif ug, satisfies Carleman’s condition (1.9) then (1.11) holds. Therefore, for measures satisfying
Carleman’s condition the multipoint Padé approximants converge to fig, no matter how you choose
the points x,, ; € (—o0,a],a < 0. This is mentioned as a corollary. It is also mentioned that if the
zeros Xa,; verify lim, 37", (1/ M) = oo then (1.11) takes place for any ug,. Therefore, an

analogue of Markov’s theorem is valid for multipoint Padé approximants as well.

Another twist in the theory of Padé approximation was given in [20], where a more general

approximation scheme was introduced.

Definition 1.5:

Let u € M (A) where A is contained in a half line of the real axis. Fix an arbitrary k > —1.
Consider a sequence of polynomials {wy}nen, A C Zy, such that degw, = k, < 2n+«k + 1,
whose zeros lie in R\ A. Let R,, = pn/qn be a sequence of rational functions with real coefficients

satisfying the following conditions for each n € A:

a) degp, <n+« degg, <n, g, £0,

b) ""“W—_p"(z>=ﬁ(

n

) € H(C\ A), z — oo, wherel € Z, is fixed.

ZrL+1 -1

We say that {R,, }nen is a sequence of incomplete diagonal multi-point Padé approximants of [i.

The existence of incomplete diagonal multipoint Padé approximants is always guaranteed, but
they are not necessarily unique, as it happens with “complete” multipoint Padé approximants.
For sequences of this kind of rational approximants a Stieltjes-type theorem [20, Lemma 2]
was obtained in terms of (logarithmic) capacity. We rewrite it using 1-Hausdorff content. The
proof for 1-Hausdorff content is simpler, because this concept is easier to manipulate that the
logarithmic capacity. The aforementioned result will be fundamental in the following chapters,

and we enunciate it here. First we need to introduce the notion of 1-Hausdorff convergence.

Definition 1.6:
Let A be a subset of C. By % (A) we denote the class of all coverings of A by at most a numerable
set of disks.

10



i) Set
Mm=m%§]muwge%m%,
i=1

where |U;| stands for the radius of the disk U;. The quantity h(A) is called the 1-dimensional
Hausdorff content of the set A.

ii) Let {¢,}nen be a sequence of complex-valued functions defined on a region D C C and ¢
another function defined on D (the value oo is permitted). We say that {$, } nen converges in
Hausdorff content to the function ¢ inside D if for each compact subset K of D and for each
€ > 0, we have

lim h{z € K | 19a(2) — $(2)] > €} =0

(by convention co + 0o = 00). We denote this writing h — lim,, ¢,, = ¢ inside D.

Following, we have the Stieltjes-type result for incomplete diagonal multi-point Padé approxi-

mants.

Lemma 1.7:
Let u € 4 (A) be given, where A is contained in a half line. Assume that {R,, },ecn, A C N satisfies
a)-b) in Definition 1.5 and either the number of zeros of w, lying on a bounded segment of R \ A

tends to infinity as n — oo, n € A or u satisfies Carleman’s condition (1.9). Then

h —1lim R, = 1, inside C \ A.
neaA

1.3.1 Markov-type theorems for meromorphic functions

A central problem in the study of Padé approximants is its convergence to meromorphic functions.
Again, these questions can be studied with diagonal or horizontal sequences of the Padé table.
A very well known result on the convergence of horizontal sequences is Montessus de Ballore’s
theorem (see [72]), and it served as a starting point to further research in this topic. The convergence
of diagonal sequences of Padé approximants of meromorphic functions presented new challenges.
The first theorems on the convergence of diagonal (or near diagonal) sequences in measure or

capacity were obtained by J. Nuttal [78] and C. Pommerenke [81], respectively.

This problem attracted the attention of A.A. Gonchar, and in [36] solved it for a wide class
of meromorphic functions. He considered functions of the form f = i + r where r is a rational
function with poles outside A = Co(supp u) and r(co0) = 0. Then, if A is a real finite interval and

the sequence {g, } >0 of orthonormal polynomials with respect to u has ratio asymptotic

fim 921 E) g (1.12)
n—e  q,(z)
uniformly on compact subsets of C \ A, we get
limz,(f)(2) = f(2) = i(2) +7(2), (1.13)

11
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where the convergence is uniform on compact subsets of the region C \ (A U [r(z) = oo]) (with
the poles of r deleted). To rightly assess Gonchar’s contribution we must comment one of the
difficulties he encountered to obtain (1.13). The “perturbation” introduced by the rational fraction
r makes it possible that some (or even all) zeros of Oy, i.e. the poles of 7, ( f), abandon A. Hence,
the location of these “wild” zeros becomes a major question. He was able to tackle the problem
with sophisticated asymptotic relations and bounds, and he proved that each pole of r attracts as
many zeros of Q,, as its multiplicity, and the remaining zeros accumulate on A. Gonchar’s proof
was later simplified in [56] thanks to a lemma proved by Gonchar in [37], which predates [36], but
not used there (!). Gonchar’s lemma allows to locate poles of Padé approximants of meromorphic
functions and, in addition, also serves to deduce uniform convergence from a weaker type of

convergence. This result is part of our theoretical background, so we will state it here.

Lemma 1.8 (A.A. Gonchar):

Assume that h — lim ¢,, = ¢ inside a region Q.
n

i) If ¢,, € H(Q) for all n, then
n

uniformly on compact subset K C Q and ¢ € H(Q) (more precisely, ¢ differs from a certain

oo € H(Q) at most on a set E of null 1-Hausdorf{f content).

ii) If foralln € N, ¢, € M,,,(Q) —the class of all meromorphic functions in Q with at most m

poles counting multiplicity— then ¢ € M,,,(Q).

iii) If foralln € N, ¢,, € M,,,(Q) and ¢ has exactly m poles in Q, then there exists ng € N such
that for all n > ngy each ¢, has exactly m poles in Q. Moreover, if { is a pole of ¢ of order
v, then for each € > 0 sufficiently small there exists no(() such that for all n > ny(Z) the
functions ¢, have exactly v poles in the disk {z : |z — {| < €}. We express this saying that the

poles of ¢,, converge as n — oo to the poles of ¢ in Q according to their order. Finally,
lim ¢, = ¢, KcQ,
n

where Q' is the region obtained deleting from Q the poles of ¢.

In [36], in order to guarantee that the sequence of orthonormal polynomials of u verifies (1.12),
A.A. Gonchar imposed the Szeg$ condition

b Inp(x)dx

> —o00,
a Ab=-x)(x—-a)

which implies the so called strong asymptotic of the sequence of orthonormal polynomials, see

A= [a,b], (1.14)

[94, Th. 12.1.2]. Howeyver, as the author underlines, only (1.12) is used in the proof.

A natural problem was to find a condition weaker than Szeg&’s which implied (1.12). A student
of Gonchar, E.A. Rakhmanov asserted in [83] that it was sufficient to require 4’ > 0 a.e. in A,

where u’ stands for the Radon-Nikodym derivative of u with respect to the Lebesgue measure.

12



However, A. Maté and P. Nevai observed in [69] that there was a gap in Rakhmanov’s proof due to
a typo in formula (xmr. 10) of [35]. E.A. Rakhmanov removed the gap in [84]. Simplified proofs

of Rakhmanov’s theorem may be found in [85, 74].

In a separate paper, E.A. Rakhmanov showed in [82] that if the fraction r has real coefficients
then, (1.13) can be obtained for arbitrary positive Borel measures supported on A (for multipoint
Padé approximants see [51]). In the same paper, he also showed that if » has complex coefficients
the Padé approximants may fail to converge uniformly in C \ A with the poles of r deleted, even
for very simple measures supported on two disjoint intervals of R. That is, in the complex case it

is mandatory to impose additional restrictions on the measure u.

The study of meromorphic functions of the form jz + r for measures supported in R, was done
by G. Lépez Lagomasino in two different papers. The first one (see [52]), dealt with the case of
rational fractions r with real coefficients, poles outside the positive half-line, and r(c0) = 0, while
the moments of the measure satisfy Carleman’s condition. If this extension of Gonchar’s result on
diagonal sequences of Padé approximants of Markov-type meromorphic functions appeared shortly
after Gonchar’s, the case of r with complex coeflicients appeared much later. The main reason
was that for measures with unbounded support the orthogonal polynomials do not verify ratio
asymptotic. It was necessary to translate the problem to one with orthogonal polynomials with
respect to varying measures with bounded support and extend for such sequences of orthogonal
polynomials Rakhmanov’s theorem on ratio asymptotic. The problem was finally settled in [56]

under the additional assumption, apart from Carleman’s condition, that u’ > 0 a.e. on R,.

As afinal remark to the present section, we emphasize that the results obtained in [36, 82,52, 56]
as extensions of the Markov and Stieltjes theorems show the importance of the study of the
asymptotic properties of orthogonal polynomials, with particular interest in orthogonal polynomials
with varying measures. They allow not only to estimate the rate of convergence, but also to prove
the convergence of Padé and multipoint Padé approximants in certain classes of meromorphic

functions.

1.4 Asymptotic of orthogonal polynomials

The study of the asymptotic properties of orthogonal polynomials, is a wide field where several
branches of mathematical analysis meet. Since the first decades of the xx-th century, this has been
a subject that has drawn a lot of attention, and rivers of ink have flowed around it. It is sufficient to
take a look at the extensive literature dedicated to orthogonal polynomials with respect to a “fixed”

measures and to “varying” measures see, for example, [98, 95], [77, Ch. 3] and [64, 79].

To fix ideas, let us recall that we are dealing, in general, with measures u € .# (A), where
A = Co(suppu) C R with the additional assumption that A is compact. The analysis of the
asymptotic of “general” orthogonal polynomials is divided into the exterior asymptotic and the

interior asymptotic. The latter studies the sequence of orthogonal polynomials {Q}, },>0 for x € A

13
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with respect to certain norm, usually L,(u, A); and the former captures the behavior of {Q; },>0
in C \ A. Furthermore, exterior asymptotic can be divided into three types, each one imposing

different restrictions on the measure:

(L) Weak or logarithmic asymptotic. Here the sequence {|Q,(z)|""},>0 is studied. It is also

known as n-th root asymptotic.
(R) Ratio asymptotic. The sequence under consideration is {Q+1/Qn},>0-

(S) Strong or Szegd asymptotic. The interest is focused on {Q,/®"}, ., where @ is a certain

analytic function on C \ A.

It is well known and easy to verify that

(S) = (R) = (L)and (L) = (R) = (S).

We will start by discussing an analytic function which plays a central role in the study of strong
asymptotic and some developments of this dissertation. Then, we are going to review the main

results related to the exterior asymptotic of orthogonal polynomials.

1.4.1 Szego function

Let A be a compact interval of R and u a measure such that supp u € A. If u satisfies Szegd’s

condition:
/lnu’(x)dnA(x) > —00, (1.15)
A

we write u € . (A), where u’ denotes the Radon-Nikodym derivative of u with respect to the

Lebesgue measure and
dx
dna(x) := (1.16)
(x—a)(b-x)

stands for the Chebyshev measure on the interval A = [a, b].

Let u € #([-1,1]). On the unit circle T, a symmetric measure o can be defined such that
o (B) = u(B*) whenever B is a Borel set contained either in the upper or lower half of the unit

circle and B* is its orthogonal projection on [—1, 1]. It readily follows that
o’(e'") = |sint| u’(cost), t € [0,2n]

where o’ and ¢’ denote the Radon-Nikodym derivatives of o~ and u with respect to the Lebesgue

measure on T and [—1, 1], respectively. If = ¢ and x = Re({) = cos ¢, we can also write
o'({)=V1-x2p'(x), (€T,  x=Re().

Let

1
S(o,2) :=exp[ﬂ‘/jr§tilna-’(g)|d§| ,

14



be the (standard) Szeg6 function associated with the measure 0. Note that if y satisfies the Szegé
condition on [—1, 1] then /]r Ino’(£)|d | > —oo; that is, o verifies Szeg6’s condition on T (and

vice versa).

In general, when suppu = A = [a, b] (not necessarily [—1, 1]), we define o as it was done

before out of the measure u supported on [—1, 1] such that u(B) = u({x € [a,b] : hi (x - b%) €

B}), for every Borel set B C [—1, 1]. In this case

a’(e'") = (b —x)(x —a)u (x), xzb_acost+b+a.

2 2

We wish to define a Szeg§ function G(u, -) with respect to the measure u so that
G(u,u) = S(o, ¥(w)),  ueC\A,

where ¥ is the conformal map defined previously. Then, from known properties of the Szegd

function for measures on the unit circle, we have

lim |G(g, w)* = lim [S(o, ¥ (w)]* = 1/07"(¢) = (Wb =) (x —a) ()", ae. on A,

o o (1.17) {Glimit}
where ¢ = W(x) (¥ can be extended continuously to A as usual assuming that the interval has two
sides and since o is symmetric with respect to the real line we can take { either on the upper half
or the lower half of T). Straightforward calculations show that the explicit expression of G(u, )

(the Szegd function for u supported on A) is

\/(u—b)(u—a /111(\/(1? x)(x—a w(x))

G(u,u) :=exp dna(x)] . (1.18) {green}

The square root outside the integral is taken to be positive for # > b and those inside the integral

are positive when x € (a, b).

The property stated in (1.17) also serves to characterize the Szeg§ function associated with a
measure u € .%(A) by a boundary value problem. This is, given u € .%’(A) find a holomorphic
function g in C \ A such that

g(u) #0foru e C\ A;
g(o0) > 0; (1.19) {szego:BVP}
limy—x [g()?> = (Vo —x)(x —a) p'(x))"', ae. on A.

This problem has as solution g(u) = G(u, u) (for an expanded exposition see [94, Ch.xvi]).

When # is a function on A such that In 4 is integrable with respect to d 75 (x) we also write

V(W —b)(u—a) [ Inh(x)
5 / dna(x) |,
Vg AX—U

G(h,u) =exp ueC\A.

These functions are related with outer functions (see [87, Def. 17.14]) whose analytical represen-

Vu—=>0b)(u—a) [ Inh(x)
[ an)|.
n A X—U

tation is

ueC\A,

g(h,u) = cexp [
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where |c| = 1.

Notice that in the definition of the Szegd function (which squared is an outer function) with
respect to a measure ¢ we do not take the Radon-Nikodym derivative ¢’ of p with respect to the
Lebesgue measure d x but instead with respect to d na (x) which is precisely v/(b — x) (x — a)u’ (x).

1.4.2 Asymptotic

The study of the strong asymptotic of general orthogonal polynomials was initiated by G. Szegé
(1895-1985) and S. Bernstein (1880-1968), although results in this direction were obtained earlier
for classical orthogonal polynomials. Anyway, the work of Szegé has a remarkable generality and
an intrinsic beauty due to the elegance of his arguments. The core of Szeg6’s method is to study
the orthogonal polynomials on the unit circle instead of A, and using the tools from Hardy space
theory he was able to obtain the strong asymptotic of these kind of polynomials. Afterwards, with
a very clever ploy he established a direct connection between orthogonal polynomials on a real
interval and orthogonal polynomials on the unit circle. Nowadays [94, Ch. xi1, Ch. xi1] is still a

basic reference on the subject, that can be complemented and expanded with [90].

With the previous discussion we are in condition to state Szeg@’s theorem on the strong

asymptotic of orthogonal polynomials (see [94, Th. 12.1.2]).

Theorem 1.9 (Szeg6):

Let u € Z(A) and {qn (-, 1) }ns0 the sequence of orthonormal polynomials with respect to u (see
(1.3)). Moreover, let G be defined as in (1.18) and ¥ be the conformal map from C \ A onto
{lz| > 1} with ¥(o0) = oo and ¥’ (c0) > 0. Then,

i 0 1
im-——=—

n an(Z) \/EG(Z,M), ZEC\A

where the limit is uniform on compact subsets of C\ A. In addition,

1
lim a,, cap” (A) = \/?G(OO,/J),
n Ve

where cap(A) = 1/W’(c0) denotes the logarithmic capacity of A and a,, is the leading coefficient
of qn.

Later, L.Ya. Geronimus (1898-1984) established an equivalence between the existence of
asymptotic formulas as the ones in Theorem 1.9 and Szeg§’s condition (see [35, Th. 9.2]). This
is, if a subsequence of {a, cap™(A)},so is bounded above or, for some z € C \ A a subsequence
of {gn(z; u)/¥"(z)} is bounded, then (1.15) must hold. Although the statement of Theorem 1.9 is
given for general measures in the class . (A), Szegd originally proved it for absolutely continuous
measures, A.N. Kolmogorov (1903-1987) and M.G. Krein (1907-1989) obtained it for more general
measures. Furthermore, a general treatment can be found in G. Freud’s book ([34, §v.2]), though

Szegd’s theorem is relatively hidden.
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A research as complete as Szeg§’s was published by H. Widom (1932-2021) in a lengthy article
from 1969, [99]. There, he studied sequences of orthogonal polynomials on a system of Jordan
curves and arcs, among other related subjects as extremal polynomials. One of the problems
Widom overcame was the multi-valuedness of the functions appearing in the asymptotic formulas,

using powerful techniques from complex analysis and potential theory.

According to [64], it seems that P. ErdGs (1913-1996) and P. Turdn (1910-1976) were the first
interested in the study of the n-th root asymptotic and the zero distribution of general orthogonal
polynomials, while they were researching the convergence of Lagrange interpolation ([27]). The
Hungarian mathematicians proved that given a measure u verifying the so called Erdds-Turdn

condition, i.e., u’ > 0 a.e. on A, then
lim|g, (z: )|'" = [¥(2)], zeC\a, (1.20)

where the convergence is uniform on compact subsets of C \ A, and

lima /" = _L
g cap(A)

An interesting consequence of ErdGs-Turdn’s result is the following. Let 6, denote Dirac’s delta at

x,and {x,_; };?zl the zeros of the polynomial Q,,(z, u). Define the n-th zero counting measure:

1 n
Un = ;Z‘SM' (1.21)
j=1

Then,
dx

Vx—a)(b-x)

where the convergence is considered in the weak-* topology of measures. This is, the asymptotic

N |-

* — lim u,, =
n

zero distribution converges to the unitary Chebyshev measure, independently of the measure w.

Much research has been done related to logarithmic asymptotic, we suggest the general survey
[64] and references therein, as well as the monograph [92]. In particular, the latter introduced an
important notion in the study of the logarithmic asymptotic of orthogonal polynomials: the regular
(n-th root) asymptotic behavior. Taking into account [92, Th. 3.1.1] and [92, Def. 3.1.2], we give

the following definition.

Definition 1.10:
Let u be a finite positive Borel measure with compact support. Let ay, be as in (1.3). We say that

u is regular, and write u € Reg, if

1
lim a/,ll/ "=

n cap(supp 1)

In [92] it is proved that when u € Reg then the sequence {g, }, >0 of orthonormal polynomials
with respect to u have what is called regular n-th root asymptotic behavior (this is a formula similar

to (1.20) with an appropriate right hand side).
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It is curious that strong and n-th root asymptotic attracted so much attention in the first half of
the xx-th century while no one showed interest for ratio asymptotic, at least as far as the known
literature is concerned. According to [64], P. Nevai (1948-) was the first to look at this type of
asymptotic, though he was primarily interested in the behavior of the coefficients of the recurrence
relation associated with the sequence of orthogonal polynomials. Recall that if {g, (-, ) }n>0 is

the sequence of orthonormal polynomials associated with y, then

xXqn(x) = Apsigne1 (X) + Bpgn(x) + Apgn-1(x), n=1,2,...,

where A, > 0 and B,, € R. In the book [73] P. Nevai introduced what is known today as the Nevai
class. Tt is said that y is in the Nevai class .# (A, B) if

IimA, =A >0, lim B,, = B.
n n

Nevai was able to prove that if u € .# (A, B) then supp u equals an interval A = [B —2A, B+2A]
plus a denumerable set of isolated points in R \ A. Additionally,

tim 21 &R i) 2 e e supp(u) (1.22)
n Qn(z’ ,u)

uniformly on compact subsets of C \ supp(u) and ¥ is the conformal map from C \ A onto the
complement of the unit disk defined above. Moreover, if (1.22) is verified pointwise for {z,; }m>0

with z,, — oo, then the measure y is in the Nevai class.
m

As was mentioned earlier in the analysis of Gonchar’s extension of Markov’s Theorem, E.A.
Rakhmanov proved that the Erd&s-Turdn condition implies ratio asymptotic and, therefore, such

measures belong to the Nevai class.

1.5 Asymptotic for varying measures

The interesting properties and many applications of orthogonal polynomials with respect to varying
measures revealed by the research of A.A. Gonchar and his circle of collaborators, worked as a

catalytic to the study of the asymptotic properties of these polynomial sequences.

It seems that the path was opened in [40] (originally published in Russian in 1984), a seminal
research that definitely linked the weak asymptotic as well as the asymptotic zero distribution
of orthogonal polynomials with potential theory. Before continuing we need to introduce some
potential theoretic notions. The main references for potential theory and its connection with

approximation theory are [77, 86, 88].

Let ., (K) be the class of all unitary positive Borel measures such that supp 4 € K, where K

is a compact subset of C. The (logarithmic) potential of the measure u is defined by

1
VH(z2) ;:/ln |t_zld,u(t), z € C.
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It is well known that V# is superharmonic on C and subharmonic on C\ supp ¢. The energy of the

measure is given by

1
10 = [ Vi@ au = [[ = duwdut.
Let K be a compact subset of the complex plane and consider the class .#(K). Define the

Robin’s constant of K as

I(K) = inf{I(u) | p € A1 (K)},

and the logarithmic capacity of the compact K by
cap(K) := exp(—-I(K)).

If a compact K c C verifies cap(K) > 0 then, there exist a unique measure i € .1 (K) such that

I(x) = I(K), and this measure is called the equilibrium measure of K (see [86, Th. 3.7.6]).

A very important result in potential theory is O. Frostman’s (1907-1977) theorem, also known
as the fundamental theorem of potential theory, which describes the behavior of the equilibrium

measure’s potential.

Theorem 1.11 (Frostman):
Let K c C be compact with cap(K) > 0. Then, there exists a unique measure A € #1(K) and a

constant 'y such that

< z€eC
vi =7 (1.23)
=y z€K\A,

where A is a Borel set with cap(A) = 0. Moreover, A = u and y = 1(u).

Potential theoretic considerations found fruitful applications in the study of orthogonal poly-
nomials, see for example [92]. In particular, it was proved that if 4 € Reg and u is supported on

the real line, then

. _y1
lim [Q, (z: )| /" = ™),

uniformly on compact subsets of C\ A, where A is the equilibrium measure of supp 1 and A denotes
the smallest interval which contains supp u. This result is the potential theoretic reformulation of
(1.20).

The appearance of varying measures was a call to look for new techniques in order to obtain
asymptotic results for its associated orthogonal polynomials. Gonchar and Rakhmanov’s research
revived the study of potentials with external fields. Fix a compact E C R, by an external field
acting on E we mean a continuous function ¢ : E — R. In [40], without a detailed proof, the

following result was stated.

Lemma 1.12:

Let E C R be a regular compact set (with respect to the Dirichlet problem) and ¢ a continuous
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function on E. Then, there exists a unique measure A € .#\(E) and a constant y such that

<7y, zZE€suppd
VA4 0)(2) e
>y, zZ€E

A detailed proof (with a slightly more general formulation) can be found in [88, Th. 1.1.3].
Notice that if ¢ = 0, Lemma 1.12 reduces to Theorem 1.11. From Lemma 1.12, Gonchar and
Rakhmanov were able to obtain the n-th root asymptotic for orthogonal polynomials with varying
measures, in a more general setting than the one associated to multipoint Padé approximation,
assuming that ¢’ > 0 a.e. on the interval of orthogonality. A more relaxed version of the result
was published in [92, Th. 3.3.3], but it does not cover the class of external fields we need in the

present dissertation. The extension we need appeared in [33, Lemma 4.2].

Lemma 1.13:
Assume that u € Reg and suppu C R is regular. Let {¢n}nencz, be a sequence of positive

continuous functions on supp u such that

1
lim — In = o(x) > —o0, (1.24)

neA2n  @,(x)

uniformly on supp p. Let {qn}tnen be a sequence of monic polynomials such that deg g, = n and

/xvqn<x>gon<x>du<x>=o, O L1,

Then
— lim p,, = 1.2
*— lim g, A, (1.25)
and
1/2n
tim [ au0Penauto) <o (1.26

where A and y are the equilibrium measure and equilibrium constant in the presence of the external

field ¢ on supp u, and g, is as in (1.21). We also have

1/n
lim(%) :exp(V—V’](Z)), K c C\ A, (1.27)
A\ lgnen “NlE

where || - ||g denotes the sup-norm on E = supp u and A = Co(supp u).

A year after [40] appeared, G. Lopez Lagomasino in [53] proved a result on the ratio asymptotic
of orthogonal polynomials with respect to varying measures. Assuming that Q;, (-, i) is the n-th
monic orthogonal polynomial with respect to d u(x)/wy, where u’ > 0 a.e. on suppu = [-1,1]
and wy, is a polynomial of degree < 2n whose zeros lie on an interval J disjoint from supp u (for

all n € Z,), then

im Qe Gtne) LT e o),
n Qn(z’ﬂn) 2

Later, the restrictions over the varying part of the measure were weakened in [55].

By the end of the 1980s the first results on the strong asymptotic of orthogonal polynomials with

varying measures were obtained in [54], being later improved in [24]. The authors imposed certain
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restrictions on the varying part of the measures, which we need to complement to achieve more
accurate results. We will consider sequences of measures {(un, Won) }nez,, Where u, € 4 (A)

and, wo,, are polynomials with real coefficients and deg wy,, < 2n verifying:

(S1). There exists a finite positive Borel measure y supported on A such that lim,, i, = p in the
weak star topology of measures, whose absolutely continuous part satisfies u” > 0 a.e. on
A, and

lim/ |, — p'|dx = 0.
n
(S2). The measure u satisfies Szeg&’s condition on A; that is,
/ln,u’(x) dna(x) > —oo,
A

and

limninf/lnu;l(x)dm(x) Z/IHM’(x)dnA(x).

(S3). Let ¥ be the conformal map from Q = C \ A onto the exterior of the unit circle such that

Y (o0) = oo and W’ (o0) > 0. The zeros of the polynomials wy,, verify

2n 1
lim (1 - —) = o0
n—00 L | (x2n,1) ]
By convention, x3, ; = 00,1 <i < 2n —i,, when i, < 2n.

(S4). There exist non negative continuous functions ¢ and ¢ on (a, b), A = [a, b], such that

lim " () w2 (0] = 1/4(x) (1.28)

uniformly on compact subsets of (a, b) and
b b
tim [ i @ 0D dnat) == [l dna@ <4 (129)
a a

The main result in [24] compares the asymptotic behavior of the orthonormal polynomials
gn with respect to d u,/|wa,| with the sequence wy,. The limit relation depends on Blaschke
products. Let x2,,;, 2n —i, + 1 < i < 2n, denote the zeros of wy,. If i,, < 2n we define x,, ; = oo,

1 <i<2n-i,. Set
2n
¥(z) — ¥Y(x2,;
Ban(e) = [ HE =¥
1 —W¥(x2,1)¥(2)

i=1
When x5, ; = oo the corresponding factor in the Blaschke product is replaced by 1/%¥(z).
Theorem 1.14:
Let {(ttn,Won)}tnez, be a sequence of measures verifying (S1)-(S3) on A and g, is the n-th

orthonormal polynomial such that

d
/qun()oL(x):o, y=OL.. 1,
A [Wan (x)]
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and ()
Hn X
i =1
Then,
i 4, (2)
1m

By (z) = LGZ(/J 2)
n W2n( )

uniformly on compact subsets of C \ A

The applications of the asymptotic properties of orthogonal polynomials with varying measures
were unleashed with the study of a hard problem in approximation theory; namely, the simultaneous

approximation of analytic functions.

1.6 Hermite-Padé approximation

Hermite’s proof of the irrationality of r is a landmark in the history of mathematics; not only
because of the importance of the problem itself, but also for the fruitfulness of the techniques
developed for the proof. There, Hermite introduced simultaneous rational approximation of
systems of exponentials to crack a centuries old problem. The book [44] marked a definitive

inflection in the application of complex analysis to solve hard number theory problems.

The study of simultaneous approximation of systems of analytic functions stayed more or less
dormant until the 1930’s when in a series of lectures delivered at Rijksuniversiteit Groningen, Kurt
Mahler (1903-1988) gave a systematic approach. Mahler’s lectures were published decades later
in [67]. Further contributions to the subject were made by two mathematicians closely acquainted
with Mahler: J. Coates (1945-) and H. Jager (1933-) in [67] and [45], respectively. Mahler’s
approach, seen from a more modern point of view, is to study the following two approximation
problems, known as Type 1 and Type 11 Hermite-Padé approximants, though according to Mahler’s

terminology they were called Latin and German polynomials, respectively.

Let ]7 = (f1,..., fin) be a family of analytic functions on a certain domain D C C, such that

co € D. Fix a non-zero multi-index 71 = (ny,...,nym) € ZI', || =n1 + - - + np.

Problem 3 (Type 1):

There exist polynomials aj, i, . . ., ay . not all identically equal to zero, such that
Li. degay j <n;—1,j=2,...,m (degay ; < —1 means ayz ; = 0);
Lii. a7 0(2) + Xy ap ;(2) fi(2) = O(1/zM), 7 — oo

for some polynomial ay, .

Problem 4 (Type m):
There exist a polynomial Qy, # 0 such that

mi. degQ; < |al;
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{II.ii}

wii. Q5(2)fj(z) = P j(2) = O(1)7%*), z 500, j=1,...,m.

Jor some polynomials P, ;, j = 1,...,m.

Notice thatif m = 1 Problems 3 and 4 coincide and both are equivalent to Problem 1. Apart from
that, the polynomials a; g and Py ;, j = 1,...,m are uniquely determined once their counterparts
are found. From an algebraic point of view both constructions are closely related as it was pointed
outin [67], [45] and [22].

After Hermite’s proof of the irrationality of &, Type 1, Type 11 and a combination of both (called
mixed type) have been used to prove the irrationality of other numbers. We may cite F. Beukers’
paper [17], where he showed that R. Apéry’s proof of £(3) ¢ Q can be interpreted in terms of a
mixed type Hermite-Padé approximation. For further information in this line of applications we

recommend [97].

A very important question related with Hermite-Padé approximation is to know if the associated
polynomials attain the maximal degree possible. So, we say that a multi-index 7 is normal for the
system 7 for Type 1 approximation (respectively, for Type n) if degaz ; =n;—1,j=1,...,m
(respectively, deg Q; = |i|). If every multi-index 7 is normal, the system of functions ;‘, is said to

be perfect.

An easy consequence of perfectness is that (a; 1, ..., d5,,) and Qj are uniquely determined
up to a constant factor. Hence, if the system ? is perfect, the orders of interpolation at infinity in
Problems 3 and 4 are exact for every 7. There are a few systems known to be perfect, for example
(eM=z,...,e"m %) withw; # wjfori # jand ((1-2)",...,(1-2)"") withw; —w; ¢ Z, where in
both cases the interpolation conditions are taken at the origin. Other examples of perfect systems

may be constructed in terms of Markov functions.

1.6.1 Angelesco and Nikishin systems

Between 1918 and 1919 M. A. Angelesco introduced an interesting type of system of functions (see
[1, 2]), which in his honor are called Angelesco system. They are constructed as follows. Consider
the family of pairwise disjoint bounded intervals A; C R, j = 1,...,m and a system of measures

oj,j=1,...,msuch that Co(supp o;) = A;. Then, the system of m Markov functions

?AIZ(&l,...,E'm):(/M’_”’/dgm(x))

=X I—X

is the Angelesco system generated by (o7,...,05,). Angelesco’s papers remained unnoticed for
over 60 years until they were rediscovered by the Russian mathematician E.M. Nikishin (1945-

1986). In [75], Nikishin deduced some of the formal properties of such systems.

Fix amulti-index 72 € Z" and consider the Type it Hermite-Padé approximants for (o, . . ., 0y,).
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It is not difficult to obtain that

/xVQ;L(x)daj(x)zo, v=0,1,...,n; =1, j=1,...,m.

An easy consequence of the above orthogonality conditions verified by Oy is that Q5 has n; simple
zeros in each interval A;. Hence, deg O = |71| and the Angelesco systems are perfect for Type 11

approximation.

Angelesco systems do not have a nice behavior in terms of convergence (about the asymptotic
we will return later). In this respect, another system of functions, built in terms of Markov functions

too, are much more interesting and they are at the core of this dissertation.

Almost right after the rediscovery of Angelesco systems, Nikishin introduced in [76] (the
original Russian version is from 1980) what he called MT-systems, but renamed after him as
Nikishin systems. Let A,, Ag be two intervals contained in the real line such that A, N Ag = @.
Consider the measures 0 € # (Ay), 05 € M (Ag), 0 € Li(0,). With these two measures we

construct a third one as follows (using differential notation)
d(oq, o) (x) 1= Tp(x) doa(x).

When we consider consecutive products of measures, a.e. (0o, 0g,0y) = (Tq, {05, 0y))
we implicitly assume not only that o, € Li(0p), but also (o, 0'7/)\ € Li(0q), where (o, (ry’)\
denotes the Cauchy transform of (o, 0,). It is important to remark that this product is neither

commutative nor associative.

Definition 1.15:

Take a collection Aj, j = 1,...,m of intervals such that
AjﬂAj.H =@, j: 1,...,m—1.

Let (01, ..., 0m) be asystem of measures such that Co(suppoj) = Aj, 05 € M (A)), j=1,...,m.

We say (S1.1,---»S1.m) = A (01,...,0m), where

S11=01, $S12=(01,02), ..., S1,m =(01,{02,...,0m))

is the Nikishin system of measures generated by (071, . ..,0n). The vector’s = (S1.1,...,51m) is

called the Nikishin system of functions.

Notice that any sub-system of (o, ..., 0y,) of consecutive measures is also a generator of

some Nikishin system. In the sequel for 1 < j < k < m we will write

Sjik =0}, 0jsls- s Ok)s Sk,j = A0k, Ok=15-..,0).

The perfectness of Nikishin systems was not a simple problem. Fix 7 € Z"" and consider Type

11 approximation for the system (57 i, ..., 51 ,). It is not difficult to check that
/xVQ;,(x)dsl,j(x) =0, v=0,1,...,n; -1, j=1,...,m.
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The main difference with Angelesco systems is that all the measures s1,;, j = 1,...,m have the

same support, and it is not obvious that deg Q;; = |7|.

In [76], Nikishin stated without proof, that the multi-indices 7 € Z[" verifyingn; > np > --- >

m, N1 — By < 1 are normal for type 1 approximation. Since then, the perfectness of Nikishin
systems remained as an important open problem. Nikishin’s assertion was proved by K. Driver
and H. Stahl (1942-2013) in [26, Th. 4.1] and later slightly improved in [18]. Finally, the problem
was solved in [30]. For the case of generating measures with unbounded and/or touching supports

see also [31].

Among approximation problems of mixed-type, very recently was introduced the following

one in [62] for Nikishin system of functions:
Problem 5 (ML Hermite-Padé):
Given a Nikishin system N (071, . .., 0m), foreachn € N, there exist polynomials a, o, an 1, - - ., Anm,

withdega, ; <n-1,j=0,1,...,m—1,dega,,» < n, not all identically equal to zero, called

multi-level (ML) Hermite-Padé polynomials that verify:

[ m
- 1
G0 = |an,0 + Z(_l)kan,ksl,k €0 (z"”)
| k=1
) d 1
dn,j = (—I)Jan,j + Z (_l)kan,k§j+1,k S ﬁ(g) ,j = 1, e, — 1.
k=j+1

Here and in the sequel O'(-) is as z — oo along paths non tangential to the support of the measures

involved. For completeness write <7, , := (—1)"a, m.

Notice that in this scheme of approximation the interpolation conditions involve all Nikishin
systems of the “inner levels”, i.e. A (o1,...,0m)s A (02, sOm)s oovs N (Om) = (Smm)-
Finding the polynomials a, o, dn,1, - - . , @n,m 18 €quivalent to solving a homogeneous linear system
of n(m + 1) equations, given by the interpolation conditions, on n(m + 1) + 1 unknowns, corre-
sponding with the coefficients of the polynomials. Consequently, the system of equations has a

non trivial solution.

1.7 Markov-type theorems and asymptotic for Nikishin systems

When E.M. Nikishin introduced the homonymous system of functions, he was able to prove the
convergence of Type 11 approximants for m = 2 (see [76, Th. 4]). Since then, the question of
convergence remained open until the early 90’s when G. Lépez Lagomasino and J. Bustamante
succeeded to extend Nikishin’s result for systems with m > 2 measures ([20]) and sequences of
multi-indices A C Z, satisfying n; > |i|/m —c,i = 1,...,m, where c is a constant independent of
ne Aandi =1,...,m. Foralarger class of multi-indices the convergence was obtained in capacity.
An important ingredient in the proof was to show that to a great extent the convergence can be

reduced to that of multipoint Padé approximation of Stieltjes type functions. This occurs due to the
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appearance of extra interpolation points which are not implicit in the definition. This phenomenon
was discovered by A.A. Gonchar in the case of Nikishin systems of two measures. This idea leads
to the introduction of so called incomplete multipoint Padé approximants in Definition 1.5 and
Lemma 1.7 which constitute important tools in the proof of convergence theorems. Improvements

of the results in [20] may be found in [29].

In [41] a general system of functions was introduced constructed as combinations of Nikishin
and Angelesco systems, and were called generalized Nikishin systems. The authors proved the
normality for certain sets of multi-indices and the convergence of Type 11 approximants assuming
that the generating measures verify the Erdds-Turdn condition. Convergence was derived after

proving the logarithmic asymptotic of the associated Hermite-Padé polynomials.

Regarding Type 1 approximation of Nikishin systems the first results were obtained in [59].
This article was followed by an extensions in the spirit of Gonchar’s result on the convergence of
Padé approximants to meromorphic functions of the form i+ r (see [60, 61]), where r is a rational
function with real coefficients to vector function of the form 5 + 7, where s is a Nikishin system of

functions and 7 is a vector of rational fractions, where the component have disjoint sets of poles.

The path to the study of weak asymptotic of multi-orthogonal polynomials associated to
Nikishin systems was started by a A.A. Gonchar and E.A. Rakhmanov, where they linked this type
of asymptotic with equilibrium problems with vector potentials. They used this technique first
in [39] to study the convergence of Type 11 approximants of Angelesco systems, and later with
strong restrictions on the generating measures they used it to describe the weak asymptotic and
the convergence of generalized Nikishin systems in [41]. A clear exposition of the logarithmic
asymptotic of multiple orthogonal polynomials associated to Type 1 approximation can be found
in [57, Th. 5].

The ratio asymptotic was studied in [6], and some other important results were obtained also, for
example, the interlacing property of the zeros of the multiple orthogonal polynomials associated to
Type 1 approximation of Nikishin systems. Later, the aforementioned research was supplemented

in [47].

On the other hand, the strong asymptotic of multi orthogonal polynomials with respect to
Angelesco and Nikishin systems were described in two articles by A.l. Aptekarev, separated each
other by a period of ten years: [4] and [5]. Aptekarev’s approach to tackle this problem relies
heavily on fixed point theorems and topological reasoning. A recommended survey on this topic

and weak asymptotic, previous to Aptekarev’s article of 1999, is [3].
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CHAPTER

Rational perturbation of multi-level
Hermite-Padé polynomials

In the present chapter, as we stated previously, we deal with the proof of Markov [68] and Stieltjes
[93] type theorems for the convergence of simultaneous Padé approximants of a certain class of
meromorphic functions. We have seen that this study was started in [36], in the context of Padé
approximation. We also commented that in [62] a new approximation scheme was introduced (see
Problem 5) motivated by the study of peakon solutions of the Degasperis-Procesi equation (see,

for example, [65]).

The aforementioned works inspired us to study the convergence of such interpolation processes
for the case of general Nikishin systems. We wish to see the consequences of perturbing a Nikishin
system with rational functions with real coefficients. A similar question was raised and solved in

[60] for Type 1 Hermite-Padé approximation (see also [61]).

2.1 Statement of the problem and auxiliary results

In the sequel, we will restrict to Borel measures u € .# (A). Consider a collection of intervals A,

Jj=1,...,msuchthat A;NA;, =@forj=1,...,m—1. Fix a system of measures (o7, ..., 0,)
with Co(suppo;) C Aj, o; € A (Aj), j = 1,...,m. With these elements at hand we construct
the Nikishin system of measures .4 (o7, ..., 0y,) (see Definition 1.15) and its associated Nikishin
system of functions (571,512, --»851.m)-

2.1.1 Convergence of the approximants

Now we are in position to describe the approximation objects.

Definition 2.1:

Consider the Nikishin system N (o1, ...,0m). Letr; = ‘;—j k =1,...,m, be rational fractions
with real coefficients, deg vy < degty = dx, (Vi,tr) =1 (coprime) forallk = 1,...,m. For each
n € N, there exist polynomials a, 0, an,1,...,0nm withdega, ; <n-1,j=0,1,...,m -1,

degan.m < n, not all identically equal to zero, called multi-level (ML) Hermite-Padé polynomials
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that verify

m
- 1
Gpo = |ano+ Z(—l)kan,k(sl,k +ry)| €0 (Z"H ) , (2.1) {ML:per:1}
k=1
m
. j koo -~ 1 -
Sy = ((=1)an;+ Z (=D aniSj+1.x| € ﬁ’(g), j=1,....,m—-1. (2.2) {ML:per:2}
k=j+1

Here and in the sequel O'(-) is as z — oo along paths non tangential to the support of the measures

involved. For completeness we denote <y pm := (—=1)"apn, m.

When riy = 0,k = 1, ..., m, this construction coincides with the one in Problem 5. Recall
that in this scheme of approximation the interpolation conditions involve all Nikishin systems of
the “inner levels”, i.e. A (o1,...,0m), A (02,....0m)s ... N (Om) = (Sm.m). To find the
vector polynomial (a0, dn.15- - -,dn,m) is equivalent to solving a homogeneous linear system of
n(m+ 1) equations on n(m + 1) + 1 unknowns. Therefore, the system of equations has a non trivial

solution. Howeyver, the solution does not need to be unique.

{Th:conv:unif} LetT =lem(#y,...,t,), degT = D, where Icm stands for least common multiple.
Theorem 2.2:
Foreachn e Nleta, ,an.1, ..., anm be Hermite-Padé polynomials associated with the Nikishin

system N (01, ...,0m) and (ry, ..., rm) such that (2.1) and (2.2) holds. Assume that the zeros of
the polynomial T lie in the complement of A| U A,,, and f has exactly D poles in C\ A,,, where

m—1
f=Sm1- Z(—l)k§m,k+1rk - (=1)"rp,.
=1

Suppose that either the sequence of moments of o, satisfies Carleman’s condition (1.9) or A,,—|

is a bounded interval. Then,

{convergencia} lim 2 = Sm, j+1> j=1,....,m—1, 2.3)
n Adpm
and
. Aapo
{polos} lim =f, 2.4)
n Apm

uniformly on each compact subset of C\ (A, U {z : T(z) = 0}). For all sufficiently large n,
degan,m = n, an,m has exactly n — D simple zeros in the interior of Ay, and D zeros in C \ A,
which converge to the poles of f in this region according to their order. For j =1,...,m — 1 and
all sufficiently large n the polynomial a,_ ; has at least n — D — m + j sign changes in A,, and at
least D zeros in C\ Ay, of which D converge to the zeros of T according to their multiplicity and

the remaining ones accumulate on A, U {0},

The fact that deg a,, ,,, = n for n large enough implies that for such indices the vector polynomial
(an.0s--.>an.m) is unique up to a constant factor. Indeed, from two non-collinear solutions of
(2.1)-(2.2) one can construct a non-trivial solution whose last polynomial has degree smaller that

n.
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Notice that f(z) = 5,1 when ry = 0, k = 1,...,m, and Theorem 2.2 gives the main
statement in [62]; namely, relation (1.23) of Theorem 1.6. The expressions of the limit relations in
Theorem 2.2 are similar to those in [60, Theorem 1.2] where Type 1 Hermite-Padé approximants

of meromorphic functions were studied.

Obviously, the poles of f in C\ A,, are the zeros of T'. Therefore, the total number of poles of

f in that region equals D if and only if for each zero ¢ of T, say of multiplicity 7, we have
m—1
lim(z-¢)"f(2) = - Z(—U"Fm,ku({) lim (z - £)"ri(z) = (=D lim (z = ) "rm(z) # 0.
=4 = =4 z—¢

Therefore, sufficient conditions for f to have D poles in C\ A, is that (¢,#x) = 1,1 < j,k <m
or, more generally, that for each £, T ({) = 0, there is only one polynomial ¢, which has ¢ as zero of
degree 7. Indeed, in this case all the terms in the previous sum cancel except one which is trivially

different from zero. (The functions 5, j, j = 1, ..., m, are never zero in C \ A,,.)

2.1.2 Logarithmic asymptotic

To obtain the general asymptotic of the ML Hermite-Padé polynomials we restrain ourselves to the
case when the intervals A; (in particular A,,) are bounded. In addition, we assume that supp o
is a regular compact set for k = 1, ..., m; that is, Green’s function of the region C \ supp o with
singularity at co can be extended continuously to supp 0. Let .#) (supp o) be the subclass of

probability measures in .# (supp o). Define

M = M (supp o) X - -+ X A1 (SUPD O7py).

It is well known (see, for example, [11, Section 4]), that there exists a unique vector measure

A= (A1,...,4dm) € A and a unique vector constant wl = (w{l, . ,w?n) such that
Ly Vi) - 1yl () = o A =1 25
_EVJ._I(x)+ j(x)—EVjH(x)—a)j, X € supp4;, j=1,...,m. (2.5)

(By convention Vgl = Vi +1 = 0.) The vector measure A is called equilibrium measure for the
system of compact sets supp ok, k = 1,. .., m with interaction matrix €y = (c; x), 1 <,j, k < m,
wherec; j=1,j=1,....mcj_1;=-1/2,j=2,...,m,cj ;1 =-1/2,j=1,...,m~—1, and
the rest of the entries equal zero. Notice that the left hand of (2.5) is the product of the j-th row of

% 4 times the vector potential (V7, ..., V).

The vector equilibrium measure allows to describe the normalized distribution of the zeros of
the polynomials a, ,, and the roots of the forms .27, ;, j = 1,...,m — 1. In this section, we also
require that the zeros of T lie in the complement of A; U A,,. From Theorem 2.2 we know that

under these conditions for all sufficiently large n > N:

* dega,, m = n with exactly n — D simple zeros on A, and the remaining D zeros of a;

converge to the poles of f in C \ A, according to their multiplicity.
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J szfn,j,j =1,...,m -1, has exactly n — D zeros in C \ A}, they are simple and lie in A;.

Let O, j,j = 1,...,m be the monic polynomial of degree n — D whose zeros are the roots of
. jon Aj. (Recall that @7, ,, = (=1)"a, m.)

Qn, '+ldn, j
_ J J

. Qn,j+lT5Z{n,j
9 Qn,j 9

Qn,j

By convention Q0 = Qum+1 = 1 and Ay = @. Notice that o7, ;/Qn; € H(C \ Aji),

i j=0,1, i Jj=2,...,m.

J =0,...,m. Recall that u¢ is the zero counting measure of Q (see (1.21)).

Theorem 2.3:
Assume that all the zeros of T lie in the complement of Ay U A, and f has exactly D poles in
C\ Ay,. Suppose that o; € Regand suppoj,j=1,...,m. Then,

*lim,uanZ/lj, j=1,...,m (26)
n—oo >
where A = (A1, ..., m) € M is the vector equilibrium measure determined by the matrix € y on
the system of compact sets supp o, j = 1,...,m. Moreover,
A, (x)do;(x) [V s
lim / 0, (%) n (0 d oy (x) =exp|- » wi], .7
n—o0 T On,j-1(X) O, j1 (X) =

where w' = (a)f, e, w’,il) is the vector equilibrium constant.

From this result the logarithmic asymptotic behavior of the forms <7, ; can be derived.

Theorem 2.4:
Suppose that the assumptions of Theorem 2.3 are satisfied. Then,

lim |, ()" = A;(z), A CC\(AjUAm),  j=l...om=1 (28

where

m
A;(z) = exp [ VU (2) -V (2) -2 Z wll, j=1L....m-1
k=j+1
Moreover,

lim [ (2" =exp (VA7 (2)),  H CC\(BpUZ)

where Z = {7z : T(z) = 0}, and

lim |£{n,0(z)|1/" = exp (V/ll(z) - 22(4)2) , H CcC\ (AU Z).
k=1

Here, 1 = (41, ..., Ay) is the vector equilibrium measure and (a)f, ..., w}) is the vector equilib-
rium constant for the vector potential problem determined by the interaction matrix € 4 acting on

the system of compact sets suppoj, j=1,...,m.

30



2.1.3 Auxiliary results

In this subsection we introduce some definitions and results needed in our developments. We start
with a useful Lemma whose proof in the case of measures with bounded support is a straightforward
consequence of Cauchy’s integral formula and Fubini’s theorem but in the unbounded case is more

elaborated and can be found in [59, Lemma 2.1].

Lemma 2.5:

Let (S1,15---+81.m) = N (01,...,0m) be given. Assume that there exist polynomials with real
coefficients ay, . . ., a,, and a polynomial w with real coefficients whose zeros lie in C \ Ay such
that

”f((zz)) € H(C\ A)) and f((j)) - ﬁ(ZLN), —

m m
where o/ = ag + Z aisix and N > 1. Let o) := a; + Zakfz,k. Then,
k=1 k=2

A (2) _ / A (x) don(x) (2.9)
w(z) z—x w(x)
If N > 2, we also have
/xvm(x)d‘”(x) -0, v=0,1,...,N-2. (2.10)
w(x)

In particular, <f\ has at least N — 1 sign changes in Ay (the interior of Ay in R with the usual
topology).

In the following, we need some relations involving reciprocals and ratios of Cauchy transforms
of measures. It is well known that for each measure o € .# (A), where A is contained in a half
line (that is, an interval of the form [c, +o0) or (—o0, ¢], ¢ € R), there exist a measure 7 € .#Z (A)
and a polynomial £(z) = az+ b, a = 1/|o|, b € R, such that

1 ~
% = f(Z) + T(Z),

where |o| is the total variation of the measure o-. For more information in the case of measures
with compact support see [40, Appendix] and [89, Theorem 6.3.5], when the measure is supported

|—1/2n

in a half line see [3 1, Lemma 2.3]. If o satisfies Carleman’s condition 3" |c,, = oo, then T

satisfies the same condition, [59, Theorem 1.5]. We call 7 the inverse measure of o.

Such measures appear frequently in our arguments, so we will fix a notation to differentiate
them. In relation with the measures denoted by s they will carry over to them the corresponding

sub-indices. The same goes for the polynomials £. For example,

1 -
— =¢: + 71 . 2.11
Sj,k(Z) ],k(Z) T],k(Z) ( )
We also use
—— ={,(2) +7’:a(Z)~
0a(2)
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On some occasions, we write {0, 0',3? in place of Ea,ﬁ. In the paper [30, Lemma 2.10] (see also
[31]) several formulas involving Cauchy transforms of measures were proved. For our reasoning,

the most important ones establish that

Stk ISkl

Sii Isial

— (111 (52,00 1)) (2.12)

where |s| denotes the total variation of the measure s.

2.2 General properties of the zeros

Now will focus on the location of the zeros of the polynomials a, ; and the forms <7, ;. As above

Im:zeros:a_nm} T =lcm(ty,...,t,) and D =degT.

Lemma 2.6:

For eachn > 2D, the form szfn,j, j=1,...,m, has at least n — 2D sign changes in &j and at most
nzeros in C\ Ajy1 (A1 = @). If the zeros of T lie outside of Ay then <7y, j,j =1,...,m, has at
least n — D sign changes in ﬁj. The form <7, o has at most 2D zeros in C \ Ay and this number
reduces to D should the zeros of T lie in the complement of A|. If the zeros of T lie outside A| and
for some n we know that a,, ,, has exactly n — D sign changes on Ay, then, <7, o cannot have zeros
inC\ Ayand o2, ;,j =1,...,m~1, has exactly n — D zeros in C\ Ay they are all simple and

lie on A;.

Proof. Fix n > 2D. Consider the linear form

m m
Zn0(2) =T (@) ,0(2) = |anoT + ) (=D aniTric+ ) (=D aniT51x| (2)
k=1 k=1
o 1

=|pno+ Z(_l)kpn,kgl,k] (=0 (Zn—ﬁ) ,

k=1
where
m
{ps} Pro=anoT+ » (~D¥auaTri.  pus=aniT. k=1....m. (2.13)

k=1

Using Lemma 2.5, in particular (2.10), we obtain the following orthogonality relations
/xv w1(x)doy(x) =0, v=0,1,...,n-D —1,

and %, 1 == —pp1 + Z’,?:z(—l)kp,,,k’s‘z,k has at least n — D sign changes on A;.

Notice that

m m
L1 =P+ Z(—l)kpn,kfz,k =-Tan, + Z(_l)kTan,kEZ,k = a1 T.
k=2 =2

Therefore, .o, 1 has at least n — 2D sign changes in the interior of A; (D sign changes may be on

account of T'). However, if the zeros of T are in the complement of A; then we can affirm that .27, |
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has at least n — D sign changes in the interior of A;. These two situations are accountable for the

different statements on the number of sign changes of 7, ; on A;.

Let w, ; be a polynomial with simple zeros at the points of sign change of .27, | on Ay. In

general degw, | > n—2D,butdegw, | > n— D if the zeros of T lie outside A;. Therefore,

fQ{n,l 1
H(C\Ag) > 7% = ﬁ(zdgw—m)

Notice that <7, | and w,, ; satisfy the hypothesis of Lemma 2.5, so

dn,l(Z) _/ »Q{n,Z(x) dO’z(X)

wni(z) z2—x wpi(x)

and

d
/den,z(x) 20 o 201, deg(wn) - 1.
Wn,l(x)

This yields 7, » has at least deg(w,,1) sign changes in the interior of A;.

Again, let w,, » be a polynomial with simple zeros at the points of sign change of .7, » in A;.

Hence, deg(w,,2) > deg(w,,;) and

v(Z{n,Z 1
H(C\ A3) > W ﬁ(m)‘

Then, we have deduced the same conclusions for .27, » that we had for 7, ;, and we can repeat
the same reasoning inductively obtaining that for each j = 1,...,m — 1, there exists a polynomial

Wy, j,deg(w,, ;) > deg(w,,1), with simple zeros at the points of sign change of <7, ; on A; such

that .
i 1
nj _
H(C\Ajy) 2 s =0 (Zdeg(wn,u)ﬂ) . (2.14)

For j =m — 1, we have

an,ms‘\m,m — An,m-1 _ 1
H(C\ A,) 3 S —ul o) g (—Zdeg (Wl) , @.15)

and using again Lemma 2.5, we obtain

d
/x"an,m(x)sm’—m(x)—O, v=0,1,...deg(wy1) — 1.

Wn,m-1 (x) -
Whence, a,,_,, has atleastdeg(w,, 1) sign changes on A,,. Recall that in general deg(w,, ;) > n—2D
and its degree is > n — D if the zeros of T lie outside A;. This settles the question on the number

of sign changes of the forms on the different intervals.

Now let us consider the question of an upper bound on the total number of zeros that .<7, ;, j =
0,...,m—1, may have in C\ A;,;. The arguments are pretty much the same. We will play on the

fact that deg(a,, ) < nand a, , # 0.

Assume that a,, ,,, = 0. From (2.9) with w = 1 it follows that foreach j = 1,...,m — 1,
G, j+1(x)
@ = [ P 00,
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Since %, ., = (—1)"a, m, this formula with j = m — 1 readily implies that a, -1 = 0 and
Iy m-1 = 0if a, m = 0. Going down on the indices j we conclude that a, ; = 0 and <7, ; = 0 for

all j =1,...,m. Formula (2.9) also implies that

Zno(2) = / ‘Z”’l(x)dm (x).

—X

If o7,1 = 0 so too £, = 0; consequently, .%o = 0 and a, o = 0. In particular, should a,, o =0
then necessarily a, ; = 0,j = 0,...,m. However, we explicitly excluded the trivial solution in

Definition 2. So a, ,,, # 0.

Suppose that 7, o has at least 2D + 1 zeros in C \ A;. Then, there exists a polynomial with
real coefficients w, o of degree > 2D + 1 whose zeros lie in C \ A; such that

Zn0(2) _ T(@Q)Fno(2) _ (
Wn,O(Z) Wn,O(Z)

Zn+D+2) € H(C \ Al)'

Using 2.10, we obtain

d
/x"fn,l(x) 71(x) =0, y=0,1,...,n+D.
Wn,O(x)

This means that %, | has at least n + D + 1 sign changes on A and o7, ; at least n + 1 sign changes
on A;. Continuing as in the proof of the first part of the lemma we arrive at the conclusion that
an,m has at least n + 1 sign changes on A,,, which is not possible since it is a polynomial of degree
< n not identically equal to zero. Therefore, .27, o has at most 2D zeros in C\ A;. Notice that when
the zeros of T are in the complement of A; in order to conclude that .7, ; has n + 1 sign changes
on A it is sufficient to assume that deg(w,0) = D + 1, so in this case one can prove that .27, o has

at most D zeros in C \ A;.

Suppose that o7, ;. has at least n+ 1 zeros in C \ Ay for some specific k € {1,...,m—1} and
n. Then there exists a polynomial w,, x with real coefficients of degree > n + 1 such that
G 1 (2)
Wn,k (Z)
which, reasoning as above, implies that .27}, .| has at least n + 1 sign changes on Ax.;. Continuing

0 () e A
<

the process one proves that for j = k+1, ..., m, the forms <7, ; also have at least n+ 1 sign changes

on A; which contradicts the fact that a,, ,,, cannot have more than n zeros.

Finally, suppose that for some n we know that a,, ,, has exactly n — D sign changes on A,,, and
Ik has at least n — D + 1 zeros in C \ Ay for some k € {1,...,m — 1}. Then there exists a

polynomial w,, , with real coefficients with zeros in C \ Ag4; and degree > n — D + 1 such that

oy
w :8 - (Zn—1D+2) € H(C\ Ags1).

Repeating the arguments used above it follows that for j = k + 1,...,m, the forms o7, ; have at

least n — D + 1 sign changes on A;. In particular, a,, ,, would have n — D + 1 sign changes on A,
against our assumption. Thus, 7, ;,j =1,...,m — 1 has at most n — D zeros on C \ A;,;. Since
it has n — D sign changes on A; the statement readily follows. That .27, o has no zeros in C \ Ay is

proved analogously.
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2.3 Convergence results

We underline that in the next result no assumption is made on the rational functions r; except that
they have real coefficients.

Theorem 2.7:

For each n > 2D, let a,o,an.1,...,a0n,,m be the Hermite-Padé polynomials associated with the
Nikishin system A (o1, ...,0m) and (ry,...,ry) such that (2.1) and (2.2) holds. Suppose that

either oy, satisfies Carleman’s condition (1.9) or Ay, is a bounded interval. Then,

an,j Anm _ ~1

h— lim =S, i h— lim =5 . =1,....m—-1
N0 an’m m,_]+1’ 00 an’j m,_]+1’ j ) ’ ’
and
ano m—1
. n, —~ k—~
h=lim =2 = =50 = 3 (D S = (1), (2.16)
n—0o0 dp m
, k=1
on each compact subset % C C\ A,,. Moreover, the polynomial a ;, j =1,...,m — 1, has at

least n — 2D — m + j sign changes on Ay,. If the zeros of the polynomial T lie in the complement

of Ay then the polynomial a, j, j = 1,...,m — 1, has at least n — D — m + j sign changes in Ay,.

Proof. Let us point out that if o, satisfies Carleman’s condition so do the measures s,, ; and
Tm,j»J = 1,...,m, see [59, Theorem 1.5]. We reduce the proof of the limit relations to Lemma
1.7.

Assume that n > 2D. Notice that (2.15) means that the polynomials a, -1, dn,m and Wy, mn-1
satisfy the conditions of Definition 1.5. Therefore, the rational fractions a, ,—1/adn,m form a

sequence of incomplete diagonal multi-point Padé approximants of s, ,.

Using Lemma 1.7 we have convergence in Hausdorff content on each compact subset of C\ A,,,.
That is,

. Qnm—-1 -~
h —lim == = Spm.m-
no dpm
N A —~ —~ . .
Dividing == : by Spm.m = 0 and using (2.11), we obtain
n,m—

(an,m—lgm - an,m) + an,m—l?m

Wn.m-1

(2) = ﬁ(znl_D).

So, we have again a sequence of incomplete multi-point approximants of 7, and, consequently,

) an, ~
h—l1m(€m— ”""):Tm,
n An,m-1
which is equivalent to
An,m ~_1

h —lim

n dp,m-1

on compact subsets of C \ A,.
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Now, using (2.11) and (2.12), for j = 1,...,m — 2, we have

41, k|
|0']+1|

=|(=1)/ €]+1an]+( 1)] 1an 1t Z (= 1)k|

O-J+1 k=j+2

m
+(=1)a, jTjw - Z (=D*apn 1 (Tja1, (S js2.1> Tjs1))-
k=j+2

The quotlent Fn.j has the same structure as <7 in Lemma 2.5. Moreover, using (2.14), we obtain

JZ{n,'(Z) 1
m - ﬁ(zn ZD) EH(C\A]H)

and, as consequence of (2.10), forv =0,...,n—2D — 2, it follows that

dzj,
0:-/A D an - Z( D a1 (522,10 a1y | (0)—L2 71 (%)

i+l k=j+2 "J( )

The expression in parenthesis under the integral sign has at least n — 2D — 1 sign changes in A 1
Thus, there exists a polynomial w’, j of degree n — 2D — 1 whose zeros are simple and lie in A j+

such that

m
(=D ;= D (=D ani(sjsar ojr) | € HIC\ Aja).
n,j k=j+2

Direct computation or [62, Lemma 2.1] allows to deduce

m
—~ 1 k ~
G, j = Sjxl,j1 D, j = (1) an,j — Z (=D an (s js2,k, Tjs1)-
k=j+2

From the statement of our problem we know that .27, j — 5.1 j+1.% j+1 is € (1/z). Hence,

(- ay,; - Z( ¥ ank<51+2k>0']+l> (z) = ( nlw), 7 — 00,

"]( ) k=j+2

Notice that if j = m — 2 we have

*

An.m-2 — an,mEm,m—l (Z) iy ( 1 )
n’j

Zn—ZD

Thus, an m-2/an m is an incomplete diagonal multi-point Padé approximant of &, ,,—; and we

obtain convergence in Hausdorff convergence on compact subsets of C \ A,

. an,m-2 ~
h— lim = Sp.m-1-

n—o Ay m

Dividing by §,,.,»—1 and arguing as we did above it also follows that

An,m

-1

= Sm,m—l .

h— lim
n—0 Ay m_2
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Using the identity (s;42,k, 8j+1,j+1) = (5j+2,j+1, Sj43.k) for k = j+3,...,m, we deduce
m
. . -
(=D’a, ;- Z (=1)%an ik (Sjs2,k, Oj+1)
k=j+2

m
{Prep_Elim} = (=1 an; = (~1)2ay j25j2 01 = D (“DFanilsjajon sjsa0). (217)
k=j+3

Since we wish to eliminate 5,2 ;1 in the right hand side of (2.17), we divide both sides by it and
use again (2.11) and (2.12). Then,

m
/ ' (8 j42,j+15 S j43.0)|
(=1 an,jCis2,j01 = (=1)7ap 12 - Z (—k R IR

s |5 j+2, 411
m
(=) an,jTjso, j+1 + Z (=DK@ 1 (Tjan oty (Sje3.ks S22, j41))
k=j+3

which is a linear form as those in Lemma 2.5. Thus

1 . S < 1
H(C A'z S —/—————— —1)a, i+ —lka kAS 743 ks Sj42.7 Eﬁ(—).
(C\A2) > e | (D an k;( Veani(sjan s | € 0| —p

Moreover, forv=0,1,...,n—2D — 3,

de+2,j+l(x) —0
v

m
/XV (1) an,; + Z (=DXan 1 (sj43.0 542,41y | (x)

k=j+3

So, the expression in parenthesis has at least n — 2D — 2 sign changes in the interior of Aj,>, and

*
n,j+l1

we can assure the existence of a polynomial w}, degw = n — 2D -2, with simple zeros

,Jj+1
located at the points of sign change inside A, so that

1 . L ~
| D an+ D) D anisjene s | € HC\ Aj).

n,j+1 k=j+3

Using [62, Lemma 2.1] with r = j + 2 (or direct calculation), we have
m
) f - . _
(=D’an,; + Z (=D an (8430 $j42,j41) = Dn.j = Sjst js1 D jst + S jel,je15n, j+2,
k=j+3

and taking into account the definition of the forms .7, ; the right hand side is ¢'(1/z); thus,

m

. ~ 1

k

v () (=) an,; + Z (=D an k543,65 S j+2,5+1) | (2) = ﬁ(m)-
n,j+l1 k=j+3 ‘

In particular, if j = m — 3, it is not difficult to see that the fraction a, ;,—3/an ,» is an incom-

plete diagonal multi-point Padé approximant of s, ,,—» from where we can deduce the Hausdorff

convergence on compact subsets of C \ A,

. Qn.m-3 —~
h —lim = Sm.m-2

no Adpm
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and similarly

. An.m —~
h—1lim =5

n Aapm-3

m,m-2"

This process can be continued inductively. After m — j — 1 reductions we obtain the existence

of a polynomial w,, ; with degree > n — 2D — m + j with simple zeros inside A,,_; such that

An.j — An.mSm. j+1 1
n,j wnm m,j (Z):ﬁ(m) EH(C\Am), 7 — 00, (2.18)
n’.]
which allows us to deduce that
. Anj
h— hrrln an ! = Sm,j+1>
n,m

on compact subsets of C \ A,,.

It readily follows that

an,j — an,mEm,j+l 1
= = QO =0\ oy | HC\Aw), 2o,
Sm,j+1Whn,j Z
but
an,j — An,mSm, j+1 _ —~ ’
= =dn,jTm,j+1 — (an,m - m,j+lan,j)~
Sm, j+l1
Hence,

dt, i+1(x
/xvan,j(x)#m =0, v=0,1,....n=2D—m+j—1.
Wn,j(x)

Therefore, the polynomial a,, ; has at least n — 2D — m + j sign changes in A,n. Also, we obtain

An,m  ~1

h —lim G

n

an,j

on compact subsets of C \ A,,.

To find the limit of the sequence a, o/a, m, n > 0, we change a little our previous arguments.
It is easy to check that the reasoning above do not change substantially if we consider the linear
forms .7}, ; := T(z) %, ;(z) instead of 7, ;. The main differences are in the asymptotic orders and

in the bounds for the number of sign changes in A, but not in the conclusions.

In consequence, the following holds (see (2.13))

Pn,0 = Pn,mSm,1
Wn,0

(2)=0 (Z,I_ZD%W]_]) € H(C\ Ap),

and we conclude that

. Pno —~
h —lim =Sm,1.

n Dnm

However,
m k m
Pno _ anol + 250 (=D an i Tre  anp +Z( )k
Pn.m anmT an,m 15 an,m

Therefore, (2.16) readily follows.

an,k

F.

Throughout the proof, if the zeros of T lie outside A; then in the right hand side of (2.14) we
can write & (1/ 7P ”) and we can replace 2D with D obtaining n — D — m + j sign changes on

A, for a, ; as indicated in the final statement.
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Once we have proved Theorem 2.7, the statement of Theorem 2.2 follows rather easily.

Proof of Theorem 2.2. In the hypothesis of this theorem the zeros of the polynomial T lie outside
Ay; consequently, according to the last statement of Lemma 2.6 the rational functions ;L: have at
most D poles in C \ A;,. On the other hand, we are assuming that f has exactly D poles in C \ A,,.
dn
an

From (2.16) and Lemma 1.8, we obtain that for all sufficiently large n € N the fractions ;’l have

exactly D poles outside A,,. Moreover, Gonchar’s lemma asserts that each pole of f in C \ A,
attracts as many zeros of a, ,, as its order; that is, if € C\ A,, is a pole of f of order 7 then for
each & > 0, there exists no({) € N such that for all n > ny({) the polynomial a,,_,, has exactly 7

zeros in the disk {z : |z — | < €}. Thus the statements about the zeros of a,, ,, take place.

Fix £ > 0 and let D, be C \ A,, minus an & neighborhood of each pole of f in this region.
Then, there exists ng such that forall n > npand j =0, ...,m — 1, the rational functions a,_ ;/a, m
are analytic in D .. From [37, Lemma 1] it follows that the limits in Lemma 2.7 hold uniformly on

each compact subset of D .. Since € > 0 is arbitrary, we obtain the limits in Theorem 2.2.

Fixj=1,...,m—1. Let  be azero of T of multiplicity 7. Choose £ > 0 small enough and N
sufficiently large such that a, ,, has no zero on {|z — {| = &} and exactly 7 zeros inside the circle
{lz—¢| =€} forn > N. As the function s, 4+ is holomorphic and has no zeros in C \ A,,, by the
uniform convergence we get

lim (lnj/dnm)’ (z)dz = / —(’s,:m’jﬂ), (z)dz=0.

n=% Jiz_gl=e  Anj/Anm lz=C|=e  Sm,j+l
Since a,,_,, has exactly 7 zeros inside {|z — {| = &} for all sufficiently large n, from the argument
principle we obtain that a, j,j =,...,m — 1 also has exactly 7 zeros inside that disk for all

sufficiently large n.

Thus, in the circle {|z - {| < &} the number of zeros of a,,,; and a,,,, coincide, i.e. { attracts as
many zeros of a,_; as its order. We can extend this idea to a smooth Jordan curve I" that surrounds
all zeros of T and lies in C \ A,,. Then D zeros of a,_ ; accumulate at the zeros of T counting

multiplicities and the remaining ones accumulate on A, U {o0}.

O
Theorem 2.2 has some consequences on the convergence of the forms .27, ;.
Corollary 2.8:
Under the assumptions of Theorem 2.2, we have
o
lim —= =0, j=0,....,m—-1,
n—oo an,m
uniformly on each compact subset of C\ (Aj11 U A, U{z:T(z) =0}).
Proof. From Theorem 2.2 and the expression of the forms <7, ; it follows thatfor j = 1,...,m—1,

m—1

eQ{n j .

: : - k=~ = - _
lim = (=175 1 + Z (=D Smx+15j+1,6 + (=D)"5j11,m =0,
n—eo dy m S
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uniformly on compact subsets of C\ (A4 UA,, U{z : T(z) = 0}). The equivalence to zero of the

last expression is a consequence of a well known formula appearing in [3 1, Lemma 2.9]. Similarly,

. Do o - _ ~
lim 2 = f 4 3 (1) Skt Gk +7%) + (1) S+ 7m) =0,
k=1

n—oo an,m

uniformly on compact subsets of C \ (A; UA,, U{z: T(z) = 0}). In proving the equality to zero

aside from the identity in [31, Lemma 2.9] one uses the expression of f.

2.3.1 Rate of convergence

Throughout this subsection we assume that the conditions of Theorem 2.2 are in place. We will
begin showing that when A, is a finite interval convergence takes place with geometric rate. We
will derive this result using Theorem 2.2 and the maximum principle. Similar arguments were
employed in [29] in the case of Type 11 Hermite-Padé approximation. First, we introduce some

concepts to be used in the sequel.

Let ¢;, ¢t € C\ A, be the conformal representation of C \ A,, onto {w : |w| < 1} such that
—2
@ (1) =0, ¢; (1) > 0. Itis easy to verify that |¢,(z)| can be extended continuously to C in the two

variables z, t and equals zero only when z = ¢. In fact

P (2) = Poo(t)

lo: (2)] = —
1 = poo(t)peo(2)

Let0 < p < 1and
Yo ={z 1 le(2)| = p}.
Fix a compact set # C C\ (A, U {z : T(z) = 0}). Take p sufficiently close to 1 so that .# lies in

the unbounded connected component of the complement of y,,. Set
kp = inf{lo (D] 1€ Apetnz €9}y 6(H) =max{le, ()] 11 € Aprsz € A} (2.19)
From the continuity of |¢;(z)| in the two variables it readily follows that

limk, =1,  6(#) < 1.

p—1
As usual, || - || » denotes the uniform norm on %",
Corollary 2.9:
Under the hypothesis of Theorem 2.2, if we assume additionally that A, is bounded then
1/n
limsup ||/ =5, 41| <) gwllr <1, j=1,...,m—1, (2.20)
n an,m N4
and
an.o 1/n
limsup |—= = f|l < 8(H)llgwllr <1 (2:21)
n An.m N

for every compact set & C C\ (A, U{z:T(2) =0}) and 6 (%) is defined in (2.19).
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Proof. Fix # c C\ (An U {z:T(2) =0}). According to Theorem 2.2, for all sufficiently large
n > N the polynomials a,,_,, have exactly D zeros in C \ A, and they lie at a positive distance from

 (independent of n > D). In the sequel we only consider such n’s.

Let gnm = ]_[lD (z — xp.x) be the monic polynomial of degree D whose zeros are the roots of
an,m outside A,,. From Theorem 2.2 we know that lim, o ¢n,m =7T. Fix j = 1,...,m. Assume
that w, j(z) = Hie:gl(%’ﬂ(z — {n,j.k), Where w,, ; is the polynomial introduced in the proof of
Theorem 2.7 (see (2.18)). Set

deg(‘;n,j)

D
eni@ = || 0,0 @ =]]x. .
k=1 k=1

From (2.18) it follows that

(an,j /an,m) - Em,j+1

‘pgo<;0n,j

n

€ H(C\ An).
Take p sufficiently close to 1 so that % lies in the unbounded connected component of the
complement of y,,. On vy, for all sufficiently large n > Ny > N, we have

(an,j/an,m) - Em,j+l

Qogo‘pn,j

< p ", (2.22)
Yo

n

Indeed, [, (z)| < 1 forallz € C\ A, Psn i (2) 2 Kp forall £, j k € Ap—1, and for all sufficiently
large n > No > Ny, |[(an,j/an,m) — Em,j+1||yp < 1 since by Theorem 2.2 the function under the

norm sign converges to zero on Yo-

Using the maximum principle, from (2.22) it follows that for all z € J#

anj(z) loni(2) @) el (s()) ")
= Sm,j+1(2)| < s ) = - : (2.23)
an,m(2) Wn(2)] gl W (2)]o" | ko
Since the points x, 1, . .., X, p remain bounded away from .#” independently of n, we obtain that

inf {|yn(2)|:z€#}>C>0,
n>Ns3

where N3 > N; is sufficiently large. On the other hand, recall thatn —2D —m+j < deg(w, ;) < n;
consequently, using (2.23), we obtain

Jo =~

— Sm, j+1

1
"8 llewllx
x pP"Kp

lim sup
n

An.m

From here we get (2.20) since lim,, , k, = 1.

The proof of (2.21) is basically the same.

We wish to point out that if A, is unbounded but A,,,_; is bounded then it is also possible to
prove convergence with geometric rate modifying slightly the arguments. Of course, the estimate

of the rate of convergence will differ from the one above.
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Corollary 2.10:
Under the hypothesis of Theorem 2.2 if we assume additionally that A,, is bounded, then
q1/n
limsup |[—2| < 6()¢eollrs  j=0,....m—1,
n—oo An,m N4

for every compact K C C\ (Ajs1 UA, U{z:T(z) =0}).

Proof. Indeed, for j=1,...,m -1,

m
] i An,j an,k ~
n,j n,j k Yn,
= (-1 2L Y (D =
n,m an,m K=j+1 an,m
an m—1 a
i n,j —~ k n,k —~ —~
(-1’ (a - Sm,j+1) + Z (=1 (a - Sm,k+1) il k
n,m k:j+l n,m
because, according to [3 1, Lemma 2.9]
m—1
e k= = ~ _
(=15, je1 + Z (=D Smis18jrtx +(=1)"5j1m =0
k=j+1

forall z € C\ (Aj4+1 UA,,). Now it remains to use (2.20) and trivial estimates. The proof for j = 0

is similar.

When the measures generating the Nikishin system are regular (see Definition 1.10), then more

precise estimates of the rate of convergence may be given.

2.4 Multi-orthogonality relations

We begin by obtaining some integral representations which will be needed.

Lemma 2.11:
Assume that all the zeros of T lie in the complement of A| U A,,, f has exactly D poles in C\ A,
andn > N > D. Then, foreach j=1,...,m—1,

Py j (2) = / Py jr1(x) dojer (x) (2.24)
Qn,j Ajyr =X Qn,j(x) ‘
and o
. T
T@thald) = [ Tt 41 ) (2.25)
1
Moreover, for j =1,...,m—1
v doj(x)
X"y ji1 (X)) ————— =0, y=0,1,...,n—D — 1. (2.26)
Aj+1 Qn,] (X)
and
/ x¥ ety 1 ()T (x)doy(x) =0, v=0,1,...,n—-D —1. (2.27)
Ay
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Proof. Notice that T.e7, o = €(1/z""P*') € H(C \ A;). Let I be a positively oriented closed
Jordan curve which surrounds A; so that A, and z remain in the unbounded connected component

of the complement of I". We have

o,
I@hald) = [ %df

1 (Tano+ X0 (=DkanxTre)({) 1 (T X0 (=Dkay 151 £)(2)

= d+— d

_27Ti r z2—-¢ 271 Jr z2—¢
(2.28)

2ni Jr (2= (¢ ~x)

Indeed the first equality comes from Cauchy’s integral formula for the complement of I". The
second equality is trivial. Since (Ta,0+ 27, (=D*an 1 Tri)(£)/(z = £) is analytic with respect
to £ inside I, the first integral in (2.28) is zero. Substituting in the second integral 5 x with its
integral representation and using Fubini’s theorem you get the third equality. The last equality

comes from the use of Cauchy’s integral formula inside I". Thus we obtain (2.25).

Similarly, since 2”77, 0 = 0(1/z*) € H(C\ Ay),v=0,...,n— D — 1, we obtain

1
0=5- / (Tt 0) () d ¢
it Jr

_/ L/(V(_Tan,l+Tzzq=2(_1)kan,k§2,k)(§)
~J 2niJr (¢ -x)

dldo(x)
_ / X (T 1) (x)dory (x).

which is (2.27).

In order to derive (2.24) and (2.26) one proceeds analogously. It is sufficient to use that
Y j/On; = O(1/%) € HC\ Aj1), j=1,...,m =1,y =0,...,n—D — 1 and take T
a positively oriented closed Jordan curve which surrounds Aj,; so that Aj (Ayy = @) and 2

remain in the unbounded connected component of the complement of I".

The previous lemma can be reformulated as follows.

Lemma 2.12:
Assume that all the zeros of T lie in the complement of A| U A,,, f has exactly D poles in C\ A,
andn > N > D. Foreach fixed j =0,...,m—1,

o, j+1(x) dojar (x)
"On,j+ =0, =0,1,...,n-D —1. 2.29
/x Q . I(X) Qn,j(x)Qn,j+2(x) Y " ( )

Moreover, for j =0,2,3,...,m—1

Hn,j(2) = / Qi’m (X) A5, 41 (x) dojar (%)

, 2.30
z2=x  Qnj(x)0n,jr2(x) (230
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and

Q25 (%) 4 2(x) doa (%)
z2=x Qu1(X)0n3(x)’

Hn(2) =T(2) /

Recall that by convention Q0 = OQn.m+1 = 1.

2.31)

Proof. Formula (2.29) is a restatement of (2.26) and (2.27) using the notation of the functions
Ty,

Since deg O, j+1 = n — D, from (2.29) we deduce that for j =0,...,m -1

Qn,j+1 (z) = Qn,j+1 (x) _
p— i1 ) Oy

This last identity can be rewritten as

%1,]41 (x) d0'j+1 (x) -0

0, (Z)/ On,j+1(x) 76, j1(x) dojpr (x) :/ Qi,jﬂ(x) Hy a1 () d 04y (%)
n, j+l 72=x  Qnj(x)Qn, js+2(x) 2% 0w 0)0nn()

Forj=2,....m—-1

On.j+1(x) A jr1(x) dojr (x) :/ n,j () d0jr1 () _ D, (2)
2=x  Qn;j(x)On, j+2(x) z2=x Qnji(x)  QOnj(z)

and (2.30) immediately follows for j = 2,...,m — 1. In the case j = 1, notice that

/ Q0,2 H2(0) doa(x) _ Qna(2) S (2)
I—X Qn,l(x)Qn,'J’(x) Qn,l(z) T(Z) ’

which is equivalent to (2.31). For j = 0 we proceed as for (2.30), j =2,...,m — 1.

'Q{n,l(Z) =

The previous lemma indicates that the polynomial Q, ;, j = 1,...,m, is orthogonal with

respect to the varying measure

Hn,j(x)doj(x)
Qn,j—l (X)Qn,j+1 (x) '

This varying measure has constant sign because O, ;-1 and Q,, ;41 have constant sign on A; and

Jy,; also has constant sign since Q,, ; takes away the zeros of <7, j on A;.

2.5 Proof of general asymptotic results

For the proof of Theorem 2.3 we make use of a technique introduced in [41] for the study of the
weak asymptotic of Type 11 multiple orthogonal polynomials associated with generalized Nikishin

systems (see also [28, 32, 33]).

Proof of Theorem 2.3. The unit ball in the cone of positive Borel measures is weak star compact;
therefore, it is sufficient to show that each sequence of measures (,uan) ,j=1,...,m, has
“/n>=N

only one accumulation point which coincides with the corresponding component of the vector
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equilibrium measure A determined by the matrix % 4 on the system of compact sets supp o7,

j=1,...,m.

Let A be a sequence indices such that foreach j = 1,...,m

* lim /JQn,j = /Jj.

nelA

Notice that u; € .#\(E;), j =1, ..., m. Taking into account that all the zeros of Q,, ; lie in A}, it
follows that

lim [Q,,; (2)"/" = exp (-V// (2)). (2.32)
uniformly on compact subsets of C \ A;.

The generating measures o, j = 1,...,m, have constant sign. Without loss of generality we
can assume that they are positive. Notice that <7, ,,, = +Q,, T, where T,, =2 T on compact subsets

of C (recall that a,, ,,, is monic). Hence, formula (2.29), when j = m — 1 becomes

vy T@do) o
/X Qn,m(x)m, v=0,1,....,n—-D —1.

In order to use Lemma 1.13, write ¢, = T,,/Q, m-1. Then,
1'm11 ()l'mlloQ 1lT
im — lo x) =lim [ — 1—-=—Io .
neA 2n g¢n neA \ 2n &&n,m-1 2n £ln

As T,, =3 T on supp 03, where the polynomial T has no zeros, we conclude that 0 < b < |T,,| < B,

and ﬁ log T,, = 0 uniformly on supp o,. According to (2.32) we get
lim - 10g Q-1 (¥)] = 5 V-1 (x)
nen 2n 8 1Lmm- L= T x’
uniformly on supp o7,. So,
li ! 1 (x) 1V" '(x) >
N = —— m- —00,
nah 2 CE P =5 *
Thus, from Lemma 1.13 we deduce that y,, is the unique solution of the extremal problem

1 =Ww,, XESsu m)s
VHn () = SV () i Pp(4tm) (2.33)

> W, X €supp(om),

and "
2 () !
lim " oy, (x =e"m, (2.34)
neA( om0 47 ))
Next, we prove by induction on decreasing values of j, thatforall j =1,...,m

1 1 =Ww;, XESuppy;,
VHI (x) — EV.UJ‘—I (x) - Evum (X) + W1 / PP A (2.35)

= wj, X €suppoy,

where VH#0 = VHm+l = (0, w1 =0, and

, A () doj(x) \
1 2 >J J — oW 2.36
nlenll\ (/ Qn,] ) |Qn,j—1(x)Qn,m+l(x)| ¢ ( )
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_nj_rewritten}

imit_exp_wj+1}

where Qn,O = Qn,m+1 = 1.

Notice that for j = m these relations are (2.34) and (2.33), and the initial step of the induction
is settled. Suppose that the statement is true for j + 1 € {3,...,m} and let us prove it for j. The

step from j = 2 to j = 1 will be treated separately afterwards.

For j = 1,...,m the orthogonality relations (2.29) can be expressed as
Iy, j(x)doj(x)
x"Q0n,j(x) . =0, yv=0,1,...,.n—D —1, (2.37)
./ T O j-1(X) Qi ()

and using (2.30), j =2,...,m

, 05 1) Ay 1 (1) d o (1) do;(x)
J xroni (f S0 00y 00nya() | oyt

forv=0,1,...,n—D - 1.

The limit in (2.32) gives us that

.1 1., 1 ..
}351\ n log |Qn,j-1(x)On,j+1(x)] = —EV”H (x) - EVHH] (x),

uniformly on A;.

Set

| (D] d oy (1)) V2
Ky vy = 2 .J J ‘
4! (/ G i1 G D 0m e D)

It follows that for x € A;

1 </Qi,j+1(t) |<%1,j+1(t)|d0'j+l(t) < 1

&K i =1l 100, j(DCnje2(D] ~ 51K,
where 0 < 6,4 =inf{|x — 7| : t € Ajy,x € Aj} < max{|x —¢t|: 1 € Aji,x €A} = 6;‘.“ < oo,
Taking into consideration these inequalities, from the induction hypothesis, we obtain that
2 1/2n
lim / Qn,j+l(t) |%l,j+l (t)| dO'j+1 (t) — o Wi (2.38)
neA lx =2l 1Qn,;(0)Qn,j2(1)]

Taking (2.5) and (2.38) into account, Lemma 1.13 yields that u; is the unique solution of the
extremal problem (2.35) and

i /] 02y ® Ay Dldoyan) G, Wdomt0 |
=e ",
neA |x —¢] |Qn,j(l)Qn,j+l(f)| |Qn,j_1(x)Qn’j+1(x)|

As a consequence of (2.30), j =2,...,m — 1, the above formula reduces to (2.36).

For j = 1 formula (2.37) becomes

y 02 ,(1) A, () doa ()| do (x)
/XQn,l(X)(T(X)/ 2 DB E BN SN v =0.n- DL

46



{vecequil2}

From (2.32) we have lim,,cp % log |Qn2(x)| = —%V”Z (x) uniformly on A;. Recall that 0 < b <

T(x) < Bin Ay, thus it follows that for x € A;:

2
L < |T(X)|/ Qn,Z(t) |%L,](f)|d0’2(t) < B ‘
&K, =1 1Qn1()Qn3(D] ~ 62K2,

From here on, all the arguments used before work as well and the induction process is completed.

We can rewrite (2.35) as

1 1 =w'’, Xxe€suppy;,
VHI (x) = SVHI = VI (x) J PP A (2.39)
> w;., X € supp oy,
for j=1,...,m, where
w;- =W — Wi, Wil = 0. (2.40)

(Recall that the terms with V#0 and V#=+! do not appear when j = 0 and j = m, respectively). Now,
(2.39) adopts the form of (2.5) which has only one solution. If follows that A= (Ui, ..., um) is the
equilibrium solution for the vector potential problem determined by the interactions matrix 4 4
on the system of compact sets suppoj, j = 1,...,m and wl = (wi,...,wy,) is the corresponding
vector equilibrium constant. This is for any convergent subsequence; since the equilibrium problem

does not depend on A and the solution is unique we obtain (2.6).

From the uniqueness of the vector equilibrium constant and (2.36), we get

. | () do(x) \*
1 2. »J J ) — w},
nheo (/ 1O Oy ] ¢

On the other hand, from (2.40) it follows that w,, = wfln when j = m. Suppose that w;, =

Z’,:‘:J.H a);:l where j + 1 € {2,...,m}. Then, according to (2.40)

m
o o a o p
wj—wj+wj+]—a)j+wj+1—Zwk
k=j

and (2.7) immediately follows.

Now we are ready to give a proof of Theorem 2.4.

Proof of Theorem 2.4. Since %, y, = £Qpn mT, and T,, =3 T on compact subsets of C, (2.6) implies
lim |y m(2)]Y" = exp (—Vﬂm) . zeX cC\(A,UZ).
n—oo

Forj=1,...,m—1, from (2.30) we have

On,j(2) Qi,j+1 () 5, 41 (x) doja (%)
Qn,j+1 (Z) =X Qn,j(x)Qn,j+2(x) ’

@y j(2) = (2.41)
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where Q0,0 = Opn.m+1 = 1. Now, (2.6) implies

1/n

On.j(2) = exp (V/lm (z) - V’l.i(z)) , H CC\(AjUA)

Qn,j+l (Z)

(we also use that the zeros of O, ;j and O ;41 liein A; and A}, respectively). It remains to find

lim

n—oo

the n-th root asymptotic behavior of the integral.

Fix a compact set # C C\ A4 Itis easy to verify that

2
C Q. (X)) doi (x C
unds_integral} . 1 < / n,j+1 n,]+1( ) J+1( ) < - 2 ’ (2.42)
Ky 2=x  Qnj(X)0n,js(x) K, i
where
_ min{max{|u —x|,|v|:z=u+iv}:z€ A ,x €A}
b max{|z—x]2:z€ % ,x € Ajy1}
and
1
2= . < 00,
min{|z —x|:z€ A, x € Aj1}
Taking into account (2.7) we get
1/n
Q2 (X)) d o (x e
imit_integral} lim / mJ+l n.j+1 () d 0541 () =exp| -2 Z wﬁ . (2.43)
n—oeo —X Qn,j(x)Qn,j+2(x) k=j+1

From (2.41)-(2.43) we deduce (2.8). Finally, notice that
lim |T(2) e 0(2)['" = lim |0(2)|""

forall z € C\ (A; U Z), in case that the first limit exists. This last statement holds, and its proof

follows easily using the same arguments as above.

m]
2.6 Outcomes of Theorem 2.3
Let us find the logarithmic asymptotic of the polynomials a,_ ;, j =0, ...,m.
Corollary 2.13:
Under the assumptions of Theorem 2.3,
it_nrooth_anj} lim |a, ()" = An(z), j=1,....m, (2.44)
n—oo

uniformly on compact subsets of C\ (A, U Z).

Proof. In the proof of Theorem 2.4 we obtained (2.44) for j = m. Now, recall that the function
Sm,j+1 never equals zero in C \ (A,, U Z); therefore, for the remaining values of j, the limit (2.44)

is an immediate consequence of (2.44) for j = m and (2.3).
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Regarding (2.44) for j = 0, aside from Z we would have to exclude from C \ A,, all the points
where f = 0.

Our next goal is to produce estimates of the rate of convergence in (2.3). First we prove
Corollary 2.14:

Under the assumptions of Theorem 2.3, fork =1,...,mand j =0,...,k — 1, we have

Ay j(2) |

dn,k(Z)

k
< exp |~V (2) + VA () + VA () = VA (2) =2 Z wl|, (245
{=j+1

lim sup

n—oo

uniformly on compact subsets % C C\ (Ax U Ajy1), and

G, j(2)
»an,k(Z)

lim

n—oo

1/n koo
= exp (_V/lk+l(z) + VA (2) + VA (2) = VA (7) = 2 Z w? , (2.46)
l=j+1

uniformly on compact subsets of & C C\ (Aj UAj UAL UAgy). If j =0 or k = m we must
also delete from C the zeros of T in order that (2.45) and (2.46) remain valid. Fork =1,...,m

VA (2) 4+ 2V (2) - VA (2) - 207 <0, zE€C\ Ay (247

(by convention, V0 = Vin = 0). Ifk > j+1

k
VA1 (7)) 4 VA (Z) + VA (7)) = VA (2) = 2 Z w} <0, zeC, (2.48)
l=j+1
which implies that the sequence {7, j|<, i} converges to zero with geometric rate on each
compact subset of C\ (Ax UAj1) (C\ (Ax UA;UZifk=mor j=0).

Proof. Fixke{l,...,m—1}and j € {1,...,k — 1}. Using (2.41) we get
051 (2 A (x) d i (2)
Gn,j(z)  On,j(2)Onk+1(2) /= 0,,/(2)0n j2(2)

Gy 1(2)  On.j+1(2)Onk(2) / 02 1 (D) Ay (1) d o (2)
z2=x  Qnk(2)Onk+2(2)

(2.49)

From (2.6) it follows that uniformly on each compact subset # C C\ (A; U A1 U A U Agyr)

we have

lim Qn,j(Z)Qn,kH (2)
n—oo Qn,j+1 (Z)Qn,k (2)

and taking into account (2.43), from (2.49) we deduce (2.46).

1/n
= exp (—Wk+1 (2) + VA () + VA (2) — V/lf) :

Now, from the principle of descent (see [92, Appendix 111]), locally uniformly on C we have

lim sup @y, (2) @ k1] < exp (V41 (2) = VA (2)

n—oo

Using the lower bound in (2.42) (with j replaced by k) to estimate the integral in the denominator
of (2.49) from below and the previous remarks, (2.45) readily follows.
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Ifk=mandj=1,...,m—1in place of (2.49) we use the representation

(D) | 00 (2) Q1) A (x) d oy (2)
%n,m(z) Qn,j+1 (Z)Qn,m(Z)Tn(Z) =X Qn,j(Z)Qn,j+2(Z) ’
where T7,, =2 T and then argue as above. If j =0 and k = 1,..., m the treatment is similar.

According to (2.35), for k =1, ..., m we have
—VA (2) + 2V (2) — V-1 () — 2w;:l =0, 7 € supp Ag. (2.50) {potentials_eq

Recall that all the measures A are probabilities, hence for each k = 2,...,m — 1 the function
—V A1 () 42V (z) = V&-1(2) — ZwZ is harmonic at z = co, and is subharmonic in C \ supp Ax.

Using the maximum principle for subharmonic functions we obtain (2.47).
When k = 1, the left hand of (2.50) becomes =V (z) +2V4 — 20)? which is subharmonic in
C \ supp 4; and also subharmonic at co since

lim (—vb(z) Loy - 2&) oo,

n—oo

Therefore, we can also use the maximum principle to derive (2.47). The case k = m is completely

analogous to the case k = 1.

When k > j + 1 we can write

m
A 2 2 2 _
VA (@) 4+ V() £ VI () - VY () =2 ) wf =
{=j+1
k -
(V@ 2vi () - v @) - 207,
C=j+1
and this sum contains at least two terms because k > j + 1. Each term is less than or equal to zero
in all C and so too the whole sum. To prove that it is strictly negative it is sufficient to show that at
each point there is at least one negative term in the sum. Let us assume that there is a zg € C such
that
—VA (20) + 2V (29) = VA1 (z0) =20} =0,  L=j+1,...,k.

k

By what was proved above, this implies that zg € N =) A¢. However, this is impossible because

consecutive intervals in a Nikishin system are disjoint. From (2.45) and (2.48) the final statement

is deduced.
O
rithmic_asyml} Using Corollary 2.14 we can recover the functions 3m—1,j+1, j=1...,m-2.
Corollary 2.15:
Under the assumptions of Theorem 2.4, for each j = 1,...,m — 2 we have
An.i — An.mSm. i+1)(2 _
over_measures} lim (an.j nomSm j41)(2) = Sm-1,j+1(2), (2.51)

n—oo (an,m—l - an,m&\m,m)(z)
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and B -
(an,O + 2’1?:1 (_1) an,krk) — An,mSm,1 —~

lim = = Sm-1,1 (252)
n—oo (an m—-1 — an,msm,m)(z) "
uniformly on each compact subset of C \ UL +1A(.

Proof. Direct computation or [62, Lemma 2.1] allows to deduce the formula

m—1
Sy + Z (—1)k_jr§:k’j+1$2{n,k = (—l)j(an,j — ApmSm, j+1)- (2.53) {identity_for_
k=j+1

The formula holds at all points where both sides are meaningful. Dividing by 7, ,,—1 we get

Z (DS

k=j+1

+ (=D S e =

nml

(=1)"" 1+j (an] an msm]+l)(z)

(an m—1 — Qn, msm m)(z)

In order to obtain (2.51), it remains to take limit on both sides and make use of the fact that the

ratios @ x / “n, m-1 uniformly tend to zero on compact subsets of C \ UyL ; 1Ac.
To prove (2.52) instead of (2.53) we use the formula
m—1
G0 + Z( D Sk 1 Gk = ano + Z( D¥an ki | = an.mSm,1, (2.54) {nth_root_An0}
k=1 k=1

which is obtained similarly. Dividing by .27, ,,,— and taking limit we complete the proof.

We wish to mention that the convergence in (2.51)-(2.52) occurs with geometric rate, as a result
of (2.45) and (2.48).

Using Corollary 2.15 we can give explicit expressions for the exact rate of convergence of the

limits (2.3). {convergence_s;
Theorem 2.16:
Under the assumptions of Theorem 2.3, foreach j = 1,...,m — 1:
an,j(2) i A 2 i

lim |— —Sm,j+1(2)|  =exp (2V m(z) = Viml(z) - Zwm) (2.55) {geometric_spe

n—oo an,m(z) ’
and

no(2) i A A i
limsup | ———— - f(2) < exp (ZV m(z) = Vil(g) - Zwm) (2.56) {geometric_spe
n—oo |dn, m( )

uniformly on each compact subset # C C\ (UjL JHAg U Z).

Proof. Our starting point is (2.53), but now we divide it by %7, ,, = (=1)"a,.,. We get

m—1
A, j i | |anj
o + (- 1) Sk, JH = = Sm, j+1]>
n,m k=j+1 n,m An,m
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which is equivalent to

_ | 9n,j

‘an 1

—j k
o Z(l) TS — “,

nml K=j+1 nml

= Sm,j+1] -
An,m

Now, Spm-1,j+1(2) # 0, z € C\ A,,—1; consequently, lim,_,c |§m_1,j+1(z)|l/" = 1 uniformly on

compact subsets of C \ A,,,—;. Therefore,

1/n
1 M m—1
lim | ) ) Z( H* Sk ~1,
n—0eo n m—1 K=j+1 n m—1
uniformly on compact subsets of C \ U i +1A[. On the other hand, from (2.46)

1/n

% _ o
nm 11 exp (2vﬂm (2) = VA1 (z) — 2wﬁ1) ,

n,m

lim

uniformly on compact subsets of C \ (A;,—1 U A, U Z). These relations together imply (2.55).

To estimate the speed of convergence of the quotients a, o/a,» we use equality (2.54).

Dividing it by <7, ,,, we get

Z( l)kskl X
nml

nml

v(Z{n,m—l
Mn,m

a —~
- +Z< DFE g =S
an,m

an,m

Arguing as above this equality implies that

1/n
= exp (2vﬂm (2) = VAm1(z) — 2wﬁ1) ,

lim

n—oo

an0(2) Z( l)k n.k(2) re(z) = Sm,1(2)

dn, m( ) n,m(Z)
etric_speed-1} (2.57)

uniformly on each compact subset %~ C C\ (UL Ar U Z).

On the other hand, using the formula for f, we obtain

( ) Z( ¥ (ank _Emk+l)rk

An.m

An,k
Z( 1)k rk_sml

n

- f‘ ( nk _Em,k+1) kls
An,m an,m
that is,
i &
an,O(Z) & an,k(z) —~ = an,k(z) —~
e Z(—l)k - r1(2) = Sma ()| + kzz; (an,m(z) — Skl (Z)) ri(z)

This inequality, together with (2.55) and (2.57), implies (2.56).
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CHAPTER

A generalization of multi-level
Hermite-Padé polynomials

In the present chapter we are going to study Markov and Stieltjes-type theorems, but for an extension
of Problem 5 introduced very recently in [66]. There, the author allowed that the interpolation
conditions at infinity for the linear forms 7, ;, j = 0,1,...,m — 1 vary in certain range. With
these variation he was able to prove the convergence of the method and the logarithmic asymptotic

of the corresponding Hermite-Padé polynomials.

Here, we extend a little further the results obtained in [66], permitting the Nikishin systems
to be generated by a wider class of measures. Furthermore, as we stated in the introduction,
we study the ratio asymptotic of the associated multi-orthogonal polynomials, as well as for the

corresponding multi-level Hermite-Padé polynomials.

3.1 Statement of the problem

In the sequel, unless stated differently, we use the definition given in [66, Problem A].

Let (Z')* be the set of all m-dimensional vectors with non-negative integer components not
identically equal to zero. For 7t = (ny,...,n,) € (Z)* we define |n| = nj + - - - + ny,.
Definition 3.1:
Consider the Nikishin system N (07, . ..,0m) and i = (ny, ..., ny) € (ZT)*. There exist polyno-
mials az o, @5 15 - . - » A, Where degay ; < |n|=1,7 =0,1,...,m~—1,and degay, ,, < |71|, not all
identically equal to zero, called multi-level (ML) Hermite-Padé polynomials of N (o1, ...,0m)

with respect to n, that verify

m

: - 1

(2 = (-Daz;+ Y (~DapSje|(2) =6 (—1) . zoe, (B
k=j+1 -

where j =0,...,m — 1 (the asymptotic expansion of o5 ; at oo begins with 271 or higher).

For completeness, set &5 ,,, == (=1)"az .

We warn the reader that with our terminology in [66, Problem A] the ML Hermite-Padé

polynomials were defined with respect to the system A (04, . . ., 071).
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{lim:markov}

When m = 1 the definition reduces to that of classical Padé approximation, which plays a central
role in the solution of the inverse spectral problem for a discrete string with Dirichlet boundary
condition, see [10, 93]. When m = 2 and 7 = (n,0) definition 3.1 reduces to the Hermite-Padé
approximation problem used in the solution of the inverse spectral problem for the discrete cubic
string, see [65]. For an arbitrary m and 77 = (n, 0, . . ., 0), one obtains the original definition of ML

Hermite-Padé polynomials given in [62].

This scheme of approximation keeps many properties of the one originally introduced in
[62]. These are: the interpolation conditions involve all the Nikishin systems of the “inner
levels”, i.e. A (01,....,0m)s N (02, ..s0m),s ooy N (Om) = (Sm.m); finding the polynomials
as.0, A 15 - - - » Aji.m Teduces to solving a homogeneous linear system of |7|(m + 1) equations on
|72|(m + 1) + 1 unknowns, corresponding with the coefficients of the polynomials. Consequently,

the system of equations has a non trivial solution.

Following Mahler’s terminology [67], amulti-index 7 € (Z')* is said to be normal if deg aj ; =
[7]-1,j =0,...,m—1,anddega;, ,, = |71|. The system of functions is said to be perfect when all the
multi-indices are normal. In [66, Theorem 1.1], it was proved that the Nikishin system of functions
is perfect for this approximation problem. Normality implies that the vector (aj g, . . ., @7 ) iS
uniquely determined up to a multiplicative factor. In the sequel, we normalize this vector so that

ay.m has leading coefficient equal to one.

A sequence of multi-indices A C (Z}')* is called a ray sequence when lim; 5 n; /7| exists for
all j =1,...,m. When the A; are bounded non-intersecting intervals, and o} # 0, a.e. in A,
j=1,...,m,in[66, Theorem 1.2] the logarithmic asymptotic of ray sequences of ML polynomials

was obtained. Using that result, it was also proved [66, Proposition 1.2] that

LT/ A .
lim —~ =%, 4, j=0,....m-1 (3.2)
neA g m

uniformly on each compact subset of C \ A,, (with geometric rate). Notice that the limits belong
to the Nikishin system of functions corresponding to .4 (05, ..., 07). It should be said that the
proof of these results given in [66] may be adapted to the case when the measures o; € Reg (see
Definition 1.10).

We provide a convergence result such as (3.2) in which the intervals A ; may be unbounded and
consecutive intervals can have a common end point. This situation appears in [15] in relation with

the study of the two matrix model.

When the A; are bounded non-intersecting intervals, and crj’. # Oa.e. inAj, we also give aresult
about the asymptotic of sequences of ratios of polynomials aj; ; corresponding to consecutive multi-
indices which resembles E.A. Rakhmanov’s celebrated theorem on the ratio asymptotic of standard
orthogonal polynomials (see [83, 84, 85, 70]). With the original definition of ML Hermite-Padé

polynomials introduced in [62] the ratio asymptotic was obtained in [32].
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3.1.1 Statement of the main results

Recall that a measure s € .Z (A) is said to satisfy Carleman’s condition when the sequence of its

moments {c, },>o verifies
0
Z |Cn|_1/2n = .
n=0

When A is either Ry of R_, this condition implies that there is only one measure whose collection
of moments is {c, },>0. In turn, if the moment problem for s is determinate then the sequence
of diagonal Padé approximants converges to s on each compact subset of C\ A. We prove the

following Carleman-Stieltjes type theorem in the context of ML Hermite-Padé approximants.

Theorem 3.2:

Let A € (ZI'")* be an infinite sequence of distinct multi-indices for which there exist € € {0, ..., m—
2} and a (fixed) non-negative integer N suchthatnj. < nj+N forall¢+1 < j <m—1andi € A.
Consider the sequence of vector polynomials (az g, - . . , Q5 m)iep associated with N (o, . .., o).
For j = ¢(,...,m -2 the polynomial aj;, ; has at least |i| — 2m — NW sign changes in A,y
The polynomials aj, ,,,—y and aj; ,, have, respectively, |ii| — 1 and |i| interlacing simple zeros in
Am. Suppose that either the sequence of moments of o, satisfies Carleman’s condition or Ay,_
is a bounded interval which does not intersect A,,; then (3.2) holds uniformly on each compact
subset of C\ Ay for j=4€,...,m—1. IfA C (ZM)* is an arbitrary infinite sequence of distinct
multi-indices and o, satisfies Carleman’s condition or, A,,—1 is a bounded interval which does not

intersect Ay, and limgcp(ny + - - + ny—1) = oo, then (3.2) takes place for j = m — 1.

If A is a sequence of distinct multi-indices whose components are decreasing, the (first)
condition on A in Theorem 3.2 is verified with £ = 0 and N = 0. More precise information

regarding the zeros of the polynomials ay ;, j =0, ...,m — 2 will be given in Section 3.2.

Letnne Z™and [ € {1,...,m}. Define

51
no=(n,...,m+1,...,n,),

the multi-index obtained adding 1 to the /-th component of 7.

Theorem 3.3:
Consider the Nikishin system N (o, ...,0p,) where the A, k = 1,...,m, are bounded, disjoint
intervals, and o # 0 a.e. in Ar. Let A C (Z')* be an infinite sequence of distinct multi-indices

Jfor which there exists a non-negative integer N such thatnj.y <nj+N forall1 < j <m -1 and

neA Thenfork=0,....m

y aﬁl,k(Z) wr(ri) (Z)
im = >
iieh a7 1k (2)  (y Dy (c0)

(3.3)

uniformly on each compact subset of C \ A,,, where l//r(,? € H(C\ Ay,) is defined in (3.17).
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{forma*}

{HP_s_mm3}

3.2 Convergence of the ML Hermite-Padé approximants

First, we study the location of the zeros of the linear forms .7; g J = 0,...,m. Givenn =
(ny...,ny) €Z, set
Mi,j:=n+---+n;.

Lemma 3.4:
The form ;o has no zero in C\ Ay. For j =1,...,m, & ; has exactly n;; ; zeros in C\ Ajyy,
(Ams1 = @), they are all simple and lie in 5]-. Ifwi o j = 1,...,m =1, denotes the monic

polynomial whose roots are the simple zeros which <7; ; has in A j then

=0 1 € H(C \ Aj+1), Z — 0. 34
Wi, j Zﬂﬁ,j+1+
Foreach j =0,...,m — 1 the order of interpolation at infinity prescribed in (3.1) is exact.

Proof. From (3.1) for j = 0, using Lemma 2.5 with w = 1, we obtain
/x"sz%;l,l(x)dm(x):o, v=0,1,...,n1 - 1.

Therefore, .o7; | has at least ny sign changes in Ay
Let wj | be a polynomial whose roots lie in C \ A, and contain all the points where <7; ;
changes sign in Ay. Then, degwy; | > ny and taking into account (3.1) for j = 1, we obtain

1(2) _
wii,1(2) gt

)eH((C\Az).

Notice that 7; | and wy | satisfy the hypothesis of Lemma 2.5, so

d
/x";z/;t,z(x) 72 (x) =0, v=0,1,...,n1+ny — 1.

wii,1(x)
This implies that .27; , has, at least, nj + n, sign changes in As.

Let wj » be a polynomial whose roots lie in C \ A3 and contain all the points where .27 ,

changes sign in A,. Then, deg Wj.2 2 np + np and taking into account (3.1) for j = 2, we obtain

5 2(2) _
wia(z) ZMis*l

We have deduced analogous conclusions for 27; , as we had for .7 ;.

)eH(C\A3).

We can repeat these arguments inductively and obtain that for each j = 0,...,m — 1 there
exists a polynomial wy ;, degwy ; > ny +---+n; =n; ; (W5 o = 1) whose roots lie in C \ Aj4

and contain all the points where .«%; ; changes sign in A ; and (3.4) takes place.
For j =m — 1, we get

aﬁ,mg‘\m,m —ap,m-1 (Z) -0

1

Wi m—1
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and using again Lemma 2.5

d
/xvaﬁ,m(x)%’—m()c)zo, v=0,1,..., |7 - 1.
W?l,m—l(x)

This implies that aj; ,,, has at least |7 sign changes in A Since deg as.m < 0| we get that aj , is
either identically equal to zero or it has exactly |7| simple zeros, all in A,. The first situation cannot
occur since from (3.1) it would follow that (a; ¢ . .., a5,,) = 0. So, only the second statement is

possible.

Notice that if o7; ( has a zero in C \ Ay, or for some j = 1,...,m — 1, &/ ; has more than
N, j zeros in C \ Aj,y, we can get an extra order of interpolation in (3.5). This also occurs if for
some j =0,...,m— 1 the order of interpolation at co in (3.1) is higher than the one imposed. This
entails one more orthogonality relation for a;; ,,, implying that this polynomials is identically equal

to zero which is not possible. The statements of the lemma readily follow.

In order to prove Theorem 3.2, we need relations similar to (3.5) for a;,,m:v\m, j+l — A js
j =0,...,m— 1. For this purpose, some transformations involving reciprocals and ratios of
Cauchy transforms of measures will be employed, and were introduce in Chapter 2, see (2.11) and
(2.12).

We also state a formula which connects forms of different levels of Nikishin systems. A proof

appears in [62, Lemma 2.1]. Consider the linear forms with polynomial coefficients
m
ZLi=aj+ Z AkSj+1,ks j=0,...,m—-1, L = am
k=j+1
where a; are arbitrary polynomials. {lm:levels}

Lemma 3.5:

Let (s115---581,m) = A (01,...,0m) be given. Then, for each j = 0,...,m —2, and r =

j+1l....m—-1
r m .
L+ Z Sk j+1Lr =a;+(=1)""/ Z Ak (Sret ks Sr j+1)- (3.6) {levels}
k=j+1 k=r+1
Givenn = (ny,...,ny) € Z7, set
Xijhk =min{n; + 1,n +2,...,n +2},  j<k.
We are ready to prove {1lm:asym_MP}

Lemma 3.6:
Given i € (Z]')* let a0, a1, - - -, a5, be the Hermite-Padé polynomials associated with the
Nikishin system N (o, . . ., 0) such that (3.1) holds. Then for each j =0,...,m =2

Aii,j ~ Qii,mSm, j+1

e . m—j-1_ _ .
(Z) =0|; (77n.]+1+2kzl Xit, j+1, j+k+1 2m+2.l+3) EH(C\Am), z — 00, (37) forden}

*
- .
n,j
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where w;il ; is a monic polynomial with real coefficients of degree Z';z_lj_z Xii, j+1, j+k+l T M el —
2m +2j + 3 (the sum is empty when j = m — 2). The polynomial a; ;,j = 0,...,m — 2, has at

least le?:_lj_l Xii,j+1, j+k+1 T i, je1 — 2m +2j + 1 sign changes in Apm.
Proof. Fix j € {0,...,m —2}, using (2.11) and (2.12), we have

|S]+1 k|

|0'1+1|

= (-1 a5+ Z( ki

O-JH k=j+1

m
+ (—1)Ja7l,j?j+l - Z (—1)ka7l,k(7j+1, (Sj+2,k,0'j+1>>-
k=j+2

The quotient = P j has the same structure as .7 in Lemma 2.5. Moreover, from (3.4),
_ i@ ( L
(O—]+1Wﬁ’J)(Z) Znn,_]+l

and, as a consequence of (2.10), for v =0, ..., n; j.1 — 2, we obtain the orthogonality relations

) € H(C\ Aj41)

d7j1(x)
0= [ x|z, - S D an s o | o0 2
Ajs k=j+2 wi,j(xX)
Therefore, the expression in parentheses under the integral sign has at least n7; ;.1 — 1 sign changes
in A j+1- Thus, there exists a polynomial wy ; | of degree n7;; ;.1 — 1 whose zeros are simple and lie

in Aj_H such that

1

m
(_l)jaﬁ,j - Z (—=DXa; 1 (sjs2.0,0j41) | € H(C\ Ajy2).
Wi, j,1 k=j+2

We can use Lemma 3.5 choosing r = j + 1 and obtain

m
—~ ; k -
G S @ = (D ag = L (=D a sk i)
k=j+2

&z

From (3.1) we know that &% ; — 511,415 j41 is O (2~ min{njs+lnj2+2}) 7 oco. Hence,

1

Wi, j.1 (2)

(-Daz;~ Y (-DFagi(span o) | (2) = ﬁ( : )

=, ZXﬁ,_i+1,_j+2+77ﬁ,j+l -1
=j+

Notice that if j = m — 2 we obtain

@53 -2 = Qi mSm.m-1 1
(2) =0\ — —
Wii,m-2,1 ZAXim=1,mT i, m-1

which is (3.7) for this value of j taking w. = w5 2.1

Using the identity (542 k, 8 j+1,j+1) = (Sj42,j+1, 8j4+3,k) for k = j+3,...,m, we deduce

m
(-1 a; ;- Z (—=D)*az 1 (s 2,00 Tj1)

k=j+2

m
{Prep_Elim3} = (=1 az ;- (—1)1+2a;,’j+2§j+2,j+1 - Z (—1)ka;i’k<sj'+2’j+1, Sis3 k). (3.8)
k=j+3
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We wish to eliminate the term with 's\j+2, j+1 from the right hand side of (3.8); therefore, we divide

both sides of (3.8) by 5.2, j+1 and use again (2.11) and (2.12). The right hand side becomes

X (8 42, j+15 8 j43,0)|

m
' 42
(=D a; i je1 — (=1)"ag 140 - Z (-1 ag x|+
K

—i+3 |Sj+2,j+1|

m
o ) R
(=1 az, ;Tjs2, j+1 + Z (=) s 1 (Tja2, ja1, (S j43,k> S j42, j+1))
k=j+3

which is a linear form like .« in Lemma 2.5, and

1 . ¢ ~
= (-Daz ;- (—=D*az k(s js2.00 0j11) | (2) =
(Wi, j.18)+2,j+1)(2) " k:Zj‘iz R J+
1
o (ZXﬁ,j+1,j+2+77ﬁ,j+l_2) € H(C \ Aj+2).
Therefore, for v =0, 1,..., x5, j+1,j42 + W7, j+1 — 4

d Tj+2,j+1 (x) ~0
Wiij.1 (x) '

m
[ e0anss 3 0Fanatsimnsinmd| @)
k

=j+3

So, the expression in parenthesis under the integral sign has at least x7 i1 42 + 75,41 — 3
sign changes in Aj,, and we can guarantee the existence of a polynomial wy ;,, degwy ;5 =

Xii, j+1,j+2 + M7, j+1 — 3, with simple zeros located inside A, such that

1

m
(-D7az;+ 0 (-D*az (340 Sjs2.41) | € H(C\ Aju).
Wii,j.2 k=7+3

On the other hand, using Lemma 3.5 with » = j + 2 and the definition of ML Hermite-Padé

approximant, we get

i j = Sjrl el Dt Sl el D a2 =

m
. ~ 1
(-Vaz,;+ ) (—1>’<a,~1,k<s,-+3,k,s,-+2,,-+1>eﬁ(—).

Xit,j+1,j+3
k=j+3 <
Thus,
m
Ly (~az ¢ Y|eo !
— a*-+Z— az; . (s; Siid i € .
Wi o n,j S 7,k \Sj+3,ks 3 j+2,j+1 Z/Vﬁ,j+1,j+3+Xﬁ,j+1,j+2+77ﬁ,j+1—3
In particular, if j = m — 3, we get
(aii,m—3 - an,msm,m—2)(z) ny 1
Wﬁ m-3 2(2) - ZXﬁ,m72,m,+/\/ﬁ,m72,m71+77m—2_3 ’

which gives us (3.7) with w?. . =wj ;3 when j =m - 3.

-3
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This process can be continued inductively, and after m — j — 1 reductions we guarantee the
existence of a polynomial wy ; ,,;_; of degree Z;{"z_lj_z Xii, j+1,j+k+1 + M, je1 — 2m +2j + 3 with

simple zeros in Am_l such that

as,j — Aii,mSm, j+1

(S e ket e —2mA2 )43
- (z)=é’(z (S oo g2 J+))eH<C\Am), ¢ - oo,
n,j,m—j-1

. . .
which allows us to deduce (3.7) taking Wi i = Wiijum—j-1-
As an immediate consequence we have

ap,j — Ai,mSm, j+1

(Z) -0 (Z—(ZT:lj1Xﬁ,j+l,j+k+1+’77|,j+1—2m+2j+2)) c H(C \ Am), 7 — oo,

i *
sm,]+1W;L’j

but N
as,j — Aii,mSm, j+1 ~
= = ag,jTm,j+1 — (Clﬁ,m - 5m,j+1aﬁ,j)-
Sm, j+1
Hence,
d T, j41 (%) &
m,j+ .
/xvaii,j(x)w*—(x) =0, v=0,1,..., Z Xi,j.j+k + 17, —2m +2j,
7, j k=1

and the polynomial a5 ; has at least Z;{"z_lj_l Xii, j+1, j+k+1 T 17, j+1 —2m+2j + 1 sign changes in A

which is the last statement of the lemma.

Now we are ready to prove the convergence of the approximants associated to the ML Hermite-

Padé approximation scheme.

Proof of Theorem 3.2. Let us begin with the simplest case when j =m — 1. Let A € (Z7")" be an

arbitrary sequence of multi-indices. According to (3.4) (recall that ny + - - - + n,,, = |11])

i om—1 — A, mSm,m

(x)=0

Wi m—1 (Z(|ﬁ+1)

and degwy ;-1 = Nim—1 < 2|7A|. Since degay ,, < ||, degas -1 < || — 1, it follows that

)GH(C\Am), 7 — o,

. m—1/ a5, m s the standard multipoint Padé approximant of ,,, ,, with respect to wj; ,,,_; (see [50]).
This implies that aj; ,, is the |7]-th monic orthogonal polynomial with respect to d s, m/Wii -1
and aj ,,_; the corresponding polynomial of second kind. This implies that the zeros of these
polynomials lie in A, and interlace. Now, (3.2) for j = m — 1 readily follows from [50, Theorem
1] (see [50, Corollary 1]) in the case that the sequence of moments of o, verifies Carleman’s
condition. When A,,,_; is a compact interval bounded away from A,, and limj;cp 77 -1 = ©o then
the number of interpolation conditions on A, (at the zeros of wj, ,,_;) suffice to guarantee the

convergence of the sequence, which follows from ([50, Theorem 1, Corollary 2]).

For other values of j, there is some defect in the order of interpolation on the right hand of
(3.7) and we cannot ensure that aj ;/aj , is an |7i|-th multipoint Padé approximant. That is the

reason for restricting the sequence of multi-indices in that part of the statement of Theorem 3.2.
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In the sequel, we assume that A C (Z7")" is an infinite sequence of distinct multi-indices such
that there exist £ € {0,...,m — 2} and a non-negative integer N such that n;,; < n; + N for all
t+1 < j <m-1. In this case, we automatically have lim;cp 775 ,-1 = +oco. Indeed, assume
that lim supj; s 77 m—1 < +oo. In particular, this implies that there exists a constant C such that
nm-1 < C, n € A. However, lim;;cp n,, = +00 because limj; ¢, |72| = oo since the multi-indices are

distinct; therefore, it is impossible that n,, < n,,—1 + N, 71 € A.

For j = m — 1 the proof of (3.2) was carried out above. Fix j € {¢,...,m —2}. We have

m—j-2
« .
deg Wi = Z Xi,j+1, j+k+1 T 15, j+1 — 2m+2j+3
k=1

<Np,j+1 —2m+2j+3+

m—j-2
(jrke1 +2)

k=1

=Nime1 —2m+2j +3+2(m— j—2) <z — 1 < 2]
for all 7 € A. Due to the assumptions imposed of the sequence A, we have

nj+k+] Snj+k+NS Snj+1+kN.

Therefore,
Xii,j+1, j+k+1 2 min{nji1, ... Njske1} = Njke1 — kN
Consequently,
m—j—1 m—j—1
. R R m(m+1)
N, j+1+ Xii,j+1, j+k+1 —2m+2j+1 > || -2m - N kZInl—Zm—NT. (3.9
k=1 k=1

Combined with the last statement of Lemma 3.6 this inequality gives the lower bound on the

number of sign changes of aj; ; on A,,.

From (3.9) and (3.7), it follows that there exists a constant « € Z, such that for all # € A and
j=4C,....m—-2

a;,,J

aﬁ,mEm,j+l
" (z) = (
ﬁ’j

) e H(C\ Ap), 7 — oo, (3.10)

Z|17i|+1—/<

n,m =

We also have deg a;; ; < |ii|—-1,degaj ,, < |72] and deg wi < 2|7|. This means that for each fixed

Gii,j

J, €< j<m-=2, { L N is a sequence of incomplete diagonal multipoint Padé approximants
ne

ai.m
of §yn_j+1 Which satisfies (3.10). It is easy to verify that if the sequence of moments of o, verifies
Carleman’s condition then for all j,0 < j < m — 1, the sequence of moments of s, ;1 also verifies
Carleman’s condition. Also, recall that in the present situation limjcp 77 -1 = +00 takes place.

Using the assumptions imposed on the moments of o, or on A,;,_; from [20, Lemma 2], it follows

that { Z"’ } converges to s, j+1 in 1-Hausdorff content (Definition 1.6) on each compact subset
n.m ) peA

of C\ A,,. Convergence in 1-Hausdorff content means that for each compact K ¢ C \ A,,, and for

each € > 0, we have

ag,j (2) 5 (2)
— Om,j+1
a?z.m(z) !

limh{zeK:

neA

>8}=0 (3.11)
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The rational functions % are holomorphic in C \ A,, because the zeros of aj ,, lie in A,.

This together with (3.11) imply that the convergence is uniform on each compact subset of C \ A,

according to Lemma 1.8.

If A, is bounded, we still have to consider those compact subsets of C \ A, which contain oo.
Due to the fact that the rational functions and s,,,, j+1 equal zero at oo this situation is obtained from

the general case using the maximum principle. The proof is complete.

The last statement of Lemma 3.6, (3.9) gives a lower bound on the number of zeros which
ay,; has in A, when 7i € A and A verifies the conditions of Theorem 3.2. If we impose greater

restrictions on A more can be said in this regard.

Theorem 3.7:

Let A C (Z")* be an infinite sequence of distinct multi-indices for which there exists £ € {0, ..., m—
2} such thatnj > nj + 1 forall € +1 < j <m—1andn € A. Consider the sequence of vector
polynomials (aj, g, . . ., a5 m)iien associated with N (o1, ...,0n). Then, a; j, j=¢C,....,m—1,

has exactly |i| — 1 simple zeros which interlace the zeros of az ,,.

Proof. We prove this by showing that for all j = ¢,...,m — 1 and 1 € A, the rational function

a;, j/as m is a diagonal multipoint Padé approximant of s,,,_ ;1. Due to (3.7) we achieve this if we

show that
m—j—1
Z X?z,j+1,j+k+1+77?z,j+1_2m+2j+3: Al —1+1 with [=0.
k=1
Notice that
m—j-1 m—j-1 m
Z X, j+1, j+k+1 T 15 j+1 — 2m+2j+3= Z X, j+1,j+k+1 t il - Z ni—2m+2j+3.

x~

=1 k=1 i=j+2

Combining these two relations, canceling out common terms and making a change of parameter

in the indices of the sums, we obtain the equation

m
[=20m=j=1)= > (Yijsik =)
k=j+2

Taking into account thatn; > njy +1,0+1 < j < m— 1, itreadily follows that x7 ;. x = ng +2.
Consequently,
m
D (ijar =) = 20m = j = 1)
k=j+2

and thus / = 0 as needed.

Hence,

(a7i,j = 7.mSm,j+1)(2) 1 '
* ( ) = _T%T:T s ] ::5,...
Wi, i\% b4
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and deg w,’iw. < 2|n|. Consequently, a;; ;/aj ,, is the |71|-th diagonal multipoint Padé approximant

with respect to 5, j+1 With interpolation points at the zeros of w i and at oo of order 27| —deg we i

So, the fraction aj; ;/aj ,y, is the |71|-th diagonal multipoint Padé approximation of s, ;1. From
the theory of diagonal multipoint Padé approximation (or simply using (2.10)) we know that aj; ,,,
is the |7i| — th monic orthogonal polynomials with respect to the varying measure d s,, j+1/ w:iw_
and ay_; is the corresponding polynomial of the second kind whose zeros interlace those of aj ,,,.

We are done.

3.3 Ratio asymptotic

Throughout this section Q5 ;, j = 1,...,m, denotes the monic polynomial whose roots coincide
with the zeros of ;. ;inC \ Ajt1 (Aps1 = @). In Lemma 3.4, these polynomials were denoted
wj, ;- From that lemma it follows that deg Q5 ; = m5,; = ny + - -+ + n;j, its zeros are simple and
lie in A j. We will show that these polynomials satisfy full orthogonality relations with respect to

certain varying measures. This fact plays an important role in the study of ratio asymptotic.

3.3.1 Multi-orthogonality relations

From Lemma 2.5 and (3.4) in Lemma 3.4 it readily follows that for j =0,...,m — 1

5 :/ T B 2010 (3.12)
Qﬁ,j(Z) i—X Q?z,j(x)
where Q; o = 1, and

v doji(x)

/x sz;l,jﬂ(x)m:& v=0,1,...75 ;51 — 1. (3.13)
Set
i, j+1 %5

%,f = w’ j:0""’m_13 (314)

Os,j

where Qj o = Q5. m+1 = 1. Since % ,,, = (=1)"ay ,,, and ay ,, is monic, we take J7; ,, = (=1)™.

Lemma 3.8:
Consider the Nikishin system A (o, ...,0m). For each fixedn € (Z7")* and j =0,...,m -1

jipﬁjﬂ(x)do'jﬂ (x)
Y05, : =0, =0,....05 41— 1 3.15
/x Qi1 (X) 05, (x)0j, j42(x) y T+l G-

and
Sy (2) = / r%z,j+l(x) c%ﬂﬁ,jﬂ(x) dojsr(x)
n,j -

. 3.16
Z—X Qii,j(x)Qﬁ,j+2(x) ( )
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{Im:interlace}

Proof. Formula (3.15) is (3.13) rewritten with the new notation. Since deg Q5 .1 = 73, j+1, (3.15)
implies that

/ Qi j+1(2) = Of, js1(X) 0s i1() G, i1 (x) d oy (x) 0
z-x 05 (0 Qi (%)
Consequently,
Q* ) (Z) Q?L,j+l (x) e%ﬁﬁ,jﬂ (x)do-jﬂ(x) :/ Q%i,jﬂ(x) %’j+1()€)d0'j+1(x)
emx 05 (00 2() i=x 04, (007,00

Taking into account (3.14) and (3.12) we get

Q5. j41(x) 7 1 (x) dojrr (x) :/ Ay iv1(x) dojr (x) _ oy i (2)
=X Q?z,j(x)Q;i,j+2(x) —X Qﬁ,j(x) Qﬁ,j(Z).

Therefore, (3.16) holds.

Givenri € (Z¥)*andl € {1,...,m}, by 7i' we denote the multi-index obtained adding 1 to the
I-th component of 72. In the next lemma, we prove that the zeros of the polynomials Qj; ; and Qﬁz,j
interlace. The idea of the proof was borrowed from [6, Theorem 2.1].

Lemma 3.9:
Consider the Nikishin system N (o, . ..,0m). Foreachn € (Z7")* and j = 1,...,m, the zeros of

the forms o7 ; and 1 . in A j interlace.
5 n,j ;

Proof. Fix7i € Z" and j € {1,...,m}. Let @, 8 € R be such that &> + % # 0. Define the linear
form
D

o=y +,3£7ﬁ1,j.

Repeating the arguments in the proof of Lemma 3.4 we deduce that the form Z; ; has at least
17,; sign changes in &j, and at most n5; ; + 1 zeros in C\ A4y (A4 = @). Consequently, all the

zeros of Z; ; in C \ Ay are real and simple.

From this assertion, we deduce that the forms <7; ; and o7 ; cannot have common zeros. If

such a point y exists, the function

A7 ()

Dy i (x) =y i(x) — ———

Ty (x)

would have a double zero at y. But this last statement contradicts what we already know.
Fix y € R\ A1, and consider the form
Ty ) = At () () =y (0) ().

By construction j; ; ,(y) = 0, and thus Z. ; y(y) # 0. Take two consecutive zeros yy, y2 of &1 ;

in R\ Aj;1 and suppose that y; < y. The zeros of <. ;are simple; therefore, o7/, (y1) # 0 and
. Al

64



A, (y2) # 0. Since o j and .o%; ; have no common zero, we also get that 2% ;(y1) # 0 and
n ’.] El
;. i(y2) # 0. Thus,
T i D = =i ;) (y1) #0,
‘@;,i,j,yz (y2) = _dﬁ,_;‘()’z)v@{ﬁ/z’j (y2) #0.
However, the function _@YIL iy (y) preserves the same sign all along the interval [y, y2]. Notice that

</, (y) changes sign when y moves from y; to y», so .27 ; must also change sign. By Bolzano’s
n ’.]

theorem o%; ; has a zero in (yy, y2). The proof is complete.

3.3.2 The Riemann surface

The ratio asymptotic of the ML multiple orthogonal polynomials is described in terms of the
branches of a conformal mapping defined on a Riemann surface associated with the geometry of
the problem. In the sequel, we assume that Ay is a closed bounded interval for all k = 1,...,m.

Let us briefly describe the Riemann surface of interest.

Let #Z denote the compact Riemann surface

X = O%k
k=0

formed by the m + 1 consecutively “glued” sheets
Ry =C\ A, Rr =C\ (Mg UAgs1), k=1,....m, R =C\ Ap,

where the upper and lower banks of the slits of two neighboring sheets are identified. This surface
is of genus zero. For this and other notions of Riemann surfaces as well as meromorphic functions

defined on them we recommend [71].

Let 7 : # — C be the canonical projection from Z to C and denote by z(¥) the point on %
satisfying 7(zF)) = z, z € C. Forafixedl € {1,...,m}, let 4D : # —> C denote a conformal
mapping whose divisor consists of one simple zero at the point c0(®) € %, and one simple pole
at oo € %,. This mapping exists and is uniquely determined up to a multiplicative constant.

Denote the branches of () by
() =y P W), k=0,....m, ez (3.17)
From the properties of ¢V, we have
U (2) = Cra/e+0(1/2%), 2> 00, (1) =Coyz+0(1), 72— o, (3.18)
where C;;, Cy,; are non-zero constants.
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{normconfmap}

{1m:BVP}

{boundary3}

It is well known and easy to verify that the function []}_, ¥ ,((l) admits an analytic continuation

to the whole extended plane C without singularities; therefore, it is constant. Multiplying v if

necessary by a suitable non-zero constant, we may assume that (! satisfies the conditions
m
[[ei)=c. 1c=1. cu»o.
k=0

Let us show that with this normalization, C is either +1 or —1.

Indeed, for a point z(K) € % on the Riemann surface we define its conjugate (k) = 7R,
Now, let E(l) : # —> C be the function defined by Z(l) () =y (7). Itis easy to verify that
J(l) is a conformal mapping of Z onto C with the same divisor as (Y. Therefore, there exists a

constant ¢ such that J(l) = cyy (). The corresponding branches satisfy the relations
—(1) ) = I
U (D =v"@ =@, k=0,....m.

Comparing the Laurent expansions at co of i,b(()l) (z) and cd/(()l) (z), using the fact that C;; > 0, it
follows that ¢ = 1. Then
l 1) =
v =v@.  k=0...m.

This in turn implies that for each k = 0, ..., m, all the coefficients, in particular the leading one,
of the Laurent expansion at infinity of ¢ ,((l) are real numbers. Obviously, C is the product of these
leading coefficients. Therefore, C is real, and |C| = 1 implies that C equals 1 or —1 as claimed.

So, we can assume in the following that
m
[[vd=e.  cu>o, (3.19)
k=0

where e is either 1 or —1. It is easy to see that conditions (3.18) and (3.19) determine l//(l) uniquely.

We will need the following lemma. Its proof can be found in [6, Lemma 4.2]

Lemma 3.10:
Set

F o= Tw) (3.20)
v=k

where the algebraic functions ;bf,l) are defined by (3.17)-(3.19). The collection of functions F ]El) k=

1,...,m, is the unique solution of the system of boundary value problems
1 F 1Y e H(C\ Ay)
2a) F'(00) >0, k=1,...,1-1
2b) (F,g”) (c0)>0, k=1,....m

W~ 1 _
3) [F (x) o= =1, xel;
’(Fk—leH) (x)’

where Fél) = F(l)

m+1

1.
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3.3.3 Proof of Theorem 3.3

Theorem 3.3 will be derived from Theorem 3.2 and the next result which gives the ratio asymptotic
of the polynomials Q5 ;. In proving Theorem 3.11, we adapt the scheme developed in [6, Theorem

1.2] for the study of the ratio asymptotic of type 11 Hermite-Padé polynomials of Nikishin systems.

Given an arbitrary function F'(z) which has in a neighborhood of infinity a Laurent expansion
of the form F(z) = Cz*¥ + © (zk‘l) ,C #0, and k € Z, we denote

F =

Al

Theorem 3.11:
Consider the Nikishin system A (o7, ..., 0m) where the intervals Ay, k = 1,...,m, are bounded
and o] # 0 a.e. in Ar. Let A C (Z')" be an infinite sequence of distinct multi-indices for which

there exists a non-negative integer N such that nj.y < nj+ N foralll < j <m—1andn € A.
Thenfork=1,...,m

0.1,(z) _
im A = F (), (321
iieA O x(2)
uniformly on each compact subset of C \ Ag.
Proof of Theorems 3.11 and 3.3. From Lemma 3.9 we know that, for each k = 1, ..., m the zeros

of Q5 r and Q.. , interlace on Aj. Consequently, the family of functions (Qs1 1 /95 1 )iien 18

uniformly bounded on each compact subset of C \ Ag. Therefore, there exists A’ C A such that

Q;ll’k(z)

Sk a0 k=1...m, 3.22
A Oarta) - 0K " (322

uniformly on each compact subset of C \ Ag, where G € H(C \ Ax). In principle, the limiting
functions G may depend on A’. In order to prove the existence of limit along all A, it is sufficient
to show that G = F, ]El) regardless of A’. Our goal will be accomplished with the aid of Lemma
3.10.

First, it is obvious that the functions G(z) and their reciprocals are analytic in C \ Ay.
Therefore, condition 1 of Lemma 3.10 is fulfilled. On the other hand, considering the degrees of
the polynomials Q5 , and Q?lz’ x> for all n € A the rational functions on the left of (3.21) at infinity
are either equal to 1 when k =1, ...,/ — 1, or their derivative equals 1 for k =/, ..., m; hence, the
limit functions must satisfy either 2a) or 2b) depending on k. Thus, any normalization of these
functions obtained by means of a multiplication by positive constants also satisfies 1), and 2a) or
2b).

Now, to prove the boundary conditions 3 it is necessary to use some tools developed for the
study of ratio and relative asymptotic of polynomials orthogonal with respect to varying measures.

The main sources are [24], [53] and [56].
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Define the constants

| ()| dog (x)] 712
K oy = 2 : , k=1,...,m, 3.23) {K_nk
el (/ Ok G O (] " (323) {Knk}

K; m =1,
K
K7l,k =k 1? k:]’ ,m
K k
Set
{orthonormal} Gik = ki xOnk> hax = Ké ik, k=1,....m, hgo:= K,% 0760 (3.24)

With this notation the expression (3.15) is equivalent to

s 2 ()l d 0 ()
0. ’ -0, =0, — 1.
/ i ) OO ] ” ik

Recall that o has constant sign and notice that Qj; ¢, Q5 -1 and J%; ; have constant sign on Ag.

Therefore, Qj  is the 17 x_;-th monic orthogonal polynomial with respect to the varying measure

|hs, 1 ()| d oge (x)]
10 k-1(X) Q5 g1 ()]

and gj; x is the n; ;_;-th orthonormal polynomial with respect to the same varying measure.

d oz i (x) =

With an analogous reasoning, we have Qi 1 is the M3, «1~th monic orthogonal polynomial

with respect to the varying measure

. } I NGO it O] 105us W0k
rying_measure = P i (x). .
|Q7ll’k_1(X)Q;ll,k+1(X)| |hﬁ,k(x)| |Q7ll’k_1(X)Q7ll’k+1(X)| "
Using (3.22), we deduce
107i,1-1(X) Q7 111 (%) 1
{limit_Qn_Qn} lim : : = R k=1,...,m, (3.26)
ReN 105 o 1 D05 1y @] 1Gro1(D)Gart (2]
where the convergence is uniform on Ag. On the other hand, from (3.16) it follows that
Gkt O g1 (01| d 7 ()]
{h_nk} | k (2)] = / . - , k=0,...,m—1. (3.27)
z=x Q5 ()05 k42 ()]
Moreover, we have the following relation between the degrees of the polynomials Oy ., Q5 2 and
qn, k+1
deg Qi x Qii.k+2 — 2deg G5 k41 =Mii k-1 + Mkl — 2Mii k
=Ng+1 — Nk <N,
where N is the constant given in the assumptions which is independent of 7 € A. Consequently,
taking into account [24, Theorem 9], we obtain
1
{lim_hnj} lim |h; 1 (2)] = , k=0,....m—-1, (3.28)
nen IV(z = bre1) (z = aien)|
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uniformly on each compact subset of C \ Ag,, where Agy; = [@g+1,br+1] (in particular on Ay

whenk=1,...m—-1).

The proof of (3.28) is carried out by induction for decreasing values of k. Indeed, if k = m — 1,

since hy ,, = (=1)™, (3.27) reduces to

q;  (x)
|hﬁ,m—1(Z)|:|/ im ) | dom(x)]

’

2=x |Q,m-1(x)]

and using [24, Theorem 9], we obtain

1
WG =am(z—bw)|

pointwise for z € C \ A,,,. However, it is easy to verify that the family of functions (hy ,,,—1)7iea iS

bm dx
E/am =X (b — 0 — )

lim Az -1 (2)] =
neA

uniformly bounded on compact subsets of C \ A, and uniform convergence on compact subsets of
that region follows from pointwise convergence. Now, let 1 < k + 1 < m and assume that (3.28)
holds for k + 1. Then, using (3.27) we can apply once more [24, Theorem 9] to obtain (3.28) for k

pointwise on C \ Ay and uniform convergence follows as before.

Similar arguments give
1
lim |h7ﬂ k(z)l = , k=0,....m-1, (3.29) {lim_hnj2}
Aen - o [V (z = brs1) (z = aks1)|

uniformly on compact subsets of C \ Agy1.

By construction hj, ,, = h;i = (—1)™. Therefore, using (3.28) and (3.29) it follows that

o b (0]
Iim ——— =1, k=1,...,m, (3.30) {limitQuot_hnk
e | Ry g (x)]

uniformly on Ag. Putting together (3.30) and (3.26), we have

- 1Mt k(o) 10521 (X) Qs gs1 ()] _ 1
el |hi x Q5 ()5t 4 ()] 1Gio1 ()Gt (X)]

uniformly on the interval A;. The function on the right hand side of the previous expression is

k=1,...,m, (3.31) {limit_varying

different from zero on Ay.

Fix k = 1,...,m. We distinguish two cases. If k = 1,...,1 —1(I > 2), then deg Ot ) =
deg Q5 « = M;.x- Using (3.25) and (3.31), the result on relative asymptotic of orthogonal polyno-
mials with respect to varying measures which appears in [9, Theorem 2] implies that

Q5 «(2) B _ Sk(2)

im ——— = ,
e Qi i (2) Sk (c0)

Gi(z)

k=1,...,1-1, (3.32) {ratio_S}

where Sg is the Szeg§ function on C\ Ay with respect to the weight function
G (DG (D™, x €A

Consequently,
ISk PG k-1 (D)Grn (D)7 = 1, x € Ag. (3.33) {Sk_Gk}
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and for x € A,
G (x)[? 1

Gt ()Gint ()] S2(e0)’

k=1,...,1-1. (3.34) {boundary1}

Now,if k =1,...,m, thendeg Qi , =deg Oy x + 1 =15, +1. Let Q7 | be the n;; . -th monic
orthogonal polynomial with respect to the varying measure (3.25). Take
Qjit 1 _ Qjit 1 Q;,k
OQix Q4 ik

For the second factor, reasoning as above, we get

0: (2)
{ratio_SA*} lim k"7 Sk(z)

_ , 3.35
A O (@) Si(0) (3:3)

where Si is the same Szegd function we had before. In the first factor, we have the ratio of two
monic polynomials of consecutive degrees orthogonal with respect to the same varying measure
and with the help of the theorem on ratio asymptotic of orthogonal polynomials with respect to

varying measures [24, Theorem 6] we deduce

0.1
{ratio_phi} lim =2 ’k( ) = vk (z)

- =, (3.36)
ieN Q% @ ()

uniformly on compact subsets of C \ A;, where ¢y is the conformal representation of C\ Ay onto
the exterior of the unit disc such that ¢y (c0) = oo and ¢} (c0) > 0. Combining (3.22) with (3.36)
and (3.35) we have

Qi 1 (2) Sk (D) (2)
{Qnk_Gk_SK} lim ——— =G (2) = ———F— k=1,...,m, (3.37)
ieN Q5 k(2) Sk ()} ()
and using (3.33) it follows that for x € Ay,
G (x)]? 1
{boundary2} = - , k=1,...,m. (3.38)
|Gi-1(X)Grs1(x)|  (Sk ()¢ (0))?
Putting together (3.34) and (3.38) we have proved that the collection of functions (Gk),’?=1
satisfies the conditions of Lemma 3.10, where the right hand side of 3) is 1/wy
S 2 k=1,...,1-1,
{wk} we =4 (k) ) (3.39)
(Sk()p; ()=, k=1,...,m,
(instead of 1).
Let G k = cxkGg, where cg, k = 1,...,m, are constants chosen appropriately so that
k
_— =1, k=1,....m (co=cme1 = 1).
WkCk—1Ck+1
Such constants exist. Indeed, taking logarithm we obtain the linear system of equations (in In cy)
{linear_sys} 2Incr —Incr_; —Incpy; = Inwy, k=1,...,m, (3.40)
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which has a solution because the determinant of the system is different from zero. It is easy to
verify that the collection of functions (ék)zl:l satisfies all the conditions of Lemma 3.10. Since

that system of boundary value problems has only one solution, it follows that

Now, Gi(c0) = 1 when k = 1,...,I = 1(l > 2), and G| (c0) = | when k = [,...,m; therefore,

taking limit as z — oo it follows that

)
F k=101,
. :{ k() (3.41)

(F") (c0), k=1,...,m.

In any case, we have shown that independent of the subsequence A’ C A taken such that (3.22)

takes place the limiting functions are
Ge=F",  k=1,...m,

and (3.21) follows. With this we conclude the proof of Theorem 3.11.

Since aj ,, = Qfi. for all 71, (3.3) is a direct consequence of (3.21) and (3.20) when k = m.
Now, fix k € {0,...,m — 1} and & > 0. Consider the positively oriented closed curve I' which

surrounds A, at distance £. From (3.2) and the argument principle it follows that

lim

[ (ang/anm) () | /E;n (0
—_ PR it i d :1
Hen 271 Jr (anpfanm) ) . ¢

de= 270 Jr Smae1(4)

because s, x+1 has a simple zero at co and no other zero or pole in all C \ A,,. The integrals
on the left hand side only take integer values so they must be constantly equal to 1 for all
n € A such that |7 is sufficiently large. Now, degaj; ,, = |i1| and its zeros lie on A,, and
degaj ; < In| -1,k =0,...,m— 1. It readily follows that for all 7 € A with || sufficiently large,
degaj ;. = |11| — 1 and a; ;. has no zeros in the unbounded connected component of C \ I'. Since

€ > 0 is arbitrary, we also obtain that the zeros of a;; ; accumulate on A,,.

Now, using (3.2) and (3.3) (for k = m) it follows that

Coap (D) ap (D) gy (2) G (D Pz
lim = —

ReA a5 (2)  ieA ag, (2) @ip(2) aGim(2)  (y Dy (o)’

uniformly on each compact subset of C \ A, and (3.3) follows for k =0,...,m — 1.

The next result complements Theorem 3.11.

Corollary 3.12:
Assume that the conditions of Theorem 3.11 hold. Let (g x = k5 xQii.x)iey> It € A, be the system
of orthonormal polynomials defined in (3.24) and (K 1)L, n € A, the values given in (3.23).

71

{ck}



{def_ck}

{ratio_Anj}

{ortonormal}

Then, for each fixed k = 1,...,m we have

Kyl
lim =K,
neA Ky k
Kt -1
lim — =Kk " Km>
neA Ki k-1
and @
q:t . \Z ~
lim — LN KkFlil)(Z),
ieA g (2)
uniformly on compact subsets of C \ Ay, where
]
Ck F,7 (0), k=1,...,1—-1,
K = ———, Ck = (3.45)
VCk-1Ck+1 { (FIEI))’(oo), k=1,...,m,
and co = ¢, = 1. We also have
Az 1 (2) 1 FP(z
lim ;”‘ = - ~If1)() . k=0,...,m—1, (3.46)
" ﬁ’k(Z) Kk+1 © Km Fk+1 (Z)

uniformly on compact subsets of C \ (Ax U Ag+1). When k =0, Ag = 0.

Proof. From (3.21) it follows that in place of (3.31) we can write

lmlhﬁl,k(x)l 195 k-1(0) Qi k1 (X)) _ 1
aeh g (O Q5 4 ()5t 1 I |FD () FL, ()]

By the same token, (3.32) and (3.37) hold with the limit taken along all A.

With the same arguments that led to (3.32) and (3.37), but in connection with orthonormal

polynomials (see [2] and [24]) it follows that

k=1,...,1-1,

k=1,...,m.

lim =
ieh G5 1 (2)

(3.47)

Q;’ll,k(z) _{ Sk(Z)’
Sk(2) ¢ (2),

uniformly on compact subsets of C \ A;. Now, dividing (3.47) by (3.32) or (3.37), we obtain

LY Ck
lim =W = —— = Ky,
n Kk VCk-1Ck+1

where wy is given by (3.39) and the c; are the normalizing constants found solving the linear
system of equations (3.40) whose values were given in (3.41). Therefore, formulas (3.42) and
(3.45) take place. Now, (3.43) follows from (3.42) because

Kt i1 _
K k-1

Kl k" K5l m

Kk * " Ki,m
and (3.44) from (3.42) and (3.21) since

Kﬁl,kQﬁl,k

Kk Qnk

a3k

qi.k
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From (3.14), (3.16), and (3.24), we deduce

2
1 Qix(2) 95 k1 M ger1 (X) d ogeg1 (x)

A 1:(2) = ;
= R e @) Tox 0ar00ain

and similarly

2
1 Q.1,(2) qz, ha o (x)d oy (x)
{;llk(Z): . n'.k ntk+1 T'nt L k+1 + , k=0,...,m—1,
| Kﬁz’k Qit 111 (2) 2=x Qu  (0)Qz1 1 4r(¥)

Dividing the second expression by the first, taking absolute values, and the limit over 7i € A from
(3.21), (3.43), (3.27), and (3.30), formula (3.46) readily follows. O
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CHAPTER

Strong asymptotic of Cauchy
biorthogonal polynomials

In [14] pairs of polynomials {(P,, Q) }m.nez, were introduced which satisfy certain biorthogo-
nality relations (that we will discuss in the following pages). These kind of polynomials have a

particular interest in the study of partial differential equations and the two matrix model.

Our approach to study their strong asymptotic was to exploit their relationship with the multi-
level Hermite-Padé polynomials. Once in the context of Hermite-Padé polynomials we attack
the problem using ideas introduced by A.I. Aptekarev to study the strong asymptotic of Type i

multi-orthogonal polynomials with respect to Angelesco and Nikishin systems.

4.1 Statement of the main results

4.1.1 Cauchy biorthogonal polynomials

Let A = (A1, A) be a pair of intervals, contained in the real line R, which have at most one common
point. By .# (A) we denote the cone of all pairs (o7, o) of Borel measures with constant sign and

finite moments whose supports verify supp o C Ax and

// dm?;c) dyclrz(y)

Fix (01, 0%) € .4 (A). For each pair of non negative integers (m,n) € Zzzo there exists a pair

(P, On) of monic polynomials whose degrees verify deg P,,, < m,deg Q,, < n, and
doi(x)do
/ / Pm(x)Qn(y)M = Cném,n, Cn * 0. (41)
AL JAy xX=y

(As usual, 6,,, = 0,m # n,0,, = 1.) These polynomials were introduced in [14] and called
Cauchy biorthogonal polynomials. The original definition uses the kernel (x +y)~! (and measures
supported in the positive real line to avoid singularities in the kernel except when x = y = 0), but
we find it more convenient to employ (x — y)~! instead, since it adapts better to our presentation.

Some interesting properties were revealed. In particular, it was shown that deg P,, = n, its zeros
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are simple, interlace for consecutive values of n, and lie in 51 (the interior of A; with the Euclidean

topology of R). The same goes for the Q,, on Aj.

Cauchy biorthogonal polynomials appear in the analysis of the two matrix model [13, 15] and
were used to find discrete solutions of the Degasperis-Procesi equation [14] through a Hermite-
Padé approximation problem for two discrete measures. In [15], the authors apply the nonlinear
steepest descent method to a class of 3 X 3 Riemann-Hilbert problems introduced in connection
with the Cauchy two-matrix random model, solve the Riemann-Hilbert problem, and establish
strong asymptotic results for the Cauchy biorthogonal polynomials for a class of measures given
by weights with exponential decay at infinity (of Laguerre type). The results obtained in [15] were

later extended in [16].

Our goal is to prove strong asymptotic results for Cauchy biorthogonal polynomials when the
intervals Ax = [ag, br], k = 1,2 are bounded non intersecting intervals and the measures o, 0%

verify Szeg§’s condition

/ In o (x) dna, (x) > —oo, k=1,2, 4.2)

A

where o’ denotes the Radon-Nikodym derivative of o with respect to the Lebesgue measure and
dna(x) the Chebyshev measure on the interval A = [a, b] (see (1.16)). In this case we write
(o1,02) € L(A). Therefore, we extend Szegd’s theory on the strong asymptotic of orthogonal
polynomials supported on a bounded interval of the real line to the context of Cauchy biorthogonal

polynomials. In the sequel, the intervals A, A, are bounded and do not intersect.

Theorem 4.1:
Let (01, 0%) € L (A) and {Py}n>0,{Qn}n>0 be the sequences of monic polynomials determined
by (4.1). Then

e Pa@ _GI@ L 04() | Ga(2)
n @(z)  Gi(eo) n @(z)  Gp(eo)

4.3)

uniformly on each compact subset of Q; = C\ Aj and Q, = C \ Ay, respectively, where @) €
H(Qy), k = 1,2, (holomorphic in Q) is the exponential of a complex potential constructed from
a vector equilibrium problem (see (4.40) and (4.42)), and G7, Gy are Szegd functions obtained
as components of fixed points of the maps Ty, and Ty, respectively (see Def. 4.12, (4.72) and

\ifo}
(4.66)).

The logarithmic and ratio asymptotic of biorthogonal polynomials were obtained in [32] for
more general Cauchy type kernels involving m > 2 measures. As in [32], we reduce the study
of the strong asymptotic of Cauchy biorthogonal polynomials to that of polynomials arising from
an associated mixed type Hermite-Padé approximation problem. The Hermite-Padé polynomials
turn out to be orthogonal with respect to varying measures. So, the strong asymptotic of such

sequences of orthogonal polynomials play a central role in our discussion.
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4.1.2 Orthogonal polynomials with varying measures

Let A = [a,b] c R. Consider a sequence {d u;,/wan}n>0 Where u, is a finite positive Borel

measure supported on A and wy, is a polynomial with real coefficients, degw,, = i, < 2n,

2

n
whose zeros {xzn’i}i:Zn—in n

lie in C \ A. This is called a sequence of varying measures. Let
L, (x) =x™+--- be the n-th monic orthogonal polynomial satisfying
d
/xVLn(x)L(X)zo, y=0,1,...,n—1. (4.4)
[wan (x)]
The sequence {L, },>0 is called the sequence of monic orthogonal polynomials with respect to the

given varying measures. A common normalization is to take

-1/2
Ty = (/ Lfl(x)—d#"(x) ) ,

[wan (x)]

and define /,,(x) := 7,,L,,(x) as the orthonormal polynomial of degree n.

In the context of multipoint Padé and Hermite-Padé approximation, orthogonal polynomials
with respect to varying measures arise naturally (see, for example, [5, 8, 20, 41, 56]). Recall
that depending on the type of asymptotic one wishes to obtain for the sequence {L,},>0 (or
(1)n>0), some conditions must be imposed on the varying measures. In this chapter we will use

combinations of (S1)-(S4) (see Subsection 1.5).

In many applications, d u, = h, d, i’ > 0 a.e. on A, where {h, },>0 is a sequence of positive
continuous functions which converges uniformly on A to a positive continuous function /4, and the
zeros of the polynomials {w», }, >0 are uniformly bounded away from A in which case (S1) and

29

(S3) are immediate, and (S2) holds if i verifies Szegd’s condition.

Conditions (S1)-(S3) are sufficient to prove strong asymptotic for {L,},>0. The first result in
this direction appeared in [54] and was later improved in [24] and [9]. An alternative proof of the
main result in [54] may be found in [91]. The answer in [54] is given in terms of a Szegd function
associated with u and a Blaschke product in which the zeros of w,,, intervene (see (4.13) below).
We wish to replace the Blaschke product in the asymptotic formula by the n-th power of a fixed
function (as in Szeg&’s classical result). In order to achieve this, some knowledge of the asymptotic

behavior of the polynomials wy,, is required and condition (S4) comes in.

Let ¢ be a positive continuous function on A. Let A, be the (unitary) equilibrium measure
supported on A which solves the equilibrium problem for the logarithmic potential with external
field —% In ¢. It is well known that A, is uniquely determined by the equilibrium conditions on A
(see [88, Theorem 1.3])

<7y, x€suppdy,

1
Va, (x) - 3 In ¢(x) 4.5)
>y, x€A\e, cap(e) =0,

where 7y is a constant, cap(e) denotes the logarithmic capacity of e, and

V,lw(u)z‘/ln;d/hp(x)

|u = x|
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denotes the logarithmic potential of 4,. We will assume that ¢ is such that supp 1, = A. (This is
true, for example, if % In ¢ =V, is the logarithmic potential of a measure p, of total mass ¢ < 1,
supported on an interval disjoint from A. In this case, A, is the balayage of p on A plus (1 - ¢)
times d 75 /7, and equality is attained in (4.5) on all A due to the regularity of the interval A with
respect to the Dirichlet problem.)

Set
O(u) = e VW), vy =V, + iVAW C:=¢, (4.6)

where V), ., denotes the harmonic conjugate of V,  in C \ A (which equals zero when u > b, A =
[a,b]). Though \7,1#) is multi-valued, it has an increment of 27 if we surround once the interval A
in the positive direction; consequently, @ is a single-valued analytic function in C \ A with a simple

pole at oo since ®(u) =u+ (1), u — oo.

We write u € .(A) when u verifies Szeg@’s condition on A. Recall that the Szegd function

of u is defined as

dna(x)|.

V(u—0b)(u—-a) / In(y/(b - x)(x — a) p'(x))
2m A X—u

G(u,u) :=exp [

The square root outside the integral is taken to be positive for # > b and those inside the integral
are positive when x € (a, b). The Szeg6 function is characterized in terms of a boundary value

problem (for details see Section 1.4.1).

Theorem 4.2:
Assume that {(f1n, Wan) }n>0 verifies (S1)-(S4) and supp A, = A (see (4.5)). Then,

fim ) _ 1
n C"®"(u) \2gx

G(yu,u), 4.7

uniformly on compact subsets of Q, Y u is the measure with differential expression  d u, and  is

given by (1.28). Moreover,

T, 1
lim — = —G(yu, o), (4.8)

and
L) _ G
n @®"(u)  G(yp,)

4.9)
uniformly on compact subsets of Q.

The following result is obtained from Theorem 4.2. It is in the spirit of [95, Theorem 14.3].
The assumptions have points in common but they are not the same. In some regards the conditions
in [95] are more general, in others our assumptions are weaker. The most notable difference is that
in [95, Theorem 14.3] the measure y is required to be absolutely continuous with respect to the

Lebesgue measure whereas we do not need this restriction.

Theorem 4.3:
Let {u,, }n>0 be a sequence of measures verifying (S1)-(S2). Let T,dt = vdx, be a probability
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measure on A such that suppt = A, v is continuous on A, and let there be constants A, 3 > —1,

and By such that
AN (b =x)(x — )P < v(x) < A((b - x)(x — a))P, x € (a,b). (4.10)

Set
(I)T(u) = exp (_VT(M) - ivr(u)),

where V. is the harmonic conjugate in C\ A of the logarithmic potential V. Then

im 220 L G, @.11)

1m =
n @ (u)  \2x

uniformly on compact subsets of Q, where p,, is the n-th orthonormal polynomial verifying

0, ,
/pm<x>pn<x)M —{ e

D3 (x)| 1, m=n.
Due to the extension and technical difficulties of the proof of the main results, we begin with a

brief description of the present chapter.

4.1.3 Outline and structure of the proofs

Section 4.2 is dedicated to the proof of Theorems 4.2 and 4.3. These results are used in Section
4.3 in the proof of Theorem 4.1 but they have independent interest and may be employed to obtain

exact estimates of the rate of convergence of multipoint Padé and Hermite-Padé approximations.

Section 4.3 is devoted to the study of the strong asymptotic of a sequence of Hermite-Padé
polynomials intimately connected with the Cauchy biorthogonal polynomials defined above. The
proof of Theorem 4.1 is not simple because it requires several steps some of which are quite

technical. A brief description of the idea of the proof is helpful for a better understanding of it.

In [62] the authors noticed the connection between Cauchy biorthogonal polynomials and a
so called multilevel Hermite-Padé approximation problem. For convenience of the reader, we
summarize this relationship in subsection 4.3.1. In subsections 4.3.2 and 4.3.3 we prove some
useful formulas verified by these approximants and their associated polynomials. In particular,
the biorthogonal polynomials { (P, Q) }n>0 are identified with certain Hermite-Padé polynomials
which turn out to be orthogonal with respect to varying measures. So the initial problem is reduced

to finding the strong asymptotic of the associated Hermite-Padé polynomials.

The results in [62] clearly indicate which functions @, ®, must be taken to compare the
Hermite-Padé polynomials to establish their strong asymptotic behavior. This is explained in detail
in subsection 4.3.4. These functions are the exponentials of the complex potentials associated
with the equilibrium measures of the vector equilibrium problem used to describe the logarithmic

asymptotic of the same polynomials.
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Because of the definition of biorthogonality, if the role of the measures o, 0 is interchanged
then the polynomials P,, O, are also interchanged; therefore, if the strong asymptotic of the
sequence {Q }n>0 is obtained then that of the sequence {Pj, }, >0 readily follows. Thus, we focus

on {Q, }n>0; more precisely, on their associated Hermite-Padé polynomials.

To obtain their strong asymptotic we adapt a very clever method devised by A.I. Aptekarev to
obtain the strong asymptotic of Type 11 Hermite-Padé polynomials for Angelesco [4] and Nikishin
[5] systems of measures using fixed point theorems. To understand what this is about, we need to

advance some formulas.

We show that for each n > 1 there exist polynomials Q. 1,Qn 2, With O,2 = O,, and a

continuous function 4,1 on A; such that

do (x) |n,1(x)|dory (x) _ B
/XQ"()IQ,”()I /Q’”() Tt

where lim,, |h, 1 (x)] = (\/)m)‘1 uniformly on A;. Theorem 4.2 cannot be used
directly because the polynomial which in one relation is orthogonal in the other relation appears
in the denominator of the varying part of the measure. To handle this, we (temporarily) unlink this
inter dependence. For that purpose, for each n > 0 a (non-linear) operator T, is introduced, defined
on the set of all pairs (Q 1 Qz) of monic polynomials with real coefficients of degree n with zeros

in the complement of A, and Ay, respectively, such that Tn(é 1 Qz) = (QT, Q3) verifies

do» (x) | A1 (x)dory (x)
Q()A 0= VO (x) ————2, =0,...,n—-1. (4.12)
- [ e 01 [oiu 10:(0)] ’ "

Notice that (Q,.1,Q.2) is a fixed point of 7,,. (Indeed, in subsection 4.3.6 a more general operator
is defined where it is only required that the sequence (|/,,1]),>0 converges uniformly to a positive
continuous function on A;. This extension allows to cover other possible applications we have in

mind.)

Take sequences of denominators (én,l)nzl, (Qn,z)nzl, and their associated by (4.12) orthog-
onal polynomials (QZ,I)nzo’ (Qz,z)nzl- If we suppose that g7, g, are the uniform limits on A, and
A1, respectively, of the sequences (én,l /@) n>0, (Qn_g /@3 )n>0, using Theorem 4.2 in subsection
4.3.6 we obtain the strong asymptotic (g7, g5) of (Q;’1 /D20, (@) 5/ P} )n>0. Previously, in sub-
section 4.3.5 using Theorem 4.3 we show that any pair (g, g2) of Szegd functions on C\ Ay, C\ A,
respectively, can be obtained as strong limits of the initial pair of sequences. From the boundary
properties verified by Szeg6 functions it turns out that (g1, g2) and (g}, g5) are connected by the

boundary value equations

g NG Z G ) =

Vo 06 —anel )’
P = 81(x) . ac.on [anbal = Ag

V(b2 = x)(x = az) o) (x)

where (01,07) € S(A). This motivates the introduction of another operator in subsection 4.3.7

T(g1.82) = (g}, &5) which on an appropriate metric space of functions is contractive and due to
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Banach’s fixed point theorem it has a unique fixed point. (Indeed in subsection 4.3.7 a more general
situation is considered but we limit ourselves here to the operator which is relevant in the case of
multi level Hermite-Padé polynomials.) The final step consists in showing that any neighborhood
of the fixed point of the operator T contains fixed points of the operators T, for all sufficiently large
n. This is done in Theorem 4.15 of subsection 4.3.8 using Brouwer’s fixed point theorem. Theorem

4.16 is a simple corollary of Theorem 4.15 applied to multi level Hermite Padé polynomials.

In subsection 4.3.10 we return to the biorthogonal polynomials. Since O, = O, 2, Theorem
4.16 gives directly the asymptotic of the Q,,. Then, we briefly discuss what needs to be done for the
polynomials P,. In subsection 4.3.10 we derive the strong asymptotic of other functions related
with the multi level Hermite Padé approximation problem and the final section 4.3.11 contains a
different approach for defining the comparison functions @, ®, on the basis of a three sheeted

Riemann surface of genus zero.

4.2 Strong asymptotic of orthogonal polynomials with varying mea-

sures

As mentioned above our goal here is to prove Theorems 4.2 and 4.3. They are essential in the
proof of Theorem 4.1, but have independent interest and may find other applications. We begin

explaining our choice of Szeg6 function for measures supported on an interval of the real line.

4.2.1 A starting point

Let x2,.5,2n —ip + 1 < i < 2n, denote the zeros of wo,. If i, < 2n we define x3,,; = 00,1 < i <

2n —i,. Set

W () — W (x2n.0)
B>, = —_
= [ P o) ()

i=1

When x,,, ; = oo the corresponding factor in the Blaschke product is replaced by 1/%(u).

In [24, Theorem 4] a strong asymptotic result is given. We state it as a lemma for convenience

of the reader and further reference.

Lemma 4.4:
Assume that { (., Wan }n>o verifies (S1)-(S3) and l,, is the n-th orthonormal polynomial associated
with (4.4). Then
fim 2.
n wou(u)

uniformly on compact subsets of Q.

1
Bon(u) = gez(u,m, (4.13)

We wish to point out that in [24, Theorem 4] there is a typo when writing the condition (S2).
There, it appears in terms of the Lebesgue measure d x instead of the Chebyshev measure dnx.

Except for that, the proof given is correct.
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When u,, = u is fixed and wy,, = 1 (so that By, = 1/ P21y we retrieve the standard result for the
strong asymptotic of orthogonal polynomials with respect to u € .%’(A). The drawback of Lemma
4.4 is the appearance of the Blaschke product on the left hand side of (4.13), but nothing can be
done to simplify the expression unless some restriction is imposed on the asymptotic behavior of

the sequence of polynomials {wy,, },,>0.

If du, = h,dpu, where i is a fixed measure satisfying Szegd’s condition on A, {h,},>0 is
a sequence of positive continuous functions such that lim,, 4, = h, and lim,— |W2, (x)|¢" (x) =

1/y(x) > 0 uniformly on A, the right hand side of (4.7) becomes V%G(gl/hﬁ, u).

4.2.2 Proof of Theorem 4.2

We begin with an auxiliary lemma.

Lemma 4.5:
Assume that the sequence of polynomials {way }, >0 verifies (54). Then
Boy, (u)

wan (1)

uniformly on compact subsets of C \ A, where ® and C are defined as in (4.6).

lim CH O™ (u)—— =G 2(Y, u) (4.14)

Proof. Notice that

CZn(I)Zn(u) BZn(”) — (Can)Zn(u)) (\Pzn(u)BZn(”))

o)\ () ) *-15)

and consider each factor in parentheses on the right hand side separately.

Define the function
Y(u) W(u)—Y¥(xou,:)

U—Xum,i]l-— \P(X—Zn,l)ql(u) .

f2n,i(u) =

It is easy to verify that this function is holomorphic and never vanishes in C \ A. Also, | fo5.i| can

be extended continuously to A with boundary values | f5,.;(x)| = |x — x2,..;| "', x € A. Moreover,

P (u) 1 1= ¥ (x20,0) ¥ (1)

u 1 —xpu! T—Wu)—qKXMJ)’

f2n,i(u) =

thus fo,,;(00) = =W (00) /W (x2p.;). AS |fan.i| is continuous and different from zero in C, it follows
that f>, ; and fZ_nli are in H; (C \ A) with respect to the Chebyshev measure on A; consequently,
fon.i 1s an outer function (see [87, Chap. 17, Ex. 19]). Then,

Vi —a)(u-b) / In [x = X20] dm(x)] |
/g A X—u

Son,i(u) = ciexp

(see (1.17)) where ¢; is a constant, |c;| = 1. Should wj,, be monic, an easy consequence of this

representation is

(TZ”BZn)(M)

W2n (”)

(4.16)

2n — —
=l_[fzn,,-<u>:exp[”(” e nA<x>].
i=1
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(The product of all the constants c; gives 1.) If wy, is not monic then the same representation

holds due to the fact that for any positive constant

V(u—a)(u->b) Ink
by ,/Ax—u

exp

dm@4=%

On the other hand, (C®)?/¥? is analytic and different from zero in C\ A. Moreover,
|CD(x)/¥(x)|]? = exp(2y-2V,, (x)),x € A, and using the equilibrium condition |CD(x)/¥(x)]* =
exp (—In@(x)) = 1/¢(x), x € A. Consequently, C>®?/¥? is an outer function and we have

o) V(u = a)(u - b) / nlng(x)
= exp n A X—Uu

l{l2n(u)

dnA(x)) ) 4.17)

Putting together (4.15), (4.16), and (4.17), we have

Ban) _ o (vw ~ =) /A In(hean(r)l" ) dm(x)) |

2n gy 2n
e (M)WZn(u)_

To deduce (4.14) it remains to use (1.29) and the definition of G(y/, u). O
With Lemma 4.5 at hand Theorem 4.2 is easy to derive.

Proof of Theorem 4.2. Note that

B(u)  12(u)Bon(u) won (1)
C2"<I>2”(u) - W2n(”) Can)Zn(u)an(u)'

As n — oo, the limit of the first factor on the right is given by Lemma 4.4 and that of the second
one by Lemma 4.5. The proof of (4.7) has been concluded.

Next, we deduce the asymptotic behavior of the monic orthogonal polynomials L, and the

leading coefficients 7,, of [,,. It is easy to see that
D) =e ™ =y + 0(1), u — oo,

Using (4.7) at u = co, we obtain (4.8). Then, (4.9) follows directly from (4.7) and (4.8). O

4.2.3 Proof of Theorem 4.3

We wish to express the orthogonality relations of the polynomials p, in such a way that we can

apply Theorem 4.2.

Notice that |®,(x)|~! = exp V,(x). According to [95, Theorem 10.2] (see also [95, Lemma
9.1]), there exists a sequence of polynomials {H;,—1},>0,deg H,—1 < n — 1, which do not vanish

on A whose zeros verify condition (S3) (see assertion on page 94 in [95]) such that
|Hyo1(x) /D% (x)] <1, x € (a,b), (4.18)
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{eq:e} lim |H,— (x)/®%(x)| =1, 4.19)

uniformly on compact subsets of (a, b), and
b
feq: £} tim [ (1,4 /@20)]) dya(6) =0, (4.20)
a

Now, the orthogonality relations satisfied by the polynomials p,, can be rewritten as

|H2_ (O] dptn(x) 0, m<n,
Pm(X)pn(x)— =
/ el H, @ 1, m=a
Let us check that the sequence
{|H,%_1<x>|dun " (x)}
2 * T n-1
@2 (x)] .

verifies (S1)-(S4). Indeed, the zeros of the polynomials H,_;, and thus of the polynomials
H? deg Hrzl_l < 2n, verify condition (S3). On the other hand, (4.18), (4.19), and condition

n—-1°

(S1) for the sequence of measures {u,},>0 imply condition (S1) for the sequence of measures
{(H}_ 1 d /197" 0 and

lim inf / In
n

therefore, (S2) takes place. Take wy, = Hi_l and ¢ = V. Using (4.20) we obtain (S4) with

Y = 1. The equilibrium condition corresponding to this case is the trivial one

\H,_ (x)]

Wﬂ;(x))dﬂﬂx) Z/lnﬂ'(x)dnA(x);

Vex)=Ve(x) =0

and the equilibrium constant is y = 0; therefore C = 1. Applying Theorem 4.2 the thesis of
Theorem 4.3 readily follows. O

4.2.4 Applications to rational approximation

Let u be a positive measure with suppu = A that satisfies Szeg&’s condition and its Markov
function j, as in (1.2). (In this section we take &, = 1,n > 0.) Consider a sequence of polynomials
{wan }n>0 as above, positive on A.

.. . . . L
From Problem 2 it is known that for each n > 1, there exists a rational function R,, = 2‘",

degL) , <n-—1anddegL, < nsuch that

(L-L% )@ 4,
W2n(z) B 7l

 — &

where the function on the left hand side is analytic in C \ A. Recall that R,, is called the n-th

multi-point Padé approximant of i with respect to wo,,.
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Moreover, we have already seen that L, is an n-th orthogonal polynomial with respect to the
varying measure i /w5, and it can be taken to be monic. The remainder of 7 — R, has the integral

expression (see 1.3)

wan(2) [ La)dp(x) w2 [ L&) du)
L2(2) Jawam(x)(z—x)  [2(2) Jawan(x)(z—x)’

(1= Rn)(2) =

where /,, denotes the corresponding orthonormal polynomial.

Taking into account [23, Theorem 8], we know that

hm/ [ (x) du(x) _ 1
noJawan((z=%)  \Jz=b)(z—-a)

uniformly on compact subsets of C \ A, where the square root is chosen to be positive when z > b.
So, a direct consequence of Lemma 4.4 and Theorem 4.2 is the next result.

Corollary 4.6:
Assume that (51)-(S3) take place where h, = 1,n > 0. We have

A= R)G) 270G (u,2)

n Bou(2) (z—a)(z-b)

If, additionally, ($4) holds and supp 1, = A, then

lim (C®)*" () (H - Rw)(2) _ 27G>(Yu,2)
n wan(2) (z—a)(z-b)

The limits are uniform on compact subsets of €.

4.3 Biorthogonal polynomials and multi level Hermite Padé polyno-

mials

4.3.1 Multilevel HP polynomials

Let Ay, Ay be non-intersecting closed intervals of the real line. Let (0,0%) € .#(A) where
A = (A1, Ay). Consider the Nikishin system .4 (o1, 02) = (s1.1,51,2), and recall that 51 = o
and d 51 2(x) = 02(x) d o (x) (see Definition 1.15 and (1.2)). Inverting the role of the measures we

define similarly s5 1,d 52,1 (x) = 01 (x) d 02(x), and keep in mind that A4 (o7, 02) # A (02, 071).

Nikishin system have found numerous applications in different areas of mathematics. In
particular, the ones generated by two measures appear in the analysis of the two matrix model
[13, 15] and in finding discrete solutions of the Degasperis-Procesi equation [ 1 4] through a Hermite-
Padé approximation problem for two discrete measures. Motivated in [14], the approximation
problem was extended in [62] for arbitrary m > 2 and general measures proving the convergence

of the method. We will focus on the case of two measures.
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Though some elements appearing next have been discussed in previous chapters, we esteem
convenient to repeat them in the particular case of two measures. For each n € N, there exists a
vector polynomial (a, 0, an.1, an2), not identically equal to zero, withdega, o < n—1,dega, <

n—1, and dega, » < n, that satisfies

»Q{n,O(Z) = (an,() - an,l§1,1 + an,2§1,2) (Z) = ﬁ(l/znﬂ)a (421)
G 1(2) = (—an,1 + ano522) (z) = O(1/2). 4.22)

Here and below, the symbol &'(-) is taken as z — oco. By extension we take <7, » = a, . The

polynomials ay, o, an.1, an 2 are called multilevel Hermite-Padé polynomials.

It can be shown that dega, » = n and the vector polynomial can be normalized taking a, »
monic. With this normalization (a0, @n.1,a5,2) is unique. Moreover, all the zeros of a, » are
simple and lie in the interior A, (with the Euclidean topology of R) of the interval A,. For more

details, see [62, Theorem 1.4] and Lemma 4.7 below.

Combining Cauchy’s theorem, Fubini’s theorem, and Cauchy’s integral formula, from (4.21)

it follows that
/xvﬂn,l(x)d(rl(x)=0, yv=0,...,n—1,

and from (4.22) we get the integral representation
an2(y)doa(y)
() = [ ISR,
X=y
Therefore,

4
//Mdm(x)d@(y):o, y=0,....n—1.
X—=y

Consequently a, >, normalized to be monic, verifies the same orthogonality relations as the

biorthogonal polynomial Q,, (see (4.1)) and coincides with it.

Analogously, for each n € N, there exists a vector polynomial (b, 0, bn,1, bn.2), not identically

equal to zero, withdeg b, o < n—1,degb, 1 <n-1,anddegb,» < n, that satisfies

Bno(2) = (bno = bpis22+bnos2) (2) = O(1/7"), (4.23)
B 1(2) = (=bn,1 +bn25s11) (z) = O(1/2). (4.24)

By extension we take %, » = b, . Normalizing b, > to be monic, we have b, > = P, (the other

biorthogonal polynomial in (4.1)).

Therefore, in order to prove Theorem 4.1, we need to find the strong asymptotic of the sequences
of polynomials {a, 2},>0 and {b,2},>0. Because of the symmetry of the problem, it suffices to

analyze the first sequence and the results for the second one are immediate.

Indeed, we will give the strong asymptotic of the forms ., o, %%, and the polynomials
an,0,An,1,dn,2, a8 1 — oo, under the assumption that the generating measures o, o, are in the
Szegd class; that is, (071, 02) € % (A) (see (4.2)). For general Nikishin systems of m > 2 measures,
the logarithmic and ratio asymptotic of ML Hermite-Padé polynomials was studied in [32] (see
also [60]).
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{int1}

{int2}

{int3}

{int4}

{hn1}
{prop1}

4.3.2 Some useful properties

The forms 7, x, k = 0, 1,2, are interlinked and satisfy interesting orthogonality relations which
will be of great use. The following result, is a special case (m = 2) of [32, Lemma 2.4]. It is stated

here for convenience of the reader.

Lemma 4.7:

Consider the Nikishin system A (o1, 02). For each fixed n € Z, and j = 1,2, o, ; has exactly
n zeros in C\ Aj, they are all simple and lie in Aj (A3 = @). @y 0 has no zero in C\ A;. Let
Qn,j»J = 1,2, denote the monic polynomial of degree n whose zeros are those of <7, j in A;. For
J=01

eQ/n,j(Z) / =Q7n,j+1 (x) do'j+1 (x)
_ , 425
0., c—x 0w, 2
where Qp0 = 1, and
v dojsr(x)
/x %,J-H(x)mzo, y=0,...,n—1. (4.26)

The orthogonality relations involving the linear forms .7, ; stated in (4.26) can be rewritten in

terms of orthogonal polynomials with varying measures. That is

3 Y do (x) _ B
O—/x 0n2(0) 505, —0,....n—1. 4.27)
and
dory (x)
O=/xVQn,1(x)%€L,1(x) , v=0,...,n-1. (4.28)
Qn,Z(X)

where, using (4.25) with j = 0 and (4.27)

(D)
Hon(2) = %&;(Z) = 0a(2)

002 (x) doa(x) / 0ua® dont) oo

I—X Qn,l(x) B I—X Qn,l(x).
Proposition 4.8:
There is a unique pair of monic polynomials with real coefficients (Q,,1, Qn.2) each one of degree

n, whose zeros lie in C\ Ay and C\ Ay, respectively, satisfying (4.27)-(4.28) with

Qi,z (x) d oy (x)

Proof. The existence of such polynomials is guaranteed by Lemma 4.7. We must show that if
(On.1,OQn2) is a pair of monic polynomials of degree n which satisfy (4.27)-(4.28) with %, ; as
indicated then we can construct forms <7, o, %, 1, 2, » verifying (4.21)-(4.22) whose zeros are

those of the polynomials Q. 1, On.2-

So, let (Qn.1,0n2) be an arbitrary pair of monic polynomials of degree n which satisfy
(4.27)-(4.28). Take %, » = an» := Qn.2 and

an1(2) = / Q”’Z(Zl:f"’“x) do ().
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Obviously, a1 is a polynomial of degree < n — 1. Rearranging this equality and using (4.27), we

get

(01.10n,2)(x) doa(x) —0,1(2) Qn,2(x) doa(x)
z-x  Quix) —x Oui(®)

The first equality tells us that .27, 1(z) = 0(1/z), so that (4.22) takes place, and the last equality

G 1(2) = (=an,1 +an2522)(2) =

implies that the zeros of 7, ; in C \ A, coincide with the simple roots that Q,, | has in the interior
of Aj. Moreover, these relations together with (4.27)-(4.28) imply that foreach v =0,1,...,n—1

[ ¥ ctatane = [20.u0 [220 528 a0 -

Q7 ,(1) doy(1) dory(x) doy(x)
J e [ 22 0t (1) Ora (1) - /= Ona A () =

These orthogonality relations verified by .7, | in turn imply that

/ eﬂzfn,l(x) (x) _ _/ X % I(X) d0'1(X) — ﬁ(1/2n+1). (4‘30) {orderAn@}
Z-x X

Z—

Using the definition of <7, ; (x), we get

nl()
<—

n0(2) =y (T (2) — ana(2)F12(2) + / dor(x) =

/an’l(Z)_an,l(x) ( ) /an Z(Z) anZ(X) S1,2(X),

Z—X

which is obviously a polynomial of degree < n — 1. Rearrangmg this equality and taking account
of (4.30), it follows that

Gn,0(2) = an,0(2) = an,1(2)51,1(2) + an2(2)512(2) = / % doy(x) = 0(1/2").

Thus, 47, o verifies (4.21).

From our findings, we deduce that the vector polynomial (a, g, dy.1,an2) defined previously
is the unique solution of (4.21)-(4.22). In particular, a, > = Q2 is uniquely determined and by

(4.28) so is Oy, since the measure (.74, 1 d 01)/Q, 2 has constant sign on A;. We are done. O

4.3.3 Normalization
{subsec:norm}

Set
doa(x) 2 / ) |H0.1(x)| d o (x)
: n , Kn.1Kn, = o (x . 4.31) {kappa:4}
2= [ ehat Moy Knin2) R TR 3D
Take
qn,1 = Kn,lQn,ls dn2 = Kn,ZQn,Zv hn,l = K%L’2%l,l' (4.32) {Qs}

Notice that e ()] do1 ()

P =/ z (x n LT O .

1= ) O
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We can rewrite (4.27)-(4.28) as

oz/xvqn,z(x)mzo, v=0,... .n-1, (433) {int5}
|On.1(x)]
and
o=/xvqn,l(x)|h”"(x)|d‘f‘(x), v=0,....n—1. (4.34) {int6}
|On.2(x|)
We also have
) don(x)
{int7} / 7 =1, (4.35)
210 0l
and
) |1 (x)] d oy (x)
{int8} / 2 : =1. 4.36
in R T REST (4:36)

Consequently, g,.1 and g, are the n-th orthonormal polynomials with respect to the varying

do
[h 1] land d o

measures
1On 2|

1,2.

nt respectively. Recall that the zeros of 0, ; lie in A =(a;,bj),j=

From [23, Theorem 8] it follows that if o5 > 0 a.e. on Ay, then for any bounded measurable

function g; on A,

_ e, dox) b
{int9} hyl,n/ |Q, ] = ;/ g2(x)dna, (x). 4.37)

Taking into account (4.29) and using (4.37) with g>(x) = |t — x|~',¢ € Ay, and (4.29), it follows

that
{int12} lim |72, 1 (£)] =1i / 42(*) 42 () (4.38)
in im|h, (1) =lim [ —— = .
n n |t = x[|Qn,1(x)]
1 [rb2d 1
:_/ M8 (%) _ — h(p)
T Jay |t =x] |t — azl|t — ba

uniformly for # € A;. Then (4.36), (4.38), and [23, Theorem 8] imply that if o > 0 a.e. on Ay,

then for any bounded Borel measurable function g; on A; we have

{int10}

11m/ 81 (x)‘li,l (x) Ihn,l (X) |d0_1 (x)

1 b
102 (x)] :E/ 81(x) dna, (x). (4.39)

4.3.4 The comparison functions
{subsec:comp}

The logarithmic asymptotic of general ML Hermite-Padé polynomials was studied in [32, Section
3]. In particular, it was proved that this asymptotic behavior can be described in terms of the
solution of a vector equilibrium problem which, in the case we are dealing with, reduces to finding
a pair of probability measures (11, 42), supp A; C Ay, supp Ay C A,, and a pair of constants (yy, y2)
such that

Vo (x) = v, (x) = v, x €A,
{vector_equil} @) 2 B =7 : (4.40)

V/lz(x) - %V/ll (x) =72, X € A2~
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It is well known that this problem has a unique solution. From [32, Theorem 3.4] it follows that
if o and o are regular measures (for the definition and properties of regular measures, see [92,
Chap. 3]) then for k£ = 1,2 we have

im Q" = exp(~Va),  limk,/} =y, (4.41)

where the first limit is uniform on compact subsets of C \ A.

Since strong asymptotic implies weak asymptotic, (4.41) reveals that the functions with which
one must compare the polynomials g1, ¢,,2 in order to have strong asymptotic (should it exist)
are tightly connected with the potentials V;,, V, and the constants 7y, y,. With this in mind (see
(4.6)), we define

Dp(z) = e V@ oz, k=12, (4.42)

where V,lk denotes the harmonic conjugate of V,, in C \ Ax. For a different expression of the

comparison functions see (4.85).

In (4.27)-(4.28) we see that the orthogonality relations verified by the polynomials O, 1, On.2
are interconnected. This prevents the direct use of Theorem 4.2 to obtain their asymptotic because
to give the asymptotic of one of the sequences one must know that of the second, and vice versa.
So, as indicated in the introduction, we will follow an indirect approach devised by A.I. Aptekarev

to attack analogous problems in [4] and [5].

4.3.5 Prescribed asymptotic behavior

An important ingredient of the method consists in being capable of producing a sequence of
functions of the form P,  /®7, k = 1,2, where P, i is a polynomial of degree n, whose limit is a

predetermined Szegd function.

Let (11, A2) be the solution of the vector equilibrium problem (4.40). From [25, Theorem 1.34]
it follows that d Ay = vi dx on Ag, k = 1,2, and the weights v, v, verify the assumptions relative

to v in Theorem 4.3 on the intervals Ay, Ay, respectively. In the sequel
Qi :=C\ Ay, k=1,2.

Proposition 4.9:

Assume that (uy, uz) € & (A) and for eachn 2 0, (4, 1, G, ) is the pair of polynomials of degree

n such that
~ - dpug(x) 0, 0<m<mn,
Gnk )G i (¥) —5— = k=1,2. (4.43)
/ n,k m,k |q)in(x)| 1, m=n,
Then @)
Z
lim q”,k _ G(,le, Z) (444)

n—oo (I)Z(Z) h \/ﬂ ’
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{Tn}

{kappa*}

{hn}

and -
i 204 _ Gl2)
e D) GlHx, o)

uniformly on each compact subset of Qi, k = 1,2, where the ®y were introduced in (4.42) and

Qn’k, k=1,21is dn.k renormalized to be monic.

Proof. As was mentioned above, [25, Theorem 1.34] guarantees that the components of the
equilibrium measures (11, A7) are absolutely continuous with respect to the Lebesgue measure on
the corresponding intervals and their weights vy, v, verify (4.10) with parameters 8 = 8o = —1/2
on the intervals Ay, Ay, respectively. The assumptions of Theorem 4.3 are verified and (4.44)

follows directly from (4.11). If &, x is the leading coefficient of g,, ;, applying (4.44) at z = co we

get
o G(uk, o)
limk,, p = ——
no " V2r
and (4.45) follows at once. O

4.3.6 The operator T,

Definition 4.10:
Let (01, 0%) € M (A). Let Py, i, k = 1,2, be the set of all monic polynomials with real coefficients

of degree n whose zeros lie in C\ Ay when k = 1 and in C\ A; when k = 2. Define an operator
Th: P X Py — Pni X Pno
where, for every (én,l, an) € Ppi1 X Pnn
T(Qn.1:0n2) = (0} 1. O} »)- (4.46)
being (Q:. |, Q> ,) the unique pair of monic polynomials of degree n constructed recursively as
follows. Fi’rst, ﬁ;ld the polynomial Q;, 2 verifying
/ an()d‘”(x) y=0,1,...,n—1.

n l(x)

Second, define 7", = 1 and

, (Q;,(0))* g
H,.1(2) ::/ n2 Ao-z(x) .
=X Qn,l (x)
Third, find the polynomial Q; | verifying

V % %:il(x)do-l(x)
/X Qn,l(x)f\—:(), v=0,1,...,n—-1.

Qn,Z(x)
Finally, set
-1/2 .
do(x) K,
K,=1K , = /(Q* 5 (X)) —=—— K m e k= 1,2 (4.47)
" " ( " 10,1 (x)] " K, «
and take
Ty =K Qi on = (K k)zji';l*k, k=1,2. (4.48)
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RemARK: Due to [23, Theorem 8] an easy consequence of the definition of /7 | is that

1
Wz = ars1) (z = brs)|

,112130 |h2,1(1)| = (4.49)

uniformly on compact subsets of C \ Ag41.

Let us prove the continuity of the operator T,, for each fixed n > 0. Given Q; = (01.1,01.2),
Q2 =(02.1,022) € P X Py define the metric d,, as follows

dn(Q1,Q2) = max{[|Q1,1 — Q12,5 1021 — Q2.2lla, }
where || - ||a denotes the sup-norm on the interval A. Suppose that
nli_llnoo dn (Qma Q) =0

and Q,; = (Om.1,0m2),Q = (Q1,02) € Pu1 X Ppo. From the location of the zeros of the

polynomials it readily follows that
lim (105 - Q7' lla; =0, lim [0}, — 03'lla, =0.
Therefore, for each fixed v > 0

. dO’] / dO’]
lim x” = [ xX—=¢ (4.50)
m—00 |Qm.2l 10> Y

and similarly for the other sequence of polynomials. If Q7 is the n-th monic orthogonal polynomial

with respect to %, the determinantal formula for the orthogonal polynomials allows to write

CO cl PECEEY Cn
co ¢ Cn-1
C] 2 r Cptl
. 4 cl co Cn
Qi(x)=C, : R s Co=| . L . #0,
Cn-1 Cn - C2n-1
Ch-1 Cn -+ Cop=2
1 x RIS xn

and similarly for the other n-th orthogonal polynomials Q) |, O ,, Q5. The determinantal formula
shows that the orthogonal polynomials depend continuously on the moments of the corresponding

measure. This together with (4.50) clearly imply that
lim d,(Q;,, Q") =0.
From Proposition 4.8 it follows that

Tn(Qn,l, Qn,2) = (Qn,l, Qn,Z),

where (Q.1, On.2) is the unique pair of polynomials of degree n verifying (4.33)-(4.36). Therefore,
(On.1,On2) is a fixed point of the operator T,,. In the case of arbitrary h,, it is not difficult to prove

that 7, also has fixed points. (In general, it may not be unique.)
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{limfund*1}

Indeed, given n if (Qn,l, Qn,Z) is a fixed point then the n zeros of Qn,l must lie in A; and the
n zeros of Qn’z must be in A,. Consequently, it is sufficient to restrict the operator T, to the class
@n,l X :@n’g of all pairs of monic polynomials whose first component has all its zeros on A and
the second has its zeros on Ay. Suppose that

n n

Opi@) =] |G=x0p)  Oua®@ =] ]Cr=yu).

J=1 J=1

Assume that the zeros are indexed in such a way that
alﬁxn,lﬁ'“sxn,nﬁbb a2§yn,1s---ﬁyn,nsbz.

There is a canonical homeomorphism between %, | x &, » and A| X Ay, where A, k = 1,2, is

the subset of A}’ made up of all points whose coordinates are increasing, given by

(Qn,lv an) — ((xn,l, ce axn,n)’ ()’n,ls cees ynn))

The operator 7', induces an operator from A; x A, into itself, where the image is determined by
the zeros of (Q) |,0" ,) = Tn(Qn,l, Qn’z). The induced operator is continuous and A; X A, is a
convex compact subset of R" X R"; therefore, by Brouwer’s fixed point theorem [42, Th. 7.2 (3)]

the induced operator has at least one fixed point. Consequently, so does 7.

We are ready to use Theorem 4.2.

Proposition 4.11:

Assume that (i1, uz) € . (A) and for each n > 0, (Qn’l, Qn,Q) is the pair of monic polynomials of
degree n which satisfies (4.45). Let (o, 07) € L (A) and let (QZ’I, QZ,z) = Tn(Qn,l, Qn,Z) where
{ Ry} nso fulfills (4.48). Then

9,2 1 i o q,,(2) 1
lim — = G(f, hoi,z2), lim — =
n Cldl(z)  agx ° n Ch®3(z)  \2r

uniformly on compact subsets of Qi and Q, respectively, fir = G(uk,-)/G(ug, ),k = 1,2,

G(f; 02, 2), (4.51)

and q, , = «, Q. is the corresponding orthonormal polynomial of degree n (see (4.47)).
Additionally,

* %
Kn,l 1 15 . Kn,2 1

lim —~ = —G( . = =
n C \2r : G 2r

Consequently,

G(filon, ), k=12 (452

QZ,I (2) G(fz_l ilO'h 2) . QZ,Z(Z) G(fl_IO'z, 2)
im = = , lim = .
n ®1(z)  G(fy hoy, ) no®(z)  G(f o, )

(4.53)

Proof. It is easy to see that the sequences (hpd oy, Qn,z)nzo, (d o, Qn,1)nzo verify (S1)-(S4) on
the intervals A; and A;. Therefore, the assumptions of Theorem 4.2 are fulfilled. Consequently,
(4.51)-(4.53) follow directly from Proposition 4.9 and Theorem 4.2 taking into account the equi-
librium equations (4.40) verified by the equilibrium measures and the defining formulas (4.42) for

the functions ®; and constants Cy, k = 1, 2. O
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Formulas (4.51)-(4.53) describe the strong asymptotic behavior of the components of the image
of T,,. In the next section, we give an operator approach to interpret the limiting functions appearing

in these relations.

4.3.7 The operator Ty,

The Szeg6 functions which describe the limits (4.51)-(4.53) verify the boundary equations (see
(1.17)-(1.19))

G(f oy, %) |? = 2] . ae. bl =Ay, 4.54
IG(f; hot,x)] o =G a) G ) a.e.on [ap,bi] =A (4.54)

and
IG(f o, 0)|* = i)l ae.on [as, ba] = As. (4.55)

Vb2 =) (x — an)aj(x)

The functions f, f> themselves are expressed in terms of Szegd functions and % is a positive
continuous function on Aj. The Szegd functions above are symmetric with respect to the real line,
never equal zero, and are positive at infinity. Consequently, on the real line, outside of the intervals
supporting their defining measures, they are positive. Relations (4.54)-(4.55) suggest the definition

of an operator.

Let A = (A, A2). We denote by C, the space of all pairs g = (g1, g2) of real valued functions
such that g; is continuous on A, and g, is continuous on A;. The functions g; and g, could be
defined on certain supersets of A, and A, respectively, but for the time being we only need to

specify their analytic properties as indicated. Set

Igllcy := max{llgilla,- llg2lla, }-

where || - |[x denotes the sup norm on X. Obviously (Ca, || - ||c,) is a Banach space. Consider
the cone CZ of all the vectors in C, such that g; is positive on A and g, is positive on A;. The
application (g1, g2) + (Ingy,Ing;) establishes a homeomorphism between Cy and Ca. Given
g = (g",gi"), 2@ = (g1, '%) € CF, set

1 2 1 2
d(gM,g?) = max{||In(g\"” /g ?)llay, 10 (2" /837 I, }-

It is easy to check that (C, d) is a complete metric space. Certainly, on C} we can also consider
the norm || - ||c, but C} is not complete with that norm; however, given a sequence (8,50 C Cy

and g € C*, we have

lim g™ - gllc, =0 & limd(g™.g) =0. (4.56)

Now we are in a position to give a precise definition of the operator hinted by relations
(4.54)-(4.55).
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Definition 4.12:
Let wi and wy be two integrable functions satisfying Szegd’s condition on Ay and Ay, respectively,

and write w = (w1, wy). Define the operator
.+ +
Ty : Cy — Cy,

where Ty (g1, 82) = (8], &) is the pair of Szegd functions, g; € H(Qy), k = 1,2, verifying

g} ()] =g2(x)’ a.e.on [ay,b] = Ay,
wi(x)

80P =2 e o [asbo) = 2o,
wa(x)

From the definition of the Szegd function it readily follows that g7 is positive and continuous

onR\ A D A; and g; is positive and continuous on R\ Ay D A;.

Finding g}, k = 1,2, reduces to solving the Dirichlet problems for a harmonic function uy in
Qy, with boundary values integrable on Ay and equal to % In(gz/w1) a.e. on A; in the case of u
and % In(g1/w>) a.e. on A in the case of u;, and the subsequent problem of finding their harmonic

conjugates uy, iy (co0) =0, in Q. Then
gy = exp(ux +1iuy), k=1,2.
Set Q = (Q1,Q). Let hg be the set of pairs of harmonic functions in ; and Q,, respectively,
with integrable boundary values. Given g = (g1,82) € C} let x = (x1,x2) = (Ing1,Ingz) € Ca.

The map Ty, induces the map

tw : Cao — hg C C,,

where .
twx) =3P +B),  x= (x1,x2)" € Cy,

B = (B1,B2)" is the (column) vector made up of harmonic functions with boundary values

Br(x) = —Inwi(x), ae.on A, k=1,2

P = 0 P2 ,
Py O

such that P 2(x2) is the harmonic function on €; with boundary values equal to > on A, and

and P is the linear operator

P>.1(x1) is the harmonic function on Q, with boundary values equal to y; on A;.

The following result is contained in [5, Proposition 1.1].

Proposition 4.13:

The operator Ty, (see Def. 4.12) is a contraction in C} with respect to the metric d. More precisely
1
d(Tw(g"), Tw(g™)) < 7d(g'".g?),  gV.g¥eCy.

Therefore, the map Ty, has a unique fixed point in Cy.
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Proof. The proof is simple so, for completeness, we include it. As mentioned above, (C?, d) is a

complete metric space so the second statement follows from the first.

Set y®) := (In gik), In gék)), k = 1,2. From the definitions of d, Ty, and ty it follows that
1
a(Ty (g ). Ty (82) = It (r ) = 1w ot ley = 5 IPO ) = PO e, <

1 1
SIPI Y = xPlie, = Sd(g.g@),

where in the last inequality the maximum principle is used to establish that || P|| = 1. O
Consider now the particular case T where
W= (\/(b1 - x)(x — ay) (ha))(x), Y (b2 —x)(x - ag)az’(x)) . (4.57) {oper_T_tilde}

Here h, o, o are the same as in (4.48), (4.54) and (4.55). Then, let G = (G1, Gy) be the unique
fixed point of the operator 7. That is
T (G) =G

and the components of G are characterized by the system of boundary values
Ga(x)

Gi(x)|* = . :
V(b1 = x)(x = ar) (ha) (x)

a.e.on [ay,bi] =A,

and

G
1Go()? = 1) ae.on [as ba] = Ao,

Vb2 =) (x =)oy (x)
Obviously, the components of G are Szeg@ functions in Q; and Q;, respectively.

Now, we must show that any neighborhood of a fixed point of the operator 75 determines fixed
points of the operators T, for all sufficiently large . By Proposition 4.8, when we take h,, = |h,,.1|

as in (4.32), the operator T, has only one fixed point. We need one last ingredient. {prop5}

Proposition 4.14:
Let (Qn,l’Qn,Z)nZO be an arbitrary sequence of vector polynomials such that (Qn,l’Qn,Z) €
P X Ppo. Set

Ous Ous

£ — ,
of - @

Assume that there exists £ = (f1, ) € C and a sequence of non-negative integers A such that
lim [[f" —f||c, = 0. (4.58) {limden}
neA

Let (01, 07) € .7 (A) and let (O}, |, Q% 5) = Tn(Qp 15 Onn) where (hy)nso fulfills (4.48). Then

. 4,12 1 s 4,52 1
lim —> = G(f, hoy,2), lim —= =
neh C'O"(z)  \2g 2 neh CH®Y(2)  2x

uniformly on compact subsets of Q1 and €, respectively. Additionally,

G(f o2, 2), (4.59) {limfund}

1% . K*,z 1 _
Gy hone),  limor = G o), k=12
2

*
Kn,l _ 1

I -
ner - Vax

95



Consequently,

0,1 G(f;'ho,2) - 0., G(f'on.2)
nen " (z) G(fz_lfzm,oo)’ neA @7 (2) G(fl_lo'z,OO).

(4.60) {limfund*}

Proof. The proof is identical to that of Proposition 4.11. In that proof, it is not used that the full
sequences of indices is considered and the result only depends on the asymptotic behavior of the
sequences of denominators of the varying part of the measures of orthogonality on the intervals

Ay and A,, respectively, for which assumption (4.58) was included. The details are omitted. O

4.3.8 Proof of Theorem 4.15
{subsec:3.8}

Let G = (G, Gy) be the fixed point of the operator T (see Def. 4.12 and (4.57)). The function
Gg, k = 1,2 is a Szegd function in Qg ; therefore, the value Gy (co) is well defined. Set

H" = Gl(oo)Pn,l GZ(OO)Pn,Z
; O

Pn,k (S yn,ka k = 1,2} .

(Recall that &, i is the set of all monic polynomials of degree n with real coefficients whose zeros

lieinQj,j#k,j,k=1,2)

Let 7,1 and T, > be the operators defined on &, | X &, , which determine the components
of Tp; that is, T, = (Tn,1, Tn,z) (see (4.46)). Define

T,: H"" — H™"

where

Gi(c0)Pp 1 Gz(OO)Pn,z) B (Gl(OO)Tn,1(Pn,1,Pn,2) G1(00)T 1 2(Pn,1, Pp2)
A @y ’ )
Notice that any fixed point of 7,, generates a fixed point of 7,,. The continuity of 7, implies the
{main} continuity of 7.
Theorem 4.15:
Let (01, 02) € .Z(A) and {hy}ns0 fulfills (4.48). Then, there exists a sequence {(Qn.1,On.2) }ns0,
where (Qn.1, Qn.2) is a fixed point of T, such that

. Oni(z)  Gi(z)
{limfund***} lim =2k ,
n ®(z)  Gg(oo)

k=12, 4.61)

uniformly on compact subsets of Qr, where G = (G, Gy) is the fixed point of Ty and @y are as in
(4.42). Additionally, if

2. do (x) o ) R (x)dor (x)
(kn2)” /Q MG ) .-/Qn,1<x>—|Qn’2(x)| ,

and qnk = KnkOn.k, k = 1,2, then

" G NI
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and

. gnk(2) 1
lim ————— = G (2), k
n qu)k(z) V2n

uniformly on compact subsets of €.

1,2, (4.62)

Proof. Due to the way in which H*", T,,, and T5 were defined, the statements (4.61)-(4.62) follow
directly from Proposition 4.14 if we show that there exists a sequence {g" }n=no» Where g™ isa
fixed point of 7}, such that

Jim [lg" - Glic, = 0. (4.63)

The components of G are Szeg§ functions in Qg, k = 1,2, respectively. Let K = (K1, K») be a
pair of non intersecting closed disks, symmetric with respect to R, whose interior in the Euclidean
topology of C verify

Ay C Ky, Ay C K.

By H*(K) we denote the cone of all pairs (g1, g2) of functions such that g is holomorphic and
different from zero in K, and positive on Ky NR. For g = (g1, g2) € H(K) we define

gllk := max{{sup|g(2)| : z € Ki} : k = 1,2} (< o),
and
ming := mm{}gg& g1(x), min g (x)}.
Fix a constant C > 0. Define

H*(K,C) :={g € H'(K) : |lglk < C,ming > c 'y

Take C sufficiently large so that G € H* (K, C).

Let gV, g® € H*(K,C) andlet 0 < B < 1, then

182 + (1 -B)g? ik < BligWllx + (1 -)llg?llk < C,

and
min (g + (1 - B)g?) = fming + (1 - Hyming® > C".
Therefore, 8gV) + (1 — B)g® e H*(K, C). This shows that H* (K, C) is convex.

On the other hand, if (g\"),> is an arbitrary sequence of elements in H*(K, C). Then the
components form normal families in K, and K», respectively. Therefore, there exists a sequence
of indices A such that (g™),ca converges componentwise to some vector function g uniformly
on each compact subset of K and K>, respectively. The components of g are, therefore, analytic
on K and K, respectively. The uniform limit of holomorphic functions which never equal zero

must either be identically equal to zero or never zero. The first case is not possible because
ming = limming™ > C~'.
A neA A
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Also
lgllk = lim lg" |k < C.
neA

Consequently, g € H*(K, C). We conclude that H* (K, C) is compact.

Fix an arbitrary 6 > 0. Let
w(0) ={ge H'(K,C) : |lg - Glic, < 6}.

This is a closed subset of H*(K,C) and, therefore, it is compact. Obviously, it is convex.

Analogously, for every & > 0, set
We = {g € H+(K’ C) : d(g, G) < 8}‘
There exists £y such that
we C w(H), 0<e<ep,

for, otherwise, we could find a sequence of vector functions in H*(K, C) C CZ which converges
to G in the d metric but not in the || - ||c, norm which would contradict (4.56).
Take
Wepn=weNH.
For each fixed n the set w, , is a closed, bounded subset of a finite dimensional space, therefore it

is compact.

Let uy be the representing measure of G so that G (z) = G(ux, 2), z € Q. From Proposition
4.9, using (4.44) and (4.56) it follows that

limd(g"™,G) =0,
n
where

(n) ._ Gl(oo)Qn,l GZ(OO)Qn,z
g = o , &

and Qn’ x» k = 1,2, is given by (4.43). Consequently, for every fixed £,0 < & < g, there exists ng
such that w. , # @ for all n > ng. Using the structure of the elements of H*", the definition of

the metric d, and the monotonicity of the logarithm, it is easy to verify that w ; is convex.

Let us show that 7,,(ws n) C wg , for all sufficiently large n. We claim that there exists ng

such that for all n > ng and g € w, ,,, we have
d(Ta(8), T5(g)) < €/2. (4.64)
Should this not occur, we could find a sequence {g"™ },cr, 8" € w £.n» such that
d(T,(g"). T5(g™)) > ¢/2 (4.65)

The elements of w,_, belong to H*(K, C); therefore, {g™ },,c is uniformly bounded in the || - ||k

norm. Consequently, there exists g € H* (K, C) and a subsequence of indices A’ C A such that

lim [lg™ - gllx = 0.
nenN
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In particular,
lim (g - gllc, =0.
nelN
Then, according to (4.60) in Proposition 4.14
lim |IT,(g™) - T(@)llc, =0
which contradicts (4.65) due to (4.56).

Using the triangle inequality and (4.64) forevery n > npand g € w5,

d(G. T, (8)) < d(T(G), T (g)) + d(T(0). Tn(2) < 7d(Gog) + 36 < &

Consequently, 7, (wg ) C we p, as claimed. Now, using Brouwer’s fixed point Theorem [42, Th.

7.2 (3)] we obtain that for all n > ng the operator 7}, has a fixed point in w, 5.

Since 6 > 0 is arbitrary, we have shown that (4.63) is true and we conclude the proof. O

To apply Theorem 4.15 to the case of ML Hermite-Padé polynomials we need to select
By = |hn.1l, h = h (see (4.32) and (4.38)), and

W=wo = (Vb1 — 0@ —an) (ho()(x), V(b2 —0)(x — an)es (), (4.66)

to determine the operator Ty, (see Def. 4.12).

Theorem 4.16:

Let (01,02) € L(A). Let (Qn1,0On2)ns0 be the sequence of ML Hermite-Padé polynomials
defined by (4.27)-(4.29) and let ky 1, Kn.2, Gn.1, 4n.2, and hy, | be defined as in (4.31)-(4.32). Finally,
let G = (G, Gy) be the fixed point of the operator Ty, as in Definition 4.12 and (4.66). Then

Oni(z)  Gi(z)

lim = , k=1,2,
" @N(2) | Gr(w)
uniformly on compact subsets of Q. Additionally,
. Knk 1
lim —— = ——Gg(o0), 4.67)
C;’Z V2
and
1
fim Lk @ Lo o, (4.68)

" ClON(2)  \an

uniformly on compact subsets of €.

Proof. Tt is sufficient to apply Theorem 4.15 with /,, = |h,, 1|, taking note that (4.38) takes place
and that according to Proposition 4.8 the operator 7', has a unique fixed point in all of &, | X £, »

which coincides with (Q.1, On.2) O

Our method differs from Aptekarev’s in two aspects. Proposition 4.9, which plays a key

role, is derived using arguments from complex function theory. The corresponding result in [5,
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{orth_P2}

{orth_P1}

{ell}

Theorem 2] uses a quite intricate approximative construction on a Riemann surface which is not
very transparent. Secondly, in [5], Widom’s approach introduced in [99] is followed closely to
obtain L, estimates, on segments of the real line, of the asymptotic behavior of the multiple
orthogonal polynomials. Thus, the results are obtained for measures in the Szegé class which are
absolutely continuous with respect to the Lebesgue measure. We use instead the results obtained in
Section 2 on orthogonal polynomials with respect to varying measures and do not need to restrict to
absolutely continuous measures. In consequence, we only give the asymptotic in the complement

of the intervals.

4.3.9 Proof of Theorem 4.1

Recall that the biorthogonal polynomial Q,, coincides with Q,, ». Consequently, the second relation
in (4.3) follows directly from (4.60).

To obtain the asymptotic of the biorthogonal polynomials P, we need a result similar to
Theorem 4.16 working with the definition (4.23)-(4.24) corresponding to the Nikishin system

N (07, 01). We outline the main ingredients.

From Lemma 4.7 and Proposition 4.8 it follows that there exist a unique pair (P 1, P, 2) of

monic polynomials of degree n, where P, » = b, » = P,, such that

/xVPn,z(x)dm(x) -0, v=0,1,....n-1, (4.69)
Pn,l(x)
Z (0 d
/xVPn,](x)M:O, v=0,1,....n—1, (4.70)
Pn,Z(x)

where

Dg/ﬂn,l (Z) =

Bt (2)Pu(2) Ppa(x) doi (x) P’ 5 (%) doy (x)
T P ()/ t—x Poi(0) /z—x Prn(x)”

The normalization in this case is

5 doi(x) 2 2 Ign,l(x)l doa(x)
fnzf O i) —/Pm(x) e,

Take,
2
Pn,1 = gn,an,], Pn2 = é:n,ZPn,Za fn,l = 'fn,ggn,l-

Then, the orthogonality relation (4.69) and (4.70) can be restated as

do(x)
v —— =0, =0,1,...,n—-1,
/'x pn,z(‘x)lpn’l(x)l v n

|€n,1(x)|doa(x)
Y Dn — - =0, =0,1,...,n—1,
/ SR T ResT ” "

and the polynomials p,» and p, ; are orthonormal with respect to the corresponding varying

measures. Following the same arguments that led us to (4.38), we obtain

1
lim 6, 1 (1)] = . £(1) 471
" |t —ay||t — byl
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uniformly for t € Ap.

The operator Ty, : C{ — C} which is relevant to describe the strong asymptotic of the

polynomials P, 2, P, 1 and their orthonormal versions p;, 2, p,.1 is the one determined by

wp = (V(b1 —x)(x — a))a{(x), V(b2 —x)(x — a2)(£o3)(x)). 4.72)
In other words, Tw,(g1,82) = (g, &) is the pair of Szegd functions, g; € (), k = 1,2,
verifying
g; (0 = £2(x) , ae.on [abi] = A, (4.73)
V(b1 = x)(x = ar)o{(x)
and
1850 = 1) ae.on [azby] = A, (4.74)

Vb2 =) (x = a2) ((o) (x)

where ¢ is given in (4.71).

Following the same reasoning as before, if (G}, G3) is the fixed point of the operator Ty,
defined through (4.73)-(4.74), we have

o Pri(@) G;(2) i P22 _ G (2)
n@(z)  Gy(eo)  n @(x)  Gi(eo)

(4.75)
uniformly on compact subsets of €, and €, respectively. Since P, = P, », the second limit in
(4.75) gives us the strong asymptotic of the sequence (P},), >0, We are done. O

Naturally, the asymptotic of the sequence of normalizing coefficients and of the orthonormal

polynomials p, 1, pn.2 can also be given. We leave the details to the reader.

4.3.10 Asymptotic of ML Hermite-Padé polynomials
In this subsection, as an easy consequence of the strong asymptotic of the polynomials Q,, 1 and
Qn,2, we obtain the strong asymptotic of .27, ;, and a, j, j = 0, 1. Recall that 0, » = a, 2 = 5.

Let f be a function which has a constant sign on some interval A ¢ R. We define

I, f>0on A,

galf) = { -1, f<0 on A.

Corollary 4.17:
Let (o1,07) € S (A) and <, j, j =0, 1, is defined by (4.21)—(4.22). Then,

_ Kn 2T 1(2)  Gy(o0) Gy (2) !

1 ) , _ , 4.76
im sga, (Qn,1) (D1/D2)" (z)  Gi(e0) Ga(2) V(z = b2)(z - a) o

and I\ ( )Ano(2) _ Gi(2) !
; 1\ (Kn,1kn2)"n0(2) _ Gi(z , 4.717
Imsgy, (Qn,z) " (2) G1(%) [(z = ar)(z - b1) “

where the limits are uniform on compact subsets of C \ (Ay U As) and C \ Ay, respectively.
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{asym_Anl_1}

{asym_Anl1_3}

{asym_An0®_1}

Proof. Formula (4.29) can be rewritten as

0n1(2) [ Cin(®) doy(x)
Qn,Z(Z) Z—X Qn,l(x) ’

p1(2) =

where the equality holds in €2;. Then,

K2 @n1(2)  0,1(2) P4 [ 40 do(x)

(D1/@2)" (z)  DT(2) On2(2) 2=x |Qni()]

From (4.37) with g5(x) = (z — x)~!, we have

z€C\ (AjUAy). (4.78)

SgAz(Qn,l)

lim

n

(4.79)

/qi,z(x) dor(x) _ 1
2=x QuaM] Jz=b)(z-a2)

uniformly on compact subsets of €,. This, together with (4.60) and (4.78), gives us (4.76).
Combining (4.25) for j = 0 with (4.29) we get

On,1(x) 7, 1(x)d oy (x)
i—X Qn,Z(x) ‘

Gn0(z) =

By orthogonality, we have

0ni () () doi(x) [ Cp 1) 5,1 (x) doy (x)
0nita) [ 21 0, 2(1) -/ = 0ol
Therefore,
0, () 5, (x) doy (x)

1
Gy 0(z) = /
~o(2) On,1(2) z-x On2(x)
where the equality holds for z € ;. So,

" (h,,,l) (Kn,160.2)*Fp0(2) _ P} [ Gpi @) [ (1) d o () (4.80)

Qn,Z q)l—n (Z) - Qn,l (Z) =X |Qn,2(x)|

From (4.39) with g;(x) = (z — x)~!, it follows that

MJW%WMM@me_ 1
) ozex 102®™I T G—anG-b1)

uniformly on compact subsets of 2. This formula combined with (4.80) and (4.60) gives us (4.77).
We have completed the proof. O

Regarding the sign functions in (4.76) and (4.77) it is easy to deduce the following (see (4.29))

-1, niseven, b <ap,

1, niseven,
' Bt 1, mniseven, b <ajy,
sga, (Qn1) = Lonisodd, by <ax  sgy Ony2 - I, nisodd, b;<a
. , , , b1 2,
-1, nisodd, b; <ajy, 1 isodd. by <
-1, n 5 2 < daj.
Notice that

1 (2) _ (D) _ Q1D [ D2 don(x)
an2(2)  On2(2) g ,(2) z=x Qna(x)’

02(z) -
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Therefore, using (4.60), (4.68), and (4.79), we obtain

n

C%@%(z)
D (z)

- 271G1 (2) (4.81)

G1(00)|G2(2) Iz — azllz — ba|

uniformly on compact subsets of C \ (A1 U A). The definition of @, ®;, and C, imply

T o2(z) -

an,Z(Z)

C393(2)

| = ew (—(2Va,(2) = Va, (2) = 272)) -

The second equilibrium equation in (4.40) and the maximum principle for subharmonic function
entail

2V/12 (2) - V/h(z) -2y, <0, z €.

Consequently, (4.81) gives a precise description of the rate with which (a,,,1/a, 2)n >0 converges to
0. Exactly the same formula can be obtained substituting in (4.81) 02 —a .1 /an.2 by $2.1—an.0/dn.2-
However, we will not dwell into this because it requires the introduction of new transformations

which drive us off track.

From [62, Th. 1.6], we know that, for j =0, 1

INAC)

=752,j+1(2
n an’z(z) Jt ( )’

where the limit is uniform on compact subsets of €.

Corollary 4.18:
Let (01, 07) € L(A). Then, for j =0, 1

. an,_i(z) _ Ga(z) ~ )
M) " G

where the limit is uniform on compact subsets of Q.

Proof. Since a,» = O, 2, we have

an(0) 9
" D8(2) 0na(2)

Taking into account (4.68) the proof readily follows. O

= EZ,_}'+1 (Z)

Results analogous to Corollaries 4.17 and 4.18 for the forms %, o, %,.1, and the polynomials
bn.0, bn,1, follow immediately considering the Nikishin system .4 (0%, 01). The details are left to

the reader.

4.3.11 A different expression for the functions ®, ®, and the constants C;, C;

In [32, Theorem 4.2] the ratio asymptotic of general ML Hermite-Padé polynomials was given.
The limit was expressed in terms of the branches of a conformal map of a certain Riemann surface.

Since strong asymptotic implies ratio asymptotic, we can use that result to interpret the comparison
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functions @, ®, and the constants Cy, C; in a different way. (Which coincides with the form in

which they were defined in [5].)

We introduce the Riemann surface which is relevant in our case of two measures. Let % denote

the compact Riemann surface

2
% =\ ) %
k=0
formed by 3 consecutively “glued" copies of the extended complex plane
Ko 2=@\A1, KA :=@\(A1UA2), K% :=@\A2.

The upper and lower banks of the slits of two neighboring sheets are identified.

Let 7 : # —> C be the canonical projection from Z to C and denote by z(¥) the point on %
verifying 7(z(¥)) = z,z € C. Let ¢ : Z —> C denote a conformal mapping whose divisor consists
of one simple zero at o(?) € %, and one simple pole at c0® € %,. This mapping exists and is

uniquely determined up to a multiplicative constant. Denote the branches of ¢ by
oe(2) =0(z%), k=012, 0 ez.
From the properties of ¢, we have
go(2) =c1/z+0(1/2), () =crz+O(1),  z— oo, (4.82)

where ¢, ¢, are non-zero constants.

Let x € Ag,k =1,2. We write z — x; when z € C approaches x from above the real line.

Analogously, z — x_ means that z approaches x from below the real line. Let us define
¢ (xs) = lim ¢r(z) = lim ¢(z¥)
20X+ ZoX4

and
Gk(x-) = lim ¢(2) = lim @(z M),

Except when x is an end point of Ay, these limits are different due to the fact that lim__,,, z(*) #

lim,_,, z'®) on %Z. However, due to the identification made of the points on the slits it is easy to

verify that
Gr(xs) = Pre1 (x2),  dr(x2) = dra1(xy), k=01, (4.83)
because
lim Z(k) = lim Z(k+1) lim Z(k) = lim Z(k+1).
zoxy ZoX- ’ Z—oX_ X4

Taking account of the way in which the functions ¢, were extended to Ax and (4.83) it
follows that Hizo ¢r is a single-valued analytic function on C without singularities; therefore, by

Liouville’s theorem, it is constant. We normalize ¢ so that
2
nqﬁk:c, lc] =1, c; > 0.
k=0
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Let us show that with this normalization ¢ is +1.

Indeed, for a point z(¥) € % on the Riemann surface we define its conjugate 20 =70 For
a points z(X) on the upper bank of the slit A; the conjugate is the one corresponding to the lower
bank. Now, we define ¢* : Z —> C as follows ¢*({) := @ It is easy to verify that ¢* is a
conformal mapping of # onto C with the same divisor as ¢. Therefore, there exists a constant «

such that ¢* = k¢. The corresponding branches satisfy the relations

¢ (2) = ¢i(2) = ki (2), k=0,1,2.

Comparing the Laurent expansions at co of ¢o(z) and «¢o(z), using the fact that ¢; > 0, it follows
that x = 1. Then

o (2) = ¢r(2), k=0,1,2.

This in turn implies that for each k = 0, 1, 2 all the coefficients, in particular the leading one, of the
Laurent expansion at infinity of ¢y are real numbers. Obviously, ¢ is the product of these leading
coeflicients. Since they are real numbers c is real and since it is of module 1, it has to be either
1 or —1. Analyzing the Laurent expansion of the branches at co one easily concludes that indeed

¢ = 1. So, we can assume in the following that

2
n¢k =1, ¢ >0. (4.84)
k=0

It is easy to see that conditions (4.82) and (4.84) determine ¢ uniquely.

The question of finding explicit expressions for conformal representations of three sheeted
Riemann surfaces of genus zero depending on the values of the end points of the intervals Ay, Ay
was considered in [63]. This problem is not solvable in closed form. [63, Theorem 3.1] gives an
expression in terms of the solution of a system of two nonlinear equations of higher order. Already
the simpler case of two intervals of equal length requires the solution of a bicuartic equation [63,
Theorem 3.3]. A numerical method for solving the system of equations is given in [63, Theorem
6.1].

In [6, Lemma 4.2] the authors proved the following result.

Lemma 4.19:
Their exists a unique pair of functions (Fy, F») such that for k = 1,2

1. Fx,1/Frx € H(C\ Ay),
2. F/(e0) >0,

3 IR

T Fam] = b X € Ak,

(Fo = F3 = 1). The functions may be expressed by the formulas
2
Fo=[]¢n k=12
v=k
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The boundary conditions for the functions Fy, k = 1,2 are

IFi(0)? =|F2(x)],  x €A,
|F(0)* =|Fi(x)],  x€A.

Compare with (4.40) after taking logarithm.

From [32, Theorem 4.2, Corollary 4.3] we know that for k = 1,2,

lim Oni1k(2) _ Fi(2)
n—e Qn(z)  F/(c0)

uniformly on compact subsets of Q; and

. Kn+lk F/Q(‘X’)
lim = - - )
o Kk NJFL_ () FY, (o)

where by definition we take Fj(o0) = F;(c0) = 1. On the other hand, (4.60) and (4.67) imply that

Qn+1,k(Z) (I)Z(Z) 1 . Qn+1,k(z)
im ; = lim =1,
n—eo @ (z) Qni(z)  Pp(z) n=o Oni(z)
uniformly on compact subsets of Q; and
fim Sk G L Kk
n—oo C]’(H'l Kn.k Ck n—oo Ky i
Consequently
F, Fi (o0
{otro} Dr(z) = ,k(z) , k= - il ), , =1,2.
Fi(e0) VF{_()F}, (o)

(4.85)
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CHAPTER

Conclusions and Future Research

If the 1970’s marked the rebirth of the interest in rational approximation, in particular of Padé
type, nowadays we witness its good health. The connection of rational approximation with other
branches of mathematical research and its very own development keep it as a living an attractive

subject.

In the present dissertation we have focused on simultaneous rational approximation, in par-
ticular we have studied a mixed-type Hermite-Padé approximation problem which is known in
the literature as multi-level Hermite-Padé. In the following pages we summarize the main results
presented in the previous chapters. Furthermore, we discuss briefly some problems we consider

interesting and might be attractive for future research as well.

5.1 Conclusions

LetA; CR, j=1,...,mbe acollection of intervals such that A; N Ay =@, j=1,...,m—1.
Consider a vector of measures (o7, . . ., 03,) with Co(supp o) = Aj and o; € .# (A;) (the family
of Borel measures with constant sign and finite moments supported on A ;). With this we construct
the Nikishin system of measures (.1, 512, ...,51,m) = A4 (01, ..., 0m) (see Definition 1.15), and
the Nikishin system of functions (5j 1, ..., 5].,) defined as the Markov functions of the measures

si,j (see (1.2)).

Since their introduction in [76], Nikishin systems have received great attention, because they
are very well suited to extend “naturally” the results of classical orthogonality to multi-orthogonal
polynomials. Moreover, Nikishin system have proved to be nice systems of functions to study the

convergence properties of Hermite-Padé simultaneous approximants.

Recently, in [62] was introduced a mixed-type Hermite-Padé approximation problem (see
Problem 5 for details). Given a Nikishin system .4 (o,...,0m), for each n € N, there exist

polynomials a,, 0, an 1, ..., anm, Withdega, ; <n-1,j=0,1,...,m—1,degay ,» < n,notall
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identically equal to zero, called multi-level (ML) Hermite-Padé polynomials that verify:

[ m
- 1
G0 = |an,0 +Z(_1)kan,k51,k € ﬁ(z,j)
! k=1
) = 1
Jan,j = (—I)Jan,j + Z (—l)kan,kfv\jﬂ,k € ﬁ(g) ,j =1,....m—1.
k=j+1

The study of different properties of multi-level Hermite-Padé polynomials, specially conver-

gence of the approximants and asymptotic, has served as the backbone of the present thesis.

5.1.1 Chapter 2. Rational perturbation of multi-level Hermite-Padé polynomials

The goal of Chapter 2 was to obtain a result in the spirit of Gonchar’s theorem ([36]) on the
convergence of the Padé approximants to meromorphic functions of the form i + r, where u is a
finite Borel measure with constant sign and compact support on the real line, while r is a rational
fraction with real coefficients, r(c0) = 0 and poles outside of supp u. The natural precedents in the

case of simultaneous approximation are [60, 61].

The starting point was to consider a perturbed multi-level Hermite-Padé approximation problem

in the following way:

[ m
. 1
o= |ano +Z(—1)kan,k(sl,k +ri)| € ﬁ(zml)
k=1
- - |
== a, ; + —D*a, ;5 ed|-].j=1....,m—-1
n,j ( ) n,j Z( ) An,kSj+1,k (Z) J m

k=j+1

Here, each ri = v/t is an irreducible rational fraction with real coefficients, ri(c0) = 0 and its
poles are in the complement of A,,. Notice that we only introduced the perturbation in the first
level, this is, solely the linear form .7, ( has been modified with respect to the original formulation

of the problem. Recall that T = lem(#1, .. .,t,;), D =degT.

1. Firstly, we study some general properties of the zeros of the linear forms 7, ;, j = 0,1,...,m
in Lemma 2.6. We could prove that each .7, j has, at least, n — 2D zeros in the interval A s
J=1,...,m. If T has its zeros away of Ay, then <7, ; has n — D sign changes inside A;.
Regarding .7, o we can say that it has, at most, 2D zeros in C \ A;. This amount of “wild”

zeros reduces to D if the zeros of T are outside Aj.

2. Theorem 2.7 establishes the convergence in Hausdorff content of {an, j /an,m}neN, j =
0,1,...,m — 1 in compact subsets of C \ A,,. Moreover, we proved in the same theorem
that each ML polynomial a,, ; has at least n — 2D — m + j sign changes in A,,. The bound
on the amount of sign changes of a,, ; improves if the zeros of T are outside A;. In this case

the a,, ; has at least n — D —m + j sign changes in A,,.
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3. Finally, assuming that the zeros of T' lie outside A; UA,,,, Theorem 2.2 is an easy consequence
of the previous results together with Gonchar’s lemma (see Lemma 1.8). In this Stieltjes-
type theorem we obtain the uniform convergence of the sequence {an,_i /an,m}n av J =

0,1,...,m — 1 in compact subsets of C \ (A, U {z : T(z) = 0}). Furthermore, we also got

that for large n the polynomials a,,_ ;, j = 0,1, ..., m have maximal degree, together with

the location of their zeros.

4. The final part of the chapter was devoted to finding the logarithmic asymptotic of the
ML Hermite-Padé polynomials, and to obtain better estimates for the rate of convergence
of the approximants. Having accomplished these tasks, we study the multi-orthogonal
polynomials associated to the approximation problem at hand, and after that we state a
vector equilibrium problem, whose solutions allow us to describe the general asymptotic
behavior of the polynomials a, ;, j = 0,1,...,m as well as of the linear forms .7, ;,

j=01,...,m—1.

5.1.2 Chapter 3. A generalization of multi-level Hermite-Padé polynomials

Very recently, V.G. Lysov proposed a generalization on the multi-level Hermite-Padé approximation
problem [66]. He proposed to consider more general interpolation conditions at infinity. Given
a multi-index 71 = (ny,...,n,) € (Z7)* (the set of all m-dimensional vectors with non-negative

integer components not identically equal to zero), let

. u N 1
@ = | Dlany+ Y DS |@=0 (i) 2o

njy+1
k=j+1 z

forj=0,...,m—-1.

In Chapter 3 we extended Lysov’s result on the convergence of the approximants for a wider
class of measures, and we complemented Lysov’s asymptotic study by finding the ratio asymptotic
of the polynomials aj; ; and the linear forms 2% ;. So, we also extended the theorems previously

proven for the original definition of the ML Hermite-Padé polynomials in [62, 32].

1. Firstly, we studied the general properties of the zeros of the linear forms <% ;, j =0, ..., m.
Here we proved that each form has ny +- - - +n; simple zeros in the interval A; and the order of
interpolation at infinity is exact (see Lemma 3.4). Taking ray sequences of multi-indices we
got the convergence of the approximants (see Theorem 3.2). This part constitutes a natural

generalization of [62, Th. 1.6] and [66, Prop. 1.2].

2. As intermediate step was to prove that the zeros of the forms .o7; ;

j and /-1 . interlace
n ,]

j=1,...,m (see Lemma 3.9), and constructed a Riemann surface which is essential to
describe the ratio asymptotic of the associated multi-orthogonal polynomials. In this way,

we extend [32, Lemma 2.7].
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3. Finally, we have adapted the proofs of [32, Th. 4.2] and [6, Th. 2.1] to obtain the ratio
asymptotic of the polynomials Q5 ;, j = 1, ..., m (see Theorem 3.3). This result generalizes
[32, Th. 4.2].

5.1.3 Chapter 4. Strong asymptotic of Cauchy biorthogonal polynomials

Previously, we have mentioned how Cauchy biorthogonal polynomials have found countless appli-
cations recently. Their strong asymptotic behavior had been studied for measures of Laguerre type
supported on a half line (see [14]). We studied the strong asymptotic of Cauchy biorthogonal poly-

nomials for measures with compact support adapting a previous idea developed by A.I. Aptekarev

in [4, 5].

1. Firstly, we studied the strong asymptotic of orthogonal polynomials with respect to varying
measures. With Theorem 4.2 we refined its natural precedent, [24, Th. 4]. On the other
hand, Theorem 4.3 gives the asymptotic for orthogonal polynomials associated to varying
measures of a particular kind. Though in the spirit of [95, Th. 14.3], our theorem covers a

more general class of measures.

2. Secondly, we discuss the connection between Cauchy biorthogonal polynomials and multi-
level Hermite-Padé polynomials associated to Nikishin systems generated by two measures
(Section 4.3). We exploit this link in order to use Aptekarev’s methodology. Among other
interesting properties, we remark the fact that multilevel Hermite-Padé polynomials are
uniquely determined by the recursive nature of multi-orthogonality relations associated to

Nikishin systems and Hermite-Padé approximation (see Proposition 4.8).

3. After we give a convenient normalization, we found a pair of sequences of orthogonal
polynomials with varying measures with a prescribed asymptotic behavior. This is, given
certain Szegé type functions we can give a pair of sequences whose strong asymptotic is
described by those Szegd functions (Proposition 4.9). This step is fundamental to simplify
Aptekarev’s methodology, because his approach relies heavily in an intricate construction

of a sequence of polynomials over a Riemann surface [5, Sec. 2.2].

4. Thanks to a topological reasoning we are able to give the strong asymptotic of the multiple
orthogonal polynomials associated to multilevel Hermite-Padé approximation to a Nikishin
system of two measures. The method is based on Banach’s and Brouwer’s fixed point
theorems. An immediate consequence is the strong asymptotic of Cauchy biorthogonal

polynomials (see Theorem 4.1).
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5.2 Some open problems

As one can expect, during the preparation of the present dissertation we have found some interesting
problems, which are connected with the ones we solved. In the present section we discuss some

open questions that we consider attractive enough to bring further attention.

* A natural extension of Theorem 2.2 is to consider rational perturbations rj, j = 1, ..., m with
complex coeflicients. That is, given a Nikishin system .4 (o7, ..., 03,) study a multilevel
Hermite-Padé approximation problem like the one in Definition 2.1, but the rational fractions
ri, j = 1,...,m with complex coeflicients instead. This question is in the line initiated by
A.A. Gonchar in [36] and continued by G. Lopez Lagomasino in [56]. We can conjecture

that first it is necessary to solve the same problem but for Type 1 approximants.

* On the other hand, an obvious question is to analyse the strong asymptotic of the Cauchy
biorthogonal polynomials when the sequence is generated by m measures (see [32, Sec. 1]).
The problem here is that the associated operator Ty is not contractive but non-expansive.
So, it is impossible to extend directly the ideas discussed in Chapter 4. Anyway, we think

that with a suitable modification Aptekarev’s method still works.

* Another interesting direction is to study the relative asymptotic of multilevel Hermite-Padé
polynomials when the generating measures are modified by a “nice” rational function. More
precisely, given the Nikishin systems .4 (o1, ...,0,) and A (rio71, . .., Fm0y,), where 7,
Jj =1,...,m are rational fractions with real coefficients and whose zeros and poles are

outside A;. A similar problem was studied in [48] for Type 11 polynomials.

* The results obtained in Chapter 4 can be refined strengthening the restrictions over the
measures and using other techniques. In this case, an interesting path is to make a Riemann-
Hilbert analysis of multilevel Hermite-Padé polynomials. This would allow to describe the

asymptotic of the polynomials around the endpoints of the intervals.
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