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Abstract

Navigation information is an essential element for the functioning of robotic platforms and
intelligent transportation systems. Among the existing technologies, Global Navigation Satellite
Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for
all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term
for referring to a constellation of satellites which transmit radio signals used primarily for
ranging information. Therefore, the successful operation and deployment of prospective
autonomous systems is subject to our capabilities to support GNSS in the provision of
robust and precise navigational estimates.

GNSS signals enable two types of ranging observations: –code pseudorange, which is a
measure of the time difference between the signal’s emission and reception at the satellite
and receiver, respectively, scaled by the speed of light; –carrier phase pseudorange, which
measures the beat of the carrier signal and the number of accumulated full carrier cycles.
While code pseudoranges provides an unambiguous measure of the distance between satellites
and receiver, with a dm-level precision when disregarding atmospheric delays and clock offsets,
carrier phase measurements present a much higher precision, at the cost of being ambiguous by
an unknown number of integer cycles, commonly denoted as ambiguities. Thus, the maximum
potential of GNSS, in terms of navigational precision, can be reach by the use of carrier phase
observations which, in turn, lead to complicated estimation problems.

This thesis deals with the estimation theory behind the provision of carrier phase-based
precise navigation for vehicles traversing scenarios with harsh signal propagation conditions.
Contributions to such a broad topic are made in three directions. First, the ultimate positioning
performance is addressed, by proposing lower bounds on the signal processing realized at the
receiver level and for the mixed real- and integer-valued problem related to carrier phase-based
positioning. Second, multi-antenna configurations are considered for the computation of a
vehicle’s orientation, introducing a new model for the joint position and attitude estimation
problems and proposing new deterministic and recursive estimators based on Lie Theory.
Finally, the framework of robust statistics is explored to propose new solutions to code- and
carrier phase-based navigation, able to deal with outlying impulsive noises.





Resumen

La información de navegación es un elemental fundamental para el funcionamiento de sistemas
de transporte inteligentes y plataformas robóticas. Entre las tecnologías existentes, los
Sistemas Globales de Navegación por Satélite (GNSS) se han consolidado como la piedra
angular para la navegación en exteriores, dando acceso a localización y sincronización temporal
a una escala global, irrespectivamente de la condición meteorológica. GNSS es el término
genérico que define una constelación de satélites que transmiten señales de radio, usadas
primordinalmente para proporcionar información de distancia. Por lo tanto, la operatibilidad y
funcionamiento de los futuros sistemas autónomos pende de nuestra capacidad para explotar
GNSS y estimar soluciones de navegación robustas y precisas.

Las señales GNSS permiten dos tipos de observaciones de alcance: –pseudorangos de
código, que miden el tiempo transcurrido entre la emisión de las señales en los satélites y su
acquisición en la tierra por parte de un receptor; –pseudorangos de fase de portadora, que
miden la fase de la onda sinusoide que portan dichas señales y el número acumulado de ciclos
completos. Los pseudorangos de código proporcionan una medida inequívoca de la distancia
entre los satélites y el receptor, con una precisión de decímetros cuando no se tienen en
cuenta los retrasos atmosféricos y los desfases del reloj. En contraposición, las observaciones
de la portadora son super precisas, alcanzando el milímetro de exactidud, a expensas de ser
ambiguas por un número entero y desconocido de ciclos. Por ende, el alcanzar la máxima
precisión con GNSS queda condicionado al uso de las medidas de fase de la portadora, lo
cual implica unos problemas de estimación de elevada complejidad.

Esta tesis versa sobre la teoría de estimación relacionada con la provisión de navegación
precisa basada en la fase de la portadora, especialmente para vehículos que transitan escenarios
donde las señales no se propagan fácilmente, como es el caso de las ciudades. Para ello,
primero se aborda la máxima efectividad del problema de localización, proponiendo cotas
inferiores para el procesamiento de la señal en el receptor y para el problema de estimación
mixto (es decir, cuando las incógnitas pertenecen al espacio de números reales y enteros). En
segundo lugar, se consideran las configuraciones multiantena para el cálculo de la orientación



de un vehículo, presentando un nuevo modelo para la estimación conjunta de posición y
rumbo, y proponiendo estimadores deterministas y recursivos basados en la teoría de Lie. Por
último, se explora el marco de la estadística robusta para proporcionar nuevas soluciones de
navegación precisa, capaces de hacer frente a los ruidos atípicos.
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Introduction

The umbrella topic of this thesis relates to using Global Navigation Satellite Systems
(GNSS) carrier phase measurements for the provision of precise navigation solutions. In

particular, the focus lays on recursive positioning and attitude estimates for vehicles traversing
outdoor scenarios with harsh signal propagation conditions. Under such environments, the
received signals undergo delays due to multipath effects and the performance of satellite-based
navigation is strongly jeopardized. It is introduced a collection of lower bounds to characterize
the capability of a receiver to track satellite signals and its relationship to precise positioning
performance, conditioned on the receiver operation point. Then, multi-antenna configurations
are discussed as means of orientation information, the GNSS-based attitude models are re-
visited and new estimators based on Lie Theory are provided. Finally, robust filtering solutions
against outlying observations are proposed and applied to carrier phase-based navigation to
maximize the performance of GNSS even in complex scenarios.

Motivation and Research Questions

Location-based services, alongside with modern intelligent transportation systems (i.e.,
driverless cars, autonomous shipping, unmanned navigation systems) and other safety-critical
applications require reliable, continuous and precise positioning, navigation and timing (PNT)
information for their successful operation and implantation in the market. GNSS constitutes the
backbone and main information supplier of PNT data, and this dependence can only but grow
in the future. Within the GNSS context, two types of ranging measurements can be obtained:
1) code observations, derived from the apparent signal time-of-arrival from the transmitter
satellite to the receiver on Earth; 2) carrier phase observations, estimated by aligning a locally
generated replica of the incoming signal and counting the cycles (time) elapsed over time.

The use of code observations is the gold standard for most commercial and mass-market
receivers, leading to instantaneous positioning solutions of meter-level accuracy. Despite
offering a fairly good performance in open sky conditions, the resulting accuracy results
insufficient for a plethora of applications that need decimeter- to centimeter-level precision.
Lane-awareness for automobiles, docking approaches for unmanned vessels or the operation
of autonomous drones and robots are exemplary applications whose deed cannot be reached
with conventional code-based localization methods. Therefore, the transition to carrier
phase-based positioning techniques is required. GNSS receivers can measure the phase of
carrier signals with millimeter accuracy, although such measurement is ambiguous due to
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2 0. Introduction

the carrier periodicity. Indeed, since only the fractional part is tracked, the integer number
of cycles elapsed between the transmitting satellite and the receiver is unknown. Using
carrier phase observations results in the so-called mixed estimation problems where real- and
integer-valued unknown parameters are to be regressed.

From within and outside the GNSS community, the mixed estimation problem constitutes
a recurrent subject of study and a rich literature on the performance of various estimators
is readily available. Nevertheless, the road towards resilient and precise carrier phase-based
navigation systems is long from paved and relevant matters remain unaddressed. One of
them leads to the question, what is the connection between the signal processing at the
receiver and the final PNT? Chapter 1 addresses the question by relating the quality of the
ranging observations with the processing performed at the channels of a receiver for tracking
a satellite signal, given a set of “raw” digital samples. To do so, bounds for the problem of
parameter estimation for a band-limited signal are derived. Then, provided a set of code and
carrier phase observations, one would wonder, what is the efficiency of estimators at solving
the mixed estimation problem? Chapter 2 sheds some light into the matter by introducing
a new lower CRB for the mixed model parameter vectors, with its application to carrier
phase-based precise positioning being discussed. As previously discussed, the use of phase
observables drives to the presence of an unknown number of integer ambiguities and the
mixed estimation problem. Since an explicit solution to the former remains undiscovered, its
estimation requires the decomposition of the same into three successive least-squares (LS)
adjustments. Among them, the integer least-squares (ILS) comprises an increased complexity
and the study of its performance, both empirically and analytically, has attracted the attention
of numerous research works. Nonetheless, to understand what is the ultimate achievable
phase-based positioning performance, under a certain satellite geometry and noise level, one
shall address the complete mixed model. Thus, the second contribution of this thesis is the
proposal of a closed-form lower Cramér-Rao Bound for the mixture of real- and integer-valued
parameter vectors, its application to carrier phase-based positioning and the assessment of
the asymptotic efficiency for the associated estimators.

Another well-known application of GNSS carrier phase measurements relates to attitude
determination. Attitude estimation is the process of determining the spatial orientation
of an object. Orientation information constitutes an important navigation component for
vehicles that require attitude aiding, such as spacecraft or drones. GNSS enables resolving the
orientation of a vehicle in a precise and absolute manner, by employing a setup of multiple
GNSS antennas rigidly mounted onboard the tracked vehicle. The former represents an
appealing alternative to magnetomers, gyroscopes or other means of orientation tracking,
providing a drift-less absolute attitude solution while posing a fair compromise in terms of cost,
weight and precision. While the GNSS compass model has been extensively explored, especially
as constrained minimization problems to integrate the geometrical constraints (i.e., the known
distance between antennas and their relative orientation), its extension to recursive solutions
is not as widespread. The question is, how can the GNSS attitude problem be recursively
estimated with minimal state parametrization? Chapter 3 provides some hints for such
question. A key factor consists on the use of unit quaternions as orientation parametrization.
Unlike rotation matrices or Euler angles, quaternions provide minimal state representation
while posing no singularity problems. Moreover, the time evolution equations based on
quaternions are continuous and continuously derivable, something useful for filtering solutions
and integration with other sensors. Thus, Chapter 3 contribution relates to (re-)formulating
the GNSS-based attitude problem using Lie Theory principles and the proposal of the Error
State Kalman Filter (ESKF) for recursive attitude estimation.
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The combination of positioning and attitude information for a certain object provides
its complete static characterization, also known as pose of such object. On the other hand,
the description of a rigid body kinematics (i.e., the navigation information) also includes the
velocity and their evolution over time. Traditionally —and particularly from the focal point of
experts on the use of carrier phase observations—, the positioning and attitude determination
problems are considered as two independent processes. Even when integrated as part of the
same filtering solution, the cross-correlation between the positioning- and attitude-related
observations is disregarded. However, this information results very useful, and it strengthens
the overall observation model. The question then raises on, how to optimally approach the
joint positioning and attitude estimation problem? Chapter 4 extends the principles on Lie
Theory previously introduced and formalize the concept of joint position and attitude (JPA)
based on the exploitation of GNSS carrier phase observables.

Regardless of whether one is concern with positioning and/or attitude estimation, a common
challenge for safety-critical applications concerns with the special conditions occurring in
urban situations. Urban scenarios are typically affected by multipath and non-line-of-sight
(NLOS) propagation conditions. This means that satellite signals arrive to a receiver either as
a composite of direct LOS and additional paths due to reflection and refraction (multipath)
or as a single reflected signal (NLOS). Such conditions lead to tracking errors in the receiver
and subsequently code and phase measurement errors. In result, the noise present on a
portion of the observations do not obey the normal-distributed assumption. Conventional
estimators, both in the framework of Maximum Likelihood (ML) and Maximum a Posteriori
(MAP) estimation cannot cope with outlying observations, up to the point that a single outlier
could spoil the estimated solution. The questions to address are what are robust estimators,
how do they work? How to successfully apply robust estimators in the context of carrier
phase-based positioning? These questions are addressed in Chapters 5 and 6, respectively.
Chapter 5 presents the basic principles of the Robust Statistics framework and introduces
well-known estimators typically applied for linear regression. Instantaneous (memoryless)
code-based positioning serves as exemplary application of the aforementioned estimators,
showcasing their characteristics in terms of robustness and loss-of-efficiency. Then, Chapter
6 focuses on state-space models involving Gaussian distributions under nominal conditions
along with additional outliers under non-nominal conditions. In particular, we are interested in
filtering solutions robust against model mismatch and its application to carrier phase-based
positioning under challenging scenarios. For such end, the conventional ML-styled mixed
model is expressed as a MAP problem, Robust Statistics-based filters are particularized for
the MAP mixed model and a Generalized Variational-based KF for outlier rejection is proposed.

In summary, this thesis proposes

• A new CRB for the standard GNSS narrowband signal model. The CRB is expressed in
terms of signal samples, making easy to use irrespective of the considered based signal.

• A CRB for the mixed estimation problem, which results key to understand the perfor-
mance of carrier phase-based positioning. As a particular case of the general bound, a
closed-form expression for the Real Time Kinematics (RTK) functional model is derived.
A (very) useful property of such CRB expression is its ability to predict the RMSE
performance of the MLE.

• Leveraging on the CRB for the signal parameters and for the mixed model, to theoretically
assess positioning techniques from the baseband signal model in terms of the CRB and
MLE. Important related findings are:
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– Bridging the gap between receiver performance, the quality of the observables and
the final positioning performance.

– Large bandwidth signals, such as Galileo E5 or modern meta-signals, can be
exploited for code-based positioning to potentially reach decimeter-level accuracies.

• A new estimator for the attitude mixed model problem, denoted as Q-LAMBDA, which
leverages on quaternion parametrization and Lie Theory for solving the orientation-
related parameters and on integer reparametrizations and ILS for estimating the carrier
ambiguities.

• Exploiting the unit quaternion and its associated Lie Algebra as orientation representation
for GNSS-based attitude estimation.

• The joint position and attitude (JPA) model to exploit the cross-correlation between
positioning- and attitude-related observations. Deterministic and recursive estimators
are proposed, making use of general forms of Q-LAMBDA and ESKF respectively.

• A framework of robust instantaneous and recursive solutions and its application to code-
and carrier-phase based navigation.

• A Generalized form of the Variational-based Kalman Filter for outlier rejection with
correlated measurements (e.g., the RTK case), and particular cases for independent
data with multiple or a single indicators.

Thesis Structure and Reading Directions
Besides the introductory and concluding chapters, this dissertation is organized in three parts
which assess three distinct topics: I) Signal Processing for GNSS, II) Position and Attitude
Determination for Multi-Antenna Setups and III) Robust Estimation for Navigation under
Harsh Conditions. While each of the topics represents a broad line of research on their own,
the use of carrier-phase observations constitutes the leitmotif and the connection thread of
these three. A final part has been reserved for the appendices.

This dissertation is devised to provide a comprehensive guide on the use of carrier phase
observations for navigation-related problems, while dealing with a recurrent challenge on
GNSS, namely treating with multipath and other outlying measurements. Thus, students
who read this work shall learn the fundamentals of GNSS-based precise pose estimation and
the particulars related to using carrier phase observations.
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A Signal Processing Approach to
Satellite-based Navigation
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CHAPTER 1

Fundamentals of Global Navigation Satellite Systems

Global Navigation Satellite System (GNSS) is the generic term employed to identify radio-
navigation systems based on a constellation of satellites. Besides the well-known Global

Positioning System (GPS), i.e., the American GNSS, the GNSS list includes the European
Galileo, the Russian GLONASS and the Chinese BeiDou. These systems share the same working
principle, for which an user estimates his or her localization based on the observed distances
between the receiver and the tracked satellites. Thus, GNSS satellites continuously transmit
radio signals in the L frequency band (between 1.2 and 1.6 GHz). A receiver interprets the
ranging codes and navigation data included in such signals, allowing to identify the transmitting
satellites and their positions, as well as computing the traveling time through space and the
consequent range information. GNSS has become an integral part of our modern society,
with billions of users around the globe, and the cornerstone for the provision of Positioning,
Navigation and Timing (PNT) information. Besides serving localization data for Intelligent
Transportation Systems (ITS)-related applications, there is an evergrowing dependency on
GNSS for timing purposes, for which power grid distribution, finances or emergency responses
rely on. This chapter introduces the basic notions on GNSS, including a brief historical remark,
the general GNSS signal model and how ranging observations are derived from the former.
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1.1 Overview on GNSS Constellations

Information on your current location is now taken for granted by virtually anyone with access
to a smarthphone. Funnily enough, the vast majority of users are unaware of the enormous
effort behind the deployment and operability of a GNSS constellation. To understand the
current status of radio-navigation, it is interesting to revisit the development of satellite-based
navigation from a historical perspective. In 17th July 1995, the American Global Positioning
System (GPS) was declared fully operational and, since then, provides positioning and timing
for users worldwide regardless of the weather conditions. The deployment of GPS extended for
over 20 years and it results partly possible after the lessons learned from its ancestor, Transit,
which was the world first satnav system. Interestingly, it was the motivation for tracking the
orbit of the Russian Sputnik satellite which inspired the concept of satellite-based navigation
and lead to building Transit. More than 30 years later, GNSS technology has undergone
substantial development, with GPS currently listing 31 operational satellites. Furthermore,
the Russian GLONASS (acronym derived from GLObal’naya NAvigatsionnaya Sputnikovaya
Sistema) and the Chinese BeiDou constellations are declared fully operational and (even!)
the European Galileo launched its initial services at the end of 2016. The regional Japanese
and Indian satellite navigation systems –Quasi-Zenith Satellite System (QZSS) and Indian
Regional Navigation Satellite System (IRNSS), respectively– complete the list of constellation
deployed for the provision of PNT information. An extensive and truly fascinating historical
overview can be found in [29], [30]. Satellite coverage is now rich in terms of both number of
satellites and received frequencies. Fig. 1.1 illustrates an overview on the normalized power
spectra (on a logarithm scale) for different code-division multiple access (CDMA) GNSS
signals (i.e., GLONASS frequency-division multiple access (FDMA) signals are disregarded)
and their allocation along the L-band frequency.

GPS

1559 16101300L5 L2 E6 L1

LOWER L-BAND UPPER L-BAND

1164 1215 1260

1176.45 MHz 1227.6 MHz

1278.75 MHz

1268.52 MHz 

1207.14 MHz

1575.42 MHz

1191.795 MHz
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BOC(10,5)L5-I

BPSK(10)
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BOC(1,1)

C/A
BPSK(1)

L2C
BPSK(1)

E6 CS
BPSK(5)

E6 PRS
BOCCOS(10,5)

E1 OS
MBOC(6,1,1/11)

E1 PRS
BOC

COS
(15,2.5)
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BOC(15,2,5)

B1C
BOC(1,1) Data
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E5b-I
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AltBOC(15,10)

AltBOC(15,10)
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BPSK(10)
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0 10
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Figure 1.1: Overview on the power spectra versus the frequency allocation of GPS, Galileo and Beidou
GNSS constellations.
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Along with the deployment of the aforementioned GNSS constellations, new frequencies
and ranging codes have been incorporated. In comparison with legacy signals, such as GPS
coarse/acquisition (C/A), modern GNSS signals include pilot (dataless) components, longer
codes, wider bandwidth modulations and more content on the navigation data [30, Ch. 7].
Table 1.1 provides an overview on the modern signals for GPS, Galileo and BeiDou, with
the fundamental frequency f0 = 10.23 MHz.

Table 1.1: Overview on GNSS navigation signals and their characteristics.

System Band Carrier freq. PRN Code rate Data rate Channel Service(MHz) code (Mcps) (bps)

GPS

L1 154 · f0

C/A f0/10 50 Data Open
P(Y) f0 50 Data Military

M f0/2 N/A Data Military
L1C-I f0/10 50 Data Open
L1C-Q f0/10 – Pilot Open

L2 120 · f0

P f0 50 Data Military
M f0/10 N/A Data Military

L2C-M f0/10 25 Data Open
L2C-L f0/10 – Pilot Open

L5 115 · f0
L5C-I

f0
50 Data OpenL5C-Q – Pilot

Galileo

E1 154 · f0

E1A f0/4 N/A Data PRS
E1B f0/10 125 Data Open, CS
E1C f0/10 – Pilot SoL

E6 125 · f0

E6A
f0/2

N/A Data PRS
E6B 500 Data CS
E6C – Pilot CS

E5
115 · f0

E5a-I

f0

25 Data Open
E5a-Q – Pilot Open

118 · f0
E5b-I 125 Data Open, CS
E5b-Q – Pilot SoL

BeiBou

B1 154 · f0

B1 f0/5 50 Data Authorized
B1C-I f0/10 50 Data Open
B1C-Q f0/10 – Pilot Open

B3 124 · f0

B3 f0 500 Data
AuthorizedB3A-I f0/4 50 Data

B3A-Q f0/4 – Pilot

B2
115 · f0

B2a-I

f0

25 Data

OpenB2a-Q – Pilot

118 · f0
B2b-I 50 Data
B2b-Q – Pilot
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Such GNSS signal modernization aims at supporting advanced features, such as improved
tracking capabilities under tree foliage or in indoor scenarios, robustness against jamming
and spoofing, or enhanced tracking under multipath environments. For instance, Galileo
contemplates the offer of distinct services, namely: an Open Service (OS), available to
worldwide users free of cost; a Public Regulated Service (PRS), intended for authorities and
presenting enhanced modulation and encryption for interference robustness; a Commercial
Service (CS), with encrypted signals and higher data rates; a Search and Rescue (SAR) service
with a distress signal; and the Safety-of-Life (SoL) service for the aviation community in
accordance to the International Civil Aviation Organization (ICAO) standards [31, Ch. 2].

1.1.1 A Quick Glance to GNSS Meta-Signals

Besides the formerly described signals, the paradigm of meta-signals is rapidly growing in
interest. The concept of meta-signals consists of processing two or more GNSS signals,
transmitted at different carrier frequencies, in a joint manner as a single signal. At the cost
of a more complex receiver design, meta-signals allow for an effective processing strategy in
terms of bandwidth exploitation. The latter enables obtaining a better baseband resolution
and, therefore, more precise code observables. The main asset relates to obtaining sub-meter
positioning in urban scenarios, where the tracking performance of carrier phase observables
is jeopardized by the harsh propagation conditions [32].

The idea to process two signals at different frequency bands derives from the Galileo E5
design, proposed by the Galileo Signal Task Force in the early 2000s. Originally, an AltBOC
(alternative Binary Offset Carrier) modulation was considered to transmit the E5A and E5B
signals using an unique high power amplifier. Following that principle, [33] introduced the
meta-signal concept and proposed the combinations of Galileo E5a and E5b with E6. An
AltLOC (alternative Linear Offset Carrier) signal can also be exploited to form meta-signals,
being equivalent to an AltBOC signal once a transmitter filters the intermodulation products
and the harmonics of that AltBOC [34].

To conform a new AltLOC-modulated meta-signal, two independent Pseudo-Random
Noise (PRN) codes are multiplexed. To do so, one can build a single side band (SSB)
subcarrier and its conjugate, as

sssb(t) = 1√
2

(cos (2πfst) + j · sin (2πfst)) ,

s∗
ssb(t) = 1√

2
(cos (2πfst)− j · sin (2πfst)) ,

(1.1)

where fs is the subcarrier frequency. For the combination of two signals, the resulting
AltLOC metasignal sms(t) is defined as

sms(t) = sa(t)s∗
ssb(t) + sb(t)sssb(t),

= [sa(t) + sb(t)] cos (2πfst) + j · [sb(t)− sa(t)] sin (2πfst) ,
(1.2)

with sa(t) and sb(t) the combined signals sorted in ascending frequency band. An interesting
feature is that, the code rate can be different for the sa(t) and sb(t) signals. An AltLOC
signal is typically described with four parameters, i.e., AltLOC(p, q, w, b), and based on a
fundamental frequency f0 = 1.023 MHz. Thus, p · f0 describes the subcarrier frequency,
fc,a = q · f0 and fc,a = q · f0 represent the code rate for the signals a and b, respectively, and
b · f0 is the receiver bandwidth.
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Although commercial receivers do not currently feature meta-signal tracking capabilities,
the latter will become a key player on defining the performance limits for satellite-based
localization. In this thesis, a set of meta-signals is considered and their performance for signal
parameter estimation, code- and carrier phase-based positioning analyzed in Sections 1.5.2 and
2.6, respectively. The meta-signals studied include the GPS L5C+L2C, the Galileo E5+E6B and
E5a+E6B, as well as the BeiDou B2+B3A and B2a+B3A. Fig. 1.2 illustrates the normalized
PSD of the aforementioned meta-signals, as well as their corresponding AltLOC modulation and
central frequencies. Notice that, for simplicity, only the pilot components are depicted –e.g.,
E5 is generated using E5a-Q and E5b-Q, or the GPS meta-signal regards L2C-Q and L2C-L–.

L2C + L5C
AltLOC(25,10,1,75)

E5a + E6B
AltLOC(50,10,5,120)

E5a +E5b+ E6B
AltLOC(42.5,CE5,5,132)

B2a + B3A
AltLOC(45,10,10,120)

B2a +B2b+ B3A
AltLOC(37.5,CB2,10,125)

1178 MHz 1352 MHz1222.49 MHz

1230.16 MHz

1235.27 MHz

1202.03 MHz

1227.6 MHz

GPS

Galileo

BeiDou

Figure 1.2: Power spectral density (PSD) against frequency for different meta-signals.
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1.2 GNSS Signal Processing

This section examines the main signal processing procedures required for the correct functioning
of a generic GNSS receiver. This includes the general GNSS signal model the receiver
architecture and the signal parameter estimation. Also, a new form of bound associated
with the signal parameter estimation is introduced.

1.2.1 Signal Model and Receiver Architecture

A generic signal broadcast by the different satellite constellations relates to a main carrier
sinusoidal signal, centered at a particular carrier frequency fc, upon which a multiplexing
scheme based on phase shift keying is used to code information. The resulting direct-sequence
spread-spectrum (DS-SS) signal encodes a multilayer structure formed by: i) the navigation
data D(t), a low rate stream of binary-coded message with information on satellite orbital
parameters, clock biases and health status, as well as a timestamp for the transmission time; ii)
the ranging code C(t), or PRN code, a sequence of zeros and ones with good autocorrelation
and low cross-correlation (i.e., quasi orthogonality) properties which serves as a satellite unique
fingerprint. Thus, a signal transmitted by a GNSS satellite in a frequency band is modeled as

s(t) =
√

2P (t)D(t)︸ ︷︷ ︸
nav

C(t)︸ ︷︷ ︸
PRN

exp (j2πfct)︸ ︷︷ ︸
carrier

, (1.3)

where P is the signal power and the navigation sequence D shall be either ±1 or 1 based on
whether the signal has a data component (modulated with a binary phase-shift keying (BPSK))
or is a pilot signal. Other coding alternatives, such as BOC, AltBOC or AltLOC would lead to
further modifying the ranging code C(t) [30, Ch. 14]. The transmission of multiple signals with
different PRNs on the same carrier frequency is commonly referred to as CDMA [35, Ch. 4].

Upon its reception on Earth, the time-delayed signal interpreted by a GNSS receiver for
a particular satellite is attenuated in amplitude and its frequency is affected by a Doppler
shift effect, leading to the following signal model

rRF(t) = AD (t− τ)C (t− τ) exp (j2π(fc + fd)t+ ϕ) + nRF(t), (1.4)

where τ is the code delay (s), fd is the carrier Doppler shift (Hz) due to the transmitter-
receptor relative speed, ϕ is the instantaneous carrier phase delay (rad) and nRF is some
complex additive white Gaussian noise (AWGN).

The radio-frequency front end (RF-FE) constitutes the hardware component of a receiver
dealing with the analog signal and results key for the subsequent signal processing to be
successful. At this stage of the receiver, the very high frequency and low power of GNSS
signals would impede digital processors from generating carrier replicas in real time. Thus,
a RF-FE generally includes a low-noise amplifier (LNA), a down-conversion of the signal
to an intermediate frequency (IF) and a bandpass filter with a given bandwidth B (Hz) to
remove image frequencies [36]. Finally, an analog-to-digital converter (ADC) performs the
digitization process, i.e., the conversion of continuous time to discrete samples. As a result,
(1.4) can be formulated in the IF discrete domain as

rIF[k; x] = AD [Tsk − τ ]C [Tsk − τ ] exp (j2π(fIF + fd)Tsk + ϕ) + nIF[k],

x =
[
τ, fd, ϕ,A, σ

2
]>
, nIF[k] ∼ NC(0, σ2),

(1.5)
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where Ts is the sampling time interval (s) and nIF is the corresponding noise at the IF.
Finally, one can identify the vector of unknown signal parameters x, whose estimation leads
to obtaining the code and carrier phase observations.

Conventional GNSS receivers resolve the complete PVT problem following a well-known
two-step procedure, as illustrated in Fig. 1.3. First, the signal parameters τ, ϕ, fd in x
are estimated independently at each of the receiver channels using a matched filter w.r.t.
a local replica (equivalent to a ML solution). Code and carrier phase pseudorange and
pseudorange rate observables are built upon the estimated time delays, carrier offsets and
Doppler shifts. Secondly, pseudorange observations are fed to a positioning algorithm to
resolve the user location through a trilateration problem. This popular two-step approach
is known to be asymptotically equivalent [37] to the denoted Direct Positioning Estimation
(DPE), introduced by Closas in his series of works, which is the ML solution directly in
the position and velocity domains, preserving the problem geometry, from the IF signal
samples [38]–[40]. Despite its optimality, the implementation of DPE into mass-market
receivers is jeopardized by its high computational complexity1, while the two-step procedure
is performed by the vast majority (if not all) commercial receivers. Hereinafter, this thesis
focuses on the conventional two-step approach.

Figure 1.3: Block diagram of a generic GNSS receiver architecture and its functional blocks.

1.2.2 Signal Parameter Estimation and Associated Bounds

In this subsection, the maximum likelihood estimator (MLE) of the signal parameters is
discussed and the compact Cramér-Rao Bound (CRB) associated to such estimation is
presented in terms of signal samples. Prior to these notions, terms such as the time delay
dilation due to the Doppler effect and the vector of considered signal samples as introduced.

Let us consider that both the transmitter (i.e., the ith satellite) and the jth receiver move
following an uniform linear motion. In this context, the evolution of the propagation delay
τ0(t) evolves over time due to the relative radial movement between transmitter and receiver
and can, during the observation time, be approximated by a first order distance-velocity model

‖pi (t− τ0 (t))− pj (t)‖ = c · τ0 (t) ' d+ v · t

⇒ τ0 (t) ' τ + b · t, τ = d

c
, b = v

c
,

1Notice that conventional receivers (two-step procedure) perform a 2-dimensional search of the delay and
Doppler shift during the signal acquisition step for each satellite link using 4 to 12 Msamples/s, with this stage
being the most time and power consuming of a receiver. Then, the PVT computation rate is, at most, 1 KHz.
Instead, DPE requires an 8-dimensional (for 3D position, velocity, clock offset and clock offset rate) grid search
for the same 4 to 12 Msamples/s, which leads to a prohibitive computational load for miniaturized platforms.
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where c is the speed of light, d is the relative radial distance, v is the relative radial velocity,
and b is a delay drift related to the Doppler effect. Thus, the relative uniform radial
movement is characterized by the time-delay (τ) due to the propagation path and the dilation
(1 − b) induced by the Doppler effect.

Based on the simplification that the relative radial distance remains constant over the
observation time, let us consider the acquisition of N signal samples, expressed following
the signal model in (1.5), over the sampling time Ts = 1/Fs, such that N1 ≤ N ≤ N2.
Then, the vector of baseband samples y is given by

y = r(x) + n = A · r · exp(jϕ) + n, with A ∈ R+, 0 ≤ ϕ ≤ 2π , (1.6)
n = [n[N1Ts], . . . , n[nTs], . . . , n[N2Ts]]> , (1.7)
r = [. . . , D [nTs − τ ]C[nTs − τ ] exp (jωcb(nTs − τ)) , . . . ]> , , (1.8)
c = [. . . , C[nTs], . . . ]> , (1.9)

where ωc = 2πfc, n ∈ CN (0, σ2) is the noise term and r is the sampled signal offset by
the fractional component of the phase exp(jϕ).

Notice that C[·] can be a PRN code with a Binary Phase Shift Keying (BPSK) modulation
without a subcarrier, as for GPS L1 C/A, or a subcarrier modulated PRN, as for the modernized
GPS L1C or Galileo E1. The subcarrier has a direct impact on the correlation function and,
therefore, on the estimation performance. On top of that, the signal may have data bits or
not, depending if it belongs to a data component or a pilot component (i.e., D[·] may or not
evolve over time). Unless advanced receiver architectures are considered, i.e., long and/or
non-coherent integration times as for Assisted GNSS [41], the navigation bit is assumed
to not change over the integration time interval. In that case, r in (1.8) can be further
simplified by removing the data component D[·].

Thus, to acquire and track the incoming GNSS signal, the receiver creates a replica signal
a(θ) whose parameters θ = [τ, b]> comprise the time delay and frequency dilation due to
the Doppler effect. The list of unknown parameters to estimate also includes the phase
offset, the signal amplitude and the variance of the noise term. The resulting vector of
parameters to estimate x is

x =
[
τ, b, ϕ, A, σ2

]>
=
[
θ>, ϕ, A, σ2

]>
. (1.10)

A basic receiver configuration would only require the estimation of the time delay and the
frequency dilation, which suffices for the construction of code pseudorange observables. Else,
the estimation of the carrier phase offset enables constructing carrier phase observables and
the ratio between amplitude and noise defines measures of the signal strength.

ML estimators for the signal parameters in (1.10) are typically based on the EXtended
Invariance Principle (EXIP) [42], for which a re-parametrization simplifies the Maximum
Likelihood (ML) criterion to be maximized. Thus, the unknown delay and Doppler are estimated
first through a Weighted Least Square (WLS) and then the phase offset estimate follows, as

θ̂ ,

[
τ̂

b̂

]
= arg max

θ

{∥∥∥∥(aH (θ) a (θ)
)−1

aH (θ) y
∥∥∥∥2
}
, (1.11)

ϕ̂
(
θ̂
)

= arg
{(

aH(θ̂)a(θ̂)
)−1

aH(θ̂) y
}
. (1.12)

Notice that the phase MLE is given by the argument of the cross-ambiguity function evaluated
at the delay and Doppler MLEs. Then, if the estimator for the delay and Doppler reached
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its asymptotic performance so does the phase estimate. Thus, the MLE of the θ parameters
corresponds to the values for which the power at the output of a matched filter w.r.t. a
local replica is maximized [30, Ch. 4]. To do so, a correlator computes the integration of
the received signal multiplied with the locally generated replica signal for a certain coherent
integration time. In practice, the MLE in (1.11) is performed using a delay locked loop
(DLL) during the tracking scheme, which is equivalent to applying a gradient ascent method
for such nonlinear regression problem [30, Ch. 14].

Having discussed the estimation process for the GNSS signal model, the CRB associated
to the same estimation problem is discussed next. The multi-parameter CRB states that, for
any locally unbiased estimate x̂ of a generic, real-valued parameter vector x, the covariance
matrix of the estimates is bounded by the reciprocal CRB

CRBx ≤ cov(x̂) , Ey,x
{

(x̂− x) (x̂− x)>
}
, (1.13)

where the matrix inequality CRBx ≤ cov(x̂) indicates that the matrix cov(x̂)−CRBx
is positive semidefinite. The first contribution for this chapter relates to the derivation of
such a CRB in terms of discrete signal samples.

Then, expressing the CRB with its submatrices:

CRBx =


CRBθ CRBθ,ϕ CRBθ,A CRBθ,σ2

CRB>
θ,ϕ CRBϕ CRBϕ,A CRBϕ,σ2

CRB>
θ,A CRBϕ,A CRBA CRBA,σ2

CRB>
θ,σ2 CRBϕ,σ2 CRBA,σ2 CRBσ2

 , (1.14)

the different block matrices are described next. Starting with the diagonal terms, the
components of CRBx are as follows

CRBθ = 1
2SNRout

∆−1
θ = 1

2SNRout

[
[∆θ]1,1 [∆θ]1,2
[∆θ]2,1 [∆θ]2,2

]−1

, (1.15)

[∆θ]1,1 = F 2
s

cHVc
cHc −

∥∥∥∥∥cHΛc
cHc

∥∥∥∥∥
2
 ,

[∆θ]2,2 = ω2
c

F 2
s

cHD2c
cHc −

(
cHDc
cHc

)2
 ,

[∆θ]1,2 = [∆θ]2,1 = ωc Im
{

cHDΛc
cHc − cHDc

cHc
cHΛc
cHc

}

where SNRout indicates the signal-to-noise ratio (SNR) at the output of the matched filter
(i.e., the correlator), which is also linked to the carrier-to-noise density ratio (C/N0) as:

SNRout = FsA
2cHc
σ2 = C

N0
TPRNLc, (1.16)

with SNR and C/N0 related by the coherent integration time TI = TPRNLc, i.e., the single
code duration TPRN and Lc the number of codes.

Then, the bound for the phase offset estimate is as follows

CRBϕ = 1
2SNRout

+

 FsIm
{

cHΛc
cHc

}
− bωc

ωc
Fs

cHDc
cHc

>

CRBθ

 FsIm
{

cHΛc
cHc

}
− bωc

ωc
Fs

cHDc
cHc

 , (1.17)
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where the estimation performance for the phase offset is manifest to be tightly related to
that of the time delay and frequency dilation parameters. However, for real signals the
above abound can be simplified to

CRBϕ =
real signal

1
2SNRout

, (1.18)

which implies that the carrier offset depends only on the receiver operation point SNRout,
as oppose to the time delay estimation. Last, the bounds for the amplitude and noise
level of the signal are as follows

CRBA = σ2

2cHc +A2F 2
s

[
Re
{

cHΛc
cHc

}
0

]>

CRBθ

[
Re
{

cHΛc
cHc

}
0

]
, (1.19)

CRBσ2
n

= 1
N

(
σ2

n

)2
. (1.20)

The non-diagonals values for CRBx are zero in most cases (CRBθ,A = CRBθ,σ2 = 02×1,
CRBϕ,A = CRBϕ,σ2 = CRBA,σ2 = 0), with the exception of the cross-correlation between
θ and the phase offset, defined as

CRBθ,ϕ = CRBθ

 FsIm
{

cHΛc
cHc

}
− bωc

ωc
Fs

cHDc
cHc

 , (1.21)

with the undefined submatrix elements equals to zero (CRBθ,A = CRBθ,σ2 = 02×1,
CRBϕ,A = CRBϕ,σ2 = CRBA,σ2 = 0). Finally, the mixing matrices D, Λ and V are
defined for N1 ≤ n, n′ ≤ N2 as

D = diag
(
[N ′

1, N
′
1 + 1, . . . , N ′

2 − 1, N ′
2]
)
, (1.22)

(V)n,n′ =

∣∣∣∣∣∣ n
′ 6= n : (−1)|n−n′| 2

(n−n′)2

n′ = n : π2

3
, (Λ)n,n′ =

∣∣∣∣∣∣ n′ 6= n : (−1)
∣∣n−n′

∣∣
(n−n′)

n′ = n : 0
, (1.23)

The proof for the afore-described CRB can be consulted in Appendix A.1.
An interesting feature of the presented CRB for the joint time delay, Doppler and phase

offset is its expression in terms of signal samples (e.g., c). This makes it easily applicable to
any other baseband signal under consideration and allows us, for instance, to characterize
the tracking performance for various GNSS signals and how this influence the quality of
the code and carrier phase range observables.
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1.3 GNSS Code and Carrier Phase Observables
Code and carrier phase pseudorange observables are constructed based on the signal parameters
determined during the digital signal processing on the receiver. In practice, the signal parameter
estimation is typically performed in two steps: acquisition and tracking. First, acquisition
consists on a coarse grid search of the Doppler and time delay based on correlations between
the incoming and replicated ranging codes. Then, tracking employs control system algorithms
to fine search for the unknown parameters. Thus, DLL realized during the tracking measures
the time shift within the replicated code chip length. In combination with the number of
complete code chips, the time of week (TOW) and the satellite clock offset available from
the navigation data, one obtains an unambiguous measure for the time-of-flight of the signal
or –when multiplied by the speed of light– the code pseudorange, ρ. In a similar fashion, the
phase lock loop (PLL) measures the fractional phase shift between the received and replica
carrier signals. When the range between user and satellite changes by more than one cycle, the
receiver counts the full cycles and thus provides a continuous measurement which, multiplied
by the carrier wavelength, constitutes the carrier phase pseudorange, Φ. Along with the code
and carrier phase pseudoranges, the Doppler shift is the third observable produced by a GNSS
receiver and allows to directly observe a target’s speed and, when used for long integration
times, aid with positioning procedures [24]. This thesis focuses on range observations and,
therefore, the use of Doppler shift observations will not be discussed hereinafter.

Thus, the code and phase pseudorange observations on a particular frequency f , from
the ith satellite and at the jth receiver, are formulated as

ρi
j,f (t) = ‖pi(t− τ i)− pj(t)‖+ c(dtj(t)− dti(t− τ i)) + Ii

j,f + T i
j + εi

j,f , (1.24)

Φi
j,f (t) = ‖pi(t− τ i)− pj(t)‖+ c(dtj(t)− dti(t− τ i))− Ii

j,f + T i
j + λfN

i
j,f + εij,f , (1.25)

with superscripts make reference to satellites, the subscripts indicate the receiving antenna
and frequency, and the terms are

ρ,Φ code and carrier phase observations [m]
pi,pj 3D positions of the ith satellite and jth receiver [m]
I, T ionospheric and tropospheric delays [m]
c speed of light: 299 792 458 [m/s]
dti, dtj satellite and receiver clock offsets [s]
λf carrier phase wavelength [m]
N i

j,f number of integer ambiguity cycles
εi

j,f , ε
i
j,f remaining unmodeled code and phase errors [m]

Notice that tropospheric delays are not frequency dependent and that fractional phase
biases are disregarded for N i

j,f
2. It results convenient distinguishing between the “known”

and unknown parameters on (1.24) and (1.25). Hence, the ith satellite position pi and
clock offset dti are obtained/estimated from the navigation data, while the ionospheric and
tropospheric delays are typically derived using models (generally Klobuchar and Saastamonien,
respectively) dependent on the user location and some additional parameters also included
in the navigation data. Then, the list of unknown parameters include the user position,
receiver clock offset and the carrier phase ambiguities.

2At this stage, N i
j,f is actually not an integer number and a more precise definition corresponds to

N i
j,f = N i

int,j,f + λf

(
ϕi

f (t0 − τ) + ϕj,f (t0)
)

where the number of integer numbers N i
int,j,f is complemented

with the satellite fractional phase during the signal emission ϕf (t0 − τ) and the receiver fractional phase at
the signal tracking ϕi

j,f (t0) . However, since this thesis focuses on navigation modes using double-difference
observations, the assumption of N i

j,f being integer will not affect any further result.
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1.3.1 Stochastic Modeling

GNSS stochastic modeling relates to the characterization of the noise present in code and
carrier phase observations. Such noises are commonly assumed to be zero-mean, white (time
uncorrelated) and normally distributed according to the following covariance matrix

Σ =

 ΣΦ ΣΦρ

Σ>
Φρ Σρ

 , (1.26)

with ΣΦ, Σρ the covariance matrices for the carrier phase and code observations, and ΣΦρ the
cross-correlation between them. A second extended assumption relates to the uncorrelation
between each satellite link and between code and carrier measurements. Hence, (1.26)
can be further simplified to

Σ =
[
ΣΦ 0
0 Σρ

]
, ΣΦ =

(σ1
Φ)2

. . .
(σn

Φ)2

 , Σρ =

(σ1
ρ)2

. . .
(σn

ρ )2

 . (1.27)

where σi
ρ, σi

Φ are the standard deviations for the ith satellite code and phase observations and
n is the total number of satellites. In a nutshell, code- and phase-related errors are expressed
as white zero-mean normal-distributed noise such that, for the ith satellite errors

εi ∼ N
(
0, (σi

ρ)2
)
, εi ∼ N

(
0, (σi

Φ)2
)
. (1.28)

Despite the simplicity of the noise model (1.26-1.28), uncertainty characterization constitutes
a recurrent field of study for the GNSS community. Accurate estimates of the covariance
matrix Σ are key to assure the optimality of positioning algorithms [43] and to obtain tight
integrity monitoring indicators [44]–[46]. Thus, weighting schemes are applied to describe
observations’ variance based on the satellites’ elevation or the measured C/N0 as

σi
ρ = σ̄ρ

(
1 + aρ · exp

(
−xi/x0

))
, (1.29)

σi
Φ = σ̄Φ

(
1 + aφ · exp

(
−xi/x0

))
, (1.30)

with
σ̄ρ, σ̄ρ code and carrier phase zenith-referenced standard deviations [m]
aρ, aΦ model amplification parameter
xi satellite elevation [rad] or measured C/N0 [dB-Hz]
x0 nominal elevation [rad] or nominal C/N0 [dB-Hz]

where the model parameters (zenith-referenced variances and amplification terms) can be
obtained for a specific scenario using model regression [47], [48], least-squares variance
component estimation (LS-VCE) [49], or Bayesian conjugate prior analysis [20]. Alternatively,
the model amplification parameters aρ, aΦ can be dropped and the elevation-dependent model
can be expressed as weighting factors and in matrix form as

σi
ρ = σ̄ρ · wi, σi

Φ = σ̄Φ · wi, wi = 1 + exp
(
−xi/x0

)
(1.31)

W = diag
(
w1, . . . , wn

)
, Σ =

[
σ̄Φ ·W 0n,n

0n,n σ̄ρ ·W

]
. (1.32)

A practical example on GNSS uncertainty characterization and stochastic modeling via
Bayesian conjugate prior analysis is detailed in Appendix B.
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1.4 Code-based Positioning
The simplest GNSS positioning approach relates to using the single-frequency code pseu-
doranges received at a particular time instant t, disregarding the user dynamics (i.e., in an
snapshot/non-recursive manner) and applying the information from the broadcast navigation
message to derive satellite positions and atmospheric delays. This strategy is known
as single point positioning (SPP) and it constitutes the baseline localization solver for
mass-market receivers.

Let us consider n satellites from the same constellation being tracked at time t, then a MLE
for the SPP problem involves maximizing the probability of the vector of observations, such that

x̂ = arg max
x∈Rp

p (y|x) , (1.33)

with the unknowns comprising the position and clock offsets, such that p = 3+ the number
of GNSS constellations used and y the vector of code observations whose pdf is described as

p (y|x) = 1√
(2π)ndet(Σ)

exp
(
−1

2 (y− h(x))> Σ−1 (y− h(x))
)
, (1.34)

which leads to the following WLS formulation

x̂ = arg min
x∈Rp

‖y− h(x)‖2Σ , (1.35)

given the observation model hi(x) for the ith satellite by (1.24) or, after disregarding the time in-
dexes, by

hi(x) = ‖pi − p‖+ c(dt− dti) + Ii + T i + εi . (1.36)

The overdetermined system of nonlinear equations defined in (1.35) is typically resolved
using an iterative Gauss-Newton (GN) approach. Starting with an initial guess x(0), an
iterative procedure over k = 1, 2, . . . is repeated until convergence, such that

x(k) = x(k−1) +
(

H(k−1)>Σ−1H(k−1)
)−1

H(k−1)>Σ−1
(
y− h

(
x(k−1)

))
, (1.37)

where the superscript (k) indicates the algorithm iteration and H(k) is the Jacobian matrix given
by

H(k) ,
∂h
∂x

∣∣∣∣
x(k)

=
[
G 1n,1

]
, (1.38)

G =

−u>
1

...
−u>

n

 (1.39)

where G ∈ Rn,3 is typically known as the geometry matrix, with n the number of tracked
satellites, composed by the satellites’ steering line-of-sight unit vectors, such that

ui = pi − p
‖pi − p‖ . (1.40)

Note that the second part of (1.37) corresponds to a weighted least squares (WLS)
which, in turn, is the MLE for (1.35) at the Gaussian model. The optimality of the former
procedure is discussed more thoughtfully in Section 2.4, while results for non-Gaussian
distributions are given in Section 5.3.
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1.5 From Signal Processing to Code-based Positioning Perfor-
mance

When considering the generic GNSS receiver architecture, as the one depicted in Fig. 1.3,
one rapidly acknowledges that the final PVT performance is conditioned on the digital signal
processing realized in parallel in each of the channels of the receiver. In turn, such digital
processing depends on the analog operations carried out at the front-end and vary based on
the quality of the antenna. Unfortunately, the connection between experts working on these
different receiver’s blocks is not as tight as one could expect, with the exception being those
devoted to studying the DPE problem. For instance, researchers working on PVT estimation
tend to overlook the signal processing performed at the receiver level and would solely consider
the C/N0 as indicator for the quality of ranging observables.

Only by understanding the performance at signal parameter estimation can the quality
of the observables be determined and, in return, the PVT performance characterized. Thus,
the second contribution of this thesis relates to bridging the gap between the receiver signal
processing and the PVT solver. To do so, the bound derived in Section 1.2.2 serves as analytical
tool to assess the theoretical best performance for the channel processing, based on digital
signal samples and the receiver operation point (i.e., the SNR at the output of the correlator
or SNRout). This characterizes the noise levels on the code and carrier phase observations and,
using the well-known CRB for real values of the SPP, the ultimate code-based positioning
performance can be addressed. Notice that the “ultimate” term is due to considering only the
influence of the receiver processing and disregarding other delays, such as ionospheric and
tropospheric factors. In summary, the MLE performance for signal tracking is characterized,
which determines the noise levels on the code and carrier phase pseudoranges and the actual
code-based performance. Fig. 1.4 illustrates the overall concept and flow diagram.

Figure 1.4: Flow diagram for the characterization of code-based positioning, based on the performance
of the receiver signal tracking, considering digital signals samples as input.

The remaining of the section is, therefore, devoted to characterizing the ultimate SPP
performance for representative GNSS signals, as well as for modern GNSS meta-signals.
Different sampling frequencies and receiver operating points are considered, making explicit
the receiver-to-PVT relationship, and illustrating the performance differences between open
sky and harsh propagating scenarios.
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1.5.1 Performance Analysis for Representative GNSS Signals

It results interesting, assessing the receiver’s tracking performance gain from using signals with
fast codes, i.e., large bandwidths or equivalently narrow correlation functions. The commonly
used GPS L1 C/A signal is considered as the benchmark for the comparison. GPS L5C-I and
Galileo E5 are representative large bandwidth signals for both systems. The characteristics for
the GPS signals is summarized in Table 1.1, while Galileo E5 results from the combination
of the four signal components (E5a-I, E5a-Q, E5b-I and E5b-Q) and is constructed as an
AltBOC(15,10). A small summary of the signal characteristics and the autocorrelation function
(ACF) properties is given in Table 1.2, while the normalized ACF is graphically illustrated
on the left side of Fig. 1.5. To analyze the code-based positioning problem, the receiver is
considered to track the satellites for the GPS constellation as observed at the San Fernando
IGS station (on UTC time 2020/03/04 10:00), with an elevation mask of five degrees, whose
skyplot is depicted on the right side of Fig. 1.5. To segregate the role of geometry and
satellite availability across GPS and Galileo from the performance of the studied signals, this
work considers the tracked satellites as generic, common to GPS and Galileo.
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Figure 1.5: On the left, the normalized ACF for the following signals: GPS L1 C/A, GPS L5C-I and
Galileo E5. On the right, skyplot for the tracked satellites used for the simulated scenario.

The results discussed in this section are given with respect to the SNRout = C/N0·TPRN·Lc,
as described in (1.16). The coherent integration time, TI = TPRNLc, corresponds to the time
needed to integrate a certain number of codes. Thus, the connection to the typical receiver
operation point is clear –lower SNRout values can, for instance, be related to harsh propagating
conditions–. For each test scenario (i.e., for each signal and receiver operation point), the
root mean squared error (RMSE) is estimated via Monte Carlo simulation with 104 runs.

Table 1.2: GPS and Galileo signals characteristics. ACF peak refers to the first zero-crossing of the
ACF, TPRN = 1 ms.

Signal Modulation Tbit ACF Peak
GPS L1 C/A BPSK(1) 20 ms ±1.023µs
GPS L5-I BPSK(10) 10 ms ±0.1023µs
Galileo E5 AltBOC(15,10) 4 ms ±0.0174µs
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Time-Delay Estimation Performance

First, the time-delay τ estimation performance is discussed, with the results for different signals
depicted in Fig. 1.6. Notice that the MLE asymptotic region threshold (i.e., the operation
point where the MLE starts to rapidly deviate from the CRB) is around SNRout = 15 dB.
Upon the definition of SNRout and taking into account that TPRN = 1 ms for the signals
considered, this threshold corresponds to a C/N0 = 45 dB-Hz using 1 code (TI = 1 ms),
C/N0 = 39 dB-Hz for 4 coherently integrated codes (TI = 4 ms), C/N0 = 35 dB-Hz
with 10 coherently integrated codes (TI = 10 ms) and C/N0 = 32 dB-Hz for the L1 C/A
Tbit limit of 20 codes (TI = 20 ms).
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Figure 1.6: Root mean squared error (RMSE) for time-delay CRB (dashed lines) and MLE (solid line)
for different signals and sampling frequencies: GPS L1 C/A (Fs = 10, 24 MHz), GPS L5-I (Fs = 10, 30
MHz), and Galileo E5 (Fs = 60 MHz).

Next, the relationship between performance and sampling frequency is analyzed. In the
case of GPS C/A processing, sampling rates of 10 and 24 MHz are compared, with the
latter being the full signal bandwidth. For an operation point SNRout = 25 dB (i.e., a
nominal C/N0 = 45 dB-Hz and a standard TI = 10 ms), the time delay deviations are
στ,L1 = 2.3 m and στ,L1 = 1.5 m for 10 and 24 MHz, respectively. While exploiting the
full signal bandwidth leads to more precise estimates (within the asymptotic regimen of the
estimator), the drawback is that the MLE convergence to the CRB is slower. Nevertheless,
the standard deviation for a sampling rate of 24 MHz remains lower than that of 10 MHz
regardless of the convergence to the bound.

Finally, we can compare these results with larger bandwidth GPS L5 and Galileo E5 signals.
Table 1.3 provides an overview on the standard deviation for the time delay, considering
an operation point SNRout = 25 dB, for the signals and sampling frequencies considered.
The results exposed in Table 1.3 clearly show the considerable improvement on time-delay
estimation performance obtained when exploiting large bandwidth signals. For instance, the
Galileo E5 AltBOC signal brings a gain factor of 13 and 3 in time-delay standard deviation
with respect to the full bandwidth GPS L1 C/A and L5C signals, respectively. Notice that,
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Table 1.3: Comparison of the standard deviation for the time delay estimates for SNRout = 25 dB
accross different signals and sampling frequencies.

Signal Sampling frequency Time delay standard
Fs (MHz) deviation στ (m)

GPS L1 C/A 10 2.20
GPS L1 C/A 24 1.57
GPS L5C 10 0.51
GPS L5C 30 0.41
Galileo E5 60 0.12

in the absence of any additional propagation or ephemeris errors, the standard deviation for
the time delay equals that of the code range measurements (i.e., στ ' σρ).

Phase Offset Estimation Performance

The estimates on phase offset determine the accuracy of the carrier phase observables. To
address the bound for phase offset, the simplification in (1.18) for real signals is applied.
Also, notice that the standard deviation for the carrier phase observations is derived from
the CRB for phase offset estimation and the associated wavelength λc, as

CRBΦ =
(
λc

2π

)2
CRBϕ. (1.41)

As for the time delay estimation case, we are interested in observing the RMSE for the carrier
phase observables versus the receiver operation point, as illustrated in Fig. 1.7. For simplicity,
the CRB for the E5 has been omitted, since it lays just slightly above that of L5 (gray dashed
line). Contrary to the time delay, the accuracy of carrier phase estimates is not driven by
the signal bandwidth but by its wavelength instead. Thus, carrier phase observations over
L1 frequency result more precise than those in L5/E5. From (1.12), one expects that the
ML performance for carrier estimates is driven by the time delay estimation. Therefore, full
bandwidth signals abandon the asymptotic regimen faster.

Table 1.4: Comparison of the standard deviation for the carrier phase observations (in mm) across the
evaluated signals. The comparison is expressed in terms of the SNRout and the coherent integration
time TI for a C/N0 = 45 dB-Hz.

SNRout [dB] TI [ms] λL1, σϕ [mm] λL5, σϕ [mm] λE5, σϕ [mm]
15 1 3.8 5.1 5.0
18 2 2.7 3.6 3.6
21 4 1.9 2.6 2.5
25 10 1.2 1.6 1.6
28 20 0.85 1.1 1.1

Table 1.4 summarizes the standard deviation for carrier phase observations based on
the MLE performance at the unknown signal parameters for a nominal C/N0 of 45 dB-Hz.
Notice that the obtained standard deviations are in the range of [1− 5] mm, in agreement
with empirical results obtained applying LS-VCE techniques [50], [51]. Unlike the time delay
estimation, exploiting large bandwidths does not lead to more precise carrier phase observations,
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Figure 1.7: RMSE for carrier phase observations. The CRB for the E5 is disregarded due to its
similarity to the L5C. The CRB (dashed lines) and MLEs’ RMSE (solid line) for different signals and
sampling frequencies: GPS L1 C/A (Fs = 10, 24 MHz), GPS L5-I (Fs = 10, 30 MHz), and Galileo E5
(Fs = 60 MHz).

as afore-discussed. The same asymptotic behavior is observed, although the carrier phase
standard deviations are lower for signals with fast codes, such as Galileo E5.

Ultimate Code-based Positioning Performance

At last, the code-based positioning (e.g., SPP) problem is analyzed. The SPP estimation
bound coincides with the conventional CRB for multidimensional real parameters [52] (i.e.,
CRBp = (H>Σ−1

ρ H)−1). As stated on the introductory part of this section, the ionospheric,
tropospheric and instrumental delays are disregarded, since it is of our interest to examine the
influence of the different signals, integration times and the receiver operation points rather
than the model mismatch of the different atmospheric models typically applied.

The CRB and RMSE for the estimates of the SPP problem are depicted in Fig. 1.8. Also,
Table 1.5 summarizes the SPP performance with code observations derived using different
signals for a nominal case of SNRout = 25 dB. In analogy with the time delay estimation case,
it is evident that using large bandwidth signals has a tremendous impact on the achievable
positioning precision. Indeed, in the absence of unmodeled atmospheric residuals or other
propagation delays, exploiting the large bandwidth of Galileo E5, decimeter-level positioning
accuracy can be obtained for SNRout greater than 15 dB.

Table 1.5: Comparison of code-based positioning performance for a nominal case SNRout = 25 dB.

Signal Sampling frequency (MHz) Positioning RMSEp (m)
GPS L1 C/A 10 3.30
GPS L1 C/A 24 2.36

GPS L5C 10 1.00
GPS L5C 30 0.63
Galileo E5 60 0.19
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Figure 1.8: SPP position CRB (dashed lines) and associated RMSE (solid lines) versus SNRout for
GPS L1 C/A (Fs = 10, 24 MHz), GPS L5-I (Fs = 10, 30 MHz), and Galileo E5 (Fs = 60 MHz).

As closing remark, this subsection showcases the importance of determining the “threshold
region” for MLE. That is, the receiver operation point for which an estimator completely
deviates from the CRB. It is shown that, regardless of the signal under consideration, the
SNR threshold for time-delay and phase offset estimation is around 15 dB. The capability
of a receiver at estimating the signal parameters, especially the time delay, plays a role as
relevant as satellite geometry, with code-based positioning being strongly degraded whenever
time delay estimators abandon their asymptotic regime. Moreover, exploiting signals with
large bandwidth leads to a significant positioning precision gain, as for the Galileo E5 case
for which an ultimate positioning precision of under 20 centimeters can be reached.

1.5.2 Performance Analysis for GNSS Meta-Signals

Having assessed the link between receiver and code-based positioning for “conventional” GNSS
signals, such as GPS C/A or Galileo E5, the application of such methodology to meta-signals
is of great interest for prospective GNSS receiver configurations. In this subsection, the
signals introduced in Section 1.1.1 will be studied:

• GPS L2C + L5C, modulated as an AltLOC(25,10,1,75) and with a central frequency of
1202.03 MHz.

• Galileo E5a + E6B, built with an AltLOC(50,10,5,120) and centered on fc = 1227.6
MHz (coinciding with GPS L2); Galileo E5a+E5b+E6B, or in other words, the complete
E5 combined with E6B, and built with an AltLOC(42.5,CE5,5,132) –CE5 represents the
full bandwidth E5 signal–, and centered in 1235.27 MHz;

• BeiDou B2a+B3A, generated as an AltLOC(45,10,10,120) and whose central frequency
is 1222.49 MHz; BeiDou B2+B3A, generated through an AltLOC(37.5,CB2,10,125)
–CB2 represents the full bandwidth B2 signal– and centered in 1230.16 MHz.
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For further reference, Galileo E5 is added for comparison with respect to the meta-signals. In
all cases, the sampling frequency coincides with the signal bandwidth (which corresponds to the
last number in the AltLOC formulation). The major weakness of large bandwidth signals, as
the case for meta-signals, derives from the presence of ACF large secundary peaks close to the
main ones. To better illustrate this phenomena, Fig. 1.9. depicts the normalized ACF for a set
of meta-signals (L2C+L5C, E5+E6B and B2+B3) along with the Galileo E5 for comparison.
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Figure 1.9: Comparison of the main normalized ACF peaks for a set of meta-signals: L2C+L5C,
E5+E6B and B2+B3. For completeness, Galileo E5 is show in black.

Time-Delay and Phase Offset Estimation Performance

As for Section 1.5.1 with conventional GNSS signals, the time-delay estimation is first addressed.
Fig. 1.10 illustrates the MLEs’ performance along the associated bounds against a range of
SNR at the output of the correlator. While the use of meta-signals leads to precision gains of
around 5 dB compared to the Galileo E5, the MLE convergence becomes strongly degraded.
Indeed, narrower ACF main peaks imply an enhancement in the time-delay theoretical precision
(i.e., a lower CRB), while larger secondary peaks and closer to the main one leads to poorer
convergence and an overall worsen MLE performance. This phenomenon is related to possible
false locks, which are more likely to occur at low SNR conditions. For instance, the MLE
asymptotic regimen for GPS L2C+L5C and Galileo E5+E6B are abandoned at SNRout values
of approximately 21 and 24 dB, respectively. Meanwhile, the Galileo E5 asymptotic behavior
extends up to 16 dB, showcasing much better resilience in harsh propagating conditions.

The MLE performance for phase offset, and consequently the carrier phase pseudorange
observations, follows the same pattern as for time delay estimates. As shown in (1.12),
this relation is due to the phase MLE being given by the argument evaluated at the time
delay MLE. Fig. 1.11 illustrates the RMSE for the ML estimators and the associated bound
for different values of SNRout. In fact, only Galileo E5+E6B and BeiDou B2+B3A offer a
performance comparable to Galileo E5, with an asymptotic region that extends up to an SNR
of 18 dB. The MLE performance for the remaining meta-signals do not attain the bound
for SNR values below 21 dB. Moreover, since the precision of carrier phase observation is
linked to the wavelength and these are quite similar among the studied signals, no major
improvement is observed (as it can be observed in the detail at SNRout = 26 dB in Fig.
1.11). Although all meta-signals present an slightly lower wavelength, the difference with
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Figure 1.10: RMSE for time-delay CRB (dashed lines) and MLE (solid lines) for different meta-signals
and Galileo E5.

respect to Galileo E5 is at most of one mm.
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Figure 1.11: RMSE for MLE-derived carrier phase observations (solid lines) and associated bounds
(dashed lines) for different meta-signals and Galileo E5.

Table 1.6 summarizes the standard deviation for code and carrier phase pseudorange
observations for the considered meta-signals at a nominal SNRout of 25 dB, which corresponds
to an open sky scenario with good satellite signal reception.

We could conclude that, in terms of robustness (i.e., operability at lower SNR values),
the best choice is still Galileo E5, while Galileo E5+E6B and BeiDou B2+B3A meta-



28 1.5. From Signal Processing to Code-based Positioning Performance

Table 1.6: Comparison of the standard deviation for time delay and carrier phase estimates for
SNRout = 25 dB across the considered GNSS meta-signals.

Signal Sampling frequency Time delay standard Phase carrier standard
(MHz) deviation στ (cm) deviation σΦ (mm)

GPS L2C+L5C 75 7.5 1.7
Galileo E5a+E6B 120 4.2 1.6
Galileo E5+E6B 132 4.6 1.7
BeiDou B2a+B3A 120 5.4 1.5
BeiDou B2+B3A 125 3.7 1.6
Galileo E5 60 12 1.6

signals are promising contenders. Furthermore, meta-signals may offer very precise code
pseudorange observations under open sky conditions, which is key for precise localization
even for code-based positioning techniques.

Ultimate Code-based Positioning Performance

Next, it is assessed how the time-delay estimates derived from meta-signals translate into
the position domain using the standard code-based SPP. The satellite geometry is as for
Section 1.5.1, with the skyplot depicted in Fig. 1.5 (right). Once again, to separate the
constellation geometry from the positioning performance, the satellites are considered as
generic and common to GPS, Galileo and BeiDou. The covariance of the code observables
noise (i.e., σρ in 1.28) was set according to the MLE precision for time-delay estimates
(i.e., στ in the previous analyses). Furthermore, the signals from the satellites are assumed
to be received with the same power, regardless of their elevation. Fig. 1.12 depicts the
SPP performance results against different values of SNRout for the considered meta-signals
–Galileo E5 is added for completeness and comparison–.

Again, considering SNRout = 25 dB as a reference value, the standard deviation for the
positioning performance was –following the order in Fig. 1.12– roughly: 11 cm (L2C+L5C),
5.5 cm (E5a+E6B), 7 cm (E5+E6B), 6.5 cm (B2a+B3A), 8 cm (B2+B3A) and 19 cm
(E5). Obviously, the limited convergence due to false locks into ACF secondary peaks has a
direct translation over the positioning estimates. This fact further supports that, in terms of
robustness, Galileo E5 and the meta-signals with full-bandwidth over E5 and B2 are the best
option. A relevant factor is the meta-signals’ precision gain of one order of magnitude with
respect to Galileo E5. Indeed, when properly modeling atmospheric delays and under good
propagation conditions, any of the meta-signals could be considered as a precise code-based
positioning alternative to carrier phase-based techniques.

In a conclusion similar to analysis to the signal parameter estimation and regardless
of the satellite geometry, the best compromise in terms of robustness, performance, and
estimator behavior is provided by Galileo E5 and the full-bandwidth E5+E6 and B2+B3
meta-signals. The latter offer an increased precision for time-delay estimates at high SNR
at the cost of requiring double bandwidth as Galileo E5.
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Figure 1.12: SPP position CRB (dashed lines) and associated RMSE (solid lines) versus SNRout for a
selection of meta-signals. For completeness, Galileo E5 is show in black.

1.6 Summary
This chapter presented the basic working principles of GNSS, a short historical perspective of
their development and an oversight to the GNSS signals spectrum and their characteristics.
Furthermore, the architecture and functioning of a GNSS receiver is discussed, including the
basic signal processing required to track the satellite signals, how the ranging observables
are constructed and how the conventional code-based positioning is carried out.

The core contribution of this chapter relates to assessing the relationship between the
code-based positioning and the signal processing performed by a conventional GNSS receiver.
Doing so requires the formal characterization of the signal parameter estimation realized in
each channel of a receiver: i.e., what is the actual estimators performance in comparison
to the associated lower bound. Thus, one can assess the quality of the code and phase
range observations which, together with the geometrical component, determine the ultimate
precision of the positioning procedures.

Section 1.2.2 proposes a compact CRB for the joint estimation of the GNSS signal
parameters: time-delay, phase offset, Doppler attenuation, etc. Since the presented CRB
is expressed in terms of digital signal samples, it is especially easy to use irrespective of
the considered baseband signal. Such a CRB results particularly useful to “bridge the gap”
between the digital signal processing realized in parallel in each channel of the receiver and
how precise the PVT computation results.

Following that same line of thought, Section 1.5.2 resolves the relationship between
the signal parameter estimation and the ultimate code-based positioning performance, via
extensive Monte Carlo simulation and the selection of both conventional and modern GNSS
signals. Some conclusive points can be deducted from this section:

• Based on the SNR at the output of the matched filter, the behavior of MLEs for the
GNSS signal parameters can be described according to the low noise, large noise and
the threshold regimes. Only during the low noise the MLEs perform asymptotically
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and attain the associated CRB. For conventional GNSS signals, the asymptotic regime
is generally abandoned for SNRs lower than 15 dB. Those signals exploiting larger
bandwidths allow for higher precision at estimating the time-delay, while the precision
of carrier phase observables is dictated by the signal’s wavelength.

• GNSS meta-signals present significantly lower CRB (higher precision) for the time-delay
estimation, when compared to other conventional signals. Indeed, for high SNRs the
standard deviation for time delay estimates results of a few centimeters. Unfortunately,
the presence of high secondary peaks for the meta-signals’ ACF lead to an overall worsen
MLE performance and poorer convergence at the CRB.

• When studying the ultimate code-based positioning performance, i.e., disregarding
propagation and ephemeris errors, and for high SNR conditions, the use of meta-signals
for code-based positioning allows to reach decimeter level precision and can be thought
as interesting alternative to carrier phase-based approaches. Otherwise, the Galileo E5
signal exploiting the full bandwidth offers a great compromise in terms of operability at
low SNR and precision.
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CHAPTER 2

GNSS Precise Positioning and its Estimation Bounds

While standard code-based GNSS techniques present a decent performance for most
scenarios, they are not compliant with the far more stringent precision requirements

of modern safety-critical applications. Instead, the use of carrier phase observations leads
to much higher precision, with noise levels two orders of magnitude lower than its code
counterpart. This comes at the expense of carrier phase being ambiguous, since a receiver
tracks only the fractional phase offset, while the integer number of cycles between the satellite
and receiver remains unknown at the start of the phase tracking. This number of integer
cycles, so-called ambiguities, must be correctly estimated to grant a high-precision solution.
The framework that underpins precise GNSS carrier phase-based ambiguity resolution is the
theory of integer aperture (IA) estimation and it is also applied to various other fields. This
Chapter presents an overview on the carrier phase-based positioning techniques, describes
the mixed real- and integer-valued model, its estimation and associated bounds. Finally,
the relationship between the receiver signal processing and the ultimate carrier phase-based
positioning is assessed for a selection of GNSS signals.
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Upon the type of correction data employed and the observations’ combination, two carrier
phase-based localization techniques are generally distinguished:
Real Time Kinematics (RTK). RTK is a differential positioning approach for which the

location of the receiver of interest is referred to that of a nearby base station, of known
coordinates. The driving idea relates to combining the observations received at both
sites to eliminate or diminish the ionospheric and tropospheric delays, alleviate the
inaccuracies in the satellites’ positions and clock offsets and eliminate the fractional
phase biases. From a practical point of view, the performance of RTK is driven by
two factors: i) the baseline distance to the base station, for which lengths of up to
10 km grant that the differential atmospheric delays are negligible (in principle, one
could perform RTK positioning with a baseline distance of at most 100 km, at the
cost of estimating the residuals ionospheric delays and a prolonged time to fix the
ambiguities); ii) a sufficiently broad bandwidth and low-latency communication channel
for the transmission of the correction data —the Radio Technical Commission for
Maritime Services (RTCM) estimates on 125 bits the volume of data required per
satellite and frequency , leading to a minimum bandwidth of 10 Kbits/s with a latency
lesser than a second—. Despite the technical challenges present, RTK has become the
baseline localization tool for applications in surveying, geodesy, geophysics and modern
ITS services, since high-precision positioning can be achieved almost immediately.

Precise Point Positioning (PPP). Introduced in 1997 [53], PPP employs undifferenced
code and carrier phase pseudorange measurements. Unlike its RTK counterpart, PPP
does not require observations from a nearby station and, instead, replaces the broadcast
navigation data with precise information on satellite orbits and clocks estimated from a
global network of stations. Then, nuisance parameters such as the tropospheric zenith
delays (ZTDs), the receiver clock offset and the phase ambiguities and biases are to be
recursively estimated. With growing interest on the provision of precise products and
worldwide availability [54], PPP constitutes a promising positioning technique and an
appealing alternative to RTK. Unlike RTK, PPP provides absolute positioning, which
makes it appropriate for geophysical and meteorological applications such as earthquake
detection, modeling crustal movements or studying water content . Nonetheless, a
major drawback of PPP relates to its long convergence time —i.e., the time needed
for reaching certain positioning accuracy and a stable estimate for the other unknown
parameters—, ranging from 5 to 20 minutes for static scenarios [55].

Besides PPP and RTK, PPP-RTK is a trending hybridization technique of the former two,
for which a conventional PPP algorithm is enhanced with the atmospheric corrections from a
Real-Time Network (RTN). Based on the density of the RTN and the proximity to a station, the
map of atmospheric corrections is more accurate, leading to faster convergence times for precise
positioning. Another advantage is that ionosphere-free data combination would no longer be
required [30], and thus dual-frequency users could benefit from a greater data redundancy
and single-frequency users could still opt for precise positioning. Since only information on
ionospheric and tropospheric delays is provided from the RTN, the communication channel
needed for PPP-RTK is considerably less demanding than conventional RTK, both in terms
of bandwidth and latency. To serve as overview on the family of GNSS-based positioning
algorithms, Table 2.1 summarizes the expected accuracy, convergence time and coverage
of the aforementioned code- and carrier phase-based methods.

To illustrate the localization capabilities of carrier phase-based techniques, in relation to
that of code-based positioning, an experimental example is introduced next.
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Table 2.1: Overview on the GNSS positioning algorithms in terms of accuracy, convergence time,
coverage area and positioning type (relative or absolute localization).

Positioning method Nominal accuracy Convergence Coverage Type

Code-based SPP < 10 m Instantaneous Global Absolute
DGNSS 0.5–2 m Instantaneous Regional Absolute

Phase-based
RTK < 1 dm Instantaneous Local Relative
PPP 1–2 dm < 10 min1 Global Absolute

PPP-RTK < 1 dm 5–20 min1 Regional Absolute
1These time spans have been shown empirically, with a theoretical justification still to be developed.

Example 1 (Positioning performance for a short baseline). The GNSS observations collected
on the IGS stations in San Fernando and San Roque, both located at the South of Spain,
and separated by nearly 3 km are fed to code-based (SPP) and carrier phase-based (PPP and
RTK) positioning engines. The data corresponds to 04/03/2020 and extends for five hours,
with a sampling rate of 30 seconds. Dual constellation (GPS and Galileo) and frequency is
employed and the elevation mask is set at 10 degrees. Since both stations are located on the
rooftops at their corresponding buildings, this scenario constitutes an ideal case in terms of
propagation conditions and separation between base (San Roque) and rover (San Fernando)
receivers. In terms of data assimilation, SPP constitutes a snapshot (or memoryless) estimator,
PPP and RTK are formulated as recursive estimators. The PPP solution uses final ephemeris
and clock products, obtained from the Canadian Geodetic Survey. Fig. 2.1 shows the norm for
the three-dimensional positioning error over time. For completeness, both the RTK float and
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Figure 2.1: Root-squared for the 3D-positioning errors over time, based on different code- and carrier
phase-based positioning techniques.

fix solutions are depicted, in yellow and purple color respectively. For the float solution, an
additional instance of RTK performs the positioning task without attending to estimate the
integer ambiguities. It becomes evident the precision gain from carrier phase-based techniques,
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the later leading to almost three orders of magnitude higher precision. While the quality of
phase observables is responsible for two out of the three orders in precision gain, recursive
estimation contributes to an enhanced localization capability. In terms of convergence –here,
the time needed to achieve high precision–, RTK manages to instantly estimate the ambiguities
and provide accurate positioning, while PPP requires approximately ten minutes for sub-dm
precision and over half an hour for cm-level localization. The performance of RTK-float
demonstrates that, for a static and short baseline scenario, integer ambiguity estimation shall
not be a requisite for high precision, at the cost of long convergence times.

Regardless the algorithm selection, all carrier phase-based positioning methods result in the
estimation of the so-called mixed model. The mixed model constitutes an estimation problem
where a vector of real- and integer-valued unknown parameters is to be estimated. Within the
context of GNSS, Teunissen pioneered the study of integer inference and developed the family
of estimators for the mixed model: i) the class of integer estimators (IE) [56]; ii) the class of
integer-aperture (IA) estimators [57]; and iii) the class of integer-equivariant (IE) estimators
[58]. It is also worth noting that distributional results are available readily [59], [60]. When
designing and assessing estimators for a particular problem, it is of great relevance to know the
minimum achievable performance, that is, to obtain tight performance lower bounds (LBs).
Generally, one is interested in minimal performance bounds in the mean squared error (MSE)
sense, which provide the best achievable performance on the estimation of parameters of a
signal corrupted by noise. Unfortunately, such type of estimation bound had not been posed
for the mixed model, since the discrete distribution of the integer ambiguities impedes the
usual formulation of the Fisher Information Matrix (FIM), whose inverse is the Cramér-Rao
Bound (CRB) [61]. The lack of LBs for the mixed model ignited the contribution for this
chapter.

This dissertation proposes the Cramér-Rao Bound (CRB) for the problem of mixed real- and
integer-valued parameter estimation, which results key to understand the ultimate achievable
performance of carrier phase-based positioning. For such purpose, a lower bound general CRB
formulation, leveraging on the McAulay-Seidman bound, is proposed. As a particular case
of the general form of the bound, a closed-form expression for the RTK functional model is
derived. One noteworthy point is the assessment of the asymptotic efficiency of the integer
estimators for the RTK problem, thus complementing the rather rich literature on that topic.
It is shown that the derived CRB expression is able to predict the RMSE performance of the
MLE, and that an asymptotically efficient estimator for the mixed model exists for the RTK
problem whenever the noise covariance matrix of the observations is known. Insofar, this work
focuses on the RTK and relates precise positioning with the former model.
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2.1 RTK Functional Model

Let us consider n+ 1 GNSS satellites simultaneously tracked over a particular frequency at
the j antenna of unknown coordinates pj and at a base station of known coordinates pb.
At a particular time, the code and phase observables at the j antenna are

ρi
j = ‖pi − pj‖+ Ii + T i + c

(
dtj − dti

)
+ εi

j ,

Φi
j = ‖pi − pj‖ − Ii + T i + c

(
dtj − dti

)
+ λN i

j + εij .
(2.1)

Due to the influence of imprecise ephemeris and atmospheric-related errors, high-precision
cannot be achieved directly exploiting the observations on (2.1). Instead, the double-difference
(DD) combination formed between two satellites and two receivers is applied to eliminate
or minimize nuisance parameters . For the remainder of the section, superscripts refer to a
particular satellite (r for the pivot and i = 1, . . . , n for the remaining), while subscripts denote
a particular receiving antenna (j for the antenna of unknown position and b for the base
station), as illustrated in Fig. 2.2. An example of DD code and phase observations is given by

DDρi,r
b,j = ρi

b − ρi
j −

(
ρr

b − ρr
j

)
,

DDΦi,r
b,j = Φi

b − Φi
j −

(
Φr

b − Φr
j

)
,

(2.2)

and the set of positioning DD observations are gathered in the vector y ∈ R2n,

y ,

[
DDΦ1,r

b,j , · · · , DDΦn,r
b,j︸ ︷︷ ︸

DDΦ1:n,r
b,j

>

, DDρ1,r
b,j , · · · , DDρ

n,r
b,j︸ ︷︷ ︸

DDρ1:n,r
b,j

>

]>

(2.3)

where the notation (·)i,r
b,j refers to the DD observation conformed by the base station and

master antennas, pivot and i-th satellite, and (·)1:n,r
b,j is the corresponding n-dimensional

vector of DD observations.

Figure 2.2: Depiction of the satellites, base station, and the vehicle equipped with a GNSS antenna
to illustrate the RTK working principle.
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Definition 1 (Mixed Model). Let A,B be m× (n+ p) full rank matrices and Σ an m×m
symmetric and positive semi-definite matrix. Then, the mixed real- and integer-valued model
–a.k.a. mixed model– can be cast as

y ∼ N (Aa + Bb,Σ) , a ∈ Zn, b ∈ Rp. (2.4)

Within the context of GNSS positioning, the mixed model corresponds to the RTK
functional model. This implies that the receiver-satellite ranges in (2.1) are linearized in
the receiver-position coordinates [30]. In that case, the dimension m = 2n, the vector
of observations y aligns with (2.3) and Σ is the observations’ covariance matrix. The
unknown a corresponds to the vector of DD ambiguities and b is the baseline vector between
the j antenna and base station positions, such that p = 31.The system design matrices
A and B are then defined as follows

A =
[
λcIn

0n,n

]
, B =

[
D>G
D>G

]
, (2.5)

where λc is the carrier wavelength for the signal in use, G is the geometry matrix composed by
the satellite steering line-of-sight vectors, as defined for SPP in (1.40), and the double
differencing matrix D is

D =
[
−1n,1 In

]
, D ∈ Rn,n+1. (2.6)

The DD matrix D also assists when defining the covariance matrix Σ, since it introduces
the noise correlation between the base and the rover, as well as between the pivot and
the remaining satellites

Σ =
[
D>ΣΦD

D>ΣρD

]
, (2.7)

with ΣΦ and Σρ the diagonal matrices composed by the variance of the original n + 1
code and phase observations, respectively

ΣΦ = diag
((
σr

Φ

)2
,
(
σ1

Φ

)2
, . . . ,

(
σn

Φ

)2)
, Σρ = diag

((
σr

ρ

)2
,
(
σ1

ρ

)2
, . . . ,

(
σn

ρ

)2)
, (2.8)

whose modeling is discussed in 1.3.1.
Notice that resolving the baseline vector b allows to cast back the position of the rover

as pj = pb − b. Notice as well that, in contrast to (2.1) where the unknown ambiguities
include fractional biases, the process of double-differencing eliminate those fractional part
and ambiguities become integer.

1The vector of real parameters b shall not be limited to the baseline vector between rover and base
stations, but it can be extended to include other dynamical parameters such as the velocity of the rover or
atmospheric-related parameters. The modification of the former would then require to adapt the system design
matrix B accordingly.



Chapter 2. GNSS Precise Positioning and its Bounds 37

Dealing with Atmospheric Residuals

As previously described, the delays due to the signals’ propagation through the atmosphere
are eliminated thanks to the DD combination as long as the distance between base and
rover locations is sufficiently small (i.e., below 10 km). However, as the baseline separation
grows, the differential biases becomes more prominent. The residuals are due to: i) the
different line-of-sight vectors towards the satellites from the rover and base; ii) the differential
tropospheric biases; iii) the differential ionospheric delays. While the first two sources can
be generally overseen, since their impact on the RTK performance is limited, ionospheric
residuals result key for successful differential positioning.

Thus, the baseline distance determines the strategy towards combating differential biases.
For medium baselines (i.e., below 50 km), the ionospheric delays can be considered as an
additional zero-mean noise term contributing to the covariance matrix Σ [62]. Its variance is
expressed as a model dependent on the satellite elevation and the baseline separation, as

σi
I = wi ·

√
2 · 0.4 mm

km , (2.9)

with wi an elevation weighting function (REF). Thus, the covariance matrix for a short
baseline in (2.7) becomes

Σ =
[
D>ΣΦD

D>ΣρD

]
+ σ2

I · 12,2 ⊗D>WD, (2.10)

where σ2
I has been scaled according to the baseline and the elevation weighting factor has been

translated to the matrix W as in (1.32). Notice that a correlation between code and phase DD
observations becomes apparent, since the ionospheric residuals affect both. For long baselines
(i.e., longer than 50 km), the previous ionospheric model no longer applies and, instead, the DD
ionospheric delays are added to the vector of real-valued unknowns b and estimated recursively.
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2.2 Estimation Problem for the Mixed Model

The system of observation equations in (2.4) leads to an optimization problem with mixed
real and integer parameter estimation. If we consider MLE, the estimates ǎ and b̌ of a and
b, respectively, are found by maximizing the probability of the observed y as[

ǎ
b̌

]
= arg max

(a,b)∈Zn×Rp
pY |A,B (y|a,b) , (2.11)

where the probability distribution of y is described by the mixed model in (2.4), or

pY |A,B (y|a,b) = 1√
(2π)2n|Σ|

exp
(
−1

2 ‖y−Aa −Bb‖2Σ
)
, (2.12)

which leads to the well-known weighted least-squares formulation[
ǎ
b̌

]
= arg min

(a,b)∈Zn×Rp
‖y−Aa −Bb‖2Σ . (2.13)

Due to the integer nature of a, a closed-form solution to (2.13) is not known. Instead,
one typically applies an orthogonal decomposition and expresses the quadratic optimization
problem in (2.13) as the sum of three squares [63], as

‖y−Aa −Bb‖2Σ = ‖ê‖2Σ + ‖â − a‖2Pââ
+
∥∥∥b̂(a)− b

∥∥∥2

Pb̂(a)
, (2.14)

where ê = y − Aâ − Bb̂ is a vector of residuals based on a set of auxiliary variables,
(â × b̂) ∈ Rn × Rp, commonly referred to as float estimates, for which the integer nature
of the ambiguities is disregarded. After some trivial matrix operations, the remaining
elements in (2.14) are given by

â =
(
Ā>Σ−1Ā

)−1
Ā>Σ−1y , Pââ =

(
Ā>Σ−1Ā

)−1
, (2.15)

b̂ =
(
B̄>Σ−1B̄

)−1
B̄>Σ−1y , Pb̂b̂ =

(
B̄>Σ−1B̄

)−1
, (2.16)

b̂(a) =
(
B̄>Σ−1B̄

)−1
B̄>Σ−1 (y−Aa) , Pb̂(a) =

(
B>Σ−1B

)−1
, (2.17)

with Ā = Π⊥
BA and B̄ = Π⊥

AB.
Based on the orthogonal decomposition in (2.14), the minimization in (2.13) is formulated

as three successive LS adjustments, as

min
(a,b)∈Zn×Rp

‖y−Aa −Bb‖2Σ =

‖ê‖2Σ + min
a∈Zn,b∈Rp

(
‖â − a‖2Pââ

+
∥∥∥b̂(a)− b

∥∥∥2

Pb̂(a)

)
(2.18)

‖ê‖2Σ + min
a∈Zn

(
‖â − a‖2Pââ

+ min
b∈Rp

∥∥∥b̂(a)− b
∥∥∥2

Pb̂(a)

)
. (2.19)

These three estimation processes are graphically illustrated in Fig. and briefly ex-
plained in the sequel.
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Figure 2.3: Diagram flow for the three-step decomposition of the estimation for the mixed model.

1) Float Solution: In the first step, the integer nature of the ambiguities is disregarded
and a standard LS adjustment is realized. The result of the estimation is the so-called float
solution, whose name makes reference to “float” numbers i.e., to numbers with decimal
precision, whose distribution is[

â
b̂

]
∼ N

([
â
b̂

]
,

[
Pââ Pââ
Pb̂â Pb̂b̂

])
, (2.20)

where P is the associated covariance matrix which gather the uncertainty of the estimated â,
b̂ parameters and their cross-correlation. Notice that, the LS adjustment refers not only to a
LS snapshot instance but also to a batch LS estimation or to a KF correction step.

2) Integer Solution: The second minimization problem constitutes an Integer Least
Squares (ILS) procedure, for which the integer ambiguities are estimated based on the float
solution. Thus, the real-to-integer mapping S : Rn → Zn is the process which assigns the
float ambiguity vector to an integer one ǎ ∈ Zn,

ǎ = S (â) , (2.21)

with the operator S defined by a particular estimator. In addition, a validation step for
the estimated integer solution often accompanies this second step, with estimators of this
type belonging to the IA estimation framework. A more profound discussion on integer
estimation can be found in Section 2.3.

3) Fixed Solution: The third and last minimization problem improves the quality of
the real-valued estimates (i.e., the three-dimensional positioning vector) upon the knowledge
of the integer ambiguities ǎ, driving to a high-accurate position solution denoted as fixed
solution. The mean b̌ and covariance Pb̌b̌ of the fixed estimate are based on the projection
of the estimated integer ambiguities into the position domain as

b̌ = b̂−Pb̂âP−1
ââ (â − ǎ) , (2.22)

Pb̌b̌ = Pb̂b̂ −Pb̂âP−1
ââ Pâb̂. (2.23)

A relevant remark is that, whenever the estimated integer ambiguities do not match the true
ones, the fixed solution will be biased. This topic will be discussed more thoroughly along this
Chapter.
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2.2.1 Recursive Formulation for the Mixed Model

The purpose of this subsection is twofold: on the one hand, a generic formulation for the
recursive estimation of the mixed model is discussed, with the Kalman Filter expression for
a constant velocity model being particularized; on the other hand, details on solving such
an estimation problem are discussed and a quadratic objective function affine to that of
Section 2.2 is presented.

To extend the positioning problem to a recursive estimation for the dynamical parameters
of a tracked vehicle –i.e., to exploit the information received from the observations collected
over time–, one typically refers to the framework of Recursive Bayesian Estimation (RBE).
Among the families of RBE solutions, the Kalman Filter (KF) and its nonlinear extensions
–i.e., the Extended and Sigma-Point Gaussian Filters (EKF and SPGF, respectively)– have
become the baseline for navigation- and tracking-related applications [64]. Hereinafter, we lay
our focus on the KF formulation to solve the navigation problem. Thus, the mixed model
can be formulated as the following marginal posterior distribution:

p (xt|y1:t) = N
(
xt; xt|t,Pt|t

)
, with xt = (a,b) ∈ Zn × Rp (2.24)

with xt the random process one aims at estimating, and xt|t,Pt|t the estimated posterior
mean and covariance. The common KF state-space representation allows for modeling both
the evolution of the states over time, via the process model, and the dependency of those
with regards to the measured observations, via the measurement model [38, Ch. 3] and
leads to the well-known two-step prediction, correction recursion.

Hence, the time evolution is dictated by the process function, as

xt = f (xt−1,ut,wt) , (2.25)

where f(·) is a known, possibly nonlinear, function of the state estimate, ut is a control
input (e.g., the gyroscope and accelerometer measurements for an inertial navigation system),
and wt is the process noise that gathers possible disturbances and mismodels within the
process function. Typically, the process noise is assumed to be normally-distributed, with
zero-mean and known covariance, such that wt ∼ N (0,Qt).

Then, the measurement function models the relationship between the state estimate
and the observations:

yt = h (xt,+ηt) , (2.26)

with h(·) a known and typically nonlinear function. Similarly to the process noise, the
observations’ noises ηt are generally assumed to follow a Gaussian distribution of known
parametrization, such as η ∼ N (0,Σt).

Upon the choice of the state estimate x, the process function is determined. Taking
aside the integer ambiguities and focusing on the dynamical parameters b, in the following
some common navigation-related examples are discussed.

• Inertial Navigation System (INS). Whenever the tracked vehicle is equipped with an
inertial measurement unit (IMU), the dynamics and subtle accelerations affecting a
rigid body can be taken into consideration. For INS, not only are the vehicle’s position
and the velocity (v = ṗ) relevant, but so is its orientation (expressed, for instance, as
unit-quaternion parametrization q). The later allows to transform the accelerations
measured at the vehicle local frame to the global or inertial frame and compensate for
the gravity accelerations. Also the IMU biases (bω,ba for gyroscope and accelerometer,
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respectively) are typically included in the state estimate to compensate for the related
drift. Thus, the vector of estimates results as

b>
INS =

[
p>,v>,q>,bω

>,ba
>
]
,

with (p,v,q,bω,ba) ∈ R3 × R3 × S3 × R3 × R3
(2.27)

• Near Constant Acceleration and Velocity Model. Whenever the orientation of a vehicle
cannot be estimated or inertial information cannot be captured, a vehicle can be assumed
to advance following an accelerated motion –i.e., under the Near Constant Acceleration
(NCA) model– or a constant velocity (NCV), with dynamical parameters expressed as

b>
NCA =

[
p>,v>, v̇>

]
, with (p,v, v̇) ∈ R3 × R3 × R3, (2.28)

b>
NCV =

[
p>,v>

]
, with (p,v) ∈ R3 × R3. (2.29)

The list of choices for a state estimate are, indeed, endless. Notable examples across
different domains include: robotics-related applications, such as simultaneous localization
and mapping (SLAM), the set of observed landmarks are also included; in PPP, atmospheric-
related parameters such as the tropospheric wet content belong to the state estimate; in
spacecraft navigation, the position and velocity are often overseen and the attitude and
gyroscope biases constitute the unknown parameters.

As illustrative example, the RTK functional model in (2.4) is considered for a target moving
according to a NCV model. Thus, the process and measurement models become linear and the
noise contribution becomes additive white Gaussian noise (AWGN). Adding the discrete time
dependency and the velocity estimation, the KF for the NCV-modeled mixed model becomes

xt ,
[
bNCV

> a>
t

]>
=
[
p>

t v>
t a>

t

]>
,

xt = Ftxt−1 + wt,

yt = Htxt + ηt = Atat + B̄tbt + ηt

(2.30)

where the matrices Ft and Ht for the prediction and correction steps, respectively, are

Ft =

 I3 ∆tI3 03,n

03,3 I3 03,n

0n,3 0n,3 In

 , Ht =
[
Bt 02n,3 At

]
, B̄t =

[
Bt 02n,3,

]
(2.31)

with ∆t the time concurred between consecutive prediction steps and A,B defined in (2.5).
Let us now discuss the classical KF correction procedure, based on the use of the Kalman

gain:

Kt = Pt|t−1H>
t

(
HtPt|t−1H>

t + Σt

)−1
, (2.32)

xt|t = xt|t−1 + Kt

(
yt − h(xt|t−1)

)
, (2.33)

Pt|t = Pt|t−1 −KtHtPt|t−1. (2.34)

While the former set of equations are the most common procedure for KFs, its equivalent LS
adjustment form [21] results more practical when dealing with the mixed model. Thus,
(2.32–2.34) can be expressed as

xt|t =
(
H̃>

t Σ̃−1
t H̃t

)†
H̃>

t Σ̃−1
t ỹt, (2.35)

Pt|t =
(
H̃>

t Σ̃−1
t H̃t

)†
, (2.36)
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where the ∼ accent indicates an augmented vector or matrix, and (·)† to the Moore-
Penrose inverse. Hence, the augmented observation vector ỹt includes the predicted state
xt|t−1, and the measurements’ covariance matrix and the observation Jacobian matrix Ht

change consequently as:

ỹt =
[

yt

xt|t−1

]
, Σ̃t =

[
Σt

Pt|t−1

]
, H̃t =

[
Ht

In+p

]
, (2.37)

with p = 6 for the NCV model. The proof for the duality between the Kalman gain and
the LS forms of a KF correction step is provided in Appendix A.2.

As aforementioned, the LS form of the KF becomes much more practical than the
conventional Kalman gain update. Indeed, (2.35) is identical to (2.4) after replacement of
the parameters by their augmented form in (2.37) and leads to[

ǎt
ˇ̃bt

]
= arg min

(at,b̃t)∈Zn×Rp

∥∥∥ỹt −Atat − B̃tb̃t

∥∥∥2

Σ̃t

. (2.38)

The optimization problem (2.38), which now includes the prior knowledge on the state estimate
and time recursion, is solved following exactly the same three step decomposition in (2.14), as
described in Section 2.2. While still sensitive to wrong integer ambiguity estimation, recursive
RTK exploits the knowledge from previously estimated ambiguities and provides an overall
better navigation solution as long as the process model is properly design.

2.3 Integer Ambiguity Resolution

IAR is the estimation process for which real-to-integer mapping is performed, such that
S : Rn → Zn. Thus, given an input real vector â ∈ Rn, integer estimators procure

ǎ = S (â) , ǎ ∈ Zn, (2.39)

with the S being a many-to-one map, since different real-valued vectors will be assigned to
the same integer-valued vector. In this context, an estimator is described by its pull-in region
Pz ⊂ Rn,∀z ∈ Zn, which denote the set of values for a real vector to be mapped into the
same integer via S(·) [65, Ch. 3]. More formally, the definition of pull-in region is given by

Pz =
{

x ∈ Rn | z = S(x)
}
, ∀z ∈ Zn. (2.40)

The construction of pull-in regions is subject to three constraints [56], [65], namely

i)
⋃

z∈ZnPz = Rn,

ii) int (Pz)
⋂

int (Pu) = ∅, ∀z,u ∈ Zn, z 6= u,

iii) Pz = P0 + z, ∀z ∈ Zn,

(2.41)

with the first two conditions implying that pull-in regions cover the whole Rn space without
overlaps –i.e., assuring the uniqueness of an estimated solution–, and the third condition
referring to the translational invariance –i.e., when performing the ambiguity search, one can
subtract the integer part and concern only about the decimal part of the real vector–. Fig.
2.4 illustrates a two-dimensional example of pull-in regions for three popular IAR estimators:
integer rounding (IR), integer bootstrapping (IB) and integer least-squares (ILS).
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Pull-in regions result extremely useful to understand the success rate Ps, i.e., the probability
that an estimated integer vector ǎ match the true one P (ǎ = a). The success rate derives
from integrating the PDF of the real vector â over the associated pull-in region:

Ps , P (ǎ = a) = P (â ∈ Pa) =
∫

Pa
pâ (x|a) dx =

∫
P0
pâ (x|0) dx, (2.42)

where the last equality derives from the translational invariance property of pull-in regions,
so that pâ (x + a|a) = pâ (x|0). Thus, the success rate Ps shall depend only on the pull-in
region P0 and on the pâ (x|0). Therefore, the success rate is determined by the choice of
integer estimation and the precision of the float estimates [30, Ch. 23].

Figure 2.4: Pull-in regions Pz for a two-dimensional example associated with the following integer
estimators: integer rounding (left), integer bootstrapping (middle) and integer least-squares (right).

This section provides a brief overview on the most commonly used integer estimators: IR, IB
and ILS. For an analytical assessment of the influence of the aforementioned estimators over the
mixed model estimation performance, refer to Section 2.5. Also, a short discussion on ambiguity
decorrelation and validity tests for estimators of this kind is presented. Finally, it is discussed
the framework of Partial Ambiguity Resolution (PAR) and a PAR estimator is introduced.

2.3.1 Integer Estimators

2.3.1.1 Integer Rounding

The most uncomplicated manner to define the integer mapping S(·) consists on rounding
the elements of the real-valued vector â to the nearest integer values, as

ǎIR =

dâ1c
...
dânc

 , (2.43)

where d·c denotes rounding to the nearest integer. For IR, the volume of the covariance
matrix Pââ and the cross-correlations between ambiguities are completely overseen. The
IR pull-in regions PIR,z are defined as

Pz,IR =
{

x ∈ Rn | |xi − zi| ≤
1
2 , i = 1, . . . , n

}
, ∀z ∈ Zn, (2.44)
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with a graphical example shown in Fig. 2.4 (left). In terms of success rate, Ps,IR = P (ǎIR),
lower and upper bounds are known [66]

n∏
i=1

[
2Φ
( 1

2σâi

)
− 1

]
≤ P (ǎIR) ≤ 2Φ

 1
2 max

i=1,...,n
σâi

 , (2.45)

with σâi the diagonal values in Pââ and Φ(x) is the normal distribution function

Φ(x) =
∫ x

−∞

1√
2π

exp
(
−1

2v
2
)

dv. (2.46)

These lower and upper bounds for the IR success rate allows to quickly decide whether to
use IR as estimator or not. Thus, whenever this lower bound is sufficiently close to 1, one
shall not be concerned with using a more complex estimator.

2.3.1.2 Integer Bootstrapping

Integer bootstrapping is a generalization of IR which takes into consideration the correlation
between elements of the input real vector. IB proceeds in a sequential manner, starting with
simple rounding the first element and correcting the remaining elements by virtue of their
correlation. Since the solution depends on the order of the sequential procedure, the real
vector â is typically sorted in a decreasing uncertainty for the ambiguities. Then, starting
with the nth component, the IB solution ǎIB is given by

ǎn,IB = dânc
ǎn−1,IB = dân−1|nc = dân−1 − σân−1σ

−2
ân

(ân − ǎn,IB)c
...

ǎ1,IB = dâ1|2,...,nc = dâ1 −
n∑

i=2
σâ1σ

−2
âi|I

(âi|I − ǎi,IB)c,

(2.47)

where âi|I is the ith estimated element of â, conditioned on the previously determined I =
i+ 1, . . . , n elements. The former estimation can also be expressed in a compact vector form as

ǎIB = dâ +
(
L−1 − In

)
(â − ǎIB)c, (2.48)

with L the unit lower triangular matrix obtained from the decomposition Pââ = L>P′
aL, and

the diagonal matrix P′
a containing the conditional variances and defined as

P′
a = diag

(
σ2

â1|I
, . . . , σ2

ân

)
. (2.49)

The IB pull-in region Pz,IB results as follows

Pz,IB =
{

x ∈ Rn |
∣∣∣c>

i L−>(x− z)
∣∣∣ ≤ 1

2 , i = 1, . . . , n
}
, ∀z ∈ Zn, (2.50)

where ci is an unit vector whose ith element equals 1. A graphical example for the IB
pull-in region is shown in Fig. 2.4 (middle). The IB success rate Ps,IB = P (ǎIB = a)
can be estimated exactly:

Ps,IB , P (ǎIB = a) =
n∏

i=1

(
2Φ
(

1
2σâi|I

)
− 1

)
(2.51)

If one compares the success rates of IR and IB in (2.51) and (2.45), respectively, it results
apparent that bootstrapping provides a better integer estimation: P (ǎIR = a) ≤ P (ǎIB = a).
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2.3.1.3 Integer Least-Squares

The ILS considers all cross-correlations existing among elements of the real solution â. The ILS
estimate ǎILS corresponds to the second minimization problem of the three-step decomposition
(??) of the mixed model estimation, such that

ǎILS = arg min
z∈Zn

‖â − z‖2Pââ
. (2.52)

The ILS pull-in regions are defined by an ellipsoidal search

Pz,ILS =
{

x ∈ Rn | ‖x− z‖2Pââ
≤ ‖x− u‖2Pââ

,∀u ∈ Zn
}
, ∀z ∈ Zn, (2.53)

with a graphical two-dimensional example shown in Fig. 2.4 (right). While the IR and IB
two-dimensional pull-in regions are squares and parallelograms, respectively, the ILS pull-in
region is an hexagon. Unlike IR and IB, ILS estimates cannot be solved via integer rounding
operations and, instead, requires searching for the optimal vector of integers over the integer
grid points of an n-dimensional hyper-ellipsoid defined by the covariance matrix Pââ and
centered in â. The procedure consists on evaluating the loss function d(z) over a search
size determined by the parameter χ2, as

d(z) = (â − z)> P−1
ââ (â − z) ≤ χ2, (2.54)

so that the integer vector inside the ellipsoid with a minimum weighted distance d(z) constitutes
the ILS estimate ǎILS. A comprehensive explanation on the ILS search procedure is provided
in [65, Ch. 3] and adapted here. Upon the Cholesky decomposition of the ambiguity
covariance matrix Pââ = L̃L̃>, with L̃ a left lower triangular matrix, the cost function
d(z) is estimated following the recursion

d(z) =
n∑

i=1

 l∑
j=1

L̃ji (âj − zj)

2

=
n∑

i=1
ei (zi, . . . , zn) , (2.55)

where ei(·) indicates the distance increments dependent on the entries zj , with j ≥ i. As for
IB, the ambiguities are assumed to be sorted such that the nth element presents the highest
precision. Then, starting with i = n, the partial distances di(zi, . . . , zn) are expressed as

di(zi, . . . , zn) = di+1(zi+1, . . . , zn) + ei (zi, . . . , zn) , (2.56)

with the initial values for dn+1 = 0 and the weighted distance d1(z) coincides with d(z).
Since the distance increments are non-negative, the determination of (2.55) corresponds to
a tree search problem. Nodes of the tree are the partial squared distances di(·) while each
of branches corresponds to a different integer value and has assigned a ei(·) weight. Those
nodes whose di(·) > χ2 are disregarded, since they exceed the search space. In the final
level of the three (for the first ambiguity), all the integer vector candidates are found, and
the one with smallest weighted distance d1(·) is the ILS solution.

Evaluating the ILS success rate Ps,ILS = P (ǎILS = a) results nontrivial, due to the
complicated geometry of its pull-in region. While Monte Carlo simulation methods can be
used to precisely characterize the success rate [67], sharp lower and upper bounds have
been proposed [68], [69] for the ILS success rate:

Ps,IB ≤ P (ǎILS = a) ≤ P
(
χ2

n,0 ≤
cn

ADOP2

)
, (2.57)
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with χ2
n,0 a random variable having a central chi-square distribution of n degrees of freedom,

and the parameter cn and the Ambiguity Dilution of Precision (ADOP) defined as

cn = 1
π
·
(
n

2 Γ
(
n

2

))2/n

, ADOP = det (Pââ)
1

2n , (2.58)

with Γ(x) the gamma function. It results clear that ILS is the best among the aforementioned
estimators since IB is a better estimator than IR and, likewise, ILS is better than IB.

2.3.1.4 The Role of Ambiguity Decorrelation

Due to the DD combination of the observations and after the float estimation, the covariance
matrix for the float ambiguities Pââ becomes fully populated. Therefore, a high correlation
between the elements of â exists, as well as some ambiguities presenting a poor precision. As
a result, integer estimation may become unreliable –as the case of IR and IB, whose estimation
is variant against integer reparametrizations–, or computationally very demanding –as for ILS,
whose performance is invariant against reparametrizations, but the number of candidates in
the tree search problem is not–. A well-known solution to overcome this limitation relates
to the integer reparametrizations, also known as Z-transformations. A square matrix Z may
constitute a Z-transformation as long as all their entries and its inverse are integer numbers.
The general class Z of Z-transformations is defined as follows

Z = {Z ∈ Zn,n | |Z| = ±1} . (2.59)

The Z class preserves the volume of the transformed matrix, such that |Pẑẑ| =
∣∣∣ZPââZ>

∣∣∣ =
|Pââ|. Due to the integer constraints over Z, the complete decorrelation of the ambiguities
is not possible, although it can be considerably reduced. In [70], several approaches for the
construction of a Z-transform are discussed, with the most widely-known solution consisting
on a sequence of integer approximated Gauss transformations and permutations. Thus, the
integer minimization in (2.19) is typically expressed and resolved in the Z-space, as

ž = arg min
z∈Zn

‖ẑ− z‖2Pẑẑ
, with ẑ = Zâ, Pẑẑ = ZPââZ>, (2.60)

and, afterwards, the original ambiguity space can be reconstructed from ǎ = Z−1ž. At
this stage, a reader familiar with carrier phase-based positioning has surely recognized
LAMBDA from (2.60). Least-squares AMBiguity Decorrelation Adjustment (LAMBDA)
is the well-known process of performing an ILS estimation after Z-transforming the basis
of real-valued ambiguities. As aforementioned, the ILS performance is not subject to
integer reparametrizations although applying the later leads to search tree pruning and
faster computation times. The next illustrative example showcases the relevance of Z-
transformations for a two-dimensional example.

Example 2 (Two-dimensional integer estimation.). To showcase and compare the performance
of IR, IB and ILS estimation, a Monte Carlo experiment with 10.000 runs is carried for a
toy two-dimensional problem. Over each of these Monte Carlo runs, float ambiguities are
randomly sampled from â ∼ N (a,Pââ), with

a =
[
0
0

]
, Pââ =

[
σ2

â1
ρaσâ1σâ2

ρaσâ1σâ2 σ2
â2

]
=
[

0.15 0.247
0.247 0.50

]
,



Chapter 2. GNSS Precise Positioning and its Bounds 47

with ρa = 0.90 the correlation coefficient between ambiguities. The Z-transform is estimated
following [70] and the transformed ambiguities result:

Z =
[
1 −2
0 1

]
, Pẑẑ =

[
σ2

ẑ1
ρzσẑ1σẑ2

ρzσẑ1σẑ2 σ2
â2

]
=
[

0.15 −0.054
−0.054 0.114

]
,

with ρz = −0.04, i.e., the correlation is considerably lower. On the first row, Fig. 2.5 depicts
the 10.000 simulated ambiguities in their original space, with estimates drawn in green or red
according to whether or not correct estimation was performed, respectively. The second row
of Fig. 2.5 shows the estimation performance for the decorrelated space. Estimates from IR,
IB and ILS are shown from left to right.

Figure 2.5: 2-D integer estimation problem and performance of the estimators. Red dots will pull to
wrong integer solutions while green dots will pull correct ones. Original and Z-transformed ambiguities
correspond to the first and second row, respectively. From left to right, integer estimation performance
for IR, IB and ILS.

The percentage of correctly estimated ambiguities, or experimental success rate, is
summarized in Table 2.2. In agreement with the theoretical success rate, the ILS is the
best estimators, followed by IB and IR. The performance of ILS remains unaffected by the
transformation, while IR and IB significantly improve after the Z-transformation is applied to
the ambiguities.
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Table 2.2: Integer estimators performance, in terms of experimental success rate (%).

Estimator Original ambiguities Z-transformed ambiguities
IR 50.59 71.12
IB 51.40 72.74
ILS 73.52 73.52

2.3.2 Validity Tests for Integer Estimation

As explained in Section 2.2, producing a fixed solution leads to an increase accuracy of the
dynamical parameters only if the integer estimates are correct. Therefore, when the success
rate P (ǎ = a) of an estimator is sufficiently close to one, shall the third step in (2.14) be
executed and, otherwise, the positioning solution could be biased. Integer estimators which
include a validation step belong to the framework of IA estimation [56], [71], [72]. An IA
estimator describes the integer mapping S(·) in a more flexible way, as

S (â) =
{

ǎ ∈ Zn if T (·) ≤ µ0,

â ∈ Rn otherwise,
(2.61)

with T (·) and µ0 a generic testing function and threshold value, respectively. The definition
for the testing functions leads to model- and data-driven rules. Model-driven rules are purely
based on the “strength” of the model, i.e., dependent on the covariance matrix for the
ambiguities T (Pââ), with the operator SMD (·) expressed as

SMD (â) =
{

ǎ ∈ Zn if T (Pââ) ≤ P0,

â ∈ Rn otherwise,
(2.62)

with T (Pââ) = Pf the failure rate Pf –i.e., the remaining probability of not having a successful
integer estimation Pf = 1−Ps– and P0 the target maximum probability of providing a wrong
integer estimation. Thus, a model-driven test accepts an integer estimate whenever the
success rate is high enough or, in other words, only if the BS success rate (which is an
upper bound for the ILS performance) is sufficiently high. Alternatively, data-driven tests
consider studies the likelihood for an integer estimation to be correct given its solution, the
float estimate for the ambiguities and their covariance matrix. Thus, let us with SDD the
integer-mapping operator from a data-driven rule, expressed as

SDD (â) =
{

ǎ ∈ Zn if T (â,Pââ) ≤ µ0,

â ∈ Rn otherwise,
(2.63)

where one can distinguish, for instance, the ratio and difference tests (RT and DT), whose
test functions are given by

TRT =
‖â − ǎ‖2Pââ

‖â − ā‖2Pââ

≤ µRT, TDT = ‖â − ā‖2Pââ
− ‖â − ǎ‖2Pââ

≤ µDT, (2.64)

with ā the best counter hypothesis to ǎ, and µRT, µDT the threshold values for RT and DT,
respectively. The use of data-driven tests leads to pull-in regions different to those presented
in Section 2.3 –an detail description of these can be consulted in [65]–, with the µ threshold
determining the size or aperture of such pull-in regions. Taking the RT as example, smaller
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values of µRT correspond to smaller apertures and, therefore, lower chances for a failure
integer estimate. In case µRT = 1, the aperture of the RT pull-in region becomes equal to
that of the ILS, and integer solutions are always accepted. The underlying challenge relates
to choosing the threshold value, given the changing conditions for geometry and receiver
operation point. While a variety of values have been proposed based on empirical results, the
fixed failure rate test (FF-RT) constitutes the most well-known solution to the afore-described
challenge [73], [74]. Based on an extensive sequence of Monte Carlo experiments, a collection
of look-up tables provides the user with a critical value µ, based on the choice of failure
rate and the strength of the model in question, which makes it very appealing for real-time
implementations of carrier phase-based positioning.

The realization of a validity test leads to either a correct or wrong outcome and four possible
cases:

Success: occurs when an estimator provides an integer solution, and this one is pulled to the
true one S(â) = ǎ = a.

Detection: when an integer estimator returns a real-valued solution, but this would have
been pulled to a wrong integer vector S(â) = â /∈ Pa.

Failure: when an estimator outputs an integer solution, with the latter not pulled to the true
integer vector S(â) = ǎ 6= a.

False alarm: when a real-valued solution is provided, although this belong to the pull-in
region of the correct integer solution, S(â) = â ∈ Pa.
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2.3.3 Partial Ambiguity Resolution

The estimation of the complete vector of ambiguities can be a challenging task, provided
that a single bias or inaccuracy in a carrier phase pseudorange could potentially spoil the
estimation. A representative example of the former relates to medium and long baseline RTK
positioning. Furthermore, when observing the success rates for the previously listed estimators,
the probability of correctly finding the integer vector of ambiguities tends to decrease with a
raise on the number of observations, phenomena known as IAR dimensionality course [75].
The process of determining the complete vector of integer unknowns, as for the configuration
of IR, IB and ILS previously described, is denoted as Full Ambiguity Resolution (FAR).

On the contrary, the framework of Partial Ambiguity Resolution (PAR) relaxes the condition
of estimating the complete set of integers and so circumvents the aforementioned issues.
Instead of mapping integer for all the elements in â, PAR identifies the subset of ambiguities
to fix in agreement to a certain condition –i.e., maximizing the success rate or minimizing the
failure rate–. Let I be the index of the ambiguities mapped to integer, such that

I ⊆ {1, . . . , n}, I ∈ J (2.65)

where J denotes the set of possible non-empty index combinations, with cardinality |J| = 2n−1.
The complementary set Ī, i.e., the ambiguities to remain real-valued, is given by

I ∩ Ī = ∅, I ∪ Ī = {1, . . . , n}. (2.66)

The real-to-integer mapping function now becomes S : Rn → Z|I|, and it is different among
estimators. Still, an estimator and its S(·) is related to a pull-in region, such that

Pz = {x ∈ Rn | z = S(x)} , ∀z ∈ Z|I|, (2.67)

with the construction of the pull-in regions obeying similar constraints to those in (2.41),
but for the dimension |I|:

i)
⋃

z∈Z|I|Pz = Rn,

ii) int (Pz)
⋂

int (Pu) = ∅, ∀z,u ∈ Z|I|, z 6= u,

iii) Pz = P0 + z, ∀z ∈ Zn,

(2.68)

where the principles of translation invariance and coverage of the Rn space without overlaps
are satisfied. Next, let us re-define the conventional mixed model, allowing a subset of
ambiguities to remain real-valued.

Definition 2 (PAR Mixed Model). Let AI ,AĪ ,B be m× (n+ p) full rank matrices and Σ
an m×m symmetric and positive semi-definite matrix. Then, the PAR mixed model is as
follows

y ∼ N (AIaI + AĪaĪ + Bb,Σ) , aI ∈ Z|I|, aĪ ∈ R|Ī|, b ∈ Rp. (2.69)

Following the context of carrier phase-based positioning, the dimension m = 2 · n, y
is the vector of DD code and carrier phase measurements, Σ is the covariance matrix of
the observations and p = 3 when estimating the target-base station baseline vector. The
design matrices AI ,AĪ are defined as

AI =
[
λcIn,I
0n,|I|

]
, AI =

[
λcIn,Ī
0n,|Ī|

]
(2.70)
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where In,I and In,Ī correspond to the n×n identity matrix where only the ci columns are kept
(ci is the n-dimensional unit vector having a 1 as its ith entry and zeros otherwise), such that

In,I =
[
. . . , ci, . . .

]
, In,I ∈ Rn,|I|, i ∈ I, (2.71)

In,I =
(n=3,I={1,3})

1 0
0 0
0 1

 . (2.72)

as for the conventional mixed model, the system of equations in (2.69) leads to an optimization
problem where both real- and integer-valued parameters are to be estimated:ǎI

ǎĪ
b̌

 = arg min
(aI ,aĪ ,b)∈Z|I|×R|Ī|×Rp

‖y−AIaI −AĪaĪ −Bb‖2Σ , (2.73)

and only when Ī = ∅, (2.73) is equivalent to the original mixed estimation (2.13). While
it appears illogical, aiming at solving a suboptimal problem, the PAR mixed model may
improve the overall performance of an estimator for the mixed model by increasing the success
rate for some ambiguities in contrast to all of them.

The question now resides on: how can one know the subset of ambiguities to fix?
Indeed, the set I is not known a priori and needs to be determined along with the actual
integer estimation process. Following the nomenclature from the validity tests, strategies
for the selection of I are distinguished in model- and data-driven rules. A well-known
instance of model-driven PAR employs the IB success rate (2.51), as upper bound for the
ILS performance, to determine the subset I = {n′, . . . , n} that assures an estimate with
a failure rate lower than a target P0, such that

nBS = arg max
n′∈{1,...,n}

Pf,IB,n′ , s.t. Pf,IB,n′ ≤ P0, (2.74)

with Pf,IB,n′ = 1−
n∏

i=n′

(
2Φ
(

1
2σẑi|I

)
− 1

)
, (2.75)

and σ2
ẑi|I

the conditional variance of the ith Z-transformed ambiguity (following an LDL
decomposition as in (2.49)). The ambiguities are assumed to be sorted such that ẑn presents
the highest precision (σẑn|I ≤ σẑn−1|I ≤ σẑ1|I ). The realization for this PAR subset selection
is straightforward, since after the Z-transformation and LDL composition, one can quickly
evaluate whether a subset fulfills the reliability requirement.

For data-driven PAR techniques, the choice of the set I also depends on result of applying
a data-driven validity test. Doing so requires using a test of the like of (2.63) to, at most,
the 2n − 1 possible subset combinations. Thus, an integer estimator shall sequentially iterate
through the combinations of subsets, computing an integer solution and verifying its validity
with a data-driven test. While this practice has been shown to perform effectively [76], [77],
it can be computationally very demanding, since the number of estimation instances is not
known beforehand. The workflow can also be simplified as summarized in Alg. 1, if only the
worst (in terms of precision) of the ambiguities is eliminated in each iteration.

An alternative point of view on PAR is constituted within the framework of Generalized
Integer Aperture (GIA) estimation, introduced by Brack in his series of works [65], [78]–[80].
GIA extends the concepts on IA estimation for PAR to describe selective pull-in regions and
their aperture. Thus, GIA estimators procure a joint subset selection, integer estimation
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Algorithm 1: Data-Driven PAR
Input : Float estimate: â,Pââ; target Pf0

Output : PAR integer estimate: ǎI
1 Apply Z-transform and sorting (σẑn|I ≤ σẑn−1|I ≤ σẑ1|I ): ẑ = Zâ, Pẑẑ = ZPââZ>.
2 Initialize i = 1, I = {i, . . . , n}.

while i ≥ n do
3 Integer estimation: SDD(ẑI)

if SDD(ẑI) ∈ Z|I| (validity test passed) then
4 return ǎI = Z−>

I žI , žI = SDD(ẑI), (subset integer solution)
else Shrunk subset

5 i = i+ 1, I = {i, . . . , n}

and validity testing, upon the aperture of the decision regions. To do so, the best counter
hypothesis for each of the n ambiguities is tested against the overall best solution. For
instance, the GIA difference test (GIA-DT) describes the subset selection as

IGIA-DT =
{
i = 1, . . . , n | ‖â − āi‖2Pââ

− ‖â − ǎ‖2Pââ
≤ µGIA-DT

}
(2.76)

where āi is the best counter hypothesis to ǎ for which the i-th element is different and µGIA-DT
is a threshold value. In analogy to the FF-RT, such a threshold µGIA-DT can be dynamically
estimated upon a particular target failure rate [79]. A relevant note when applying conventional
PAR approaches, for all model-, data-driven PAR and GIA, is that a subset of ambiguities may
be estimated reliably while the gain on the posterior fixed position solution may be minimal
(e.g., if only two ambiguities belonging to the same satellite over different frequencies as
integer-mapped, the fixed positioning solution would barely improve its precision).

To overcome the aforementioned limitation of the PAR precision, this Chapter introduces
Precision-Driven PAR (PD-PAR). PD-PAR is a subset selection criteria based on the projection
of the ambiguities into the domain of the fixed positioning estimate. Thus, one aims at finding
a reduced number of ambiguities which guarantee certain target positioning precision criteria
α for the fixed position solution while retaining a sufficiently low failure rate Pf0 . Notice
that the precision requirement α refers to the minimal positioning precision required by a
particular application (e.g., automobile lane detection may require decimeter-level precision
[81], while vessel mooring assistance might entail a precision of a few centimeters [6]). For
that purpose, the optimization problem in (2.73) is reformulated with the addition of a
constraint over the precision of the fixed positioning solution, asǎI

ǎĪ
b̌

 = arg min
(aI ,aĪ ,b)∈Z|I|×R|Ī|×Rp

‖y−AIaI −AĪaĪ −Bb‖2Σ ,

s.t. tr
(
Pb̌b̌

)
≤ α2,

(2.77)

where Pb̌b̌ is the covariance matrix for the fixed positioning solution. Unlike (2.22) and (2.23),
the fixed solution for a PAR estimator is expressed in terms of the subset of ambiguities fixed, as

b̌ = b̂−Pb̂âI
P−1

âI
(âI − ǎI) , (2.78)

Pb̌b̌ = Pb̂b̂ −Pb̂âI
P−1

ââI
PâI b̂, (2.79)
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and, since Pb̂b̂ remains invariant with the subset choice, the selection can be realized so that

tr
(
Pb̂âI

P−1
ââI

PâI b̂

)
≥ tr

(
Pb̂b̂

)
− α2, (2.80)

so that one may omit performing integer estimation if the associated positioning precision does
not match the target α. The procedure to operate PD-PAR consists on recursively finding the
subset with best associated precision and whether a reliable integer solution exists (i.e., passing
the validity test assures that the success rate is sufficiently high). If the position precision
criteria α is not fulfilled, a fixed solution cannot be estimated for the subset I. The subset I
searching is based on (2.80) that follow from (2.79). Instead, if the precision is sufficient but
a reliable solution is unavailable, the size of the subset reduces and the recursion is repeated.

Algorithm 2: Precision-Driven PAR

Input : Float estimate:
[

â
b̂

]
,

[
Pââ Pâb̂
Pb̂â Pb̂b̂

]
; target Pf0 , α

Output : PD-PAR fixed solution: b̌, ǎI
1 Initialize s = 0.

while s ≥ n do (iterate over subset size)
2 List subsets: I ′ ⊆ {1, . . . , n}, I ′ ∈ J′, |J′| =

( n
n−s

)
3 Find best subset: I = arg maxI′ tr

(
Pb̂âI′

P−1
ââI′

PâI′ b̂

)
if tr

(
Pb̂âI′

P−1
ââI′

PâI′ b̂

)
< tr

(
Pb̂b̂

)
− α2 (precision test not passed) then

return ǎI = âI (fixed solution unavailable)
else

4 Apply Z-transform and sorting (σẑn−s|I ≤ · · · ≤ σẑ1|I ):
ẑI = ZâI , PẑẑI = ZPââI Z>.

5 Integer estimation: SDD(ẑI)
if SDD(ẑI) ∈ Z|I| (validity test passed) then

6 return ǎI = Z−>
I ǔI , ǔI = SDD(ẑI), (subset integer solution)

else Shrunk subset
7 s = s+ 1

8 Fixed solution estimation via (2.78),(2.79)

Alg. 2 sketches a top-bottom (the number of ambiguities to integer-map decreases with
the iterations) workflow for PD-PAR. Notice that, PD-PAR derives from a model-driven
PAR estimator, since the ambiguity validity test aligns with the data-driven rules in (2.63).
The novelty is that the subset selection is realized based on how good the ambiguities are
projected into the positioning domain. Moreover, the Z-transform is estimated for each subset
size, which greatly reduces the degree of decorrelation among ambiguities at the cost of a
slightly superior computational complexity. As for other data-driven approaches, the number
of iterations until a subset can be reliably integer estimated is not known beforehand. However,
whenever the satellite geometry is poor or the model is weak, one can rapidly disregards any
integer estimation, provided that a potential fixed solution would not comply with the target
positioning precision. More details on the computational complexity and the performance
comparison of PD-PAR against other PAR solutions may be consulted in [1].
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2.4 Estimation Bounds for the Mixed Model
The most popular LB is the well-known CRB derived for the real- and complex-valued parameter
vector, mostly because of: i) its simplicity of calculation, for instance using the Slepian-Bangs’
formula [82]; ii) it is the lowest bound on the MSE of any unbiased estimator ; and iii) it is
asymptotically attained by MLEs under certain conditions (i.e., high SNR [83] and/or large
number of snapshots [84]), that is, MLEs are asymptotically efficient. Inherent limitations of
such CRBs are their inability to: predict the threshold phenomena; provide tight bounds in
certain cases [85]; and deal with integer-valued parameter estimation, which is the focus of
this section.

There are two main categories of LBs, deterministic and Bayesian [86]. While the former
considers that the parameters to be estimated are deterministic and evaluate the locally
best estimator performance, the latter consider random parameters with a given a priori
probability and evaluate the globally best estimator behavior. Hereinafter, the focus will lay on
deterministic parameter estimation. A plethora of deterministic bounds have been proposed in
the literature [87]–[95] to provide computable approximations of the Barankin bound (BB)
[96], which is the tightest LB for any absolute moment of order greater than 1 of unbiased
estimators but does not admit an analytic solution in general.

To obtain a closed-form CRB expression for the mixed model, one leverages on the
McAulay-Seidman bound (MSB) [89]. The MSB is the BB approximation obtained from a
discretization of the Barankin uniform unbiasedness constraint, using a set of selected values
of the parameter vector, so-called test points. Thus, a general CRB definition for the mixed
model is obtained and it is particularized for the RTK functional model (as example of linear
regression problem). Next, a brief introduction to the MSB and the CRB is provided.

2.4.1 Background on MSB and CRB for Real Parameters

Let y be a random real-valued observations vector and Y ⊂ Rn the observation space. Denote
by p (y; x) , p (y|x) the pdf of the observations conditional on an unknown deterministic
real-valued parameter vector x ∈ X ⊂ RK . Let L2 (Y) be the real vector space of square
integrable functions over Y. If we consider an estimator g (x̂) ∈ Ln

2 (Y) of g (x), where
x is a selected generic parameter vector and g (x) = [g1 (x) , . . . , gn (x)]> is a real-valued
function vector, then the MSE matrix writes,

MSE
(
g
(
x̂
))

= Ey;x
[(

g
(
x̂
)
− g

(
x
)) (

g
(
x̂
)
− g

(
x
))>]

. (2.81)

The search for a LB on the MSE (2.81) (w.r.t. the Löwner ordering for positive symmetric
matrices [97]) can be performed with the minimization of a norm under linear constraints
[90], [92], [93]. Thus, to avoid the trivial solution g (x̂) = g (x), [96] introduced the
formulation of uniform unbiasedness,

Ey;x
[
g
(
x̂
)]

= g (x) , ∀x ∈ X , (2.82)

and the consequent Barankin bound (BB) subject to such constraints, as

min
g(x̂)∈Ln

2 (Y)

{
MSE

(
g
(
x̂
))}

s.t. Ey;x
[
g
(
x
)]

= g (x) ,∀x ∈ X , (2.83)

which does not admit an analytic solution in general.
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The McAulay-Seidman bound (MSB) is the computable BB approximation obtained
from a discretization of the uniform unbiasedness constraint (2.82). Let {x}L , {x}[1,L] ={

x1, . . . ,xL
}
∈ XL be a subset of L selected values of x (a.k.a. test points). Then, any

unbiased estimator g
(
x̂
)

verifying (2.82) must comply with the following subset of L LCs,

Ey;xl

[
g
(
x̂
)]

= g
(
xl), 1 ≤ l ≤ L, (2.84)

which can be recast as

Ey;x
[
υx
(
y; {x}L

) (
g
(
x̂
)
− g

(
x
))>]︸ ︷︷ ︸

Γ

=


(
g
(
x1)− g

(
x
))>

...(
g
(
xL
)
− g

(
x
))>


︸ ︷︷ ︸

V

, (2.85)

where υx
(
y; {x}L

)
=
[
υx
(
y; x1) , . . . , υx

(
y; xL

)]>
is the vector of likelihood ratios associ-

ated to {x}L such that, for the lth test point the likelihood is given by

υx
(
y; xl

)
=
p
(
y; xl

)
p (y; x) . (2.86)

The L linear constraints in (2.85) yields the approximation of (2.83) proposed by
McAulay and Seidman [93],

min
g
(

x̂
)

∈Ln
2 (Y)

{
MSE

(
g
(
x̂
))}

s.t. Γ = V, (2.87)

and defines the MSB (Lemma 1 in [98]) [89], [93]

MSE
(
g
(
x̂
))
≥∆g

(
x, {x}L

)
R−1

υx ∆>
g

(
x, {x}L

)
, (2.88)

with

∆g
(
x, {x}L

)
=
[

g
(
x1)− g (x) . . . g

(
xL
)
− g (x)

]
, (2.89)

Rυx , Rυx

(
{x}L

)
= Ey;x

[
υx
(
y; {x}L

)
υ>

x

(
y; {x}L

)]
, (2.90)

which results the generalization of the Hammersley-Chapman-Robbins bound (HaChRB),
introduced previously in [88], [99] for 2 test points (L = 2).
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CRB as a Limiting Form of the MSB

The definition of the CRB as the limiting form of the aforementioned HaChRB —and conse-
quently, also for the MSB—, was first showed in [96], and later extended to the multidimensional
real parameter case in [89]. Thus, let us consider the following subset of test points

{x}1+K = {x,x + i1dx1, . . . ,x + iKdxK} under dxk 6= 0, 1 ≤ k ≤ K,

where the first test point corresponds to x0, and ik is the kth column of the identity matrix
IK . Thus, (2.86) and (2.89) can be reformulated as

υx0

(
y; {x}1+K

)
=
[

1 p(y;x+i1dx1)
p(y;x) . . . p(y;x+iKdxK)

p(y;x)

]>
,

∆g
(
x, {x}1+K

)
=
[

0 g (x + i1dx1)− g (x) . . . g (x + iKdxK)− g (x)
]
,

and, with dx = (dx1, . . . , dxK)>, yields to (see Appendix A.3)

∆g (x) R−1
υx ∆>

g (x) = Λg (x, dx) F̃ (x, dx)−1 Λ>
g (x, dx) , (2.91)

where

F̃ (x, dx) = Ey;x




p(y;x+i1dx1)−p(y;x)
dx1p(y;x)

...
p(y;x+iKdxK)−p(y;x)

dxKp(y;x)




p(y;x+i1dx1)−p(y;x)
dx1p(y;x)

...
p(y;x+iKdxK)−p(y;x)

dxKp(y;x)


> (2.92)

Λg (x, dx) =
[

g(x+i1dx1)−g(x)
dx1

. . . g(x+iKdxK)−g(x)
dxK

]
, (2.93)

which results in a general definition of the CRB (g(x̂)) as

CRB (g(x̂)) = lim
sup{dx1 6=0,...,dxK 6=0}→0

Λg (x, dx) F̃ (x, dx)−1 Λ>
g (x, dx) . (2.94a)

If x ∈ X ⊂ RK and g (x) and p (y; x) are C1 at x, then (2.94a) yields the well known Fisher
Information Matrix (FIM) F (x) and the usual CRB expression

F (x) = Ey;x

[
∂ ln p (y; x)

∂x
∂ ln p (y; x)

∂x

>]
, (2.94b)

CRB (g(x̂)) = ∂g (x)
∂x> F (x)−1

(
∂g (x)
∂x>

)>
. (2.94c)

Leveraging the MSB and CRB results presented in this section, a LB for deterministic
parameter vector estimation, where such vector presents a mixture of real- and integer-
valued parameters, is derived next. A general result is provided and then particularized for
the case of linear regression under Gaussian observations, which corresponds to the RTK
functional model described in Section 2.1.
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2.4.2 General CRB for Mixed Parameter Estimation

The main result derived in this section is summarized in the form of Theorem 1. A corollary
follows, which simplifies the former for a particular class of models.

Theorem 1 (General CRB for mixed parameter vectors). Assume a set of observations
y ∈ Y ⊂ Rn and an unknown deterministic real-valued parameter vector x ∈ X ⊂ RK where
x> =

[
ω>, z>

]
, ω ∈ RKω , z ∈ ZKz , Kω +Kz = K. Those quantities are related through

a statistical model of the form y|x ∼ p (y|x), which is available. Then, the MSE of any
unbiased estimator of a function g (x̂) ∈ L2 (Y) for a selected value of the parameter x is
lower bounded by

CRB (g(x̂)) = Λg (x) F (x)−1 Λ>
g (x) , (2.95)

with

Λg (x) =
[

∂g(x)
∂ω> g

(
x1)− g (x) . . . g

(
x2Kz

)
− g (x)

]
(2.96)

F (x) =
[

Fωω Fωz
F>

ωz Fzz

]
, (2.97)

where the test points {x}2Kz are defined as

xj = x + (−1)j−1 i
Kω+

⌊
j+1

2

⌋, 1 ≤ j ≤ 2Kz, (2.98)

that is, [
x1,x2, . . . ,x2Kz−1,x2Kz

]
= [x + iKω+1,x− iKω+1, . . . ,x + iK ,x− iK ] .

The different terms in F (x) are given by

Fωω = Ey;x

[
∂ ln p (y; x)

∂ω

∂ ln p (y; x)
∂ω

>]
, (2.99a)

Fωz = Ey;x

[
∂ ln p (y; x)

∂ω
t>

2Kz

]
(2.99b)

=
[

f
(
x,x1) f

(
x,x2) . . . f

(
x,x2Kz

) ]
, (2.99c)

Fzz = Ey;x
[
t2Kz t>

2Kz

]
− 12Kz 1>

2Kz
, (2.99d)

where t2Kz is defined as

t2Kz , υx
(
y; {x}2Kz

)
=

p (y; x1)
p (y; x) ,

p
(
y; x2)

p (y; x) , . . . ,
p
(
y; x2Kz

)
p (y; x)

>

. (2.99e)

The proof of Theorem 1 is shown in Appendix A.4.

Corollary 1. If g (x) = x, matrix Λg (x) in Theorem 1 simplifies to

Λg (x) =
[

i1 . . . iKω iKω+1 −iKω+1 . . . iK −iK
]

=
(Kz=3)


IKω 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

 . (2.100)
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CRB for the Mixed Model under Gaussian Observations

The CRB introduced in Theorem 1 results valid for deterministic mixed model estimation
under any kind of statistical distribution of the observations. Prior to exploring the CRB for
the RTK positioning model, it is introduced an expression of the general CRB of the mixed
model for the Gaussian observation case.

Let us consider an n-dimensional Gaussian real vector y whose distribution is conditioned on
the parameter vector x as: y ∼ N (µ(x),Σ(x)) and p (y; x) = p (y; µ (x) ,Σ (x)) such that

p (y; µ (x) ,Σ (x)) = 1√
2πn√|Σ (x)|

exp
(
−1

2 (y− µ (x))> Σ−1 (x) (y− µ (x))
)
.

(2.101)
Upon defining

Σij =
[
Σ
(
xi
)−1

+ Σ
(
xj
)−1
−Σ (x)−1

]−1
, (2.102a)

µij = Σ
(
xi
)−1

µ
(
xi
)

+ Σ
(
xj
)−1

µ
(
xj
)
−Σ (x)−1 µ (x) , (2.102b)

δij = µ
(
xi
)>

Σ
(
xi
)−1

µ
(
xi
)

+ µ
(
xj
)>

Σ
(
xj
)−1

µ
(
xj
)

− µ (x)> Σ (x)−1 µ (x) , (2.102c)

then one may obtain the different components required to compute the CRB (2.95) (see
A.5 for the detailed derivation of Fzz and f

(
x,xj

)
) as

[Fzz]i,j =
√
|Σij | |Σ (x)|
|Σ (xi)| |Σ (xj)|e

1
2

[
µij >Σijµij−δij

]
− 1, (2.102d)

[
f
(
x,xj

)]
k

=


1
2 tr

(
∂Σ(x)−1

∂ωk

(
Σ (x)−Σ

(
xj
))
− ∂Σ(x)−1

∂ωk

×
(
µ
(
xj
)
− µ (x)

) (
µ
(
xj
)
− µ (x)

)>)
+∂µ(x)

∂ωk

>
Σ (x)−1 (µ (xj

)
− µ (x)

)
 (2.102e)

[Fωω]k,l = ∂µ (x)
∂ωk

>
Σ−1 (x) ∂µ (x)

∂ωl

+ 1
2 tr

(
Σ−1 (x) ∂Σ (x)

∂ωk
Σ−1 (x) ∂Σ (x)

∂ωl

)
, (2.102f)

where (2.102f) is the Slepian-Bangs formula [100, p.47].
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2.4.3 Cramér-Rao Bound for RTK Positioning

Recalling Section 2.2, the RTK estimation problem reads

y = Hx + n, n ∼ N (0,Σ) , H =
[

B A
]
, x =

[
b> a>

]>
. (2.103)

With g(x) a linear operator such that g(x) = Hx, and recalling Theorem 2.4.2, let us
rename CRB(g(x̂)) to CRB(x̌), given by

CRBmixed , CRB (x̌) = Λg (x) F (x)−1 Λ>
g (x) , (2.104a)

F (x) =
[

Fωω Fωz
F>

ωz Fzz

]
, (2.104b)

where Λg (x) is given by (2.100), and the FIM, F (x), is obtained using the Gaussian
model equations given in Section 2.4.2. Notice the notation change g(x̂) to x̌ makes
emphasis on the reference to a fixed solution, as described in Section 2.2. Similarly, ω
and z in F (x) correspond to b and a.

Since Σ is not dependent on the estimate x and µ(x) = Hx, (2.102a-2.102c) simplify to

Σij = Σ,

µij = Σ−1H
(
xi + xj − x

)
,

δij = xi>HΣ−1Hxi + xj>HΣ−1Hxj − x>HΣ−1Hx,

for the test points
{
xi,xj

}i,j∈[0,2Kz ], xj = x+(−1)j−1 i
Kω+

⌊
j+1

2

⌋ and xi = x+(−1)i−1 i
Kω+

⌊
i+1

2

⌋.
Then, (2.102d-2.102f) are further simplified and one can estimate the elements of F (x) in a
straight-forward manner. Particularly, computing Fωω for 1 ≤ k, k′ ≤ Kω becomes[

Fωω

]
k,k′

= ∂Hx
∂ωk

>
Σ−1∂Hx

∂ωk′
=
[
B
]>

:,k
Σ−1

[
B
]

:,k′
,

such that

Fωω = B>Σ−1B, (2.104c)

then the FIM for integer-valued parameters reads

[Fzz]i,j = exp
((

x− xi − xj
)>

H>Σ−1Hx + xi>H>Σ−1Hxj
)
− 1. (2.104d)

Finally, for 1 ≤ k ≤ Kω, f
(
x,xj

)
can be expressed as[

f
(
x,xj

)]
k

= ∂Hx
∂ωk

>
Σ−1

(
Hxj −Hx

)
=
[
B
]>

:,k
Σ−1H

(
xj − x

)
,

which, in matrix form, leads to

Fωz = B>Σ−1H
[

iKω+1 −iKω+1 . . . iKω+Kz −iKω+Kz

]
. (2.104e)

It is worth noting that relaxing the condition on the integer-valued part of the parameters’
vector, and assuming that both parameters are real-valued, ω ∈ RKω , z ∈ RKz , then the
standard CRB is given by the inverse of the following FIM,

CRBreal , CRB (x̂) = F (x̂)−1 = H>Σ−1H, (2.105)

which corresponds to the estimation bound for the float solution of the RTK positioning model.
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2.5 Efficiency of Estimators at the RTK Model

This section studies the performance of estimators at the RTK positioning model, with regards
to the CRB proposed in Section 2.4.3. For such end, a simulated scenario is studied based on
the satellite geometry presented in Section 1.5.1, under a wide range of precision levels for the
undifferenced code observations σρ –preserving the noise of carrier-phase σΦ as two orders
of magnitude lower than the code one–. The characterization of the estimators is obtained
from 104 Monte Carlo iterations, for which the RMSE of the 3D positioning is regarded as
performance metric and compared with the corresponding CRB.

When observing the estimation procedure presented in Section 2.2, one can appreciate
that while the float solution estimation performed by a MLE estimation is asymptotically
efficient, the fixed positioning solution is conditioned on the performance of integer estimators,
whose efficiency have not been addressed. In particular, this work focuses on the performance
of the IR, IB and ILS estimators, for which the RMSE for the baseline fix solution is defined as

RMSE(·) , RMSE
(
b̌(·)

)
=
√

MSE
(
b̌(·)

)
(2.106)

MSE
(
b̌(·)

)
= E

[(
b̌(·) − b

)> (
b̌(·) − b

)]
, (2.107)

for b̌(·) the solution conditioned on (·) = {IR, IB, ILS}, the estimators compared. It results
useful, “looking inside” the CRB matrices (2.104b,2.105) for the RTK fixed and float solutions

CRBmixed =

 CRBb̌ CRBb̌ǎ

CRB>
b̌ǎ CRBǎ

 , CRBreal =

 CRBb̂ CRBb̂â

CRB>
b̂â CRBâ

 ,
from which the following metrics are derived and compared with the aforementioned RMSE

CRBb,mixed =
√

tr
(
CRBb̌

)
, CRBb,real =

√
tr
(
CRBb̂

)
, (2.108)

and, similarly for the ambiguities

CRBa,mixed =
√

tr (CRBǎ), CRBa,real =
√

tr (CRBâ). (2.109)

Fig. 2.6 shows the 3D position RMSE on the abscissa axis, while the standard deviation
of code observations σρ defines the ordinate axis, with a zoom of the low noise region given in
Fig. 2.7. Solely by observing the bounds CRBb,real and CRBb,mixed, it becomes obvious the
great precision obtained by means of constraining the baseline solution by virtue of the integer
ambiguities and justifies the need for powerful integer estimators to do so. As a byproduct,
this highlights the importance of the LB proposed in this contribution. Clearly, restricting the
set of possible values (integer instead of real) leads to a LB such that CRBmixed ≤ CRBreal.
Focusing on the specifics of the mixed problem, the derived CRB showcases the existence of
three zones: high SNR region (σρ <10), for which an estimation shall (in theory) have a high
probably to be on the correct peak of the log-likelihood function and present small errors [86];
threshold region (10≤ σρ ≤104), as the SNR decreases, the estimator reaches a threshold for
which some estimates would be near the CRB while others are randomly affected by the noise
distribution; no information region (σ >104), as SNR continues decreasing, the observations
do not shed any useful information and the estimator’s outputs would be fully random —in
this case, whether ambiguities are estimated would not play any role on the positioning, since
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Figure 2.6: Positioning RMSE of estimators (solid lines) and square-root of CRBs (dashed lines) as a
function of the standard deviation of the undifferenced code observations’ noise σρ.

CRBmixed would have aligned with CRBreal.
When observing the performance of the estimators, first notice that the MLE estimate

for the float problem (applying a LS adjustment) coincides with the CRBreal for the range
of tested σρ values, which gives the ultimate achievable performance with both code and
phase observables if no integer constraint is imposed. The performance of the fixed solution,
conditioned on the integer estimation, clearly varies based on the noise levels. As for the
study of the CRB, three regions can be identified:

• Large noise regime: the ILS coincides with the MLE float solution and with CRBb,fix,
which is clear from the ILS success rate shown in Fig. 2.8, where we can see that for
σρ > 3 [m] a correct integer solution is never found. In that case, the fixed solution is
as if no integer constraints were imposed.

• Low noise regime: the IAR obtains the correct ambiguity solution with high probability,
then the integer estimators coincide with the CRBb,fix, meaning that they result
asymptotically efficient.

• Threshold regime: below the so-called threshold point (in this case, σρ '0.08 [m]),
the fixed solution RMSE departs from CRBb,fix and rises towards the CRBb,float. This
region describes the behaviour of the integer estimators, which abandon the asymptotic
efficiency and ambiguous errors occur due to the (partially) wrong estimation of the
integer ambiguities. The threshold point depends on the estimators, the satellite
geometry, number of observations and observation noises. Therefore, the precise
prediction for the transition point remains an open challenge. A remarkable point can
be appreciated in Fig. 2.7, for 0.6≤ σρ ≤ 5 [m], for which the fixed solutions present
a worsen positioning accuracy than the float one. This is due to wrongly estimated
ambiguities inducing a bias in the fixed baseline solution, which highlights the need for
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Figure 2.7: Detail on the threshold region for the positioning RMSE performance of estimators at the
mixed model problem.

IA algorithms (see Section 2.2), i.e., recognizing when a fixed solution shall or not be
accepted.
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Figure 2.8: Experimental success ratio for the integer estimation of the mixed model against the
standard deviation of the undifferenced code observations’ noise for the low noise and threshold regimes.

Fig. 2.8 depicts the integer ambiguity success rate —i.e., the percentage of experiments
for which the complete set of ambiguities are correctly estimated by the pertinent estimator—
against the code precision. For low noise, e.g., for σρ ≤0.1, the integer estimators perform
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asymptotically and IR, IB and ILS manage to always correctly estimate the integer ambiguities.
As the noise level increases, such percentage rapidly decay for the three estimators of
interest, with the best and worst performances brought by ILS and IR respectively. A
relevant point relates to the application of the IB estimation bound, which is shown to be
a tight bound for the IB [30, Ch. 23] (in Fig. 2.8 denoted as Ps UB) performance and
serves as upper bound for ILS estimates —i.e., the performance of ILS shall overpass the
IB bound—, as discussed in Section 2.2.
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Figure 2.9: On the left, ambiguities RMSE of estimators (solid lines) and square-root of CRBs (dashed
lines) as a function of the complete range of values for the standard deviation of the undifferenced code
observations’ noise σρ. On the right, detail on the ambiguities RMSE for the low noise and threshold
regimes.

The performance of the estimators for the integer ambiguities is discussed next. Fig. 2.9
(left) shows the ambiguity RMSE (in cycles), alongside the square-root of the corresponding
CRBs, with a zoom of the low noise region given in Fig. 2.9 (right). As for the positioning
case, the standard MLE estimates attains the CRBfloat regardless of the noise level. Again, the
integer estimators present the three same regions of performance (high and low noise, with a
threshold region in between). Together with the previous results for the position estimate,
this shows the validity and interest of the mixed real/integer bound, and the consistency
of the results related to the ambiguity fixing capabilities (i.e., success rate). Overall, the
results obtained from the simulation align with the initial hypothesis stated by Teunissen
[30], with regards to the relative performance of IR, IB and ILS

P (ǎIR = a) ≤ P (ǎIR = a) ≤ P (ǎILS = a) ,

and, in the following, some additional considerations on such estimators efficient are presented.

First, let us recall the definition of covariance matrix for the float estimates in (2.20)

Px̂ ,

[
Pââ Pââ
Pb̂â Pb̂b̂

]
,
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which, by exploiting the four-blocks matrix inversion expression [97], leads to

Pb̂(a) = Pb̂b̂ −Pb̂âP−1
ââ P>

b̂â︸ ︷︷ ︸
Pb̌b̌

=
(
B>Σ−1B

)−1
,

from which one recognizes that the covariance matrix of the fixed positioning solution (2.23)
corresponds to that of an MLE where the ambiguities are ignored and, therefore, the choice
of integer estimator does not play a role on the variance of the computed solution.

Secondly, the estimated fixed baseline (2.22) does depend on the integer estimator, as

b̌ , b̌ (ǎ) = b̂−Pb̂âP−1
b̂b̂

(â − ǎ) ,

where the improvement in accuracy is due to constraining the float solution to the more
restrictive class of integer estimators. Since, the estimators of interest (IR, IB and ILS) have
been shown to be uniformly unbiased [101] under Gaussian additive noise —i.e., E[b̌] =
E[b̂] = b—, then the proposed CRB (g(x̂)), for x a vector with real- and integer-valued
parameters, in (2.95) is a relevant LB for the Gaussian linear conditional signal model (2.4) and

Pb̌ = Pb̌(ǎ) ≥ CRBb̌, ǎ ∈ {ǎIR, ǎIB, ǎILS}.

Finally, if one considers [30, (23.23)] limtr(Σ)→0 P (ǎIR = a) = 1 as the asymptotic condition,
then

lim
tr(Σ)→0

PǎIR = lim
tr(Σ)→0

PǎIB = lim
tr(Σ)→0

PǎILS = 0.

Then, for any estimate ǎ ∈ {ǎIR, ǎIB, ǎILS} and considering the formulation of the fixed
covariance matrix from [59, (29)]

Pb̂(ǎ) = Pb̂(a) + Pb̂âP−1
ââ PǎP−1

ââ P>
b̂â,

then the following expression is obtained

lim
tr(Σ)→0

Pb̌|ǎ =
(
B>Σ−1B

)−1
,

and, since adding unknown parameters leads to an equal or higher CRB, then

Pb̌(ǎ) ≥ CRBb,fix ≥
(
B>Σ−1B

)−1
.

Thus, for any estimate ǎ ∈ {ǎIR, ǎIB, ǎILS},

lim
tr(Σ)→0

Pb̌|ǎ = lim
tr(Σ)→0

CRBb,fix =
(
B>Σ−1B

)−1
,

which proves that all IR, IB and ILS are asymptotically efficient estimators.
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2.5.1 Insights from the CRB for the PAR Mixed Model

Similarly to the conventional mixed model for RTK positioning –conventional in the sense
that it follows the FAR approach, with the complete set of ambiguities being mapped to
integer values–, the CRB in 2.4.3 can be easily extended for the PAR mixed model using
the corresponding design matrices and vector of unknowns in 2.69. To better showcase the
gain from PAR, it results convenient observing a scenario richer in number of observations.
Thus, we replicate the previous Monte Carlo experimentation for the skyplot observed at the
Postdam IGS station on March 26th 2019 (DOY 085 12:00 UTC), where a total of 12 GPS
satellites are tracked over the L1 and L2 frequencies (i.e., a total of 22 ambiguities are to be
resolved). Once again, a wide range of precision levels for the undifferenced observations are
considered and 104 Monte Carlo runs compose the experiment. The comparison is realized
in terms of positioning RMSE and experimental success ratio, and the estimators evaluated
are: i) an MLE estimator for the mixed model 1 (conventional FAR RTK positioning) using
an ILS as integer estimator; ii) an MLE estimator for the PAR mixed model 2, using ILS as
integer estimator and using PD-PAR as subset selection criteria2.
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Figure 2.10: Three-dimensional positioning RMSE (solid lines) and CRBs (dashed lines) as a function
of the undifferenced standard deviation for the code observations, σρ, for estimators of FAR and PAR
mixed model problem. Moreover, a small zoom over the FAR to PAR difference on positioning precision
is depicted.

Fig. 2.10 depicts the three-dimensional positioning RMSE against the range of standard
deviations for the code observations. The dashed blue and orange lines represent the CRB for
the position estimate on the mixed model of FAR and PAR, respectively, while the solid lines
with the same color scheme illustrate the performance of the FAR and PAR estimators. The
CRB for the real-valued problem is depicted as a black dashed line. Similarly to the previous

2To properly evaluate the estimator’s performance, the validity test for the estimated ambiguities is not
carried out and, instead, the integer solution for the subset of ambiguities is always accepted (as for the MLE
of the mixed problem). To further simplify the simulation, the PAR estimator consistently discards the four
ambiguities whose contribution to the fixed positioning precision is lesser.
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analysis, three regions for the estimators’ performance can be observed: asymptotic behavior,
a threshold region, and the large noise regime where the ambiguities cannot be correctly
estimated. Notice that, during the large noise regime, the performance of FAR and PAR align
with the CRB for the real-valued problem, since in both cases the integer estimate cannot
match the true one. The motivation for using PAR becomes evident when observing the
“duration” of the asymptotic behavior: while the threshold region for FAR begins at σρ ' 0.2
m, PAR extends its asymptotic efficiency until σρ ' 0.5 m. This implies that a subset of
ambiguities can be mapped into the true vector of integer values, while the complete set of
ambiguities cannot, as further illustrated in Fig. 2.11 (notice that the percentage of IAR
success for PAR solely considers the subset of integer-mapped ambiguities).
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Figure 2.11: Experimental success ratio for the FAR and PAR integer estimation against the standard
deviation of the undifferenced code observations’ noise for the low noise and threshold regimes.

As counterpart, PAR’s fixed positioning solution experiments a precision loss with respect
to that of FAR. In this particular case, discarding the four least significant ambiguities (in terms
of positioning gain) leads to a PAR precision of approx. 0.8 times the one of FAR. Nonetheless,
the larger asymptotic performance for PAR compensates for that –for instance, PAR’s RMSE
at σρ = 0.5 m is under two cm, while FAR’s RMSE is over 80 cm at the same evaluated point–.
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2.6 From Signal Processing to RTK Positioning Performance

As discussed in Section 1.2.1, code and carrier phase measurements are derived from the
estimated parameters (time delay, carrier phase offset, etc.) of the signal model in (1.5).
Thus, the quality of the pseudorange observables is conditioned on the operation point of
a GNSS receiver (for instance, long integration times and high C/N0 lead to smaller noises
in both code and carrier phase observations). Then, addressing the ultimate achievable
RTK performance is a two-folded challenge: on the one hand, the receiver capability at
estimating the signal parameters defines the observations’ noise; on the other hand, RTK
positioning is characterized by the tracked satellital geometry and the estimation of the mixed
model. Similarly to Section 1.5, where code-based positioning is addressed, the ultimate RTK
positioning performance with regards to some GNSS representative signals and meta-signals,
considering different sampling rates and receiver operating points.

Performance Analysis for Representative GNSS Signals

Following the simulated scenario in Section 1.5.1 for the code-based positioning case, the carrier
phase-based positioning performance is assessed and the role played by signal type and receiver
operation point analyzed. Although it is a common practice for RTK positioning to employ
multi-constellation and/or multi-frequency combinations, the focus here lays on observing the
performance gain from every individual GNSS signal. Moreover, the characteristics on base
and rover receivers may differ in real scenarios, presenting different operation points and/or
integration times. For the experimental case at hand, the two receivers are assumed to
present the same SNRout.
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Figure 2.12: RTK positioning CRB (dashed lines) and associated RMSE (solid lines) versus SNRout
for a selection of representative GNSS signals. The CRB for the mixed model is shown in gray with
circular and squared markers for the L1 and L5 frequencies, respectively.

The position RMSE results are depicted in Fig. 2.12 where, for the sake of simplicity, the
wavelength of E5 is assumed identical to L5. Some interesting points of discussion are as follows
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• In terms of performance limits, i.e., focusing on the different CRBs, one concludes that:

– Similarly to code-based positioning, the performance limit of the float solutions
(i.e., CRBreal) is purely conditioned on the time-delay estimates and the satellites’
geometry. Thus, since the ACF main peaks are clearly distinguished from the
secondary ones for the evaluated signals, the time-delay and float positioning
performance is driven by the bandwidth of the signals.

– The performance limit (i.e., CRBmixed) of the fixed solution is dominated by the
carrier phase observables and the geometry. For real signals, the quality of carrier
phase pseudoranges is solely based on the SNRout (common across signals) and
the wavelength (1.41). Hence, the bound for the mixed model is lower for L1 than
for L5/E5.

• In terms of estimators’ performance, one notices that:

– The existence of the three previously-discussed regimes still holds, so that the CRB
at the mixed model can be attained for high SNR, a transition from the mixed
to the real models exists during the threshold regime and the estimator attains
the CRB for the real model for low SNR. In addition, the no information regime
occurs when the signal parameters cannot be estimated for SNR below 16 dB, as
it was formerly discussed in Section 1.5.1.

– The estimation performance at the mixed model is driven by the quality of the
code observables so that, whenever the time-delay estimation is not precise enough,
the asymptotic region is immediately abandoned and the real ambiguities cannot
be mapped to the correct integer ones.

• In terms of the signal used, one realizes that:

– If RTK positioning is performed with narrow bandwidth signals, such as the GPS
L1 C/A, higher sampling rates shall be preferred. For instance, for L1 C/A signal
at Fs = 10 MHz, the threshold region starts at SNRout = 26 dB which, for
a coherent integration time TI = 20 ms, corresponds to a C/N0 = 43 dB-Hz
(e.g., a nominal C/N0 value in open sky conditions). Note that standard GNSS
receiver architectures typically operate in Fs ∈ [8− 12] MHz and, therefore, the
use of RTK positioning is generally recommended for multi-frequency and/or
multi-constellation configurations. A gain of 3 dB in the extent of asymptotic
region is obtained, for instance, when exploiting L1 C/A with Fs = 24 MHz. A
similar conclusion is withdrew from the use of GPS L5, with the threshold regimes
starting at 19 and 18 dB for sampling rates of 10 and 30 MHz, respectively.

– The use of a large bandwidth signal, such as the Galileo E5, leads to a considerable
gain in the extent of the asymptotic region. Indeed, with the threshold regime
starting at SNRout = 16 dB, a gain of 10 dB is obtained with respect to GPS L1
C/A at Fs = 10 MHz.

In conclusion, there is a clear justification on using fast codes (e.g., E5 and L5 signals) to
provide an improved range of RTK operation. Particularly, Galileo E5 could be devised
to provide fixed solutions in scenarios with weak signal reception, such as near-indoor
environments. Moreover, if a new GNSS signal was specifically designed for precise positioning,
the recommendation is to use a carrier frequency as high as possible and a signal modulation
with the largest signal bandwidth.
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Performance Analysis for GNSS Metasignals

In accordance to the synthetic scenario described before, the RTK positioning performance is
assessed in direct relationship to the receiver capabilities at tracking GNSS metasignals. Recall
that Section 1.5.2 discusses the CRBs and the actual estimation performance for the metasignal
parameter problem. Fig. 2.13 illustrates the CRB and MLE performance of the studied signals
against the receiver operation point. Note that for the sake of visualization the wavelength is
assumed to be the same across signals aligned with the one of E5 (λE5 = 25.17 cm), and the
performance of E5 is added as a reference and for completeness. A detail over SNRout = 26 is
added to showcase the differences in the CRB for the float solution across the different signals.
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Figure 2.13: RTK positioning CRBs (gray and colored dashed lines for the mixed and real models,
respectively) and associated RMSE (solid lines) against SNRout for a selection of meta-signals. For
completeness, Galileo E5 is show in black.

Unlike the other results on RTK positioning with representative signals, one can no longer
differentiate the four regimes for the MLE behavior. Instead, there is a rapid transition from
the asymptotic performance to the no information region. As a result, the CRB for the
real model (i.e., the optimal float solution) is never reached by any of the signals, and one
would not benefit from the more precise float solution related to the metasignals. Thus,
the MLE for the mixed model abandons the corresponding CRB at the same point as the
estimation for the time-delay deviated from its CRB. Notice that such slow convergence is
directly link to the false locks due to large secondary peaks present in metasignals. Therefore,
a first conclusion was that subcarriers that induced large secondary ACF peaks strongly
impacted the achievable RTK performance.

Overall, whenever one’s goal is maximizing the operation region for carrier phase-based
precise positioning, the best performance is provided by the E5 signal. While metasignals
represent a promising alternative to conventional PPP or RTK positioning, unrestrained from
augmentation data and differential stations, their use for RTK positioning under nominal
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conditions is unmeaning. An interesting use case is discussed in [7] for which, under limited or
poor satellite visibility, the metasignals E5+E6B and B2+B3A overperform E5 and provide a
good trade-off between operability and precision. This is due to the significantly more precise
time-delay estimates, which may compensate for the lack of satellites in certain occasions.

2.7 Summary
Precise positioning through the use of carrier phase observations is undoubtedly the most
relevant use of GNSS for prospective vehicular and autonomous systems applications. This
chapter provides a review on carrier phase-based localization, RTK positioning through the
mixed real- and integer-valued parameter problem and the intricacies of integer estimation.

Sections 2.1 and 2.2 presents the mixed model for RTK positioning and the procedure for
parameter estimation via ML, respectively. Such a MLE for the mixed model consists on a
three step decomposition leading to the float, integer ambiguities and fixed positioning solution.
Since the available literature on the former estimation focuses on snapshot or memoryless
approaches, Section 2.2.1 introduces its extension to recursive problems, a fundamental
key to provide precise navigation estimates via filtering techniques. Section 2.3 provides
a short overview on IAR, including relevant integer estimators, ambiguity decorrelation
and validity test. Finally, Section 2.3.3 discusses PAR and its importance for situations
in which providing an integer solution for the complete vector of ambiguities becomes
a challenging task. In addition, a new PAR estimator denoted Precision-Driven PAR is
introduced, with the aim of maximizing the accuracy of the fixed localization solution with
a minimal number of estimated integer ambiguities.

Section 2.4 constitutes the core contribution of this chapter and proposes a general form
CRB for the mixed model. The presented CRB complements the relevant work of Teunissen
on upper bounds for integer estimation and provides a tool to assess the best performance, in
terms of MSE, of estimators at the mixed model. While the usefulness of the CRB for the
mixed model extends to many signal processing, biology or communication problems, this thesis
focuses on its particularization for RTK positioning. Thus, a new perspective on estimators
for the mixed model is provided in Section 2.5, leading to some interesting conclusions:

• There exist the three regimes for the performance of estimators of the mixed model,
conditioned on the satellite geometry and the level of noise on the pseudorange
observations.

• Estimators of the mixed model which employ IR, IB or ILS for the real-to-integer
mapping procedure are demonstrated to be asymptotically efficient.

• In the asymptotic case, i.e., when the ambiguities can always be correctly mapped to the
correct integer vector, the covariance matrix associated with the ambiguities vanishes.
In that scenario, the covariance matrix for the fixed solution is equivalent to disregarding
the existence of ambiguities.

• The proposed Precision-Driven PAR constitutes an interesting alternative approach to
the integer estimation realized for conventional RTK positioning, for which the complete
vector of ambiguities is estimated. Indeed, at the cost of an acceptable precision loss,
one could obtain a substantial gain in the extent of the asymptotic regime.

The quest towards characterizing the ultimate GNSS-based positioning performance is
complete in Section 2.6, where the relationship between the receiver’s signal processing and
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the precision of the fixed localization estimate is addressed. Both representative and modern
GNSS signals are analyzed, leading to the conclusion that Galileo E5 currently constitutes
the best trade-off between precision and robustness to weak signal reception. While the
use of metasignals results promising for code-based positioning, its application to carrier
phase-based localization is uninteresting due to the large secondary ACF peaks that complicate
the task of the receiver at tracking the signals. A number of open issues are yet to be
investigated as will be commented in Chapter 6.5.
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CHAPTER 3

GNSS-based Attitude Estimation

Attitude determination conforms a navigational element far more relevant than posi-
tioning for vehicles with large inertia, such as ships or airplanes. Similarly, orientation

information is a fundamental key for the successful realization of spacecraft missions, since
satellites and space probes incorporate pointing elements whose control is based upon the
attitude knowledge. While inertial sensing and visual odometry constitute consonant sources
for relative attitude information, their estimates are prone to rapidly drift and accumulate
large errors, especially when the initial orientation is poorly known. The configuration of
multiple GNSS antennas on board of a vehicle enables the provision of precise and absolute
attitude estimates, at the cost of surveying the distance and relative orientation between
these antennas. While limited in precision by the inter-antenna separation, the use of carrier
phase-based has been shown to lead to sub-degree orientation determination. This chapter
provides an overview on attitude representations and how GNSS-based models can be expressed
by virtue of the former. Also, the estimation for GNSS-based attitude is discussed, both
for memoryless and recursive forms, as well as examining the expected precision. Finally,
synthetic and real experimentation serves to illustrate the performance that can be achieved
with multi-antenna configurations for attitude estimation.
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Let us refer to attitude estimation as the process of finding the relative orientation
between two orthogonal frames or, in plain words, as the determination of the spatial
orientation of an object. While localization information has been the prior concern for GNSS
practitioners, orientation information results key for aiding vehicles which can freely move
in a three-dimensional space, such as aircrafts and miniaturized aerial devices. For instance,
the information on the pitch of an airplane is as relevant as the height with respect to the
ground for driving assistance functions (e.g., automated landing). Similarly, communications
and weather satellites present specific pointing requirements, making attitude estimation
an indispensable factor on their correct functioning.

From a historical perspective, the need for solving the attitude problem was born and, at
the same time, reach its importance peak during the 1960s and 1970s. The reason for such
prompt urgency was tightly related to the space race and the development of attitude control
systems for the upcoming space missions. During the early years of attitude determination, the
first estimators corresponded to geometrical and simplistic LS adjustment solutions (such as
TRIAD [102]). It was the formulation of Wahba’s problem [103], consisting on the calculation
of a proper orthonormal matrix to relate two set of baselines in different frames, which open the
door to developing the first optimal memoryless estimators, such as Davenport’s q method, or
Shuster’s Quaternion estimator (QUEST) [104], [105]. A more profound and (very) interesting
historical overview to the topic of attitude determination can be found in [106], [107].

In terms of recursive and filtering procedures, attitude estimation poses distinct challenges.
On the one hand, the nonlinear constraints that conform a proper rotation are complicated
to incorporate to a filter design. On the other hand, the choice of attitude parametrization
plays a relevant role and determines whether singularities and/or numerical problems may be
encountered on the state (i.e., three-dimensional representations are singular or discontinuous
at certain angles, such as the gimbal lock problem in Euler angles) or the covariance estimation
(i.e., one might incur in numerical problems whenever the covariance matrix does not represent
the uncertainty over the minimal state representation). Both the aerospace and robotics
research communities have “pushed” for the development of Kalman Filtering variants that
could satisfy the aforementioned challenges. There is a general consensus on the quaternion
being the preferred attitude parametrization for the state estimate, since it presents the
lowest dimension of any globally non-singular attitude parametrization. Enforcing the unit
norm constraint on a quaternion leaves it with the three degrees of freedom consistent with
the dimensionality of the rotation group, at the cost of some sort of constrained estimation
[108]. The preferred and most acquainted approach represents the orientation with the unit
quaternion, while the covariance matrix represents the uncertainty for the three-dimensional
component of the attitude errors. This combination is known as the Multiplicative EKF
(MEKF), Error-State KF (ESKF) or Indirect KF [108]–[110] within aerospace and robotics
practitioners, respectively. While other KF extensions for nonlinear systems (e.g., Unscented
or Cubature KFs) can be also applied for attitude estimations, their added complexity does
not justify their use and, therefore, they will not be covered within this thesis. The latest
contributions on attitude estimation are related to the framework of Invariant Kalman Filtering
(IKF), described in the series of work by Barrau and Bonnabel [111]–[113]. The IKF leverages
on the geometric structure of Lie groups to provide convergence guarantees for linear systems
with group-affine dynamics. While IKF constitutes a promising alternative to MEKF/ESKF, its
gain is notable mostly for robotics-related applications (e.g., pre-integration or simultaneous
localization and mapping (SLAM)) and, therefore, it is beyond the scope of this thesis.
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In regards to sensor modalities providing orientation information, one can distinguish the
categories of relative and absolute attitude sensing. Known examples of the former include
gyroscopes (i.e., or its combination with accelerometers to conform Inertial Measurement Units
(IMU)) and visual odometry, which describes the attitude change over time. The benefits
of inertial aiding are clear, since gyroscopes allow for tracking fast and subtle rotations and
bridge outages from absolute attitude information. As drawback, relative sensing is subject to
rapidly drift and accumulate large errors due to integrating the sensors’ noises and biases. The
latter category employs external references to estimate the orientation of the tracked vehicle
and lists sensors like star trackers, magnetometers or horizon detectors [114, Ch. 1]. Other
than for timing and positioning, GNSS signals can be used as absolute attitude information
for platforms equipped with a multi-antenna configuration. Indeed, attitude determination
was one of the pioneering applications of GNSS, being featured in a low Earth orbit satellite
with a dual antenna configuration already in 1976 [115], [116].

Thus, GNSS represents an appealing option for absolute attitude information, providing
precise estimates and a fair compromise in terms of expense, weight and energy consumption.
Nonetheless, GNSS-based attitude information poses distinct constraints: i) at least three
non-coplanar antennas are required to sense three-dimensional orientation, with their relative
distances being accurately surveyed in the vehicle’s body frame; ii) the precision of the attitude
estimates is directly proportional to the precision on which the inter-antenna baseline vectors
can be estimated and inversely proportional to the antenna separation, which limits its use in
miniaturized platforms. Since the configuration of the antennas is limited by the dimension of
the tracked vehicle, the inherent precision of carrier phase observations becomes a determinant
factor to obtain precise attitude estimates. In consequence, the GNSS-based attitude model
gathers the complicated inherent constraints on orientation determination with the integer
parameter estimation present in every carrier phase-based application.

While the GNSS attitude model has been extensively studied by the works of Teunissen
and Giorgi [60], [114], [117]–[119], from which more details are discussed at a later stage in
this chapter, the general use of the quaternion parametrization and its extension for recursive
and filtering forms have escaped the interest from the GNSS research community. Hence, the
formulation of quaternion-focused estimators for the “mixed” model (here, mixed in the sense
of mixture of unknowns living in the three-dimensional unit sphere manifold and in the integer
space) constitutes the focal point and main contribution of this chapter.

This chapter reviews some notable options for attitude parametrization, with an emphasis
on the unit-quaternion form. Then, the different models for GNSS-based attitude information
are presented, followed by the introduction of deterministic (memoryless) and recursive
estimators. Since estimation bounds for the carrier phase-based attitude problem are not
known, due to their extreme complexity in derivation, it is discussed how the precision of related
estimates can be approximated using alternative geometrical rules. At last, the performance
of estimators for the carrier phase-based attitude model is addressed by means of Monte Carlo
characterization, while a real-world experiment serves to illustrate the attitude estimation
performance for a recursive solution fusing inertial and GNSS signals.
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3.1 Attitude Representations

Representing the pose of a rigid body is not as straightforward as one would expect. While
there is no ambiguity on the interpretation of a translation or the position for a rigid body,
the same cannot be stated with regards to its attitude. The variety of expressions to
formulate such orientation information (rotation matrices, Euler angles, rotation vectors,
Rodrigues parameters, quaternions, ...) and their convention (only for quaternions: order of
the components, handedness, etc.) have created, at least once, frustration and insecurity
among most practitioners who encountered dealing with attitude1. This section is strongly
inspired by the work of Solà [120]–[122], who extensively (and didactically!) discusses matters
related to attitude representation and estimation.

Luckily, the relationship of this thesis with regards to attitude is somewhat uncomplicated
for two compelling reasons: i) there are transformations mostly across two frames; ii) only
two sensors are considered for the provision of attitude information, namely GNSS signals
and gyroscopes. Thus, the kinematic quantities involve the frame whose motion is described,
i.e., the body or local vehicle frame denoted with the left subscript B, and the frame with
respect to which that motion occurs, i.e., the global or inertial frame denoted with the left
subscript G. The body frame is oriented such that the X−, Y− and Z−axes are aligned
with the right, forward and up directions of the vehicle, while the global frame corresponds
to the Earth-centered Earth-fixed (ECEF) frame. Fig. 3.1 provides pictorial support for the
described frames. While GNSS-related information is expressed on the global frame (i.e.,
the positions of the satellites or the estimated localization for the tracked platform), the
observations from a gyroscope are assumed to be aligned with the body frame. Hereinafter
and unless stated otherwise, the rotation operator expresses the orientation of the vehicle B
frame to the global G frame, massively easing the notation (e.g., one shall avoid notations
such as RG,B in [123] or RG

B in [124] and, instead, directly refer to R).

Figure 3.1: Depiction for the global and local coordinate frames.

The rotation group, denoted as SO(3) for three-dimensional Euclidean spaces, constitutes
the group of rotations under the operation of composition. Rotations are linear transformations
preserving vector lengths and relative orientation such that

SO(3) :
{
r : R3 → R3 | ∀v,w ∈ R3, ‖r(v)‖ = ‖v‖, r(v)× r(w) = r(v×w)

}
, (3.1)

with r : R3 → R3 a generic rotation operator. With multiple ways to represent the
1A good example of this frustration was made evident during the 2014 International Conference on Robotics

and Automation (ICRA). A workshop titled “What Sucks in Robotics and How to Fix It” featured a talk
exclusively devoted to the enormous number of combinations one may face when representing a rigid body’s
orientation and some recommendations and best practices. The talk from Dr. Furgale, titled “Representing
Robot Pose: the Good, the Bad, and the Ugly”, can be found here and its reading is strongly recommended.

http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-and-the-ugly
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rotation group (i.e., attitude parametrization), the sequel discusses some of these attitude
representations along with their advantages and drawbacks for state estimation.

3.1.1 Rotation Matrices

Let us consider the two reference frames, G and B, and a vector expressed in the former
as Bv. The rotation operator to transform Bv into the global frame can be represented
by the matrix R ∈ R3,3 as

Gv = r(Bv) = RBv, (3.2)

where, in order to preserve vector lengths and their relative orientation (and, therefore belong
to SO(3)), rotation matrices are such that RR> = I and det(R) = 1.

While the rotation matrix results convenient to perform three-dimensional rotations,
its direct computation is counter-indicated since its is far from posing a minimal state
representation. Thus, while nine parameters are needed to formulate such a matrix, 3D
rotations can be specified just with three parameters [120].

3.1.2 Euler Angles

Euler angles constitute the most intuitive manner to describe and graphically depict the
orientation of a rigid body. Euler angles consists on the composition of three successive
rotations, such that the angles describe the rotation that each axis of the reference frame (here,
the body frame B) needs to sequentially rotate to align with the target frame (here, the global
frame G). Euler angles are typically defined such that they describe the orientation of an aircraft:

• The roll angle, α, describes the rotation around the X axis (the longitudinal axis), such
that a positive value indicates that the right side of the platform sinks.

• The pitch angle, β, describes the rotation around the Y axis (the transversal axis), such
that a positive value indicates that the nose of the aircraft sinks.

• The yaw or heading angle, γ, describes the rotation around the Z axis (the vertical
axis), such that a positive value indicates a left turn.

There are multitude of conventions with regards to the other in which the Euler angles
can be performed. For instance, in the Z-Y-X order, one starts rotating the body frame B
around its z-axis by γ, yielding to a new frame B′. Then, B′ is rotated about its y-axis by β,
yielding to B′′. At last, B′′ is rotated about its x-axis by an angle α to arrive to the global
frame G. The afore-described process for three sequential rotation is illustrated in Figure 3.2.

Since Euler angles do not represent an rotation operator by themselves, instead the
formulation of a rotation matrix is required. Thus, given the Euler angles [α, β, γ]>, and
for the Z-Y-X sequence, the rotation matrix is obtained as follows

R =

cosβ cos γ − cosα sin γ + sinα sin β cos γ sinα sin γ + cosα sin β cos γ
cosβ sin γ cosα cos γ + sinα sin β sin γ − sinα cos γ + cosα sin β sin γ
− sin β sinα cosβ cosα cosβ

 .
(3.3)

While Euler angles do constitute a minimal attitude representation, they are affected
by singularities (also known for its physical effect on gimbal mechanisms, happening when
two of the three axes become parallel and, therefore, the rotation degenerates to a two-
dimensional space). One might mitigate this shortcoming by limiting the range in which
Euler angles can operate.
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Figure 3.2: Sequence of rotations in Z-Y-X order, with α = 15, β = 10, γ = 30 degrees, such that
the Euler angles represent a rotation from B to G. The canvas for the local frame is depicted on the
background, while the canvas for each of the rotated frames is depicted on shaded gray.

3.1.3 Quaternions

The quaternion is a four dimensional hyper-complex number, first described by Hamilton in 1843
[125], which is often used to represent orientations in 3D spaces under the unit-norm constraint.
Despite the attitude quaternion not being intuitive or easy to visualize, its use has been
widely adopted in a plethora of applications, including robotics and computer graphics [123],
[126]–[128]. The success behind the use of quaternions for attitude representation is motivated
by: a) presenting the minimal state representation among global non-singular attitude
parametrizations (four elements are involved in the estimation process, with only the unit-norm
as constraint); b) the time evolution or quaternion kinematics can be expressed in linear form.

As for other attitude parametrizations, one could easily get lost in the various forms
of representing quaternions. In terms of choice, one shall care for the order (whether the
real element appears as the first or last component of the quaternion), handedness (right-
or left-handed), function of the rotation operator (passive or active) and direction of the
rotation operator (local-to-global or global-to-local). Although there are up to twelve possible
combinations for representing quaternions, one may (fortunately) limit his or her options
to one of the two principal conventions: Hamilton and JPL. These two conventions are
summarized in Table 3.1. While the Hamilton convention is more common within the field
of robotics, JPL (Jet Propulsion Laboratory) can be found often for aerospace applications.
Interestingly, most “classical” literature on quaternion estimation follows the JPL convention,
while most open source software libraries opt for Hamilton convention.

Table 3.1: Hamilton and JPL conventions for the representation of quaternions.

Hamilton JPL

Elements order real part first: Real part last:
q> = [qw,qu] q> = [qu, qw]

Handedness right-handed left-handed
ij = −ji = k ji = −ij = k

Function Passive Passive
Direction of rotation Local-to-Global Global-to-Local

In this work, the Hamilton convention is adopted (scalar first, right-handed, passive
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operator and body-to-glocal rotation), such that

q ,

[
qw

qu

]
=


qw

qx

qy

qz

 ∈ H , (3.4)

where qw is the real part, and qv = qxi+ qyj + qzk is the imaginary vector part (with the
complex algebra i2 = j2 = k2 = ijk = −1) and H constitutes the set of quaternions.

Unit quaternions denote those quaternions whose norm is equal to one, such that
‖q‖ , q2

w + q2
u = 1, and can be used to represent the 3D orientation of a rigid body.

Unit quaternions are expressed as

q ,

[
cos(θ/2)

u sin(θ/2)

]
∈ S3 , (3.5)

with u an unit vector representing the rotation axis and θ a rotation angle. Unit quaternions are
represented by the manifold of 3D unit spheres S3 and conform a group under the quaternion
multiplication. The rotation operator based on the use of unit quaternions is given by

r(Bv) = q ◦ Bv ◦ q∗ = RBv, (3.6)

where ◦ is the quaternion multiplication and q∗ is the inverse quaternion operation. Details
on these operations and other quaternion properties are given in Appendix C. Thus, the
transformation of unit quaternion to rotation matrix described by the following homoge-
neous quadratic function

R{q} =
(
q2

w − q>
u qu

)
I3 + 2quq>

u + 2qw[qu]×, (3.7)

with [·]× the skew operator.
Since S3 constitutes a smooth manifold, the principles of Lie Theory can be exploited

to manipulate quaternions. This results especially useful when estimating quaternions, since
one may leverage on the Lie group and algebra to perform unconstrained estimation and still
obtain a quaternion of unit norm. Hence, a vector rotation expressed in the Euclidean space
for θ ∈ R3 connects to the Lie algebra uθ ∈ so(3) (with u an unit vector of rotation and θ
the rotated angle) with the isomorphism (·)∧ : R3 7→ so(3). Then, the Lie algebra connects
with S3 through exponential mapping. The overall procedure is given by

θ ∈ R3 7→
(·)∧

uθ ∈ so(3) 7→
exp(·)

q ∈ S3 , (3.8)

with
(θ)∧ ,

{
u = θ/‖θ‖2
θ = ‖θ‖ , exp(eθ) ,

[
cos(θ/2)

e sin(θ/2)

]
. (3.9)

In addition, the formulation q{θ} will appear repeatedly along this thesis. This refers to the
mapping between the Euclidean space and the unit quaternion one via the relationships
established in (3.8), such that

q{θ} , euθ/2 = cos θ2 + u sin θ2 =
[

cos(θ/2)
u sin(θ/2)

]
, (3.10)

where e(·) is an extension of the Euler formula, eiθ = cos θ + i sin θ, for imaginary numbers.



82 3.1. Attitude Representations

Additional graphical support for the relationship established between the unit quaternion
manifold and the Euclidean space is shown in Fig. 3.3. On the left, the S3 manifold (i.e.,
the blue sphere) is illustrated along with the hyperplane R3 (i.e., the red grid). The centre
side of Fig. 3.3 shows a side-cut through the sphere and illustrates how real elements are
mapped to S3 with the exponential operator, and viceversa via logarithm mapping.The right
side of Fig. 3.3 illustrates the composition operator between two quaternions q,p, whose
connecting arc can be expressed in the tangent space.
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Figure 3.3: Relationship between the 3D unit-sphere S3 manifold and the Euclidean space via its
algebra. Image adapted from [122].

The second useful property of quaternions appears in relation with their dynamical
model. Considering q as a time continuous variable, i.e., q = q(t), one can develop
its time-derivative as follows

q̇(t) , lim
∆t→0

q(t+ ∆t)− q(t)
∆t = lim

∆t→0

q(t) ◦∆q − q(t)
∆t

= lim
∆t→0

q(t) ◦
([

1
∆θ/2

]
−
[

1
0

])
∆t

= lim
∆t→0

q(t) ◦
[

0
∆θ/2

]
∆t

= 1
2q(t) ◦

[
0

ω(t)

]
, (3.11)

where ω constitutes the vector of angular rate. Extending the former expression to discrete
times, let us denote qt = q(t) and qt+1 = q(t + ∆t). Then, assuming that the vector of
angular rate (measured, for instance with a three-axis gyroscope) ωt = ω(t), remains constant
over the period [t, t + ∆], the Taylor series of q(t + ∆t) is as follows

qt+1 = qt + q̇t∆t+ 1
2! q̈t∆t2 + 1

3!
...q t∆t3 + . . . , (3.12)

and, applying a zeroth order integration leads to the following expression for the discrete
kinematics of the quaternion

qt+1 = qt ◦ q{ωt∆t} . (3.13)

Hereinafter, this thesis makes reference and works only with unit quaternions and, therefore,
the notation is simplified such that “quaternions” do actually refer to unit quaternions.
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3.2 GNSS Attitude Functional Model

In multi-antenna configurations, one of the antennas is treated as master and its position
considered as the center of the body frame, while the remaining N antennas are denoted
slaves. Since their positions are surveyed and accurately known within the platform frame,
the baseline vectors are known as well. For instance, the vector that relates the positions
of the master and jth antennas is expressed as

Bbj,m = Bpj − Bpm, (3.14)

where the left subscript denote the antenna under consideration, with m for the master and
j = 1, . . . , N for the slave antennas, respectively. This notation is illustrated in Fig. 3.4,
along with the GNSS code and carrier phase observations.

Figure 3.4: Diagram for the collection of GNSS data over different GNSS antennas installed on a
platform.

Since GNSS ranging signals allows determining the position of these antennas (and,
therefore, also of the baseline vectors) in the global frame, the attitude problem can be
formulated as finding the rotation matrix that relates both frames. This estimation aligns
with the optimization problem formulated by Wahba in 1965 for computing the attitude
of a satellite and given by

N∑
j=1

wj ‖Gbj,m −RBbj,m‖2 , (3.15)

where wj is the weight assigned to each of the observations. In principle, one could solve
the localization for each of the antennas independently from which the associated baseline
vectors in the global frame would be obtained. Given these vectors, one could solve the
Wahba’s problem in (3.15) to provide attitude estimates. Nonetheless, providing precise
localization for each of the antennas is not always possible and, even when it is, the previously
described strategy is far from optimal. Instead, one can exploit the fact that all antennas
experiment almost the same propagation errors to perform differential “positioning” among
pairs of antennas. Thus, one may replicate the RTK positioning procedure and perform double
differentiating with respect to the master antenna, instead of the base station.
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Let us consider n + 1 satellites tracked on a single frequency simultaneously at N + 1
antennas installed on a vehicle. Then, the DD code and carrier observations can be performed
as in (2.2) using the master antenna instead of the base station to obtain

DDρi,r
j,m = ρi

j − ρi
m −

(
ρr

j − ρr
m

)
,

DDΦi,r
j,m = Φi

j − Φi
m −

(
Φr

j − Φr
m

) , (3.16)

and the complete set of DD observations is denoted with y ∈ R2nN and expressed as

y , vec (Y) , with Y = [y1,m, . . . ,yN,m] , (3.17)

and where the observations related to each j −m pair of antennas is

y>
j,m = [DDΦ1:n,r

j,m

>
,DDρ1:n,r

j,m

>]. (3.18)

Similarly to the carrier phase-based positioning case, the GNSS-based attitude model
comprises a mixed parameter estimation problem. Unlike the positioning case, there exists
multiple forms to express the attitude model, based on whether one is to determine the
baseline vectors connecting the antennas in the global frame or the platform attitude per
se. Moreover, while a general consensus exists for the estimation method of the positioning
mixed model (e.g., for memoryless cases, a MLE provides the float and fixed solutions while
LAMBDA is generally used for the integer estimation), attitude models can be resolved in
different and efficient manners, as discussed later in Section 3.3.

Definition 3 (Multi-baseline Mixed Model). Let A,B be 2n× (n+ p) full rank matrices and
Σ an M ×M symmetric and positive semi-definite matrix. Then, the multi-baseline mixed
model can be cast as

y ∼ N (vec(AZ + BL),Σ) , Z ∈ Zn,N , L ∈ R3,N , (3.19)

with p = 3N the number of real-valued parameters, M = 2nN the total number of
observations, and the matrices holding the unknown parameters, Z and L, contain the DD
ambiguities and the baseline vectors in the global frame as

Z =
[
a1,m, . . . ,aN,m

]
, L =

[
Gb1,m, . . . , GbN,m

]
. (3.20)

Notice that estimating the unknowns for the model 3 does not provide with a direct
attitude estimation and, instead, one would still have to solve the Wahba’s problem in
(3.15). Alternatively, one can directly connect the set of observations y with attitude-related
parameters, leading to the following model.

Definition 4 (Attitude Mixed Model). Let A,B be 2n× (n+ p) full rank matrices and Σ an
M ×M symmetric and positive semi-definite matrix. Then, the multi-baseline mixed model
can be cast as

y ∼ N
(
vec

(
AZ + B

[
r (Bb1,m) , . . . , r (BbN,m)

])
,Σ
)
, Z ∈ Zn,N , (3.21)

with p the number of parameters for a particular attitude parametrization, M = 2nN and r(·)
the rotation operator that supports the body-to-global transformation of the inter-antenna
baselines in the body frame, given for instance in rotation matrix or quaternion forms as in
(3.2), (3.6), respectively.
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An important aspect of GNSS-based attitude models relates to the stochastic modeling
for the observations. Since the DD combination is performed with respect to the same
antenna, additional cross-correlation terms are present. Thus, the covariance matrix Σ
can be formulated as

Σ =
[
σ̄2

Φ ·Datt ⊗D>WD
σ̄2

ρ ·Datt ⊗D>WD

]
, (3.22)

where σ̄Φ, σ̄ρ are the carrier phase and code zenith referenced variances, W is a weighting
matrix as described in (1.32), D is the DD matrix defined in (2.6) and Datt is the matrix
that introduces the noise correlation between the master and slaves antennas, as

Datt =
[
IN + 1N,N

]
. (3.23)

Also, unlike the stochastic model for RTK positioning in (2.10), additional noise terms due to
atmospheric residuals as not required, since the distance between the antennas is minimal.

Another relevant note is that, while the attitude parametrization does not play a role
in the correct expression for the attitude model, it takes an important role when it comes
to its estimation, as it will be discussed next. In the sequel, the estimation problem for
the carrier phase-based attitude models is discussed.
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3.3 Estimation of GNSS-based Attitude Models
As it occurs with carrier phase-based positioning, the use of these kind of observations for
determining attitude information requires solving a mixture of integer and real parameters. In
addition, when dealing with the attitude model defined in 4, the list of unknowns includes
parameters belonging to a manifold. In the following, it is described the ML estimation
processes associated with the determination of both, the multi-baseline and the attitude
mixed models. Thus, the minimization problem associated with the MLE for the multi-
baseline mixed model is given by[ˇ̄a

ˇ̄b

]
= arg min(

ā,b̄
)

∈ZnN ×R3N

∥∥∥y− (IN ⊗A)ā − (IN ⊗B)b̄
∥∥∥2

Σ
, (3.24)

where the unknown parameters have been expressed in vector form such that

ā = vec(Z), b̄ = vec(L) =

Gb1,m
...

GbN,m

 . (3.25)

One quickly realizes the strong similarities between the optimization problems for the
conventional mixed model and the multi-baseline mixed model. Indeed, the estimation
procedure follows exactly as described in Section 2.2, including the three step decomposition.
Thus, the estimation ‘simplicity’ for the multi-baseline mixed model makes it quite appealing,
its use for attitude estimation is still not ideal for two reasons: i) the a priori knowledge on
the inter-antenna distance and relative orientation is not exploited, leading to a suboptimal
solution; ii) orientation information is not directly observed and still a posterior estimation
of the Wahba’s problem is required.

The first steps towards improving the multi-baseline mixed model for better orientation
estimations were regarded by the Constrained-LAMBDA (C-LAMBDA) [118], [129], [130].
C-LAMBDA modifies (3.24) by adding a set of constraints on the norm of baselines, which
shall correspond to the surveyed baseline lengths in the body frame. Thus, C-LAMBDA
expresses the multi-baseline optimization problem as[ˇ̄a

ˇ̄b

]
= arg min(

ā,b̄
)

∈ZnN ×R3N

∥∥∥y− (IN ⊗A)ā − (IN ⊗B)b̄
∥∥∥2

Σ
,

subject to ‖Gb1,m‖ = ‖Bb1,m‖
...
‖GbN,m‖ = ‖BbN,m‖

(3.26)

whose resolution, once again, involves a three decomposition given by

min(
ā,b̄
)

∈ZnN ×R3N

∥∥∥y− (IN ⊗A)ā − (IN ⊗B)b̄
∥∥∥2

Σ
, s.t. ‖Gbj,m‖ = ‖Bbj,m‖,∀j = 1, . . . , N →

‖ê‖2Σ + min
ā∈ZnN

(∥∥∥ˆ̄a − ā
∥∥∥2

Pââ
+ min

b̄∈R3N ,‖Gbj,m‖=‖Bbj,m‖

∥∥∥ˆ̄b(ā)− b̄
∥∥∥2

Pb̂|a

)
, (3.27)

where ê are the residuals over the float estimates, ˆ̄b, ˆ̄a, which are estimated from an
unconstrained LS in the space of real numbers. Then, (3.27) couples the IAR process
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with the (constrained) fixed solution estimation. Thus, instead of estimating the optimal
MLE for the integer problem, a set of integer solutions are computed and then these are
used for solving the constrained optimization which regards the estimation for the fixed
multi-baseline solution. Then, the integer vector that produces the minimal amount of
weighted squared residuals over (3.27) is kept.

While C-LAMBDA has been shown to improve the original unconstrained multi-baseline
mixed problem in (3.24), it still does not fully utilizes the a priori knowledge on the multi-
antenna configuration, with the information on relative orientation being disregarded. Indeed,
only the attitude mixed model allows for fully incorporating the information on the antenna
configuration. When expressing the estimation problem for the attitude mixed model, the
parametrization for the orientation does play a role and defines how one might approach its
resolution. For instance, the minimization problem for (3.19) based on the rotation matrix reads(

Ž, Ř
)

= arg min
(Z,R)∈Zn,N ×SO(3)

‖vec (Y−AZ−BRF)‖2Σ , (3.28)

with F the matrix containing the inter-antenna baseline vectors expressed in the body frame as

F =
[

Bb1,m, . . . , BbN,m

]
. (3.29)

Note that the optimization problem in (3.28) results of a complexity superior to that of
(3.24), since one shall deal with integer-valued parameters along with the estimation of
a matrix which belongs to the special orthonormal group. In his series of works [119],
[131]–[133], Teunissen and Giorgi address this problem with the proposal of the Multivariate
Constrained-LAMBDA (MC-LAMBDA). MC-LAMBDA also employs the well-known three
step decomposition, given in this case by

min
Z∈Zn,N ,R∈SO(3)

‖vec (Y−AZ−BRF)‖2Σ =

‖ê‖2Σ + min
Z∈Zn,N

(∥∥∥vec
(
Ẑ− Z

)∥∥∥2

PẐẐ
+ min

R∈SO(3)

∥∥∥vec
(
R̂(Z)−R

)∥∥∥2

PR̂(Z)R̂(Z)

)
, (3.30)

where ‖ê‖ is the LS residuals over the float estimates, Ẑ, R̂, which are expressed in the
space of the real numbers.

The resolution of the procedure in (3.30) is similar to C-LAMBDA, in the sense that
all constraints (both related to the integer nature of the ambiguities or the orthonormal
properties for the rotation matrix) are disregarded during the float estimation and, then,
a single cost function is evaluated for the estimation of the integer ambiguities and the
fixed attitude estimation. Notice that the fixed solution is equivalent to the weighted
orthogonal Procrustes problem (OPP)2, which consists on finding the matrix that fits best
to the orthonormality constraints.

While MC-LAMBDA is undoubtedly the most prominent estimator for GNSS-based attitude
models, a series of factors limit their implementation: i) the rotation matrix is an inefficient
way to encode rotations, which involve a loss of redundancy during the float estimation and
a posterior complex procedure for solving the OPP in order to incorporate the constraints;
ii) solving MC-LAMBDA results computationally very demanding, with the OPP being a
complex algorithm by itself and it is to be repeated for as many time as vector candidates are

2The Procrustes problem owns his name to the Greek mythological story on a bandit named Procrustes.
Procrustes would torture their victims by lying them into an iron bed and forcing them to fit the dimensions of
such bed by stretching or cutting their extremidades.
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found during the IAR process; iii) the estimated rotation does present actual guarantees for
optimality, since the IAR no longer constitutes a MLE –i.e., one could end up providing as
fixed solution a biased orientation estimate derived from an incorrect integer solution, only
because its associated rotation matrix randomly happens to be similar to an orthogonal matrix.

The first contribution of this chapter consists on the formulation of the quaternion-based
attitude mixed model and its estimator, as described next.

3.3.1 The Quaternion-based Attitude Mixed Model Estimation

As discussed previously, existing estimators for the GNSS-based attitude model result com-
putationally heavy, do not exploit the minimal rotation representation –and, therefore,
lose redundancy of observations–, and are subject to provide biased estimates. Moreover,
computing rotation matrices makes complicated their recursive formulation and the fusion
with other sensors. This section introduces the optimization problem for the quaternion-based
attitude model and details an efficient estimator. Thus, one may express the optimization
problem for (3.21) as(

Ž, q̌
)

= arg min
(Z,q)∈Zn,N ×S3

‖vec (Y−AZ−Bh(q))‖2Σ , (3.31)

where h(q) is the rotation operator based on the quaternion parametrization applied to the
baseline vectors in the body frame and expressed as

h(q) = [q ◦ Bb1,m ◦ q∗, . . . ,q ◦ BbN,m ◦ q∗] . (3.32)

Once again, one leverages on the three-step decomposition of (3.31), such that

min
Z∈Zn,N ,q∈S3

‖vec (Y−AZ−Bh(q))‖2Σ =

‖ê‖2Σ + min
Z∈Zn,N

(∥∥∥vec
(
Ẑ− Z

)∥∥∥2

PẐẐ
+ min

q∈S3
‖q̂(Z)− q‖2Pq̂(Z)

)
. (3.33)

with ‖ê‖2Σ the norm of residuals over the auxiliary float estimates Ẑ, q̂, which can computed
via the following minimization(

Ẑ, q̂
)

= arg min
Ẑ∈Rn,N ,q̂∈S3

∥∥∥vec
(
Y−AẐ−Bh(q̂)

)∥∥∥2

Σ
. (3.34)

Notice that the unit-norm constraint is respected even during the float solution estimation.
Doing so required performing an optimization over the manifold S3 which, luckily, results in an
straightforward procedure thanks to the Lie theory and the relationships between the Euclidean
space R3, the algebra so(3) and the manifold S3 described in Section 3.1.3. Nonetheless,
one may concern with the fact that Lie theory constitutes a local search on the tangent
plane around the current estimate for the quaternion and, therefore, the initialization for the
procedure becomes a relevant matter. Thus, the estimation process for (3.34) is as follows

1. Estimation of an initial solution for the quaternion and ambiguities based on the
optimization of the multi-baseline mixed model and the posterior Wahba’s problem,
such that q̂(0), Ẑ(0) is given by (3.15) after solving (3.24).

2. For k = 1, 2, . . . , until the convergence criteria is met, the following LS adjustment for
the rotation vector is iteratively performed

θ̂(k) =
(
H>Σ−1H

)−1
H>Σ−1

(
vec

(
Y−AẐ(0) −Bh(q̂(k−1))

))
(3.35)
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with

H =


BJq̂(k)(Bb1,m)

...
BJq̂(k)(BbN,m)

 (3.36)

and Jq(u) the Jacobian matrix for the rotation of a vector u about q, as defined in (A.37).
Then, in each iteration the quaternion estimate is updated via q̂(k) = q̂(k−1) ◦ q{θ̂(k)}.

Once the float solution has converged, the IAR process in (3.33) can be solved using the
conventional LAMBDA method to obtain Ž. At last, the fixed solution is solved again via
LS adjustment and leverage on Lie theory, such that

θ̌ = Pθ̂θ̂P−1
ẐẐ

(
vec

(
Ẑ− Ž

))
, (3.37)

q̌ = q̂ ◦ q{θ̌}∗ . (3.38)
Hereinafter, the estimation procedure described previously will be referred to as quaternion

LAMBDA (Q-LAMBDA), since it leverages on the quaternion-parametrized attitude mixed
model and applies conventional LAMBDA to resolve the IAR. Using the proposed Q-LAMBDA
for the attitude mixed model results advantageous for different reasons: a) the solution
constitutes the actual MLE for the optimization in (3.31); b) the vector of unknowns presents
a minimal representation, meaning that fewer elements are to be estimated and, hence, higher
data redundancy is available (the total number of non-ambiguity parameters p = 4 for the
proposed method, p = 9 for the MC-LAMBDA and p = 3N for the multi-baseline mixed
model); c) the computational complexity becomes much lower, since the iterative on-manifold
Gauss-Newton described in (3.35) can be efficiently computed and no OPP estimation is
realized. Moreover, since the float estimate can be presumed always better than the float
solution for the C- and MC-LAMBDA, the search space for the IAR process will become smaller.

3.4 Recursive Formulation for the Attitude Mixed Model
Following the same methodology than the carrier phase-based positioning problem in Section
2.2.1, this subsection provides a formulation for the GNSS-based attitude model, expressed
in terms of unit quaternion parametrization. Thus, let us consider the discrete SSM
described at time t by

xt =

 at

qt

bω,t

 , with (at,qt,bω,t) ∈ ZnN × S3 × R3 , (3.39)

where bω denotes the gyroscope biases and a refers to the complete vector of ambiguities
a = vec(Z) to simplify the notation. Let us recall the process model in (2.25) and particularize
it for the SSM in dispute, such that

xt = f (xt−1,ωt,wt) ,

where ωt is the vector of angular rates, as observed by a gyroscope, and wt comprises the white
normal process noise vector –in this case, composed by the noise of the gyroscope, the random
walk for the biases and the random walk for the ambiguities Qt = diag(σ2

aInN , σ
2
ωI3, σ

2
bωI3)–.

Taking aside the white noises, the process model is given by

f(xt−1,ωt) =


at−1
qt−1 ◦ q{(ωt − bω,t−1)∆t}
bω,t−1

, (3.40)
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where the biases and ambiguities evolve as random processes and the kinematics of the
quaternion are given by the integration of the measured angular rate compensating for the
estimated gyro biases. Similarly, the observation model is denoted with

yt = h(xt) + νt, (3.41)

with yt and h(·) described from (3.21).
For nonlinear models, such as the one concerning the quaternion-based attitude mixed

model, time recursion is generally addressed with any of the nonlinear extensions of the KF,
with this thesis focusing solely on the EKF. Recursive attitude estimation shall also consider
and respect the inherent non-linear geometric constraints (i.e., the unit norm constraint for
the quaternion). This thesis approaches this problem based on the Error State KF (ESKF)
–also known as Indirect KF and Multiplicative KF– [109], [134], for which the state estimate
x belongs to a manifold and its perturbations δx “live” in the tangent space of that manifold.
Thus, the basic rationale behind the ESKF is to consider the nominal-state as the conventional
state of a KF (whose process and observation models may be applied with the original
nonlinear functions) and the error-state as a small-signal gathering the noises and perturbances
of the system. During the prediction step, the nominal state integrates noisy inertial data
and, therefore, accumulating errors. These errors are collected within the error-state which
incorporates the system noises and perturbations. Since the error-state is conformed by small
magnitudes, its evolution function can be expressed as a linear dynamic system. Thus, during
the prediction step, the ESKF predicts a Gaussian estimate of the error-state. Then, upon
the reception of GNSS data and the realization of the correction step, the filter estimates the
errors observable. This correction provides a posterior Gaussian estimate of the error-state
which is then injected to the nominal-state and then reset to zero.

In our case, the unknown true state is formulated as the composition of the nominal
estimate x and the error state δxt, noted x = x̂ ⊕ δx, with the error state given by

δxt =

 δat

δθt

bω,t

 , with (δat, δθt, δbω,t) ∈ ZnN × R3 × R3, (3.42)

where δθt describes a rotation vector for the attitude errors. Following the exponential mapping
presented in (3.9), the afore-mentioned composition of nominal and error state is as follows

x = x̂⊕ δx =


ât + δat

q̂t ◦ q{δθt}
b̂ω,t + δbω,t

. (3.43)

Thus, the ESKF adapts the EKF framework to a chosen non-linear parametrization,
here given by (3.43) to preserve the unit-norm quaternion constraint, while using a minimal
parametrization of the covariance matrix (i.e., the covariance matrix Pt ∈ RP,P , with
P = nN+3+3). That is, it uses the ⊕ operator, instead of the standard addition, to linearize
and update the system. Then the propagation and update steps of the ESKF are given by

x̂t|t−1 = f(x̂t−1|t−1,ωt) , (3.44a)
Pt|t−1 = FtPt−1|t−1F>

t + Fq,tQtF>
q,t , (3.44b)

Kt = Pt|t−1H>
t

(
HtPt|t−1H>

t + Σt

)−1
, (3.44c)

x̂t|t = x̂t|t−1 ⊕Kt

(
yt − h(x̂t|t−1)

)
, (3.44d)

Pt|t = Pt|t−1 −KtHtPt|t−1 . (3.44e)
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The matrices Fk−1,Ht are the Jacobians of the process and observation models with respect
to the composition of nominal and error states. Applying the chain rule, the Jacobian
matrices as expressed as

Ft = ∂f(x⊕ δx,ωt)
∂δx

∣∣∣∣
x̂t−1|t−1,ωt

= ∂f
∂x

∣∣∣∣
x̂t|t−1,ωt

∂x⊕ δx
∂δx

∣∣∣∣
x̂t−1|t−1

(3.45)

Ht = ∂h(x⊕ δx)
∂δx

∣∣∣∣
x̂t|t−1

= ∂h
∂x

∣∣∣∣
x̂t|t−1

∂x⊕ δx
∂δx

∣∣∣∣
x̂t|t−1

, (3.46)

leading to the following Jacobians for the process model:

Ft =

InN 0 0
0 R{δq}> −∆tI3
0 0 I3

 , Fq,t =

∆tInN 0 0
0 ∆tI3 0
0 0 ∆tI3

 , (3.47)

where δq = q{(ωt−bω,t−1)∆t} is the unit quaternion related to the attitude change measured
that time t. The Jacobian matrix for the observation model is given by

Ht = HxHδx, (3.48)
where Hx and Hδx correspond to the first and second term in (3.46), respectively, expressed as
follows

Hx =
[
IN ⊗A Hqt|t−1 02nN,3

]
, with Hqt|t−1 =


BJqt|t−1(Bb1,m)

...
BJqt|t−1(BbN,m)

 (3.49)

and Hδx defined as

Hδx =

InN 0 0
0 Hδθ 0
0 0 I3

 , with Hδθ = 1
2[q]L


0 0 0
1 0 0
0 1 0
0 0 1

 (3.50)

where [q]L is the left quaternion product matrix defined in (C.16).
Making use of the LS-KF equivalence discussed in Section 2.2.1, recall that the corrected

estimate xt|t does correspond to the float estimate (i.e., xt|t = x̂t) and, therefore, the
overall procedure still requires the real-to-integer mapping and the posterior fixed solution
estimation. Then, the IAR estimation corresponds, as for the deterministic estimator, to
the conventional ILS and may be solved via LAMBDA. At last, the fixed solution estimated
does still require making use of the Lie algebra properties. Focusing on the non-ambiguity
terms –denoted with δbt–,

δx>
t =

[
δa>

k , δθ
>
t , δb>

ω,t︸ ︷︷ ︸
δb>

t

]
, Pt =

 Paa Paθ Pabω

P>
aθ Pθθ Pθbω

P>
abω

P>
θbω

Pbωbω

 , Pt =
[
Paa Pab
P>

ab Pbb

]
, (3.51)

then, the error state for these parameters is given by

δb̌>
t =

[
δθ̌>

t

δb̌>
ω,t

]
= PbbtP−1

aat
(ǎt − ât) , (3.52)

which leads to the final fixed solution with the composition operator 	, as
q̌t = q̂t ◦ q{δθ̌t}∗ , (3.53)

b̌ω,t = b̂ω,t − δb̌ω,t . (3.54)
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3.5 Expected Accuracy for Attitude Models

The derivation of lower and upper estimation bounds result a key factor when addressing a
particular application, allowing to characterize the feasibility of a problem, i.e., what can we
expect when solving such problem? Moreover, estimation bounds serve as benchmark for
estimators, so that one may discern between estimators which perform better than others in
certain conditions. For instance, an estimator for a particular problem may result efficient
and attain the associated lower bound under asymptotic conditions (i.e., when the noise
level is low or there is a large number of observations), while a second estimator may not
be optimal and still perform better than the first estimator when working with high noise
levels or with finite number of observations. A clear example of the former is showcased
for carrier phase-based positioning in Section 2.5.1, based on the difference between an
estimator for PAR and the MLE for the mixed model.

Thus, the derivation of estimation bounds for the attitude mixed model results fundamental
to understand the ultimate performance for an attitude determination problem, while serving
as “test” to distinguish whether estimators such as LAMBDA and C-LAMBDA (for the
multi-baseline mixed model followed by the Wahba’s problem), or MC-LAMBDA and the
quaternion-based estimator (for the attitude mixed model) are or not optimal and under which
conditions. Unfortunately, the derivation for estimation bounds for models which gather real,
integer and on-manifold parameters is not trivial and, indeed, such a bound remains unknown.
The aim for this Section is to point out at possible directions which one may follow when
pursuing the quest for derivation an estimation bound for carrier phase-based attitude models.

Thus, such bound could leverage on two other well-known bounds: i) the CRB for a
mixture of integer- and real-valued parameters, introduced in [4] and extensively discussed in
Chapter 2; ii) the Intrinsic CRB, introduced in [135], [136], for parameters that belong to
a smooth (Riemannian) manifold. One of the primary ideas derived from the intrinsic CRB
is that a particular parametrization of the manifold does not infer on the information that
the model carries. In our words and translated to our problem, the parametrization of the
attitude (rotation matrices, quaternions, Rodrigues parameters, etc.) does not play a role
on the derivation of a bound for an estimation problem where the rotation group appears.
The former statement aligns with the definition for the attitude mixed model in (3.21), while
still leaves the door open to the discussion on whether the attitude parametrization does or
not affect an estimator. Unfortunately, to answer to the former question, the derivation for a
bound for the attitude mixed model and the assessment of the efficiency for estimators that
solve the carrier phase-based attitude models escape the scope and extension of this thesis.

Figure 3.5: Coarse prediction for attitude estimates conditioned on the precision of estimated baseline
vectors.

Nonetheless, procuring an idea on the expected accuracy for GNSS-based attitude
determination remains a valid point. A simplistic and yet effective manner to coarsely
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describe the precise of attitude estimates leverages on geometric relationships. Let us assume
a single baseline of length ‖b‖ and express the attitude errors δθ in terms of the precision for
the baseline vector σb, as illustrated in Fig. 3.6. For this simple two-dimensional attitude
estimation problem, one may express the largest attitude error (i.e., whenever the baseline
error is perpendicular to the original baseline) as

sin(δθ) = σb
‖δb‖ = σb√

‖b‖+ ‖δb‖
, (3.55)

and, considering the error in the estimated baseline is considerably small than its actual length
(such that ‖b‖ + ‖δb‖ ≈ ‖b‖) and under the small angle assumption (i.e., sin(δθ) ≈ δθ),
leads to the following description on the attitude precision:

σθ ≈
σb
‖b‖ . (3.56)

Now, one may connect the aforementioned precision for the baseline vector with the
precision obtained with different code- and carrier phase-based positioning systems. For
instance, when performing differential localization for two antennas based on code observations
one could expect baseline vector precision on the meter level, with carrier phase-based
techniques would improve such precision by two orders of magnitude. Fig. 3.6 showcases
the coarse precision for attitude estimates, considering that the individual positions of the
antennas were estimated using SPP, PPP or RTK approaches –which are assumed to provide
baseline precisions of one meter, 10 cm and 1 cm, respectively–.
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Figure 3.6: Geometric approach to address the precision for GNSS-based attitude estimates as function
of the baseline length. The vertical axes offers the complete range of precision of the left side, while
the right side provides a detail for orientation precision of up to five degrees.

The multi-antenna configuration on board of a platform is limited by the dimensions
of the former, meaning that the choice for baseline length is generally not up to the user.
Thus, the provision for GNSS-based precise attitude estimates is mostly conditioned on the
precision in which the baseline vectors can be estimated. As a result, the use of carrier phase
observations and the performance of estimators of the attitude mixed model constitute the
key towards obtaining sub-degree precision for attitude solutions.
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3.6 Performance Characterization for GNSS-based Attitude Es-
timators

This section assesses the performance of estimators for attitude models based on carrier
phase observations, both for deterministic (memoryless) and recursive (via Kalman filtering)
estimation. Thus, the experimentation consists on two parts: first, a Monte Carlo simulation
serves to illustrate the comparison between the two attitude models (i.e., the multi-baseline
mixed model in (3.19) and the attitude mixed model in (3.21)) and the performance of related
deterministic estimators; second, a real world experimentation showcases the performance
for recursive estimates of the attitude problem, highlighting the importance of sensor fusion
and inertial integration for ill-posed orientation configurations of antenna arrays (i.e., when
the tracked platform features less than three non-coplanar antennas).

3.6.1 Simulation Results: Deterministic Estimators of the Attitude Model

As discussed in Sections 3.2, the carrier phase-based attitude model can be expressed in different
manners, based on whether the observations are directly related to a vehicle’s orientation (as for
the Attitude Mixed Model) or to the inter-antenna baseline vectors (as for the Multi-baseline
Mixed Model), with the former requiring an additional computational for solving the Wahba’s
problem in (3.15). Similarly, different estimators are available to solve either of the former
two models. This simulation focuses on expressing the differences between the multi-baseline
mixed model, solved via LAMBDA, and the attitude mixed model, resolved by Q-LAMBDA.

The performance characterization is realized based on Monte Carlo simulation, for satellites
distributed spatially as described in Table 3.2. The platform of assumed to be equipped
with three non-coplanar antennas, which is probably of the most common configuration
across vehicles on land, air and water scenarios. The focal point for this simulation lays on
assessing the performance of attitude models for scenarios with limited satellite coverage,
along with the role played by the inter-antenna baseline lengths and the noise level for the
ranging observations. Thus, the number of different tested parameter combinations reaches
180 (for six possible number of tracked satellites, ten baseline lengths and three standard
deviations for code observations), with 104 Monte Carlo samples performed for each of them.
Figures 3.7 to 3.9 depict the fix rates (i.e., the percentage of Monte Carlo runs in which
the vector of integer ambiguities are correctly estimated).

Table 3.2: Parameters configuration for the Monte Carlo simulation.

Scenario setup
UTC time 15/05/2017 09 : 30
Location Koblenz, Germany (50◦21′56′′ N, 7◦35′55′′ E)
Number of antennas N = 3
Frequency L1
Number of satellites n ∈ {10, 9, . . . , 5}

Simulation parameters
Code noise (cm) σρ ∈ {30, 15, 5}
Phase noise (mm) σΦ = 3
Baseline length (m) ∀j = 1, . . . , N, ‖bj‖ ∈ {0.1, 0.2, . . . , 100}
Monte Carlo samples 104
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Figure 3.7: Fix rate against the baseline length for estimators at the GNSS-based attitude problem.
The number of observations employed for each subplot is indicated on its title. The standard deviation
for code observations σρ=5 cm, equivalent to a scenario with high SNR.
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Figure 3.8: Fix rate against the baseline length for estimators at the GNSS-based attitude problem.
The number of observations employed for each subplot is indicated on its title. The standard deviation
for code observations σρ=15 cm.

Different conclusions can be withdrawn from this simulation:

• The baseline length does not pay any role for the multi-baseline attitude model, since
it leads to a linear regression in which only real- and integer-valued parameters are
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Figure 3.9: Fix rate against the baseline length for estimators at the GNSS-based attitude problem.
The number of observations employed for each subplot is indicated on its title. The standard deviation
for code observations σρ=30 cm, which may be thought of as a relatively low SNR.

estimated. While the attitude is later resolved by a posterior estimator of the Wahba’s
problem, the minimization of (3.19) is obviously not affected by it. On the contrary, the
performance for the attitude mixed model is strongly influenced by the baseline length,
since the noises present on the ranging observations directly affect the optimization
in (3.21) and may lead to poor float estimates. As the baseline length increases,
the performance of the Q-LAMBDA improves significantly, making the method very
attractive for vehicles with medium to large dimensions.

• The multi-baseline attitude model is considerably more sensitive to the ‘strength’ of the
model, with its performance rapidly decaying for both a low number of satellites and
high noise. On the other hand, Q-LAMBDA presents a notable fix rate gain with respect
to LAMBDA for scenarios with limited satellite availability. This is due to a better
exploitation of the data redundancy, since the number of (non ambiguities) parameters
with the quaternion-based attitude is four regardless of the number of baselines, while
LAMBDA shall estimate a three dimensional vector for each of the baselines.

The general recommendation, in terms of algorithm choice, relates to using Q-LAMBDA
for carrier phase-based attitude problems. In comparison to LAMBDA, the performance of
the proposed estimator presents a significant gain on the availability of a precise solution,
particularly evident for high noise situations, low number of tracked satellites or antenna arrays
with more than four elements. The exception to this rule relates to applications where the
baseline lengths are lesser than 30 centimeters (for instance, in certain miniaturized aerial
vehicles), while platforms of medium to large dimensions (e.g., automobiles, trains or vessels)
would greatly benefit from this deterministic method.
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3.6.2 Attitude Estimation for a Dual Antenna Robotic Platform

This section provides insight into a frequent issue across robotics practitioners, i.e., the need
for ground truth attitude information in outdoor scenarios, and illustrates the performance of
recursive attitude estimates based on the fusion of inertial and GNSS information, as described
in Section . While indoor laboratory setups present high-precision optimal tracking systems,
the former are rarely available in outdoor scenarios or are limited to a small experimental
area. Rather than providing numerical evaluation or a comparison between methods, this
experiment showcases an interesting application for carrier phase-based attitude estimation.

The data collection was performed in the vicinity of Erfoud, in the northern Sahara region
on 5th December 2018 (DOY 339, UTC 11:57–12:19) for the SUPER platform3, illustrated
on the left side of Fig. 3.10. Besides the variety of vision systems and an IMU, the SUPER
was particularly equipped with a dual GNSS antenna configuration for the purpose of ground
truth pose estimation. These two antennas conform a single baseline of 1.28 m length,
which limits the orientation observability, leading to the pitch not being observable. The
evaluated dataset is a snippet for the more than 30 trajectories recorded in scenarios with
different light conditions and terrain typologies. In particular, a zig-zag trajectory of 320
m is performed over a flat area which combines sand and stones at roughly equal parts is
studied, as shown on the right side of Fig. 3.10. More details on the Mars-analog data
collection and the experimental setup can be consulted in [2].

Figure 3.10: On the left side, two SUPER modules in the Sahara Desert (the unit on the background is
mounted on the SherpaTT rover, while the hand-held unit is carried by a DLR colleague). For the data
collection, two GNSS antennas are installed on the sides of SUPER, while the IMU is located directly
in the mid-point of the inter-antenna baseline. On the right side, the evaluated zig-zag trajectory.

Fig. 3.11 depicts the time evolution for the estimated Euler angles, with the roll, pitch
and yaw corresponding to the top, center and bottom graphs, respectively. The dotted orange
line corresponds to the recursive ESKF estimates, which employs solely the GNSS information

3Planetary rovers strongly rely on vision and inertial systems to perform autonomous navigation and
mapping missions. Naturally, testing these systems in their ‘natural habit’ is not the smartest idea and,
instead, data collection of sites analog to the target planet is typically performed. Even in analog sites, the
direct experimentation with rovers entails the risk of damaging the robotic platform. The DLR Sensor Unit
for Planetary Exploration Rovers (SUPER) constitutes an interesting alternative, consisting on a hand-held
human-portable platform that integrates the complete sensor suite for a conventional rover. Thus, data
collection for testing VIO or SLAM in planetary analog sites can be performed without the risk of damaging
the mechanical parts of the actual rover.
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for the two antennas, with is received with an update rate of 1 Hz. The pitch is initialized to
zero degrees and, due to the attitude problem resulting ill-posed, its time evolution does not
vary. The accuracy of the solution is strongly jeopardized by the lack of observations and the
short length of the single baseline, as well as the lack of for a proper time evolution (i.e., the
quaternion is assumed to evolve as a random process with a standard deviation of five degrees).
Moreover, the low update rate (compared to that of the inertial unit) limits the usability of the
solution for subsequent applications requiring orientation guidance. On the other hand, the
continuous blue line corresponds to the same ESKF method, with the addition of gyroscope
measurements to aid the dynamical process of the attitude estimate. Also, the relationship
between the accelerometer readings and the gravity vector serves to provide a more precise
initialization for the roll and pitch angles. The resulting sensor fusion-based solution not only
presents a much higher update rate (i.e., the inertial unit operates at 100 Hz), capturing the
subtle orientation changes occasioned by the movement of the person carrying the SUPER,
but also stabilizes the estimates in instances in which GNSS signals present higher noise levels.
In summary, the fusion of multi-antenna systems and inertial sensors poses a great synergy,
with the GNSS-based providing absolute (and relatively precise) orientation information and
gyroscopes allowing for an accurate description of the attitude time evolution.

Figure 3.11: Time evolution for the attitude estimates, presented in the form of Euler angles, with
roll, pitch and yaw solutions depicted on the top, center and bottom graphs. The dotted orange line
is computed only from GNSS observations, while the continuous blue line also incorporates inertial
measurements. In both cases, the estimates are based on the ESKF proposed in Section 3.4.
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3.7 Summary

Undoubtedly, attitude information is a key piece in the navigation puzzle and essential
for vehicles requiring orientation guidance. The configuration of multiple antennas on a
platform allows for the provision of attitude information and, upon the exploitation of
carrier phase observations and the correct estimation of their ambiguities, even sub-degree
precision. During its introductory part, this chapter reviews the importance for attitude
determination in relation to its primary applications, the challenges associated with the
deterministic and recursive attitude estimation and the benefits obtained from using GNSS
signals to regress orientation information.

Section 3.1 revisits the myriad options for attitude representation and discusses on the
orientation group parametrization based on rotation matrices and quaternions. Special
emphasis is put on the latter, discussing their conventions, specifying how this thesis describes
them and presenting their dynamics. Also, the trinity of manifold-algebra-Euclidean spaces is
discussed, opening the door to some very useful properties in estimators of parameters
belonging to a manifold.

Section 3.2 presents the GNSS-based attitude models, namely the multi-baseline mixed
model and the attitude mixed model. The first involves an extension of the RTK positioning
mixed model, for which the inter-antenna baselines are estimated along with the ambiguities,
followed by a posterior estimator to determine the actual attitude information from the
relationship between baselines expressed in the local and global frames, respectively. The
second directly connects the attitude information with the GNSS observations, which makes
the system nonlinear and involves an estimation problem in which the parameters live on
the integer and 3D unit-sphere manifold spaces. Then, Section 3.3 reviews the most well-
known estimators for both, the multi-baseline mixed and attitude mixed models, such as
C-LAMBDA or MC-LAMBDA. Then, the core contribution of this chapter follows, consisting
on the proposal of Q-LAMBDA. Q-LAMBDA re-formulates the attitude mixed via quaternion
parametrization and leverages on Lie theory to provide a deterministic ML estimation which is
both, computationally efficient and maximizes the observation redundancy. Completing the
estimation-related topic, Section 3.4 discusses on the recursive formulation of the attitude
model. It turns out that certain twists to the conventional Error State/Multiplicative KF
may be applied to express Q-LAMBDA as recursive estimator.

Section 3.5 describes the complexity for deriving estimation bounds for the carrier phase-
based attitude model. Certain directions for the proposal of bounds at the attitude mixed
model are discussed, with their prosecution being arguably the most relevant future line
of research for GNSS-based orientation estimation.

At last, Section 3.6 examines the performance of deterministic and recursive estimators
at the GNSS-based attitude model. The evaluation consists on a Monte Carlo simulation to
address the performance capabilities of the proposed Q-LAMBDA in relation to the multi-
baseline attitude model for a variety of scenarios, as well as real data evaluation for an
interesting robotic platform with a single baseline configuration. Some closing remarks
on the estimators are as follows:

• Q-LAMBDA is a powerful and effective estimator for the carrier phase-based attitude
model. Indeed, a significant gain in the fix rate is showcased when compared to
conventional LAMBDA estimation. This is achieved by two reasons: a) data redundancy
is maximized by estimating the minimal number of unknowns; b) attitude estimates
remain on the manifold during all estimation steps (i.e., the float and fixed estimates shall
always constitute a proper rotation). on the negative side, Q-LAMBDA’s performance is
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subject to the separation between antennas, becoming a valuable candidate for platforms
which may guarantee at least 30 cm baseline lengths.

• GNSS-based attitude information is a valuable asset for a recurrent problem in robotics,
such as the provision of ground truth outdoor information. Since robotic platforms are
characterized by their limited dimensions, the configuration of three of more antennas is
nearly impossible. Thus, the refinement of filtering solutions to fuse information from
GNSS dual antennas, inertial units and vision systems could potentially be the key to
bring closer the robotics and radio-navigation research communities.
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CHAPTER 4

Joint Positioning and Attitude Estimation

Estimating the pose of a rigid body in a three dimensional space combines the positioning
and attitude problems, so that the localization and orientation provides the complete

static characterization for such rigid body. In addition, the time recursion for pose estimation
constitutes the navigation solution for a tracked platform. Along the previous chapters, the
value of carrier phase observations for the determination of positioning and attitude estimates
has been showcased. Traditionally, GNSS-based localization and orientation are considered as
two independent process and, even when integrated within a single filtering solution, the cross-
correlation between the observations is disregarded. Nevertheless, this information strengthens
the overall observation model and, potentially, comes associated with an improved precision for
the estimates and a higher likelihood to correctly resolve the integer ambiguities. This chapter
extends the definition of real and on-manifold mixed models to formulate the Joint Positioning
and Attitude (JPA) estimation problem. Similarly, the leverage on estimators for the real-,
quaternion- and integer-valued parameters allows to propose approximately optimal estimators
for the deterministic and recursive forms of JPA. Numerical and experimental evaluations
validate the value of JPA with respect to conventional navigation solutions, in which the
cross-correlation between positioning- and attitude-related observations is disregarded.
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Addressing the complete dynamics for a platform implies the estimation of its orientation,
velocity and position. Along this thesis, clear arguments in favor of the carrier phase
observations use have been exposed, providing precise estimates for both attitude and
localization information. It seems evident, the fusion of multi-antenna platforms with base
stations communication to comply with the stringent navigational requirements of safety-
critical and prospective vehicular applications. While limited to land-based users –or to a lesser
extent, low-altitude aerial vehicles and vessels operating in shore sides and inland waterways–
which benefit from the differential corrections of a base station, cm- and sub-degree precision
for position and orientation solutions can be obtained whenever the integer ambiguities are
correctly estimated. Traditionally, the cross-correlations between attitude- and positioning-
related observations is neglected during the process of stochastic modeling [137]–[140].
Considering the high complexity for correctly resolving the IAR process, especially in urban
scenarios, every dime of information present on the observation models results extremely useful.

Thus, the exploitation for the aforementioned observations’ cross-correlations was first
posed by Teunissen on his Array-Aided PPP (A-PPP) [141], for which a multi-antenna
configuration onboard of a vehicle serves to jointly estimate its positioning and orientation.
Since PPP processing requires the estimation of several location-related parameters (i.e.,
tropospheric wet zenith delays, ionospheric residuals, etc.), the use of an antenna array is not
only useful to perform attitude determination, but also to better observe those atmospheric
delays common across the antennas. The estimation approach for A-PPP follows that of
MC-LAMBDA for attitude determination, consisting on a deterministic estimator for which
the IAR and a weighted OPP processes are combined.

The contribution for this chapter formalizes the concept of JPA to perform RTK-like
differential positioning and attitude determination, leading to the so-called JPA mixed
observation model. As for attitude determination, deterministic and recursive (ESKF-based)
estimators are proposed, both of them leveraging on the Lie theory relationships between
the S3 manifold, its algebra and the 3D Euclidean space. Then, a Monte Carlo simulation is
employed to characterize the performance of the ESKF for the JPA problem against other
filters that deal with attitude- and positioning-related observations in a decoupled manner.
Analysis of real data follows, based on a measurement campaign performed for a vessel in
an inland waterway scenario. In both cases, the estimator for JPA leads to a significant
gain in the availability of the precise positioning solution.
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4.1 JPA Functional Model
JPA results of the combination of RTK positioning with carrier phase-based attitude deter-
mination. Thus, it is assumed that the tracked platform is equipped with multiple GNSS
antennas, whose relative location has been accurately surveyed within the local frame, and
direct connection to a nearby base station. As in previous chapters, right superscripts and
subscripts indicate an observation from a satellite received by an antenna, respectively, while
right subscript indicate the frame in which vectors are expressed.

Thus, let us assume that observations from n+ 1 satellites over a particular frequency
are simultaneously tracked across a base station, a master antenna and N slave antennas.
The center of the body frame (i.e., the reference point whose localization is of interest) is
aligned with the position of the master antenna, and the inter-antenna baselines are always
expressed with respect to the former. Fig. 4.1 illustrates the elements involved in the JPA
model, as well as the global and body/vehicle frames.

Figure 4.1: Illustration for the satellites, base station and multi-antenna configuration involved in the
JPA model for a tracked platform.

In line with the carrier phase-based positioning and attitude models, the application
of the double-differences combination of observations allows for removing the atmospheric-
related delays, receivers and transmitters clock offsets and the errors in the satellite positions.
Thus, code and phase measurements across n satellites (all but the reference or pivot) for
the base and N slave antennas are double-differenced with respect to the pivot satellite
and the master antenna. Let us differentiate between positioning-related (i.e., those DD
corresponding to the base station) and orientation-related (i.e., DD performed between the
slaves and master antennas) observations, such that

ypos ,
[(

DDΦ1:n,r
b,m

)>
,
(
DDρ1:n,r

b,m

)>
]>
, ypos ∈ R2n, (4.1)

the observations for localization ypos coincide with (2.3), and
yatt , vec (Y) , with Y = [y1,m, . . . ,yN,m] , yatt ∈ R2nN , (4.2)

such that yatt corresponds to those in (3.17). Gathering the two types of observations
such that y> = [y>

pos,y>
att] or, alternatively in matrix form Y = [ypos,y1,m, . . . ,yN,m], the

JPA mixed model can be cast as follows.
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Definition 5 (JPA Mixed Model). Let A,B be 2n × (n + p) full rank matrices and Σ an
M ×M symmetric and positive semi-definite matrix. Then, the JPA mixed model can be
cast as

y ∼ N
(
vec

(
AZ + B

[
b, r (Bb1,m) , . . . , r (BbN,m)

])
,Σ
)
, (4.3)

with p the number of non-integer unknowns (three for positioning plus as many as the target
attitude parametrization requires), b , Gbb,m, b ∈ R3 the baseline vector between the base
and the platform (i.e., the positioning solution, with Gpm = Gpb − b), Z ∈ Zn,N+1 the
matrix holding the unknown integer ambiguities, and r(·) the operator that supports the
body-to-frame rotation. The total number of observations is given by M = 2n(N + 1), and
the design matrices A and B correspond to (2.5).

4.1.1 JPA Stochastic Modeling

As described during the introductory part of this chapter, stochastic modeling plays a
fundamental role on JPA, making it distinguishable from the independent estimation of
positioning and attitude. Since both localization- and attitude-related DD measurements
are obtained with respect to the master antenna, cross-correlation between both types of
observations becomes apparent. Thus, the covariance matrix Σ is expressed as

Σ =
[

ΣΦ ΣΦ,ρ

Σ>
Φ,ρ Σρ

]

=


[

ΣΦ,pos ΣΦ,pos,att
Σ>

Φ,pos,att ΣΦ,att

]
ΣΦ,ρ

Σ>
Φ,ρ

[
Σρ,pos Σρ,pos,att

Σ>
ρ,pos,att Σρ,att

]


(4.4)

with the diagonal elements described by

ΣΦ =
[
σ̄2

Φ ·DJPA ⊗D>WD
]

+ ΣI , (4.5)

Σρ =
[
σ̄2

ρ ·DJPA ⊗D>WD
]

+ ΣI , (4.6)

where σ̄2
Φ, σ̄

2
ρ are the carrier phase and code zenith referenced variances, W is the weighting

matrix described in (1.32) and D is the DD matrix in (2.6). Then, DJPA is the mixing matrix
that introduces the cross-correlations between the master and the remaining antennas (i.e.,
the N slave ones on the vehicle and the one on the base station), defined as

DJPA =
[
IN+1 + 1N+1,N+1

]
. (4.7)

At last, ΣI gathers the stochastic model for the atmospheric residuals, the latter affecting
solely positioning-related observations –i.e., those in which the base station participates, since
the antennas onboard of the vehicle are too close to each other so that any atmospheric
residual is present–, and expressed as

ΣI = ΣΦ,ρ =
[
σ2

I ·D>WD 0n,nN

0nN,n 0nN,nN

]
, (4.8)

where ΣI constitutes the ionospheric weighted model described in (2.9) and dependent
on the separation between the base and master antennas. Note as well that the cross-
correlation terms between code and carrier phase observations is due to the atmospheric
residuals present at the positioning DD observations.
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To further emphasize the differences between the stochastic models for JPA and the
disjoint positioning and attitude estimation, graphical support is provided in Fig. 4.2. This
example considers a scenario involving n = 3 + 1 tracked satellites across the base station
and N = 2 + 1 antennas on the target platform. The covariance matrix for code observations
Σρ for the JPA model is shown on the right side of Fig. 4.2, while the conventional
(independent) positioning-attitude model is depicted on the left side of the same figure,
with the colorbar indicating the values for the corresponding standard deviations. It results
evident that the additional information gathered by the terms Σρ and ΣΦ strength the
overall observation model, facilitating the IAR process and, potentially, even increasing the
accuracy of the navigational elements.

Figure 4.2: Pictorial example for the covariance matrix of code observations Σρ. On the left, the case
for separately solving the positioning and attitude problems. On the right, stochastic characterization
for the JPA model.
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4.2 Estimation Problem for the JPA Mixed Model
In analogy to the estimation problems for the carrier phase-based positioning and attitude
models, computing an optimal solution for the JPA involves the following optimization problem(

Ž, b̌, q̌
)

= arg min
(Z,b,q)∈Zn,N+1×R3×S3

‖vec (Y−AZ−B [b, h(q)])‖2Σ , (4.9)

with h(q) defined as in (3.32). Note that the vector of unknown results now a mixture of integer,
real and manifold spaces. Note as well that, as for the attitude mixed model, the orientation
parametrization plays an important role in maximizing the redundancy of the system. As for
the two precedent optimization problems in (2.13), (3.31), a closed form solution for a (4.9) is
not known and, instead, one shall take advantage of the well-known three step decomposition:

min
Z∈Zn,N+1,b∈R3,q∈S3

‖vec (Y−AZ−B [b, h(q)])‖2Σ =

=‖ê‖2Σ + min
Z∈Zn,N+1

∥∥∥vec
(
Ẑ− Z

)∥∥∥2

PẐẐ
+ min

x>=[b>,q>]
b∈R3,q∈S3

‖x̂(Z)− x‖2Px̂(Z)

 . (4.10)

with ‖ê‖2Σ the residuals from a LS adjustment for the auxiliary variables Ẑ, x̂, given by(
Ẑ, x̂

)
= arg min

Ẑ∈Rn,N+1,b̂∈R3,q̂∈S3

∥∥∥vec
(
Y−AẐ−B

[
b̂, h(q̂)

])∥∥∥2

Σ
. (4.11)

The float step in (4.11) relaxes the integer condition on the ambiguities, while preserving the
unit-norm constraint on the quaternion and, so, assuring that a proper rotation is performed.
Once again, Lie Theory can be exploited to solve (4.11) through an iterative procedure, at the
cost of evaluating the cost function in the surrounding of the last-estimated orientation solution
due to the manifold-algebra relationship. Therefore, a proper initialization is as relevant for
JPA than for the attitude mixed model in (3.34). The procedure to follow is given by

1. Estimation of the initial solution for the ambiguities, positioning and orientation based
on the positioning and multi-baseline mixed models, such that Ẑ(0), b̂(0), q̂(0) are given
by (2.13), (3.24), (3.15).

2. For k = 1, 2, . . . , until convergence of the solution, perform the following GN adjustment

δx̂(k) =
(
H>Σ−1H

)−1
H>Σ−1

(
vec

(
Y−AẐ(k−1) −B

[
b̂(k−1), h(q̂(k−1))

]))
,

(4.12)
x̂(k) = x̂(k−1) ⊕ δx̂(k) (4.13)

with H the Jacobian of the observations with respect to the state estimate evaluated
on the latest iteration, given by

H =

IN+1 ⊗A,


B 0
0 BJq̂(k−1)(Bb1,m)
... ...
0 BJq̂(k−1)(BbN,m)


 , (4.14)

and the composition operator updates the float estimates –i.e., the ambiguities and
positioning vector are summed with the corresponding sub-vector of δx̂(k), while the
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quaternion estimate is multiplied with a second quaternion obtained from the sub-vector
of δx̂(k) related to the angular error–. Thus, the float solution Ẑ, q̂, q̂ corresponds to
x̂(k) once the convergence is reached.

Estimating the next minimization processes, IAR and fixed solution, in (??), (4.10)
follows the same principles than for the attitude mixed model in Section 3.3. Thus, the
real-to-integer mapping is realized by means of LAMBDA, plus an optimal validation step to
verify the correctness of the solution to obtain Ž. Then, the fixed solution estimation
leverages on Lie theory, leading to

η̌ ,
[
δb̌>, δθ̌>

]>
= Pη̂η̂P−1

ẐẐ

(
vec

(
Ẑ− Ž

))
, (4.15)

b̌ = b̂− δb̌ , (4.16)
q̌ = q̂ ◦ q∗

{
δθ̌
}
, (4.17)

with Pη̂η̂ the sub-matrix from the covariance matrix of float estimates corresponding to the
non-ambiguity parameters. Thus, by virtue of the integer constraints on the ambiguities,
positioning and attitude estimates will inherent high precision whenever those ambiguities
are correctly resolved.

4.2.1 Recursive Formulation for the JPA Mixed Model

For the time recursion and estimation for the JPA problem, one may apply an analog
methodology to the attitude mixed model, since handling the unit-quaternion remains
the greatest challenge. Thus, let us describe the discrete SSM for an inertial navigation
problem at time t by

xt =
[
a>

t , b>
t , v>

t , q>
t , b>

ω,t, b>
a,t

]>
, (4.18)

with (at,bt,vt,qt,bω,t,ba,t) ∈ Zn(N+1) × R3 × R3 × S3 × R3 × R3 ,

such that at = vec(Zt) is the vector gathering all the integer ambiguities, vt is the linear
speed for the platform (expressed in the global frame), and bω,t, ba,t are the gyroscope and
accelerometer biases, respectively. In this case, the process model can be expressed as

xt = f (xt−1,yINS,t,wt) , (4.19)

where yINS,t denotes the vector of angular rates and linear accelerations measured by an
IMU, such that yINS,t = [ωt, v̇t], and wt comprises process model white noises distributed
as wt ∼ N (0,Qt) and

Qt = diag
(
σ2

aIn(N+1), σ
2
ωI3, σ

2
v̇I3, σ

2
bωI3, σ

2
baI3

)
. (4.20)

Taking aside the pertinent random walk and denoting as gt the gravity vector expressed in
the global frame, the process model in (4.19) is formulated as

f (xt−1,yINS,t) =



at−1
bt−1 + ∆tvt−1
vt−1 + ∆t (gt + R{qt−1}(v̇t − ba,t−1))
qt−1 ◦ q {∆t(ωt − bω,t−1)}
bω,t−1
ba,t−1

, (4.21)
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where additional inertial factors such as Earth rotation, centrifugal and Coriolis terms are
disregarded for simplicity. For further simplification, lever-arm compensation between the
IMU and body frame is also neglected necessary (i.e., the gyroscope and accelerometer axis
are perfectly aligned with the body frame, and the position of the IMU coincides with the
master antenna), and factors such as scaling or cross-coupling errors are not present for the
inertial unit. Note that for non-inertial systems, the recursive JPA mixed model follows a very
similar formulation by removing the inertial biases from the state estimate and assuming that
the velocity and quaternion estimates evolve over time as random processes.

Once again, the ESKF results a powerful filtering alternative to deal with the quaternion-
related constraints, while presenting minimal state representation in the estimated covariance
matrix (i.e., P ∈ RP,P , with the number of minimal state parameters P = n · (N + 1) + 3 · 5).
Similar to the approach derived in Section 3.4 for the attitude model, the state estimate is
conformed by the composition of a nominal state vector x̂t and the error state δxt, whose
uncertainty is represented in the covariance matrix Pt. Such composition is formulated as

x = x̂⊕ δx =



ât + δat

b̂t + δbt

v̂t + δvt

q̂t ◦ q{δθt}
b̂ω,t + δbω,t

b̂a,t + δba,t

. (4.22)

Then, one may use the set of ESKF equations formulated in (3.44) to perform the
prediction and correction step for the ESKF-based JPA problem by adapting the process and
observation models, as well as the pertinent Jacobian matrices in (3.45)–(3.46), such that

Ft =



In(N+1) 0 0 0 0 0
0 I3 ∆tI3 0 0 0
0 0 I3 −∆tR[v̇t − ba,t−1]× 0 −∆tR
0 0 0 R>{δq} −∆tI3 0
0 0 0 0 I3 0
0 0 0 0 0 I3


, (4.23)

where R is obtained from qt−1, and δq is the quaternion obtained from the integration of
the angular rate δq , q{∆t(ωt − bω,t−1))}. Also, the Jacobian matrices for the observation
model in(3.49)–(3.50) are expressed as

Hx =

IN+1 ⊗A,


B 0
0 BJq̂(k−1)(Bb1,m)
... ...
0 BJq̂(k−1)(BbN,m)

 , 02n(N+1),3, 02n(N+1),3

 , (4.24)

Hδx =

In(N+1)+6 0 0
0 Hδθ 0
0 0 I6

 . (4.25)

Besides the minimal changes in the state space formulation and those additional ones to
re-formulate the Jacobian matrices, the ESKF for the JPA results almost identical to that
of the attitude mixed model. The benefits from preserving the geometric constraints over
the quaternion along with the minimal uncertainty representation and the linear kinematic
model are preserved. Moreover, the IAR and fixed solution processes that come after the float
estimation are also realized by means of LAMBDA and the Lie theory-based update.
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4.3 Performance of Estimators at the JPA Model

In the sequel, the JPA model is compared to that of independently solving for positioning and
attitude. Also, the proposed estimator for the recursive estimation of the JPA mixed model is
studied and its performance characterized for both synthetic and real data experimentation.

4.3.1 Simulation Results

This section serves as analysis for the differences between the JPA mixed model and the
“independent” treatment for the positioning and attitude problem. Note that the actual
observations and antenna configurations are identical: an antenna array is made available
at the platform and has connection to corrections from a nearby base station. Also, the
estimation solution is addressed by the same ESKF recursion for both models. This allows
to isolate and make evident the pros and cons between exploiting the JPA model defined
in 5 or the positioning and attitude models in 1, 4. In other words, this section focuses
on assessing the gains from exploiting the stochastic cross-correlations between positioning-
and attitude-related observations that conform the JPA model.

Numerical characterization is performed via Monte Carlo experimentation for which, a
static GNSS skyplot consisting on eight satellites, as illustrated on the left side of Fig. 4.3,
for a multi-antenna configuration conformed of four elements in which the slave antennas are
separated by one meter with respect to the master one. The initial distance to the base station
is five kilometers. Accelerometer readings are assumed unavailable, so that the time evolution
for the orientation is dictated by the gyroscope observations (with σω = 0.02 deg/

√
s3, and

σbω = 2 · 10−4 deg/
√
s3) and the velocity evolves as a random walk with σv = 1 m/s2.

The time evoluation for the ‘true’ angular rate observations, i.e., free from noises and biases,
are shown on the right side of Fig. 4.3. Both prediction and correction steps are sampled
at one Hertz, so that ∆t = 1 s. With regards to the GNSS noise distribution, code and
carrier phase zenith referenced std, σ̄ρ and σ̄Φ, correspond to 30 cm and 3 mm, respectively.
The atmospheric residuals modeled based on the distance to the base, following (2.9). In
all cases, the weighting matrix W corresponds to the elevation-dependent model in (1.32).
To make the estimation a bit more challenging and realistic, each satellite link is subject to
suffer from the occurrence of a cycle slip, modeled with a 0.5% probability. A total time
of 100 seconds are simulated for a total of 103 Monte Carlo runs.
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Figure 4.3: Skyplot for the JPA problem.
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Figure 4.4: Performance comparison between the JPA and the independent positioning+attitude
mixed models, based on the ESKF recursive estimates. On the top, RMSE for the positioning errors
over time, with the continuous and dashed lines indicating the accuracy for float and fixed estimates,
respectively. On the center, RMSE for the orientation estimates over time, with the continuous and
dashed lines indicating the accuracy for float and fixed estimates, respectively. On the bottom, the
mean ambiguity success rate (MASR) over time, with a zoom over the first ten seconds of the trajectory.

Fig. 4.4 collects the results for positioning and attitude RMSE on the top and center
graphs, respectively, as well as the mean ambiguity success rate (MASR) –i.e., the percentage
of epochs for which the vector of ambiguities is correctly estimated–. For the top and center
figures, the float estimates are depicted with solid lines, while the RMSE for fixed solutions are
shown with dashed lines. The legend makes reference to JPA, positioning and attitude only,
which refers to an ESKF fed with either the JPA observation model or the positioning and



Chapter 4. Joint Positioning and Attitude Estimation 111

attitude models (i.e., disregarding the cross-correlations). Some conclusions can be withdrew:

• In terms of accuracy, JPA leads to a significant improvement with regards to the
conventional positioning problem, leading to a gain factor of near 2.5 –e.g., after 100
seconds, the float positioning errors for JPA mixed model-based ESKF stabilize at around
12 cm, while the mixed model-based converge to around 30 cm. Similarly, the accuracy
for float orientation estimates of the JPA mixed model is approximately 1.5 times better
than that of the attitude mixed model. Note that both these improvements are due
to the additional information present on the cross-correlation between positioning- and
attitude-related observations, making evident the vast relevance of this factor.

• In terms of availability for precise navigation estimates or, in other words, the chances for
correctly estimating the integer ambiguities, positioning becomes the most complicated
navigational element. This is due to the lesser observability and higher noise levels
due to the atmospheric residuals. An interesting remark is that the attitude mixed
model can be resolved in an easier manner than JPA, since the JPA is impeded by the
complexity of fixing the positioning-related ambiguities. Nonetheless, the difference is
almost minimal, as can be seen on the detail for the bottom graph of Fig. 4.4.

4.3.2 JPA Experimental Results

The performance characterization of the proposed ESKF-based JPA problem is addressed for
the navigation of a vessel navigation in a inland waterway channel, which is an interesting
ITS application. The measurement campaign was conducted in Koblenz (Germany) on 16th
May 2017 (DOY 136, UTC 09:00-14:00), being the tracked vehicle the MS Bingen, a multi-
purpose research vessel of the German Waterways authorities. The equipment setup listed
three navXperience 3G+C GNSS antennas connected to three separate dual frequency Javad
Delta receivers, a Fiber Optic Gyroscope (FOG) IMU iMAR and an active reflector under
the master antenna. Fig. 4.5 (left) shows the MS Bingen and the location of the GNSS
antennas and the reflector, (top right) indicates the configuration of the antennas and the
IMU in the body frame, and (bottom right) depicts the number of GPS satellites tracked,
as well as the PDOP along the five-hour long campaign.

The trajectory followed and the location of the base station and the total station are
illustrated in Fig. 4.6, with the distance between the base and the vessel constitutes a short
baseline ranging between 900 m and 2.5 km. The vessel navigates from the port on the right
side of Fig. 4.6 up river and then returns back to the point of departure. The reference
trajectory of the vessel is obtained based on optical technology, combining a total station on
land and an active reflector under the master GNSS antenna for automatic target tracking.
This technology assures a precise positioning ground truth solution whose error patterns are
independent of GNSS.The integration of the angular rates measured by the high-quality IMU
is used as benchmark solution for the attitude estimates.

The ESKF approach is as defined in Section 4.2.1, being either fed with the JPA mixed
model in 5 or the positioning and attitude mixed models in 1, 4. Observations for GPS across
the L1, L2 frequencies are used, with an elevation mask of 15 degrees and a sampling rate
of 1 Hz. IAR is based on LAMBDA, with a posterior FF-RT being applied as validity test.
Note that inertial information is not integrated, since the focus is laid on the performance
differences between the JPA/independent positioning and attitude models. Instead, inertial
integration is used as ground truth for the orientation estimates.

The comparison between JPA and the positioning- and attitude-only models is reported in
Table 4.1, in terms of fix ratio over the course of the measurement campaign. The first column
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Figure 4.5: On the left, the MS Bingen vessel whose navigation solution is estimated. On the top
right, the configuration of the antennas in the body/vehicle coordinate frame. On the bottom right,
the number of tracked GPS satellites and associated PDOP.

Figure 4.6: Trajectory followed by the tracked vessel, whose departure and arrival points coincide
with the port on the right hand side. The location of the total station (for optical tracking the vessel)
and the base station is marked with a round and a square indicator respectively.

Table 4.1: Percentage of fixed solutions (%) depending on the number of locked satellites.

Number of satellites / Time (%) Fix ratio (%)
JPA Positioning Attitude Pos ∩ Attitude

9 (28.68) 85.94 82.30 83.25 73.10
8 (27.10) 83.93 54.07 78.50 49.07
7 (35.32) 68.12 60.22 81.58 53.49
6 (06.51) 47.78 65.27 66.89 60.24
≤ 5 (2.38) 01.17 02.33 02.56 01.40

Total 74.60 63.84 79.35 57.11

depicts the number of satellites n+ 1 and the corresponding percentage of time for which
that number is tracked. The following columns correspond to the fix ratio of the assessed
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positioning and attitude methods: the second column is for the proposed JPA, the third is for
the positioning-only, the fourth is for the attitude-only and the last column is the union of the
positioning and attitude (i.e., the simultaneous occurrence of having a fixed solution for the
positioning- and attitude-only solution of the third and fourth columns). The first thing to
notice is that, generally, the fixing ratio grows with the number of satellites, and the chances
of having a fixed solution for five or less satellites is very uncommon. Some conclusions can
be drawn from the comparison of JPA against separately estimating positioning and attitude:

i) The attitude model is “stronger” than the positioning one despite the nonlinearities
in the observation function. There are two reasons to ground the positioning-attitude
difference in performance: on the one hand, small residuals due to the atmospheric
propagation delays between the vehicle and the base station might be present despite
the short baseline; on the other hand, the data redundancy is higher in the attitude
than in the positioning model (i.e., n(N + 1) code observations guide the float estimate
of the four-dimensional unknown quaternion, while n code measurements support the
search of the three-dimensional unknown position).

ii) In average, JPA performs better than the union of separately estimating the position
and attitude problems. Thus, the former provides a fixed solution for the 74.60% of
time, while the latter is limited to a 57.11% of time —which is a difference in precise
navigation availability of over 45 minutes—. This conclusion coincides with the one
obtained during the previous numerical experiment, reinforcing the hypothesis that
positioning-attitude cross-correlations are of great importance.

iii) The standalone attitude problem presents a higher fix ratio compared to the JPA, as it
is unaffected by the residual atmospheric propagation delays present in the positioning
problem. Thus, a practical application might be interested in executing in parallel the
attitude-only and the JPA filters, leading to a high availability positioning and attitude
estimates and a mechanism to monitor the integrity of the algorithms if discrepancies
between the estimates occurred.

Figure 4.7: Positioning performance for the JPA method during bridge passing. The black line is the
reference trajectory estimated using laser tracking and the dots correspond to the estimated solution
(only fixed estimates) with the horizontal accuracy as indicated on the colorbar.
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Next, the positioning performance is analyzed. Besides the higher availability for the JPA
against positioning-only estimates, the fixed solutions are very much equivalent up to the
mm-regime. As depicted in Fig. 4.7, a GNSS-independent localization ground truth is available,
obtained using optical (laser-based) technology. For that, a total station is located in the small
island in the center of the river and automatic tracking to the active reflector located below
the master antenna is performed. This area is most interesting, since the three bridges induce
multipath biases and the track of satellites is often lost. As expected, the chance for having a
fixed navigation solution under the bridges results null, although the navigation fix is rapidly
recovered. The standard deviation for the fixed position solution is very close to a centimeter,
although some few wrong fixes (with horizontal errors of up to 15 cm) occur as well.

Finally, the JPA-based attitude determination performance is examined. As with the
positioning case, the fixed attitude solutions are equivalent between attitude-only and JPA
estimates. Fig. 4.8 depicts the estimated orientation using the Euler angles. The highest
degree of similarity is achieved on the heading estimation, while the pitch and especially
the roll are characterized with higher levels of noise. The better heading performance can
be explained in relation to the GNSS satellite geometry—offering a higher accuracy on the
horizontal plane—, and the antenna configuration onboard the vehicle, as the two front
antennas are coplanar with the local horizontal plane of the vehicle. It is noticeable that the
IMU allows to track subtle motions, such as the pitch variations due to the small waves in the
river, and in general the fusion of IMU and GNSS is recommended. Although the standard
deviation for the heading estimates are below the degree, the roll presents some errors of
up to 10◦, likely due to a wrong fix, since the period of time analyzed (12:00–13:00 UTC)
corresponds to the time in which the vessel maneuver around the bridges.

Figure 4.8: Attitude estimates over time for an hour of the studied experimentation. The attitude
performance of the JPA (in black crosses) is shown against the reference FOG IMU-based estimate (in
gray).
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4.4 Summary
This chapter deals with the topic of pose estimation for a rigid body and, when extended to
time recursion, its navigation. The provision of precise navigational solutions constitutes the
summit for the exploitation of carrier phase observations, combining RTK-alike differential
positioning and attitude estimation for multi-antenna platforms. Thus, this chapter discusses
on the pertinent observation models, their estimation and the performance characterization
of these via numerical and experimental results.

First, Section 4.1 formalizes the concept of joint position and attitude (JPA) determination,
consisting on the fusion of positioning- and attitude-related GNSS measurements under the
same observation model. Under this premise, the JPA mixed model is introduced along with
the description of its stochastic modeling. The latter is particularly relevant since conventional
estimation approaches deal with the positioning and attitude problems as separate manner.
Hence, Section 4.1.1 details how the error sources for the JPA model can be modeled,
paying special attention to the cross-correlations present due to using the master antenna
for the DD combination, as well as the additional atmospheric residuals due to the distance
between the base station and the target platform.

Then, Section 4.2 introduces the deterministic and recursive estimators for the JPA mixed
model. In this case, the optimization problem gathers a mixture of real, manifold and integer
unknown parameters (i.e., the baseline vector for positioning, the quaternion rotation and the
carrier ambiguities, respectively). Although an explicit solution to the original optimization
problem is not known, the conventional three step decomposition allows to derive MLE which
are (approximately) optimal. Moreover, the original ESKF for the attitude mixed model
introduced in the previous chapter is now extended to deal with the integration of INS and
the JPA observation model. Again, making use of the quaternion parametrization for the
rotation operator allows to work with minimal state representations, exploit the Lie algebra
relationships and “easily” derive both deterministic and recursive estimators.

Finally, the experimentation based on Monte Carlo simulation and the analysis of real data
serves to characterize the performance of the ESKF for the JPA, as well as describing the
gain of JPA with respect to modular approaches for the positioning and attitude estimation.
The most relevant conclusions derived are as follows:

• The use of JPA provides significant improvements on the accuracy of precise navigation
estimates. While such gain may become irrelevant for fixed solutions (they are precise
enough already!), the difference for float solutions results key for ITS or robotics
applications concerned with availability over precision.

• With regards to availability or, in other words, chances for the integer ambiguities to be
correctly estimated, the results are clearly interesting: the attitude mixed model ≥ JPA
mixed model � positioning mixed model. While the differences between the JPA and
the mixed model are almost minimal, they are enough to justify the use of a modular
approach to execute JPA in parallel with the attitude model. A relevant note is that,
JPA does solve the ambiguities for both the positioning and attitude models, leading
to a monumental gain in availability for precise positioning compared to conventional
RTK-like approaches.
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CHAPTER 5

Robust Statistics for Code-Based Positioning

Classical statistical estimators, such as Maximum Likelihood (ML) or Maximum a
Posteriori (MAP), are designed and operate optimally under the condition that data is

exactly normal-distributed. While the Gaussianity assumption is well justified in most occasions,
real-world data often features deviations from the assumed distribution. Unfortunately, even
slight model mismatches, such as the presence of outliers or contaminated observations,
may lead the performance of a classical estimator to strongly decay or even break down.
Estimators for GNSS-based positioning are no exception to this rule and, hence, one may
experiment gross estimation errors while operating in harsh signal propagation conditions due
to multipath and non-line-of-sight effects. Robust Statistics concern with the development
of estimators able to perform nearly optimally under both, the nominal data distribution
and deviations from the model. This Chapter reviews the basic notions on Robust Statistics
and the development of deterministic robust estimators for regression. Then, the particulars
of applying such methods to the code-based positioning problem are discussed. Finally,
theoretical insights and performance characterization for robust positioning methods are
provided, including synthetic and experimental analysis.
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Having become the cornerstone for outdoor localization and navigation, the GNSS com-
munity has devoted great efforts towards developing PVT solutions resilient to multipath and
other unmodeled propagation effects. Taking aside multi-sensory approaches to compensate
for the poor GNSS performance in urban scenarios, PVT resilient approaches typically leverage
on solution separation (SS), also denoted consistency-cheking. The former consists on the
application of successive statistical tests for the detection and exclusion of potential outliers,
i.e., the population of observations is trimmed until only normal-distributed measurements
are left. Receiver Autonomous Integrity Monitory (RAIM) [44] and its extensions (e.g.,
ARAIM [142], [143], CRAIM [144] and others [145], [146]) represent the most well known
example of resilient SPP, become the de facto positioning method for vertical guidance
in the aviation field. Unfortunately, the difficulty of spotting outliers via SS rapidly grows
in high dimensionality problems and for an elevated number of observations. Taking into
consideration the rapid deployment of GNSS constellations and the abundance of signals
across different frequencies, the applicability of SS is limited: its computation constitutes
a combinatorial problem which eventually becomes intractable.

The term robustness has been used (or misused, to be more precise) in several contexts
by the research community. This thesis refers to robustness in the statistical sense, e.g., as
described by Huber “robustness signifies insensivity to small deviations from the assumption”
[147]. The framework of Robust Statistics concern with developing approximate parametric
estimators. Robust methods are designed in such a way that they behave nearly optimally, if
the assumed model is correct, while small deviations from the model assumptions degrade
performance only slightly and larger deviations do not cause a catastrophe [147]. The theory
of robust statistics was established in the 1960s after the works of Tukey, Huber and Hampel
[148]–[150] and, while originally devised for general data analysis, robust estimation has
undergone substantial growth and extended to a myriad of fields: signal processing [151]–[153],
biomedical [154], [155], power systems [156], etc. For an in-depth analysis of robust statistics,
the reader may refer to classical reference textbooks [147], [157], [158], or the more recent
[159] for its application to signal processing problems.

Recently, the use of robust statistics has attracted the attention of GNSS practitioners
for various purposes. For instance, its application to baseband processing for interference
mitigation has been showcased with great success [160], especially with regards to anti-
jamming protection [161]–[166]. Nonetheless, computing resilient PVT solutions constitutes
the most extended use of robust methods within the context of GNSS, with contributions for
code-based positioning in memory-less [47], [167]–[169] and recursive forms [21], [28], [170]
being readily available. Unfortunately, a formal discussion on the challenges related to robust
estimation for GNSS-based positioning problems has been somewhat overlooked by the GNSS
research community. In particular, one may be concern with i) GNSS observables not being
identical and independent distributed; ii) the “fatness” or low redundancy of observations; iii)
the role of geometry and the nonlinearity of the observation models; iv) how robust estimates
affects the IAR process when applied to the mixed model.

This thesis addresses the aforementioned challenges and provides theoretical insights and
performance characterization for robust estimators applied to the GNSS-based positioning
problem. This Chapter focuses on providing a short overview on the fundamentals of Robust
Statistics and its application to point estimation for code-based positioning, while Chapter 6
extends the analysis to recursive estimation for carrier phase-based navigation.



Chapter 5. Robust Statistics for Code-Based Positioning 121

5.1 Robust Statistics Principles

Conventional statistical estimators, or parametric models, operate under the assumption
of perfect knowledge for the data probability distribution. Indeed, ever since the least
squares method was introduced [171], data normality constitutes the most widely used
model formalization [158]. Such an assumption results very practical, providing a sensible
representation of sensors’ thermal noise and allowing the derivation of explicit formulae for
optimal solvers, such as MLEs. Despite its popularity, the Gaussianity condition does not hold
true for multiple real world problems and its justification has often proven wrong. Interestingly,
already back in 1904 Poincaré [172] raised concerns on the Gaussian distribution of data:

‘Everyone believes it: the experimenters imagine that it is a mathematical theorem, and the
mathematicians that it is an experimental fact.’

Indeed, measurements across different fields confirm the presence of heavy-tailed noise
[173]–[175], which cause estimators derived from the Gaussian probability model to be
biased or even to break down [151]. Robust statistics formalize the concept of approximate
parametric models and derive methods that produce reliable estimates when data follows
certain distribution exactly and/or approximately. Following the descriptions from Muma
[176], a robust method shall fulfill three basic requirements:

Near Optimality: a robust estimator should perform “reasonably good” (nearly optimal) at
the assumed model [147]. Robustness is relative to a nominal model, which is assumed
to be approximately valid when: a) the bulk of data belongs to the nominal distribution,
and some contaminated observations (i.e., the outliers) do not follow the pattern of
the majority; b) the distribution of the data is within a specific class of neighboring
distributions, as measured by some distance measure. Naturally, near-optimality is an
imperative requirement, provided that the robust method should be competitive against
classical estimators under the nominal noise distribution.

Qualitative Robustness: a robust procedure should present stability against infinitesimal
perturbations or, in other words, a small change in the data should have a small effect
over the estimates. Small changes refer to both changing a small fraction of the data
arbitrarily (e.g., under the presence of outliers) or performing a minor change to a large
fraction of the data (e.g., rounding the measurements).

Quantitative Robustness: a robust estimator should not break down (e.g., when an estimate
becomes infinitely biased) even under large deviations from the nominal model. In other
words, even under large fraction of contaminated data, the method should provide with
a reasonable response.

To illustrate the need for robust estimators, let us leverage on the classical example (showcased,
among others, in [158]) for the one-dimensional location and scale estimation problem.

Example 3 (Location and scale estimation under contaminated data). Consider the following
24 observations for copper content in wholemeal flour (measured in parts per million) [177]:

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.80
3.03 3.03 3.10 3.37 3.40 3.40 3.40 3.50
3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95
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One quickly realizes that the measurement 28.95 stands out from the rest of the dataset
and could be considered as an outlier. Most likely, such an outstanding value was due to a
misplaced decimal point (i.e., 28.95 instead of 2.895). Fig. 5.1 depicts the observations and
the location estimates for the mean and median –which correspond to minimizing the `2 and
`1 norms, respectively– with and without the inclusion of the “suspicious” observation.

2 2.5 3 3.5 4 4.5 5 5.5 6

µ̂mean
(with outlier)µ̂′

mean (no outlier)
bias

µ̂median (with outlier) ' µ̂′
median (no outlier)

outlier at 28.95

Figure 5.1: Copper content in wholemeal flour (in parts per million) and location estimates based on
the mean and median, with and without the inclusion of the 28.95 observation.

Due to the influence of the outlier, location and scale estimates based on the MLE
at the normal distribution (mean and standard deviation) become highly influenced, with
µ̂mean = 4.28 and σ̂std = 5.30. Upon removal of the 28.95 observation, the previous estimates
drastically change into µ̂′

mean = 3.20 and σ̂′
std = 0.69, which constitute a much better fit for

the dataset (notice that the superscript ‘′’ refers to estimates for the trimmed distribution).
On the other hand, robust estimates for the location and scale, such as the median and
the median absolute deviation (MAD), appear nearly unaffected by the outlier and lead to
µ̂median = 3.39, µ̂′

median = 3.37, σ̂MAD = 0.53, σ̂′
MAD = 0.50. This study case constitutes a

nice example for the weakness of the normal model and the need for robust estimators. In
the sequel, the basic working principles for robust estimators is explained, followed by a short
description of relevant terms for robust statistics.

5.1.1 The Intuition Behind Robust Estimation

Let us bring back the one-dimensional location problem from Example 3, where a set of obser-
vations yi, i = 1, . . . , n are distributed around the location µ and influenced by some noise νi as

yi = µ+ νi, for i = 1, . . . , n, (5.1)

where y> = [y1, . . . , yn] is the vector of observations and the errors νi are assumed independent
and identical distributed (i.i.d.) and follow a distribution F0. The likelihood function of
the observations is given by

L (y1, . . . , yn|µ) =
n∏

i=1
f(yi − µ), (5.2)

with f(·) the probability distribution function (pdf). At this stage, a classical estimator (i.e.,
MLE) for the location µ provides an estimate µ̂ based on the maximization of the likelihood, as

µ̂ , µ̂(y) = arg max
µ

L (y1, . . . , yn|µ) , (5.3)

and, if F0 is exactly known, the MLE results optimal in the mean squared error (MSE) sense.
The most well-known example relates to the Gaussian model, in which case F0 = N

(
µ, σ2)
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and the pdf for the observations is given by

f(yi|µ, σ2) = 1√
2πσ2

exp
(
−(yi − µ)2

2σ2

)
. (5.4)

Since L(y|µ) is always positive, the maximization problem in (5.3) for the Gaussian model
is equivalent to the following minimization

µ̂mean = arg min
µ

n∑
i=1

(ri)2 , (5.5)

with ri = yi − µ, (5.6)

where the residual, ri, describes the difference between the ith observation and the estimate,
and (5.5) corresponds to the celebrated LS adjustment (i.e., the minimization of the
`2 norm). Alternatively, if F0 were the Laplace distribution, the pdf for the observa-
tion would correspond to

f(yi|µ, σ2) = 1√
2σ

exp
(
−
√

2 |yi − µ|
σ2

)
, (5.7)

whose MLE involves solving the following minimization

µ̂median = arg min
µ

n∑
i=1
|ri| , (5.8)

where (5.8) corresponds to minimizing the `1 norm or the least absolute deviation (LAD)
adjustment. For the one-dimensional problem, the sample mean (i.e., LS) and median (i.e.,
LAD) align with the MLEs for the normal and the Laplace distributions, respectively.

While LAD constitutes a robust estimator for the one-dimensional problem, it results
evident that the LS adjustment (or the MLE at the normal model) results unbounded against
out-of-distribution observations. As we saw in Example 3, a single outlier heavily impacted
the estimate. Indeed, if an kth observation (k ⊆ {1, . . . , n}) sit at a large distance from
the distribution, its residual rk would greatly contribute to the norm ∑n

i=1 r
2
i . The quest for

robust estimators resolves around deriving alternative functions ρ(·) for the minimization

µ̂M = min
µ

n∑
i=1

ρ

(
ri

σ

)
, (5.9)

with (5.9) the general form for the M-estimator, as introduced by Huber in his seminal
work [149]. Hence, M-estimators result a generalization of MLEs, since one may set ρ(x) =
− log (f(x)) to fit a particular density function (e.g., ρ`2(x) = x2/2 and ρ`1(x) = |x| are the
MLEs at the normal and Laplacian distributions, respectively). Since M-estimators results
fundamental to comprehend the overall intuition behind robust estimation –further estimators
are presented in Section 5.2–, let us deepen into its working principle.

Provided that ρ(·) is symmetric and differentiable, its score or ψ-function is defined as

ψ(x) = dρ(x)
dx

, (5.10)

and then equations for the M-estimation follow
n∑

i=1
ψ

(
yi − µ
σ

)
= 0, (5.11)
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with ψ(x) a bounded function which penalizes outliers in the observations. In practice,
an M-estimator for the location can be thought of as a weighted mean. Assuming that
ψ(0) = 0 and that ψ′(0) exists, one typically resolves the M-estimation by using an artifact
weighting function w(x) defined as

w(x) =
{
ψ(x)/x, if x 6= 0
1, if x = 0 , (5.12)

and then (5.11) can be reformulated as
n∑

i=1
w

(
yi − µ
σ

)
yi − µ
σ

= 0, (5.13)

or directly

µ̂M =
∑n

i=1wiyi∑n
i=1wi

, with wi = w

(
yi − µ̂M

σ

)
, (5.14)

which formulates the M-estimator as a weighted mean. Notice that the estimate µ̂M appears
explicitly on the weights and, therefore, the M-estimator constitutes an iterative procedure
even for the simple location problem.

M-estimators are typically distinguished based on the shape of their ψ-functions as
monotone and redescending M-estimators. The most representative monotone M-estimator
is given by the Huber’s family of functions

ρHub(x) =
{

x2/2 if |x| ≤ cHub
cHub|x| − 1

2c
2
Hub if |x| > cHub

, (5.15)

ψHub(x) =
{

x if |x| ≤ cHub
cHubsign(x) if |x| > cHub

, (5.16)

wHub(x) =
{

1 if |x| ≤ cHub
cHub/|x| if |x| > cHub

, (5.17)

while the family of Tukey’s bisquare functions is the most well-known example of re-
descending M-estimator

ρTuk(x) =


c2

Tuk
6

(
1−

(
1− (x/cTuk)2

)3
)

if |x| ≤ cTuk

c2
Tuk/6 if |x| > cTuk

, (5.18)

ψTuk(x) =

 x
(
1− (x/cTuk)2

)2
if |x| ≤ cTuk

0 if |x| > cTuk
, (5.19)

wTuk(x) =


(
1− (x/cTuk)2

)2
if |x| ≤ cTuk

0 if |x| > cTuk
, (5.20)

where cHub and cTuk are control parameters to control the robustness and efficiency. For
the limit cases cHub, cTuk → ∞ and cHub, cTuk → 0, both estimators correspond to the
mean and the median, and otherwise they can be chosen to meet certain efficiency at a
distribution model (e.g., cHub = 1.345, cTuk = 4.685 lead to a 95% relative efficiency at
the normal model for the location problem).
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Figure 5.2: From left to right, illustration for the loss ρ(·), score ψ(·) and weighting w(·) functions
for the MLE at the normal model and M-estimators based on the Huber’s and Tukey’s families of
functions. Here, cHub = 1.345 and cTuk = 4.685 for a 95% efficiency at the Gaussian model.

Fig. 5.2 offers pictorial support to the aforementioned Huber and Tukey functions, while
the MLE at the normal model is added for completeness. Notice that both M-estimators
operate with inliers in a similar manner than the MLE, aiming at providing a near optimality
to the normal model. One may rapidly realize that the Huber-based M-estimator is expected
to have a higher efficiency at the normal model with respect to the Tukey-based one, since the
ρ, ψ and w functions coincide with the LS for healthy measurements. Furthermore, the score
ψ-function showcases how observations with large residuals affect the MLE in an unbounded
manner and, subsequently, the possibility for the estimator to break down would occur given
that a single sufficiently large outlier is present. The monotone M-estimator based on Huber
would limit the influence of such an outlier, while a redescending M-estimator would nullify
its effect. Clearly, monotone and redescending estimators present distinct characteristics: the
first leads to convex optimization problems for (5.9) and, therefore, to a solution uniqueness;
the second are fully bounded and provide a higher quantitative robustness at the cost of
a non-convex optimization for (5.9) and a lower efficiency at the nominal model. Next, a
‘dictionary’ of terms related to robust estimation is introduced, including a list of metrics
to characterize the properties of robust estimators.

5.1.2 Dictionary of Robust Statistical Terms

Contaminated distribution

As previously discussed, robust methods are yet subject to assumptions over the data
distribution. In this context, the concept of approximate normality is essential, and it
can be formalized by considering that a proportion 1− ε of the observations follows a normal
model, while the complementary ε portion of the data is contaminated by an unknown
(potentially) non-Gaussian distribution,

F = (1− ε)G+ εH (5.21)

where G = N
(
µ, σ2) is the nominal model and H can be any distribution (for instance,

another normal with larger variance). The model in (5.21) can be denoted as contaminated
normal distribution, as the Tukey-Huber model after [148] or as normal mixture model
when both G and H are Gaussians. Alternatively, one may use the so-called heavy-tailed
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or fat-tailed distributions, i.e., those whose fails tend to zero at a slower rate than the
Gaussian distribution such as the Cauchy, Laplace or the Student-t distributions. Hereinafter,
observations distributed according to G will be referred to as inliers or healthy measurements,
while G-distributed data will be denoted as outliers or contaminated observations.

Relative Efficiency

The relative efficiency is the measure for “near optimality” for an estimator. Such a
metric is defined for an exact noise model F and a target estimator θ̂(F ) as the ratio
in asymptotic variance between the optimal estimator (i.e., the MLE for the F model)
and the target estimator, as

Eff
(
θ̂(F ), F

)
=

var
(
θ̂MLE(F ), F

)
var
(
θ̂(F ), F

) , (5.22)

such that the efficiency is delimited by 0 ≤ Eff
(
θ̂(F ), F

)
≤ 1. Assuming an unbiased

estimator θ̂(F ), the relative efficiency can be used as a measure for the MSE performance
loss [178, Ch. 1], since

MSE(θ̂(F ), F ) =
(
bias(θ̂(F ), F )

)2
+ var

(
θ̂MLE(F ), F

)
. (5.23)

Thus, estimators with a high efficiency involve a small performance loss when the nominal
model happens exactly. Unfortunately, explicit expressions for the relative efficiency do not
generally exist (exceptions are the Huber-based M-estimator and the LAD for the location
problem under normal distributed noise [158, Ch. 2.3]) and its characterization typically
requires Monte Carlo approximations.

Influence Function and Sensitivity Curve

The influence function (IF) constitutes a measure for “qualitative robustness” of an estimator
[179]. The IF describes how an infinitesimal contamination ε at an arbitrary point z
impacts an estimate working asymptotically at the model F , standardized by the fraction
of contamination. The IF is defined as

IF
(
z; θ̂, F

)
= lim

ε→0

θ̂∞ ((1− ε)F + εδz)− θ̂∞(F )
ε

, (5.24)

with θ̂∞ (F ) , θ̂∞ ((1− ε)F + εδz) denotes the asymptotic estimate under the nominal and
contaminated distributions, respectively and δz is the point-mass probability at z. As graphical
example, the ψ-functions in Fig. 5.2 for the location problem coincide with the IFs for
the same estimators, for δz = x in the plot.

The sensitivity curve (SC) also constitutes a metric for qualitative robustness and can be
thought of as the finite sample take on robustness [180]. The SC is defined based on the
change experimented by an estimate θ̂ for a set of observations y = [y1, · · · , yn] when adding
an additional observation at z and standardized by the number of observations, as

SC
(
z, θ̂(y)

)
= (n+ 1) ·

(
θ̂ (y1, · · · , yn−1, z)− θ̂ (y1, · · · , yn−1)

)
, (5.25)
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which is very similar to (5.24) for ε = 1/(n + 1). Indeed, it has been shown [181] that,
for the location problem and an M-estimator with bounded and continuous score function,
the SC is the limit version of the influence function

given y ∼ F, SC(z, θ̂(y))→a.s. IF
(
z; θ̂, F

)
, (5.26)

where a.s. denotes almost surely convergence.

Breakdown Point

The breakdown point (BP) is the metric for quantitative robustness, introduced by Hampel in
[182]. The BP of an estimator θ̂ is the largest amount of contamination that a set of data
can contain such that θ̂ still provides some information about θ [158]. In plain words, the BP
is the smallest percentage of contamination that causes an estimator to break down.

Later, the concept of BP on finite sets was introduced in [183]. Consider a set of n
observations y at the model F and its associated estimate θ̂(y). The BP on finite sets is
defined as the minimal number m of observations that, upon its replacement by arbitrary
numbers, from the original n observations lead to an infinite bias on the estimate:

ε∗
n

(
θ̂(y), F

)
= min

{
m

n
; bias

(
θ̂(ȳ), F

)
is infinite

}
, (5.27)

where ȳ is the vector of contaminated observations.

5.2 Linear Regression under Contaminated Models
Let us consider a linear regression problem, such that

yi = xi,1θ1 + . . . , xi,pθp + νi, for i = 1, . . . , n, (5.28)

where yi denotes the ith observations, xi,1 . . . , xi,p are the explanatory variables (also denoted
predictors or covariates) that connect the measurements of the parameters θj , j = 1, . . . , p
and ν1, . . . , νn are i.i.d. noises. Alternatively, in matrix-vector notation y1

...
yn


︸ ︷︷ ︸

y

=

 x1,1 . . . x1,p
... ...

xn,1 . . . xn,p


︸ ︷︷ ︸

X

 θ1
...
θp


︸ ︷︷ ︸

θ

+

 ν1
...
νn


︸ ︷︷ ︸

ν

, (5.29)

and xi = [xi,1, . . . , xi,p] is the vector of predictors for the ith observation. Similar to the
location problem in Section 5.1.1, the estimation of the parameters θ involves some type
of minimization for the residual vector

r , r
(
θ̂
)

= y−Xθ̂, (5.30)

such as the well-known sum of squared residuals (or `2 norm) or the sum of absolute residuals
(or `1 norm), both of which coincide with the MLE at the Gaussian and Laplace distributions
–again, the LS and LAD estimators–, as

θ̂`2 = arg min
θ

n∑
i=1

∥∥∥yi − x>
i θ
∥∥∥2
, (5.31)

θ̂`1 = arg min
θ

n∑
i=1

∣∣∣yi − x>
i θ
∣∣∣ . (5.32)
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So far, the scale (or dispersion) σ of the noise has been assumed known –as in (5.9)–,
or its usefulness was limited for the minimization of the `1 and `2 norms (since the scale
is factored out). Thus, a scale equivariant estimator replaces the assumed know scale in
(5.9) with an estimate of it, σ̂. In principle, one could be tempted on using the sample
standard deviation as scale measure

σ̂2
std = 1

n

n∑
i=1

∥∥∥yi − x>
i θ̂`2

∥∥∥2
, (5.33)

although the former lacks robustness and can be easily affected by outliers (as showcased
in Example 3). Instead, one is interested in a robust scale estimate such as the normalized
mean absolute deviation (MAD), given by

σ̂MAD = b ·med (|r−med(r)|) , (5.34)

where b is a scaling factor to obtain a scale estimate consistent with a target distribution
[178] (e.g., for the normal model, b = 1.4826).

Unlike the location problem, in linear regression two types of outliers can be distinguished:

• vertical outliers, which are observations whose noise component ν do not follow the
noise distribution,

• leverage points, which correspond to observations whose predictors xi lie far away from
the bulk of covariates.

Fig. 5.3 depicts two real data examples, replicated from [184, Ch. 2], contaminated with
outliers, as well as the LS and LAD estimates for both cases.
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Figure 5.3: On the left, example of dataset contaminated with vertical outliers and the estimates for
the linear regression based on LS and LAD estimators. On the right, dataset where leverage points are
present and the estimates derived LS and LAD adjustments.

On the one hand, Fig. 5.3 left shows the number of international phone calls (in tens of
millions) made in Belgium between 1950 and 1973, as published by the Belgian Statistical
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Survey. While there was an upward trend over the years, the data collected over the period
1964 to 1969 results very intriguing and is, indeed, due to faulty measurements of the minutes
of these calls (the years 1963 and 1970 were also partially affected). These faulty measurements
are vertical outliers, since they only affect the measurements per se. On the other hand, Fig.
5.3 right illustrates an example from astronomy, containing information for the 47 the cluster
CYG OB1. The effective temperature at the surface of the star (in logarithm scale) is shown
on the ordinate and the logarithm of its light intensity on the abscissa. While observations for
43 stars lie on the same sequence, the data for the remaining four stars (which are giant stars)
constitute leverage points, since their x values (their temperature) lie far away from the bulk
of temperatures from the other stars. It results evident that the MLE at the normal model
(i.e., the LS solution) lacks robustness against both vertical outliers and leverage points. The
MLE at the Laplace model (i.e., the LAD estimate) offers certain robustness against vertical
outliers, since the Laplacian distribution presents heavier tails than the Gaussian one, while its
performance given the presence of leverage points is as poor as for the LS estimator.

Turning our attention back to GNSS, we are most interested in robust estimators which
protect against both vertical outliers and leverage points. The first constitutes the most
common cause for contaminated observation within the GNSS context, related to the biases
that multipath and NLOS induce into a pseudorange observation. An measurement being
a leverage point does not necessarily make it a contaminated one. For instance, a satellite
which strongly contributes to the geometry of the solution (e.g., when no other satellite
is available around an azimuth direction) is a “good” leverage point as long as its noise
follows the assumed underlying distribution. Ideally, a robust estimator should present a high
relative efficiency at the normal model while attaining a high breakdown point and a bounded
influence function. This section provides an short introduction to some of the most relevant
robust estimators: generalized M-estimators, S-estimators and MM-estimators. All of them
are scale, regression and affine equivariant, properties defined as

Definition 6 (Scale Equivariance). Let X be a n× p full rank matrix and a a scalar value.
Then, an estimate θ̂ is scale equivariant if

θ̂ (X, a · y) = a · θ̂ (X,y) . (5.35)

It implies that the estimate is independent of the choice of measurement unit for the
observations or re-scaling these.

Definition 7 (Regression Equivariance). Let X be a n× p full rank matrix and a a column
vector. Then, an estimate θ̂ is regression equivariant if

θ̂ (X,y + Xa) = θ̂ (X,y) + a. (5.36)

Regression and translation invariance are similar concepts, applied to linear regression and
multivariate location problems, respectively.

Definition 8 (Affine Equivariance). Let X be a n× p full rank matrix and A a nonsingular
square matrix. Then, an estimate θ̂ is affine equivariant if

θ̂ (XA,y) = A−1θ̂ (X,y) . (5.37)

It implies that a linear transformation of the covariates (e.g., a change of basis) should
transform the estimator accordingly.
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5.2.1 Generalized M-Estimator

If one extends the M-estimation in (5.11) to the linear regression problem, one obtains the
following minimization over the parameter vector θ

θ̂ = arg min
θ∈Rp

n∑
i=1

ρ

(
yi − x>

i θ

σ̂

)
, (5.38)

and making use of the derivative of ρ(·) leads to solving the following system of equations

n∑
i=1

ψ

(
yi − x>

i θ

σ̂

)
x>

i = 0, (5.39)

with σ̂ a previously estimated robust scale. Within the scope of this work, we generally make use
of the normalized MAD as an auxiliary scale. Whenever the joint regression and scale estimation
is considered, the minimization problem is denoted as Huber’s criterion and expressed as

{
θ̂, σ̂

}
= arg min

θ∈Rp,σ>0

(
2 · n · α · σ +

n∑
i=1

ρ

(
yi − x>

i θ

σ

))
, (5.40)

with ρ(·) assumed to be convex and differentiable and α a scaling factor so that the scale
estimate results efficient at a certain distribution model [178, Ch. 2]. The computation
of an S-estimate can be realized

Unfortunately, the criterion in (5.39) lacks robustness against leverage points. The
generalized M-estimator intends at bounding the influence of outlying predictors xi by applying
some weighting function on it [185] replace the equations for the M-estimation in (5.39) by

n∑
i=1

w(xi)ψ
(
ri

σ̂

)
x>

i = 0, (5.41)

and the choice of a redescending or monotone ψ-function and its control parameter allows
balancing robustness and efficiency (as discussed earlier in Section 5.1.1). The computation
of an M-estimate is generally performed via an Iteratively Reweighted Least Squares (IRLS)
procedure. Thus, given the set of observations y and predictors X, one realizes

1. Estimation of an initial scale invariant robust solution and its associated residuals, for
instance via LAD, as: θ̂(0) = θ̂LAD, r(0) = y−Xθ̂(0).

2. Estimation of a robust auxiliary scale, for instance the normalized MAD, based on the
initial estimate as: σ̂ = b ·med

(∣∣∣r(0) −med(r(0))
∣∣∣).

3. For k = 1, 2, . . . , until the convergence criteria is met, compute the weighting matrix
W = diag(w1, . . . , wn), with wi = w(r(k−1)

i /σ̂) and perform a weighted LS adjustment
θ̂(k) = (X>WX)−1X>Wy.

Unfortunately, the generalized M-estimator is known to offer a low BP –of at most 1/(p+ 1)
and without guarantees for this upper bound to be achieved [186]–. Next, estimators with
higher breakdown point are discussed.
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5.2.2 S-Estimator

The class of S-estimators derives from the Least Median of Squares (LMS) and the Least
Trimmed Squares (LTS), both proposed by Rousseuw [187], while pursuing affine and scale
equivariant estimators with high breakdown point and expressed as

θ̂LMS = arg min
θ∈Rp

med (r) , (5.42)

θ̂LTS = arg min
θ∈Rp

h∑
i=1

(ri)2 , (5.43)

where the residuals in LTS are sorted such that r2
1 ≤ · · · ≤ r2

n and h is chosen to attain a
high BP (e.g., h = n/2 leads to a BP= 0.5). In a general form, S-estimators are those based
on the minimization of a robust scale estimate for the residuals, as

θ̂S = arg min
θ∈Rp

σ̂ (r) , (5.44)

with σ̂ (r) a robust scale estimate. When σ̂ (r) is a scale M-estimator, the S-estimator
consists on solving the next system of equations

1
n

n∑
i=1

ρ

( r
σ̂(r)

)
= δ, (5.45)

where ρ is bounded (e.g., Tukey’s bisquare in (5.18)) and δ is a constant that balances
consistency at a certain distribution and the BP (i.e., for maximum BP, δ = 0.5(1− n/p)).
In terms of computation, LMS and LTS require drawing N =

(n
p

)
subsamples of p number of

observations and solving for the associated estimates θ̂j , for j = 1, . . . , N . Then, the LMS
and LTS estimates corresponds to the jth estimate to minimize (5.42) and (5.43), respectively.
Although algorithms for the fast computation of LMS and LTS have been posed [188], the
complexity rapidly grows both with n and p –they result as impractical as algorithms for
solution separation in GNSS for large number of observations–. Alternatively, an approximate
solution for the S-estimation minimization (5.44) can be solved via IRLS, as

1. Estimation of an initial scale invariant robust solution and its associated residuals, for
instance via LAD, as: θ̂(0) = θ̂LAD, r(0) = y−Xθ̂(0).

2. For k = 1, 2, . . . , until the convergence criteria is met, compute an M-scale σ̂(k)

with r(k−1) via (5.45), the weighting matrix W = diag(w1, . . . , wn), with wi =
w(r(k−1)

i /σ̂(k)) and perform a weighted LS adjustment θ̂(k) = (X>WX)−1X>Wy.

where ρ(·) and w(·) belong to a family of redescending ψ-functions and the control parameter
is set to a small value.

As with M-estimates, a high BP and relative efficiency cannot be achieved simultaneously:
the S-estimator presents a BP of up to 50%, while its efficiency at the normal distribution
is low. Interestingly, the S-Estimator in (5.44) corresponds to the joint scale and regression
of an M-estimator in (5.40), with the difference that S-estimators typically consider the
use of redescending score functions.
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5.2.3 MM-Estimator

The MM-Estimator, introduced in [189], is designed to achieve both high relative efficiency
and BP simultaneously. The idea resolves around employing two differently tuned redescending
functions, such that ρ2 ≤ ρ1, to minimize

θ̂MM = arg min
θ∈Rp

n∑
i=1

ρ2

(
yi − x>

i θ

σ̂1

)
. (5.46)

The computation of an MM-estimator can be seen as a two-step estimation:

1. Compute an S-estimate and its scale via (5.44) and (5.45) using ρ1, with ρ1 a
redescending function tuned for high BP, to obtain an initial estimate θ̂(0) = θ̂S
and σ̂1.

2. Compute (5.46) using a IRLS procedure with the previously computed θ̂(0), σ̂1 and
using a ρ2 function tuned for high relative efficiency.

5.3 Robust Estimation for Code-based Positioning
Let us recall the code-based positioning problem as described in Section 1.4, which leads
to the following nonlinear regression problem

x̂ = arg min
x∈Rp

‖y− h (x)‖2Σ , (5.47)

with y> = [y1, . . . , yn] a vector of code pseudorange observations and x> = [p, cdt], p = 4
the vector of unknown parameters and hi(·) the observation model in (1.24). The observations
are typically assumed to exactly follow a Gaussian model, y ∼ N (h(x),Σ), with perfectly
known covariance matrix Σ and predictors (i.e., the position of the satellites).

Whenever the aforementioned assumptions are fulfilled, a MLE for the normal model
provides an optimal solution in the MSE sense. Indeed, all parametric (and Bayesian!)
estimators discussed so far in this thesis related to GNSS work under this principle: - the
signal parameter estimation (time-delay, carrier phase offset, frequency shift, etc.) performed
in parallel at each channel of a receiver in Section 1.2; - the SPP based on code observations
in Section 1.4; - the RTK mixed model estimation in Section 2.1; - the GNSS-based attitude
model in Section 3.3 and the JPA model in Section 4.2. As discussed during the introductory
part of this chapter, it results complicated justifying the exact Gaussian distribution of data
and the applications of GNSS are no exception: the presence of multipath and NLOS is a
clear example of a scenario in which the assumption of normal model is violated. Laying our
attention on code-based SPP –applications based on the use of carrier phase observations
are discussed in Chapter 6, while robust signal processing at the receiver level is out of
the scope of this thesis–, robust estimation faces distinct challenges with respect to the
location and linear regression problems, namely

Nonlinear optimization. Unlike linear regression, the computation of (5.47) cannot be
directly approach via LS adjustment even for the normal model. For nonlinear equations,
there can be no solution, any number of solutions or an infinite amount of them [190,
Ch. 18]. Fortunately, thanks to the convexity of the GNSS problem and its generally
rich geometry, local search procedures such as Gauss-Newton (GN) algorithm allows for
solving (5.47) in only a few iterations despite the initial point of search (for instance, the
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center of the Earth). Combining nonlinear and robust regression involves a concatenated
iterative procedure: one would first provide an initial estimate via GN search, then
proceed with an GN-IRLS procedure for which a robust regressor estimates a weighting
matrix and an estimate is solved applying GN.

Low-redundant or “fat” datasets. While the examples typically discussed for robust linear
regression present a rather large number of observations and a low amount of unknowns
(i.e., a ratio of n/p of at least 10), data redundancy is limited in SPP. Especially when
working with a single frequency, one often faces the situation of tracking under a dozen
of satellites while estimating four parameters (i.e., a ratio n/p < 3). Thus, if outliers are
present for such a finite dataset, the performance of robust estimators strongly decay.
Notice that scale estimate for fat datasets may require a correction term, as discussed
in [191].

Not independent nor identical noise distributions. The i.i.d. assumption cannot be em-
ployed for GNSS observations since one would expect, for instance, that satellites with
higher elevation present smaller errors than those with lower elevation. Therefore,
proposing scale invariant estimators requires a double standardization: first, the
observations’ residuals are normalized based on the covariance matrix Σ; second,
the normalized residuals are standardized based on a robust estimate of their dispersion
or scale σ̂.

As example, Algorithm 3 describes the computation procedure for an MM-estimator at
the SPP problem. Besides the set of observations and associated covariance matrix, it is
required a choice of loss functions (ρ1, ρ2 from which the associated weighting functions
w1, w2 are derived) and their tuning parameters (in case those loss functions are configured
solely on one parameter, as Huber and Tukey, c1 and c2 respectively). Here, GN refers to
the iterative local search process described in 1.4.

Algorithm 3: Robust SPP via MM-Estimator
Input : Observations y,Σ; MM-estimator configuration (ρ1, ρ2, c1, c2, δ)
Output : Robust estimate x̂, P̂

1 Compute an initial estimate x̂(0) and H, via GN from ,(1.37),(1.38)
2 Initialize S-estimate: x̂(0)

S = x̂(0)

for k = 1, 2, . . . until convergence do S-estimate via IRLS
3 Compute standarized residuals: r̄(k) = Σ−1/2(y− h(x̂(k−1)

S ))
4 Compute M-scale: σ̂(k)

M ← 1/n
∑n

i=1 ρ1(r̄/σ̂(k)
M ) = δ

5 Compute weighting matrix: W = diag(w1, . . . , wn), wi = w1(r̄(k)
i /σ̂

(k)
M )

6 Compute estimate: x̂(k)
S via GN and WLS with x̂(k−1)

S ,W

7 Initialize MM-estimate with S-estimate: x̂(0)
MM = x̂(k)

S , σ̂ = σ̂
(k)
M

for k = 1, 2, . . . until convergence do MM-estimate via IRLS
8 Compute standarized residuals: r̄(k) = Σ−1/2

(
y− h(x̂k−1

MM)
)

9 Compute weighting matrix: W = diag(w1, . . . , wn), wi = w2(r̄(k)
i /σ̂)

10 Compute estimate: x̂(k)
MM via GN and WLS with x̂(k−1)

MM ,W

11 Return x̂ = x̂(k)
MM, P̂ = (H>Σ−>/2WΣ−1/2H)−1
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Example 4 (MLE and M-estimates for an SPP problem under contamination). Consider the
skyplot described in Section 5.4, where ten satellites are tracked (n = 10). This example serves
to illustrate the importance of convexity in loss functions and whether monotone (convex) or
redescending (non-convex) alternatives shall be used. Under the afore-described geometry,
nine observations are assumed to follow the nominal Gaussian distribution with a low variance
(i.e., observations are i.i.d. and their standard deviation is 0.1 m) while the observation from
satellite G17 constitutes an outlier due to an induced bias of 30 meters. In this example,
it is compared the performance of the MLE at the normal model (i.e., the LS) with two
M-estimators: one uses the monotone Huber family of functions (5.15) with cH = 1.345, and
the other employs the redescending Tukey bisquare functions (5.18) with cT = 4.685.

Figure 5.4: Surface (left column) and contour (right column) plot of the minimization functions for
the SPP problem, projected in the East-North frame. From top to bottom, solutions for the MLE,
M-estimate with Huber function (c = 1.345) and M-estimate with Tukey function (c = 4.685).

Fig. 5.4 depicts the surface (on the left) and the contour (on the right) for the MLE,
M-Huber, and M-Tukey minimization functions. While the MLE and M-Huber present a “nice”
convex optimization with a single minimum and a guarantee for uniqueness and stability, the
M-Tukey clearly depicts the issue of non-convexity optimization with an almost infinite number
of possible solutions. In the latter case, one realizes the importance of the initial estimate,
since the redescending solver could lead to a biased solution (due to a local minimum) or to a
lack of convergence (due to jumps between different local minima). Laying our attention to
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the right part of Fig. 5.4, one can assess the differences in positioning performance across
robust and non-robust estimators, which solutions are marked with a red rhomboid. The MLE
showcases how a single bias can drag the estimate towards the wrong direction. On the other
hand, both M-estimates manage to mitigate the effect of the outlier and their solution is
unaffected. Still, redescending robust estimates are extremely useful, especially for those cases
where high percentage of data are contaminated or when the outliers present extremely large
biases.

5.3.1 Relative Efficiency for Robust SPP Estimators

As we have described through out this Chapter, MLE are optimal whenever the underlying noise
distribution is followed exactly, while the need for robust estimators is more than justified due to
the constant appearance of outliers in real data. Next, it is described an extension of the relative
efficiency presented in Section 5.1.2 for the multi-dimensional point positioning problem.

Since SPP constitutes a real-valued parameter estimation, it is well-known that the
MSE for the WLS (i.e., the MLE at the normal model) is given by the estimated co-
variance matrix, given by

P̂N =
(
H>Σ−1H

)−1
, (5.48)

which provides the minimal MSE error for the vector of unknowns x in (5.47)

MSE (x̂N ) = tr
(
P̂N

)
, (5.49)

since the MLE at (5.47) is unbiased. Thus, for any other suboptimal (robust) estimator x̂
for the distribution y ∼ N (h(x),Σ), the expression for relative efficiency reads

Eff (x̂,y) = MSE (x̂N )
MSE (x̂) =

tr
(
P̂N

)
tr
(
P̂N

)
+ ‖bias (x̂) ‖2

, (5.50)

with 0 ≤ Eff (x̂,y) ≤ 1. While robust estimators are seemingly unbiased and their co-
variance estimates given by

P̂ = (H>Σ−>/2WΣ−1/2H)−1, (5.51)

the weighting matrix W is not known beforehand and it is dependent on the initial point
estimate. Thus, the denominator terms in (5.50) are unknown and no closed form solution
can be obtained, and the efficiency is to be approximated via Monte Carlo sampling.
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5.4 Results on Robust Estimation for Code-based Positioning

This section address the performance characterization for robust estimators at the SPP
problem. Particularly, Section 5.4.1 reports a set of simulated experiments to highlight certain
aspects of these estimators and provide further insights on their application to GNSS SPP.
Additionally, we provide results with an experimental dataset using real data recorded over
harsh propagation conditions in Section 5.4.2.

5.4.1 Simulated Environment

The performance of robust estimators is compared to that of an optimal MLE, based on a
synthetic experimentation. Two simulation scenarios are considered: a single constellation,
single frequency case with ten observations available, and a multi-constellation case for a
total of n = 40 observations. For the latter, each constellation is considered to have an
independent clock offset and thus the number of unknowns p = 7. The contaminated normal
mixture distribution in (5.21) is used, and it is studied both the fraction of contamination
ε and the magnitude α of such corrupted observations, as indicated in Table 5.1. Overall,
a total of 42 experiments are studied, and the performance characterization is obtained via
Monte Carlo experimentation with 104 runs. Besides the WLS, the following estimators are
considered: i) M-estimator based on the Huber; ii) S-estimator based on the Tukey function;
and iii) MM-estimator with Tukey (ρ1) and Huber functions (ρ2). In all cases, the control
parameters are chosen so that a 95% efficiency at the normal model is achieved and the
M-scale for the S- and MM-estimators target a maximum BP of 40%.

Table 5.1: Parameters configuration for the Monte Carlo simulation.

Simulation parameters

Number of satellites n ∈ {10, 15, . . . , 40}
Percentage of outliers ε ∈ {0, 10, 30, 40}
Outlier magnitude α ∈ {1, 3, 6, 10, 30, 60, 100}
Robust parameters cH = 1.345, cT = 4.685, δ = 0.4 · (1− p/n)

Single-constellation scenario setup

UTC time 15/05/2017 09 : 30

Location Koblenz, Germany
(50◦21′56′′ N, 7◦35′55′′ E)

PDOP 1.72

The vector of observation errors ν stacks the errors for the inlier νin and outlier νout
observations, which are distributed as follows

ν =
[
ν>

in ,ν
>
out

]>
, νin ∼ N

(
0, σ2

)
, νout ∼ N

(
0, (α · σ)2

)
,

where the standard deviation of the nominal observations is 2 m. For each Monte Carlo run,
the selection of contaminated observations is realized at random. For the scenario with n = 10,
the geometry of the satellites corresponds to the skyplot of Fig. 5.5. For the multi-GNSS
case, ten observations were simulated across four constellations, with the satellites’ position
obtained from random samples of azimuth, elevation, and satellite-receiver distance (i.e.,
azimuth ∼ U (0, 2π), elevation ∼ U (0, π/4), and distance ∼ N (20.200 (km), 2.000 (km2))).
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Figure 5.5: Skyplot for the single constellation simulation n = 10.

Fig. 5.6 depicts the performance of the estimators under evaluation, showing the positioning
RMSE on the ordinate axis against the amplification of the outliers’ noise. The first and
second row in Fig. 5.6 correspond to the single and multi constellation cases, respectively.
Moreover, the fraction of contamination ε increases from 10% to 40% from left to right. A
common element across all cases is, the absolute lack of robustness of ML estimates, whose
RMSE is dictated by the large errors in the outliers. Laying on the focus on ε = 10%, all M-,
S- and MM-estimators showcase their robustness by neglecting the effects of outliers regardless
of their magnitude and number of observations. The latter is interesting, since it appears that,
even for n = 10, the redundancy is high enough to spot the single outlying observation.

Figure 5.6: RMSE positioning error for ε ∈ {10, 30, 40}% contamination data (each column) and for
n ∈ {10, 40} (single- and multi-constellation cases, respectively) pseudorange observations (each row).

For the second column of images in Fig. 5.6, one starts appreciating differences among the
robust estimators, with the S- and MM- solutions remaining nearly unaffected, meaning that
their BP is numerically shown to be over 30% for this geometry. On the other hand, the M
estimator breaks down for the single constellation case, meaning that its BP is lower than 30%.
Finally, let us examine the third column, for a fraction of contamination ε = 40%. On the one
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hand, for n = 10 all robust methods break down, meaning that the S- and MM-estimators
presents a BP which oscillates between the 30 and 40% for such a geometry. On the other
hand, for n = 40 the S- and MM- estimators are capable of successfully bounding the effects
of outliers for the multi-constellation scenario, since the large number of measurements provide
with sufficient data redundancy (notice the rate n/p, which corresponds to 2.5 and 5.7 for the
single- and multi-constellation scenarios, respectively). Insofar, Monte Carlo approximation
allows us to withdraw some conclusions over the qualitative and quantitative robustness
properties of the M-, S-, and MM-estimators: a) all estimators have smooth influence functions
(i.e., smooth changes when increasing the location of the outliers) since the random selection
of the outlier recreates the SC analysis and, with a total of 424 experiments, one may think of
this simulation as a limit case; b) redescending S- and MM-estimators present a high BP for
the SPP problem, although this BP is strongly conditioned on the redundancy of observations.
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Figure 5.7: Relative efficiency of estimators at the normal model as a function of the number of
observations.

Next, the focus is laid on the relative efficiency of robust estimators at the nominal Gaussian
case—e.g., when no outlying observations are present–. Fig. 5.7 depicts the efficiency of
the estimators, as defined in Section 5.3.1. As expected, the S-estimator constitutes the
least efficient among the evaluated methods, with its efficiency decreasing as the number of
measurements grows. On he contrary, the MM-estimator exhibits the closest performance to the
MLE at the normal model and it might be taken as efficient at such model. Note that the MM-
estimator’s efficiency escalates with the number of observations, making it an appealing option
for prospective multi-frequency. multi-constellation scenarios. Overall, one can conclude that
the MM-estimator exhibits a great trade-off between robustness (i.e., high breakdown point)
and high relative normal efficiency (i.e., similarity to the MLE under Gaussian distributed errors).

It becomes evident that robust methods, especially the MM estimator, represent a promising
alternative to traditional ML or LS-based GNSS positioning. Especially for a near future, in
which multiple GNSS constellations will be fully deployed and a large number of observations
will be made available, robust methods can assure great resilience against satellite faults
at a cost of minimal efficiency loss, as shown below.
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5.4.2 Experimentation under Real Harsh Conditions

After numerical experimentation to characterize the performance of robust estimators for
code-based positioning and discussing on their properties, this section provides an analysis
under real harsh-propagation conditions. As the MM-estimator was undoubtedly the most
promising among the evaluated robust methods and to simplify the discussion, the performance
for the MM-estimator is compared against the conventional SPP based on LS adjustments.

The data collection was performed for an automotive scenario. The test vehicle was
equipped with a geodetic antenna and receiver (navXperience 3G+C and Javad Delta,
respectively), as illustrated on the left side of Fig. 5.8 (left). The experiment was carried
out on 15 May 2019 (DOY 135, UTC 10:00–18:00), covering a distance of roughly 800 km
from Koblenz to Neustrelitz (Germany), as shown on the right side of Fig. 5.8. Along the
path, a wide variety of harsh propagation conditions were encountered: urban navigation,
high-speed highways, national roads under forest foliage, bridge passing, etc. Thus, the
capability of the MM estimator for dealing with corrupted observations can be consistently
evaluated on real multipath and NLOS conditions. The ground truth reference trajectory is
estimated upon a dual-frequency GPS+GLONASS PPP solution. Unfortunately, the PPP
estimates are unavailable for the most challenging situations (e.g., tunnel or bridge crossing)
and, consequently, those epochs are discarded from the study.

0 

0 

250 

155 [mil] 

[km] 

Figure 5.8: Experimental setup for the evaluation of robust code-based positioning under real
conditions. On the left, the tracked vehicle and a highlight for the position of the antenna. On the
right, the route traversed during the data collection, with starting and finish points in the cities of
Koblenz and Neustrelitz (Germany), respectively.

The estimation of the code-based positioning is based on GPS and Galileo observations on
the L1 frequency, with an elevation mask of 5◦. The time evolution for the number of tracked
satellites and the Position Dilution of Precision (PDOP) is shown in Fig.5.9 (bottom left).
The combination of GPS and Galileo grants the availability of radio-navigation for around
96.5% of time, with often satellite tracking losses due to signal reflection and blockage.

Fig. 5.9 (top left) depicts the norm of the three-dimensional positioning errors along the
duration of the campaign for the LS and MM estimators. For the majority of the studied
epochs, in which nominal open-sky conditions for GNSS navigation apply, LS and MM
present an equivalent performance, which aligns with the previously-discussed MM-estimator’s
efficiency at the normal model. This statement is further supported from the results shown
on the right side of Fig. 5.9, which illustrates the distribution for the positioning errors. For
errors under five meters, which constitute the majority of the results, LS and MM exhibit
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Figure 5.9: On the bottom left, number of tracked satellites over GPS and Galileo constellations and
the corresponding PDOP. On the top left, norm of the positioning errors for MLE and MM estimators
over time, with a gray shadow to emphasize two particular time spans (denoted as A and B). On the
right, histogram for the norm of the positioning errors.

a similar performance, with the MM even being slightly better. While the MLE presents a
large population of positioning errors between 10 and 20 m, the MM estimator is capable of
mitigating the vast majority of these. The largest positioning errors (taking place immediately
after 12:00 and around 15:30) cannot be delat with neither by LS or the MM estimators.
This is consequence of a rather reduced satellite visibility from which several observations
are contaminated with NLOS and multipath effects.

For a better illustration on the robustness of the MM estimator, the two time spans “A”
and “B” are highlighted with a grayish area in Fig. 5.9. These periods have a duration of
15 and 30 minutes, respectively and are shown with more detail in Fig. 5.10. For greater
clarification, pictures taken from the target vehicle during these instances are included. Part
A occurs during highway navigation, from which a succession of eight small bridges are
present. For this case, the MM-estimator offers robustness and becomes unaffected by
multipath and NLOS effects. Then, part B corresponds to a national road surrounded by
dense tree foliage, the latter inducing damps on the received satellite signals. Once again,
the MM-estimator prevents the outlying effects that, on the other hand, induce positioning
errors of over 20 m on the MLE estimator.
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Figure 5.10: Detail on the time spans A and B for the measurement campaign. The first row (time
span A) corresponds to bridge passing during highway navigation, while the second raw (time span
B) occurs during national road navigation under tree foliage. The pictures on the left were taken
from the vehicle during the measurement campaigns, while the figures on the right depict the norm of
positioning errors over time.

5.5 Summary

Following the quest of providing precise navigation for intelligent vehicles, it is indispensable
using algorithms resilient against adverse signal propagation conditions. This chapter
presents the basics of Robust Statistics, a mathematical framework for the development
of estimators which are not bounded by exact assumptions on the noise distributions. The
weaknesses related to conventional statistical procedures, such as MAP or ML estimation,
have been widely recognized across multiple fields of applications, with satellite-based
navigation being no exception. Thus, this section presents a short historical remark on the
reasoning and development of Robust Statistics, the working principles of robust estimators
and their characteristics.

One of the major drawbacks of the aforementioned estimation procedures relates to not
knowing the expected performance of estimators beforehand. In other words, one may expect
certain relative efficiency or breakdown point from a specific algorithm although its analytical
or formal behavior remains uncertain in advance. The contribution of this chapter relates
to exploring the performance of robust estimators for non-recursive positioning and their
characterization via Monte Carlo experimentation. Thus, Section 5.3 discusses the specific
challenges related to using robust estimators for code-based positioning. In particular, the
nonlinear form of SPP involves complicated non-convex optimization procedures in which the
initialization and choice for score function play a fundamental role. Moreover, the standard
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use of single frequency and/or constellation implies a low redundancy of observations, which
strongly affects the chances for mitigating the effects of contaminated measurements.

Section 5.4 addresses the aforementioned performance characterization for robust estima-
tors for the SPP problem. With a simulated environment and via Monte Carlo experimentation,
redescending estimators (S and MM) showcase a breakdown point of up to 30% for a single
frequency, single constellation scenario while, for the same study case, the monotone M-
estimator breakdown point is only of 10%. For scenarios where data redundancy is much
higher, the S- and MM-estimators increase their robustness of up to 40% and offer a bounded
sensitivity curve, reason why even extremely large outliers do not impact the resulting
estimates. In terms of efficiency at the normal model, the MM-estimator stands out among
the other evaluated robust procedures, with an efficiency of over 98% which scales with
a growing number of observations.
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CHAPTER 6

Robust Filtering for Carrier Phase-Based Positioning

State estimation is a fundamental task in a plethora of fields, ranging from robotics,
guidance and navigation systems, to information fusion or time-series analysis. While the

Kalman Filter is well-known for providing an optimal MSE solution for linear dynamic SSMs
under normal distributed noises, its performance is conditioned to certain conditions: known
system matrices, known noise statistics and perfect initialization. A major problem is the lack
of robustness against impulsive, heavy-tailed noises (i.e., outliers), which may lead to infinitely
large biases or cause the filter to break down. This chapter advances the previously discussed
robust estimation for code-based positioning and extends it to carrier phase-based navigation
under the presence of contaminated observations. Thus, alternatives to conventional Gaussian
filters for discrete state-space systems are presented in the form of families of KF based on
Robust Statistics and Variational Inference. It is discussed the distinct challenges related
to the recursive solutions for the mixed model and multi-antenna configurations for JPA
estimation under contaminated distributions, with estimators such as the GM-based KF or the
Variational-based KF being introduced for this context. The application of the proposed robust
filtering solutions to carrier phase-based navigation is of great interest for the deployment of
prospective intelligent vehicles, aiming at increasing the availability, accuracy and resilience
of navigation solutions in urban and other harsh signal conditions.
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As discussed during Chapter 5, the presence of multipath and other impulsive noises disrupts
the noise assumption of conventional ML and MAP estimators, losing their optimality and
strongly degrading their performance. Similarly to point or deterministic regression and beyond
the framework of Robust Statistics, the research community has invested monumental efforts for
the development of robust filtering solutions for an innumerable number of applications. Thus,
the literature on robust filtering is vast and an extensive overview of the former is beyond the
scope of this thesis. Interested readers may consult the review works from [192] for an extensive
overview for works earlier than 1985, or [159], [193] and therein for more recent approaches.

While the KF constitutes the standard recursive estimator for navigation purposes, providing
optimal solutions for linear Gaussian SSMs in the MSE sense, its performance is very sensitive
to the presence of outliers. The squared error criterion is overly sensitive to non-Gaussian
observations and yields boundlessly large errors as the measurements are pulled further from
the mode. Hereinafter, robust filtering alternatives are discussed. Thus, a robust filter shall
pose similar characteristics than those of a robust point estimator, in terms of near optimality,
qualitative and quantitative robustness: i) the errors for the state estimate shall remain
bounded even if an outlying observation grows arbitrarily; ii) the effect of an outlier shall
not spread over time by the SSM dynamics; iii) the residual sequence shall remain nearly
white when the observations follow the nominal Gaussian distribution except for occasionally
occurring outliers. In general, one may distinguish the following filtering perspectives to
deal with deviations from the model assumptions:

Nonparametric methods — These techniques do not require any assumption on data
belonging to a parametric probability distribution. Exemplary methods for nonparametric
recursion include the running median filter [194], the myriad filter [195], [196] or the
inference via Dirichlet Process Mixtures [197], [198].

Bayesian methods — When the noises are assumed to follow a certain family of parametric
probability distribution function, such that the estimators can be derived in a Bayesian
framework. Thus, latent variables to model such distributions belong to the state
estimate, with their prior updated with the incoming observations. Bayesian methods
can be further distinguished based on whether the normal assumption is or not considered:

• Gaussian approaches — The observations are believed to follow a Gaussian
distribution of unknown covariance matrix. Thus, one can resort to innovation-
based techniques [199], e.g., Interactive Multiple Models (IMM) [200] or adaptive
filtering [201], [202], or variational Bayesian (VB) inference [203]–[205].

• Non-Gaussian approaches — The underlying noise distribution is assumed to
be heavy-tailed (i.e., the Student t-distribution, both for skewed or symmetric
cases) and a filtering solution can be obtained via VB approximations [206],
[207], or by exploiting a hierarchically Gaussian formulation to obtain approximate
Gaussian filtering solutions. For the latter it is possible to use Rao-Blackwellization
[208], conjugate prior analysis [209] or for linear systems to resort again to VB
approximations [210]–[214].

Robust Statistical methods — Also known as minimax approaches, these techniques
arise from the framework of Robust Statistics and the assumption of contaminated
distributions (i.e., a 1 − ε portion of data follows the nominal Gaussian distribution,
and the remaining 0 ≤ ε ≤ 1 observations are contaminated and follow an unknown
distribution). Thus, a filter based on robust statistics shall present a decent performance
at the nominal model and against deviations from the same. The conventional way for
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solving these type of filters consists on reformulating the standard KF as a recursive
robust regression problem which can be solved via M-optimization [215]–[217].

Hypothesis Testing methods — A simple approach for dealing with outliers consists on
their detection via statistical test and the application of a posterior conventional KF
over the “cleaned” data. Examples of deletion diagnostics include test derived from
robust statistics or the uncomplicated 3σ rule (i.e., outliers whose residuals exceed three
times their associated standard deviations are removed) [218], [219]. Alternatively, a
probabilistic outlier rejection method was recently proposed in [220], where the goal is
to have a binary indicator to determine whether the vector of observations belongs to
the nominal noise distribution.

Within the context of GNSS-based navigation, neither nonparametric nor Bayesian
methods are of particular interest and are disregarded in the remaining of this chapter.
The justification for discarding these filtering options is clear: a) the normal distribution for
nominal GNSS observations are well-studied and described precisely (as discussed in Section
1.3.1), making nonparametric and Bayesian methods for unknown Gaussian distributions
irrelevant; b) the stochastic characterization for pseudorange measurements contaminated
with multipath or other outlying errors remains an unexplored research topic, making
Bayesian filtering at a particular parametric non-Gaussian distribution a suboptimal, since
such noise model is unknown.

Figure 6.1: Graphical representation for the problem addressed in this chapter: GNSS-based precise
navigation under multipath or other outlying observations.

In this chapter, the focus is towards the elaboration of filtering solutions based on robust
statistical procedures and variational inference (VI) for hypothesis testing approaches. Then,
the methodology related to the two aforementioned techniques is particularized both for carrier
phase-based positioning and for navigation in multi-antenna configurations, as illustrated in
Fig. 6.1. The contribution of this chapter is two-fold: on the one hand, the adaptation of
well-known Robust Statistics-based filtering techniques for the mixed estimation problem. On
the other hand, a novel Variational-based technique for detecting individual faulty satellite
links is introduced. The performance of these two methods is addressed analytically, by means
of a Monte Carlo simulation, and with actual data collected on a signal-degraded scenario.
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6.1 Robust Statistics-based Filtering Approaches
Let us consider the KF update step from the MAP perspective [221], leading to the following
optimization procedure

x̂t = arg min
xt

(∥∥∥xt − x̂t|t−1

∥∥∥2

Pt|t−1
+
∥∥∥yt − h (xt)

∥∥∥2

Σt

)
. (6.1)

Provided that the observations follow a perfectly known normal distribution and for a linear
system (i.e., h(xt) = Htxt), the KF provides with the minimum MSE estimate. While
nonlinear systems can be addressed with the extensions of KF, such as EKF or CKF, to provide
a quasi-optimal solution, the presence of impulsive non-Gaussian errors could potentially
spoil the estimation or lead to large biases.

Let us now focus on the recursive forms for the carrier phase-based models (for positioning,
attitude and JPA, respectively),and the MAP to ML equivalence discussed in Section 2.2.1.
Thus, estimating parameters belonging to real, integer and manifold spaces requires a three
step decomposition, from which only a successful integer estimation grants high precision
over the positioning and attitude solutions. Since the existence of robust integer estimators
is not known, the key towards carrier phase-based resilient navigation concentrates on the
first ML adjustment. In other words, one shall only concern with applying robust filters
for the float solution estimation.

The framework of Robust Statistics provides with score functions to mitigate the effect of
outliers present in the vector of observations. Thus, the filtering problem in (6.1) can
be instead expressed as

x̂t = arg min
xt

(∥∥∥xt − x̂t|t−1

∥∥∥2

Pt|t−1
+
∥∥∥yt − h (xt)

∥∥∥2

Σ̄t

)
, (6.2)

where Σ̄t is the estimated covariance matrix of the observations based on certain weighting func-
tions, as

Σ̄t = Σ1/2
t W−1Σ>/2

t , (6.3)

where Σ1/2
t is obtained from the Cholesky factorization of Σt and W is a weighting matrix given

by
W = diag

[
w
(
Σ−1/2

t

(
yt − h(xt)

))]
, (6.4)

where w(·) is a function derived from a robust score function ψ(·), as defined in Section 5.1.1.
As afore-discussed, families of score functions can be distinguished as monotone or redescending
based on their shape. The basic idea is to mitigate or nullify the effect of observations not
fitting the underlying noise model. Fig. 6.2 complements some of the robust functions in Fig.
5.2 by including the Institute of Geodesy and Geoinformation (IGG) [216, Eq. (7)] and the 3σ
rule functions, with the score and weighting functions on the left and right, respectively.

In the context of filtering, one shall distinguish between innovation outliers, which affect
the state estimate during the prediction step and propagate over time, and additive outliers,
which are present on the observations at the correction stage. While additive outliers are
the most source of disturbances for GNSS-based navigation, occasional mismatches on the
dynamical model applied during the filter propagation (i.e., on the prediction) can also be
considered as a relevant source of errors. This would happen, for instance, when a vehicle is
assumed to move with constant speed while in reality a strong acceleration or deceleration



Chapter 6. Robust Filtering for Carrier Phase-Based Positioning 147

−4 −2 0 2 4

−2

0

2

x

ψ(x)

−4 −2 0 2 4
0

0.25

0.5

0.75

1

x

w(x)

MLE - N Huber IGG 3σ

Figure 6.2: Robust score ψ(·) and weighting w(·) functions, on the left and right respectively, which
are typically applied for robust filtering (in this case, the MLE at the normal model corresponds to the
conventional KF update step). The tuning parameters is as follows cHub = 1.345, cTuk = 4.685 and
cIGG,0 = 1.5, cIGG,1 = 2.5.

is taking place. Within the robust statistics-based filtering solutions, one can distinguish
between resilience against outliers in the correction step (as for Robust Information Filters)
or against outliers in both prediction and correction step (as for Generalized M-estimator
KF). Next, these two methods are described.

6.1.1 Robust Information Filters

The information filter (IF) is an algebraically equivalent form of the KF, where instead of
the state vector and covariance matrix, the filter propagates the so-called information vector,
zt = P−1

t xt, and information matrix, Zt = P−1
t . While the IF is primarily used for large-scale

and distributed filtering [222], its application to other fields is due to [216], which proposed
the RIF as an unified framework for robust filtering based on the M-estimate.

Thus, given a nonlinear filtering problem, the conventional IF update step [223], [224] is
adapted for RIF, such that an iterative procedure to down-weight possible additive outliers
is performed until certain convergence criteria is reached

zt|t = zt|t−1 + H>
t Σ−>/2

t W Σ−1/2
t

(
yt − h(xt|t−1) + Htxt|t−1

)
, (6.5)

Zt|t = Zt|t−1 + H>
t Σ−>/2

t W Σ−1/2
t Ht. (6.6)

This formulation results particularly interesting for robust filters which employ “aggressive”
weighting functions. Hence, the use of such redescending functions (where the weights can
become zero) may cause numerical issues within the standard robust regression KF, due
to matrix inversion. Instead, the RIF formulation makes possible avoiding these numerical
issues and still exploit redescending cost functions.
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6.1.2 Robust Kalman Filter based on Generalized M-estimation

As discussed during in Section 2.2.1, the KF update is equivalent to a LS adjustment. Besides
the usefulness of this equality for formulating recursive estimators for the mixed model, such
a LS form can be thought of as a regression problem for which one may apply a robust
estimators, such as the ones introduced in Section 5.2. Thus, [225] introduces the robust
KF based on the generalized M-estimator. Unlike RIFs, the GMKF provides resilience against
both innovation and additive outliers, since the predicted state estimate is considered as an
additional “observation” for a regression problem, modeled by the predicted covariance matrix.

Let us recall Section 2.2.1 and the definition for the “augmented” vector of observations, de-
fined as

ỹt =
[

yt

xt|t−1

]
, Σ̃t =

[
Σt

Pt|t−1

]
, H̃t =

[
Ht

In+p

]
,

with p the dimension of the state estimate, n the total number of ambiguities. Thus, a robust
KF update for a linear SSM results in the following regression:

xt|t =
(
H̃>

t Σ̃−>/2
t W̃Σ̃−1/2

t H̃t

)†
H̃>

t Σ̃−>/2
t W̃Σ̃−1/2

t ỹt, (6.7)

where W̃ is estimated via (6.4) for the vector of observations ỹ. Once the convergence is
reached, the covariance matrix of the associated estimate is as

Pt|t =
(
H̃>

t Σ̃−>/2
t W̃Σ̃−1/2

t H̃t

)†
. (6.8)

Unfortunately, the recursion in (6.7) is only valid for uncorrelated observations. While that
assumption may be justified for certain applications, it definitely does not hold for GNSS-based
precise navigation since code and carrier phase observations are highly correlated (due to
the double difference operator with respect to the base station and master antennas, for
positioning and attitude problems respectively). Instead, one may perform an eigenvalue
decomposition and change the basis, such that

y̆ = Q>ỹ, H̆ = Q>H̃, with Σ̃ = QΛQ>, (6.9)

where the accent ·̆ indicates vectors or matrix in the new basis, Λ is a diagonal matrix
populated by the eigenvalues and Q is the orthogonal matrix whose columns correspond
to eigenvectors (i.e., Q> = Q−1, since the covariance matrix Σ̄ is real and symmetric) .
Therefore, the GMKF recursion for correlated observations is expressed as

xt|t =
(
H̆>

t Λ−>/2
t W̆Λ−1/2

t H̃t

)†
H̆>

t Λ−>/2
t W̆Λ̃−1/2

t y̆t. (6.10)

Unlike RIFs, applying the GMKF involves realizing in operations over the weighting matrix,
leading to potential numerical issues whenever redescending functions are used. Moreover,
since more “observations” (the actual observations and the predicted state estimate) are
being weighted, the search space for the robust mechanism grows and leads to a slight
poorer performance for the case when outliers are present only during the correction stage.
Nonetheless, the GMKF is able to offer resilience against innovation outliers, which is key for
SSMs whose dynamical models are uncertain or require integrating observations which are
potentially contaminated (e.g., if an inertial sensor is defect and only returns default messages).
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6.2 Filtering via Variational Inference Hypothesis Testing
A fundamentally different approach, in comparison to robust statistics-based filtering, consists
on the detection and elimination of additive outliers (observations’ outliers) via hypothesis
testing. Taking aside conventional statistical testing procedures, VB inference techniques [226],
[227] constitute a promising line of research to perform outlier detection and deletion. Initially
proposed by [220], the VI-based KF consists on estimating the pdf for an auxiliary binary
variable that describes the chance for outliers to be present among the vector of observations.
This thesis contributes with the generalization of the original work of [220], in which a single
indicator would indicate the presence or not of outliers, by introducing a binary indicator per
observation [18], and the extension for correlated observations [5].

The underlying idea for robust filters based on hypothesis testing consists on recursively
estimating the probability for outliers to be present and then exclude those corrupted
observations. The SSM formulation of the problem is as follows:

xt = f (xt−1) + wt (6.11)

yt =
{

h (xt) + ηt , under M0
h (xt) + ηt + ot , under M1

(6.12)

where w is the process noise, w ∼ N (0,Qt), the vector of observations’ noise is ηt ∼
N (0,Σt) and ot describes the vector of additive outliers whose distribution is unknown. The
null hypothesis (M0) corresponds to the nominal conditions, in which observations’ noise
are distributed according to a known normal distribution, while the alternative hypothesis
(M1) indicates the presence of one or more outliers.

Let us denote with ζt the vector of binary indicators that determine whether the ith
observation is an inlier (ζi

t = 1) or an outlier (ζi
t = 0), formally described as

ζt =
[
ζ

(1)
t , . . . , ζ

(n)
t

]>
, ζt ∈ Z = {0, 1}n, (6.13)

where note that here n corresponds the total number of observations (not to be confused
with the amount of tracked satellites). Thus, instead of approximating the usual posterior
distribution p(xt|yt), one adds the aforementioned vector of indicators and aim at estimating
the posterior of p(xt, ζt|yt), whose approximation is obtained by resorting to VI techniques.
Thus, the observation model conditional on the indicators becomes

p (yt|xt, ζt) = N (h (xt) ,Σt)ζt , (6.14)

= 1
c (ζt)

exp
(
−1

2 ‖yt − h(xt)‖2Σt(ζt)

)
, (6.15)

where the observations’ covariance matrix conditioned on the binary indicators is defined as

Σt (ζt) =


σ2

1,1/ζ
(1)
t σ2

1,2 . . . σ2
1,n

σ2
2,1 σ2

2,2/ζ
(2)
t . . . σ2

2,n
... ... . . . ...

σ2
n,1 σ2

n,2 . . . σ2
n,n/ζ

(n)
t

 , (6.16)

which corresponds to dividing the diagonal terms of the original Σt matrix by the vector of
outlier indicators and where the time dependency on the observations’ deviations has been
omitted for simplicity. Contrarily to what one would expect, the division by zero in (6.14) does
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not cause numerical issues due to the algorithm operating on the precision matrix. Indeed,
the exponent of the likelihood can be equivalently formulated as

||yt − h(xt)||2Σ−1
t (ζt) = ||T (yt − h(xt), ζt)||2C−1

t (ζt) (6.17)

where T (·, zt) : Rn 7→ Rn′ is an operator that removes the elements in the input vector
corresponding to zero-valued indicators. Similarly, the matrix C(zt) is a transformation
of Σt(ζt) where the rows and columns corresponding to zero values in ζt are removed.
Special cases are i) C(1) = Σt(1) = Σt (i.e., whenever no outliers are detected and the
complete vector of observations is exploited); ii) C(0), corresponding to the absence of
healthy measurements and defined as C(0) = I. Therefore, the dimension of the resulting
multivariate normal variable (n′) is effectively reduced by the amount of outlier indicators:
n′ =

∑n
i=1 ζ

(i)
t ≤ n, with equality when no outliers are detected. Moreover, the proportionality

term c(zt) in (6.14) will depend on the dimension of the outlier-free vector of observations
and their covariance C(zt), as

c(zt) =
√

(2π)n′ |C(zt)| . (6.18)

Taking into account the aforementioned dimensionality adjusments, the likelihood distribution
in (6.14) can also be expressed as

p (yt|xt, ζt) = N (h (xt) ,Σt)ζt , (6.19)

= N
(
T
(
yt, ζt

)
; T

(
h(xt), ζt

)
,C(ζt)

)
. (6.20)

As a consequence of introducing the vector of binary indicators ζt, one needs to estimate
these along with the state estimate xt. To accomplish this task in a Bayesian sense, a
beta-Bernoulli hierarchical prior is imposed for each individual indicator as

p
(
ζ

(i)
t |π

(i)
t

)
=
(
π

(i)
t

)ζ
(i)
t
(
1− π(i)

t

)1−ζ
(i)
t
, (6.21)

where π(i)
t is a beta distributed random variable parameterized by the (unknown) hyper-

parameterse(i)
0 and f

(i)
0 ) whose pdf is expressed by1

p
(
π

(i)
t

)
=

(
π

(i)
t

)e
(i)
0 −1 (

1− π(i)
t

)f
(i)
0 −1

B
(
e

(i)
0 , f

(i)
0

) , (6.22)

and B(·, ·) is the beta function. Thus, the set of latent unknown variables, denoted by
Θt, gathers the actual state estimate, the binary indicators and the hyper-parameters that
conform the pdf for the former, and is defined as follows

Θt = {xt,πt, ζt}. (6.23)

For the estimation of the afore-described set of latent variables, a set of assumptions have
been adopted, which hold approximately in many practical situations:

1Note that a beta distribution is typically expressed as p(x; α, γ) ∝ xα−1(1 − x)γ−1, where α and γ are
two shape parameters, while the dependence on α and γ is here dropped for simplicity and the term p(x) is
used instead.
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• A1: The dynamics of the SSM can be expressed as a Markovian process, such that

p (xt|x0:t−1) = p (xt|xt−1) , (6.24)

p (xt|y1:t) = p (xt|yt) p (xt−1) . (6.25)

• A2: The binary indicators are assumed to be mutually independent, as well as
independent from the observations (since the underlying statistics to model the probability
of an outlier occurrence do not depend of the data per se), such that

p(ζt,πt) =
n∏

i=1
p
(
ζ

(i)
t |π

(i)
t

)
p
(
π

(i)
t

)
. (6.26)

• A3: The binary indicators present a random time evolution and are, therefore, time
uncorrelated such that

p (ζt|ζ0:t−1) =
t∏

k=0
p (ζk) . (6.27)

These assumptions conform the factor graph depicted in Fig. 6.3, where the known
(i.e., the observations) and the a priori information (i.e., the initial state estimate and
the hyper-parameters e0, f0) are encapsulated in circles, while the unknown parameters
are inside rectangles.

Figure 6.3: Graphical model for the sequential estimation of p (x0:t|y1:t) based on the introduced
Variational Bayesian inference Kalman Filter.

Following Bayes’ law and from assumptions A1-A3, the posterior distribution of the
unknown variables conditioned on the observations is given by

p (Θt|y1:t) = p (Θt,yt)
p(yt)

, (6.28)

which can be approximated using the variational inference principle [228], [229]. In par-
ticular, the posterior in (6.28) can be approximated by resorting on the auxiliary distri-
bution q(Θt), such that

q(Θt) = q (xt) q (πt) q (ζt) (6.29)

= q (xt)
n∏

i=1
q
(
π

(i)
t

)
q
(
ζ

(i)
t

)
. (6.30)



152 6.2. Filtering via Variational Inference Hypothesis Testing

Thus, the marginal distributions can be factorized and estimated via mean-field approximation
[230] applied to the joint distributions

p (xt,πt, ζt,y1:t) ∝ p (x|y1:t) p (yt|xt, ζt) p (ζt,πt) , (6.31)

such that

ln [q(xt)] = Eπt,ζt{ln [p (xt,πt, ζt,y1:t)]} , (6.32)
ln [q(πt)] = Ext,ζt{ln [p (xt,πt, ζt,y1:t)]} , (6.33)
ln [q(ζt)] = Eπt,xt{ln [p (xt,πt, ζt,y1:t)]} , (6.34)

where the first term p (xt|y1:t−1) on the right-hand side of (6.32) corresponds to the predicted
state of a KF estimate, approximated as p (xt|y1:t−1) ≈ N

(
x̂t|t−1,Pt|t−1

)
.

In the sequel, it is discussed the estimation procedure of the marginal distributions q(xt),
q(πt) and q(ζt) which, in turn, leads to solving the unknown parameters in Θt. Two particular
cases are examined next: the single indicator VB-based robust KF from [220] and the proposed
VB-based KF with multiple outlier indicators for uncorrelated observations [18]. For simplicity
and to improve the readiness, the following derivations are given for either linear systems
or EKF approximations, while the general VB-based KF formulation for nonlinear systems
integrating correlated observations is detailed in Appendix D.

6.2.1 VB-based Robust Filtering with a Single Outlier Indicator

Let us recall and simplify the likelihood probability in (6.20), such that a single binary
indicator is used, leading to

p (yt|xt, ζt) = N
(
T
(
yt, ζt

)
; T

(
h(xt), ζt

)
,C(ζt)

)
, (6.35)

= N (yt; h(xt),Σt)ζt . (6.36)

Thus, if an outlier is identified within the vector of observations, the complete set of
measurements are disregarded. In other words, if ζt = 1, the conventional KF correction
step, while for ζt = 0 one would skip performing such update stage. Focusing now on the
estimation for the marginal distributions, let us start with q(xt), which can be expressed as

q(xt) ∝ exp
(
−1

2

∥∥∥xt − x̂t|t−1

∥∥∥2

Pt|t−1
− 〈ζt〉

2 ‖yt − h(xt)‖2Σt

)
, (6.37)

where 〈ζt〉 is the expectation over ζt. It is clear that q(xt) corresponds to the Gaussian
distribution N

(
x̂t|t,Pt|t

)
, whose first and second moments can be estimated with the

conventional KF with the modified covariance Σ̄t = Σ/〈ζt〉 as

Kt = Pt|t−1H>
t

(
HtPt|t−1H>

t + Σ̄t

)−1
, (6.38)

xt|t = xt|t−1 + Kt

(
yt − h(xt|t−1)

)
, (6.39)

Pt|t = Pt|t−1 −KtHtPt|t−1, (6.40)

which, whenever 〈ζt〉 is close to 0 (i.e., when the presence of outliers is detected) implies ignoring
the observations and updating the marginal distribution of xt with the predicted distribution, as

q(xt) ∼ N
(
x̂t|t,Pt|t

)
=

〈ζt〉≈0
N
(
x̂t|t−1,Pt|t−1

)
. (6.41)
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Then, the distribution q(ζt) is obtained from

q (zt) ∝ exp
(
−1

2ζt tr
(
BtΣ−1

t

)
+ ζt〈ln(πt)〉+ (1− ζt) 〈ln(1− πt)〉

)
, (6.42)

where Bt is given by

Bt =
∫

(yt − h (xt)) (yt − h (xt))> q (xt) dxt. (6.43)

Moreover, ζt is a Bernoulli parameter whose probability is given by

P (ζt = 1) = A exp
〈

ln πt −
1
2 tr

(
BtΣ−1

t

)〉
, (6.44)

P (ζt = 0) = A exp 〈ln 1− πt〉 (6.45)

with A a normalizing factor such that P (ζt = 1) + P (ζt = 0) = 1 and the expecta-
tions over πt given by

〈ln(πt)〉 = Ψ(et)−Ψ(et + ft) , (6.46)
〈ln(1− πt)〉 = Ψ(ft)−Ψ(et + ft), (6.47)

where Ψ(·) is the digamma function. Thus, the expectation of ζt is updated from

〈ζt〉 = P (ζt = 1)
P (ζt = 1) + P (ζt = 0) , (6.48)

from which one gets whether an outlier is or not an estimate. Notice that, for the evaluation
of 6.48 one would have had previously estimated the hyper-parameters et and ft, which
depend on the marginal q(πt) distribution. The former can be expressed, after dropping
the terms in 6.34 that do not depend on πt, as

q(πt) ∝ exp (et ln(πt) + ft ln(1− πt)) , (6.49)

where

et = e0 + 〈ζt〉 , (6.50)
ft = f0 + 1− 〈ζt〉. (6.51)

In summary, the realization of a time instance for the VB-based KF with a single outlier
implies the following iterative procedure (for k = 1, 2, . . . ) until convergence:

1. The state estimate q(x(k)
t ) is updated via (6.39)-(6.40) or (6.41) depending on 〈ζ(k−1)

t 〉,

2. The outlier indicator ζ(k)
t is updated from (6.48),

3. The hyper-parameters e(k)
t , f

(k)
t are updated from (6.50)-(6.51).
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6.2.2 VB-based Robust Filtering with Independent Outlier Indicators

While the filter described in Section 6.2.1 results interesting due to its implementation
simplicity, its application should be limited to cases where only a few observations are available
or when a constant update on the estimates is not required. This is due to the correction
being fully skipped whenever a single outlier is detected which, extrapolated to GNSS-based
navigation, implies relying mostly on the dynamical model since outliers are likely to be
encountered. This section proposes an extension for the previously described filter, for which
VB-based hypothesis testing is performed to the observations individually, allowing to exclude
only those which are found contaminated.

Let us assume a set of uncorrelated observations, whose covariance matrix conditional
on the binary indicators is expressed by

Σt(ζt) =


σ2

1,1/ζ
(1)
t 0 . . . 0

0 σ2
2,2/ζ

(2)
t . . . 0

... ... . . . ...
0 0 . . . σ2

n,n/ζ
(n)
t

 , (6.52)

so that the observation model in (6.20) can be expanded as
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. (6.53)

As before, let us now describe the estimation procedure for the different marginal
distributions. Starting with q(xt):

q(xt) ∝ exp
(
−1

2

∥∥∥xt − x̂t|t−1

∥∥∥2

Pt|t−1
− Zt

2 ‖yt − h(xt)‖2Σt

)
, (6.54)

where Zt = diag[〈ζ(1)
t 〉, . . . , 〈ζ

(n)
t 〉] is a diagonal matrix composed by the expectation over

the vector of binary outlier indicators. The estimation of q(xt) can be realized following the
exact same procedure than for the scalar case with (6.38)-(6.41), with the exception of Σ̄t

now given by (6.52). Then, the update of q(ζ(i)
t ) is given by

q
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and b
(i)
t is given by b
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∫ (
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P (ζ(i)
t = 0) = A exp

〈
ln 1− π(i)

t

〉
. (6.57)

At this stage, it is clear that one can particularize (6.48)-(6.51) to the i = 1, . . . , n indicators’
indexes to update the expectation 〈ζt〉, the marginal q(πt) and the hyper-parameters e(i)

t , f (i)
t .
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6.3 Discussion on Robust Filtering for Attitude Estimation
The extension of robust filtering for attitude and JPA determination involves dealing with
parameters “living” on a Lie group along with Euclidean and integer spaces. The formulation
of the afore-described robust filters requires that the geometrical constraints present on the
orientation parametrization are respected, together with posing minimal representation for the
second moments (i.e., the covariance matrices for the estimates). Fortunately, Lie Theory
provides with a set of algebraic tools that, in combination with the methodology presented
along this chapter, allows to provide precise navigational estimates even under the influence
of impulsive and other outlying effects.

Thus, the problem of robust filtering over a manifold space is expressed as

x̂t = arg min
xt∈M

(∥∥∥xt 	 x̂t|t−1

∥∥∥2

Pt|t−1
+
∥∥∥yt − h (xt)

∥∥∥2

Σ̄t

)
, (6.58)

with M a generic manifold –in our context, the mixture of real numbers and the Lie
group–. Let us recall the composition operator for which the nominal state (expressed in
a manifold) and the error state (formulated in an Euclidean space), x = x̂ ⊕ δx. Thus,
adapting robust filters to attitude-related problems primarily deals with converting the filters’
innovation vectors to error state vectors.

Taking the RIF as example case, one would provide a robust estimate by expressing the
innovation over the information vector in (6.5) as error state, as

xt|t = x̂t|t ⊕ δxt|t, (6.59)
δxt|t = Pt|tδzt|t , (6.60)

where δzt|t is a robust estimate over the change of the information vector. As for other
nonlinear problems, such as the robust SPP described in Section 5.3, estimating δzt|t requires
two cascaded iterative procedures. Indeed, consider a given fixed weight matrix W. For this
weighting, the estimate is obtained recursively, starting from x̂(0) = x̂t|t−1, and for i ≥ 0 by

δz(i+1) = H(i)
t

>
Σ−>/2

t WΣ−1/2
t

(
yt − h(x(i)) + Ht

(
Z(i)

)−1
δz(i)

)
, (6.61)

Z(i+1) = Zt|t−1 + H(i)
t

>
Σ−>/2

t WΣ−1/2
t H(i)

t , (6.62)

x(i+1) = xt|t−1 ⊕
(
Z(i+1)

)(−1)
δz(i+1) . (6.63)

Note that, in (6.61), (Z(i+1))−1δz(i+1) = δx(i+1) = x(i+1)
t 	 x̂t|t−1. The recursion (6.61)

needs to be solved for each value of the weighting matrix, which itself is recomputed
afterwards. This double recursion, given in Algorithm 4, forms the iterated robust IF
for on-manifold parameters.

Similarly, GM-KF can be adapted to work with Lie groups by transforming the robust
LS regression in (6.7) to an error state formulation. Again, let us consider a fixed weighting
matrix W. Then, for an initial point x(0) and for i = 1, 2, . . . until convergence, it is realized

δx(i) =
(
H̃(i)>Σ̃−>/2

t W̃Σ̃−1/2
t H̃(i)

)†
·

H̃(i)>Σ̃−>/2
t W̃Σ̃−1/2

t

(
ỹt − h̃

(
x(i−1)

)
+ H̃(i)

(
x(i−1) 	 xt|t−1

))
, (6.64)

x(i) = x(i−1) ⊕ δx(i) . (6.65)
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Algorithm 4: Robust IF for parameters on a manifold
Input : Observations: y,Σ, robust parameters: w(·), c, prediction: x̂t|t−1, Pt|t−1
Output : Updated estimate x̂t|t, Pt|t

1 Initialize W(0) = I, x̂(0) = x̂t|t−1,

for p = 1, 2, . . . until convergence do solve robust iteration
2 Solve (6.58) via iteratively solving (6.61)–(6.63) to obtain x̂(p),Z(p)

3 Update the weighting matrix:
W(p) = diag

(
w
(
Σ−1/2

k (y− h(x̂(p)))
))

4 Return: x̂t|t = x̂(p), Pt|t =
(
Z(p)

)−1

While the GN procedure described in (6.64) can work under certain scenarios, combining
hard-redescending functions with the already nonlinear attitude problem may incur in numerical
and convergence problems. Moreover, one may realized that in (6.64) one may combine
parameters with “large” magnitudes, such as the position and the ambiguities, with the
“small” unit-sphere space of the quaternion. Thus, versions of the GM-KF compatible with
Lie groups may consider the use of second-order optimization algorithms on manifolds, e.g.,
the Riemannian Newton’s method [231, Ch. 6] or penalized step sizes [232].

Robust filtering based on VB-based hypothesis testing provides with an estimation
framework naturally design to cope with nonlinear functions. Thus, its adoption to JPA and
attitude problems becomes straightforward, only conditioned by the use of the composition
operators during the estimation of the marginal conditional probabilities in, for instance, (6.39)
or (D.6).

Unfortunately, studying the performance of robust estimators for the carrier phase-based
JPA and attitude problems escape the extent of this thesis. Along with the analysis on
the converge and uniqueness of second-order optimization (for RIF and GM-KF forms), this
constitutes an interesting future research line.
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6.4 Performance Characterization of Robust Filtering for RTK
Positioning

This section provides a profound evaluation of the afore-described robust filtering approaches
when applied to the carrier phase-based recursive positioning problem. To achieve that
aim, a Monte Carlo experimentation is first carried out for a synthetic scenario so that
the relative efficiency at the normal model and the robustness can be assessed under a
controlled scenario. Then, the performance of a selection of the best performing filtering
solutions are evaluated over real data collected from a measurement campaign where multipath
and NLOS effects are present.

6.4.1 Simulation Results

The synthetic scenario consists on a static skyplot –the same than for Sections 1.5, 2.5, and
as shown on the right side of Fig. 1.5–, for which a rover navigates for a duration of 2000
seconds, with observations being simulated at a 5 Hz rate. In terms of dynamics, such rover
moves according to constant velocity model, with the uncertainty about the state transition
(i.e., Qt) is described by a white Gaussian random process wt ∼ N (03, I3). The observation
model corresponds to the mixed model for positioning in (2.4).
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Figure 6.4: Skyplot and noise distributions for the different scenarios.

Along the simulation, some time periods incorporate nominal-distributed observations while,
for the remaining time instances, measurements are assumed to present the contaminated
distribution described in (5.21). The latter occur during the shaded zones in Fig. 6.7 and 6.8.
During the “contamination times”, each satellite is randomly sampled to be either healthy or
an outlier, with a probability equal to ε = 0.40. Whenever a satellite is chosen as outlier, the
distribution for its carrier phase pseudorange does not change but it is affected by a cycle slip.
Three different scenarios are considered, based on the noise conditions of the observations:
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Case 0: Nominal distribution – The noise is distributed according to the normal assump-
tions, such that

νi
ρ ∼ N (0, (σi

ρ)2), σi
ρ = 0.5 · (1 + 1/ sin(elevi)), (6.66)

νi
Φ ∼ N (0, (σi

Φ)2), σi
Φ = σi

ρ/100 (6.67)

with νi
ρ, ν

i
Φ the code and carrier phase pseudorange noises for the ith satellite and elevi

its elevation.

Case 1: Symmetric heavy-tailed – The noise distribution is given by a Gaussian mixture,
where the outliers present an α-times larger standard deviation and described by

νi
ρ ∼ (1− ε)N

(
0, (σi

ρ)2)+ εN
(
0, (α · σi

ρ)2), (6.68)

which corresponds to a symmetric heavy-tailed noise scenario.

Case 2: Skewed heavy-tailed – The noise distribution also follows a Gaussian mixture,
although the overall distributed is skewed due to the influence of the outliers, such that

νi
ρ ∼ (1− ε)N (0, (σi

ρ)2) + εN (10, (νi
ρ · σi

ρ)2), (6.69)

which provides an accurate description of the effect of multipath and NLOS over the
noise distributions, since their effect typically induce a positive bias on the pseudorange
measurements.

The pdf for the noises described in the previous three cases is depicted on the right side of Fig.
6.4.

A total of seven filters are compared, with the former being distinguished in the following
categories: a) Standard KFs: ideal EKF (i.e., a filter with the information on which observations
are or not outliers, and which constitutes the benchmark as the best possible solution)
and EKF (i.e., a classical filter heavily affected by the presence of outliers); b) Robust
statistics-based filters: RIF based on Huber, Tukey, IGG and 3σ score functions and a
GM-KF based on Huber score function; c) VB-based filter for hypothesis testing with a
single and multiple binary indicators (i.e., corresponding to the filters presented in Sections
6.2.1 and 6.2.2, respectively). Note that the tuning parameters for the robust statistics-
based filters are set such that a 95% efficiency at the Gaussian model is achieved (i.e.,
cHub = 1.345, cTuk = 4.685 and cIGG,0 = 1.5, cIGG,1 = 2.5).

To address the performance characterization, different metrics are considered: i) the
RMSE for the float positioning estimate; ii) the mean ambiguity success rate (MASR), i.e.,
the ratio of Monte Carlo iterations for which a successful integer estimation is performed; iii)
the cumulative distribution function (CDF) for the positioning errors during the float solution
estimation; iv) the relative efficiency for the float estimate at the nominal model. The decision
of evaluating solely the precision of the float estimate in detriment of the fixed one is motivated
by the minimal changes from the former whenever the ambiguities are correctly determined.
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Case 0: Nominal Gaussian Noise Distributions

This first case serves for the characterization of the relative efficiency of the evaluated robust
filters under nominal normal noise distributions. Such efficiency is derived following the
approach described for code-based positioning in Section 5.3.1, where the optimal solution
is provided by the KF (since the model is quasi-linear).

Fig. 6.5 illustrates the results in terms of efficiency, while the RMSE over time is shown in
Fig. 6.6. Results on the ratio of successfully-performed ambiguity resolution is showcased
in Table 6.1. In general, the complete set of evaluated filters present a good behavior in
terms of efficiency and IAR, with two points standing out: first, the two VB-based robust
KFs behave optimally, fully recreating the performance of an ideal filter; second, the RIF-IGG
and GM-KF performances are slightly degraded with regards to the other options. In any
case, all filters manage to have the best possible success at ambiguity fixing which, in turn,
grants a high precision for the fixed solution regardless of their efficiency at the float estimates.
Nevertheless, having efficient float estimates remains a relevant factor to characterize robust
filters, since it will condition the performance under more challenging scenarios.
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Figure 6.5: Efficiency and errors over time for the nominal Gaussian-distributed noise Case 0.
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Figure 6.6: Skyplot and noise distributions for the different scenarios.
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Cases 1, 2: Heavy-tailed Noise Distributions

Having assessed the performance for the different robust filters under nominal conditions,
their behavior under the non-nominal heavy-tailed noise scenarios for the Cases 1 and 2 is
analyzed next. First, the RMSE for the positioning float estimates is depicted in Fig. 6.7,
with the symmetric and skewed heavy-tailed noise distributions shown on the top and bottom,
respectively. The EKF performance becomes clearly degraded when some satellites are affected
by outliers, with large biases appearing that impair the IAR process. Also, the S-VKF presents
the worst positioning performance among the estimators, due to the correction step not being
executed during the time periods with contaminated observations and, thus, the positioning
solution is solely based on the dynamical model. Therefore, S-VKF might result interesting
solely whenever outliers are expected for occasional and short time spans. On the contrary,
the I-VKF allows for an almost perfect solution for outlier detection and removal, with its
performance being similar to that of the ideal EKF. This implies that the computational
burden for the hyper-parameters estimation based on VB inference does not penalize the
overall performance. Indeed, the I-VKF showcases the overall best performance among the
robust filters, both in terms of successful IAR and RMSE for the float positioning solutions.
For skewed heavy-tailed noises, the performance obtained with the I-VKF is equivalent to the
one provided by RIFs based on redescending robust functions, namely RIF-Tukey, RIF-IGG
and RIF-3σ. On the other hand, the exploitation of monotone robust functions, i.e., as for
the RIF-Huber and the GM-KF, leads to a slightly worsen performance.

Figure 6.7: RMSE for the float positioning results over time for the Cases 1 (top) and 2 (bottom).

These performance results are also backed up by the MASR over time, as shown in Fig.
6.8. It is evident that, as soon as the periods with observation contamination start (i.e.,
during the shaded gray areas), the EKF is unable to successfully fix its ambiguities. The
robust statistics-based filters present a better resilience against such outliers, especially those
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Figure 6.8: Mean ambiguity success rate (MASR) over time for the Cases 1 (top) and 2 (bottom).

with redescending functions, since they manage to nullify the biases effect over the estimates.
However, the detection capability offered by robust score functions is significantly worse
than that of filters equipped with VB-based hypothesis testing. Naturally, the S-VKF results
incapable to perform successful integer estimations during the contamination times, since
all the observations are rejected. On the other hand, I-VKF offers a performance almost
identical to that of the optimal filter for the case of symmetric heavy-tailed noises, while
being more sensitive to the skewed noise distributions.

The results are completed with Table 6.1, which depicts the percentage of successfully
performed IAR. Again, the best solution both in terms of fix ratio is given by the I-VKF,
which from this statistical analysis is the preferred choice. This recommendation needs to be
verified with real data in order to see the impact and mitigation capabilities in a real system.
This analysis is provided in the sequel. To further complete this evaluation, the empirical
CDF for the float solutions is shown Fig. 6.9, while Table 6.1 summarizes the percentage of
successfully performed IAR. Again, the best solution both in terms of fix ratio is given by
the I-VKF, which from this statistical analysis is the preferred choice. This recommendation
needs to be verified with real data in order to see the impact and mitigation capabilities
in a real system. This analysis is provided in the sequel.
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Figure 6.9: Empirical CDF of the float positioning errors for the Cases 1 (left) and 2 (right).

Table 6.1: Percentage of correctly-estimated integer ambiguities (%).

Filtering type Case 0 Case 1 Case 2

Conventional Ideal EKF 99.96 92.74 92.74
EKF 99.96 16.20 39.89

RIF-Huber 99.96 76.63 61.42
Robust RIF-Tukey 99.96 85.42 83.62
Statistics-based RIF-IGG 99.96 80.41 81.47

RIF-3σ 99.96 84.19 82.45
GM-KF 99.96 75.38 56.31

Variational-based S-VKF 99.96 54.46 54.60
I-VKF 99.96 91.82 83.22

6.4.2 Real Data Experimentation

This section details the performance characterization for a set of selected robust filters for the
recursive RTK positioning problem under real-world harsh signal propagation conditions. To
do so, a measurement campaign is conducted on board of a vessel within an inland waterway
channel. Such experimentation was carried out in Koblenz (Germany) on 16th May 2017
(DOY 136, UTC 09:00-14:00), with the MS Bingen (a multi-purpose research vessel of the
German Waterways authorities) being the tracked vehicle.

As can be seen from the bottom side of Fig. 6.10, multiple passes under three bridges
are performed along the five hours of data collection. Thus, strong multipath and NLOS
effects were experimented, leading to the GNSS observations presenting large biases and noise
distributions which flee the assumption for normal distributions of known parameters. The
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Figure 6.10: On the upper left, the number of tracked satellites and associated PDOP. On the upper
right, the skyplot of the scenario, with the colorbar indicating the C/N0. In the bottom, the trajectory
followed by the tracked vessel during bridge passing, estimated using laser technology.

number of tracked satellites against the time are shown on the top left side of Fig. 6.10 along
with the Position Dilution of Precision (PDOP), while the skyplot for the satellites and the
associated C/N0 is depicted on the top right side of Fig. 6.10. The ground truth trajectory
is estimated based on optical technology, by utilizing a total station on land and an active
reflector mounted under the GNSS antenna for automatic target tracking. While conditioned
on direct line of sight, the use of this technology leads to an accuracy for the reference
positioning solution of around one centimeter and to error patterns independent from GNSS.
Moreover, the availability is assured even during the maneuvers realized around the bridges.

For simplicity on the analysis, this section focuses on the performance for four representative
filters: the standard EKF, RIF-Tukey, GM-KF and I-VKF. These techniques are either the
most promising, as for I-VKF, or provide robustness against innovation errors, as for GM-KF,
which is relevant for real-world estimation in which the dynamical models are not perfect. As
previously, the performance metrics relate to the accuracy of the float positioning estimates
and the percentage of successfully estimated integer ambiguities. Unlike the synthetic scenario,
the actual values for the integer ambiguities are not known beforehand and are regressed
from the ground truth trajectory. Furthermore, a realistic approach for ambiguity resolution
consists on the application of a validity test, as detailed in Section 2.3.2. Thus, the empirical
fix ratio is here defined as the percentage of time epochs for which the estimated vector of
ambiguities pass a FF-RT test and correspond to the true (regressed) ones.

Table 6.2: Percentage of fixed solutions (%).

Estimator
EKF RIF-Tukey GM-KF I-VKF

Fix ratio (%) 53.22 46.74 58.27 53.46
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The norm for the 3D positioning errors associated with the float estimates against the
time is depicted on the left side of Fig. 6.11, while the CDF associated with the former is
shown on the right side of Fig. 6.11. The aforementioned figures concentrate on a period of
slightly over 50 minutes for which several bridge passes occur, with a more extent discussion
related to this measurement campaign can be consulted in [3], [6].

Paying attention to the time evolution of the errors, one realizes that filters based on
robust statistics and, particularly the RIF-Tukey, present a performance similar to that of a
conventional EKF. This is most likely due to the very low amount of observations’ redundancy
and, therefore, it becomes a complicated problem distinguishing whether observations are
or not outliers. Even more, there are particular time instances in which both RIF-Tukey
and GM-KF present positioning errors even larger than EKF, as for instance around the 450,
1000 and 2300 times. In general, the recommendation towards using I-VKF agrees with the
conclusions derived from the simulation results since, also under real experimentation, the
I-VKF overperforms the other robust filtering alternatives. In terms ol empirical fix ratio, the
GM-KF is the only method that leads to certain gain in availability for fixed estimates. This
is due to the capability of the GM-KF for dealing with innovation outliers or, in this case,
addressing imperfect dynamical models. Thus, despite GM-KF not dealing with the presence
of strong outliers as good as the I-VKF, GM-KF may improve the overall availability of a high
precision positioning solution when tracking vehicles with uncertain kinematic models.
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Figure 6.11: On the left, norm of the three-dimensional errors for the float positioning estimates for
the various filters evaluated. On the right, CDF associated with the norm of the float positioning
errors.
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6.5 Summary
This chapter describes the motivation and need for filtering solutions able to “resist ” the
influence of outlying observations which do not comply with the assumption of normal-
distributed noise. Thus, a short overview on the different robust filtering perspectives is
presented, while it is discussed which of these result most convenient for GNSS-based navigation
purposes. While the mixture of real and integer spaces is of great relevance for carrier phase-
based positioning and attitude estimation problems, this chapter discusses the interesting fact
related to robust filters not being directly affected by the mixed model, since the decomposition
for the recursive mixed model in Section 2.2.1 allows for the robust estimators to actuate
only over real-valued parameters on the float estimation step.

Within the context of this thesis, two distinct strategies for counteracting contaminated
distributions are discussed, namely:

• Robust Statistics-based Filtering. This family of methods constitutes the extension of
the robust estimators introduced in Chapter 5 to recursive problems. Such methods
provide an elegant formalization for filtering under approximate distributions, able
to provide nearly optimal solutions under both contaminated and clean distributions.
Within the general class of robust estimators, the Robust Information Filters (RIFs) and
the General M-estimation based Kalman Filter (GM-KF) are discussed and particularized
for the GNSS-based navigation problems. On the one hand, RIFs pose as advantages
their straightforward implementation and the capability to exploit hard recesdending
score functions to nullify the influence of additive outliers. On the other hand, GM-KF
provides robustness against both innovation and additive outliers, being able to deal
with SSMs whose dynamical models are not perfectly described, at the cost of providing
a comparatively poor relative efficiency at the normal model.

• Hypothesis Testing Filters via Variational Bayesian Inference. The driving idea of
this class of estimators relates to detecting and discarding possible outliers within the
vector of observations and, thus, a conventional filtering method deals solely with
data distributed according to the assumed normal distribution. Instead of leveraging
on conventional statistical testing, such as the χ2- or the Wald- tests, this chapter
discusses on the use of VB-based inference to perform such task. Thus, one may
represent the outlier indicators as random variables distributed according to a Bernoulli
distribution, with the hyper-parameters to describe such distributions being estimated
along with the remaining parameters of the state estimate. While this novel framework
was originally described for a single indicator and under uncorrelated noise distributions,
this chapter proposes a generalized form of this filtering technique for which independent
outlier indicators can be estimated even under correlated measurements (i.e., crucial
for differential carrier phase-based techniques, such as RTK positioning or attitude
determination!).

The above-described two strategies for robust filtering are originally described for SSMs
whose state estimates comprise solely real-valued parameters. The extension of robust filtering
to attitude estimation, both for the GNSS-based attitude and JPA models, is discussed in
Section 6.3. Fortunately, major inconveniences for the use of robust filtering on manifold
spaces shall not be encountered, with the VB-based hypothesis testing being fully unaffected,
while robust statistics-based filters require a couple of minor modifications for their functioning.
The actual characterization of robust filters for multi-antenna configurations and attitude
determination constitutes one of the prospective research lines of this thesis.
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Section 6.4.1 presented a number of simulation results based on Monte Carlo experimen-
tation, while real-world data analysis was performed in Section 6.4.2. In terms of performance
characterization for the evaluated methods, the following conclusions were extracted:

• The relative efficiency at the nominal model is shown to be notoriously high, especially
when compared to robust estimators for regression problems. For methods derived
from robust statistics, this is due to recursive problems having more information and
presenting much higher data redundancy. Filters featuring VB-based hypothesis testing
were shown to perform optimally, making evident that –probably also due to the
observation redundancy– the probability distribution for the indicators was perfectly
described and no false alarm was triggered.

• VB-based robust filtering with independent outlier indicators can be recommended
with high confidence for GNSS-based navigation under multipath and NLOS conditions.
While small finite datasets affect the performance of the former method almost as
much as it does for robust statistics-based filters, which could be observed from the
real data experimentation, a growing number of observation improves its performance
significantly.

• In general, filters derived from the framework of robust estimation do not comply
with their expected performance for linear regression problems under large number
of observations. While robust filters operate more efficiently (relative to the normal
model) and with higher robustness than robust estimators for snapshot code-based
positioning, one would expect that filters which employ redescending functions would
be able to handle a dataset containing up to 40% of contaminated measurements.
Unfortunately, both from the synthetic and real experimentation it was shown that
the former expectation cannot be satisfied. It is definitely clear that there is room for
improving robust filters, especially when it comes to automatically adapting the tuning
parameters (i.e., cHub, cTuk, cIgg, etc.) for fat datasets.
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Conclusions and Future Research

This thesis addresses the provision of robust solutions for precise position and attitude
estimation by exploiting GNSS carrier phase observations. Some contributions are

introduced, in relation to the derivation of lower bounds for signal tracking and the mixed
integer models, the introduction of estimators for multi-antenna attitude problems and robust
solvers for navigation under the presence of unmodeled impulsive noise. The present is a
conclusive chapter whose aim is to summarize the objectives, contributions and prospective
lines for research arising from each of the topics assessed in the previous chapters.

The first chapter of the dissertation intends at relating the quality of ranging observables
with the performance of a receiver at satellite tracking, given a set of “raw” signal samples.
Closing the gap between the receiver’s signal processing and the actual PVT performance is a
twofold issue: first, fundamental bounds for estimating the parameters of a band-limited signal
are derived; then, the MLE for such parameters determines the final quality of the code and
carrier phase observations. It is shown that signals exploiting larger bandwidths allow for more
precise code observables, while the precision on carrier phase measurements is dictated by the
signals’ frequency. With regards to meta-signals, it results clear their interest as alternative to
conventional carrier phase-based positioning techniques, allowing to provide highly accurate
code observables for high SNRs. On the other hand, their practicability becomes compromised
as SNR decreases, since the presence of multiple secondary peaks close to the main one
jeopardize tracking the signal.

Chapter 2 reviews the principles for carrier phase-based positioning and introduces a
general lower bound for estimation problems where real- and integer-valued parameters are
to be regressed. The particularization of the former bound, in the form of CRB, for linear
models under Gaussian distributions allows to define the ultimate best achievable positioning
performance and serves as benchmark for estimators at these models. It is shown the existence
of asymptotic performance regions for the aforementioned estimators, based on the number and
geometry of the tracked satellites and on the noise levels. Thus, a new proof is given for the
existence of optimal estimators at the mixed model, typical for RTK positioning applications,
which attain the lower bound in asymptotic conditions. More importantly, there exists a
threshold region upon which the MLE loses its efficiency due to the vector of ambiguities
not being matched to the true one. Immediately after the threshold region, unsuccessful
integer estimation leads to positioning errors larger than those of the float solution, which is a
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sound reason to perform validity tests over the integer estimation. An alternative approach to
conventional estimation of the mixed model relates to PAR, the latter relaxing the condition
of performing the complete set of ambiguities and, instead, real-to-integer mapping a subset
of them. The introduction of a new estimator, PD-PAR, showcases the capability to find
a compromise between precision of the positioning solution and a gain in the extent of the
asymptotic regime. In other words, one may concern with fixing solely those ambiguities which
lead to a relevant precision gain, circumventing the challenge of estimating the complete
vector of them. At last, the ultimate achievable positioning precision is shown in relation
to the performance of a GNSS receiver, given by the SNR at the output of the matched
filter. As for code-based positioning, the use of large bandwidth signals, and particularly
Galileo E5, allows attaining the lower bound even under poor propagation conditions. On the
contrary, meta-signals are not an appealing option for carrier phase-based applications: their
convergence to the bound occurs only for high SNRs while they do not lead to higher precision.

Due to its novelty, different research lines exist whose study is worth exploring:

• The determination of the SNR or observables noise level at which the threshold region
starts for estimators at the mixed model.

• Verify the relationship established between the receiver signal processing and the final
positioning performance for a real scenario, based on a fully controlled SDR-based GNSS
receiver.

• Study the applicability of PD-PAR for multi-antenna configurations, since the redundancy
in these cases becomes more evident than for positioning.

• Extend the CRB for the mixed model to a Bayesian CRB which, among other applications,
could serve to provide theoretical insight on the performance and convergence time for
the PPP problem. For instance, given a set of correction data (e.g., ultra rapid, rapid or
final products), a certain geometry and the number of tracked frequencies, one would
be able to asses the minimum required time until a particular target precision is reached.

Chapter 3 and Chapter 4 focus on multi-antenna systems for orientation and pose
estimation, respectively. Instead of the well-known MC-LAMBDA, this thesis contributes
with Q-LAMBDA as alternative to solve the attitude mixed model. Based on the quaternion
parametrization of the rotation and a set of actions based on Lie theory, Q-LAMBDA
constitutes an approximately optimal (conditioned on the initialization) and computationally
efficient estimator for the carrier phase-based attitude model. Moreover, one may conclude
that ESKF results the perfect fit for the recursive estimation of multi-antenna problems,
since it presents minimal state parametrization, incorporates all the algebra machinery of the
Lie theory and allows for straightforward derivations. On another note, the employment of
the JPA model may be considered a fundamental piece for pose estimation in land-based
vehicles, leading to a vast gain both in accuracy and availability for the precise navigation
estimates. The definition of the JPA mixed model, together with its stochastic modeling, is
a contribution on itself which has been overlooked by the GNSS research community. An
extension of the proposed Q-LAMBDA serves as deterministic estimator for JPA, while the
ESKF can be also easily adapted for the same purpose.

At the conclusion of this thesis, there remain certain lines of research related to multi-
antenna pose estimation which shall be prosecuted:

• The derivation of lower bounds for the carrier phase-based attitude problem is, arguably,
the most interesting and challenging open topic for this thesis. Provided that such
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bound existed, the performance estimators for the attitude and JPA mixed models could
be assessed formally. Moreover, a lower bound of this kind would allow to characterize
the precision for attitude estimates without leveraging on simple geometric rules.

• Study the applicability of Invariant Filtering for carrier phase-based attitude estimation
is quite promising, given that such type of filter provides convergence guarantees.

• Integrate vision systems as source of attitude information and address their influence
over GNSS- and inertial-based solutions.

Chapter 5 and Chapter 6 reviews the principles of robust statistics and its wide family
of estimators for regression problems. Within the context of code-based positioning, the
challenges associated with the direct application of robust estimators are discussed. Profound
details on how resilient estimators shall be formulated for their correct functioning under the
nonlinear SPP problem are provided, along with the formulation for their relative efficiency.
Unfortunately, the flexibility of robust estimators can also be seen as a major inconvenience:
one may never be sure of the actual properties of these estimators, neither in the MLE or the
robust sense (i.e., the near optimality is complicated to addressed, and so is the breakdown
point). Nonetheless, robust estimators are an extremely promising and powerful tool, especially
given the perspective in which the data redundancy is high enough. Especially for urban
scenarios or safety-critical applications, both which are subject to large multipath effects, it
is hard to imagine that conventional MLE could remain an standard. Nonetheless, for the
complete implantation of robust methods, certain aspects shall be addressed:

• The choice for the tuning parameter, which controls a robust estimator efficiency,
shall be performed in an adaptive manner and based on the current situations. For
instance, given a finite number of observations, one could rapidly incur in ill-posed and
un-observable estimation problems if too many measurements are discarded.

• Robustness shall not be limited to impulsive noises and violations of the Gaussian
conditions. For instance, the development of estimators that handle mis-mismatches
on certain model parameters (e.g., in multi-antenna configurations, whenever the
inter-antenna distance is vaguely known or slightly erroneous) is indispensable.

• It remains yet to be evaluated the performance of robust filtering solutions at the
attitude and JPA mixed model, both in simulated and real-data conditions.

“Todo lo que somos es el resultado de lo que hemos pensado”
Gautama Buddha
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APPENDIX A

Derivations and Proofs

A.1 Proof of the CRB Expression for the GNSS Signal Model

First notice that

CRBθ = σ2
n

2ρ2 Φ−1
η

Φθ = lim(
N ′

1,N ′
2
)

→(−∞,+∞)
Re
{(

∂a (θ)
∂θ>

)H

Π⊥
a(θ)

∂a (θ)
∂θ>

}
.

The derivative of a (t; θ) w.r.t. the parameters of interest reads

∂a (t; θ)
∂θ

= −Qϑ (t− τ) exp (−jωcb (t− τ)),

Q =
[
−jωcb 0 1

0 jωc 0

]
, ϑ (t) =

 c (t)
tc (t)
c(1) (t)

 .

where c(1) (t) = dc(t)
dt . Then we can write

aH (θ) ∂a (θ)
∂θ> = −

Q
N ′

2∑
n=N ′

1

ϑ (nTs − τ) c (nTs − τ)∗

>

,

∂a (θ)
∂η>

H ∂a (θ)
∂θ> = Q∗

 N ′
2∑

n=N ′
1

ϑ (nTs − τ) ϑH (nTs − τ)

Q>

‖a (θ)‖2 =
N ′

2∑
n=N ′

1

‖c (nTs − τ)‖2 ,
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and

lim(
N ′

1,N ′
2
)

→(−∞,+∞)
Ts

N ′
2∑

n=N ′
1

ϑ (nTs − τ) c (nTs − τ)∗ =
+∞∫

−∞

ϑ (t− τ) c (t− τ)∗ dt

=
+∞∫

−∞

ϑ (t) c (t)∗ dt = w,

lim(
N ′

1,N ′
2
)

→(−∞,+∞)
Ts

N ′
2∑

n=N ′
1

ϑ (nTs − τ)ϑH (nTs − τ) =
+∞∫

−∞

ϑ (t− τ) ϑ (t− τ)H dt

=
+∞∫

−∞

ϑ (t) ϑ (t)H dt = W

with

w =

 w1
w2
w3

 , W =

 w1 w∗
2 w∗

3
w2 W2,2 $∗

w3 $ W3,3

 ,

where $ =
∫+∞

−∞ tc(1) (t) c (t)∗ dt, and w1, w2,W2,2,W3,3 ∈ R. From these results, we
can write that Φθ is

Φθ = FsRe
{

QWQH − (Qw) (Qw)H

w1

}
= Fs

 W3,3 − |w3|2
w1

ωcIm
{
$ − w2w3

w1

}
ωcIm

{
$ − w2w3

w1

}
ω2

c

(
W2,2 −

w2
2

w1

)
 ,

where from [234] we already have w1, w3 and W3,3,

w1 = cHr
Fs

, w3 = cHΛc, W3,3 = FscHVc,
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and the remaining terms are computed as

w2 =
∫ +∞

−∞
c (t) (tc (t))∗ dt =

∫ Fs
2

− Fs
2

c (f)
(
j

2π
dc (f)
df

)∗
df

= 1
F 2

s

∫ 1
2

− 1
2

(
(Dc)H υ (f)

) (
υH (f) c

)
df

= 1
F 2

s

cHDH

(∫ 1
2

− 1
2

υ (f) υH (f) df
)

c = 1
F 2

s

cHDc,

$ =
∫ +∞

−∞
c(1) (t) (tc (t))∗ dt

=
∫ Fs

2

− Fs
2

(j2πf) c (f)
(
j

2π
dc (f)
df

)∗
df

= 1
Fs

∫ 1
2

− 1
2

(j2πf)
(
υH (f) c

) (
(Dc)H υ (f)

)
df

= 1
Fs

cHDH

(
j2π

∫ 1
2

− 1
2

fυ (f) υH (f) df
)

c = 1
Fs

cHDΛc,

W2,2 =
∫ +∞

−∞
|tc (t)|2 dt =

∫ Fs
2

− Fs
2

∣∣∣∣ j2π dc (f)
df

∣∣∣∣2 df
= 1
F 3

s

∫ 1
2

− 1
2

∣∣∣υH (f) (Dc)
∣∣∣2 df

= 1
F 3

s

cHDH

(∫ 1
2

− 1
2

υ (f) υH (f) df
)

Dc = 1
F 3

s

cHD2c.

Finally, the other terms in (1.17)-(1.19) are also computed from w as follows:

CRBϕ = σ2
n

2ρ2
1

Fsw1
+ 1
w2

1

(
Im {w3} − bωcw1

ωcw2

)>

CRBθ

(
Im {w3} − bωcw1

ωcw2

)
,

CRBθ,ϕ = CRBθ
1
w1

(
Im {w3} − bωcw1

ωcw2

)
,

CRBA = σ2
n

2Fsw1
+ ρ2 1

w2
1

(
Re {w3}

0

)>

CRBθ

(
Re {w3}

0

)
.
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A.2 Proof for the Equivalence of LS and KF Update
Let us recall the conventional KF representation for the DSS described in Sec. 2.2.1, whose
process and observation models are linear, such that

xt = Ftxt + wt, yt = Htxt + ηt, (A.1)

and the classical KF update procedure expressed using the Kalman gain matrix, as

Kt = Pt|t−1H>
t

(
HtPt|t−1H>

t + Σt

)−1
, (A.2)

xt|t = xt|t−1 + Kt

(
yt −Htxt|t−1

)
, (A.3)

Pt|t = Pt|t−1 −KtHtPt|t−1. (A.4)

Similarly, a LS adjustment for the estimate of xt given a set of observations yt is as

xt|t =
(
H>

t Σ−1
t Ht

)−1
H>

t Σ−1
t yt, (A.5)

and, in order to consider the a priori information on the state estimate (i.e., from the prediction
xt|t−1,Pt|t−1), one would augment the vector of observations as

ỹt =
[

yt

xt|t−1

]
, Σ̃t =

[
Σt 0
0 Pt|t−1

]
, H̃t =

[
Ht

I

]
,

and, reformulating (A.5) in terms of the augmented observations the following LS is obtained

xt|t =
(
H̃>

t Σ̃−1
t H̃t

)−1
H̃>

t Σ̃−1
t ỹt, (A.6)

which expands to

xt|t =
([

Ht I
] [Σ−1

t 0
0 P−1

t|t−1

] [
Ht

I

])−1 [
Ht I

] [Σ−1
t 0
0 P−1

t|t−1

] [
yt

xt|t−1

]
,

and, after solving the matrix products, the following expression is obtained

xt|t =
(
H>

t Σ−1
t Ht + P−1

t|t−1

)−1 (
H>

t Σ−1
t yt + P−1

t|t−1xt|t−1
)
, (A.7)

where the Woodbury identity allows to express the inverse [235] for the first multiplier in (A.7) as

xt|t−1 =
(

Pt|t−1 −Pt|t−1H>
t

(
Σt + HtPt|t−1H>

t

)−1
HtPt|t−1

)
(
H>

t Σ−1
t yt + P−1

t|t−1xt|t−1
)

and, further developing the product

xt|t = Pt|t−1H>
t Σ−1

t yt

−Pt|t−1H>
t

(
Σt + HtPt|t−1H>

t

)−1
HtPt|t−1H>

t Σ−1
t yk

+ xt|t−1 −Pt|t−1H>
t

(
Σt + HtPt|t−1H>

t

)−1

︸ ︷︷ ︸
Kt

Htxt|t−1,
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where the Kalman gain in (A.2) can be easily be recognized. Then, the terms multiply-
ing yk can be grouped

xt|t =xt|t−1 −KtHtxt|t−1 (A.8)

+
(

Pt|t−1H>
t Σ−1

t −Pt|t−1H>
t

(
Σt + HtPt|t−1H>

t

)−1
HtPt|t−1H>

t Σ−1
t

)
yt,

and, after resorting (A.8) and factoring Pt|t−1H>
t on the left and Σ−1

t on the right, one gets

xt|t = xt|t−1 −KtHtxt|t−1

+ Pt|t−1H>
t

(
I−

(
Σt + HtPt|t−1H>

t

)−1
HtPt|t−1H>

t

)
︸ ︷︷ ︸Σ−1

t yt, (A.9)

and operating over the under-braced parenthesis on (A.9), the following simplification can be ob-
tained

I−
(
Σt + HtPt|t−1H>

t

)−1
HtPt|t−1H>

t = I−
HkPt|t−1H>

t(
Σt + HtPt|t−1H>

t

)
= Σt(

Σt + HtPt|t−1H>
t

) . (A.10)

Bringing back (A.10) into (A.9) and re-sorting the elements lead to the following expression

xt|t = xt|t−1 −KtHtxt|t−1

+ Pt|t−1H>
t

(
Σt + HtPt|t−1H>

t

)−1

︸ ︷︷ ︸
Kt

ΣtΣ−1
t yt,

= xt|t−1 + Kt

(
yt −Htxt|t−1

)
,

which showcases that the LS adjustment in (A.6) is equivalent to the KF update (A.3).
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A.3 Proof of (2.91)-(2.93)

Let εg (y; x) = g
(
x̂
)
− g

(
x
)
. From Lemma 3 in [98], the set of linear constraints

Ey;x
[
υx
(
y; {x}1+K

)
ε>

g (y; x)
]

=


0>

(g (x + i1dx1)− g (x))>

...
(g (x + iKdxK)− g (x))>

 = V, (A.11)

are equivalent to

T>Ey;x
[
υx
(
y; {x}1+K

)
ε>

g (y; x)
]

= T>V,

where (weighted subtraction of the first constraint)

T> =



1 0 0 . . . 0
−1/dx1 1/dx1 0 . . . 0

−1/dx2 0 1/dx2 0
...

... ... 0 . . . 0
−1/dxK 0 . . . 0 1/dxK


,

that is

Ey;x




1

p(y;x+i1dx1)−p(y;x)
dx1p(y;x)

...
p(y;x+iKdxK)−p(y;x)

dxKp(y;x)

 ε>
g (y; x)

 =


0>(

g(x+i1dx1)−g(x)
dx1

)>

...(
g(x+iKdxK)−g(x)

dxK

)>

 . (A.12)

Moreover, since

Ey;x

1×


p(y;x+i1dx1)−p(y;x)

dx1p(y;x)
...

p(y;x+iKdxK)−p(y;x)
dxKp(y;x)


 =


1

dx1

(
Ey;x

[
p(y;x+i1dx1)

p(y;x)

]
− 1

)
...

1
dxK

(
Ey;x

[
p(y;x+iKdxK)

p(y;x)

]
− 1

)


= 0,

we can apply Lemma 2 in [98] to assert that (A.11) and (A.12) are equivalent to

Ey;x




p(y;x+i1dx1)−p(y;x)
dx1p(y;x)

...
p(y;x+iKdxK)−p(y;x)

dxKp(y;x)

 ε>
g (y; x)

 =


(

g(x+i1dx1)−g(x)
dx1

)>

...(
g(x+iKdxK)−g(x)

dxK

)>

 . (A.13)
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A.4 Proof of Theorem 1

First, notice that in the real-valued parameter case, that is, if xk ∈ R, and both g (x)
and p (y; x) are C1 at xk, then, the constraints associated to the following two test points,
{x + ikdxk,x + ik (−dxk)} = {x + ikdxk,x− ikdxk},

Ey;x

 p(y;x+ikdxk)−p(y;x)
dxkp(y;x)

p(y;x−ikdxk)−p(y;x)
(−dxk)p(y;x)

 (g (x̂)− g (x))>

 =


(

g(x+ikdxk)−g(x)
dxk

)>(
g(x−ikdxk)−g(x)

(−dxk)

)>

 (A.14)

aim at the same single constraint in the limiting case where dxk → 0, dxk 6= 0,

Ey;x

[
∂ ln p (y; x)

∂xk
(g (x̂)− g (x))>

]
= ∂g (x)

∂xk

>
. (A.15)

However, this phenomenon is unlikely to happen if xk ∈ Z in the limiting case where
dxk → 0, dxk 6= 0, since (A.14) then becomes

Ey;x

 p(y;x+ik)−p(y;x)
p(y;x)

p(y;x−ik)−p(y;x)
p(y;x)

 (g (x̂)− g (x))>

 =
[

(g (x + ik)− g (x))>

(g (x− ik)− g (x))>

]
, (A.16)

where (p (y; x + ik)− p (y; x)) /p (y; x) and (p (y; x− ik)− p (y; x)) /p (y; x) are unlikely
to be linearly dependent (i.e., notice that F̃ (x, dx) in (2.92) must be invertible to compute
the CRB (g (x̂)) in (2.94a)). Therefore, in most cases, the combination of LCs (A.15) and
(A.16) yields, from Lemma 1 in [98], the general definition (2.95) of CRB (g (x̂)) where
the different terms in F (x) are given by

Fωω = Ey;x

[
∂ ln p (y; x)

∂ω

∂ ln p (y; x)
∂ω

>]
, (A.17a)

Fωz = Ey;x

[
∂ ln p (y; x)

∂ω
(t2Kz − 12Kz )>

]
, (A.17b)

Fzz = Ey;x
[
(t2Kz − 12Kz ) (t2Kz − 12Kz )>

]
, (A.17c)

and where Fωz and Fzz can also been expressed as (2.99b) and (2.99d).
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A.5 Derivation of (2.102a)-(2.102d)

Let us consider an n-dimensional Gaussian real vector y such that y ∼ N (µ (x) ,Σ (x))
and p (y; x) = p (y; µ (x) ,Σ (x)) as in (2.101). The derivation of the components Fzz and
Fωz of the CRB (g (x̂)) in (2.95-2.99d) is based on the following factorization property
of the Gaussian real pdf,

p
(
y; xi

)
p
(
y; xj

)
p (y; x) = p

(
y; µ

(
xi
)
,Σ
(
xi
))
p
(
y; µ

(
xj
)
,Σ
(
xj
))

p (y; µ (x) ,Σ (x))
= [Fzz]i,j p

(
y; Σijµij ,Σij

)
, (A.18)

where

Σij =
[
Σ
(
xi
)−1

+ Σ
(
xj
)−1
−Σ (x)−1

]−1
, (A.19a)

µij = Σ
(
xi
)−1

µ
(
xi
)

+ Σ
(
xj
)−1

µ
(
xj
)
−Σ (x)−1 µ (x) , (A.19b)

δij = µ
(
xi
)>

Σ
(
xi
)−1

µ
(
xi
)

+ µ
(
xj
)>

Σ
(
xj
)−1

µ
(
xj
)

− µ (x)> Σ (x)−1 µ (x) , (A.19c)

[Fzz]i,j =
√
|Σij | |Σ (x)|
|Σ (xi)| |Σ (xj)|e

1
2

[(
µij
)>

Σijµij−δij

]
, (A.19d)

which suggests a breakdown into items
(
[Fzz]i,j , f

(
x,xj

))
depending only on the selected

value x and a couple of test points
{
xi,xj

}i,j∈[0,2KZ ], as detailed in (2.99b-2.99d). Indeed, de-
noting

Eij
y [g (y)] =

∫
g (y) p

(
y; Σijµij ,Σij

)
dy, (A.20a)

then

[Fzz]i,j = Ey;x

[
p
(
y; xi

)
p (y; x)

p
(
y; xj

)
p (y; x)

]

= [Fzz]i,j
∫
p
(
y; Σijµij ,Σij

)
dy (A.20b)

f
(
xi,xj

)
= Ey;x

[
∂ ln p

(
y; xi

)
∂x

p
(
y; xi

)
p (y; x)

p
(
y; xj

)
p (y; x)

]

= [Fzz]i,j Eij
y

[
∂ ln p

(
y; xi

)
∂x

]
(A.20c)

Therefore in the following we consider the representation y ∼ N
(
Σijµij ,Σij

)
, where Σij ,

µij are given by (A.19a-A.19d). To compute the missing expectations, let us recall that
p (y; x) = e− 1

2 φ(y;x)/
(√

2πn√|Σ (x)|
)

where φ (y; x) = tr
(
Σ (x)−1 Σ (x̂)

)
and Σ (x̂) =

(y− µ (x)) (y− µ (x))>and that

∂Σ (x)−1

∂xk
= −Σ (x)−1 ∂Σ (x)

∂xk
Σ (x)−1 ,

∂ ln |Σ (x)|
∂xk

= −tr
(
∂Σ (x)−1

∂xk
Σ (x)

)
.
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Then,

∂φ (y; x)
∂xk

= −2∂µ (x)
∂xk

>
Σ (x)−1 (y− µ (x)) + (y− µ (x))>

× ∂Σ (x)−1

∂xk
(y− µ (x)) , (A.21)

∂ ln p (y; x)
∂xk

= 1
2 tr

(
∂Σ (x)−1

∂xk
(Σ (x)−Σ (x̂))

)
(A.22)

+ ∂µ (x)
∂xk

>
Σ (x)−1 (y− µ (x)) . (A.23)

From (A.23), we have that

Eij
y

[
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∂xk

]
= 1

2 tr
(
∂Σ (x)−1
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(
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+ ∂µ (x)
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(
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)
, (A.24)

where
Eij

y [Σ (x̂)] = Σij +
(
Eij

y [y]− µ (x)
) (

Eij
y [y]− µ (x)

)>
. (A.25)

Finally,

[Fzz]i,j =
√
|Σij | |Σ (x)|
|Σ (xi)| |Σ (xj)|e

1
2

[(
µij
)>

Σijµij−δij

]
, (A.26a)[

f
(
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)]
k
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[
α
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k
, (A.26b)

where

[
α
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(
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 .

Moreover, since Σ0j = Σ
(
xj
)
, µ0j = Σ

(
xj
)−1

µ
(
xj
)
, Σ0jµ0j = µ

(
xj
)

and δ0j =
µ
(
xj
)> Σ

(
xj
)−1

µ
(
xj
)
, then [Fzz]0,j = 1, and f

(
x,xj

)
= α

(
xi
)
.
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A.6 Derivation of Jacobian with respect to the Quaternion

This subsection derives the Jacobian matrix Jq(v) for the rotation of the vector v with
respect to the quaternion q, defined as

Jq(v) , ∂ (q ◦ v ◦ q∗)
∂ q

. (A.27)

The quaternion multiplication is defined as

p · q =
[

pwqw − pu
>qu

pwqu + qwpu + pu × qu

]
. (A.28)

Then, extending it for the rotation of a vector

q · v · q∗ =
[
qw

qu

]
·
[

0
v

]
·
[
qw

−qu

]
(A.29)

=
[
−qu

>v
qwv + qu × v

]
·
[
qw

−qu

]
, (A.30)

from here, we will pay attention solely to the imaginary part:

q · v · q∗ = −qu
>v (−qu) + qw (qwv + qu × v) + (qwv + qu × v)× (−qu)

= qu
>v qu + q2

wv + qwqu × v− qwv× qu + (qu × v)× (−qu) . (A.31)

Considering the vectorial product properties:

a × b = −b× a (A.32)

a × (b× c) =
(
aT c

)
b−

(
aT b

)
c (A.33)

we can group qwqu × v − qwv × qu = −2qwv × qu. Substituting the vectorial product
for the skew operator [·×], to facilitate the matrix formulation, and applying Eq. A.33,
we can reformulate the quaternion operator as:

q · v · q∗ = q2
wv− 2qw[v×]qu + 2

(
qu

>v
)

qu −
(
qu

>qu
)

v. (A.34)

From here, deriving the partial derivatives of the quaternion results uncomplicated:

∂ (q · v · q∗)
∂ qw

= 2qwv− 2[v×]qu (A.35)

∂ (q · v · q∗)
∂qu

= −2qw[v×] + 2
(
qu

>vI3 + quv>
)
− 2vqu

>, (A.36)

obtaining finally

Jq(v) = 2
[
qwv− [v×]qu −qw[v×] + qu

T vI3 + quv> − vqu
>
]
∈ R3,4. (A.37)
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A.7 Computation of q(ζ(i)
t ) for Correlated Observations

To preserve q(ζ(i)
t ) as a Bernoulli distribution, (D.15) is substituted in (D.20) and so the

following equation is derived

ln
[
q(ζ(i)

t )
]

= E
π

(i)
t ,xt,ζ

(−i)
t

{
−1

2
(
y(−i)

t − h(−i) (xt)
)>

×

Σ−1
−i,−i +

Σ−1
−i,−iΣi,−iΣ−i,iΣ−1

−i,−i

σ2
i,i

ζ
(i)
t

−Σi,−iΣ−1
−i,−iΣ−i,i


×
(
y(−i)

t − h(−i) (xt)
)
−
(
y(−i)

t − h(−i) (xt)
)>

×

−
Σ−1

−i,−i +
Σ−1

−i,−iΣi,−iΣ−i,iΣ−1
−i,−i

σ2
i,i

ζ
(i)
t

−Σi,−iΣ−1
−i,−iΣ−i,i

Σ−i,i
ζ

(i)
t

σ2
i,i


×
(
y

(i)
t − h(i) (xt)

)
− 1

2
(
y

(i)
t − h(i) (xt)

)>

×
(
σ2

i,i

ζ
(i)
t

−Σi,−iΣ−1
−i,−iΣ−i,i

)−1 (
y

(i)
t − h(i) (xt)

)
+ ζ

(i)
t ln[π(i)

t ] +
(
1− ζ(i)

t

)
ln[1− π(i)

t ]

− 1
2ζ

(i)
t ln |C([ζ(−i)

t , ζ
(i)
t = 1])|

−1
2ζ

(i)
t ln[2π]− 1

2(1− ζ(i)
t ) ln |C([ζ(−i)

t , ζ
(i)
t = 0])|+ κ

}
. (A.38)

Following the transform from (D.17) to (D.19), the marginal distribution q(ζ(t)
t ) reads
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Given the expectation over
{

xt, π
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, one may express
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in the first term as a normalization term and, hence, remove it from the previous equation to ob-
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Benefiting from the properties of the trace of a matrix, the equation above can be further simpli-
fied to
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and with ζ
(i)
t a scalar, the final expression for q(ζ(i)

t ) reads as follows
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APPENDIX B

Variational Inference for GNSS Stochastic Modeling

Let us recall the code and carrier phase observations introduced in Section 1.3, such that
ρi

j,f (t) = ‖pi(t− τ i)− pj(t)‖+ c(dtj(t)− dti(t− τ i)) + Ii
j,f + T i

j + εi
j,f , (B.1)

Φi
j,f (t) = ‖pi(t− τ i)− pj(t)‖+ c(dtj(t)− dti(t− τ i))− Ii

j,f + T i
j + λfN

i
j,f + εij,f , (B.2)

as well as the assumption of normal distribution for the aforementioned observables

εi ∼ N
(
0, (σi

ρ)2
)
, εi ∼ N

(
0, (σi

Φ)2
)
. (B.3)

The characterization of the uncertainty present in GNSS signals has been a recurrent topic
within the navigation community. Not only this plays a major role in the derivation of efficient
estimators, but it is essential for deriving integrity measures over the estimated positioning
and timing solutions. This Appendix introduces a method for stochastic modeling based on
Bayesian inference, with a particular focus on the characterization of multipath effects.

Thus, besides the well-known stochastic models introduced in Section 1.3.1, another
common way to express the standard deviation of the individual links consists on gathering
the different error sources –e.g., satellite clocks, ephemeris, ionospheric and tropospheric
effects, multipath, etc.– over a particular observation yi, leading to

σ2
yi

= σ2
cdti

+ σ2
ephi

+ σ2
Ii

+ σ2
T ri

+ σ2
εi
, (B.4)

where here σ2
εi

constitutes the remaining unmodeled errors (mainly multipath and the receiver
noise due to thermal effects). The multi-frequency code-minus-carrier combination (CMC) is
commonly applied for assessing pseudorange multipath. Free of ionospheric and geometric
effects, CMC clusters the remaining observables error terms: group-delay variations, carrier-
phase ambiguities, receiver noise, and multipath. Thus, given two frequencies fA and fB,
the CMC can be formulated as follows

CMCi
fA

= ρi
fA
− Φi

fA
+ 2
α

(
Φi

fA
− Φi

fB

)
, (B.5)

CMCi
fA

= εi
fA

+ εifA
+ 2
α

(
εifA

+ εifB

)
+ (B.6)

+λfA
N i + 2

α

(
λfA

N i − λfB
N i
)

︸ ︷︷ ︸
ν

(B.7)
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where α = 1 − (fA/fB)2 and ν is a constant factor including carrier phase ambiguities
and hardware delay biases [30]. Assuming that multipath and noise of the carrier-phase
observations are negligible compared to the corresponding terms of the pseudorange and
discarding ν, which remains constant over time, the multipath and receiver noise term ε
for code observations is characterized as:

εi
fA
' CMCi

fA
− ν . (B.8)

Therefore, given a large dataset, one may attempt at isolating the noise contribution due
to multipath effects and characterize it directly at the pseudorange observation level.

B.1 Probabilistic modeling of the variance
Most of the existing models assume that the variance is an unknown deterministic constant.
Alternatively, the variance can be considered as a random variable such that:

σ2 ∼ p(σ2; θ, C/N0) (B.9)

represents its probability density function, which depends on elevation and/or C/N0 of the
satellite. In a conjugate prior Bayesian analysis, a popular choice for this distribution is the
inverse-Gamma distribution. The inverse-Gamma has the desirable feature of having support
only over the positive real values such that σ2 ∈ R+, which is very appropriate for variances.

Note that, since the distribution of σ2 depends on the parameters {θ, C/N0}, its
parameterization also does. Therefore, a complete probabilistic characterization would take
that into account and write, more precisely, such that a model fitting needs to be done for
each {θ, C/N0} pair, with some granularity. Then, let us consider a set of N i.i.d. code
noise samples ε1:N , {ε1, . . . , εN}, obtained as in (B.8), for a given {θ, C/N0} pair. A
reasonable modeling of the error is given by

εn ∼ N (0, σ2(θ, C/N0)) . (B.10)

At this stage, we are interested in the probabilistic representation of σ2(θ, C/N0). To infer
such distribution, the conjugate Bayesian analysis was applied to estimate the variance of
the sample ε1:N given a known mean [236].

The conjugate prior of the variances for the likelihood model represented in (B.10)
is an inverse Gamma distribution

p(σ2) = IG(α0, β0) (B.11)

with parameters α0 (shape) and β0 (scale). For the sake of convenience, the dependence on
the {θ, C/N0} pair was dropped, but it goes without saying that each pair can have different
parameters for (B.11). If no prior knowledge is available, a suitable objective prior results by
setting α0 = 0.001 and β0 = 0.001, such that the prior distribution is proper and relatively flat.

The prior is updated with the sample ε1:N , yielding the posterior distribution

p(σ2|ε1:N ) = IG(αN , βN ) (B.12)

where the parameters are computed as

αN = α0 + N

2 (B.13)

βN = β0 + 1
2

N∑
n=1

ε2
n . (B.14)
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Figure B.1: In Bayesian inference, we update the a priori distribution of the unknown parameters with
the new data to compute the a posteriori distribution. As a motivating example, when N samples
are observed (left) from the Gaussian likelihood in (B.10), they are used to update the parameters in
(B.12) to produce a posterior probability distribution (right) for the unknown variance of the likelihood.
The accuracy of such distribution improves as more samples are collected.

As a result, a distribution, (B.12), is obtained, which provides all the information available
about the variance. In particular, the distribution informs about the uncertainty regarding
the variance σ2 for the given {θ, C/N0} pair. Additionally, statistics can be computed from
the posterior distribution (B.12) such as the mean:

Mean(σ2|ε1:N ) = βN

αN − 1 , for αN > 1 (B.15)

the mode:

Mode(σ2|ε1:N ) = βN

αN + 1 , (B.16)

and the variance of σ2 given ε1:N :

Var(σ2|ε1:N ) = β2
N

(αN − 1)2(αN − 2) , for αN > 2 . (B.17)

Notice that the statistics for the a priori distribution in (B.11) can be computed similarly
by setting N = 0 and thus using the initial parameters (α0, β0) in (B.15)–(B.17). Summing
up, in Bayesian inference the a priori distribution of the unknown parameter given by (B.11)
is update using the new data in (B.10) to obtain the posterior distribution in (B.12). In
conjugate analysis, both distributions are from the same family and thus only the parameters
need to be updated. This process is exemplified in Fig. B.1, where the update of (B.11)
to (B.12) is shown for different values of N .

B.2 Regression of variance means
The GNSS community has extensively studied the topic of pseudorange stochastic modeling.
For high precision applications, such as Real-Time Kinematic (RTK), satellite elevation
dependent models have often been applied [137], [237], [238]. For signal-degraded situations,
the signal-to-noise ratio is considered a better quality indicator for GNSS observations. A model
based on C/N0 was first introduced in [47], and it has been widely adopted for navigating
challenging scenarios [28], [239]. A collection of variance models for pseudorange weighting
dependent on either satellite elevation angle, C/N0 or the combination of both is compiled next
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• Elevation model

σ2 = a+ b

sin θ (B.18)

• CN0-based model
σ2 = a+ b · 10−C/N0/10 (B.19)

• Additive model
σ2 = a+ b

sin θ + c · 10−C/N0/10 (B.20)

• Multiplicative model

σ2 = a+ b · 10−C/N0/10

sin θ (B.21)

Finding the unknown parameters a, b, c of these models constitute a nonlinear regression
problem relating the mean of the estimated Inverse-Gamma distributions (B.15) and the
corresponding {θ, C/N0} pair, conditioned on the respective variance (B.17) for the distribution.
Fig. B.2 displays the flow for the described methodology. On the left sub-figure, the estimated
multipath error grid is shown according to the corresponding C/N0 values. The middle
sub-figure depicts the pdf for the inverse-Gamma distribution of each C/N0 division, whose
parameters α and β are inferred from the data corresponding to each C/N0. In the right
sub-figure, the estimated C/N0-dependent variance model regression problem is shown.

Figure B.2: Process flow example for the estimation of the C/N0-based model. In the left plot, the
estimated combination of the multipath and receiver noise is gridded for each C/N0 division. In the
middle plot, the pdf for the inverse-Gamma distributions are shown, whose parameters are inferred
from the previously gridded data. In the right plot, the mode of the IG distributions in red, the
corresponding IG variances in green and in blue the model obtained after the regression.

The framework of conjugate prior analysis applies perfectly to the problem of finding
the weighting GNSS observations, as their noise is widely agreed to be zero-mean normally-
distributed. The inverse-Gamma distribution results in the conjugate prior for the variance of
the observations, and the parameters of the IG distributions estimated from the multipath
combination. By determining the pdf of the inverse-Gamma distributions of the GNSS noise for
each pair of elevations and signal-to-noise ratios, it is possible to find the unknown parameters
of the proposed error models. Following this procedure, the variance models are not only
found but also the corresponding confidence bands. It is a challenging and prospective topic to
include the uncertainty of the uncertainty into the problem of integrity monitoring, capturing
the higher moments of ambiguity into the GNSS positioning problem. A practical example
captured onboard of a vessel in a maritime scenario is showcased in Fig. B.3.
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Fig. 7: On the left, time series of the CMC combination for the day 42 of the year 2018, collected at the Mecklenburg-
Vorpommern vessel. A total of six satellites, three from GPS and three for Galileo is shown, as well as the satellite elevation
on orange. On the top right, the inferred IG distributions for the noise variance conditioned on the satellite elevation for GPS
L1 observations. On the bottom right, the satellite-based stochastic model for the multipath and receiver noise is regressed
from the mode of the aforementioned IG distributions.

In our study, we have observed that three days of data collection are sufficient to obtain congruent results regardless of the
bin sizes.

TABLE I: Estimated values for the unknown parameters of the proposed stochastic models for the multipath and receiver
noise.

GPS L1 GPS L2 Galileo E5 Galileo E5
a b c a b c a b c a b c

Elevation 0.18 0.19 - 0.31 0.19 - 0.17 0.18 - 0.30 0.20 -

C/N0-based 0.28 20579.84 - 0.73 6071.42 - 0.19 26215.38 - 0.67 8418.48 -

Additive 0.23 0.06 20714.52 0.24 0.20 4404.28 0.08 0.08 22916.70 0.30 0.17 6060.88

Multiplicative 0.57 2504.63 - 0.62 997.30 - 0.43 3638.47 - 0.65 1302.05 -

Figure B.3: On the left, time series of the CMC combination collected on a maritime scenario at
the beginning of 2018. As example, the CMCs on L1/E1 for a total of three GPS and three Galileo
satellites are depicted, as well as the corresponding satellite elevation. On the top right, the inferred IG
distributions for the noise variance conditioned on the satellite elevation for GPS L1 observations. On
the bottom right, the satellite-based stochastic model for the multipath and receiver noise is regressed
from the mode of the aforementioned IG distributions.





APPENDIX C

Quaternion Operations and Properties

We will use i, j, and k to represent the standard orthonormal basis for 3 dimensional space R3:

i = (1, 0, 0) (C.1)
j = (0, 1, 0) (C.2)
k = (0, 0, 1) (C.3)

which have the following properties:

ij = k = −ji (C.4)
jk = i = −kj (C.5)
ki = j = −ik (C.6)

i2 = j2 = k2 = ijk ≡ −1 (C.7)

A quaternion is represented is a 4-tuple of real numbers, qR4. It is formed by a scalar
qw and a vector part qu ∈ R3 as:

q = (qw, qx, qy, qz) = qw + qu = qw + iqx + jqy + kqz (C.8)

Next, we will present the basic quaternion arithmetic operations:

Addition The sum or difference of two quaternion q, p is another quaternion:

q ± p = (qw + pw) + i (qx + px) + j (qy + py) + k (qz + pz) (C.9)

Conjugate
q∗ = [ qw, −qu ] (C.10)

Norm
‖q‖ =

√
q2

w + q2
x + q2

y + q2
z =

√
q>q (C.11)

Inverse
q−1 = q∗

‖q‖ (C.12)
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Identity When involving multiplication is [1, (0, 0, 0)], and when involving addition/sub-
traction [0, (0, 0, 0)]

Multiplication The quaternion product1 ◦ is non-commutative, associative and distributive
over the sum:

q ◦ p =


qw −qx −qy −qz

qx qw −qz qy

qy qz qw −qx

qy −q2 qx qw



pw

px

py

pz

 , (C.13)

or, in a simplified matrix manner as

p ◦ q =
[

pwqw − pu
>qu

pwqu + qwpu + pu × qu

]
, (C.14)

In addition, the composition of quaternions is bilinear and can be expressed as two matrix
products:

q1 ◦ q2 = [q1]Lq2 q1 ◦ q2 = [q2]Rq1, (C.15)

with [q]L and [q]R are the left and right quaternion product matrices, respectively. These
product matrices are given by:

[q]L = q0I4 +
[

0 −qu
>

qu [qu×]

]
, [q]R = q0I4 +

[
0 −qu

>

qu −[qu×]

]
. (C.16)

1The quaternion product is generally denoted as ⊗. However, this work reserves ⊗ for the representation of
the Kronecker product.



APPENDIX D

Variational Bayesian-based Robust Filtering for Correlated
Measurements

Let us recall the SSM formulation in (6.11)-(6.12), given by

xt = f (xt−1) + wt

yt =
{

h (xt) + ηt , under M0
h (xt) + ηt + ot , under M1

and from (6.16) covariance matrix conditioned on the vector of outlier indicators ζt as

Σt (ζt) =


σ2

1,1/ζ
(1)
t σ2

1,2 . . . σ2
1,n

σ2
2,1 σ2

2,2/ζ
(2)
t . . . σ2

2,n
... ... . . . ...

σ2
n,1 σ2

n,2 . . . σ2
n,n/ζ

(n)
t

 ,

which leads to the likelihood distribution

p (yt|xt, ζt) = N
(
T
(
yt, ζt

)
; T

(
h(xt), ζt

)
,C(ζt)

)
.

This appendix details the estimation for the marginal distributions q(xt), q(πt) and q(ζt)
in (6.32)-(6.34) for a general nonlinear system under correlated observations, given the
assumptions derived from the graphical model in Fig. 6.3.

Update for q(xt)

According to the mean-field VI method, q (xt) is obtained from (6.32) as

ln(q(xt)) = −1
2

∥∥∥xt − x̂t|t−1

∥∥∥2

Pt|t−1
− 1

2
∑
ζ∈Z

q(ζt = ζ) ‖yt − h(xt)‖2Σ−1
t (ζt) + κ (D.1)

= −1
2

∥∥∥xt − x̂t|t−1

∥∥∥2

Pt|t−1
− 1

2 (yt − h(xt))> 〈Σt(ζt)〉(yt − h(xt)) + κ, (D.2)
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where the term κ gathers the logarithm of the constant factors, and ζ represents one of the 2n

possible combinations of {ζ(i)
t }ni=1 binary values; the set of all those possible values is given by

Z = {0, 1}n such that |Z| = 2n; The expectation of Σt(ζt) with respect to q(ζt) is defined as

〈Σt(ζt)〉 =
∑
ζ∈Z

Σt(ζ) q(ζt = ζ) , (D.3)

and q(ζt = ζ) =
n∏

i=1
q(ζ(i)

t = ζ(i)).
Thus, the estimation of q(xt) is given by

q (xt) ∝ exp
(
−1

2

∥∥∥xt − x̂t|t−1

∥∥∥2

Pt|t−1
− 1

2 ‖yt − h (xt)‖2〈Σt(ζt)〉

)
, (D.4)

from which one identifies q (xt) ≈ N
(
x̂t|t,Pt|t

)
, with

Kt = Ct

(
St + 〈Σ−1

t (ζt)〉−1
)−1

, (D.5)

x̂t|t = x̂t|t−1 + Kt

(
yt − ŷt|t−1

)
, (D.6)

Pt|t = Pt|t−1 −Kt

(
St + 〈Σ−1

t (ζt)〉−1
)

K>
t , (D.7)

(D.8)

with

ŷt|t−1 =
∫

h (xt) p (xt|y1:t−1) dxt , (D.9)

St =
∫ (

h (xt)− ŷt|t−1
) (

h (xt)− ŷt|t−1
)>

p (xt|y1:t−1) dxt , (D.10)

Ct =
∫ (

xt − x̂t|t−1
) (

h (xt)− yt|t−1
)>

p (xt|y1:t−1) dxt , (D.11)

where the integrals can be solved analytically in linear systems or, for nonlinear models, approx-
imated based on the first-order Taylor expansion (i.e., using EKF approximations) or through
numerical integration for higher order of expansions (i.e., as for sigma point and cubature KFs).

Update for q (ζt)
Recalling the assumption A3, on the indicators being mutually independent, one may operate
on the marginal distributions q(ζ(i)

t ) for each indicator. Then, following (6.34) one obtains

ln
[
q(ζ(i)

t )
]

= E
π

(i)
t ,xt,ζ

(−i)
t

{ln [p (xt,πt, ζt,y1:t)]} , (D.12)

where the expectation is over {π(i)
t ,xt, ζ

(−i)
t }. For the sake of convenience, the vector of

observations is re-arranged such that the i-th element is swapped to the last position, as

yt,i =
(

y(−i)
t

y
(i)
t

)
, hi(xt) =

(
h(−i)(xt)
h(i)(xt)

)
, (D.13)

where a(−i) is the vector of all elements in a generic vector a except for a(i), while [A]−i,−j

re-define a generic matrix A by removing all its elements except for the ith row and jth
column. Hence, the covariance matrix (6.16) is then reorganized to meet the order in D.13, as

Σt,i(ζt) =
[
Σ−i,−i Σ−i,i

Σi,−i σ2
i,i/ζ

(i)
t

]
, (D.14)



Chapter D. Variational Bayesian-based Robust Filtering for Correlated
Measurements 197

and, operating on the precision matrix Λt,i = Σt,i(ζt)−1 and leveraging on the Schur
complement, the former can be expressed as

Λt,i =
[
Λ−i,−i Λ−i,i

Λi,−i λi,i

]
=
[

M−i −ζ(i)
t /σ2

i,iM−iΣ−i,i

−ζ(i)
t /σ2

i,iΣi,−iM−i Mi

]
(D.15)

with
M−i =

(
Σ−i,−i − ζ(i)

t /σ2
i,iΣ−i,iΣi,−i

)−1
, (D.16)

Mi =
(
σ2

i,i/ζ
(i)
t −Σi,−iΣ−1

−i,−iΣ−i,i

)−1
. (D.17)

Then, one can further extend (D.16) by applying the matrix inversion lemma, leading to

M−i = Σ−1
−i,−i +

Σ−1
−i,−iΣi,−iΣ−i,iΣ−1

−i,−i

σ2
i,i/ζ

(i)
t −Σi,−iΣ−1

−i,−iΣ−i,i

. (D.18)

Note that for independently-distributed observations, the cross-covariance in Σt(ζt) is zero
and Mi = ζ

(i)
t /σ2

i,i. For correlated data, ζ(i)
t is part of a fraction which would make it tedious

in terms of computing the Bernoulli probabilities for the indicator. Fortunately, ζ(i)
t is a binary

variable ζ(i)
t = {0, 1} which allows the following equivalent expression

Mi = ζ
(i)
t

σ2
i,i −Σi,−iΣ−1

−i,−iΣ−i,i

, (D.19)

which yields to identical result as in (D.17) regardless of the ζ(i)
t value. Thus, if ζt = 1,

the original covariance matrix is preserved and the conventional correction step performed;
if ζ(i)

t = 0, the corresponding elements in the precision matrix would be zero, meaning
that the influence of contaminated observations is eliminated, while the inliers constitute a
multivariate normal distribution of reduced dimension n′ ≤ n.

In order to model q(ζ(i)
t ) in the form of a Bernoulli distribution, we use

ln
[
q(ζ(i)

t )
]

= E
π

(i)
t ,xt,ζ

(−i)
t

{ln [p (xt,πt, ζt,y1:t)]}

= E
π

(i)
t ,xt,ζ

(−i)
t

{
− 1

2

∥∥∥y(−i)
t − h(−i) (xt)

∥∥∥2

Λ−i,−i

−
(
y(−i)

t − h(−i) (xt)
)>

Λ−i,i

(
y

(i)
t − h(i) (xt)

)
− 1

2 ||y
(i)
t − h(i) (xt) ||2λi,i

+ ζ
(i)
t ln[π(i)

t ]

+
(
1− ζ(i)

t

)
ln[1− π(i)

t ]− 1
2ζ

(i)
t ln[2π]

− 1
2ζ

(i)
t ln |C([ζ(−i)

t , ζ
(i)
t = 1])|

− 1
2(1− ζ(i)

t ) ln
∣∣∣C([ζ(−i)

t , ζ
(i)
t = 0])

∣∣∣+ κ
}

(D.20)

where, by expanding the terms due to the normalizing constant (6.18), the determinant
of C(ζt) is factorized as

|C(ζt)| = |C([ζ(−i)
t , ζ

(i)
t = 1])|ζ

(i)
t |C([ζ(−i)

t , ζ
(i)
t = 0])|(1−ζ

(i)
t ) , (D.21)
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and after some tedious matrix manipulations (see Appendix A.7), the following expression is ob-
tained

q
(
ζ

(i)
t

)
= exp{−1

2ζ
(i)
t tr (B−i,−i〈Λt1〉)

− 1
2ζ

(i)
t tr (−Bi,−i〈Λt2〉)

− 1
2ζ

(i)
t tr (−Bi,−i〈Λt3〉)−

1
2ζ

(i)
t tr (bi,i〈λt4〉)

+ ζ
(i)
t 〈ln[π(i)

t ]〉+
(
1− ζ(i)

t

)
〈ln[1− π(i)

t ]〉

− 1
2ζ

(i)
t ln[2π]

− 1
2ζ

(i)
t 〈ln |C([ζ(−i)

t , ζ
(i)
t = 1])|〉

− 1
2(1− ζ(i)

t )〈ln |C([ζ(−i)
t , ζ

(i)
t = 0])|〉+ κ}

(D.22)

where B−i,−i, Bi,−i, and bi,i are given by

B−i,−i =
∫ (

y(−i)
t − h(−i) (xt)

) (
y(−i)

t − h(−i) (xt)
)>

q (xt) dxt, (D.23)

Bi,−i =
∫ (

y
(i)
t − h(i) (xt)

) (
y(−i)

t − h(−i) (xt)
)>

q (xt) dxt, (D.24)

bi,i =
∫ (

y
(i)
t − h(i) (xt)

) (
y

(i)
t − h(i) (xt)

)>
q (xt) dxt, (D.25)

and the expectations with respect to q(ζ(−i)
t ) read

〈Λt1〉 =
∑

ζ(−i)∈Z−i

Σ−1
−i,−iΣ−i,iΣi,−iΣ−1

−i,−i

σ2
i,i −Σi,−iΣ−1

−i,−iΣ−i,i

q(ζ(−i)
t = ζ(−i)) (D.26)

〈Λt2〉 = 2
σ2

i,i

∑
ζ(−i)∈Z−i

Σ−1
−i,−iΣ−i,iq(ζ(−i)

t = ζ(−i)) (D.27)

〈Λt3〉 =
∑

ζ(−i)∈Z−i

2Σ−1
−i,−iΣ−i,iΣi,−iΣ−1

−i,−iΣ−i,i

σ4
i,i − σ2

i,iΣi,−iΣ−1
−i,−iΣ−i,i

q(ζ(−i)
t = ζ(−i)) (D.28)

〈λt4〉 =
∑

ζ(−i)∈Z−i

1
σ2

i,i −Σi,−iΣ−1
−i,−iΣ−i,i

q(ζ(−i)
t = ζ(−i)) (D.29)

where the sum over ζ(−i) comprises the sum over all possible 2n−1 values for ζ(−i), whose
probability is q(ζ(−i)

t = ζ(−i)). Note that ζ
(−i)
t appears in the diagonal elements of Σ−i,−i,

dependence which is omitted to improve the readiness.



Chapter D. Variational Bayesian-based Robust Filtering for Correlated
Measurements 199

Finally, one can recognize ζ(i)
t as Bernoulli-distributed variable, whose pdf is characterized by

p
(
ζ

(i)
t = 1

)
∝ exp{−1

2 tr (B−i,−i〈Λt1〉)

− 1
2 tr (Bi,−i〈Λt2〉)−

1
2 tr (Bi,−i〈Λt3〉)

− 1
2 tr (bi,i〈λt4〉) + 〈ln[π(i)

t ]〉 − 1
2 ln[2π]

−1
2 〈ln |C([ζ(−i)

t , ζ
(i)
t = 1])|〉} (D.30)

p
(
ζ

(i)
t = 0

)
∝ exp{〈ln[1− π(i)

t ]〉

−1
2〈ln |C([ζ(−i)

t , ζ
(i)
t = 0])|〉} . (D.31)

Thus, the expectation of a Bernoulli ζ(i)
t can estimated from

〈ζ(i)
t 〉 =

p
(
ζ

(i)
t = 1

)
p
(
ζ

(i)
t = 1

)
+ p

(
ζ

(i)
t = 0

) , (D.32)

a quantity required for the update of q
(
π

(i)
t

)
, which is discussed next.

Update for q
(
π

(i)
t

)
Similar to the derivation discussed in Section 6.2, q

(
π

(i)
t

)
can be updated for each indicator as

q
(
π

(i)
t

)
∝ exp

(
e

(i)
t ln[π(i)

t ] + f
(i)
t ln[1− π(i)

t ]
)

(D.33)

where
e

(i)
t = e0 + 〈ζ(i)

t 〉 (D.34)

f
(i)
t = f0 + 1− 〈ζ(i)

t 〉 (D.35)

such that f0 and e0 constitute the prior over the hyper-parameters of the distribution
π

(i)
t , assumed the same for all i.
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