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A B S T R A C T

Automated planning deals with the task of finding a sequence of actions, namely
a plan, which achieves a goal from a given initial state. Most planning research
consider goals are provided by a external user, and agents just have to find a
plan to achieve them. However, there exist many real world domains where
agents should not only reason about their actions but also about their goals,
generating new ones or changing them according to the perceived environment.
In this thesis we aim at broadening the goal reasoning capabilities of planning-
based agents, both when acting in isolation and when operating in the same
environment as other agents.

In single-agent settings, we firstly explore a special type of planning tasks
where we aim at discovering states that fulfill certain cost-based requirements
with respect to a given set of goals. By computing these states, agents are able
to solve interesting tasks such as find escape plans that move agents in to safe
places, hide their true goal to a potential observer, or anticipate dynamically ar-
riving goals. We also show how learning the environment’s dynamics may help
agents to solve some of these tasks. Experimental results show that these states
can be quickly found in practice, making agents able to solve new planning
tasks and helping them in solving some existing ones.

In multi-agent settings, we study the automated generation of goals based on
other agents’ behavior. We focus on competitive scenarios, where we are inte-
rested in computing counterplans that prevent opponents from achieving their
goals. We frame these tasks as counterplanning, providing theoretical proper-
ties of the counterplans that solve them. We also show how agents can benefit
from computing some of the states we propose in the single-agent setting to
anticipate their opponent’s movements, thus increasing the odds of blocking
them. Experimental results show how counterplans can be found in different
environments ranging from competitive planning domains to real-time strategy
games.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D





1
I N T R O D U C T I O N

“Intelligence is a very valuable thing, innit,
my friend. And usually, it comes far too late.”

- Alfie Solomons

In this chapter we introduce the work carried out in this thesis. First, we
briefly introduce the research area and motivate the dissertation. Then, we enu-
merate the objectives of the thesis. Finally, we outline the structure of the rest of
the document.

1.1 motivation

As good old Alfie says, intelligence is a very valuable thing. One of its many
definitions consider intelligence as a

“very general mental capability that, among other things, involves the ability to rea-
son, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly
and learn from experience. It is not merely book learning, a narrow academic skill, or
test-taking smarts. Rather, it reflects a broader and deeper capability for comprehend-
ing our surroundings - catching on, making sense of things, or figuring out what to
do” (Gottfredson, 1997).

These mental capabilities are inherent to human beings, but is it possible to
extend them to other entities? Artificial Intelligence (AI) is a field of computer
science that tries to answer this question by studying the development of intelli-
gent agents (Russell & Norvig, 2003), able to exhibit some of these capabilities. In
this thesis we focus on one important aspect of intelligence: that of goal-directed
behavior. And from the many AI approaches that solve these kind of problems,
we will use Automated Planning.

Automated Planning (AP) (Ghallab et al., 2004) solves the task of finding a
sequence of actions, namely a plan, which achieves a goal from a given initial
state. Typically, goals are considered as static entities; they are given at start of
planning, and they do not change over time. Although this setting is valid for
many research areas within AP, it narrows the application of planning in real
world domains.

The overarching motivation of this dissertation is to address the call by Ghal-
lab, Nau, and Traverso (2014; 2016) for an actor’s perspective on planning. The
aim is to put the focus on planning agents, which use automated planning in a
broader sense to reason and act based on their environment. Under this frame-
work, the assumption of agents having a pre-defined and static set of goals is
too restrictive and limits the autonomy of these agents.

3



4 introduction

Our aim is to provide agents with some goal reasoning capabilities (Cox, 2007;
Molineaux et al., 2010), so they augment their autonomy and become able

to solve a broader set of tasks. We approach this problem from two perspec-
tives. First, we study different goal reasoning problems when agents act in iso-
lation. We envision how agents can reformulate their goals as their environment
changes. In addition, we show how agents can reason about goals in a different
way generating plans that do not achieve them but reach states that might be
useful. Then, we study goal reasoning in the context of multi-agent settings. In
this case we aim at generating goals from scratch based on other agent’s be-
havior. Finally, we extend goal reasoning concepts of the single-agent setting to
multi-agent scenarios, showing how the autonomy (and intelligence) of result-
ing agents is augmented.

1.2 objectives of the thesis

The ultimate aim of this thesis is to improve the goal reasoning capabilities of
planning-based agents. To do so, we study different goal reasoning problems
both in single and multi-agent settings. The particular objectives of the thesis
are:

• In single-agent settings, we are interested in enriching the usual planning
task definition where we have a static model and goal definition. Instead
of providing agents with an explicit goal they have to achieve, we aim
at giving them a set of goals to reason about. By reasoning over a set of
goals, agents are able to discover new states that allow them to solve inter-
esting tasks such as: (1) the anticipation of dynamically arriving goals; (2)
finding escape plans that put agents in safe places; (3) or hiding their true
goal to a potential observer. We consider two complimentary approaches
to solve these problems by means of automated planning and machine
learning techniques.

• In multi-agent settings, we want to study the dynamic generation of goals
based on other agents’ behavior. We focus on competitive scenarios, where
we are interested in computing counterplans that prevent opponents from
achieving their goals. We also study how to incorporate some of the single-
agent goal reasoning techniques into these multi-agent scenarios.

1.3 thesis outline

The main body of the thesis is divided into four parts:

• Part I: Introduction and Background motivates the problem, sets the ob-
jectives of the thesis, and provides the necessary background to correctly
understand the work.

– Chapter 1: Introduction presents the motivation that drives the devel-
opment of this work, sets the objectives of the thesis, and outlines the
document’s structure.
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– Chapter 2: Background provides some formalisms that are orthogonal
to the thesis body of work such as Classical Planning, Multi-agent
Planning, and Fully Observable Non Deterministic Planning.

• Part II: Goal Reasoning in Single-Agent Settings introduces several ap-
proaches for agents to reason about their goals when acting in isolation.

– Chapter 3: Planning with Distance-based Goals presents a novel plan-
ning task: that of finding states that fulfill some cost-related property
with respect to a given set of goals. We highlight the importance of
these states for many applications and propose several algorithms
that solve this task.

– Chapter 4: Learning to Anticipate Planning Goals presents the use of
machine learning techniques to predict the appearance of planning
goals. We show how this prediction allows agents to start planning
before goals appear, which increases their performance in many dif-
ferent scenarios.

• Part III: Goal Reasoning in Multi-agent Settings introduces different
techniques for agents to reason about their goals when acting in the same
environment as other agents.

– Chapter 5: Counterplanning using Goal Recognition and Landmarks presents
a framework that allows agents to dynamically generate their goals
based on other agents’ behavior. We focus on competitive scenarios,
where we are interested in computing counterplans that prevent op-
ponents from achieving their goals.

– Chapter 6: Anticipatory Counterplanning presents an approach that com-
bines Chapter 3, 4 and 6 to maximize the odds of preventing oppo-
nents from achieving their goals.

• Part IV: Conclusions and Future Work presents our conclusions and pro-
poses avenues for future research.

– Chapter 7: Conclusions discusses the main results and conclusions
drawn from the thesis.

– Chapter 8: Future Work outlines some future research directions.

• Part V: Appendix includes some works carried out during the thesis that,
although having a clear connection with the main ideas introduced in the
dissertation, are the fruit of collaboration with other researchers. The ap-
pendices also include some extra experiments, results and domains from
the chapters included in the dissertation.





2
B A C K G R O U N D

“Our goals can only be reached
through a vehicle of a plan,
in which we must fervently believe,
and upon which we must vigorously act.
There is no other route to success.”

- Pablo Picasso

In this chapter we provide some background concepts needed to understand
the rest of the thesis. First, we introduce Automated Planning and define some
of its variations by relaxing assumptions. We start with classical planning, which
assumes a single agent acting in a full observable environment and whose ac-
tions are deterministic. Then, we present multi-agent planning, where planning
for a set of agents acting in the same environment is needed. We will see how
(under some assumptions) the world becomes non-deterministic in this case,
presenting solution concepts that differ from the ones typically considered in
classical planning.

Then, we introduce Goal Reasoning, which strives for agents able to reason
about their goals. They can do it in different ways: formulate new goals, self-
select which goals to pursue, or transform goals, among many others. We briefly
describe some of these works and focus on Goal Recognition, which can be
framed within Goal Reasoning as the process agents can follow to either infer
other agent’s goals; or reason about how their behavior can be inferred by other
agents.

2.1 automated planning

AI is generally divided into two main subcategories: model-free and model-based
techniques. The firsts are usually referred as learners, while the latters are known
as solvers (Geffner, 2018). The differences between model-free learners and model-
based solvers are reminiscent of current accounts in psychology that describe the
human mind as made of two interacting systems or processes: a System 1, which
is fast, intuitive and specialized; and a System 2, which is slow, deliberative and
general (Evans & Stanovich, 2013; Kahneman, 2011).

Automated Planning (Ghallab et al., 2004) falls within the model-based cate-
gory. In a general definition, it is the task of generating a sequence of actions,
namely a plan, such that, when applied to a given initial state, it results in a state
where some given goals are true. There exist many real-world applications of
AP that range from greenhouse logistics (Helmert & Lasinger, 2010) to inter-
modal transportation (García et al., 2013) or robot operation (Cashmore et al.,
2015), among others.

7
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2.1.1 Classical Planning

There are many planning models depending on their assumptions about the
agent(s) and the environment. The most basic model is classical planning, where
complete control and knowledge of the environment is assumed:

• Deterministic actions outcome: the effect of the agent’s actions is always
the same and it is known in advance.

• Fully-observable environment: the environment can only change due to
actions performed by the agent, who fully knows the state of the world.

Definition 2.1. Formally, a single-agent strips planning task can be defined as a
tuple Π = 〈F,A, I,G〉, where:

• F is a set of propositions.

• A is a set of instantiated actions.

• I ⊆ F is an initial state.

• G ⊆ F is a set of propositions.

A state consists of a set of propositions s ⊆ F that are true at a given time. A
state is totally specified if it assigns truth values to all the propositions in F, as
the initial state I of a planning task. A state is partially specified (partial state)
if it assigns truth values to only a subset of the propositions in F, as the goals G
of a planning task.

Definition 2.2. A state s of a planning task Π is a goal state iff all the propositions
in G = {pi, . . . ,pn} are true in s, i.e., G ⊆ s.

Each action a ∈ A is composed of a set of preconditions (pre(a)), which
represents the literals that must be true in a state to execute an action a, and
a set of effects (eff(a)), which represents the literals that become true (add(a)
effects) or false (del(a) effects) in the state after the execution of action a.

The execution of an action a in a state s is defined by a function γ such
that γ(s,a) = (s \ del(a)) ∪ add(a) if pre(a) ⊆ s, and s otherwise (a cannot be
applied). The output of a planning task is a sequence of actions, namely plan,
π = (a1, . . . ,an). The execution of a plan π in a state s can be defined as:

Γ(s,π) =

{
Γ(γ(s,a1), (a2, . . . ,an)) if π 6= ∅
s if π = ∅

(2.1)

A plan π is valid for solving Π iff G ⊆ Γ(I,π). Thus, Γ(I,π) is a final state that
fulfills the property of all propositions in the goal being true. The cost of a plan
is commonly defined as c(π) =

∑
ai∈π

c(ai), where c : A→ R>0 is a non-negative

action cost function. A plan with minimal cost is called optimal. Classical plan-
ning turns out to be PSPACE-complete (Bylander, 1994). However, the use of
different heuristics and pruning (among other techniques) allows planners to
efficiently solve planning tasks in many cases.
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The planning community uses a standard language to specify planning tasks
in a domain-independent fashion: the Planning Domain Definition Language
(PDDL) (McDermott et al., 1998). Although there exist many versions of PDDL
(Haslum et al., 2019), all of them separate the problem definition into two parts:
domain and problem. The domain expresses the set of available actions, as well
as the object types, predicates, and functions; the problem contains the initial
state and goals of the task. Listing 1 and 2 show part of the domain model
and the problem description of a blocks-world planning task as they are rep-
resented in PDDL. The initial state of the task is also graphically shown in Fig-
ure 2.1. In this well-known domain, an agent can pick-up, drop, stack and un-
stack blocks with the aim of producing a blocks’ configuration that meets the
goals.

Figure 2.1: Initial state of a blocks-world planning instance.

( d e f i n e ( domain b l o c k s )
( : r e qu i r emen t s : s t r i p s : t y p i n g )
( : t y p e s b l o ck )
( : p r e d i c a t e s

( on ? x1 ? x2 − b l o ck )
( on t ab l e ? x1 − b l o ck )
( c l e a r ? x1 − b l o ck )
( handempty )
( h o l d i n g ? x1 − b l o ck )

)

( : a c t i o n p ick−up
: pa ramete r s (? x1 − b l o ck )
: p r e c o n d i t i o n ( and

( c l e a r ? x1 )
( on t ab l e ? x1 )
( handempty )

)
: e f f e c t ( and

( not ( on t ab l e ? x1 ) )
( not ( c l e a r ? x1 ) )
( not ( handempty ) )
( h o l d i n g ? x1 )

)
)

Listing 2.1: Excerpt of the blocks-world do-
main model.

( d e f i n e ( problem p0 )
( : domain b l o c k s )
( : o b j e c t s

p a t e r − b l o ck
)

( : i n i t
( handempty )
( on t ab l e a )
( c l e a r a )
( on t ab l e p )
( c l e a r r )
( on r p )
( on t ab l e e )
( c l e a r t )
( on t e )

)

( : goa l ( and
( c l e a r t )
( on t e )
( on e a )
( on t ab l e a )

) )
)

Listing 2.2: Blocks-world problem
instance.

In this case, the goal entails to build the word TEA using the available blocks.
A valid (and optimal) plan π that solves this task is:
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π =



(unstack t e),

(stack t r),

(pick-up e),

(stack e a),

(unstack t r),

(stack t e)


with c(π) = 6

There exist many different approaches to solving planning problems in the
literature. Some approaches compile the planning problem to propositional sat-
isfiability (SAT) (Rintanen, 2004b). Others take advantage of succint data struc-
tures, such as in the case of symbolic search (Bryant, 1986; Edelkamp & Helmert,
2001). However, most planners employ heuristic search (Bonet & Geffner, 2001)
to compute plans that reach goals from a given initial state. This search is typ-
ically conducted in a forward fashion, i.e., states are expanded from the initial
state until a goal state is found. However, there also exist alternatives that do
the opposite: expand states backwards from the goal to the initial state (Alcázar
et al., 2013); or even perform the search in both directions (Torralba et al., 2018).
Exploring the state space is impractical in most planning tasks due to large state
spaces, regardless the direction of the search. That is why planners usually em-
ploy heuristics to drive the search, reducing the number of states explored until
a solution is found.

Best-First Search (Hart et al., 1968) is the most frequently used algorithm
when performing forward heuristic search. It explores the state space by ranking
all the current reachable nodes according to the following heuristic function:

f(n) = g(n) + h(n) (2.2)

where g(n) is the cost of reaching the state represented by the node n from the
initial state; and h(n) is the cost of reaching a goal state from the current state.
The algorithm starts expanding nodes from the initial state, generating succes-
sors by applying the applicable actions to the current state. These successors
are then ranked according to their f(n) value in an open list. At each step, the
node with min(f(n)) is removed from the open list. This process is repeated
until a goal state is found; or the open list is empty. The algorithm is guaran-
teed to return optimal solutions, i.e., shortest paths, iff the employed heuristic
is admissible. A heuristic is admissible iff it never overestimates the actual cost
of reaching a goal state. If we consider h∗ as the actual optimal cost (perfect
estimator), we formally have that a heuristic h is admissible iff:

∀s,h(s) 6 h∗(s) (2.3)

2.1.1.1 Landmarks

In the context of classical automated planning, landmarks were initially de-
fined as sets of propositions that have to be true at some time in every solution
plan (Hoffmann et al., 2004). Formally:
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Definition 2.3. Given a planning task Π = 〈F,A, I,G〉, a formula LΠ ⊂ F is a fact
landmark of Π iff LΠ is true in some state along all valid plans executions that achieve
G from I.

In the case of the blocks-world example depicted in Figure 2.1 and Listings
1 and 2, (holding t) would be a landmark. This is because the agent must hold
that block at some point in all the plans that reach a goal state.

Landmarks have been widely used in planning. Some examples include treat-
ing landmarks as sub-goals in the search (Porteous et al., 2001); or use land-
marks as heuristics (Helmert & Domshlak, 2009; Richter et al., 2008). As we
will later see, in this thesis we use landmarks to generate planning goals from
scratch.

2.1.2 Multi-agent Planning

Multi-agent planning (MAP) aims at solving problems in which several agents
act in the same environment. In this case, planning capabilities are not central-
ized in a single agent but distributed among all the agents. Therefore, agents
not only need to reason about their goals and actions but how them are affected
by the behavior of other agents. Therefore, in some cases, the environment be-
comes non-deterministic due to the agent not knowing in advance which actions
the other agents are executing. For these problems, classical plans are no longer
valid solution concepts, and we need to extend these definitions to account for
the non-determinism introduced by other agents.

We can divide multi-agent systems (Wooldridge, 2009) into different cate-
gories depending on (1) how agents perceive their pairs; and (2) agents’ goals.
Let us exemplify these different scenarios by using the soccer domain employed
by Bowling, Jensen and Veloso (2003) and depicted in Figure 2.2. We have two
agents A and B. Each of them occupies one tile of the field. Agent A begins
in possession of the ball (depicted with a circle). Each agent can move to each
compass direction (N, S, E, and W) provided that the target cell is empty; or
can wait, holding its position (H). If the target cell is occupied, then the agent
does not move and loses the ball in case of having it. For agent A, losing the
ball terminates execution as a failure. The goal for agent A is to score a goal
by moving into either of the two goal squares (in green) in possession of the
ball. Although this is clearly a MAP problem, there exist different solutions
depending on agent B’s goals.

Figure 2.2: Example of a grid where two agents are playing soccer.

Consider the case that A and B are teammates sharing agent A’s goal. A
simple solution would be as follows: agent A holds at the initial state while its
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teammate moves south out of its way. Then A moves west into the goal. This
plan is guaranteed to reach the goal in a finite number of steps, and agent A
should not fear that the other agent will move in front of it, since they are
teammates cooperating. This is the case of cooperative MAP, where agents are
willing to collaborate in order to achieve a goal, which is typically shared among
them (Brafman & Domshlak, 2008). The above example is just a simplification,
and do not address crucial issues in cooperative multi-agent planning such as
the concurrent execution of actions (Furelos-Blanco & Jonsson, 2019), goal (or
subgoals) allocation for each agent (Borrajo, 2013; Borrajo & Fernández, 2019;
Luis et al., 2020), communication between the agents (Maliah et al., 2017) or

privacy models (Tozicka et al., 2017), among others (Torreño et al., 2018).
Now, consider the case in which B executes actions randomly. A sensible

plan would be to hold position until agent B reaches the bottom right state
(which it will eventually do, since it is moving randomly). From this position
regardless of the action of the other agent, a plan of two consecutive west actions
is guaranteed to achieve the goal. Other plans risk agent B’s random actions
causing it to move in the way, resulting in A loosing the ball and failing. Note
that although this plan guarantees reaching the goal, it does not necessarily
guarantee achievement in a finite number of steps, as it requires A to hold its
position until B moves to the bottom right square. Note that in this case there
is not a specific relationship between both agents. However, A should take into
account B’s possible executions if it wants to succeed.

Neither of these plans though have any guarantees if agent B is actively want-
ing to prevent A from succeeding. If agent B simply holds it ground, none of the
previous plans would make A achieve its goal. In this situation, game-theoretic
approaches that provide worst-case guarantees are more appropriate (Jensen et
al., 2001). One such plan is for A to randomly select between holding and mov-
ing north/south until the other agent is not in front of it. Then, move west into
the goal state. This plan has no guarantee of success as the opponent may still
move in front of it while it advances toward the goal, causing the ball to be lost.
Cimatti et al. (2003) identified three different classes of solutions to problems
with non-determinism:

• Weak solutions, which achieve the goal, but without guarantees. In other
words, weak plans are optimistic, and will only achieve the goal if every-
thing goes as expected.

• Strong solutions, which guarantee goal achievement regardless of environ-
ment initial or intermediate states.

• Strong-cyclic solutions, which guarantee goal achievement relying on a
fairness assumption. Roughly speaking, a fair action is one in which all ef-
fects occur infinitively often when the action is executed infinitively many
times in the same state.

For example, it is known that by tossing a (truthful) coin many times, heads
will eventually appear, so it would be a fair action.
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Although other frameworks exist, we consider a first-person view of planning
in a setting where the world is fully known and observable to all agents. Fol-
lowing Bowling, Jensen and Veloso (2003) and Brafman and Domshlak (2008)
formulations, we define MAP as follows:

Definition 2.4. A multi-agent planning task is a tuple MAP = 〈N, Fi,Ai, Ii,Gi〉,
where:

• N = {1, . . . ,n} is a set of agents.

• Fi is the set of propositions of agent i ∈ N.

• Ii is the initial state of agent i ∈ N.

• Ai is the set of actions agent i ∈ N can execute.

• Gi is the goal for agent i ∈ N.

As we have previously seen, solutions to MAP tasks are defined in terms of
weak, strong and strong-cyclic solutions, which provide different goal achieve-
ment guarantees. However, these solutions vary depending on the assumptions
we make about the duration of agent’s actions. Most works assume agents act
concurrently, with all the actions having the same duration for all the agents
(Bowling et al., 2003; Furelos-Blanco & Jonsson, 2019; Muise et al., 2016). Un-
der these assumptions, the most prevalent approach is to form joint actions as
the cross product of all individual actions: A = A1 × . . .×An. Ai denotes the
individual action a ∈ Ai the agent i executes in the joint action space A in a
given state. We assume Ai contains a no-op action, that can be always executed
and does not produce any effect, i.e., pre(no-op) = eff(no-op) = ∅. Joint actions
constitute a choice from each agent as to what individual action they perform.
Bowling et al. (2003) assume that the applicability of an individual action does
not depend on the individual actions of other agents. However, in general, noth-
ing prevents two actions a1 and a2 of different agents from having conflicting
preconditions or effects.

To ensure that joint actions have well-defined effects, it is necessary to im-
pose concurrency constraints that model whether a set of actions can be per-
formed in parallel. There are several concurrency models. Some of them de-
fine concurrency constraints on actions that have the same object(s) in their pre-
conditions or effects (Crosby et al., 2014). Others define these constraints in
terms of actions (Boutilier & Brafman, 2001). In this work, we will assume the
propositions-based concurrency constraints introduced in PDDL 2.1 (Fox & Long,
2003). Two actions a1 and a2 can only be applied concurrently in a state s iff
pre(a1)∪ pre(a2) ⊆ s, and they do not interfere. We define two non-interfering
actions as follows:

Definition 2.5. Two actions a1,a2 are non-interfering iff:

pre(a1)∩ (add(a2)∪ del(a2)) = pre(a2)∩ (add(a1)∪ del(a1)) = ∅ (2.4)

add(a1)∩ del(a2) = add(a2)∩ del(a1) = ∅ (2.5)
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We will use γJ to represent the joint execution of two actions.

Definition 2.6. The joint execution of two actions a1,a2 in a state s results in a
new state given by:

γJ(s,a1,a2) =


(s \ del(a1)∪ del(a2))∪ add(a1)∪ add(a2) if a1 and a2 do not interfere

s if a1 and a2 interfere

γ(s,a1) if a2 = no-op

γ(s,a2) if a1 = no-op

(2.6)

If two actions interfere, we can assume that none of the actions are executed,
as defined above, or that one of them has priority, as we will see later. In that
case we would change the second part of the inequality to γ(s,a1), if a1 was
the highest priority action.

Similarly, we define the joint execution of two plans as the iteration of the
joint execution of the actions of those plans.

Definition 2.7. The joint execution of two plans πj,πk in a state s results in a new
state given by:

ΓJ(s,πj,πk) =


ΓJ(γJ(s,aj,1,ak,1), (aj,2,ak,2), . . . , (aj,n,ak,n))) if πj,πk 6= ∅
Γ(γ(s,ak,1), (ak,2, . . . ak,n)) if πj = ∅
Γ(γ(s,aj,1), (aj,2, . . . aj,n)) if πk = ∅

(2.7)

Given these definitions, we define a strong plan in the context of MAP assum-
ing two agents as follows:

Definition 2.8. A plan π1 that solves an agent’s planning task Π1 is a strong plan iff
its joint execution with any sequence of actions πk that an agent Π2 can execute always
achieve the goal G1 ∈ Π1:

∀πk ∈ Π2,G1 ⊆ ΓJ(I1,π1,πk) (2.8)

Any other plan that does not meet this criteria will be weak.

2.2 goal reasoning

It is generally acknowledged that goal-directed behavior is a hallmark of in-
telligence (Newell, Simon, et al., 1972). This interpretation has motivated AI
research, from early problem solvers to modern automated planners. Goals
are a central topic in other research areas such as Belief-Desire-Intention (BDI)
agents (Rao & Georgeff, 1995). However, goals have been longer put aside in
planning, considering them as static entities provided by external users. This
restrictive vision limits the applicability of automated planning in real-world
domains, and puts in between the autonomy and intelligence of planning agents.

Goal reasoning (Aha, 2018; Cox, 2007; Molineaux et al., 2010; Norman &
Long, 1995) challenges this interpretation and strives for autonomy of goals.
In addition to autonomy of actions, an intelligent agent should be able to rea-
son and deliberate upon the goals it is pursuing. Goal reasoning capabilities
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may prove useful in many applications where long-term autonomy is required
and/or the environment is under constant change such as in underwater or
space missions, rescue operations or games, among many others.

Goal reasoning aims at providing solutions to the problems that the following
questions arise (Vattam et al., 2013):

• What is a goal?

• Where does a goal come from?

• Why self-formulate a goal?

• When is a goal formulated?

• How are goals formulated and/or managed?

Answering the first question is easy, since we are assuming planning-agents and
hence planning goals, which we have already defined in the previous section.
Regarding goal’s origin, they are typically given externally by a user. However,
goal reasoning focuses on goals that are self generated by agents, since it aims
at augmenting agent’s autonomy and reasoning capabilities. This answer lead
us to also provide an answer to the third question regarding why agents would
be interested in self-formulating goals. In the rest of the section, we present the
main corpus of work in goal reasoning in the context of planning, which focuses
on answering the two last questions: when agents need to formulate new goals,
and how are these goals formulated and/or managed.

2.2.1 Goal Formulation Triggers

Answering when agents need to (re-)formulate their goals amounts to decide (1)
in which points of the reasoning process may an agent change its goals; and (2)
under which circumstances this should occur. Here we present a non-exhaustive
list of works that address this problem.

An agent could change its goals when an active plan fails. Plans are gener-
ated using domains, which are abstract models of the world in which they are
meant to be deployed. If these models do not account for all the possible en-
vironment’s contingencies (as in the case of classical planning), plans may fail
upon execution. When a plan fails, most planning approaches try to either re-
pair the plan or re-plan from scratch (Bonet & Geffner, 2011; Fox et al., 2006;
Gerevini & Serina, 2000; Nebel & Koehler, 1995). However, replanning is typi-
cally performed without changing the goal, assuming that the new environment
where the original plan failed does not preclude the original goal achievement.
In contrast, goal reasoning systems aim at generating new goals, given the cur-
rent failure. For example, ARTUE (Klenk et al., 2013) finds discrepancies using
a set difference operation between the expected and observed literals. When
a discrepancy is detected, its anomaly response mechanisms perform anomaly
explanation and goal formulation.

An agent could also change its goals when the environment changes. Instead
of focusing solely on the current plan and its execution, agents may monitor
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the entire environment to determine if new goals should be considered. By
monitoring the environment, agents can match the current situation with their
expectations (Muñoz-Avila et al., 2019), reacting accordingly. For example, IN-
TRO (Cox, 2007) uses a rule-based model to generate expectations and detect
discrepancies in a Wumpus World environment. Kurup et al. (2012) introduce a
cognitive model of expectation-driven behavior. It generates future states called
expectations, matches them to observed behavior, and reacts when a difference
exists between them. Agents can also monitor the environment to detect op-
portunities, i.e., goals with higher value than the agent’s actual goal. In those
cases, agents need to decide if they forget the previous goal and try to achieve
the new one; or try to replan in order to get bot the previous and the oppor-
tunistic goal. Some works that exploit opportunistic goals include robotic ap-
plications (González et al., 2015; Schermerhorn et al., 2009) and underwater
autonomous missions (Cashmore et al., 2018).

2.2.2 Methods for Goal Formulation

After answering the when, we now try to answer the question on how agents can
(re-)formulate their own goals.

Most works formulate new goals based on the current state of the world.
For example, consider an autonomous car whose initial goal is to drive from
point A to point B. At some point over its trip, it realizes that its low-battery
indicator is flashing, so the car changes its goal to recharge. Some works use
rule-based methods in the form 〈condition, goal〉 to formulate new goals. When
the condition is met (low-battery) the new goal (recharge) is triggered. This is
the case of ICARUS (Choi, 2010), ARTUE (Klenk et al., 2013), or its extension M-
ARTUE (Wilson et al., 2013), among others. In realistic domains it is often infea-
sible to provide goal formulation knowledge for every situation, i.e., address all
possible 〈condition, goal〉 pairs. To overcome this, T-ARTUE (Powell et al., 2011)
and EISBot (Weber et al., 2012) learn this knowledge from humans by interacting
with them through answers to queries or human demonstrations. Agents can
later use these interactions with humans to provide explanations (Cashmore
et al., 2019; Chakraborti et al., 2020) on their goal’s decisions (Dannenhauer
et al., 2018), and/or store this interactions to later generate new goals using a
case-based reasoning approach (Muñoz-Avila et al., 2010).

But goal reasoning is not limited to the generation of new goals. It is also
related to the problem of selecting which goals an agent should pursue. One
can use the same rule-based approach previously described to switch among
a set of predefined goals. A more interesting and principled approach for goal
selection is that of oversubscription planning (Do et al., 2007; Domshlak &
Mirkis, 2015; Smith, 2004). In classical planning, plans have to achieve all the
propositions appearing in the goals. Goals are treated as hard requirements,
and if not such a plan exists, the planning process fails. On the other hand,
oversubscription planning relaxes this all-or-nothing constraint, and treat goals
as soft requirements or rewards. Plans that solve oversubcription planning tasks
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achieve the best subset of soft goals possible. This goal management strategy
allows agents to automatically select the goals that maximize the total utility.

2.2.3 Goal Recognition

Goal recognition is the problem of inferring an agent’s goal by observing its
behavior. It falls within the bigger scope of plan, activity and intent recogni-
tion (PAIR), which has captured the attention of several computer science areas
since the early beginnings (Kautz & Allen, 1986). PAIR techniques have been
successfully used in many applications and areas such as smart house environ-
ments (Roy et al., 2011; Wu et al., 2007), assisted cognition (Pentney et al., 2006),
or trajectory prediction (Wiest et al., 2012).

There exist many different approaches for goal recognition: bayesian infer-
ence (Albrecht et al., 1997; Charniak & Goldman, 1991), grammars (Geib &
Goldman, 2009), and probabilistic solutions (Pynadath & Marsella, 2005), amongst
many others (Albrecht & Stone, 2018). One of the most prevalent approaches in-
volves having plan libraries that store set of plans (Sukthankar et al., 2014). When
a new sequence of observations arrives, it is matched against the plan library.
The winning plan (and/or goal) returned by these approaches is the one from
the library that best matches the observation sequence. One of the main draw-
backs of plan library approaches is that sometimes it is really difficult to build
the plan library, i.e., acquire a reasonable number of plans that achieve different
goals (Pattison & Long, 2010).

Ramírez and Geffner (2009) proposed a planning-based approach for goal
recognition that overcomes the inherent limitations of plan library approaches.
In this case, plans are not longer stored but generated as they are needed
using a domain theory (i.e., a planning domain). Their approach relies on the
principle of rationality, where agents are assumed to take optimal or least sub-
optimal (Ramírez & Geffner, 2010) plans towards their goals. There exist many
subsequent works on planning-based goal recognition inspired by Ramírez and
Geffner work (E-Martín et al., 2015; Kaminka et al., 2018; Masters & Sardiña,
2019; Pereira et al., 2020). However, since we mainly use Ramírez and Geffner
approach in this dissertation, we now review it in detail.

2.2.3.1 Goal Recognition as Planning

Ramírez and Geffner (2009) define the goal recognition problem as the inverse
of planning. The aim is to discriminate an agent’s goal from a set of candidate
goals, given a set of the agent’s performed actions. They formally define a goal
recognition problem as follows:

Definition 2.9. A goal recognition problem is a tuple T = 〈P,G,O〉 where:

• P = 〈F,A, I〉 is a planning domain and initial conditions;

• G is the set of possible goals G, G ⊆ F; and

• O = (o1, . . . ,om) is an observation sequence with each oi being an action in A.
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The solution to this problem is a set G∗ made of the goals Gi ∈ G having
an optimal plan π consistent with the observation sequence O. A plan π =

a1, . . . ,an is said to be consistent with an observation sequence O = o1, . . . ,om
iff there exists a monotonic function f that maps the observation indices into
the action indices such that af(j) = oj∀j ∈ {1, . . . ,m}.

This approach is limited by the assumption of agents acting optimally. How-
ever, agents often take suboptimal paths to achieve their goals. To overcome
this limitation, Ramírez and Geffner (2010) extended the work by presenting
an alternative probabilistic framework, based on how much the observed ac-
tions contribute to achieving a given goal. The problem remains the same as
in Definition 2.9, adding now Pr to the tuple T , where Pr is a prior probability
distribution over the goals in G. The solution now is not a set of goals, but a
posterior probability distribution over each goal G ∈ G. Goals whose plans best
satisfy observations have a higher probability of being achieved by the agent.
The posterior goal probabilities Pr(G|O) can be characterized using Bayes Rule
as:

Pr(G|O) = Pr(O|G)Pr(G) (2.9)

where Pr(G) is the prior probability distribution over G ∈ G, and Pr(O|G) is the
likelihood of observing O when the goal is G. Ramírez and Geffner characterize
the likelihood Pr(O|G) in terms of cost difference (∆) between: (1) the cheapest
plan for a goal, given the observed actions already taken by the agent; and (2)
the cheapest plan that the agent could have followed to reach the goal, without
taking into account the observations:

∆(G,O) = Cost(G|O) −Cost(G|Ō) (2.10)

By comparing cost differences for all G ∈ G, they propose to generate a proba-
bility distribution across G with the following important property: the lower the
cost difference for a particular goal, the higher its probability. This probability
distribution is computed using a Boltzman distribution as follows:

Pr(G|O) = α
ε−β∆(G,O)

1+ ε−β∆(G,O)
Pr(G) (2.11)

where α is a normalizing constant and β is a positive constant. In their paper,
Ramírez and Geffner show how the constraints O and Ō can be compiled into
a new planning task, so that standard planners can be used to find plans that
either account or disregard the observations.

Figure 2.3: Initial state of a blocks-words planning instance.
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To better illustrate Ramírez and Gefner (2010) approach, let us go back again
to our blocks-world example, depicted again on Figure 2.3. Let us assume the
aim of the agent is to build words using the available blocks. Let us consider
that the set of possible goals the agent may want to build G is the following:

G1 = 〈(clear t) (on t e) (on e a) (ontable a)〉 #word TEA

G2 = 〈(clear a) (on a t) (on t e) (ontable e)〉 #word ATE

The observed sequence of actions is O = {(pick-up t) (stack t r)}. Given this set
of observations, we have the following costs:

Cost(G1|O) = 6,Cost(G1|Ō) = 6→ ∆(G1|O) = 0

Cost(G2|O) = 6,Cost(G2|Ō) = 2→ ∆(G2|O) = 4

The cost difference for G1 is 0, since the observation is part of an optimal plan
to build the word TEA. However, the cost difference for G2 is 4. This is because
the word ATE could be built at cost 2 from the initial state, and the observations
increase the cost of reaching G2 to 6 (the agent is deviating from achieving that
goal). Hence, G1 will have a higher probability of being the true goal the agent
is pursuing than G2.

A major drawback of this approach is that it is computationally expensive: we
need to compute two plans for every goal in G, one complying with the obser-
vations and other without taking them into account. This makes the approach
impractical when the number of candidate goals increases.

2.3 summary

In this chapter we have firstly presented and analyzed different automated plan-
ning frameworks. As we have seen, each of them makes different assumptions
about the environment, but they do have something in common: they use mo-
dels of the world to generate plans that achieve goals from a given initial state.
Over the years, planning research has mainly focused on actions and plans,
leaving goals in the background and considering them as an external input that
remains static over the execution. This setting is too restrictive and limits the ap-
plicability of automated planning in real-world domains, and puts in between
the autonomy and intelligence of planning agents. Goal reasoning tries to over-
come this situation by situating goals in the centre of the research agenda. We
have presented different works and approaches that try to answer questions on
when should agents (re-)formulate their goals, and how they can do it.

This thesis provides work answering some open questions from the goal rea-
soning and planning communities.

Integrated Goal Reasoning and Planning. Most previous works on goal rea-
soning understand goal reasoning as an external process to the planning one. As
we have seen, most research presents different systems and architectures such
as ARTUE (Klenk et al., 2013) or MIDCA (Cox et al., 2016) comprising indepen-
dent modules with different capabilities. In those architectures, goal reasoning
modules are typically outside planning ones, and their interaction is limited
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in some cases. In that sense and in line with the claims by Paredes and Ruml
(2017), we aim at considering goal reasoning as a form of planning, rather than
as an independent process.

Proactively formulating goals. Most previous works formulate new goals
based on the current state of the environment. This approach, although valid
for many applications, limits the capabilities of planning agents and make them
to behave reactively. We aim at investigating how to make agents proactive,
starting to reason about goals that are likely to appear in the future. For instance,
going back to our autonomous car example, an agent could have learnt over
time that she runs out of battery when going from A to B, hence recharging the
battery before the indicator starts to flash.

Multi-agent Goal Reasoning: Integrating Goal Reasoning and Goal Recog-
nition. Very few works consider other agents’ actions when (re-)formulating
goals. When they do consider other agents’ behavior, they tend to require hav-
ing rules or predefined libraries that suggest which goal/plan to follow based
on the observations. This greatly limits the autonomy of agents. We believe that
recent advantages in planning-based goal recognition can be used to infer other
agents’ goals and plans in order to better (re-)formulate goals, and we will fur-
ther investigate their connections.
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P L A N N I N G W I T H D I S TA N C E - B A S E D G O A L S

“Part of the issue of achievement is to be able
to set realistic goals, but that’s one of the
hardest things to do because you don’t always
know exactly where you’re going,
and you shouldn’t.”

- George Lucas

Automated planning deals with the task of finding a sequence of actions,
namely a plan, which achieves a goal state from a given initial state. A goal
state is a state where a conjunction of propositions is true. Therefore, the stop-
ping criteria of planning algorithms relates to states that fulfill that property.
Let us call final or goal states to the states that fulfill that property. In this chap-
ter, we study other relevant properties of states that define different classes of
final states. Instead of considering only one goal (composed of a conjunction
of propositions), we will use as input a set of goals, as in planning-based goal
recognition works (Ramírez & Geffner, 2009). We will study properties such
as finding final states that are as close as possible to the set of goals, or final
states that are as far as possible from those goals. We refer to these states as
goal-related states. These new properties allow our algorithms to solve classes
of real-world problems that have not yet been addressed within the field of
automated planning.

In order to solve these new tasks, we define planning algorithms that provide
final states fulfilling a given distance(cost)-related property with respect to the
set of goals. We will use the terms distance and cost indistinctly. These planning
algorithms could also compute plans that fulfill a property related to the set of
goals. For instance, in the case of reaching a state as far as possible from a set
of goals, the planning algorithms may also return a plan that reaches that state,
and at the same time it maximizes the distance of any goal during the whole
plan execution.

Example 3.1. Figure 3.1 shows an example of an emergency response domain. Fire
flames indicate locations where a fire can dynamically start because of some potential
source of ignition. An agent (represented in grey) can move through adjacent white
cells. It can also cross the river (depicted in blue cells) with the canoe. Depending on the
purpose of the agent, it may reason differently about the set of fires. Let us assume that
the agent is a ranger whose objective is to set an emergency camp as close as possible to
all fires, in order to minimize the cost (time) of putting out any fire that might arrive.
In this case, each goal would be putting out each fire (each goal is made of only one
proposition in this example). The final state would be one that minimizes the distance to
all these goals, and we refer to it as the centroid state of the task. Now, let us assume that
the agent is a family that wants to escape from the fires. In this case, they would want to
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Figure 3.1: Emergency response domain. Fired cells depict potential fires. Blue cells
represent a river that people can cross by using the canoe.

reach the safest possible place and do it by following the safest possible plan. Therefore,
the fires can be seen and represented as planning goals and the agent objective (final
state) is defined according to them.

Other domains where finding states fulfilling these properties might be useful
include: areas to be patrolled by police (or robots) where potential incidents
might happen; source locations for picking up customers by taxis, or packages
by delivery companies; choosing a safe plan to protect sensitive electronic data
from potential threats in a network; or games where we want to avoid or escape
from a set of opponents or dangerous situations.

If the agents in domains we would be interested in take actions in an n-
dimensional space, we could use classical algorithms that compute centroids,
for instance. These domains use the concept of distance between two points
to compute solutions to those tasks. However, some domains do not deal with
these euclidean spaces, and the distance to a goal is not necessarily determined
by the topological distance. Therefore, based on these algorithms, we will use
automated planning to compute (or estimate) distances between states (goals).

To our knowledge, this is the first work that computes states that fulfill certain
cost-related requirements with respect to a given set of goals. There are some
works that deal with similar tasks or where the states we propose may have a
direct impact:

• Goal obfuscation (Keren et al., 2016; Kulkarni et al., 2019), where agents
are interested in hidding their true goal to an observer. By computing a
specific type of plan towards the centroid of the set of goals, we are maxi-
mizing the number of goals with respect to which the plan is obfuscated.
We do not need to select a subset of goals we want to obfuscate, as previ-
ous works need.

• Anticipatory planning (Burns et al., 2012; Fuentetaja et al., 2018), where
agents are interested in approaching goals before they arrive. Again, by
computing states such as centroids, we can locate agents in states to better
reach the goals once they arrive.
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• Multi-agent scenarios where agents compete or collaborate with others.
By computing some of our states and plans, we can locate agents in states
from which they can better block their opponents (Pozanco et al., 2018a;
Speicher et al., 2018) or help their peers (Kulkarni et al., 2019; Kvarnström
& Doherty, 2010).

The main contributions of this chapter are:

• We define a full collection of distance-based properties of final states,
along with some domains and scenarios for which finding them might
be useful.

• We assign weights to each goal to incorporate some sort of notion of pri-
ority.

• We focus on plans that reach these states, defining some distance-based
properties that plans should have.

• We define a common algorithm with different parametrizations for solv-
ing the task of computing goal-related states and plans both optimally
and suboptimally.

• We evaluate the effectiveness and scalability of our approach on different
planning domains.

The rest of the chapter is organized as follows. First, we formally define our
collection of goal-related states and plan characteristics. In Section 3.1, we in-
troduce the algorithm we use to compute such states and plans. After that, we
present an empirical study in several planning domains in Section 3.3. Finally,
we position our contribution in the context of related work in Section 3.4 and
close the chapter in Section 3.5 with discussion.

3.1 goal-related states

In a geometric space, generating points that fulfill some property with respect
to other points is usually a simple task. For instance, the point that minimizes
the distance with respect to a set of points (centroid) can be simply computed
as an average of the points’ coordinates. The task can be considered as simple
given that: (1) every point is reachable from all others; (2) point’s features (coor-
dinates) are fully specified; and (3) the distance from one point to another can
be simply calculated as the Euclidean distance (or any other similar distance) of
its coordinates.

In order to generalize this task to non-geometric domains, we can general-
ize points to the concept of state, where a state is defined in terms of a set
of propositions. The state would be n−dimensional, where n is the number
of propositions whose value can change when solving a given planning task.
However, states: (1) are not necessarily reachable from all other states; (2) are
not necessarily fully specified (we need to reason about partial states); and (3)
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the complexity of computing the distance between two states is PSPACE (Bylan-
der, 1994).

Therefore, next we first define some reachability and distance concepts for
automated planning. With these definitions at hand, we then introduce our col-
lection of distance-based properties. These properties are based on the sequence
of distances of the states with respect to the given set of goals. These distances
are computed using (real or estimated) costs to reach one goal from another.

3.1.1 Reachability and Distance Definitions

For purposes of this work, we modify our previous definition of a goal to allow
goal weighting.

Definition 3.1. Given a planning task Π, a weighted planning goal is a tuple Gi =
〈pi,wi〉, where pi ⊆ F is a partial state and wi ∈ R[0, 1] is a number indicating the
weight of pi.

This definition of goal is similar to the one employed in oversubscription plan-
ning (Domshlak & Mirkis, 2015; Smith, 2004). However, while oversubscription
planning focuses on maximizing the total utility of the achieved soft goals, we
are interested in finding a state that fulfills a given property with respect to a
set of goals.

Since pi is a partial state, it is a conjunction of propositions that must be true
in a state to be considered as a goal state. For instance, considering the problem
depicted in Figure 3.1, a possible goal would be 〈(at person t10-10),0.8〉, which
indicates that positioning a person in the tile in the tenth column, tenth row has
a weight of 0.8. In this case, there is only one proposition in the goal definition.

Moreover, in a classical planning task we only have one goal G to achieve. In
our case, we have a set of goals we reason about (i.e., several Gi), as in planning-
based goal recognition (Ramírez & Geffner, 2009). We denote this set of goals
as G. A possible set of goals for the problem depicted in Figure 3.1 would be as
follows:

G = {〈(at person t10-10), 0.8〉, 〈(at person t4-7) (at canoe t4-6), 1.0〉}

That is, having the person at t4-7 and the canoe at t4-6 has a higher utility than
having the person at t10-10.

In order to deal with reachability and distance between planning states, we
provide the following standard definitions.

Definition 3.2. Given a planning task Π, a state s is reachable from I (or simply
reachable) iff there is at least one valid plan π such that its execution from I, Γ(I,π),
achieves s; i.e. s ⊆ Γ(I,π). RΠ is the set of all reachable states from I in Π.

Computing the distance (cost) between two states is not straightforward in
automated planning. Moreover, it depends on the distance definition we use.
We define the distance between states as follows:

Definition 3.3. Given a planning task Π, the distance between two states s and p
is the cost of the minimal cost plan c(π) that achieves p from s.
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This definition give us the actual (optimal) distance between two states. How-
ever, sometimes it will be hard to get this value, and therefore we will be inter-
ested in estimating it. We will use cost(s,p,h) as a function that computes the
cost of achieving p from s using the cost estimator h. This function can compute
either the actual optimal cost h∗ of achieving p from s, or an estimated cost (as
the one computed by a heuristic function).

Our aim is to find states that fulfill some property related to the distance with
respect to the set of goals G. Hence, we compute D, the sequence of weighted
distances of a state s to each goal in G, using cost estimator h, as follows:

D(F,A, s,G,h) = {di‖(pi,wi) ∈ G,di = cost(s,pi,h)×wi} (3.1)

We will refer as ComputeDistances(Π,G, s,h) to the procedure that computes
the sequence of weighted distances of a state with respect to all goals in G . We
can compute different statistical measures from this sequence of distances such
as the average, or the maximum and minimum elements in the set. We will use
later these metrics to define our collection of distance-based properties of states.

Let us return to our running example in Figure 3.1. There are four possible
goals that depend on the final intended position of the agent (at a given flame):
(10,10), (4,3), (1,1) and (1,10). To slightly simplify the computation, assume that
all goals have a weight equal to 1. We use the Manhattan distance as the heuris-
tic function h. Hence, we assume the agent can cross the river without using
the canoe. If we compute the sequence of weighted distances assuming that the
agent is initially located at (4,10), we have:

D(F,A, s,G,h) = 〈6, 7, 12, 3〉

With these definitions at hand, we are ready to introduce our new planning task,
as well as our collection of distance-based properties.

3.1.2 Distance-based Planning Tasks

In this work we focus on the single-agent classical planning setting previously
described, where we make the following assumptions: (1) full observability of
the state, which can only change due to the actions performed by the agent;
(2) deterministic action outcomes; and (3) the sequence of weighted planning
goals G does not change over time. With these assumptions, we formalize a
distance-based planning task as follows:

Definition 3.4. A distance-based planning task is a tuple dpt = 〈F,A, I,G〉, where
F, A, and I are equivalent to a standard planning task Π; and G is a set of weighted
planning goals we want to reason about. The solution to a distance-based planning task
is a plan π whose execution achieves a state s that fulfills a cost-related property with
respect to the set of goals G.

In order to define some of our states, we will need to reason about all the
states in which any of the goals in G is achieved. We refer to that as the set of
individual goal states of a distance-based planning task.
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Definition 3.5. Given a distance-based planning task dpt = 〈F,A, I,G〉, a state s is
an individual goal state iff (1) it is reachable, s ⊆ Rdpt; and (2) there is at least one
goal in G that is satisfied, ∃Gi = (pi,wi) ∈ G such that pi ⊆ s. IGdpt is the set of
individual goal states of a distance-based planning task.

Next, we define the cost-related properties we use in this work, which will
create our collection of goal-related states and plans.

3.1.2.1 Distance-based Properties

We define our collection of goal-related states in terms of some statistical mo-
ments over D. We use: the weighted average (µ) over the distances in the se-
quence; and the maximum (max) and minimum (min) distances in the sequence.
The first state we are interested in is the centroid of a set of goals. The centroid
minimizes the average distance to all the goals in the distance-based planning
task. Centroids can have a direct impact in domains such as food delivery, where
delivery drivers may be interested in locating themselves close to the most fre-
quented restaurants; or surveillance scenarios, where police (or robots) may
want to take some patrolling or control actions in areas where potential inci-
dents might happen. We define planning centroids as follows:

Definition 3.6. A state s ∈ Rdpt is a centroid state of a distance-based planning task
dpt iff ∀s′ ∈ Rdpt, µ(D(F,A, s,G,h∗)) 6 µ(D(F,A, s′,G,h∗)). The set of centroid
states of a distance-based planning task dpt is denoted as Centroids∗(dpt).

In some cases, we might want to approach most of the goals (as the centroid
allows), but with the extra requirement of reaching one of the goals in G. Simi-
larly to centroids, we define planning medoids as follows:

Definition 3.7. A state s ∈ IGdpt is a medoid state of a distance-based planning task
dpt iff ∀s′ ∈ IGdpt, µ(D(F,A, s,G,h∗)) 6 µ(D(F,A, s′,G,h∗)). The set of medoid
states of a distance-based planning task dpt is denoted as Medoids∗(dpt).

The next property we define is the minimum covering state, which minimizes
the maximum distance to any goal. The idea behind reaching these states is to
not be far from any goal. Minimum covering states might also be useful in the
aforementioned scenarios as well as in many multi-agent domains where we do
not want to be far from any of the other agents’ potential goals in order to block
or help them. We define minimum covering states as follows:

Definition 3.8. A state s ∈ Rdpt is a minimum covering state of a distance-based
planning task dpt iff ∀s′ ∈ Rdpt, max(D(F,A, s,G,h∗)) 6 max(D(F,A, s′,G,h∗)).
The set of minimum covering states of a distance-based planning task dpt is denoted as
Minimum-Covering∗(dpt).

As in the case of centroids, we can also restrict the minimum covering states
to those already contained in the set of goals G.

Definition 3.9. A state s ∈ IGdpt is a minimum covering-m state of a distance-
based planning task dpt iff ∀s′ ∈ IGdpt, max(D(F,A, s,G,h∗)) 6 max(D(F,A, s′,G,h∗)).
The set of minimum covering-m states of a distance-based planning task dpt is denoted
as Minimum-Covering-M∗(dpt).
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The four properties of states defined so far try, in different ways, to approach
to the goals in G. However, there are domains where it might be useful to find
states that are as far from other states as possible. Among others we can find:
natural disasters domains, where we want to design escape plans to move peo-
ple to safe places; games, where we want to avoid or escape from a set of op-
ponents and/or dangerous zones; or choosing the nodes in a network where to
store sensitive electronic data to keep it safe from potential threats. An advan-
tage of our distance-based planning task definition is that if we think of goals
as risks, it is still useful.

Definition 3.10. A state s ∈ Rdpt is a reverse centroid state of a distance-based
planning task dpt iff ∀s′ ∈ Rdpt, µ(D(F,A, s,G,h∗)) > µ(D(F,A, s′,G,h∗)). The set
of reverse centroid states of a distance-based planning task dpt is denoted as
Reverse-Centroids∗(dpt).

Definition 3.11. A state s ∈ IGdpt is a reverse medoid state of a distance-based
planning task dpt iff ∀s′ ∈ IGdpt, µ(D(F,A, s,G,h∗)) > µ(D(F,A, s′,G,h∗)). The
set of reverse medoid states of a distance-based planning task dpt is denoted as
Reverse-Medoids∗(dpt).

Definition 3.12. A state s ∈ Rdpt is a reverse minimum covering state of a
distance-based planning task dpt iff ∀s′ ∈ Rdpt, min(D(F,A, s,G,h∗)) >
min(D(F,A, s′,G,h∗)). The set of reverse minimum covering states of a distance-based
planning task dpt is denoted as Reverse-Minimum-Covering∗(dpt).

Definition 3.13. A state s ∈ IGdpt is a reverse minimum covering-m state of a
distance-based planning task dpt iff ∀s′ ∈ IGdpt,
min(D(F,A, s,G,h∗)) > min(D(F,A, s′,G,h∗)). The set of reverse minimum covering-
m states of a distance-based planning task dpt is denoted as
Reverse-Minimum-Covering-M∗(dpt).

s Optimizes s ∈ G

Centroid min(µ(D)) ×
Medoid min(µ(D)) X

Minimum Covering min(max(D)) ×
Minimum Covering-m min(max(D)) X

R-Centroid max(µ(D)) ×
R-Medoid max(µ(D)) X

R-Minimum Covering max(min(D)) ×
R-Minimum Covering-m max(min(D)) X

Table 3.1: Summary table of our collection of goal-related properties.

Note that we define the collection of goal-related states as the cartesian prod-
uct of two variables: (1) the statistical measure over D, average and min/max;
and (2) whether we want to minimize or maximize the given measure. By do-
ing this, we are introducing R-Minimum Covering-m, which is a meaningless
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state that tries to maximize the minimum distance in D at the same time that
requires to be at a distance of 0 from at least one goal.Table 3.1 summarizes
our collection of goal-related states. For each property, we show which metric it
optimizes, and if the returned state must also be a goal state or not.

3.1.2.2 Plans’ Properties

The states defined in the previous section could be reached through plans that
meet different criteria such as being the shortest or the cheapest. We aim to find
plans that also fulfill the same distance-based property through all the states tra-
versed by the plan. This can be very useful, for instance, in domains where we
do not want to reveal our true goal to an observer (goal obfuscation) (Kulkarni
et al., 2019), or domains where we want to be safe during the whole execu-
tion (Koenig & Simmons, 1994).

Figure 3.2: Simplified version of a strategy game, where a worker has to gather some
resources. Both the blue and red plans have the same cost. However the blue
one minimizes the average distance to all the goals along the path.

Example 3.2. Figure 3.2 shows a simplified strategy game where the agent is a worker
that may need to gather a set of resources. It is aware that there are some enemies ob-
serving its movements; it would therefore like to reveal the least possible information.
Under these circumstances, we could see G as the set of goals the observer believes the
agent may want to achieve (the resources), and find its centroid. By doing this: (1) it
will get close to gather most of the resources; and (2) if it follows a smart path, it can
maximize the number of goals the enemy thinks it is pursuing during most part of the
plan, thus minimizing the information leakage. In the above mentioned example, both
blue and red plans have the same cost. However, the blue one minimizes the average dis-
tance to all the goals along the path. Note that the blue path maximizes goal obfuscation
against a worst case observer (Kulkarni et al., 2019), i.e., an observer that can make
perfect inferences observing all the actions of the agent. Therefore, less capable observers
such as those that can only observe some of the actions, would also be obfuscated by the
agent following the blue path. The plan would be obfuscated until the centroid. From
that state on, an observer would be able to infer the actual goal of the agent, turning out
that centroids are closely related to Last Deceptive Points (Masters & Sardiña, 2017) in
goal obfuscation settings.

Example 3.3. On the other hand, if we see goals as risks, we would want to stay away
from them. To do that, we can compute some sort of escape plans that keep agents as
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Figure 3.3: Natural disaster domain where a volcano has erupted. The safest place, i.e.,
the one with the maximum distance to the volcano, is depicted with a heli-
copter. Although both plans reach the same state, the blue one does it while
maximizing the distance to the volcano along the path.

far as possible from the goals along the execution of all actions in the plan. Consider a
natural disaster domain like the one shown in Figure 3.3 where a volcano has erupted
in an island. The safest place, i.e., the one with the maximum distance to the volcano, is
depicted with an helicopter. When the person reaches this state, she can take an helicopter
to leave the island. In this example, both plans do not longer have the same number of
actions. The red one is shorter, but makes the agent pass through the risk, while the blue
one, although longer, makes the agent reach the helicopter by maximizing the distance
to the volcano along the path, thus being a much safer escape plan. These examples have
actually been generated by our algorithm using different configurations, as we will later
see in the evaluation section.

We propose another way to compute the cost of a plan that solves a distance-
based planning task:

Definition 3.14. The distance-based cost of a plan that solves a distance-based
planning task dpt is the average of a given statistical measure m over D, for all the
states traversed by the plan:

dbc(π,m) =
m(s0) +

∑
ai∈πm(γ(si−1,ai))
|π|+ 1

(3.2)

π will be optimal if there is no other plan with lower distance-based cost.

We use the same metrics we defined for the goal-related states for m. For
instance, if we compute the centroids of a distance-based planning task, we will
use m = µ(D). If we use any of the reverse properties (those that maximize
their distance to the goals), we will transform the metric by substracting a big
constant κ to it. So, if we compute the reverse centroids of a distance-based plan-
ning task, we will use m = κ−µ(D). This allows us to use the same previously-
defined cost-minimization algorithms when computing the new plans.

3.2 planning with distance-based goals

In a distance-based planning task, plans need to reach a set of states that is
unknown a priori; not even partially as in the case of classical planning. Com-
puting these states requires exploring a vast amount of the reachable state space
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using a perfect heuristic estimator h∗ (see Definitions in Section 3.1.2.1). Since
this is a very expensive task, we want to compute plans at the same time that we
explore the state space. Hence, we relax our definitions to compute suboptimal
states and plans.

We propose to use a common algorithm to compute our collection of states
and plans both optimal- and suboptimally, depending on the configuration pa-
rameters. We call it grs, which stands for Goal Related States. Algorithm 1

details the full procedure. It consists of a Best-First Search algorithm that can
be tuned by modifying the following parameters:

• The function h used to compute the sequence of distances to the goals in
G.

• A parameter o that determines if node reopening is allowed or not.

• The stopping condition of the algorithm, τ.

The algorithm also receives the following inputs:

• A distance-based planning task dpt.

• An input p that determines whether we want to minimize the plan cost
c(π), or the distance-based cost of a plan in terms of its relationship with
the goals dbc(π,m), as stated in Definition 3.14.

• An input m that determines the metric we want to minimize, which also
means which goal-related state we want to achieve (from Definitions 6 to
13).

The algorithm expands nodes until the stopping condition τ is met. We store
at each search node the planning state, the current g, the sequence of distances
D, and the path that reaches the node. The sequence of distances D is computed
by ComputeDistances(F,A, s,G,h). The value of g is computed by ComputeG.
This function receives as input: a given node; the parameter p that determines
if we want to minimize the plan cost or the distance-based cost of a plan; the
metric m over D we want to minimize; the path towards the node; and the
sequence of distances. In case we want to minimize the plan cost, the g of a
search node is computed as the sum of its parent’s g plus the cost of the applied
action, as in a standard Best-First Search algorithm:

gs = gparent + c(a) (3.3)

On the other hand, if we want to minimize the distance-based cost of the plan,
we compute g as follows:

gs =
(gparent × |paths|) +m(s)

|paths|+ 1
(3.4)

In this case, we are averaging the metric m (computed from the sequence of
distances D) of all the states traversed by the plan until reaching s.
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Algorithm 1 grs

Require: h (cost estimator), o (node reopening), τ (stopping condition)
Require: dpt = 〈F,A, I,G〉 (distance-based task), p (type of plan), m (metric to mini-

mize)
Ensure: Best (set of best solutions)

1: DI ←ComputeDistances(F,A, I,G,h)
2: DBest ← DI
3: gI,gcheapest(I) ←ComputeG(I,p,m, ∅,DI)
4: open,Best← {〈I,gI,DI, ∅〉}
5: while not τ do
6: 〈n,gn,Dn, pathn〉 ←Pop(open,m)

7: successors←GenerateSuccessors(n)
8: for s,a in successors do
9: Ds ←ComputeDistances(F,A, s,G,h)

10: gs ← ComputeG(s,p,m, {pathn ∪ a},Ds)
11: if IsNew(s) or (o and gs < gcheapest(s)) then
12: gcheapest(s) ← gs

13: paths ← pathn + a

14: open← open∪ {〈s,gs,Ds, paths〉}
15: if ComputeMetric(Ds,m) < ComputeMetric(DBest,m) then
16: Best← {〈s,gs,Ds, paths〉}
17: DBest ← Ds
18: else if Ds = DBest then
19: Best← Best∪ {〈s,gs,Ds, paths〉}
20: return Best

At each search step, we expand the node which minimizes m (line 6). We
generate the successors of such state and compute their sequence of distances
and g value (lines 9-10). For the sake of clarity, we assume a smart successors
generation function that only generates children that are not already contained
in paths. By doing this, we ensure that we are not generating infinite paths
with loops. After that, we check if we have to insert the successor into the open
list (line 11), which is a priority queue sorted on m. We do that either if: (1)
the successor is new; or (2) we have found a cheaper path to that state and we
allow node reopening (parameter o). In such case, the algorithm sets the value
of g and the path for the newly generated nodes, and inserts the node in the
open list. Then the algorithm checks if the metric value m over the sequence of
distances of the current state Ds is less than or equal to the lowest metric value
found so far, stored in DBest. If so, we update the set of best states found so
far Best, and its sequence of distances DBest (lines 15-29). When τ is met, the
algorithm returns Best, the set of best solutions found during the search. Such
set contains the states and the best plans found that reach those states.

Theoretical Properties of the Algorithm

We now prove that our algorithm is sound, complete, and optimal, and under
which conditions. First, we show that our task is always solvable.
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Theorem 3.1 (Solution existence). There is always a solution to distance-based plan-
ning task dpt.

Proof. Following Definition 3.4, we have that the solution to dpt is a reachable
state that fulfills some distance-based property with respect to a set of goals G.
The initial state I is always reachable, since we are already in that state and the
algorithm starts searching for a solution from it. In case no other state of the
distance-based planning task is reachable, the initial state would be the one that
fulfills all previously defined properties. Therefore, there is always a solution
for dpt.

From this, we prove the theoretical properties of grs
∗, the optimal version of

our algorithm which uses the perfect heuristic estimator as h, allows node re-
opening o and does not stop until all the reachable state space has been visited
τ.

Theorem 3.2 (Completeness). If there exists a state s that is a solution to dpt and a
plan π that solves dpt, grs will find them.

Proof. The algorithm expands nodes by generating all the possible successors of
a given state starting from the initial state I. Since there is no pruning, and the
termination condition is that the open list is empty, all the reachable state space
Rdpt is explored. Also, all states are visited via all the possible paths because
we are allowing node re-opening. Therefore, if there is a solution to the dpt, the
algorithm will find it.

Theorem 3.3 (Soundness). If the plan π returned by the algorithm is applied from the
initial state I, it will end up in a state s, which is the state returned by the algorithm.

Proof. The algorithm starts from the initial state I. At each step, the algorithm
generates each successor stj of the state st by executing an applicable action
aj ∈ A from st as stj = γ(st,aj). When the algorithm terminates, the returned
plan is the concatenation of actions applied that lead from I to s, i.e., π =

ai, . . . ,an, Γ(I,π) = s. Therefore, the plan is valid and the algorithm is sound.

Theorem 3.4 (Optimality). The solution returned by grs optimally solves dpt if it is
run with the parameters configuration: h = h∗, o =True and τ = open = ∅.

Proof. As we have shown before, the algorithm visits all reachable states and
it computes the cost of reaching each goal in G from each reachable state. By
computing this cost using a perfect heuristic estimator h∗, each distance in D

represents the actual optimal cost from each state to each goal. Hence, the re-
lated metrics, such as the average or the minimum/maximum elements in the
set, are also the actual values. When it finishes, the algorithm returns the state
and plan that optimize the selected metric.

We cannot ensure any of these properties for other algorithms that may arise
from variations of the different parameters of grs. For instance, even if a spe-
cific version of the algorithm explores all the state space but using a heuristic
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estimator, it will not be optimal. Although the rest of algorithm’s configura-
tions do not share some of these theoretical properties, we will provide some
experimental evidences on those properties in the next section, in particular to
(sub)optimality.

3.3 evaluation

We implemented grs on top of FastDownward (Helmert, 2006). By varying the
parameters h, o, and τwe obtain five different algorithms, as shown in Table 3.2.
These algorithms can also be seen as five different parametrizations of the same
algorithm. However, since these parametrizations have completely different the-
oretical properties, we use the term algorithms instead. We use the ff heuristic,
hff (Hoffmann & Nebel, 2001), to estimate the distance to the goals in the sub-
optimal versions of grs, since it is a fast and rather accurate heuristic in many
domains. In the optimal version, h∗ is computed from the cost of optimal plans
to the goals at each search node using A∗ with the lmcut admissible heuris-
tic (Helmert & Domshlak, 2009).

Version h o τ

grs
∗ h∗ Yes Rdpt

grs
f hFF Yes Rdpt

grs
f− hFF No Rdpt

grs
hc hFF Yes Greedy + Hill Climbing

grs
g hFF Yes Greedy

Table 3.2: Five versions of grs obtained by varying: (1) the heuristic function h; (2) the
node reopening policy o; and (3) the stoping condition τ.

We employ three different stopping conditions τ. The first one, Rdpt, explores
all the reachable state space. The second one, Greedy, stops the search when
there is no state in the open list with a better (lower) metric value than the best
state visited so far. This is used by the greediest version of the algorithm, grs

g.
The third condition, Greedy+Hill Climbing, employed by grs

hc, also performs
a greedy search, but it tries to escape from local minima by performing 50 ran-
dom actions1 from the state found by grs

g. It follows a stochastic hill climbing
approach that: (1) generates the successors of a state; (2) randomly selects one
of them; (3) evaluates it to check if it is better than the best state visited so far –
if so, it updates Best, which contains the best state observed; and (4) goes back
to (1) until it reaches the maximum number of iterations (50).

Most versions of the algorithm reopen nodes to find a cheaper path to the
states. However, this computation may be too expensive, specially in the ver-
sions that explore all the reachable state space. Hence, we include grs

f−, which
behaves like grs

f, but does not reopen nodes (parameter o). This alternative

1 Best value found during our experimental evaluation.
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may potentially reduce the search effort when computing suboptimal solu-
tions (Chen et al., 2019).

These five algorithms take also three parameters (h,o, τ) that grs receives as
input, and allow reaching the states by differently exploring the search space. By
also varyingm, we can obtain any of our goal related states: centroids, medoids,
minimum-covering, minimum-covering-m, reverse centroids, reverse medoids,
reverse minimum covering, and reverse minimum-covering-m states. We can
also vary p, the parameter that indicates the type of plan we want to get. We
might want to minimize the cost of the actions, or the distance-based cost of the
states traversed. These variations give us 80 different algorithms that generate
different states and plans. For instance, we can use grs

∗ with m = min(avg),
and p = min(c(π)) to compute optimal centroid states through a shortest path
(plan with least length). Or we can use grs

g with m = max(avg), and p =

min(dbc(π,m)) to greedily compute reverse centroid states through a plan that
maximizes the distance to the goals through the traversed states.

The algorithms we have defined return a set of solutions Best. Each solution
S ∈ Best is a tuple S = 〈s,gs,Ds, paths〉. In case the returned values of gs and
Ds have been computed using greedy algorithms and/or imperfect heuristic
estimators, we ignore these values and compute them using perfect estimators.
Thus, we compute Ds using a perfect heuristic estimator h∗, and also compute
the distance-based cost of the plan returned in the solution paths. When there
exist more than one solution (|Best| > 1), the algorithm has found more than
one state with the same metric value over D. In this case, we break ties by
the (distance-based) plan cost. If ties persist, we report the result of any of the
remaining solutions indistinctly.

The experimental evaluation is divided as follows. First, we perform an evalu-
ation of algorithms’ suboptimality in small problems taken from three domains
to test how the suboptimal versions compare to the optimal one. Second, we in-
crease the size of the problems in a controlled way to test how all versions scale.
Third, we continue our quantitative evaluation in large planning instances taken
from different International Planning Competitions (IPCs)2. Then, we perform
a qualitative assessment of the different goal-related states and plans returned
by each algorithm.

Reproducibility. The experiments were run on Intel(R) Xeon(R) CPU X3470 @
2.93GHz machines with a time limit of 3600s and a memory limit of 8GB. Both
the code and the benchmarks mentioned from now on are already available
on-line.3

3.3.1 Suboptimality Evaluation

Our first set of experiments compares the different versions of grs. We perform
a set of experiments in small problems where the optimal version can explore
all the reachable state space computing optimal plans to the goals. In those prob-
lems, the size of the reachable state space is small, |Rdpt| 6 1000. We selected

2 http://ipc.icaps-conference.org
3 https://github.com/apozanco/GRS_0.1

http://ipc.icaps-conference.org
https://github.com/apozanco/GRS_0.1
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Figure 3.4: UAV domain. Batteries represent recharge stations.

the following three domains, generating 10 random distance-based planning
tasks for each one:

• Grid: a path-planning like domain where an agent can move to adja-
cent cells. The map size is 20× 20 and 20% of the cells are obstacles that
the agent cannot traverse. The goals are four random cells that the agent
should reach. The weight of each goal is randomly generated.

• blocks-words: a variation of the well-known blocks-world domain, where
an agent can build words using five available blocks (Ramírez & Geffner,
2009). Each problem has three potential goals, which are words that the
agent wants to build. The weight of each goal is randomly generated.

• UAV: a domain like the one shown in Figure 3.4, where an Unmanned
Aerial Vehicle (UAV) needs to patrol an area with some volcanoes. In
particular, the drone is required to take a picture of a volcano once it
erupts. The eruption pattern is not known, and the UAV is required to
take pictures of the eruption as soon as possible once it occurs. The battery
of the UAV is limited, so it will need to recharge it from time to time using
the charging stations depicted by the battery icons. The UAV starts with
three units of battery, and will consume one unit each time it moves to an
adjacent cell of the grid. The map size is 8× 8 and we place 4 volcanoes
and 10 recharge stations randomly in all the problems. Note that in this
domain some goals might not be reachable. In those cases, we set the
distance to the goal to 1000.

We selected these three domains given that they encompass many others:
Grid is the base of any path-planning domain; blocks-words can be seen as
a construction domain; and in UAV we have resources that are consumed and
might cause deadend situations. For the sake of clarity, in this subsection we
will only report results of the five algorithms when computing centroids via
shortest paths. However, all the suboptimality results and conclusions can be
extrapolated to the rest of states and plans. Table 3.3 summarizes the results of
a quantitative evaluation. For each domain, each row shows the average and
standard deviation over 10 problems of the results obtained by each of the
five versions. Each column represents different measures of quality and per-
formance:
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Centroids - Shortest Path

Domain Version µ ∆(µ) c(π) t

Grid

grs
∗

7.8±2.3 -0.4±0.2 9.6±4.4 2681.1±165.3

grs
f

7.8±2.2 -0.4±0.2 11.7±7.7 1.2±0.1

grs
f−

7.8±2.2 -0.4±0.2 11.7±7.7 1.1±0.0

grs
hc

8.0±2.5 -0.4±0.2 10.8±7.2 0.7±0.0

grs
g

8.1±2.6 -0.4±0.2 10.3±7.7 0.8±0.0

Blocks

Words

grs
∗

5.1±1.2 -0.4±0.2 7.3±3.0 848.2±14.2

grs
f

5.5±1.4 -0.4±0.2 10.0±3.3 0.7±0.1

grs
f−

5.5±1.4 -0.4±0.2 14.4±6.4 0.6±0.1

grs
hc

7.9±1.9 -0.1±0.2 5.6±2.9 0.2±0.0

grs
g

8.7±2.5 -0.0±0.2 3.2±1.6 0.2±0.0

UAV

grs
∗

251.7±352.4 -0.2±0.2 3.3±1.7 144.5±47.5

grs
f

251.8±352.5 -0.2±0.2 3.0±1.4 0.3±0.0

grs
f−

251.8±352.5 -0.2±0.2 3.0±1.4 0.3±0.0

grs
hc

252.1±353.0 -0.2±0.2 2.3±1.2 0.3±0.0

grs
g

252.1±353.0 -0.2±0.2 2.3±1.2 0.3±0.0

Table 3.3: Comparison of different versions of the algorithm on easy problems when
computing centroids via a shortest path. For each domain, each row shows
the results obtained by each version. Columns show averages and standard
deviations over the set of problems for: weighted average cost to the goals of
returned state (µ); improvement of µ in the returned state with respect to the
initial state (∆(µ)); cost of the returned plan (c(π)); and running time (t).

• µ: weighted average cost to the goals in G, for the state s returned by the
algorithm;

• ∆(µ): ratio of the difference between µ of the returned state and the µ of
I; and µ of I. We compute it as follows:

∆(µ) =
µ(s) − µ(I)

µ(I)
(3.5)

Therefore, negative numbers mean that returned states are closer to the
goals than I, while positive numbers mean that returned states are further
from goals.

• c(π): cost of the returned plan; and

• t: time in seconds to return a solution.

The optimal version of the algorithm, grs
∗ obtains the best results in terms

of quality of solution, as expected. It returns states that are around 20 − 40%
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percent closer to the goals than the initial state. However, its execution times
are around three orders of magnitude higher than the ones of the suboptimal
versions. As a reminder, it explores all the reachable state space from the initial
state, computing an optimal plan to each goal in every state.

grs
f and grs

f− also explore the reachable state space, but estimating the
distance to each goal (using a heuristic) rather than computing the cost of an
optimal plan to the goals. These algorithms obtain results in about one second
that are close to or even optimal. As we can see, avoiding node reopening can
slightly speed-up the computation (around 0.1 seconds in two domains), obtain-
ing a very similar quality. However, the plans that achieve them have a higher
cost in some cases.

The greediest versions of the algorithm, grs
hc and grs

g are faster, but the
states they return are farther from the optimum in some cases. Their associated
plans tend to be shorter (c(π)), meaning that they can fall in local minima. We
can also see how the Hill Climbing version of the algorithm improves the results
of the greedy search in some domains.

We can also observe this behavior in Figure 3.5, where we plot how the subop-
timal versions compare to the optimal ones with respect to the µ of the returned
state. As we can see, grs

f and grs
f− , the versions that explore all the reach-

able state space using a heuristic to compute the distance to the goals, obtain
results that are at most 1.3 times suboptimal in blocks-words. The greediest
version, grs

g, has the worst performance, but rarely returns centroid states that
are more than 2.0 times suboptimal.

Figure 3.5: Degradation of grs
f, grs

f−, grs
hc, and grs

g with respect to grs
∗ when

computing centroids following a shortest path in blocks-words. The central
horizontal line indicates the median of the distribution, while the other two
lines indicate the maximum and minimum values. A wider blue shadow
indicates that more points have that value.

Suboptimality results trends are similar in all domains. However, in the grid

domain suboptimal algorithms behave better. We conjecture that this is due to
the number of local minima in the problems of each domain. To confirm our
hypothesis, we generated problems with increasing percentages of obstacles in
Grid. Results are depicted in Figure 3.6, where we compare the results of grs

∗



40 planning with distance-based goals

with grs
g. In the absence of obstacles, the greediest version is able to obtain

optimal centroids. The reason is that the ff heuristic is a perfect estimator in
that domain. As the percentage of obstacles increases, and hence the number of
local minima, some solutions start moving away from the optimum. The median
is 1.0 for 0, 5, and 10% of obstacles, and it only increases up to 1.2 in the case
of 20% of obstacles. This means grs

g is returning optimal solutions most of the
times.

Suboptimal algorithms behave worse in UAV, where the ff heuristic is less
accurate since it considers that the drone is always fully charged due to the
delete relaxation. However, the results of the greediest algorithm are at most 3
times suboptimal in problems where all the goals are reachable. In problems
where some goals are not reachable this difference vanishes, given that we add
a large value of 1000 as the distance to unreachable goals. That is also why we
get average distance values of around 250 in this domain, meaning that 1 out of
the 4 goals is not achievable from the drone initial position.

Figure 3.6: Degradation of grs
g with respect to grs

∗ when increasing the percentage
of obstacles in Grid. The central horizontal line indicates the median of the
distribution, while the other two lines indicate the maximum and minimum
values. A wider blue shadow indicates that more points have that value.

Overall, we can say that suboptimal versions present a good balance between
quality and time, obtaining fast average results that are close to the optimum in
some cases.

3.3.2 Scalability Evaluation

We generated a set of Grid problems with increasing reachable states and goals
to test how the different algorithms scale. We increased the reachable state space
|R| by considering grids of 5× 5, 10× 10, 20× 20, and 50× 50 with no obstacles;
and increase the number of goals, |G|, in powers of 2 from 2 to 16. We generated
10 problems for each combination of grid size and number of goals (16 com-
binations), and compute the reverse centroids on them. The results we report
hereafter are averaged among these problems. The optimal version of the algo-
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rithm only solves 9 out of the 16 combinations. The versions that also explore
all the reachable state space solve 14 out of 16. They fail in the problems with
a 50× 50 grid with 8 and 16 risks. The greediest versions are able to solve all
problems in all cases.

Figure 3.7: Time in logarithmic scale needed for each algorithm to return a solution. The
left image shows the results in 10× 10 problems of Grid when we increase
the number of goals. The right image shows the results when we fix the
number of goals to 4 and increase the grid size, where |R| goes from 25

(5× 5) to 2500 (50× 50).

Figure 3.7 shows how the different algorithms scale when we fix either the
number of goals or the number of reachable states. We measure the time needed
for each algorithm to return a solution. The left image shows the results in a 10×
10 problems of Grid when we increase the number of goals. The right image
shows the results when we fix the number of goals to 4 and increase the square
size from 5 to 50. As expected, the execution times of the optimal algorithm are
various orders of magnitude higher than the ones of the suboptimal versions.
In the left image we can see that only the optimal algorithm gets affected by
increasing the number of goals.

We also observed that the plan length decreases as the number of goals in-
creases, with plans being up to 60% longer when we have two goals compared
to when we have 16 goals. If the state space is full of goals that are randomly
distributed, it is more likely that the centroids (as well as any other goal-related
states) are not far from the initial state, and thus the solutions are shorter. In
the right image we can see that all the algorithms are affected by increasing
the number of reachable states. The execution time grows exponentially for the
suboptimal versions, but they are still able to solve all problems.

3.3.3 Quantitative Evaluation of grs

As we have seen, suboptimal versions can compute states and plans that are
quite close to the optimal ones in a reasonable amount of time. However, we
have not seen the differences between our collection of goal-related states so far.
Figure 3.8 graphically shows the results obtained after solving 10 instances of
blocks-words via a shortest path with grs

∗. The different states are represented
in the x-axis, while the y-axis depicts different metrics over the sequence of
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distances D. For each state, the green plot shows the values of µ, while the
red plot shows the maximum element in the set (the minimum in the case of
r-centroid, r-medoid, r-minimum-covering, and r-minimum-covering-m).

Figure 3.8: Results after solving 10 instances of blocks-words via a shortest path with
grs
∗. The x-axis shows the different states, while the y-axis depicts different

metrics over the sequence of distances D. For each state, the green plot
shows the µ results, while the red plot shows the maximum element in
the set (the minimum in the case of the inverse states). For each boxplot,
the central horizontal line indicates the median of the distribution, while
the other two lines indicate the maximum and minimum values. A wider
shadow indicates that more points have that value.

As expected, we obtain states with lower average (µ) distance to the goals
when computing centroids and medoids, and higher values when computing
reverse states such as r-centroid. Also, we get states with lower maximum dis-
tance to the goals when computing minimum covering states.

In both cases, when we force the returned states to be within the set of goals
(medoids and related states), we obtain worse average and min/max results. For
instance, the average distance to the goals is a bit higher in the case of medoids
than it is when computing centroids. In the case of r-medoids and r-minimum-
covering-m, we always obtain a value of zero in the minimum element in D. This
makes sense, since these states are restricted to conform a goal of G, thus having
a distance of 0 to it (the worst possible value). R-medoids and r-minimum-
covering-m are therefore of not much interest, and we only define and compute
them to consider all the states given by the cross product of statistical measures
and their minimization/maximization.
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3.3.4 Large Planning Instances

In the previous sections, we have used small instances for which the optimum
can often be computed. However, the set of reachable states of a standard plan-
ning task is much larger. So, to conclude our quantitative evaluation, we test
the suboptimal versions of the algorithm in planning domains taken from dif-
ferent IPCs. We conducted experiments in five well-known planning domains:
ferry, gripper, hanoi, logistics, and termes. logistics, and termes. We se-
lected them because they are sufficiently different from each other, and we think
computing some of our proposed states in those domains might be interesting.
For example, we think that centroids might be really useful in domains such as
Logistics and Termes. For each domain, we generate 10 distance-based plan-
ning tasks based on the original IPC problems. For each original IPC problem,
we generate a goal’s set of size between 2 and 4. Each goal in the goal’s set is
composed of 1 to 4 predicates. In addition to the metrics in Table 3.3, we define
the following ones:

• minmax: minimum or maximum value in D for the returned state S. We
report: the maximum element in the set for those states that want to ap-
proach the goals, such as centroids or minimum-covering states; and the
minimum element for those that want to stay away from them, such as
r-centroids or r-minimum-covering states.

• ∆(minmax). Ratio of the difference between the minmax of the returned
state and the minmax of I; and minmax of I. We compute it as follows:

∆(minmax) =
minmax(s) − minmax(I)

minmax(I)

When computing states that get closer to the goals (such as centroids or
minimum-covering states), a negative number indicates that the maximum
distance to all the goals decreases. In other words, the state is not far from
any of the goals. When computing states that get far from the goals (such
as r-medoids or r-minimum-covering states), a positive number indicates
that the minimum distance to all the goals increases. In other words, the
state is not close to any of the goals.

• dbc(π,m): distance-based cost of the returned plan according to the metric
m, which is the same metric that the one minimized/maximized by the
given state.

• #s: number of instances solved within the given time and memory bounds.

We conducted experiments for each domain and all the 64 combinations of
goal-related state (8 states), plan type (2 types of plans), and algorithm version
(4 suboptimal algorithms). For clarity purposes, we only show the results of a
couple of combinations and domains in Tables 3.4 and 3.5.

In this case, we have non-restricted planning tasks and hence the number of
reachable states is usually large. As we can see, in Logistics all the algorithms
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Domain State Plan type Version µ ∆(µ) minmax ∆(minmax) c(π) dbc(π,m) t #s

logistics

centroid

shortest

GRSf 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 23.0±3.7 5.3±0.2 66.6±54.1 10

GRSf− 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 31.2±6.4 4.7±0.5 11.6±8.0 10

GRShc 5.7±4.2 -0.5±0.4 5.1±3.5 -0.5±0.3 20.9±8.7 8.1±2.8 0.2±0.0 10

GRSg 6.3±4.6 -0.5±0.4 5.4±3.7 -0.4±0.3 12.2±12.0 8.6±3.0 0.2±0.0 10

metric-related

GRSf 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 33.5±6.6 4.4±0.4 11.6±8.0 10

GRSf− 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 33.5±6.6 4.4±0.4 11.7±8.0 10

GRShc 5.7±4.1 -0.5±0.4 5.0±3.4 -0.5±0.3 15.8±11.0 8.1±2.9 0.2±0.0 10

GRSg 6.3±4.6 -0.5±0.4 5.4±3.7 -0.4±0.3 13.0±13.0 8.5±3.2 0.2±0.0 10

medoid

shortest

GRSf 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 23.0±3.7 5.3±0.2 78.8±60.8 10

GRSf− 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 31.4±6.7 4.7±0.5 11.4±7.8 10

GRShc 5.2±3.9 -0.6±0.3 5.0±3.6 -0.5±0.3 17.9±9.6 8.0±2.8 0.2±0.0 10

GRSg 6.3±4.6 -0.5±0.4 5.4±3.7 -0.4±0.3 12.2±12.0 8.6±3.0 0.2±0.0 10

metric-related

GRSf 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 23.0±3.7 5.3±0.2 80.8±50.3 10

GRSf− 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 33.7±6.9 4.4±0.4 11.5±7.9 10

GRShc 6.0±4.4 -0.5±0.4 5.5±3.9 -0.4±0.4 18.0±12.5 8.1±2.9 0.2±0.0 10

GRSg 6.3±4.6 -0.5±0.4 5.4±3.7 -0.4±0.3 13.0±13.0 8.5±3.2 0.3±0.0 10

minimum-covering

shortest

GRSf 0.5±0.5 -1.0±0.0 0.7±0.6 -0.9±0.1 28.8±5.8 4.6±0.8 37.4±28.2 10

GRSf− 0.5±0.5 -1.0±0.0 0.7±0.6 -0.9±0.1 28.8±5.8 4.6±0.8 10.6±7.8 10

GRShc 2.6±3.7 -0.8±0.3 2.3±3.2 -0.8±0.3 21.5±10.7 6.0±2.5 0.2±0.0 10

GRSg 2.6±3.7 -0.8±0.3 2.3±3.2 -0.8±0.3 21.5±10.7 6.0±2.5 0.2±0.0 10

metric-related

GRSf 0.5±0.5 -1.0±0.0 0.7±0.6 -0.9±0.1 31.1±6.1 4.3±0.8 10.7±7.8 10

GRSf− 0.5±0.5 -1.0±0.0 0.7±0.6 -0.9±0.1 31.1±6.1 4.3±0.8 10.8±8.0 10

GRShc 2.6±3.7 -0.8±0.3 2.3±3.2 -0.8±0.3 23.3±11.6 5.8±2.7 0.2±0.0 10

GRSg 2.6±3.7 -0.8±0.3 2.3±3.2 -0.8±0.3 23.3±11.6 5.8±2.7 0.2±0.1 10

minimum-covering-m

shortest

GRSf 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 23.0±3.7 5.3±0.2 59.8±45.1 10

GRSf− 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 29.4±5.9 4.5±0.8 11.4±7.9 10

GRShc 2.5±3.5 -0.8±0.3 2.6±3.3 -0.7±0.3 23.0±9.4 5.9±2.4 0.2±0.0 10

GRSg 2.7±3.9 -0.8±0.3 2.6±3.3 -0.7±0.3 21.1±11.2 6.2±2.6 0.2±0.0 10

metric-related

GRSf 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 23.0±3.7 5.3±0.2 57.8±40.1 10

GRSf− 0.5±0.4 -1.0±0.0 0.8±0.7 -0.9±0.1 31.7±6.1 4.2±0.7 11.4±7.8 10

GRShc 3.6±4.3 -0.7±0.4 3.6±4.0 -0.6±0.4 22.3±13.0 6.5±3.0 0.2±0.0 10

GRSg 3.7±4.5 -0.7±0.4 3.4±3.8 -0.7±0.4 21.3±14.2 6.6±3.1 0.4±0.0 10

Table 3.4: Comparison among different versions of the algorithm computing different
states in the Logistics domain. Each row shows the average and the standard
deviation over the set of problems for: weighted average cost to the goals of
the returned state (µ); ratio of difference of the returned state with respect
to the initial state (∆(µ)); minimum value in D for the returned state (min-
max); ratio of difference of the returned state with respect to the initial state
(∆(minmax)); cost of the returned plan (c(π)); distance-based cost of the re-
turned plan (dbc(π,m)); running time of the algorithm (t); and number of
solved tasks (#s).
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Domain State Plan type Version µ ∆(µ) minmax ∆(minmax) c(π) dbc(π,m) t #s

termes

centroid

shortest

GRSf - - - – - - - -

GRSf− - - - – - - - -

GRShc 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.4±1.0 11.9±6.0 0.3±0.0 5

GRSg 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.0±0.6 11.9±6.1 0.3±0.0 5

metric-related

GRSf - - - – - - - -

GRSf− - - - – - - - -

GRShc 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 5.4±3.4 10.9±5.8 0.4±0.1 5

GRSg 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.2±1.0 11.9±6.1 0.3±0.0 5

medoid

shortest

GRSf - - - – - - - -

GRSf− - - - – - - - -

GRShc 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.0±0.6 11.9±6.1 0.3±0.0 5

GRSg 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.0±0.6 11.9±6.1 0.3±0.0 5

metric-related

GRSf - - - – - - - -

GRSf− - - - – - - - -

GRShc 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 1.8±0.4 12.7±6.5 0.3±0.0 4

GRSg 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 1.8±0.4 12.7±6.5 0.3±0.0 4

minimum-covering

shortest

GRSf - - - – - - - -

GRSf− - - - – - - - -

GRShc 0.1±0.3 -1.0±0.0 0.4±0.7 -1.0±0.1 2.4±1.0 11.9±6.0 0.3±0.0 5

GRSg 0.1±0.3 -1.0±0.0 0.4±0.7 -1.0±0.1 2.4±1.0 11.9±6.0 0.3±0.0 5

metric-related

GRSf - - - – - - - -

GRSf− - - - – - - - -

GRShc 0.1±0.2 -1.0±0.0 0.2±0.3 -1.0±0.0 3.6±1.4 11.5±6.1 0.3±0.0 5

GRSg 0.1±0.3 -1.0±0.0 0.4±0.7 -1.0±0.1 2.4±1.0 11.9±6.0 0.3±0.0 5

minimum-covering-m

shortest

GRSf - - - – - - - -

GRSf− - - - – - - - -

GRShc 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.4±1.0 11.9±6.0 0.3±0.0 5

GRSg 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.4±1.0 11.9±6.0 0.3±0.0 5

metric-related

GRSf - - - – - - - -

GRSf− - - - – - - - -

GRShc 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.3±1.1 12.6±6.5 0.3±0.0 4

GRSg 0.0±0.0 -1.0±0.0 0.0±0.0 -1.0±0.0 2.3±1.1 12.6±6.5 0.3±0.0 4

Table 3.5: Comparison among different versions of the algorithm computing different
states in the Termes domain. Each row shows the average and the standard
deviation over the set of problems for: weighted average cost to the goals of
the returned state (µ); ratio of difference of the returned state with respect
to the initial state (∆(µ)); minimum value in D for the returned state (min-
max); ratio of difference of the returned state with respect to the initial state
(∆(minmax)); cost of the returned plan (c(π)); distance-based cost of the re-
turned plan (dbc(π,m)); running time of the algorithm (t); and number of
solved tasks (#s).
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solve the 10 distance-based planning tasks. However, this is not the case in the
rest of domains. In most cases, only grs

hc and grs
g, which do not explore

all the state space, are able to solve the tasks. As observed in the previous
experiments, greediest algorithms obtain worse results, but return solutions in
less than a second in most cases. On the other hand, grs

f and grs
f− obtain

better results, but their execution times are higher and cannot solve the tasks
within the given time in many cases. As expected, we obtain lower µ values
when computing centroids, and higher µ values when computing r-centroids.
The same applies to the minmax metric when computing minimum-covering
states and r-minimum-covering states.

There are some domains such as Termes where algorithms are able to return
states with an average distance to the goals equal to 0. This means that there
are some states where all the goals of the distance-based planning task are true.
This makes sense because these tasks come from solvable IPC problems, where
there exist at least one state where all the goal propositions are true. This was
not the case in the blocks-words tasks, where the agent can build only one of
the words at the same time.

The fact that we constructed our distance-based planning tasks from the IPC
tasks also affects the results we get for the different states. For instance, in the
Gripper domain, the greediest algorithms quickly compute the states that want
to escape from goals, such as r-centroids, because the goals are already far in the
original IPC task. So, the initial state or one of its most immediate successors
is the one that is furthest from the goals. On the other hand, it is really costly
to find centroids or medoids in these very same tasks, since those states that
minimize the average distance to the goals are much further from the initial
state.

3.3.5 Qualitative Assessment of grs

Finally, we show how safest states and escape plans look like in different do-
mains, and how the different algorithms behave. Regarding the states, it is easy
to visualize them in path-planning domains such as Grid. However, we might
wonder how they look like in other domains. Figure 3.9 shows a graphical repre-
sentation of all the defined goal related states in a blocks-words distance-based
planning task.

As we can see, the four states that try to somehow approach the goals (cen-
troid, medoid, minimum-covering and minimum-covering-m) put most of the
blocks on the table. This is the strategy that allows to build most of the words
at a lower cost. On the other hand, if we want to stay away from the goals, the
strategy seems to be to stack most of the blocks in a big tower. From these states,
it is hard to build any of the goal words, being necessary to unstack the blocks
to later stack them in the proper order. In other domains such as Logistics,
plans that reach centroids tend to move the packages close to their destination
and/or move the trucks and planes to places where they can pick up/drop the
packages with less cost.
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Figure 3.9: Set of goal-related states of a blocks-words distance-based planning task.
The upper image above the horizontal line depicts the initial state and the
set of goals. The images below the horizontal line show the different goal-
related states as returned by the optimal version of the algorithm grs

∗

.

In the UAV domain the best option for the UAV would be to reach either: (1)
the centroid state, if it wants to be close to most of the potential eruptions; or
(2) the minimum-covering state if it does not want to be far from any potential
eruption. Both states are shown in Figure 3.10 for a particular task. In the cen-
troid state (left image), the UAV is fully charged at the charging station located
in the middle of the map. The average cost to take a picture of a potential erup-
tion is 2.75. In the minimum-covering state (right image), the UAV has two units
of battery. The average distance to the eruptions in this case is a bit greater, 3.
However, while in the centroid the UAV is at distance 5 from taking a picture
of the volcano located at the top-left corner of the map (it will need to recharge
again in the way), the maximum distance in the minimum-covering state is 4
both to that volcano and the one located at the bottom.

The states shown in Figure 3.9 are computed using the optimal version of
the algorithm, which is not very useful in practice. Thanks to our evaluation of
suboptimality, we saw that suboptimal algorithms are typically not far from the
optimum. So we also wanted to know how the states and plans computed by the
suboptimal versions of the algorithm look like. Figure 3.11 shows a graphical
representation of the states and plans returned by the four suboptimal versions
of grs in the natural disaster domain of our running example when computing
r-centroids through a minimum cost plan.
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Figure 3.10: Optimal centroid (left) and minimum-covering (right) states in a UAV
surveillance task.

As we can see, the greediest algorithm, grs
g, falls into local minima. It is not

able to discover that using the boat can make the person move further away
from the goal (in red), and it generates a greedy plan to move her to the farthest
place from the goal on the north side of the river. grs

hc performs a local search
from the state returned by grs

g and finds a better plan that involves crossing
the river with the boat. On the other hand, grs

f− and grs
f, which explore all the

reachable state space, find the optimal state of the distance-based planning task.
However, grs

f computes an optimal plan, while grs
f− returns a suboptimal

one. There exist many other optimal paths in terms of cost in this particular
case, but grs

f is able to return the one that also maximizes the distance to the
goal over the complete execution. This is also the case of the optimal version,
grs
∗, which returns the same escape plan as grs

f.
Finally we wanted to see the differences on the returned plans, depending

on whether we minimize the plan cost or its distance-based cost with respect
to the set of goals of the task. For instance, consider a blocks-words instance
like the one shown in Figure 3.12, where we compute the medoid using grs

∗.
The plan with minimum cost comprises 10 actions, while the plan with mini-
mum distance-based cost comprises 12 actions. By taking a deeper look to the
plans, we can observe their differences. Both plans start executing the same ac-
tions: unstack t e, put-down t, unstack e a, put-down e, unstack a p. They differ in
the next action: while the shortest plan prescribes stack a t, the metric-related
plan prescribes put-down a. If we examine both states, we observe that the one
returned by the shortest plan has a cost of 12 of reaching PATER, the goal with
higher weight. On the other hand, the state returned by the metric-related plan
has a cost of 10 of achieving that high priority goal, minimizing the weighted
average distance to the goals in G. The rest of the plan is similar and both plans
reach the same final state: building the word RAT. However, the metric-related
plan minimizes the average cost to the goals along the path.

There are many similar examples along all the domains where we observe
this small differences in the plans. But we could also observe bigger differences
if we twist and force the problems a little bit, like the result obtained in the
problem shown in Figure 3.3.
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(a) grs
g (b) grs

hc

(c) grs
f− (d) grs

f

Figure 3.11: R-centroid (in green) and plans that minimize the distance-based cost
(black arrow) computed using different versions of grs in the natural dis-
aster domain.

3.4 related work

To our knowledge, this is the first work that focuses on computing states that
fulfill certain cost-related properties with respect to a given set of goals. In this
section, we examine the relevant literature related to our approach for planning
with distance-based goal definition. We show both, how our work is situated
within previous works, and how our technique may be useful for solving some
other tasks.

Recently, the concept of Goal Reasoning has received increased attention (Aha,
2018; Cox, 2007; Molineaux et al., 2010; Vattam et al., 2013). Agents no longer

Figure 3.12: Initial state and set of goals with their associated weight of a blocks-words

distance-based planning task.
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receive as input a fixed set of goals they have to achieve. By contrast, they are
encouraged to reason about their goals over time, changing them as the envi-
ronment changes. Some of these approaches even try to anticipate goals prior to
their arrival (Burns et al., 2012; Fuentetaja et al., 2018; Pozanco et al., 2018b),
in order to minimize the time (cost) of achieving a goal when it dynamically
arrives. This task is known as Anticipatory Planning, and we will discuss it in
Chapter 4. Our notion of planning centroids and medoids has a direct impact on
it. By approaching these states, agents are getting closer to most of the potential
goals that may appear. There are two main differences between our approach
and these other works. On the one hand, none of the above mentioned works
solves any of the planning tasks we define. On the other hand, they consider
dynamic goals, while we are currently considering a set of static goals. While
our approach could also consider goals that arrive dynamically, it is out of the
scope of this chapter, leaving it for the next chapter.

Other works also have similar formalisms to represent goals, and/or consider
a set of goals to reason about. A remarkable case is that of oversubscription
planning (Domshlak & Mirkis, 2015; Smith, 2004), which achieves a subset of
goals as valuable as possible within a fixed allowance of the total action cost.
Opposed to this approach, we are not interested in maximizing the utility of
the achieved goals, but some other cost-based properties with respect to the set
of goals G. Also, in the case of oversubscription planning, G would typically be
composed of a single proposition, while we admit any size on each element of
that set.

In recent years, automated planning has shown its effectiveness in solving
goal-recognition problems (E-Martín et al., 2015; Pereira et al., 2020; Ramírez &
Geffner, 2009), where the aim is to infer the actual goal of an agent by observing
the actions it performs in the environment. All these works consider a set of
goals G agents may want to achieve, and perform different reasoning processes
over the particular goals in the set.

There exist many applications based on planning-based goal recognition where
our set of states may be useful. In a single-agent setting, one example is goal
obfuscation (Keren et al., 2016; Kulkarni et al., 2019; Masters & Sardiña, 2017).
The objective in this kind of tasks is to minimize the information leakage of
the execution of a plan. In other words, the aim is to maximize the part of the
plan in which a potential observer is unaware of the true goal the agent is pur-
suing. Although approaches differ, all these works solve a similar task when
computing the obfuscated plans: they try to compute states that would be part
of any plan leading to a specific subset of goals. Keren et al. (2016) propose a
solution that obfuscates a goal by choosing another goal within G which has the
maximum non-distinct observation sequence (plan) in common with the true
goal. Kulkarni et al. (2019) achieves goal obfuscation by choosing a subset of
k goals from G (including the true goal). Then, they perform a search in the
belief state space, returning a plan that is k−ambiguous, i.e., it is consistent
with k goals. Our approach differs from them in that we consider the whole
set of candidate goals G. By computing the centroid of G, and a plan that min-
imizes the average cost to the goals in G along the path, we are ensuring goal
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obfuscation with respect to the maximum number of goals, without the need
of selecting a value of k, storing belief states, nor post-processing the output as
these other approaches do. Following our approach, we are also ensuring goal
obfuscation against a worst case observer, i.e., an observer that can make perfect
inferences observing all the actions of the agent. We showed it in Figure 3.2. The
agent would be approaching most of the goals through a plan that makes the
observer doubt regarding which is its true goal.

In a multi-agent setting, some works use goal-recognition to automatically
generate goals given other agents’ actions. In a competitive setting, there is the
work on counterplanning (Pozanco et al., 2018a), which tries to generate goals
and plans that prevent opponent from achieving their goals (see Chapter 5). In
this approach, the agent considers a set of candidate goals the opponent might
be trying to achieve. With this information, the agent: (1) uses goal recognition
to infer the opponent goal; (2) extracts the landmarks (Hoffmann et al., 2004)
involved in the opponent achieving that goal; and (3) generates a plan to delete
that landmark before the enemy achieves it. However, sometimes the agent in-
fers the actual goal of the opponent when it is too late to reach the landmark
before the opponent. By early approaching states such as the minimum-covering
of the candidate goals, the agent would put herself in a better position to block
the enemy. We will explore this approach in Chapter 6.

We can treat the states and plans that move away from the goals as escape
plans. Some works in the literature deal with finding escape or evacuation plans.
However, they often compute the solutions over grids and networks where they
solve path finding tasks. Moreover, they are domain-dependent, focusing on
specific tasks such as evacuation of people in fire scenarios (Olsen et al., 2015)
or vehicle routing in critical contexts such as homeland defense preparation (Lu
et al., 2005). In contrast, our approach is domain-independent and can find
different states and plans in many other types of scenarios. Other works also
focus on computing risk-sensitive solutions in a domain-independent way us-
ing state space search (Jeantet & Spanjaard, 2008; Koenig & Simmons, 1994;
Perny et al., 2007). These approaches are directed by a specific goal. They

have an initial goal and try to find a plan that maximizes the probability of
its achievement or minimizes the expected execution cost of the plan. Most of
these approaches are based on utility theory (Morgenstern & Von Neumann,
1953) or rank-dependent utility (Quiggin, 2012). In contrast to these works, our
approach is not goal-directed; that is, we do not have a initial goal to pursue.

Our work is also related to the work on defining and reasoning with path
constraints, as in the case of using Linear Temporal Logic (LTL) (Baier et al.,
2009). Usually, path constraints refer to some state-related constraint, such as
some set of literals being true/false at some point during the execution of the
plan. In our case, the plan-related properties relate to a set of goals and the
properties link with metrics such as averages or maximum/minimum distance,
which are hard to be defined in LTL.
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3.5 summary

This chapter presents the formal definition of a new kind of planning task, that
of finding states and plans that fulfill some distance (cost) requirements with
respect to a set of goals. We called this task distance-based planning, since the
goal state (final state for our algorithms) must fulfill a distance-based property
with respect to the set of goals. We defined a collection of eight different types of
goal-related states, highlighting domains where computing each of them might
be interesting. We also introduced a new concept of plan cost different from the
typical one: minimize a given goal-distance metric along the plan’s traversed
states. We remarked how these type of plans might be useful in trending plan-
ning topics and applications such as goal recognition and its variations of goal
legibility and goal obfuscation (Chakraborti et al., 2019; Kulkarni et al., 2019).
Then, we described a common algorithm with five different parametrizations
to solve distance-based planning tasks, by varying suboptimality requirements.
Finally, we extensively evaluated our approach in several planning domains,
reporting both quantitative and qualitative results.

Experimental results showed that AP can effectively solve these distance-
based planning tasks. Among its virtues, the presented approach: (1) is domain-
independent; (2) can be easily extended with different goal related states; and (3)
it is straightforward to extract explanations about the returned states and plans,
which might be useful in real-world applications (Chakraborti et al., 2019).

Optimally computing our collection of goal related states and plans using
grs turns out to be unfeasible in practice, since it is necessary to explore all
the reachable state space, computing an optimal plan to each goal. However, we
have shown that suboptimal versions obtain results close to the optimal one very
fast, also scaling up to larger instances. Thus, we can run a greedy algorithm
if we want to rapidly reach a state close/far from the goals. This can be very
useful in on-line settings such as strategy games. But we can also run either
grs

f or grs
f− if we have more time and want high quality states and plans.

We are aware that we are paying an efficiency burden when using a common
algorithm to compute all the different states. A better way to proceed when com-
puting centroids would be to perform backward search from the goals. However,
we were more interested in defining a new planning task, highlighting its impor-
tance and providing a common algorithm able to compute a large set of states
and plans. In future work we would like to explore different algorithms to com-
pute each state as well as define others, since the algorithm is mostly agnostic
to that extent. As we have shown, the behavior of the suboptimal versions is
not only related to the presence of local minima but also to the use of accurate
heuristics closer to h∗. In this chapter, we used the ff heuristic to estimate the
distances to goals, but in future work we would like to compare algorithm’s
performance by using other heuristic estimators. We would also like to define
an anytime version of the algorithm, so users can stop it at their will, returning
the best states/plans found so far. Finally, we are also interested in allowing
users to insert preferences into the algorithm such as “a plan with a maximum
distance to a particular goal during all the plan".
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L E A R N I N G T O A N T I C I PAT E P L A N N I N G G O A L S

“Instinct is a funny thing.”

- Polly Gray

In recent years the interest in creating autonomous agents for numerous real
world applications has greatly increased. Applications range from surveillance
purposes to control tasks (Ai-Chang et al., 2004; Cenamor et al., 2017; de la
Asunción et al., 2005; García et al., 2013; Ruml et al., 2011). In these cases
the closed-world and static-goals assumptions common in automated planning
do not hold any more and reasoning about goals and the changes in the en-
vironment becomes essential (Talamadupula et al., 2010; Vattam et al., 2013).
Therefore, new approaches explicitly deal with dynamic goals. A notable exam-
ple is the concept of Goal-Driven Autonomy (GDA), inspired by Cox’s work
(2007) and detailed in (Klenk et al., 2013) that we introduced in the Background
section. GDA is a conceptual model that explicitly considers goal reasoning as
a key component of the deliberative reasoning process of autonomous agents.
It allows us to design and deploy autonomous agents that can explicitly rea-
son about their goals, identifying when they need to be updated or changed
through environment monitoring.

The first works on GDA generated goals following a set of pre-programmed
rules that are triggered under some state’s conditions (Coddington et al., 2005).
A human must code all the goal-triggering rules before the system’s execution.
Some recent works on goal reasoning learn goal formulation without human
interaction, extending agents autonomy (Jaidee et al., 2013). All these previous
works rely on goal reasoning based on the current state of the world. We want
to extend the agent’s performance by creating a system that is able to generate
and handle not only the current existing goals, but also the possible upcoming
ones, given the current and recent states of the environment.

From an automated planning point of view, previous approaches trigger plan-
ning episodes when the current state and/or goals change (most often state
changes). We refer to this paradigm as Reactive Planning, since its behaviour
is triggered to react to changes in the environment. Our system is based on
Anticipatory Planning (Burns et al., 2012) that takes into account the possible
upcoming – but not currently existing – goals along with the current goals when
triggering the planning process.

The main contributions of this chapter include:

• The design of a learning system that can predict the appearance of new
goals in the near future. The learning system is capable of learning goal’s
appearance off-line and on-line by collecting learning examples from the
plans’ execution. In an on-line setting it is able to handle concept drift;
when the conditions of goal’s appearance change dynamically.

53
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• The design of a goal management system that takes into account the
learned goal predictive models to generate new goals.

• The integration of the new goal management system within a cognitive
architecture that already integrates planning, execution, monitoring and
replanning capabilities. We call this new approach Learning-driven Goal
Generation Anticipatory Planning (lgg-ap).

• The evaluation of its performance in a typical domain for goal manage-
ment, comparing lgg-ap against Reactive Planning, that only reasons with
the current goals.

• The analysis of the impact of different relevant parameters that influence
the anticipation of future goals.

The rest of the chapter is organized as follows. First, in Section 4.1 we enumer-
ate the domain characteristics where lgg-ap can be applied. Then, we describe
an architecture that integrates goal reasoning with automated planning in Sec-
tion 4.2. After that, we introduce the learning component that allows the agent
to generate future goals based on the current and past states in Section 4.3.
In Sections 4.4 and 4.5, we detail our experimental setting and provide exper-
imental results in a surveillance domain respectively. Finally, we position our
contribution in the context of related work in Section 4.6 and conclude with a
summary of the chapter in Section 4.7.

4.1 anticipatory domains

In many real world domains agents can improve their performance if they
can anticipate and reason about the arrival of future goals. Agents can gen-
erate (Cox, 2013) some (future) goals and start trying to achieve them sooner.
In order to define the anticipatory behavior, we will first provide the following
definitions related to goals.

Definition 4.1. A predicate p is a goal predicate in a planning domain D if any of
its instantiations (groundings) appears in the goals’ list of any of its problems P.

Given any domain D = 〈F,A〉, in theory any predicate can appear instanti-
ated as a goal of any problem. However, in most domains there is a subset of
predicates that are the ones that appear instantiated as problems’ goals. For in-
stance, consider a Taxi domain in which a fleet of taxis have to serve a set of
customers’ pick-up requests. The domain model defines predicates like at-car,
at-customer, car-empty and in, but most problems will only use at-customer in the
goals description. Thus, at-customer would be a goal predicate for the Taxi do-
main. We assume that our system knows the set of all goal predicates, P. It can
be either given by the user or automatically computed by looking at a set of
problems. That allows us to define the following set.

Definition 4.2. We refer as all-goals set of a set of predicates P, GP to the set of
all instantiated goals that can be generated by instantiating predicates in P with world
objects.
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Goals in GP can appear at any time step from the beginning until the end of
the agent’s execution. The agent knows which goals could be given (or gener-
ated by the agent), but it does not know if or when they will arrive. For exam-
ple, in the Taxi domain, the all-goals set G{at-customer} of an agent’s execution
would consist of all potential instantiations of the goal predicate at-customer. So,
it would be at-customer(A,locX), at-customer(B,locY),. . . .

Definition 4.3. A goal g ∈ GP is a known goal if it has appeared (given or generated)
at any time step. K ⊆ GP is the set of known goals.

Following the previous Taxi domain example, if at a given time step only the
goal at-customer(A,locX) has appeared, it would be a known goal, conforming K.
We now define two other types of goals: active goals and predicted goals.

Definition 4.4. A goal g is active if the agent is trying to achieve it in the next
planning episode. G ⊆ K is the set of active goals.

Definition 4.5. A goal g is predicted if the agent’s inner model foresees its appearance
in the near future. At the moment a goal is predicted, it becomes active and known. Gl
is the set of predicted goals.

The agent should generate plans to achieve those goals inG. Some of them are
known goals that the agent has not achieved yet. But, new goals g ∈ GP,g 6∈ G
could be added over time. The reason why a goal is added to G can vary: a
user adds g to the current set of goals at a given time step; a procedure in the
planning agent decides to generate it based on the current state of the world,
as in some GDA approaches (Coddington et al., 2005); or a model predicts its
appearance in the near future, as we deal with in this chapter.

We will make some assumptions on the properties that domains should meet
for Anticipatory Planning to be useful.

• For each goal g ∈ GP, the agent does not know whether g will appear or
when g will appear.

• There is at least one goal g ∈ GP that follows an appearance pattern; i.e.,
its appearance depends on some features related to the observable state.
This is needed so that learning to predict new goals makes sense.

• There is full observability on the appearance of goals. At each time step,
the agent can observe the set of new goals that have appeared or have
been generated by itself, updating the set of active goals Gt to Gt+1.

• When a goal is active, it will not disappear from G until it is achieved by
the execution of the plan.

• An increasing penalty is paid at each time step for all goals gi that have
already appeared, gi ∈ G \ Gl, and have not been achieved. Although
predicted goals Gl are active, since the agent is trying to achieve them,
the agent only pays the penalty for those goals in G that have already
appeared. The total penalty for each goal, p(g) can be computed following
Equation 4.1.
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p(g) =

{
0 if g 6∈ G
kg × δ if g ∈ G \Gl

(4.1)

where kg is the penalty associated to the goal g and δ is the difference
between the arrival time of the goal and the time when it is achieved by
the execution of some action. The total penalty of the whole planning-
execution cycle, P, is the sum of the penalties paid by each goal that has
appeared over the complete planning-execution cycle, p(g).

As we have mentioned, there are many domains where those assumptions
hold. For instance, take a company that provides products to some warehouses.
Suppose that each warehouse will generate a new goal of having a given prod-
uct when they do not have stock of that product. If the company is able to
predict when warehouses will run out of a product, it can plan to supply the
product before the warehouses ask for it, offering a better service and saving
time for the warehouse.

Yet another domain is the case of a smart city that wants to control its urban
traffic (Pozanco et al., 2016). In that work the goals consist on decreasing the
density level of the busy streets through changing the green and red phases
of the traffic lights. If one is able to learn a predictive model that suggests
the appearance of congestions in the near future, it is possible to incorporate
these predicted goals into the set of active goals. Then, it is possible to start the
planning process sooner, improving the behavior of the system and leading to
less waiting time for the cars and pollution levels for the city.

These domains can be seen as goal maintenance problems (van Riemsdijk
et al., 2008), where some predicates must hold during execution. But, Antic-
ipatory Planning offers some advantages. First, techniques that perform goal
maintenance trigger actions to achieve maintenance goals as soon as the goals
do not hold (Pokahr et al., 2003). For example, when the warehouse runs out
of a product, the agent will immediately try to achieve the goal of having a
specific quantity of the product. Other recent works define proactive agents. An
agent will take actions not only in response to a maintenance goal not hold-
ing, but also in anticipation of the maintenance goal being violated (Duff et al.,
2006). The agent reasons about the effects of several actions in the near future
and will not take any action that violates a maintenance goal. That is, the agent
takes into account that all the maintenance goals hold during the planning pro-
cess. This can improve the rational behavior of agent systems, but these main-
tenance goals cannot deal with exogenous events, as our Anticipatory Planning
approach does. We store information about the environment and build a model
that predicts the appearance of goals (or maintenance goals that will be violated)
in the future based on these exogenous events.

Other example domains, which can not be seen from a maintenance goal
point of view, are surveillance tasks, as those of police, guards, or drones. If
we can anticipate where the security breach will appear (where each security
breach will generate a new goal to address it), they can arrive at the place earlier
and patrol (or execute a set of actions) where the predictive model suggests.
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In this chapter, we will focus on Unmanned Aerial Vehicle (UAV) domains.
UAV’s usage is growing in recent years due to their low price, increasing set
of programming tools, and versatility. The possible uses of UAV’s range from
military approaches to different surveillance purposes. In this case we propose
a domain in which an UAV performs surveillance tasks on an area that has been
discretized in a grid.

The UAV has to serve a set of requests coming from a surveillance center.
Each goal is a request of performing a given set of tasks (as taking images) in
a specific cell of the grid. To service a request, the UAV must move from its
current position to the cell of the request. For example, a request can be tak-
ing an image or making some kind of measurement. So, the goal would be
(taken-image <cell-id>) or (measured <cell-id>). Since several observation requests
can appear at the same time, the UAV is provided with a planning component
in order to find the best plan to cover all the requests (goals) with the mini-
mum penalty. The goals do not disappear until they are achieved and can be
achieved at any time. This differs from previous works that assume a finite
horizon (Burns et al., 2012; Fuentetaja et al., 2018).

All these domains share the same assumptions, so we expect similar results
in terms of improvement of performance over a system that does not anticipate
to their appearance. Since we had good results in the traffic domain, we wanted
to analyze here whether they generalize to domains with similar assumptions
on goals. In the following section we describe the architecture that allows the
agent to generate and formulate its own goals based on learning, as well as
performing anticipatory planning and executing the generated plans.

4.2 architecture

Given that the agent needs to integrate learning, goal management, planning,
and execution, we have based our work in a domain-independent architecture
that we had developed, pelea (Guzmán et al., 2012). We have instantiated pelea

in lgg-ap in order to add goals prediction capabilities to the architecture, goal
management based on learning goals appearance and anticipatory planning. A
high level view of lgg-ap is depicted in Figure 4.1. First, we will briefly describe
how the architecture works. In the next section, we will describe in more detail
the main contribution of this chapter: the goal generation component based on
learning goal prediction models. We will also describe in the following section
the simulator we have built in order to test the system’s performance.

Initially, the Execution module receives a planning task, as a domain and
problem file, including the initial state and goals (initial active goals G). These
files are sent to Monitoring and Planning components, so that the Planning

component can generate a plan for the initial planning task. The plan consists of
actions that the Execution module will translate into low level actions that will
be sent to the Environment. As an example, the action move(UAV,cell1,cell2) will
be translated into the different power values to each of its four engines.

The Execution module periodically receives a set of observations from the
Environment. These observations are translated into a new PDDL problem that
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Figure 4.1: Planning architecture that includes goal formulation and goal learning ca-
pabilities.

is sent to the Monitoring component. Execution of actions can be stochastic,
but in this chapter we will only focus on a specific source of uncertainty; the
set of new goals that appears at each time step. If the received state or goals
(present in the problem) do not match the ones that the Monitoring module
expected (e.g., a new goal appears and becomes active), this module will call
the Planning component in order to find a new plan with the state and goals (a
new problem). Execution also sends the observations to the Examples Generator

and the Goals & Metrics components.
At each time step, and before calling the Planning module, the Goals &

Metrics component receives a problem from the Monitoring component, a set
of observations from Execution and a predictive model from the Learning compo-
nent. The Goals & Metrics component is in charge of deciding, given a prob-
lem, which goals the system should pursue.1 It can be instantiated in several
ways, depending on the goal management approach we want to use. For in-
stance, it can reason about the current subset of goals to plan for in case of
oversubscription planning (Smith, 2004) (there is no plan that can achieve all
goals with the current resources). We will later describe how it works in our
case.

1 It can also change the metrics to optimize for, though we are not changing metrics here.
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4.3 learning-driven goal generation

In this section we describe the Learning-Driven Goal Generation, correspond-
ing to the modules within the dotted line shown in Figure 4.1. This component
allows the architecture to formulate new goals when the system predicts they
will appear in the near future. There are three steps in this process: the gener-
ation of learning examples; the construction of the predictive model; and the
formulation of new goals.

4.3.1 Generation of Examples

Our base idea is to predict future goals based on current and past observations.
Observations include measurable features about the state and checking whether
new goals have appeared. Examples of state features in the case of the UAV
can be temperature readings, seismic activity, or any other measurement that
our UAV can observe at each cell. Therefore, we will use the state features to
generate the attributes of each training example. The check about the appearance
of a new goal at each cell generates the class of each example. In the case of the
UAV, the check at each cell and time step returns true if the surveillance center
requested an observation in that cell and time step.

The Examples Generator module translates observations into examples in
two steps: collecting observations and generating the examples. First, at each
time step t during execution, a set of observations Ot are collected, one per cell
in the grid; Ot = {oi,t|i ∈ [1,m]}, where m is the number of cells. Each observa-
tion oi,t ∈ Ot takes the form of:

oi,t = 〈cell− idi, f1,i,t, f2,i,t, . . . , fn,i,t,gi,t〉

cell-id$_i$ identifies the corresponding cell, fj,i,t(j ∈ [1,n]) represents the value
of feature fj at cell i at time t, n is the number of measurable features, and gi,t
will be either true (if the goal has appeared at time t at cell i) or false otherwise.

The learning task consists on building a predictive model for each cell i of
whether the system expects a goal to appear at i in the near future. Therefore,
each example should contain information about several observations in the past
S time steps, as well as the information on whether the goal has appeared in
exactly H time steps into the future. S defines the number of previous time steps
that will be taken into account when making the prediction, and H refers to the
prediction horizon. So, our learning system uses two parameters whose values
we will study in the experimental section.

Second, a training example can be generated for each cell i and time step t

from a set of environment observations:

EOi,t = 〈Oi,t−S,Oi,t−S+1, . . . Oi,t−1,Oi,t,Oi,t+H〉 (4.2)

Each Oi,k(k ∈ [t− S, t] or k = t+H) is composed of the feature values observed
of the n features at cell i and time k. The union of the values of all observations
from Oi,t−S to Oi,t (corresponding to the measurements from S time steps ago
until the current time t) will be the attribute values of each example. And the
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Figure 4.2: Generation of two training examples ei,t and ei,t+1 at a cell i from obser-
vations. The attributes of the training examples correspond to the value of
two variables f1 and f2 in the previous time steps. The class of the training
examples indicates whether there is a goal g or not at cell i in the future
time step H.

goal value in Oi,t+H, gi,t+H, will be the class of the example. This is shown
in Figure 4.2. Hence, each training example (at cell i and time step t) can be
defined as:

ei,t = 〈cell− idi,f1,i,t−S, . . . f1,i,t,
f2,i,t−S, . . . f2,i,t, . . .
fn,i,t−S, . . . fn,i,t,
gi,t+H〉

The set of training examples will be:

E = {ei,t|i ∈ [1,m], t ∈ [0, T ]} (4.3)

where T is the number of simulation steps. Therefore, the number of features
in each example will be (S+ 1)× n (n features, and S+ 1 time steps). And the
number of examples will be m× T (number of cells times the number of simu-
lation steps). The example generation process is independent of the employed
representation. In our work on the traffic domain, we used a relational (predi-
cate logic) representation where observations were described in terms of a set
of literals. Each example was defined as a set of grounded predicates indicating
the current and past states of the world and the class of the training example.
And we employed a relational learning algorithm that can extract knowledge
from these structured examples. Now, we use an attribute-value representation
instead, where the input data set is typically represented as a single table. Each
row in the table is an example and each column is an attribute that represents
one particular property of each example.
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4.3.2 Building a Goal Predictive Model

Once the system has the examples, it can use a learning algorithm to generate a
predictive model of future goal appearances. We learn a single model for all cells.
In case different cells have different behaviors with respect to goal appearances,
the learning system can use the cell-id as a feature that can help on making the
predictions.

Our approach does not need a particular learning algorithm. The only restric-
tions are that it has to handle the representation formalism of the examples, and
it has to deal with classification tasks (class is discrete). As we mentioned, in
the case of traffic we used a relational representation. Then, we had to use a
relational learning algorithm as TILDE (Blockeel & Raedt, 1998), which learns
relational decision trees from structured examples based on predicates. Now,
we use attribute-value representation, so we can use any standard learning tech-
nique that solves classification tasks. The input of the learning algorithm is the
set of training examples generated in the previous step. The output is a predic-
tive model, L. The resulting predictive model is provided as input to the Goals &

Metrics module.
In the case of an off-line learning setting, the system would collect all ex-

amples from one or several runs and learn from them. In an on-line setting,
as the one we consider, examples come over time and the system learns every
time new examples come. Given that the reasons (pattern) for the appearance
of goals can change over time, there might be a concept drift. Therefore, we add
new examples and re-train at each time step.

4.3.3 Generation of Predicted Goals

In the last step of learning-driven goal generation, the Goals & Metrics module
receives as input at each time step t: the current planning task, Π = {F,A, I,G};
a predictive model of goal appearance, L; and a set of environment obser-
vations in the previous time steps at every cell in the grid, EOt = {Oi =

〈o1,i,o2,i, . . . om,i〉, i ∈ [t − S, t]}. If L predicts future goals Gl (in exactly H

steps into the future) based on the observations, the goals in Gl are added
to the current set of goals, generating a new set of goals, G ′ = G ∪ Gl. The
output of this step is an updated planning task that incorporates the new goals,
Π ′ = {F,A, I,G ′}.

4.4 experimental setting

In this section we cover the simulator we have implemented for testing our
approach, as well as the input variables and metrics used in the comparison.

4.4.1 UAV Simulator

We developed a simulator to test our approach. It allows us to define different
stochastic scenarios under diverse settings. The simulator receives two files:
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• Static configuration file: it contains the static characteristics of the simu-
lation, such as the map size. For the experiments, we have generated a
10× 10 grid area like the one shown in Figure 4.3.

• Dynamic configuration file: it contains the dynamic characteristics of the
simulation. In particular, for each time step t, it contains Ot; that is, the
set of observations oi,t at time t and cell i. As described above, these
observations include the values for each feature fj at time t and cell i,
fj,i,t and the observation of goal appearance, gi,t. This scheme allows us
to define different scenarios with specific patterns of observations and
goal appearances. We consider there could be two kinds of features: those
related to the state (e.g. position of the UAV or the images taken); and
the ones corresponding to exogenous events of the environment (e.g. the
seismic activity and the earth temperature at each cell and time step). The
values of these parameters are explained later.

Figure 4.3: Screenshot from the surveillance UAV simulator. In this example scenario
there is an active volcano on the top right side of the grid and a lake on the
bottom left.

At each time step t, the simulator will receive one action from the Execution

module. After checking for its validity (it can be applied in the current state),
it will change the state of the simulation. Then, it returns to the Execution

module the observations at time t, Ot. For each cell, these observations include
the values of state variables, the values of features related to exogenous events,
and the appearance of a goal. The simulator also returns some metrics about
the goal achievement process during the simulation. For each goal, it returns its
current penalty (described in Equation 4.1), which we will use later to present
the results.

In the experiments, we have defined two kinds of goal appearance patterns:
random and pattern-based. Some goals appear randomly. Other goals follow
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an appearance pattern that depends on the observations. We will define in each
experiment what pattern we are using.

4.4.2 Experimental Variables

First we introduce the parameters we will vary through the simulation and then
we present the employed metrics. We will study the impact of varying the main
parameters that can affect the lgg-ap performance:

• Anticipation horizon H: we use the values one, three and five.

• Noise in the appearance of the predicted goals: we use the values 0%,
20% and 40%. The noise level represents the probability that a goal does
not appear even if the pattern indicates it. We stop at 40%, because with
higher values no appearance pattern would be generated.

• Goal ratio: ratio between the number of goals that follow an appearance
pattern and the total number of goals. The latter is the sum of the ran-
domly generated ones and the ones that follow a pattern. Both numbers
are computed over the whole simulation. We test five different values:
0.7, 0.5, 0.3, 0.2 and 0.1, corresponding to a high percentage of pattern-
based goals down to a low percentage. We fixed the number of goals that
follow an appearance pattern to 100. When the ratio decreases, there are
more randomly generated goals in the grid.

• Number of goal appearance patterns that occur at the same time step (one
per cell maximum): from one to five.

• Number of agents: only one UAV pursuing the goals.

• Exogenous events produced by the simulator: seismic activity and earth
temperature. These parameters take values from zero to three. A volcano
eruption is correlated with high values of both parameters, i.e., it is likely
to occur. The frequency of an eruption will depend on these values and
will be varied over the experiments to test the system’s capabilities.

We run each simulation for T = 2000 time steps. Since some goals will be
generated randomly (subset of GP that does not follow an appearance pattern),
we run each simulation 10 times to obtain an average penalty. We compare lgg-
ap, that updates the set of active goals with the learned goals Gt+1 = Gt ∪Gl,
against a Reactive Planning approach that only pursues the current active goals
G (not performing any update in the set of goals due to any reasoning process
on future goals).

In the experiments the agent pays an increasing penalty of one for each time
step when a goal that has already appeared (is active) has not been achieved.
The penalty values P obtained by each approach at the end of the simulation
depend on the number of goals. Thus, analysis of results can be more difficult
to perform. We propose a metric that normalizes the penalty paid by each ap-
proach. We denote this metric with P. It is computed as:
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P =
(Pr − Plgg-ap)

AG
(4.4)

where Pr is the penalty paid by the Reactive Planning approach, Plgg-ap is the
penalty paid by lgg-ap, and AG is the number of all goals that have appeared
during the simulation. The resulting number P can be seen as the saved penalty
for each goal g ∈ AG by using lgg-ap compared to the penalty paid by the Re-
active Planning approach. All the experiments were run on a Ubuntu machine
with Intel Core i7-4510U running at 2.00 GHz. The results are presented in the
next section.

4.5 experiments and results

In the first experiment we modify three of the parameters that can affect lgg-ap:
anticipation horizon, noise in the appearance of predicted goals and the goals
ratio. We compare the performance of lgg-ap against the Reactive Planning
approach. In the second experiment we study the performance of lgg-ap if we
introduce more than one goal appearance pattern. The third experiment focuses
on analyzing the concept drift capabilities of our system, testing the agent’s
adaptation to new conditions, on-line learning and exploiting a new predictive
model.

4.5.1 Influence of Parameter Settings in lgg-ap

We begin with a one step anticipation pattern (H = 1) with 0% of noise. Fig-
ure 4.4 shows a sample of the observations generated in the volcano cell. In the
remaining cells, we provided a random pattern of observations. A pattern-based
goal is only generated in the volcano cell, when the value of the two environ-
ment features (seismic activity and temperature) is three. In this case, whenever
a goal is generated in this cell, the value of both variables in the previous time
step was two.
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Figure 4.4: Sample of observations generated in the volcano cell.
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Firstly, we want to test the performance of the two approaches over time,
and the results are shown in Figure 4.5. When lgg-ap collects enough data to
build a model, it is able to exploit it correctly by anticipating where the goal
will be generated and moving the UAV to the potential future goal location
(volcano cell). Thus, it outperforms the Reactive Planning approach. The agent’s
performance is the same using both approaches until lgg-ap is able to build
an accurate predictive model around the time step 350. From then on, lgg-ap

outperforms Reactive Planning in all the simulation.
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Figure 4.5: Accumulated penalty of lgg-ap and Reactive Planning. The penalty at each
time step of goals is kg = 1, H = 1 and noise is 0%.

We then conduct several experiments where we modify the parameters de-
scribed in the experimental setting. The results are shown in Figure 4.6. The
difference between lgg-ap and Reactive Planning is bigger when the predicted
model is more accurate, as expected. With 0% and 20% noise levels, P increases
as the goal ratio decreases (there are more random goals), until a point where
there are many goals where most of them are random. At this point lgg-ap

performance becomes similar to that of Reactive Planning, given that both ap-
proaches have more opportunities (goals) to decrease the penalty paid. Antici-
pating provides a smaller advantage.

As the noise levels are bigger, P reaches its best value with less goals and
more percentage of them related with the goal appearance pattern. If the goals
were introduced randomly without following any appearance pattern, the learn-
ing component would not be able to extract any model that correctly predicts
goals in the future. In these cases the goal’s set of lgg-ap and Reactive Planning
would be the same since the set of future goals would be empty. Consequently,
their performance would be similar, taking into account only the current goals.

We obtain better results anticipating the goals one or three time steps rather
than five. In this case P values are higher when there are fewer goals. The best
anticipation value is closely related to the size of the grid. The experiments show
that for this particular 10× 10 grid, going for the goals five time steps before
their appearance is not as good as doing it three or one time steps before.
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Figure 4.6: From left to right, top to bottom: one, three and five time steps anticipation.
The x-axis represents the ratio between the number of goals that follow an
appearance pattern and the total number of goals. The y-axis represents the
value of P for the different noise levels in the prediction.

Even in the worst case, in which the agent learns an inaccurate predictive
model, lgg-ap performance is at least as good as Reactive Planning, indepen-
dently of the number of goals to achieve or the number of steps that goals are
anticipated. This difference in the value of P between Reactive and lgg-ap is
very relevant, since it denotes the difference in terms of penalty per goal, assum-
ing that all goals have an homogeneous associated penalty equal to one. This is
not the case in most domains, even in the one that we are presenting here. The
real penalty related to a volcano eruption is not the same as the one for not tak-
ing a picture of a crop zone. In these cases, the benefit of using lgg-ap instead
of Reactive Planning would increase considerably. As an example, in case we
had an homogeneous penalty of 1000 for each goal, and 50 goals, a difference
of three (as in Figure 4.6) would mean a penalty of 1000× 50× 3 = 150000.

4.5.2 Analysis of the Number of Patterns

In this experiment we study how the number of goal appearance patterns in-
fluence lgg-ap. We introduce from one to five volcanoes uniformly distributed
over the grid. We compare the P value fixing the previous parameters to: 0%
noise level, 0.5 goal ratio and H = 3. The results are shown in Figure 4.7, which
follows the same peak behavior as the previous ones. The system is able to
capture every appearance pattern, flying to the places where goals will appear
in the future. lgg-ap always outperforms Reactive Planning. P raises until it
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reaches the best value when there are three patterns in the grid (three volca-
noes). When there are many patterns, we can observe the same behavior as
when there are many goals and lgg-ap performance decreases. But the differ-
ence with the Reactive Planning approach is still outstanding in any case.
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Figure 4.7: Normalized penalty obtained by using different number of goal appearance
patterns. The x-axis represents the number of appearance patterns that could
occur at the same time. The y-axis represents the value of P.

4.5.3 Ability to Handle Concept Drift

In the previous experiments we have shown that lgg-ap outperforms Reactive
Planning in terms of the penalty they pay. In those cases, the agent learns pat-
terns that do not change over time and exploits them. In most real world do-
mains these goal appearance patterns change and the agent should discover
these new patterns, adapting to them. This is the concept drift paradigm (Wid-
mer & Kubat, 1996).

To test the capability of adapting to new goal patterns, we generate a one
time step anticipation pattern in the volcano cell and we change it to a random
pattern at time step 850. At that time step, pattern-based goals will not appear
any more in the volcano cell and pattern-based goals will appear in the lake’s
cell. The appearance of goals in the lake will be correlated only with the tem-
perature variable unlike the previous pattern that also depends on the seismic
value.

As we can see in Figure 4.8, lgg-ap starts outperforming Reactive Planning
from the beginning of the execution. Around time step 850, when the pattern
changes, lgg-ap deteriorates its performance for a period of time. At this point
the agent is building two predictive models in parallel: the one that suggests
the appearance of goals in the volcano area, which is starting to decrease its ac-
curacy, and the new one that only predicts goals in the lake. These two patterns
conflict for a while, i.e., occur simultaneously, leading to similar performance
between Anticipatory and Reactive planning. This occurs until the learning algo-
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Figure 4.8: Accumulated penalty paid by Reactive Planning and lgg-ap. The goal ap-
pearance pattern changes at time step 850.

rithm discards the old pattern due to its inaccuracy and returns a new predictive
model. After time step 1200, lgg-ap is able to recover and again outperforms
Reactive Planning.

4.5.4 Centroids and Anticipatory Planning: Combining grs and lgg-ap

Our final experiment aims at combining grs and lgg-ap. Using lgg-ap, the
drone will start approaching a goal once it enters in the set of active goals. After
achieving the goal, the agent will only move iff that set is not empty. A goal
can be in that set either if (1) it has already appeared; or (2) lgg-ap predicts its
appearance. If none of this occurs, the drone will stand still until a new goal
is introduced into the set of active goals. We conjecture that a better way to
proceed would be to start moving to those points that are closer to the places
where goals are predicted to appear, even if they will not appear in the short time.
These points are the centroids of the planning task, which can be computed
using grs. By heading to them the drone will be closer to the predicted goals,
paying even less penalty than only using lgg-ap.

We generated 10 random problems following the experimental setting out-
lined in Section 4.5.2, where lgg-ap learns more than one goal appearance pat-
tern. In this case we fix the number of goals that follows a pattern to three.
For each problem, we let the simulation run for 2000 time steps, reporting the
accumulated penalty paid for each approach: Reactive Planning, lgg-ap, and
lgg-ap + grs. Centroids are computed online using the optimal version of grs.
The goals considered for the centroid computation are those for which lgg-
ap have learnt a model. All goals considered by grs have the same associated
weight.

Figure 4.9 shows the comparison between the three approaches in terms of
the accumulated penalty paid by each of them at the end of each simulation. As
we conjectured, combining lgg-ap and grs outperforms both using lgg-ap only
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Figure 4.9: Accumulated penalty paid by Reactive Planning, lgg-ap and lgg-ap +grs.
The central horizontal line indicates the median of the distribution, while
the other two lines indicate the maximum and minimum values. A wider
blue shadow indicates that more points have that value.

and Reactive Planning. It reduces the penalty paid compared to lgg-ap in all
the problems, with the margin depending on the appearance of the randomly
distributed goals. The only overhead required by this last approach is to com-
pute the centroids of the problem. This can be done using the optimal version
of grs when: (1) the problem is small; (2) the centroid can be computed offline,
i.e., we do not require real-time response; and (3) the goals’ appearance patterns
do not constantly change over time. In case these premises are not fulfilled, it
is always possible to use a greedier version of grs, which will compute the cen-
troids faster. Even if the returned centroid is not optimal, it will help the agent
to better locate itself to later achieve the goals, as we discussed in the previous
Chapter.

4.6 related work

Most works in the context of goal reasoning have focused on the Goal-Driven
Autonomy (GDA) conceptual model (Cox, 2007; Klenk et al., 2013). A GDA
agent generates a plan to achieve a given goal together with its expectations; i.e.,
the set of constraints that are predicted to hold in the partial states generated
when executing the plan. The agent monitors the environment for discrepancies
between its expectations and its observations during execution. If the expecta-
tions do not match the observed states or if the current plan fails, the GDA
agent can formulate a new goal (Cox et al., 2016; Maynord et al., 2013). The
first works on GDA formulated new goals using rule-based principles, which
describe situations where specific goals should be generated (Coddington et al.,
2005). These rules were hand-crafted by a domain expert.

Few works have studied the addition of learning capabilities to the agents in
the goal reasoning process. Powell et al. extended the ARTUE agent (Klenk et
al., 2013) with the ability to learn goal selection knowledge through interaction
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with an expert (Powell et al., 2011). They framed this as a case-based supervised
learning task that employs active learning. Unlike their approach, we do not
need the interaction with a human to formulate goals, since we learn this ability
by collecting examples from the agent execution in an environment, that can be
real or simulated.

Without the need of human interaction, Jaidee et al. summarized some work
on creating GDA agents capable of automatically acquiring knowledge using
Case-Base Reasoning (CBR) and Reinforcement Learning (RL) methods (Jaidee
et al., 2011). In this case, the problem domains are Real-Time Strategy (RTS)
games, more specifically DOM and Wargus. Weber et al. implemented a method
that also uses CBR and intent recognition in order to build GDA agents that
learn from demonstration (Weber et al., 2012). They applied the approach to
build an agent for the RTS game StarCraft. Molineaux and Aha employed a
variant of FOIL (Quinlan, 1990) to learn models of unknown exogenous events
in partially observable, deterministic environments and showed how they can
be used by a GDA agent (Molineaux & Aha, 2014). They implemented this learn-
ing method in FOOLMETWICE, an extension of ARTUE. Maynord et al. employ
TILDE (Blockeel & Raedt, 1998), a relational learning algorithm, to learn a deci-
sion tree for goal prediction in the blocksworld planning domain (Maynord et
al., 2013). Finally, Gopalakrishnan et al. (2016) learn goals from planning traces
in planning domains. Our work differs from those in the sense that they are not
generating and reasoning with possible upcoming goals, as we do. While they
learn from world states in isolation, we take into account the time context, as
we are planning with goals predicted by an on-line learning model.

Regarding the concept of Anticipatory Planning we are addressing in this
chapter, while the idea of using Automated Planning taking into account possi-
ble upcoming goals comes from previously presented works (Burns et al., 2012;
Fuentetaja et al., 2018), our work differs from theirs in some aspects. While

they assume they know a priori the goal arrival distribution, we are learning it
through the collection of examples from the system’s execution. Another differ-
ence is that they use a special planner that reasons internally with the upcoming
goals distribution and its penalties. We propose to use a classical planner, incor-
porating either the current or the possible upcoming goals and replanning when
a new goal appears.

4.7 summary

In this chapter we have presented an architecture that allows the design and
implementation of autonomous agents with learning capabilities. Using this
architecture for a small UAV domain, we have shown that an agent can discover
opportunities and adapt its behavior as the surrounding environment changes
following a concept drift approach.

We have gone further in the goal reasoning concept, letting the agent not only
reason with the current state of the world but also with the possible near future.
If the agent discovers a goal before it really appears, it can start the planning
process sooner, improving its performance.
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Finally, we have enumerated the requirements that a domain must fulfill in
order to successfully apply Anticipatory Planning. We have presented a list of
such domains and selected one of them to perform the experiments. Through
a surveillance UAV domain, we have carried out some experiments in order to
discuss the main characteristics and parameters that affect lgg-ap. The results
show that lgg-ap works, in the worst case, as well as Reactive Planning, out-
performing the reactive approach in the rest of scenarios. We obtain the best
results when the agent has time to reason about the future goals instead of just
be acting all the time. This happens when there are many goals in the grid
whether they come from several goal appearance patterns or they are randomly
generated.

As we previously discussed in Chapter 3, some of the concepts we introduced
there, have a close relationship with the Anticipatory Planning tasks considered
in this chapter. If we have a set of predicted goals, i.e., those which we think may
appear in the near future, we can compute their centroid and start moving to
that state before any goal becomes active. By doing this, we would put the agent
in a better position, paying less penalty once a goal appears. As we have shown
in the experimental evaluation, both approaches are orthogonal and improves
agents’ performance. We will further explore their synergies in Chapter 6 in the
context of multi-agent settings.
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C O U N T E R P L A N N I N G U S I N G G O A L R E C O G N I T I O N A N D
L A N D M A R K S

“The supreme art of war is to subdue the
enemy without fighting.”

- Sun Tzu, The Art of War

Consider a police control domain, like the one shown in Figure 5.1. A terrorist
has committed an attack and wants to escape, while the police aim at stopping
the terrorist before she leaves the city. The terrorist has carefully designed her
escape plan buying bus tickets; she therefore needs to go to the bus station and
take the bus. Before that, she needs to make a call to a partner. However, she
is afraid that her phone is tapped by the police, so she needs to make the call
from any of the phone booths distributed over the city. Once she reaches the
bus station having made the call from a non-tapped phone, she will be out of
reach of the police. On the other side, the police do not know which means of
transport the terrorist is going to use to escape. However, they do know that the
terrorist may want to leave the city by using train, bus, or plane. The police can
move around the city using a patrol car and set controls in the white tiles. They
can also tap the phone booths from the police station. The police have control
over some of the city cameras, located at different key points around the city,
which helps them identify the terrorist’s executed actions. In this situation, a
valid approach for the police would be to: (1) observe the terrorist’s movements
to infer which means of transport she is trying to use to escape (train, bus, or
airplane); and (2) generate a plan to stop her in her way to the corresponding
station. Given the threat posed by the terrorist, the police want to generate plans
that guarantee that the terrorist will be stopped regardless of her movements.
These plans may stop the terrorist as soon as possible to avoid panic breaking
out, or may minimize the cost of the police operation.

This police control domain is just an example of a competitive scenario where
an agent is trying to prevent an opponent from achieving her goals. This is a
common task in domains such as security (Boddy et al., 2005; Hoffmann, 2015;
Pita et al., 2008; Tambe, 2012), real-time strategy games (Ontañón et al., 2013),

or military applications (Borck et al., 2015). However, most approaches to solve
these counterplanning problems are domain-dependent. On the goal recogni-
tion side, they use plan libraries (Kabanza et al., 2010), rules (Carbonell, 1981),
or behavior libraries (Borck et al., 2015; Bowling et al., 2004) to detect their op-
ponent’s goals. On the action reasoning side, they use stored policies (Carbonell,
1981), ask humans for guidance following a mixed-initiative paradigm (Jarvis
et al., 2004), or require heavy knowledge engineering processes such as HTN-
based approaches (Willmott et al., 2001).

75



76 counterplanning using goal recognition and landmarks

Figure 5.1: Police control domain where the police wants to stop a terrorist that is trying
to leave the city after the terrorist has committed an attack. Blue tiles depict
a river that agents cannot traverse.

In this chapter we propose a novel approach that is fully automated and
domain-independent, both on the goal recognition and the planning sides, to
generate strategies (plans) that prevent opponent agents from achieving their
goals. It is based on goal recognition, landmarks, and classical automated plan-
ning:

1. Goal recognition aims to infer an agent’s goals from a set of observations.
In this work, we use Ramírez and Geffner (2009; 2010) planning-based
goal recognition framework to infer an opponent’s goal G given a set of
observations.

2. Fact landmarks are propositions that must be true in all valid solution
plans (Hoffmann et al., 2004). In this work, we use landmarks to identify
subgoals involved in the achievement of g. We filter the set of landmarks
and select a counterplanning landmark, which is a landmark where the op-
ponent could be stopped and therefore unable to reach her goals.

3. Generate a plan, namely counterplan, to achieve the counterplanning land-
mark, and therefore to prevent the opponent’s goal achievement.

The rest of the chapter is organized as follows. Section 5.1 defines some plan-
ning formalisms and functions we use in this chapter. Section 5.2 describes the
counterplanning setting and formally defines counterplanning tasks. Section 5.3
introduces our fully automatic domain-independent approach to solve counter-
planning tasks. Section 5.4 presents an empirical study in different competitive
planning domains. Section 5.5 shows some experiments in which we use a vari-
ation of our counterplanning approach that works in Starcraft, a real-time strat-
egy game. Section 5.6 discusses related work in the area. Finally, Section 5.7
provides some conclusions and highlights possible future works.

5.1 preliminaries

In this chapter we will often use the term step when talking about a plan.
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Definition 5.1. Given a plan π = (a1, . . . ,ax, . . . ,an), we say that a given fact
fi ∈ F is needed at a (time) step x ∈N if fi ∈ pre(ax)

Definition 5.2. Given a plan π = (a1, . . . ,ax, . . . ,an) and a fact fi ∈ F, we say x is
the last step in which fi is needed in π iff ∀x′ ∈ [x+ 1,n], fi 6∈ pre(ax′).

Moreover, sometimes we will be interested in computing not only one but a
set of plans that solves a planning task Π. We refer to PΠ as the set of all plans
that solve a planning task Π, and P∗Π as the set of all plans that optimally solve
Π.

During the chapter, we will also use the following functions to compute some
of the solutions and planning concepts described in Chapter 2.

• Planner(Π) to refer to an algorithm that computes an optimal plan π

from a planning task Π.

• StrongPlanner(Π) to refer to an algorithm that computes an strong opti-
mal plan π from a planning task Π. This planner checks the non-interfering
constraints (Definition 2.5) at each node expansion, ensuring the opponent
agent cannot violate them with less or equal cost than the g value of the
node to expand.

• RecognizeGoals(F,A, I,G,O, r) to refer to an algorithm that solves a goal
recognition task (see Definition 2.9) assuming equal Pr for each goal. The
parameter r indicates the configuration used to solve the compiled tasks.
This function returns a set containing the goal(s) in G with higher proba-
bility.

• ExtractLandmarks(F,A, I,G) to refer to an algorithm that computes a
set of conjunctive fact landmarks (see Definition 2.3) LΠ from a planning
task Π.

Finally, in Definition 2.6 we assumed that the state remains the same when
two actions interfere. In this chapter we will harden this definition and will
assume that the opponent will be able to execute its action when two actions
interfere.

5.2 domain-independent counterplanning

In this section we introduce our counterplanning setting. Firstly, we describe a
counterplanning episode in terms of the set of assumptions we make:

• We consider two planning agents acting in the same environment. A seek-
ing agent, seek, that wants to achieve a goal; and a preventing agent, prev,
that wants to stop the seeker from achieving its goal.

• seek will try to achieve a goal Gseek. That goal will not change during the
counterplanning episode.

• prev knows seek’s model, i.e., its actions. However, prev does not know
seek’s actual goal Gseek or plan πseek.
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• prev and seek models are coupled, i.e., they share some propositions
p ∈ F. More specifically, prev can delete(add) some propositions appear-
ing in seek’s actions preconditions.

• prev knows a set of potential goals that seek might try to achieve, Gseek.
seek actual goal is always within that set, Gseek ⊆ Gseek.

• seek is assumed to be rational; i.e., it is assumed to take optimal paths to
its goals. However, it might change its optimal behavior upon observing
prev starting to move, thus being able to execute any suboptimal plan
from that moment on.

• Both agents have full observability of other’s actions.

• prev’s goal is initially set to empty; hence, it does not have an initial plan.
She will try to formulate a goal and a plan during the counterplanning
episode to prevent seek from achieving Gseek.

Most of these assumptions are common either in goal recognition research or
real world applications. For instance, in most real world domains where coun-
terplanning can be useful (e.g. police control, cyber security, strategy games,. . . ),
the preventing agent knows her enemy’s model and a set of potential goals that
she is interested in. The rationality assumption is common in goal recognition
research (Ramírez & Geffner, 2009).

Considering the above mentioned assumptions, we can formally define a
counterplanning task.

Definition 5.3. A counterplanning task is defined by a tuple
C = 〈Πseek,Πprev,Oprev,Gseek〉 where:

• Πseek = 〈Fseek,Aseek, Iseek,Gseek〉 is the planning task of seek.

• Πprev = 〈Fprev,Aprev, Iprev,Gprev〉 is the planning task of prev.

• Oprev = (o1, . . . ,om) is a set of observations in the form of executed actions that
prev receives from the execution of seek’s plan
πseek = (o1, . . . ,om,am+1, . . . ,ak). The notation differentiates between obser-
vations (previously executed seek’s actions), oi, and future actions to be executed
by seek, aj.

• Gseek is the set of goals that prev currently thinks seek can be potentially pursu-
ing.

The meaning of currently in the definition of Gseek indicates that this set
changes according to the set of observations Oprev. In fact, given that we are
assuming rational (optimal) agent behavior to achieve its goal, Gseek monoton-
ically decreases with each observation o ∈ Oprev (2009). In other words, prev

will consider less (or equal) seek’s potential goals as seek executes more actions
of her plan.

As we have discussed, at the beginning of the counterplanning task prev has
not performed any action (her goal and plan are empty). Therefore, the new
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composite state Ic after receiving the set of observations Oprev is defined as
Ic = Γ(Iseek ∪ Iprev,Oprev). The solution to a counterplanning task is a prevent-
ing agent’s plan πprev, namely a counterplan. We define valid counterplans1 as
follows:

Definition 5.4. A counterplan πprev is a valid counterplan iff its joint execution from
Ic with the remaining of seek’s actual plan πseek, results in a state I′c from which seek

cannot achieve any of the goals in Gseek, and therefore its actual goal Gseek. Formally:

I′c = ΓJ(Ic,πprev,πseek \ {Oprev}) (5.1)

∀Gi ∈ Gseek,@π′
seek

| Gi ⊆ Γ(I′c,π′
seek

) (5.2)

Note that the definition of a valid counterplan is quite strict: it must prevent
seek from achieving any of the goals prev thinks she is currently trying to
achieve. Moreover, it will only be a valid counterplan with respect to the actual
plan seek is executing πseek, which prev does not know. Therefore, the validity
of a counterplan can only be tested a posteriori. Going back to our running
example, in the limit case where the terrorist has not started moving, Oprev = ∅,
the police would need to compute a counterplan that blocks the achievement
of any of the terrorist’s goals. In case such a counterplan does not exist, the
police should wait until they infer the terrorist’s true goal by observing more
actions. Other approaches would involve betting for one of the goals and setting
a control at one of the stations. However, we are aiming at domains such as
police control where we want to make sure, i.e., guarantee, the opponent is
stopped. In the rest of the chapter, we will use the terms block, stop, or prevent
as synonyms of an agent executing a counterplan.

5.2.1 Counterplanning Landmarks

In automated planning, the only way of ensuring that a goal is not achievable is
to thwart any of the planning landmarks involved in it (as a reminder, goals are
landmarks by definition). If those landmarks cannot be achieved again as we
are assuming here, this would prevent seek from achieving the goal regardless
the plan it follows.

Proposition 5.1. There is no plan π that achieves a goal Gi ∈ Π if any conjunctive
landmark Li ∈ LΠ is negated.

Proof. Given that landmarks have to be true in each π that solves Π, if any
landmark is negated, then there will be no plan that achieves the goal.

Note that we are assuming seek can execute any (suboptimal) plan upon
prev starts executing its plan. If we were assuming optimal seek behavior until
it reaches its goal, we would be reducing the possible plans seek can take, thus
increasing the number of landmarks, i.e., the predicates that we could delete
(add) to prevent seek from achieving its goal. prev does not know seek’s actual
goal but a set of potential goals she might be trying to achieve Gseek.

1 In the rest of the section we will use the terms counterplan and valid counterplans indistinctly.
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Definition 5.5. Given a counterplanning task C, we refer to the set of all the poten-
tial planning tasks that prev currently thinks seek might be solving as Xseek.

Xseek = {〈Fseek,Aseek, Iseek,Gi〉 : Gi ∈ Gseek} (5.3)

Therefore, prev must find a counterplan that deletes (or adds) any of the fact
landmarks that are common in all the planning tasks in Xseek. We refer to this set
of landmarks as counterplanning landmarks.

Definition 5.6. Given a counterplanning task C, a fact in Li ∈ Fseek is a counterplan-
ning landmark iff:

• Li ∈ LΠj ,∀ Πj ∈ Xseek; and

• If Li is a positive literal, ∃a ∈ Aprev such that Li ∈ del(a). If Li is a negative
literal, ∃a ∈ Aprev such that Li ∈ add(a).

We refer to the set of counterplanning landmarks of a counterplanning task as CPLC,
and ExtractCPL(C) as the function that computes them.

prev will set any of these counterplanning landmarks as her goal Gprev,
computing a counterplan that deletes (adds) it, making impossible for seek to
achieve her goal Gseek. However, some of the counterplanning landmarks might
be closer to seek than prev. This means that we cannot ensure prev will be able
to delete them before (in less steps) seek stops needing them.

Following the notions of weak and strong plans outlined in the Background
Section, we differentiate between weak and strong counterplanning landmarks.

Definition 5.7. A counterplanning landmark Li ∈ CPLC is a strong counterplan-
ning landmark iff prev can always delete (add) it applying less actions from Ic than
the last step of an optimal plan in which seek needs Li. Given P∗Πseek

, which contains all
the optimal plans that achieve any of the goals Gi ∈ G; a function laststep(Li,π) that
returns the last step in which Li appears in any precondition of a plan π; and a func-
tion StrongPlanner that returns a strong optimal plan, we formally define strong
counterplanning landmarks as follows:

@πseek ∈ P∗Πseek

| laststep(Li,πseek) < c(StrongPlanner(Fprev,Aprev, Ic,¬Li))
(5.4)

These will be the counterplanning landmarks that prev will be able to delete
before seek stops needing them, regardless the plan seek follows. We refer to
the set of strong counterplanning landmarks of a counterplanning task as SCPL,
and ExtractSCPL(C, CPLC) as the function that computes them. This function
is detailed in Algorithm 2.

We start computing all the seek optimal plans to achieve each goal in Gseek

through the ComputeOptimalPlans function (lines 2-4). Then, we iterate over
the counterplanning landmarks, computing the minimum number of steps, i.e.,
the optimal cost of a prev’s plan to delete that counterplanning landmark Li
(line 7). The plan is computed through the StrongPlanner function, which
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Algorithm 2 ExtractSCPL

Require: Counterplanning task C, counterplanning landmarks CPLC

Ensure: Strong Counterplanning Landmarks SCPL
1: SCPL← ∅
2: for Gi ∈ Gseek do
3: Π← 〈Fseek,Aseek, Ic,Gi〉
4: PΠ ←ComputeOptimalPlans(Π)
5: for Li ∈ CPLC do
6: minStepSeeker←∞
7: minStepPreventer← c(StrongPlanner(Fprev,Aprev, Ic,¬Li))
8: if minStepPreventer 6=∞ then
9: minStepSeeker← GetMinLastStep(Li,PΠ)

10: if minStepPreventer < minStepSeeker then
11: SCPL← SCPL∪ 〈¬Li, minStepSeeker, minStepPreventer〉
12: else
13: CPLC ← CPLC \ {Li}

14: SCPL← GetMinLastStepSeeker(SCPL)
15: return SCPL

runs an optimal planner that only returns strong plans. If the call to Strong-
Planner returns an empty plan, i.e., there is no strong plan to get ¬Li, its cost
will be infinite and we will not include that landmark into the set of strong coun-
terplanning landmarks. Therefore, minStepPreventer would store the sooner
(minimum number of steps) prev can safely falsify the given counterplanning
landmark.

We do something similar for seek, but in this case we cannot compute an opti-
mal plan to get the landmark. This is because some landmarks are already true
in Ic, and the cost of an optimal plan that achieves them would be zero. This is
the case of many landmarks of planning tasks such as those involving resources
that are consumed as actions are executed. What we need is to compute the last
time step of any optimal plan in which seek requires the given landmark to
achieve the goal, and take the minimum step among all the plans. This would
be the last state in which prev could block seek if selecting that landmark. We
perform this computation in the GetMinLastStep function, storing its result
in the minStepSeeker variable. Finally, we compare if prev can falsify Li before
seek stops needing it by comparing minStepPreventer and minStepSeeker in
line 10. If that is the case, we incorporate ¬Li to the set of strong counterplan-
ning landmarks SCPL. We add the minimum step at which seek stops needing
it and prev can falsify it in order to later reason about which SCPL prev should
delete (add). Otherwise, we remove Li from the set of counterplanning land-
marks in line 13. We can safely remove Li because if there exists one goal for
which seek stops needing Li before prev can delete it, Li will not be a strong
counterplanning landmark, and therefore we do not have to reason about it in
next iterations of the algorithm, i.e., for other goals.

Once we have performed this process for every goal, we might have differ-
ent minimum seeker time steps for the same counterplanning landmarks in
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SCPL. This is because seek might stop needing some landmarks before, i.e., in
earlier steps, in some goals and later in others. To solve this, we get the mini-
mum seeker last time step for each Li ∈ SCPL (line 15). All these decisions: (1)
compute all optimal plans; (2) get the minimum last step at which seek stops
needing Li in any goal Gi ∈ G, are made to keep some stopping guarantees,
considering a worst case seek agent following the plan that stops needing the
landmarks as soon as possible. Therefore, SCPL ⊆ CPLC, and all the coun-
terplanning landmarks (including the strong ones) are weak counterplanning
landmarks WCPL, in the same way as strong plans are also valid weak plans.

Theorem 5.1. Given a counterplanning task C, if there exists a landmark Li ∈ CPLC

that prev can always delete (add) before seek stops needing it, i.e., a strong counter-
planning landmark, ExtractSCPL will find it.

Proof. Let us assume that ExtractSCPL cannot find that strong counterplan-
ning landmark Li. This could only happen in the following cases:

• ExtractSCPL misses reasoning about Li. But this is not possible, since
Li ∈ CPLC and the algorithm is iterating over all Lj ∈ CPLC.

• ExtractSCPL is overestimating the cost of a prev’s plan to delete Li. But
this is not possible, since it is using a strong optimal planner that will
return a minimum cost plan to achieve ¬Li.

• ExtractSCPL is overestimating the last step in which seek needs Li. But
this is not possible, since by computing all optimal plans, it is getting a
lower bound on the last step seek might stop needing Li (last step Li
appears in any optimal plan). By doing this for all the goals Gi ∈ Gseek

and getting the minimum, ExtractSCPL ensures it is not overestimating
the last step in which seek needs Li.

Since ExtractSCPL is reasoning over all the counterplanning landmarks, and
it is not overestimating the cost of any agent to delete/stop needing Li, Ex-
tractSCPL will find it.

5.2.2 Counterplan’s Properties

In the same way as there are multiple plans that solve a classical planning task,
there might exist different counterplans that solve a counterplanning task. We
characterize counterplans by focusing on two key aspects: optimality and stop
guarantees. While the first aspect is related to the generation of prev’s goal
Gprev from the set of CPL, the latter is related to the prev’s plan that achieves
the generated goal, πprev.

Counterplan’s optimality. In this work we devise two types of counterplan’s
optimality metrics. Counterplans can thwart opponent’s plans: (1) as soon as
possible, i.e., letting seek to execute the least number of actions; or (2) at the
lowest cost for prev. We will select a different goal for prev among the CPL’s
depending on which metric we are interested in optimizing.
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• Blocking the opponent as soon as possible. The aim of prev is to stop
the opponent by generating a counterplan that thwarts seek’s plan by
reducing as much as possible the number of actions she can perform. This
approach can be useful in domains such as security, where preventing
agents want to stop any thread as soon as possible. prev will set her goal
to the negation of the strong counterplanning landmark which is closest to
seek’s current state. In other words, the (negated) proposition pi ∈ SCPL
with minimum minStepSeeker value2.

Gprev ← x | 〈x,y, z〉 = argmin〈¬Li,minSeeker,minPrev〉∈SCPL(minSeek)
(5.5)

We will later refer to this metric as asap.

• Blocking the opponent at the lowest possible cost. The aim of prev is to
stop the opponent by generating a counterplan with the lowest cost (or
number of actions in case of unitary costs). This approach can be useful
in domains such as real-time strategy games, where prev’s resources are
limited. prev will set her goal to the negation of the strong counterplan-
ning landmark which is closest to her state. In other words, the (negated)
proposition pi ∈ SCPL with minimum minStepPreventer value.

Gprev ← x | 〈x,y, z〉 = argmin〈¬Li,minSeek,minPrev〉∈SCPL(minPrev)
(5.6)

We will later refer to this metric as preventing.

Stopping guarantees. In this work we devise two types of counterplans in terms
of their stopping guarantees. The stopping guarantees of a counterplan are not
only related to the plan itself, but also to the goal prev selects. If the goal is
generated among the weak counterplanning landmarks, the counterplan will
necessarily be weak, given that there is no guarantee prev can delete the land-
mark before seek stops needing it. On the other hand, if the goal is generated
among the strong counterplanning landmarks, the counterplan might be weak
or strong.

Definition 5.8. A valid counterplan πprev is a strong counterplan iff its joint exe-
cution from Ic with any plan seek can execute π′

seek
, results in a state I′c from which

seek cannot achieve any of the goals in Gseek, and therefore its actual goal Gseek. Given
I′c, which refers to the set of all possible states that we can get from the joint execution
of πprev and any seek’s plan π′

seek
from Ic, we formally define a strong counterplan as

follows:
I′c = ΓJ(Ic,πprev,π′

seek
) ∀π′

seek
∈ PΠseek

(5.7)

∀I′c ∈ I′c,∀Gi ∈ Gseek,@π′
seek

| Gi ⊆ Γ(I′c,π′
seek

) (5.8)

As we have discussed (Proposition 5.1 and Definition 5.7), this is only possible
if:

∃¬Li ∈ SCPL | ¬Li ⊆ ΓJ(Ic,πprev,π′
seek

) (5.9)

2 For the sake of clarity, we use minSeek and minPrev to refer to minStepSeeker and minStepPre-
venter respectively.
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In the rest of cases, the counterplan will be weak and hence prev will only
be able to stop seek under some circumstances, i.e., depending on the actions
seek executes. The main difference between a valid counterplan and a strong
counterplan is that valid counterplans only need to prevent seek from achieving
the goals in G from the state I′c resulting from executing πprev and seek’s actual
plan πseek. On the other hand, strong counterplans need to prevent seek from
achieving the goals in G from any state I′c (i.e., a set of states) that could result
from the joint execution of πprev and any plan seek can generate.

5.3 computing counterplans

We now introduce dicp (Domain-independent Counterplanning), our algorithm
to compute counterplans which is shown in Algorithm 3. This algorithm is al-
ways run by prev. It receives a counterplanning task C as input, and the follow-
ing parameters that determine how it will be solved:

• A parameter s that determines whether we want to compute strong or
weak counterplanning landmarks when setting prev’s goal.

• A parameter p that determines whether we want to compute strong or
weak plans.

• A parameter m that indicates whether we want to block the opponent at
the lowest cost or as soon as possible.

• A parameter r that indicates the configuration used to solve the goal recog-
nition tasks.

Algorithm 3 dicp

Require: C

Require: s,p,m,r
Ensure: πprev

1: πprev ← ∅
2: Gprev ← ∅
3: Gseek ← RecognizeGoals(Fseek,Aseek, Iseek,Gseek,Oprev, r)
4: Ic = Γ(Iseek ∪ Iprev,Oprev)

5: CPL← ExtractCPL(C)
6: if CPL 6= ∅ then
7: if s = strong then
8: CPL← ExtractSCPL(C, CPL)
9: while πprev = ∅ and CPL 6= ∅ do

10: Gprev ← SelectGoal(CPL,m, s)
11: πprev ← Planner(Fprev,Aprev, Ic,Gprev,p)
12: if πprev = ∅ then
13: CPL← CPL \Gprev

14: return πprev
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The algorithm first solves a planning-based goal recognition task in order to
infer the goal seek is pursuing. This is done in the RecognizeGoals function
(line 3). Given a planning domain, initial conditions, a set of candidate goals,
a set of observations, and a planner, this function updates the set of candidate
goals Gseek. Then, the current composite state Ic is updated by advancing the
state from Iseek applying all actions corresponding to the observations in Oprev

(line 4). After that, we extract the set of counterplanning landmarks (see Defi-
nition 5.6). If this set is not empty, a counterplan exists and we proceed to find
it. Otherwise, the counterplanning task is unsolvable and we return an empty
plan.

In case we are interested in ensuring seek will be stopped, we will set s to
strong and will compute the strong counterplanning landmarks of C. This is
done by the ExtractSCPL function, which we already detailed in Algorithm 2.
The next step is to (1) select a goal Gprev from the CPL; and (2) generate a coun-
terplan πprev that achieves Gprev. We repeat this process until a counterplan is
found or no counterplanning landmarks are left in lines 9-13. First, we select
Gprev using the SelectGoal function. This function receives as input the set of
counterplanning landmarks (which will be composed of strong or weak coun-
terplanning landmarks based on s), the metric m we want to optimize, and the
parameter s. If s = strong, SelectGoal will set Gprev using equations 5.5 or 5.6
depending onm. Otherwise, SelectGoal will randomly choose one of the coun-
terplanning landmarks in CPL to be Gprev. Finally, we use an optimal planner
to compute a counterplan that achieves Gprev. We overload the definition of
the Planner function, adding the parameter p as input. If p = strong, the
generated counterplan will be strong, guaranteeing that Gprev will be achieved
regardless of seek’s actions. Otherwise, the generated counterplan will be weak
and will only achieve Gprev in some cases, i.e., if seek does not execute certain
actions.

5.3.1 Theoretical Properties of the Algorithm

We now prove that our algorithm is sound, complete, and optimal. We can only
provide this theoretical properties when dicp computes strong counterplans,
i.e., it is run with s and p set to strong, and r is Ramírez and Geffner (2009)
approach.

Theorem 5.2 (Completeness). Given a counterplanning task C, if there exist a strong
counterplan πprev that solves it, dicp will find it.

Proof. Following Definition 5.4, a valid counterplan must prevent seek from
achieving any of the goals in G from Ic. The only way of ensuring this is to
delete (add) a landmark which is common to all the potential goals before seek

stops needing it (see Definitions 2.3, 5.1, 5.6, 5.7). From Theorem 5.1 we can
ensure that if such a landmark exists, Algorithm 2 will find it. Since we are
iterating over the set of strong counterplanning landmarks, we will always find
a strong counterplan πprev if it exists.

Theorem 5.3 (Soundness). The plan returned by dicp is a valid counterplan.
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Proof. If dicp returns a non-empty plan, it will achieve Gprev through a strong
plan πprev. We are setting Gprev as one of the strong counterplanning landmarks,
so πprev will delete (add) one of the landmarks seek needs to achieve its true
goal Gseek before it stops needing it (Theorem 5.1). Since landmarks must be
true along all valid plans that achieve a goal, seek will not be able to reach
Gseek.

Theorem 5.4 (Optimality). The plan returned by dicp is optimal with respect to the
given metric m.

Proof. When computing the set of strong counterplanning landmarks, we store
the sooner seek stops needing the landmark Li, and the sooner prev can achieve
¬Li. The SelectGoal function then selects the counterplanning landmark that
minimizes m from SCPL. Since we iterate over SCPL until a counterplan is
found, dicp will return the plan that minimizes m, either minimum steps for
seek or prev.

We cannot ensure any of these properties for other algorithms that may arise
from variations of the different parameters of dicp. For instance, even if we
compute the set of strong counterplanning landmarks, the returned counter-
plan might not be sound if the plan that achieves Gprev is a weak one. In Sec-
tion 3.3, we conduct an experimental evaluation to show the behavior of the
optimal version of dicp. We will also vary some of the parameters and relax
some constraints to test how suboptimal versions compare to the optimal in
different competitive domains.

5.3.2 dicp Running Example

We illustrate now all the previous concepts through our police control run-
ning example. We will vary the counterplanning tasks to show the behavior of
dicp. In all the examples, the terrorist will be seek, and the police will be prev.
Both the police and the terrorist can move to their adjacent non-blue tiles. In or-
der to move to a tile, it has to be (free) and (connected) to the current agent’s tile.
After the execution of a move action, the agent’s position changes, the current
tile is no longer (free), and the previous tile becomes free again. The police can
also tap-booths when being at a police station. On the other hand, the terrorist
can make-call when being at a phone booth that has not been tapped. When the
terrorist reaches a terminal having made the call, she will leave the city and the
counterplanning episode will have finished.

Counterplanning Task 1: Strong vs Weak Counterplanning Landmarks

In the first counterplanning task we want to study (depicted in Figure 5.2), seek

has not moved and therefore Oprev = ∅. Since the police has not observed any
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Figure 5.2: Counterplanning task in the police control domain. seek has not moved,
and therefore Oprev = ∅.

terrorist’s actions, the call to RecognizeGoal returns that all goals are equally
likely:

Gseek = 〈{(at-terrorist c1_5)(call-made)}, {(at-terrorist c5_5)(call_made)},

{(at-terrorist c5_1)(call_made)}〉

The next step is to extract the counterplanning landmarks that are common to
the three goals. In this case phone-available is the only common counterplanning
landmark, which prev can falsify by heading to the police station and executing
tap-phone-booths.

If we run dicp with s = strong, the next step is to extract the strong coun-
terplanning landmarks. To do that, we compute all the optimal seek plans to
achieve any of the goals in G, getting from them the minimum last time step in
which seek stops needing phone-available. Note that there exists multiple optimal
plans to achieve any of the goals, depending on (1) the path the terrorist follows;
and (2) the booth from which she decides to make the call. The sooner step seek

stops needing phone-available in any plan is three, by making the call from any
of the phone booths located at two steps from her location in the south part of
the map. On the other hand, the sooner prev can achieve (not (phone-available))

is also three, by disconnecting the booths from the police station located at two
steps from her location. In this case, prev cannot delete the landmark before
seek stops needing it (line 10 of Algorithm 2), so it is not a strong counterplan-
ning landmark. Since there are no more counterplanning landmarks, dicp will
stop and return an empty plan, meaning there is not strong counterplanning
landmark that guarantees the terrorist is blocked.

If we run dicp with s = weak, it would set Gprev =(not (phone-available)).
A strong or weak plan (depending on p) that disconnects the booths from the
police station would be computed, but this counterplan cannot guarantee that
the seek is blocked. It will only block seek in the cases in which she decides
to go to the train or bus stations, also making the call from any of the booths
located in the north side of the map.
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Figure 5.3: Counterplanning task in the police control domain. seek has not moved,
and therefore Oprev = 〈(move c1-1 c1-2)〉.

Counterplanning Task 2: Counterplanning Landmarks Optimality

In the second counterplanning task we want to study (depicted in Figure 5.3),
seek has moved north from her new location at the bottom-left part of the map.
The call to RecognizeGoal returns that the terrorist escaping through the bus
and train stations are equally likely. We can discard the airport since we are
assuming seek rational behavior. The set of counterplanning landmarks now in-
clude some tiles in addition to phone-available: free c3-2, free c3-3, and free c3-4.
Making the phone booths unavailable and negating free c3-2 are not strong
counterplanning landmarks for the same reasons we discussed in the previous
case. On the other hand, the police could safely set a control at the other two
tiles, preventing the terrorist from reaching any of the candidate stations. In
this case, prev will move to free c3-4 if she is interested in blocking seek at the
lowest possible cost; or to free c3-3 if she is interested in blocking seek as soon
as possible, i.e., allowing seek to only execute the lowest number of actions of
her plan.

5.4 evaluation in competitive planning domains

In this first evaluation, we want to test the behavior of dicp in different com-
petitive planning domains. In particular, we aim at testing the scalability of the
algorithm, as well as studying what the best conditions for the existence of coun-
terplans are, and comparing how the solutions returned by relaxed versions of
dicp compare to the optimal one.

5.4.1 Experimental Setting

dicp can be instantiated with many different combinations of planners, goal
recognition techniques, and parameters. However, we selected a representative
set of configurations that lead to the following four versions of the algorithm3.

3 All versions of dicp can run with m set to lowest cost or as soon as possible.



5.4 evaluation in competitive planning domains 89

Each of them has different strengths and weaknesses we will discuss through
the evaluation.

• dicp
∗: optimal version of dicp run with s,p = strong, and an the optimal

goal recognition approach presented in Ramírez and Geffner (2009). in
the RecognizeGoals function. This version guarantees that seek will be
blocked (if possible) by computing a strong plan that achieves a strong
counterplanning landmark.

• dicp
o: this version also runs with s,p = strong, but uses Ramírez and

Geffner (2010) probabilistic goal recognition approach in the Recognize-
Goals function. It uses an optimal planner to solve the compiled goal
recognition tasks.

• dicp
w: weak version of dicp run with s,p = weak, and a suboptimal

planner to solve the probabilistic goal recognition tasks (2010) in the Rec-
ognizeGoals function. This version will only block seek in some cases.

• dicp
m: middle ground between dicp

o and dicp
w. This version uses a

suboptimal planner in the RecognizeGoals function and p = weak like
dicp

w. It computes SCPL like dicp
o (s = strong), but using a lighter ver-

sion of ExctractSCPL: it (1) only computes one optimal plan for seek

(line 4 of Algorithm 3); and (2) computes the cost of prev using a weak
planner (line 7 of Algorithm 3). Like dicp

w, this version will only block
seek in some cases.

We conducted experiments in the following competitive planning domains.
For each domain, we generated 10 counterplanning tasks.

• police control. Our running example domain, in which a terrorist (seek)
wants to escape from a city. The police (prev) can set controls over the city
as well as disconnect some phone booths to block the terrorist escape
plan. The maps are 10× 10 grids with 25% of obstacles and 10 randomly
distributed booths. The set of candidate goals is 3.

• painted blocks-words. In this domain a robotic arm (seek) is trying to
build some words using a set of available blocks. It can stack and unstack
blocks as long as their top is not painted. There is another agent (prev) that
can paint the top part of clear blocks, i.e., blocks that do not have other
blocks on top of them. The paint needed to paint each block is randomly
distributed over several connected rooms. prev is also randomly placed in
one of these rooms. To paint a block, prev needs to have the paint and be
in the room where seek is building the words. Problems in this domain
contain 8 blocks and 5 rooms. The blocks are initially piled randomly
into several towers. The set of candidate goals is 5, i.e., seek might be
building five words. The words seek needs to build range from 3 to 6
blocks (letters).

• counter logistics. In this domain an agent (seek) can use a fleet of trucks
and planes to deliver some packages. It can load the packages into the ve-
hicles as long as they are operative. There is another agent (prev) that
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can damage the vehicles rendering them inoperative. To damage the ve-
hicles, prev needs to collect some artifacts that are distributed over the
logistics network. Once it is located at the same place that the vehicle with
the artifact, it can damage the vehicle. We used a subset of the problems
employed by Ramírez and Geffner (2009), modifying them to randomly
placed two artifacts and two prev trucks in the logistic network.

• rovers & martians. This is a game in which a robotic agent called rover
(seek) has to conduct several experiments on Mars. It has to navigate to
different locations, collecting samples, analyzing them and communicat-
ing the results. There is another agent, a martian (prev) that does not
want intruders on its planet. It can screw up the rover’s experiments by
stealing the samples or interrupting its communications. While the rover
can only move through visible locations (i.e., may need to apply a set of ac-
tions to go from A to B), the martian can move between any two points of
the map (i.e., it can move from A to B applying just one action). Problems
in this domain contain 10 locations and 6 samples, in addition to different
number of objectives and cameras. Both agents are randomly distributed
over the map. The set of candidate goals is 6, i.e., the rover might be trying
to get/communicate the results of 6 different experiments.

For all the counterplanning tasks, we select one goal Gi ∈ Gseek and set is as
seek’s true goal. Then we compute an optimal plan to achieve it (πseek) using
A∗ with the lmcut admissible heuristic (Helmert & Domshlak, 2009) in Fast-
Downward (Helmert, 2006). We will refer to this configuration as opt-lmcut.
This optimal planner configuration is also the one we use in the Planner and
StrongPlanner functions. The set of observed actions %Obs that Oprev will
contain is taken to be a subset of πseek, ranging from the first 10% of the actions
up to 70% of the actions. Higher percentages of observations mean that more
actions of seek’s plan have already been executed, and thus observed by prev.
We did not include experiments where the observed sequence is higher than
70% because in these cases seek is so close to its goal that it cannot be blocked.

Our fully automatic domain-independent counterplanning approach works
with any goal recognition technique. For purposes of this evaluation, we have se-
lected Ramírez and Geffner (2009; 2010) approaches with different planners. For
the optimal goal recognition we use hsp* (Haslum & Geffner, 2000), the planner
used by Ramírez and Geffner (2009) approach. For the probabilistic goal recog-
nition (Ramírez & Geffner, 2010) we use two different planners: opt-lmcut, the
aforementioned optimal planner; and lama greedy (Richter & Westphal, 2010),
a satisficing planner that stops the search after it finds the first solution. Finally,
we use Katz, Sohrabi and Udrea (2020) top-quality planner to compute all the
optimal plans of a given planning task in the ComputeOptimalPlans function.

We will measure the following quality and performance metrics in the diffe-
rent experiments:

• |Gseek|: number of goals in the candidate goal’s set.

• |L|: number of common landmarks among the most likely goals.
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• |CPL|: number of counterplanning landmarks among the most likely goals.

• Q: 1 if the actual goal Gseek was found to be among the most likely goals
Gseek after calling RecognizeGoals, 0 otherwise.

• E: 1 if seek is stopped, 0 otherwise. To compute this number, we jointly
execute πseek and πprev. If the joint execution of both plans does not allow
seek to achieve its goal, E = 1.

• %E: ratio of times a counterplan πseek succeeds and blocks seek. This num-

ber is computed as successful counterplans
generated counterplans .

• %πseek: ratio of πseek that seek can execute until it is blocked by prev.
Lower numbers are better, and 1 means that seek has not been blocked.
We only report this ratio when the counterplan successfully blocks seek.

• |πprev|: counterplan length (cost) for prev. We only report the length of the
counterplans that successfully block seek.

• tC: time to return a solution for a counterplanning task.

Reproducibility. The experiments were run on an Intel Core i5-8400 CPU
2.80GHz machines with a time limit of 1800s and a memory limit of 8GB. The
full domains for seek and prev are shown in Appendix D.

5.4.2 Evaluation Results

Scalability Evaluation

W want to test first how the algorithm scales and the amount of execution
time needed by each component of dicp. Theoretically, the scalability of our
algorithm depends on two main aspects:

• The size of the problem. The bigger the problem, the harder will be to
(1) solve the compiled goal recognition tasks; (2) extract the landmarks of
each goal; (3) compute all the optimal plans in the case of dicp

∗; and (4)
compute the optimal plans (either strong or weaks) that achieve Gprev.

• The number of candidate goals Gseek. Having more goals implies (1) more
tasks to be solved in the planning-based goal recognition; and (2) more
planning tasks from which to extract landmarks.

To test which of these aspects influences the execution times of dicp more, we
conducted two types of experiments in the police control domain. Although
we only report scalability results in this domain, the obtained results can be
extrapolated to other domains. In the first experiment we fixed the number of
candidate goals to three and increased the size of the problem from 5× 5 to
20× 20 grids. In the second experiment we fixed the size of the map to 10× 10
and increased the number of candidate goals from 2 to 5. In both cases we kept
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the other variables (such as the percentage of obstacles) the same and gener-
ated 10 random tasks for each configuration with 10% of observations. Then we
solved those tasks with each version of dicp and stored the aggregated solving
times. Figure 5.4 shows the results we obtained for the first experiment, and Fig-
ure 5.5 shows the results of the second one. The total size of the bar depicts the
total time employed by the algorithm. Each color shows how each part of the al-
gorithm contributes to the total solving time. We show in blue the time used by
RecognizeGoals when inferring the opponent’s goal. We show in orange the
time needed to select a goal from the set of (strong) counterplanning landmarks.
This comprises the time employed by the ExtractCPL, ExtractSCPL and Se-
lectGoal functions. Finally, we show in green the time used by Planner to
return a counterplan that achieves Gprev.

dicp
∗

dicp
o

dicp
m

dicp
w

Figure 5.4: From left to right, top to bottom: aggregated solving times as the problem
size grows for dicp

∗, dicp
o, dicp

m, and dicp
w. In blue, the time used by

RecognizeGoals. In orange, the time used by ExtractCPL, ExtractSCPL
and SelectGoal. In green, the time used by Planner.

As we can see, dicp
∗ and dicp

o are much slower than dicp
m and dicp

w. They
also scale worse; while we can see an almost linear trend in the case of dicp

m

and dicp
w when we increase the size of the problems, the solving time grows

exponentially for dicp
∗ and dicp

o. In fact, when we run these two versions
in larger problems, they cannot solve many counterplanning tasks in police

control maps that exceed a size of 50× 50, while the other versions can.
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dicp
∗

dicp
o

dicp
m

dicp
w

Figure 5.5: From left to right, top to bottom: aggregated solving times as the number
of candidate goals grows for dicp

∗, dicp
o, dicp

m, and dicp
w. In blue, the

time used by RecognizeGoals. In orange, the time used by ExtractCPL,
ExtractSCPL and SelectGoal. In green, the time used by Planner.
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Another relevant fact we can extract from the results is the enormous weight
the goal recognition part has compared to the other parts of the algorithm. In
all the cases, this is the part that contributes the most to the total solving time;
and it makes sense, given that RecognizeGoals solves two planning problems
for each candidate goal. This is especially true in the case of dicp

∗ and dicp
o,

which use an optimal planner to solve these problems. Overall we can say that
increasing the number of candidate goals affects all the algorithms more than
increasing the size of the problem, which mainly influences dicp

∗ and dicp
o.

While computing the counterplans does not seem to take long compared to the
other parts of the algorithm, the goal selection from the set of (strong) counter-
planning landmarks starts taking some time as the problems increase in size.
In fact, it takes around 200 seconds in the case of dicp

∗ and dicp
o solving

counterplanning tasks in 20× 20 maps. We can also observe this growth of Se-
lectGoal’s time in the greedier versions, but it is less steep given than they are
not computing all optimal plans. Finally, we can see that the solving times for
dicp

m and dicp
w are very similar, although as we shall see below their behavior

in terms of stopping guarantees is quite different.

dicp’s Behavior Evaluation

Tables 5.1, 5.2, 5.3, and 5.4 summarize the results each version of dicp obtains
on each domain. As we can see in all the domains, the higher percentage of
observations, the higher Q values. The goal recognition task becomes easier as
more actions have been observed, as vastly reported in goal recognition works.
As expected, dicp

∗ always guesses the goal right, given that we are assuming
optimal seek behavior towards its goal. Higher Q values also imply higher %E.
In other words, if we are able to correctly guess seek’s goal, we increase the
chances that the generated counterplan blocks seek. The experimental results
at this point validate our theoretical claims: dicp

∗ (1) always guess seek’s goal
right,Q = 1; and (2) if it generates a counterplan, the counterplan always blocks
seek, %E = 1.

We are randomly generating the problems, and thus some of them might not
have a solution. For instance, in police control there are some problems in
which the police is too far from the terrorist candidate goals; and in painted

blocks-words the painting needed to paint a block can be in a room far from
prev’s initial location. Despite this, our algorithms are able to block seek in most
solvable problems. On average, we block seek 20% of times in police control

and around 30% of times in painted blocks-words. This percentage is much
lower in the case of counter logistics, specially in the versions that compute
strong counterplanning landmarks, which are not able to generate valid coun-
terplans in any of the counterplanning tasks. This is because in this domain
seek can always move one of the vehicles at cost one, i.e., in one step, making
impossible for prev to delete the landmark in fewer steps. On the other hand,
dicp

w is able to find some valid counterplans when less than half of seek’s
plan has been observed. The opposite is true in the case of rovers & martians,
where prev blocks seek around 70% of times, regardless the algorithm used.
This is due to the competitive advantage the martian has over the rover in this
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Domain |Gseek| Algorithm m %Obs |L| |CPL| Q E %E %πseek |πprev| tC

police

control 3

dicp
∗

asap

0.1 4.6 1.8 1.0 0.2 1.0 0.9 1.2 171.3

0.3 4.2 1.6 1.0 0.2 1.0 0.8 1.3 185.1

0.5 3.8 1.4 1.0 0.2 1.0 0.7 1.3 225.3

0.7 3.2 1.1 1.0 0.1 1.0 0.9 1.0 254.0

preventing

0.1 4.6 1.8 1.0 0.2 1.0 0.9 1.2 173.4

0.3 4.2 1.6 1.0 0.2 1.0 0.8 1.3 190.6

0.5 3.8 1.4 1.0 0.2 1.0 0.7 1.3 222.7

0.7 3.2 1.1 1.0 0.1 1.0 0.9 1.0 253.9

dicp
o

asap

0.1 4.6 1.8 1.0 0.2 1.0 0.9 1.2 261.4

0.3 4.2 1.6 1.0 0.2 1.0 0.8 1.3 272.1

0.5 3.8 1.4 1.0 0.2 1.0 0.7 1.3 310.8

0.7 3.2 1.1 1.0 0.1 1.0 0.9 1.0 344.8

preventing

0.1 4.6 1.8 1.0 0.2 1.0 0.9 1.2 256.8

0.3 4.2 1.6 1.0 0.2 1.0 0.8 1.3 263.1

0.5 3.8 1.4 1.0 0.2 1.0 0.7 1.3 307.0

0.7 3.2 1.1 1.0 0.1 1.0 0.9 1.0 336.6

dicp
m

asap

0.1 5.8 2.4 0.7 0.1 0.3 0.8 2.6 40.0

0.3 3.6 1.3 1.0 0.1 1.0 0.8 1.1 43.7

0.5 3.8 1.4 1.0 0.2 1.0 0.9 1.2 46.0

0.7 3.2 1.1 0.9 0.1 1.0 0.9 1.0 50.2

preventing

0.1 5.8 2.4 0.6 0.1 0.3 0.8 2.2 39.9

0.3 3.6 1.3 1.0 0.1 1.0 0.8 1.1 42.9

0.5 3.8 1.4 1.0 0.3 1.0 0.8 1.4 46.0

0.7 3.2 1.1 0.9 0.1 1.0 0.9 1.0 50.0

dicp
w

asap

0.1 5.8 2.4 0.7 0.2 0.3 0.7 3.6 39.6

0.3 3.6 1.3 1.0 0.2 0.7 0.6 1.7 44.4

0.5 3.8 1.4 1.0 0.2 0.5 0.9 1.6 45.3

0.7 3.2 1.1 0.9 0.1 0.3 0.9 3.0 49.9

preventing

0.1 5.8 2.4 0.6 0.2 0.3 0.8 3.5 41.4

0.3 3.6 1.3 1.0 0.2 0.7 0.7 1.9 43.3

0.5 3.8 1.4 1.0 0.2 0.5 0.9 1.7 45.9

0.7 3.2 1.1 0.9 0.1 0.3 0.9 3.0 50.8

Table 5.1: Comparison of the four versions of dicp in the police control domain.
Numbers shown are all averages over the set of problems as described in
the experimental setting. The metrics measured are: size of Gseek, algorithm
used, metric to minimize m, percentage of observations, number of common
landmarks |L|, number of counterplanning landmarks |CPL|, goal recognition
accuracy Q, counterplanning accuracy E, percentage of accuracy, percentage
of seek plan allowed, and counterplanning total time.
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Domain |Gseek| Algorithm m %Obs |L| |CPL| Q E %E %πseek |πprev| tC

painted

blocks

words
5

dicp
∗

asap

0.1 9.1 2.7 1.0 0.1 1.0 0.9 3.0 101.5

0.3 11.1 3.2 1.0 0.1 1.0 0.8 5.0 102.3

0.5 11.4 3.2 1.0 0.1 1.0 0.9 4.0 112.7

0.7 10.6 2.7 1.0 0.2 1.0 0.9 3.5 132.3

preventing

0.1 9.1 2.7 1.0 0.1 1.0 0.9 3.0 102.3

0.3 11.1 3.2 1.0 0.1 1.0 0.9 3.0 101.9

0.5 11.4 3.2 1.0 0.2 1.0 0.9 3.3 112.6

0.7 10.6 2.7 1.0 0.2 1.0 0.9 3.5 131.6

dicp
o

asap

0.1 14.3 4.2 0.7 0.2 0.7 0.6 4.3 398.5

0.3 12.4 3.6 0.8 0.1 0.3 0.8 4.3 193.2

0.5 11.4 3.2 1.0 0.1 0.3 0.9 4.0 192.0

0.7 10.6 2.7 1.0 0.2 1.0 0.9 3.5 195.3

preventing

0.1 14.3 4.2 0.7 0.2 0.7 0.6 4.3 399.5

0.3 12.4 3.6 0.8 0.1 0.3 0.9 3.7 192.5

0.5 11.4 3.2 1.0 0.2 0.7 0.9 3.3 194.0

0.7 10.6 2.7 1.0 0.2 1.0 0.9 3.5 194.6

dicp
m

asap

0.1 18.1 5.1 0.6 0.3 0.5 0.7 3.8 67.2

0.3 17.5 4.8 0.5 0.1 0.2 0.9 4.0 46.8

0.5 15.2 4.1 0.5 0.4 0.7 0.8 3.3 46.6

0.7 11.7 3.0 1.0 0.2 1.0 0.9 3.5 47.4

preventing

0.1 18.1 5.1 0.6 0.2 0.5 0.6 4.3 67.8

0.3 17.5 4.8 0.5 0.1 0.2 0.9 4.4 47.1

0.5 15.2 4.1 0.5 0.3 0.4 0.8 3.3 46.6

0.7 11.7 3.0 1.0 0.1 1.0 0.9 3.0 47.9

dicp
w

asap

0.1 18.1 5.1 0.6 0.4 0.4 0.6 4.4 67.0

0.3 17.5 4.8 0.5 0.4 0.4 0.8 4.2 46.5

0.5 15.2 4.1 0.5 0.3 0.3 0.8 4.6 46.2

0.7 11.7 3.0 1.0 0.1 0.1 0.9 4.2 47.7

preventing

0.1 18.1 5.1 0.6 0.6 0.5 0.6 4.2 67.0

0.3 17.5 4.8 0.5 0.2 0.2 0.8 4.4 46.4

0.5 15.2 4.1 0.5 0.2 0.2 0.7 4.3 46.1

0.7 11.7 3.0 1.0 0.2 0.2 0.9 4.3 47.6

Table 5.2: Comparison of the four versions of dicp in the painted blocks-words do-
main. Numbers shown are all averages over the set of problems as described
in the experimental setting. The metrics measured are: size of Gseek, algorithm
used, metric to minimize m, percentage of observations, number of common
landmarks |L|, number of counterplanning landmarks |CPL|, goal recognition
accuracy Q, counterplanning accuracy E, percentage of accuracy, percentage
of seek plan allowed, and counterplanning total time.
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Domain |Gseek| Algorithm m %Obs |L| |CPL| Q E %E %πseek |πprev| tC

counter

logistics 10

dicp
∗

asap

0.1 9.0 0.8 1.0 0.0 - - - 44.7

0.3 11.6 1.3 1.0 0.0 - - - 101.2

0.5 9.4 1.7 1.0 0.0 - - - 147.9

0.7 6.8 1.2 1.0 0.0 - - - 96.5

preventing

0.1 9.0 0.8 1.0 0.0 - - - 44.8

0.3 11.6 1.3 1.0 0.0 - - - 101.5

0.5 9.4 1.7 1.0 0.0 - - - 147.9

0.7 6.8 1.2 1.0 0.0 - - - 98.2

dicp
o

asap

0.1 9.0 0.8 1.0 0.0 - - - 45.8

0.3 11.6 1.3 1.0 0.0 - - - 108.2

0.5 9.4 1.7 1.0 0.0 - - - 152.0

0.7 6.8 1.2 1.0 0.0 - - - 100.0

preventing

0.1 9.0 0.8 1.0 0.0 - - - 45.8

0.3 11.6 1.3 1.0 0.0 - - - 107.5

0.5 9.4 1.7 1.0 0.0 - - - 152.7

0.7 6.8 1.2 1.0 0.0 - - - 99.4

dicp
m

asap

0.1 9.5 0.8 0.7 0.1 1.0 0.5 6.0 1.7

0.3 10.9 1.3 0.8 0.1 0.3 0.7 6.7 2.0

0.5 10.1 1.7 0.8 0.0 0.0 - 5.0 2.1

0.7 7.1 1.2 0.9 0.0 - - - 2.4

preventing

0.1 9.5 0.8 0.7 0.1 1.0 0.5 6.0 1.8

0.3 10.9 1.3 0.8 0.1 0.3 0.7 6.7 2.0

0.5 10.1 1.7 0.8 0.0 0.0 - 5.0 2.2

0.7 7.1 1.2 0.9 0.0 - - - 2.5

dicp
w

asap

0.1 9.5 0.8 0.7 0.2 0.5 0.4 6.5 1.7

0.3 10.9 1.3 0.8 0.4 0.4 0.7 6.6 1.9

0.5 10.1 1.7 0.8 0.0 0.0 - 6.1 2.1

0.7 7.1 1.2 0.9 0.0 0.0 - 6.1 2.4

preventing

0.1 9.5 0.8 0.7 0.2 0.5 0.4 6.5 1.7

0.3 10.9 1.3 0.8 0.4 0.4 0.7 6.6 1.9

0.5 10.1 1.7 0.8 0.0 0.0 - 6.1 2.1

0.7 7.1 1.2 0.9 0.0 0.0 - 6.1 2.4

Table 5.3: Comparison of the four versions of dicp in the counter logistics domain.
Numbers shown are all averages over the set of problems as described in
the experimental setting. The metrics measured are: size of Gseek, algorithm
used, metric to minimize m, percentage of observations, number of common
landmarks |L|, number of counterplanning landmarks |CPL|, goal recognition
accuracy Q, counterplanning accuracy E, percentage of accuracy, percentage
of seek plan allowed, and counterplanning total time.
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Domain |Gseek| Algorithm m %Obs |L| |CPL| Q E %E %πseek |πprev| tC

rovers

&
martians

6

dicp
∗

asap

0.1 4.1 2.2 1.0 0.6 1.0 0.4 1.3 98.5

0.3 3.7 2.1 1.0 0.7 1.0 0.6 1.2 101.3

0.5 2.8 1.8 1.0 0.7 1.0 0.7 1.0 122.4

0.7 2.2 1.2 1.0 0.5 1.0 0.9 1.0 141.0

preventing

0.1 4.1 2.2 1.0 0.6 1.0 0.5 1.2 98.6

0.3 3.7 2.1 1.0 0.7 1.0 0.6 1.2 105.4

0.5 2.8 1.8 1.0 0.7 1.0 0.7 1.0 121.6

0.7 2.2 1.2 1.0 0.5 1.0 0.9 1.0 141.6

dicp
o

asap

0.1 4.1 2.2 1.0 0.6 1.0 0.4 1.3 105.5

0.3 3.7 2.1 1.0 0.7 1.0 0.6 1.2 124.2

0.5 2.8 1.8 1.0 0.7 1.0 0.7 1.0 145.4

0.7 2.2 1.2 1.0 0.5 1.0 0.9 1.0 177.3

preventing

0.1 4.1 2.2 1.0 0.6 1.0 0.5 1.2 102.8

0.3 3.7 2.1 1.0 0.7 1.0 0.6 1.2 125.4

0.5 2.8 1.8 1.0 0.7 1.0 0.7 1.0 141.3

0.7 2.2 1.2 1.0 0.5 1.0 0.9 1.0 181.6

dicp
m

asap

0.1 4.2 2.1 0.5 0.7 1.0 0.4 1.3 47.2

0.3 3.7 2.0 0.7 0.8 1.0 0.6 1.2 57.3

0.5 3.2 1.9 0.7 0.8 1.0 0.6 1.0 68.9

0.7 2.1 1.2 0.9 0.5 1.0 0.9 1.0 80.0

preventing

0.1 4.2 2.1 0.5 0.7 1.0 0.4 1.3 47.2

0.3 3.7 2.0 0.7 0.8 1.0 0.6 1.2 56.6

0.5 3.2 1.9 0.7 0.8 1.0 0.7 1.0 69.0

0.7 2.1 1.2 0.9 0.5 1.0 0.9 1.0 80.1

dicp
w

asap

0.1 4.2 2.1 0.5 0.7 0.9 0.4 1.3 47.0

0.3 3.7 2.0 0.7 0.8 0.9 0.6 1.2 57.5

0.5 3.2 1.9 0.7 0.8 0.8 0.6 1.0 69.1

0.7 2.1 1.2 0.9 0.6 0.7 0.9 1.0 81.7

preventing

0.1 4.2 2.1 0.5 0.8 0.9 0.4 1.2 42.0

0.3 3.7 2.0 0.7 0.8 0.9 0.6 1.2 55.4

0.5 3.2 1.9 0.7 0.8 0.9 0.6 1.0 68.9

0.7 2.1 1.2 0.9 0.7 0.8 0.9 1.0 80.3

Table 5.4: Comparison of the four versions of dicp in the rovers & martians domain.
Numbers shown are all averages over the set of problems as described in
the experimental setting. The metrics measured are: size of Gseek, algorithm
used, metric to minimize m, percentage of observations, number of common
landmarks |L|, number of counterplanning landmarks |CPL|, goal recognition
accuracy Q, counterplanning accuracy E, percentage of accuracy, percentage
of seek plan allowed, and counterplanning total time.
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domain; while seek needs to move through several location to collect samples,
prev can move to any point much faster, thus being able to block seek’s plan in
most counterplanning tasks by only executing one action.

The capacity of blocking an opponent is also closely related to the number
of counterplanning landmarks (|CPL|), which depends on the number of (com-
mon) landmarks |L| and the capacity of prev’s model to negate them. A higher
number of counterplanning landmarks leads to more valid counterplans (higher
E values). This is the case of painted blocks-words, which has more counter-
planning landmarks on average. Moreover, we tend to observe higher E values
when we have observed less than half of seek’s plan. When we try to generate
a counterplan with 70% of seek’s plan already executed, it is less likely that a
valid counterplan can be generated; the number of remaining counterplanning
landmarks is lower in those cases, i.e., seek is too close to its goal for us to stop
it.

In all the configurations and domains, counterplans that tries to block the
enemy as soon as possible m = asap tend to be larger (higher |πprev|), allowing
less of seek’s plan to be executed (lower %πseek) compared to the plans returned
when m = preventing which try to block seek in the least number of steps.

Finally, we can notice some differences if we compare algorithms’ behavior.
As we have said, dicp

∗ never fails: if it returns a counterplan, it is guaranteed
to block seek. dicp

o is close to dicp
∗ in that aspect (%E), specially in police

control. However, it requires more time to solve the goal recognition task than
dicp

∗. In painted blocks-words, it is able to generate valid counterplans in
a couple of tasks where dicp

∗ cannot. This is because dicp
o fails guessing the

right goal, but finds a landmark that can be deleted before seek stops needing
it if optimal plans to the actual seek goal are not taken into account. In other
words, the counterplan generated in those cases is only valid for that particular
seek’s plan, but not for any plan that it could generate. Overall, dicp

w is the one
that blocks seek more often. This difference is specially remarkable in painted

blocks-words, where it can block seek up to 60% of times. However, most of
the counterplans that dicp

w generate do not prevent seek from achieving its
goal. Its average %E is close to 0.2, meaning that only 20% of the prev’s plans
it returns are valid counterplans. dicp

m shows a good trade-off among all the
versions: (1) it is as fast as dicp

w and is able to stop seek a similar number of
times (E); and (2) the counterplans it generates are closer in terms of %E to the
ones of the much slower versions such as dicp

∗ or dicp
o.

5.5 evaluation in real-time strategy games

We also wanted to test our counterplanning approach in more realistic scenarios
such as Real-Time Strategy (RTS) games. Games have always been interesting
and great test beds for developing and trying new AI capabilities because of
their well-defined set of rules, clear aims, and the possibility of evaluating re-
sults in an objective way. RTS games are a particularly difficult type of games
with many analogies to real world problems. They differ from traditional board
games in several aspects: they could be partially observable; their state space
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is usually enormous; all players make their moves simultaneously; and they
have a small amount of time to decide the next action. These features present
many challenging subproblems for AI research, such as decision making under
uncertainty, collaboration, opponent modeling, or adversarial real-time plan-
ning (Buro, 2003).

In this section, we slightly modify our counterplanning approach to generate
counterplans quicker so the technique can be used in RTS games.

5.5.1 Cost Estimation Gradient Goal Recognition

Up to now, we have employed Ramírez and Geffner (2009; 2010) goal recog-
nition approaches to identify opponent’s goals. However, they are often slow
and therefore cannot be used to identify goals in RTS games, where the actions
are performed almost instantly. This is the reason why we propose a lighter
planning-based goal recognition approach based on cost estimation gradient. It
is described in Algorithm 4. The algorithm takes as inputs the current seeking
agent’s problem and domain (F,A, I), a set of hypothesis G, and the last obser-
vation (o). It estimates the cost of achieving each of the candidate goals, both
from the previous input state I and the current state I′ given the last observed
action I′. This cost estimation can be performed using any heuristic or actually
solving the problem and obtaining a plan. We compute this cost in parallel for
each g ∈ Gseek to better scale-up. The algorithm returns a list containing the
cost estimation difference ∆c between the new and the previous state for all the
goals in G.

Algorithm 4 RecognizeGoalsFast

Require: F,A, I,G,o
Ensure: G′

1: G′ ← ∅
2: I ′ ←Update(F,A, I,o)
3: for Gi ∈ G do
4: cGi ← EstimateCost(F,A, I,Gi)
5: c′Gi ← EstimateCost(F,A, I ′,Gi)
6: if c′Gi < cGi then
7: G′ ← G′ ∪ {Gi}
8: return G′

Example 5.1. An example of this process is shown in Figure 5.6. In this case, an agent
(represented as a triangle) might want to achieve G1 or G2. From its initial state, the
EstimateCost() function returns 6 for G1 and G2 respectively. After observing the
first action of the agent, the function returns 5 and 7 respectively. Since the new value
has decreased for G1, that will be the goal that conform G′, which will be returned by
the algorithm.
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Figure 5.6: Goal recognition example. The agent is depicted by a triangle. Its goal can
be either achieve G1 or G2.

5.5.2 Real-Time Counterplanning

Algorithm 5 shows the high-level algorithm used to solve a counterplanning
task from the perspective of prev in a real-time setting. While in dicp we re-
ceived as input a sequence of observations, in rtdicp (Algorithm 5) we receive
the observations one at a time. In this case, the algorithm asks for the last ob-
served action, sending it to RecognizeGoalsFast along with a planning do-
main, initial conditions, and a set of candidate goals Gseek. The call to this func-
tion returns the updated set of candidate goals Gseek. Then, the composite state
is updated by applying oseek. Next, it extracts the set of counterplanning land-
marks CPL in line 6. As in dicp, if there are no common counterplanning land-
marks, the counterplanning task cannot be solved. Otherwise, the algorithm
selects Gprev from the set of counterplanning landmarks. At this point we sim-
plify the computations we made in dicp for the sake of algorithm’s speed. We
iterate over each counterplanning landmark in CPL, checking if prev can delete
it before seek can achieve it (lines 8-12). If that is the case, the computed coun-
terplan is returned. As we previously discussed, this formulation will not allow
prev to find counterplans in which the given landmark is already true in Iseek.

rtdicp cannot guarantee that the enemy will be blocked, since we are not
computing strong counterplanning landmarks or strong plans. However, the
generated counterplans will prevent seek from achieving its goals in many cases
as we will see in the experimental evaluation.

5.5.3 Modelling StarCraft as Planning

StarCraft is a military science fiction real-time strategy video game developed
and published by Blizzard Entertainment. The objective of a standard StarCraft
match is to defeat your opponents by eliminating their units and buildings. Al-
though there are different races featured in the game, for simplicity we will
only take into account the Terran race. The game-play of StarCraft is based on re-
source management and base construction. These elements are the key to create
an army that can overpower the enemy and, therefore, succeed in the game. A
player relies on two kind of basic resources: minerals and vespene gas. The first
one is necessary to build new structures and produce new units. The second
one is needed for more advanced units and structures. Both of the resources
can be collected by a worker unit from the nodes placed in the map and be
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Algorithm 5 rtdicp

Require: C

Ensure: πprev

1: πprev ← ∅
2: CPL← Fseek

3: while πprev = ∅ or GetObservation() 6= ∅ do
4: oprev ←GetObservation()
5: Gseek ← RecognizeGoals(Fseek,Aseek, Iseek,Gseek,oprev)

6: Ic = Γ(Iseek ∪ Iprev,oprev)

7: CPL← ExtractCPL(C)
8: while CPL 6= ∅ do
9: for Li ∈ CPL do

10: πseek ← Planner(Πseek = 〈Fseek,Aseek, Iseek,Li〉)
11: π′

prev
← Planner(Πprev = 〈Fprev,Aprev, Iprev,¬Li〉)

12: if c(πseek) >= c(πprev) then
13: πprev ← π′

prev

14: else
15: CPL.remove(Li)
16: return πprev

brought to the main building. The resource is stored and becomes available
for its use. However, the vespene gas can only be collected from the source (a
vespene gas geyser) by building an extraction structure on top of it (for the Ter-
ran race, this structure is called a refinery). Different buildings or units require
different amounts of minerals or vespene gas to be produced. When the suffi-
cient amount has being collected, the player can initiate the creation process,
which takes a specific time to be completed depending on the kind of struc-
ture or unit. Once the units with attack capability have been created, the player
can attack the enemy. In the experiments, we consider that all the actions are
executed with cost (time) equal to one.

In a standard StarCraft match, most of the map is hidden to the player by the
“fog of war”. This feature does not let the player know the position of the enemy
until that area has been explored. The areas where there is a player’s building
or unit are revealed only to this player. For purposes of this work, the fog of war
has been disabled during the experiments, since the agent needs total visibility
of the actions of the enemy to produce a counterplan.

We have reduced the standard match to a set of mini-games in order to sim-
plify the complexity of a whole StarCraft match. In these mini-games, both play-
ers will be represented only by one unit and the objective of each mini-game
will be different. In order to use the counterplanning technique, we need to
translate the features and actions of StarCraft to a planning domain and the
state of the game to a planning problem.

For the planning domain4, we need to replicate the actual game dynamics
using a set of objects, predicates, and actions. We use the objects tile and building.

4 The full planning domain is shown in Appendix D



5.5 evaluation in real-time strategy games 103

The object tile is used to identify the different positions in the actual map. Each
tile corresponds to a TilePosition, as it is called in StarCraft. The object building
is used to identify the different structures that can be constructed during the
game. For that purpose, we define a different type of object building for every
type of structure in the game. The defined predicates are shown below:

• connected: this predicate represents the connection between tiles in the
map.

• at: this predicate indicates the position of a unit. We have two predicates
of this kind to identify both units in the mini-game: at and at-enemy.

• empty: indicates if a tile is empty.

• at-vespene: indicates the position of a vespene gas geyser.

• at-mineral: indicates the position of a mineral field.

• at-building: indicates the position of a structure. There is a predicate of this
kind for each type of structure in the game and for both players. As an
example, we define: at-barracks, at-barracks-enemy.

• carrying-mineral: indicates if a unit carries a chunk of mineral. We have two
predicates of this kind to indentify both units in the mini-game: carrying-mineral
and carrying-mineral-enemy.

• carrying-vespene: indicates if a unit carries vespene gas. We have two predi-
cates of this kind to indentify both units in the mini-game: carrying-vespene
and carrying-vespene-enemy.

• have-mineral: indicates that a unit has stored mineral. We have two pred-
icates of this kind to indentify both units in the mini-game: have-mineral

and have-mineral-enemy.

• have-vespene: indicates that a unit has stored vespene gas. We have two
predicates of this kind to indentify both units in the mini-game: have-vespene
and have-vespene-enemy.

• alive: indicates that a unit is alive. We have two predicates of this kind to
identify both units in the mini-game: alive and alive-enemy.

• building-built: indicates that a certain kind of structure has been built.
There is a predicate of this kind for each type of structure in the game and
for both players. As an example we define: refinery-built, refinery-built-enemy.

• unit-trained: indicates that a certain kind of unit has been created. There
is a predicate of this kind for each type of unit in the game: marine-trained,
firebat-trained, . . .

Along with these predicates, a set of planning actions have been defined to
represent all the possible actions that a unit can perform during the game. These
actions are:



104 counterplanning using goal recognition and landmarks

• move: a unit moves between two tiles that are connected. A PDDL represen-
tation of this action is shown in Listing 5.1.

• attack-unit: a unit attacks an enemy’s unit. We indicate a tile, and our unit
attacks from that tile in its range of attack.

• attack-structure: a unit attacks a certain structure. There is an action of this
kind for each type of structure in the game due to its different sizes.

• gather-resource: a unit gathers a resource from a source. It is represented
through two actions: gather-mineral and gather-vespene. This is due to the
differences between the two actions. Minerals can be extracted directly
from the source, but in order to gather vespene gas, a refinery must be
built on top of the vespene geyser beforehand.

• store-resource: a unit, which is currently carrying a resource, stores it at
the command center.

• take: a unit takes a chunk of resource present in the map. These types of
objects have been placed on the map for some of the mini-games.

• build-structure: a unit builds a new structure in a place with enough space
in the map. There is an action of this kind for each type of structure in the
game. E.g. build-refinery, build-academy, . . .

• train-unit: creating a new unit. There is an action of this kind for each type
of unit in the game. E.g. train-marine, train-firebat, . . .

As in our previous experiments, we assume deterministic action outcomes.
That is, the only changes in the environment state are the ones described by
the effects of the actions in the planning domain model. For example, in the
attack-unit action we assume that the other unit dies after the attack.

( : a c t i o n move
: pa ramete r s (? x1 − t i l e ? x2 − t i l e )
: p r e c o n d i t i o n ( and

( at ? x1 )
( connected ? x1 ? x2 )
( empty ? x2 ) )

: e f f e c t ( and
( not ( at ? x1 ) )
( at ? x2 )
( not ( empty ? x2 ) )
( empty ? x1 ) ) )

Listing 5.1: Example of the move action in the PDDL format. It moves the friendly unit
from one tile to another.

We need to know the state of the game and translate it to a PDDL file to
define the planning problem. We get this information at each time step using
the Brood War Application Programming Interface (BWAPI)5. BWAPI lets us
read all the relevant information about the game state, like the organization of
the map or the positions of our own units, the opponent units, and other units
or structures that appear on the map. This information is saved into a PDDL

5 https://bwapi.github.io/

https://bwapi.github.io/
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file defining the problem and into two other files that contain the observations
about the opponent’s units and the possible goals that the opponent could be
trying to achieve in the future.

In order to create the problem, we start detecting all of the TilePositions that
form our map for the mini-game. We use tiles that units cannot step in like
water or high ground to model the shape of our custom maps for the mini-
games. Every tile is named using its coordinates in the game. Then, we write
the state of our players (alive by default), and the positions of each player unit
and every building. A unit only occupies one tile, but a building needs more
space, so it is represented by several at-building predicates. Then, we proceed to
specify the state of every tile, indicating as empty the tiles that are not occupied
by unit or a building, and declaring the connections among them. The predicate
connected is uni-directional, so we need two predicates connected for each pair
of tiles to represent that they are fully connected in both directions. We only
consider horizontal and vertical connections to simplify the problem.

Finally, we identify the different goals that the enemy could be targeting, such
as taking the chunks of mineral, attacking one of our buildings, or creating a
certain type of structure or unit.

5.5.4 Results

We have created five different StarCraft mini-games to test our approach. Each of
the games is slightly more difficult than the previous one and introduces some
variants, such as resources gathering, building construction, or troops confronta-
tions. In all the mini-games there are two players, seek and prev, which handle
Terran units. The seeking agent has a pre-computed plan πseek that it will follow
to achieve its actual goal Gseek. This goal is hidden for the preventing agent. The
mini-games finish when the seeking player has achieved its initial goal, or if the
preventing player stops it. At each mini-game we measure:

• |Gseek|: number of goals in the candidate goal’s set.

• |LΠseek
|: number of common landmarks for the seeking agent planning

task.

• |CPL|: number of counterplanning landmarks among the most likely goals.

• %Obs: percentage of observed actions from the total seek’s plan needed
to perform the goal inference.

• Q: 1 if the actual goal Gseek was found to be among the most likely goals
Gseek after calling RecognizeGoalsFast, 0 otherwise.

• E: 1 if seek is stopped, 0 otherwise. To compute this number, we jointly
execute πseek and πprev. If the joint execution of both plans does not allow
seek to achieve its goal, E = 1.

• %πseek: ratio of πseek that seek can execute until it is blocked by prev.
Lower numbers are better, and 1 means that seek has not been blocked.
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• tQ: time in seconds taken for solving the goal recognition problem. It is
accumulated each iteration that a counterplan cannot be generated.

• tL: time in seconds taken for computing the landmarks.

• tC: total time in seconds taken for producing a counterplan.

• |πseek|: number of actions in the seeking agent’s plan.

• |πprev|: number of actions in the generated counterplan.

Since StarCraft runs in Windows and the planners run in Ubuntu, we com-
municate both parts of the architecture via a TCP/IP connection. The StarCraft
part of the architecture runs on a Windows 10 machine with Intel Core i5-4210U
running at 1.7 GHz. The counterplanning algorithm runs on an Ubuntu ma-
chine with Intel Core 2 Quad Q8400 running at 2.66 GHz. We use the LMcut

heuristic (Helmert & Domshlak, 2009) for cost estimation and the probe plan-
ner (Lipovetzky et al., 2014) for plans computation. We selected them for their
speed, crucial for our real-time setting. The next subsections describe the mini-
games and the results obtained.

Take the Gem

The first mini-game takes places in a 64x20 map. Each player only controls one
unit. The seeking agent is located at the middle bottom of the map, while the
preventing agent is located at the middle top side. There are two possible goals
(|G| = 2) that seek may want to achieve: the top-left gem g1 or the top-right gem
g2. This initial situation is depicted in Figure 5.7.

Figure 5.7: Take the gem mini-game. g1 and g2 indicate the two seek’s possible goals.
The actual goal of seek is to take the gem at g1.

The actual seek’s goal is to achieve g1. After its first movement, prev is able
to correctly guess it and start to compute the involved landmarks. There are
three landmarks: at-enemy s31-18, the initial location of seek, which is always
a landmark; at-enemy s3-3, the position where the enemy needs to be in order
to achieve g1; and at-target s3-3, the position of the gem. From this set of land-
marks, the only counterplanning landmark that prev can falsify is at-target s3-3,
given that there is an action in its domain that deletes the at-target predicate.
After the costs calculation to ensure that it can reach that landmark before the
opponent does it, not (at-target s3-3) becomes prev’s goal, generating a counter-
plan πprev to achieve it. Figure 5.8 shows the moment when prev takes the gem
before its opponent. A video showing the experiment can be accessed through
the following link https://youtu.be/mxbNir6sESk.

https://youtu.be/mxbNir6sESk
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Figure 5.8: Moment when prev takes the gem before its opponent.

Gathering or Attacking?

The second mini-game takes place in a 64x64 map with Y shape as depicted
in Figure 5.9. There are two mineral fields, one at the top-right and another at
the top-left side of the map; the latter is the actual goal of seek. There are two
command centers: one at the top (prev) and another one at the bottom (seek).
prev thinks that the opponent may want to gather resources from any of the
mineral fields or attack its command center. Our counterplanning algorithm
is able to find a common landmark that blocks the achievement of any of the
candidate goals. So a counterplan is generated to send a unit to the bottleneck
spot placed in the middle of the Y. A video showing the experiment can be
accessed through the following link https://youtu.be/T8Y8cbNqvFk.

Figure 5.9: Resource gathering or attacking mini-game. The actual goal of seek is to
gather the resources at g1. The landmark point indicates where prev’s unit
will stand to attack seek’s unit and block its goal achievement process.

Gathering in the Maze

The third mini-game takes place in a 64x64 maze-like map as depicted in Fig-
ure 5.10. In this case, there are three mineral fields placed in the map, one at
the top-left, one on the right and one almost at the center of the map. As before,

https://youtu.be/T8Y8cbNqvFk
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seek is placed at the bottom and prev at the top of the map. A set of bottleneck
spots have been also placed around the map to allow blocking the path of the
enemy. prev thinks that the goals that seek are pursuing are gathering mineral
from one of the mineral fields. In this experiment, prev is not able to find a
common landmark to block the enemy, since the shape of the maze allows seek

two different paths to any point of the map. If the goal is the mineral field at the
center of the map, prev cannot infer this until the seeking agent has completed
almost 80% of its whole plan. That is when seek has reached the spot at the
middle part on the left of the map and begins to go right. At that time, prev

cannot block it. A video showing the experiment can be accessed through the
following link https://youtu.be/5pUmkSZcpXY.

Figure 5.10: Resource gathering in a maze mini-game. The actual goal of seek is to
gather the minerals at g2.

Base Construction

The fourth mini-game takes place in a 64x26 map as depicted in Figure 5.11.
There is one mineral field placed on the right and one vespene geyser placed
at the top-left of the map. The positions of the two agents are the same as in
the previous experiments. There are also a command center and a barrack for
the seeking agent, which lets it build the structures that we are considering as
possible goals for this experiment: building a supply depot or a factory. When
seek starts to go to the left, prev considers that it is going to the vespene geyser
placed on top and tries to counterplan by blocking its opponent way to the
bottleneck point, which is a landmark. prev believes that seek’s final goal is to
build a factory. In order to achieve that, seek needs to build a refinery on top of
the vespene geyser, extract the vespene, store it in the command center and, fi-
nally, build the factory. prev gets to the landmark point when the seeking agent
is about to reach the same point, blocking its way. seek has only completed 1.9%
of its plan.

https://youtu.be/5pUmkSZcpXY
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Figure 5.11: Base construction mini-game. The actual goal is to build a factory. The
landmark point indicates where prev is going to stand to block the way
and attack.

Training Army

The fifth mini-game takes place in the exact same map that was used for the
fourth experiment as depicted in Figure 5.12. For this experiment we have also
placed an academy for seek, which allows it to train different kinds of units.
This time, the possible goals that seek might be pursuing are training a marine
or training a firebat. For the first goal, it needs to gather mineral, store it in the
command center, and then train the marine using the barracks. For the second
goal, seek needs also to gather and store vespene gas. Independently of seek’s
actions, prev will figure out that the common landmark that can invalidate
both goals is to destroy the barracks where the units are trained. prev attacks
the barracks when seek has only completed 2.6% of its plan. A video showing
the experiment can be accessed through the following link https://youtu.be/
MwvqnZ0cJpk.

Figure 5.12: Training army mini-game. prev detects a common landmark for both goals:
destroying the barracks. The actual seek’s goal is to train a firebat.

Mini-games Summary

Overall we have shown how we can use rtdicp to generate large counterplans
in a RTS game like Starcraft. Table 5.5 summarizes the quantitative results of
each experiment. As in the case of the competitive planning domains of the

https://youtu.be/MwvqnZ0cJpk
https://youtu.be/MwvqnZ0cJpk
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Mini-game |Gseek| |LΠseek
| |CPL| %Obs Q E %πseek tQ tL tC |πseek| |πprev|

Take the gem 2 3 1 2.2 1 1 0.8 1.8 1.9 4.8 44 30

Gathering or attacking? 3 6 3 1.4 1 1 0.2 1.1 1.7 3.4 70 12

Gathering in the maze 3 3 1 79.5 1 0 ∞ 19.2 1.5 - 78 -

Base construction 2 11 3 1.9 1 1 0.6 12.7 2.7 24.4 51 9

Training army 2 6 2 2.6 1 1 0.5 3.1 2.2 4.3 75 30

Table 5.5: Table that summarizes the results obtained in the five mini-games.

previous section, having more counterplanning landmarks often implies more
opportunities to block the opponent. In all the mini-games but one, we are able
to infer seek’s goal with few actions. This allows prev to start generating the
counterplan when seek is far from its goal, increasing the odds of blocking it.
In Gathering in the maze we are not able to infer seek’s goal until the final part
of its plan, and thus we cannot block it. Even though we have reduced the time
needed to perform the goal recognition, it is still the part that contributes the
most to the total counterplanning time.

5.6 related work

In this section, we examine the relevant literature related to our counterplanning
approach, showing how it is situated within previous works. First, we put it in
the context of adversarial planning; then, we show how the work is strongly
related to goal reasoning.

Adversarial Planning

The name of our technique is inspired by the work of (Carbonell, 1981). In
this case, a domain-dependent decision making process computes strategies to
block opponent agents in domains like political conflicts solving (Carbonell,
1978). The author characterizes two main types of such strategies: diversionary
counterplanning, where an agent diverts an opponent from achieving its initial
goal; and obstructive counterplanning, where an agent makes the opponent’s
goal state unreachable. Our domain-independent counterplanning approach re-
lies on the latter.

The related work often frames similar problems as Stackelberg security games
from game theory (Paruchuri et al., 2008). In this framework, the leader (de-
fender) moves first, followed by the follower (attacker), who will choose her
action after observing the leader’s choice. A solution (a Stackelberg equilib-
rium (Stackelberg, 1952)) is a leader/follower move pair that minimizes the
defender’s loss given optimal (worst case) attacker play. These games assume
that the attacker will observe the defender’s moves and choose an optimal re-
sponse. This paradigm appears to fit many real-world situations, and has been
successfully applied in airport patrolling (Pita et al., 2008) or protection of crit-
ical infrastructures like power grids (Brown et al., 2005), to name a few. Most
works relying on game theory are domain-dependent. A remarkable exception
is the work by Speicher et al. (2018), where the authors introduce Stackelberg
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planning. They formulate both the leader and the follower as planning agents
and use a classical planner to find a Pareto frontier of Stackelberg equilibri-
ums. They assume that agents do not share any action. However, this paradigm
does not fit our problem, since we are interested in simultaneous games, where
agents execute actions concurrently.

In adversarial scenarios where agents execute concurrently, Jensen and Veloso
(2000) present two algorithms: optimistic and strong cyclic adversarial planning.
These algorithms return universal plans, which can be seen as policies that
associate the best action to apply given a state for achieving the goal. However,
they assume the opponent’s goal is known, while we use planning-based goal
recognition to infer it from a set of candidate goals.

Goal Reasoning

Recently, there has been increasing interest in the study and generation of
agents capable of reasoning about their own and opponents’ goals as well as
their environment (Aha, 2018; Cox, 2007; Vattam et al., 2013). Some works fol-
low the Goal-Driven Autonomy (GDA) process, which integrates a diverse set
of AI components such as HTN planning or explanation generation (Molineaux
et al., 2010; Weber et al., 2010).

Focusing only on adversarial settings, researchers often test their goal reason-
ing systems and agents in strategy games. This is because in these games, agents
need to constantly reason about their opponent’s actions and intents, changing
its current goals and strategies accordingly. In these games, strategy selection is
the most employed technique (Ontañón et al., 2013) when deciding which strat-
egy to follow. It is based on choosing a strategy from a set of predefined policies
given the current state. Multiple approaches for strategy selection exist, ranging
from game-theoretic approaches (Sailer et al., 2007; Tavares et al., 2016), fuzzy
rules (Preuss et al., 2013), or case-based reasoning (Aha et al., 2005; Jaidee et al.,
2013; Wender & Watson, 2014). A common drawback of these approaches is
that they must have access to a strategy set, which must be previously given by
a domain expert or generated from games or simulations.

Some other works have explored strategy construction in strategy games
(Churchill et al., 2012; Stanescu et al., 2014; Uriarte & Ontañón, 2014). To deal
with its huge search space, hierarchical and abstract game state representations
are used along game-tree search algorithms such as minimax or Monte Carlo Tree
Search to build the strategies. The drawback of these approaches is that they re-
quire heavy knowledge engineering processes to generate the abstraction levels
and the goals involved in each of them. Moreover, these approaches do not take
into account opponent’s intentions.

The strategies can be selected or generated given the current game state. How-
ever, few works focus on predicting the opponent’s movements or strategies to
enhance agents’ reasoning process. Weber and Mateas (2009) proposed a data
mining approach to strategy prediction, Kabanza et al. (2010) recognize oppo-
nent’s intentions using plan libraries, and Stanescu and Čertickỳ (2016) employ
answer set programming to predict the units produced by the opponent. How-
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ever, none of the aforementioned works is capable of observing the opponent
and autonomously synthesize a good plan from scratch to counter the oppo-
nent strategy. This lack of adaptation has been identified as one of the major
challenges in AI applied to strategy games (Ontañón et al., 2013). And precisely
this is what we are proposing with dicp: a domain-independent approach to
generate goals and plans given the opponent’s actions.

5.7 summary

We have presented a novel fully automatic domain-independent approach for
counterplanning, which is based on classical planning techniques. We have for-
mally defined the counterplanning task involving two planning agents: a seek

agent that seeks to achieve some goals; and a prev agent that tries to prevent its
opponent from achieving its goals. To successfully block an agent in a domain-
independent way, we: (1) recognize the opponent’s goals by observing its per-
formed actions; (2) identify the counterplanning landmarks of its planning task;
and (3) generate a sequence of actions to block its goal achievement process. We
introduced dicp, an algorithm with four different versions that provide differ-
ent opponent’s stopping guarantees. Results in competitive planning domains
show the ability of our algorithms to compute valid counterplans that minimize
metrics such as the number of steps that seek can execute or the length of prev’s
plan. Empirical evidences show the existence of counterplans is strongly related
to: (1) the ability of inferring the opponent’s goal with few observations; and (2)
the number of counterplanning landmarks and their distance to both agents.

Most versions of dicp are not fast enough to be used in real-time settings,
largely due to the slowness of the goal recognition part. Moreover, they assume
a set of observations is given at once, instead of receiving them one at a time
as occurs in many real-world scenarios. To address this we introduced rtdicp,
a version of dicp that can work in almost real-time by processing observations
one at a time and using a lighter goal recognition approach. We tested rtdicp

in Starcraft, a well-known real-time strategy game. Results on different mini-
games of increasing difficulty show how we can effectively block opponents in
such environments.
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A N T I C I PAT O RY C O U N T E R P L A N N I N G

“More is lost by indecision than by wrong
decision.”

- Carmela Soprano

As we have briefly discussed in the previous chapter, many counterplanning
tasks are not solvable given that seek is closer to all the landmarks involved
in Gseek than prev. If this happens when seek has not moved, i.e., a counter-
planning task with Oprev = ∅, there is little prev can do to block its opponent.
However, in some counterplanning episodes this prev’s handicap comes from
the fact that prev stands still observing seek actions. Even if prev was able to
stop seek at the beginning of the counterplanning episode (with Oprev = ∅) now
it cannot, since seek is now closer to all the landmarks.

We can see these two cases in Figure 6.1. The counterplanning task depicted
in the left figure is unsolvable regardless of prev actions; there is no landmark
that prev can falsify before seek stops needing it. On the other hand, the coun-
terplanning task in the right would have a solution if the agent had started
moving in the right direction at the same time as seek executed its first action,
instead of standing still and watching.

Figure 6.1: Unsolvable counterplanning tasks in the police control domain. The tasks
on the left is unsolvable regardless prev actions. The task would be solvable
if prev had started moving at the same time as seek.

In the previous chapter we assumed counterplanning tasks where the obser-
vations were given all at once in O. We relaxed this in the RTS games evaluation,
assuming prev receives observations one at a time to perform the goal recog-
nition. However, up to now we were assuming prev only moves when it has
inferred seek’s goal and generated a counterplan. In this chapter we want to
go further and increase prev’s chances of blocking its opponent. To do that, we
study (1) which are the right actions prev should start executing; and (2) when
it should stop executing those actions and start computing a counterplan.
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6.1 connections between grs and counterplanning

Solving a counterplanning task can be summarized as finding a counterplanning
landmark that prev can delete before seek can stop needing it. But these landmarks
are often closer to prev than seek. In dicp and rtdicp, prev does not execute any
action until there is at least one counterplanning landmark common to all the
likely goals. A better strategy would be to start approaching the counterplan-
ning landmarks of all the likely goals, regardless if prev has already inferred
or not seek’s goal. By doing this, prev would position itself in a better state
from which its odds of blocking seek would increase. But, what particular state
should prev start approaching? And what plan should it follow?

We already answered these questions in Chapter 3. In this case, prev should
compute a centroid or minimum-covering state of the counterplanning land-
marks (Pozanco et al., 2019). By heading to these states prev will maximize
its odds of blocking seek. The next question is, when should prev stop ap-
proaching the centroid of the counterplanning landmarks and start generating
a goal and its corresponding counterplan? There are many alternatives, but we
propose here to stop heading to the centroid/minimum-covering state as soon
as there exists a counterplan that achieves a counterplanning landmark. The
full procedure is detailed in Algorithm 6, which details adicp (Anticipatory
Domain-independent Counterplanning), a variation of dicp that solves a coun-
terplanning task with increasing observations in a similar fashion as rtdicp.
Initially, Oprev = ∅.

It receives the same inputs as dicp plus t, a parameter that determines if we
want to compute centroid or minimum-covering states. The algorithm loops un-
til no more observations are received, i.e., seek has reached its goal or its plan
has been blocked. First Oprev is updated with the last observed action. Then we
update Gseek and extract the set of strong counterplanning landmarks. We only
want to compute the centroid of those counterplanning landmarks that prev

can still delete. In this case we slightly change the counterplanning landmarks
extraction process by using the ExtractListOfCPL and ExtractListOfSCPL
functions. They differ from the standard functions we previously used in that
they also return the individual (strong) counterplanning landmarks, i.e., the
counterplanning landmarks of each goal Gi ∈ G in addition to the usual set
of common (strong) counterplanning landmarks. If the set of common strong
counterplanning landmarks is empty, i.e., there is no common strong counter-
planning landmark for any of the most likely goals, we call the grscp function
(line 22) which returns the next action to be executed by prev based on the
centroid computation. Otherwise, we start the counterplanning process, select-
ing Gprev from CPList and generating a plan to achieve it. If the returned plan
is empty, we remove that counterplanning landmark from CPL and call grscp

again. This will make prev execute the action prescribed by grscp until a coun-
terplan πprev is found.

Algorithm 7 details how grscp works. It receives as input prev’s planning
task Πprev, the list of strong counterplanning landmarks CPList, the current
composite state Ic, and the goal related state to compute t. The algorithm ranks
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Algorithm 6 adicp

Require: C

Require: s,p,m,t
Ensure: πprev

1: πprev ← ∅
2: Gprev ← ∅
3: Ic = Iseek ∪ Iprev

4: Start = True
5: while GetObservation() 6= ∅ or Start = True do
6: Start = False
7: oprev ←GetObservation()
8: Oprev ← Oprev.insert(oprev)

9: Gseek ← RecognizeGoals(Fseek,Aseek, Iseek,Gseek,Oprev)

10: CPL, CPList← ExtractListOfCPL(C)
11: CPL, CPList← ExtractListOfSCPL(C, CPL, CPList)
12: if CPL 6= ∅ then
13: Ic = Γ(Ic,oprev)

14: while πprev = ∅ and CPL 6= ∅ do
15: Gprev ← SelectGoal(CPL,m, s)
16: πprev ← Planner(Fprev,Aprev, Ic,Gprev,p)
17: if πprev = ∅ then
18: CPL← CPL \Gprev

19: π′
prev
← grscp(ΠprevCPList, Ic, t)

20: Ic = Γ(Ic,π′
prev

)

21: else
22: π′

prev
← grscp(Πprev, CPList, Ic, t)

23: Ic = Γ(Ic,oprev,π′
prev

)

24: return πprev

Algorithm 7 grscp

Require: Πprev,CPList,Ic,t
Ensure: πprev

1: πprev ← ∅
2: G←Rank(CPList)
3: πprev ← grs

g(Fprev,Aprev, Ic,G)
4: return πprev
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Figure 6.2: Behavior of adicp in a police control counterplanning task. Green cells
depict individual strong counterplanning landmarks for each goal. Cells
in red depict the centroid of the strong counterplanning landmarks. The
orange cell in the right image represents the goal selected by prev to block
seek.

the counterplanning landmarks in CPList to generate the set of candidate goals
grs

g receives as input. This ranking is computed using the following formula
in the Rank function (line 3). We use set as a function that maps a list into a
set.

G =
{
〈Gi,wi〉 | wi =

count(Gi, CPList)
|CPList|

∀Gi ∈ set(CPList)
}

(6.1)

In this way, counterplanning landmarks appearing in multiple goals will have
a higher weight in G, and therefore grs

g will prioritize approaching them. Fi-
nally, we slightly change the behavior of grs. Given that the actions executed
by seek might change the set of likely goals and therefore the counterplanning
landmarks, we are not interested in finding an optimal centroid nor the plan to
achieve it because they might become useless in the next iteration of adicp. In
this case we only want to execute one action that makes prev approach most of
the counterplanning landmarks. Thus, we will stop grs

g when the first action
has been computed. This will be the action returned by grscp.

Let us exemplify how the algorithm works in the police control counter-
planning task depicted in Figure 6.2. The start of the counterplanning episode
(and the algorithm) is shown in the left image. seek has not performed any
action (no observation has been received), so all the goals are equally likely.
The algorithm then extracts the list and set of strong counterplanning land-
marks. Since there is not common strong counterplanning landmark among
the most likely goals (line 12), no valid counterplan can be produced yet, and
the algorithm calls grscp with the list of individual strong counterplanning
landmarks CPList (line 22). The green cells depict the individual strong coun-
terplanning landmarks. The size of CPList is 9, i.e., there are 9 individual
strong counterplanning landmarks since some are repeated, i.e., they are com-
mon to several goals. The counterplanning landmarks at each station appear
only once in CPList. Therefore, we assign them a weight of 19 = 0.11. On the
other hand, the three counterplanning landmarks in the middle of the image
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((not (free c3_2), (not (free c3_3), (not (free c3_4)) appear twice in CPL, for seek

escaping through the train and bus stations. Therefore, their associated weight
is 2
9 = 0.22. This would be the set of weighted goals returned by the Rank

function from the list of counterplanning landmarks:

G = {〈(not (free c1_5)), 0.11〉, 〈(not (free c5_5)), 0.11〉, 〈(not (free c5_1)), 0.11〉,
〈(not (free c3_4)), 0.22〉, 〈(not (free c3_3)), 0.22〉, 〈(not (free c3_2)), 0.22〉}

Then, grscp calls grs
g, which returns the next action that prev should execute:

moving east from c5_2 to c4_21. This action makes the agent to closer to most
of the individual strong counterplanning landmarks. After that, the compos-
ite state is updated with seek’s observed action oprev = move c1_1 c1_2 and the
action prescribed by grscp, π′

prev
= move c5_2 c4_2. This update ends the first

iteration of adicp, and the algorithm asks for a new observation.
The first observation received is shown in the right image of Figure 6.2. seek

has moved north, so now the most likely goals are the terrorist escaping through
the bus and train stations. In this case there are strong counterplanning land-
marks common to all the most likely goals (CPL 6= ∅), and thus we can start
the counterplanning process. The first counterplanning landmark that prev can
delete is also the closer to seek, free c3_2, so its negation is set as Gprev. Finally, a
plan to achieve Gprev is computed and the algorithm ends returning the counter-
plan πprev = 〈move c4_2 c3_2〉. Note that neither this counterplan nor any other
would have been existed if prev would not have moved towards the centroid of
the counterplanning landmarks in the first place.

6.2 evaluation

We randomly generated 100 counterplanning tasks on police control, painted

blocks-words, and rovers & martians in the same way as we did in Sec-
tion 5.4. We did not conducted experiments in counter logistics because it
does not have strong counterplanning landmarks. In this case, we provide one
observation at a time to each algorithm. The counterplanning episode finishes
when no more observations are received. This can occur when seek achieves its
goal or prev blocks its plan. We compare three different algorithms:

• dicp
∗, the optimal version of dicp. It will only generate actions when the

set of strong counterplanning landmarks is not empty.

• adicp
∗. It will start heading to the centroid / minimum-covering state

of the strong counterplanning landmarks until it can generate a strong
counterplan.

• randomadicp, a variation to adicp
∗ that executes random actions rather

than actions that approach the centroids/minimum-covering states.

In all versions, m is set to stop seek as soon as possible. Table 6.1 summarizes
the results of our evaluation. We only report the values of those metrics that

1 Although the modified version of grs
g only returns the next action, we show in red the centroid

of the counterplanning landmarks towards prev is heading.
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Domain Algorithm E %πseek

police control

dicp
∗

0.2 0.8

adicp
∗

0.5 0.7

randomadicp 0.3 0.8

painted blocks-words

dicp
∗

0.2 0.9

adicp
∗

0.7 0.6

randomadicp 0.4 0.8

rovers & martians

dicp
∗

0.6 0.5

adicp
∗

0.7 0.5

randomadicp 0.6 0.5

Table 6.1: Comparison of dicp
∗, adicp

∗, and randomadicp in police control,
painted blocks-words, and rovers & martians. The metrics measured are
counterplanning accuracy E, and percentage of seek plan allowed.

are relevant for this experiment. For example, since we are using the optimal
versions of the algorithm, %E is always 1. The time employed by adicp in com-
puting the next action to be executed is negligible, so tC is also equal for all the
algorithms.

As we can see, adicp
∗ outperforms dicp

∗ in all domains. It is able to return
strong counterplans in more than twice as many counterplanning tasks in po-
lice control and painted blocks-words. The difference is smaller in rovers

& martians. This is because in that domain prev is already close to most coun-
terplanning landmarks, and therefore the difference between dicp

∗ and adicp
∗

is often small.
adicp

∗ also allows prev to block seek sooner in most cases, allowing it to
execute less steps of its plan. On average, adicp

∗ make 3.3 calls to grscp in
police control, 1.3 in painted blocks-words, and 1.1 in rovers & martians

in the cases where E = 1. This means that after those number of executed
actions, the algorithm is able to find a strong counterplanning landmark. Taking
a look at these actions returned by grscp, they try to approximate the police
to the landmarks of all the goals in Gseek in police control as we saw in
the previous section. In the case of painted blocks-words, prev tries to move
around the rooms, positioning itself in a better room from which to collect the
needed paint. In rovers & martians the martian starts heading to samples’
locations.

Note that even randomadicp achieves better results than dicp. In other words,
in most counterplanning tasks it is slightly better to randomly move until a
strong counterplanning landmark is inferred rather than standing still just ob-
serving. By executing random actions, prev is able to solve more tasks on aver-
age, although some times the executed actions make the counterplanning task
unsolvable.

Table 6.1 only reports results in which adicp
∗ tries to approach the centroid

of the individual strong counterplanning landmarks. We got almost the same
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Figure 6.3: police control counterplanning task where computing centroids or
minimum-covering states changes the behavior of adicp.

results in our randomly generated counterplanning tasks when t was set to
centroids or minimum-covering states. Although it seems difficult to randomly
generate tasks where the behavior of the algorithm changes with the value of
t, we can hand-craft tasks such as the one depicted in Figure 6.3 where they
do differ. Let us assume that the real goal of seek is to escape through the
airport. In this case, if adicp is run with t = centroid, the first action grscp

would prescribe would be to move north or west. If prev executes one of these
actions, it will not be able to generate a strong counterplan to stop seek in the
next iteration when seek moves south, being the airport now the most likely
goal. On the other hand, if adicp is run with t = minimum-covering, the plan
prescribed by grscp would be empty, i.e., do not execute any action since prev is
already in the minimum-covering state of all individual strong counterplanning
landmarks. By standing still in this case, prev will be able to generate a strong
counterplan in the next iteration, negating free c5_1.

6.3 summary

As we have seen in the latest chapters of this document, many counterplanning
tasks do not have a solution due to the initial state of seek and prev. However,
many other tasks are not solvable only because of the inactivity of prev just
observing seek actions until a (strong) counterplanning landmark is found.

In this chapter we have moved to a more realistic setting, demonstrating how
we can increase the chances of finding valid counterplans by starting to act at
the same time as seek. Experimental results show how we stop opponents more
often by just executing random actions until we can infer a common counter-
planning landmark among the most likely goals. We can increase even more the
stopping odds by acting in the right way rather than randomly. We proposed that
this right way comes from the centroids and minimum-covering states compu-
tation we presented in Chapter 3. By executing actions towards those states, we
are able to duplicate the number of counterplanning tasks we can solve.
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C O N C L U S I O N S

“It’s good to be in something from the ground
floor. I came too late for that and I know. But
lately, I’m getting the feeling that I came in at
the end. The best is over.”

- Tony Soprano

Throughout this thesis, and following the goal reasoning paradigm, we have
switched the predominant question planning aims to answer from which se-
quence of actions should I follow to achieve my goal? to which goals should I achieve?
We introduced and formalized new problems in which autonomous agents need
to answer this question, both when acting in isolation and when acting with
other agents. Although we drew the main conclusions at the end of each chap-
ter, we would like to summarize them here, also highlighting the main contri-
butions presented in this thesis.

1. In single-agent settings, we allow agents to reason about a set of goals.
This results in the following specific contributions:

• We introduced Distance-based planning in Chapter 3, a novel planning
task that aims at finding states that fulfill some cost-related prop-
erty with respect to a given set of goals. We defined eight different
states and two kind of plans that agents can follow to reach them. We
also showed the benefits of computing such states and plans in many
applications ranging from goal obfuscation to anticipatory planning.
Moreover, we presented grs, a forward search planning algorithm
to solve Distance-based planning tasks. Experimental results showed
that even though optimally solving these tasks is unfeasible in prac-
tice, suboptimal versions of grs can produce fast solutions that are
close to the optimal on average.

• We introduced lgg-ap, a planning architecture that allows agents to
reason not only with a current set of goals, but also with the ones that
might appear in the near future. This task is known as anticipatory
planning, and previous works assumed that a distribution of those
goals over time was known beforehand. In Chapter 4 we showed how
this distribution can be learned from scratch by monitoring the envi-
ronment, inferring goal appearance patterns and starting to plan for
goals before they actually appear. Experimental results showed how
this approach outperforms reactive planning in an UAV surveillance
domain where goals can be predicted. We also showed evidences on
how the combination of grs and lgg-ap can enhance agents’ antici-
patory capabilities.
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2. In multi-agent settings, we have studied the dynamic generation of goals
based on other agents’ behavior, putting the focus in competitive scenarios.
This results in the following specific contributions:

• We introduced Domain-independent Counterplanning in Chapter 5, a
novel planning approach to prevent opponents’ from achieving their
goals. By using our technique, agents automatically formulate their
goals based on (1) the actions performed by the opponent; and (2)
the planning landmarks involved in the opponent’s goal achievement
process. Unlike other approaches, we are not selecting goals and/or
plans to follow from a library when we observe a particular plan/be-
havior of the opponent, but generating them from scratch. Moreover,
we are not producing a plan that denies all opponent’s goals, which
is often unfeasible in practice. Our approach is closer to the real world,
since we are incorporating goal recognition techniques to better filter
the set of goals the opponent might be trying to achieve, maximizing
the odds of blocking him/her. We formalize counterplanning tasks,
defining the existence of counterplans and some of their properties.
We conducted experiments both in planning domains and Starcraft, a
RTS game, showing how our approach can actually be used to block
other agents in competitive environments.

• Finally, we showed how we can use grs to augment the odds of block-
ing opponents. Instead of starting with an empty goal and generat-
ing it upon receiving opponent’s observations, agents can compute
the centroid (or minimum covering state) of the opponent’s candi-
date goals, starting to approach it before they infer the enemy’s goal.
Once agents infer it, they can start computing a counterplan, but
now being in a better position to block the opponent. We presented
this approach in Chapter 6, calling it Anticipatory Counterplanning
since it unifies the two main bodies of work developed in this the-
sis: distance-based planning and counterplanning. By unifying both
techniques, we came up with a way agents can generate multiple
goals/plans and change them as they receive observations from op-
ponents.
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F U T U R E W O R K

“The past is always with us. Where we come
from, what we go through, how we go through
it; all this matters. Like at the end of the book,
you know, boats and tides and all. It’s like you
can change up, right, you can say you’re
somebody new, you can give yourself a whole
new story.”

- D’Angelo Barksdale

Most of our contributions in this thesis are related to new problem definitions.
Therefore, in some cases we did not have the necessary time to explore all
the alternatives and potential of our techniques, as well as to conduct a more
in depth study of their clear synergies. Here we outline some of the research
avenues we devise to extend and strength the work presented in this thesis.

Distance-based Planning

We are using grs, a forward search algorithm with different possible config-
urations, to solve Distance-based planning tasks. It strongly depends on the
heuristic we use to estimate the distances to the goals. In fact, we demonstrate
that we can only solve distance-based tasks optimally, i.e., computing optimal
goal-related states, when using a perfect heuristic estimator. As we proved, we
cannot use admissible heuristics to preserve the optimality of the algorithm.
This is because in Distance-based planning we are interested on ranking states
based on an aggregation of multiple cost estimations (one for each goal), and
not on estimating the cost of reaching a single goal. An admissible heuristic
when aggregated can incorrectly rank states, and therefore we would lose op-
timality. We would like to explore and devise heuristics that still preserve the
correct ranking of states when aggregating the cost estimation to several inde-
pendent goals. If such heuristics exist, we could compute optimal goal-related
states much faster. On the other hand, we would also like to experimentally test
how the use of other heuristics affects the solutions returned by grs.

In our current approach, grs uses the same metric when computing the state
and the plan. But there might be cases in which it would be interesting to com-
pute the state that minimizes a particular metric, and then reach it through a
plan that minimizes/maximizes a different one. For instance, we could be inter-
ested in reaching a centroid state through a plan that minimizes the maximum
distance to any of the goals.

Finally, grs might not be the most efficient algorithm to compute some of the
states we propose. For example in the case of centroids, a better way to proceed

125



126 future work

could be to perform backward search from the goals. On top of that, one could
combine backward and symbolic search to reduce the time needed to compute
the centroids of a Distance-based planning tasks. Finding more efficient ways
of computing the rest of states such as minimum-covering or r-centroids is not
as clear, so more research on this would be needed.

Domain-independent Counterplanning

Our definition of counterplanning episode and counterplanning task is some-
how strict: we require to know the opponent’s model, initial state, and a set
of candidate goals. Moreover, we require to observe every action of the oppo-
nent in the correct order and without noise, and we are assuming it is acting
optimally. These assumptions, even though common in many domains, might
restrict the applicability of our technique in many others. We would like to ex-
plore the progressive relaxation of the above mentioned assumptions in future
work.

Another crucial assumption we make is that agents act concurrently applying
one action at each time step. This allows us to simplify some definitions such
as the joint execution of two actions, or strong plans. However, it would be
interesting to broaden them to be able to deal with temporal actions having
arbitrary duration and different preconditions and effects dynamics.

The solvability of a counterplanning task strongly depends on the initial state
of both agents with respect to the landmarks, in the same way that inferring
the correct goal of an agent depends on its position with respect to the goals.
In future work we would like to study the applicability of techniques similar to
Goal Recognition Design (Keren et al., 2020) in the context of counterplanning
to better generate scenarios where blocking opponent agents becomes easier.

We are also interested in further exploring the synergies between Distance-
based planning and Domain-independent Counterplanning that we started study-
ing in Chapter 6. Our current approach only reasons about strong counterplan-
ning landmarks, which might be expensive to compute in some cases and un-
practical in some domains. We would like to test how different relaxations such
as computing the centroid states over seek goals affect the behavior of the al-
gorithm. Moreover, we would like to add the notion of strong centroids (and
other goal-related states) when computing them in multi-agent settings such as
counterplanning.

Finally, we would also like to study how to adapt our counterplanning ap-
proach to be used in collaborative scenarios. We could use goal recognition
techniques and landmarks computation to identify spots where other agents
might need help, trying to provide them those landmarks in earlier steps of
their plans.
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A P P E N D I X





A
A P P E N D I X O U T L I N E

Throughout this dissertation, we have provided different approaches that allow
agents to reason about their goals both in single and multi-agent settings. In the
subsequent appendices we include some works carried out during the thesis
that, although having a clear connection with the main ideas introduced here,
are the fruit of collaboration with other people. The appendices also include
some extra experiments, results and domains from the chapters included in the
dissertation.
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B
M U LT I - T I E R A U T O M AT E D P L A N N I N G F O R A D A P T I V E
B E H AV I O R

The work presented in this appendix is the result of collaboration with Sebastián
Sardina and others during my research internship at RMIT. The main part of
this appendix has been published in ICAPS’20 as a full paper with the title
“Multi-tier Automated Planning for Adaptive Behavior".

“Adapt or perish, now as ever, is Nature’s
inexcusable imperative.”

- H.G. Wells

In automated planning planners typically generate a plan to achieve a given
goal from an initial state, using a model of the environment, i.e., a planning
domain. As we have already discussed in the thesis, this limits the autonomy of
planning-based agents.

Up to now we were assuming that planning domains perfectly model the
environment’s dynamics. However, this is not the case in many real-world sit-
uations. As any model, planning domains are never “complete” and they in-
evitable make assumptions on the dynamics of the environment. In other words,
the knowledge engineer must specify which is the expected outcome (effects) af-
ter applying an action into the environment. A limitation of standard planning
formalism is that they do not account for deviations from such assumptions,
and hence are not well prepared for integration within an execution frame-
work. A common approach to handle discrepancies between what the planner
expected and what happened at run-time is to simply perform re-planning or
plan-repair (Fox et al., 2006). But, why would the system keep reasoning about
the same model of the world that has been proven “wrong”? And should the
system keep trying to achieve the same goal whose achievement has already
failed?

In this chapter, and inspired by work in Software Engineering (D’Ippolito et
al., 2014), we introduce a “generalized” planning framework that aims to bet-
ter account for the uncertainties at design/engineering time. Concretely, rather
than fixing the level of risk and objectives, we envision the specification of vari-
ous assumption levels, as well as different goals for each assumption level. This
is achieved by allowing the knowledge engineer to specify a family of planning
domains, each carrying a set of assumptions. For example, in an fully idealized
model (domain) of the blocks world domain, a robotic arm always success-
fully grabs blocks, whereas in less idealized models the gripper may fail when
picking, maybe missing or even breaking the blocks. Depending on the assump-
tions imposed on the gripper operation, one may aim for different types of block
towers (goals).
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The aim of the framework is to synthesize not one but a collection of inter-
related policies embedding, together, adaptive behavior. So, as the environment
violates assumptions, the agent should gracefully “degrade” to less refined plan-
ning models. Since such models carry less assumptions on the environment, less
functionalities can generally be offered. If the gripper may break a block while
picking it, building a complete block may just not be achievable. So, with model
degradation, comes goal degradation, usually to a less ambitious (and often less
demanding) one. We call the above framework multi-tier adaptive planning and
is the topic of this chapter.

b.1 no-running example

Figure B.1: No-running example.

Consider a robot moving in a 1× n grid like the one shown in Figure B.1,
and similar to the dust-cleaning robot example in (Bonet & Geffner, 2015). The
robot can walk one cell at a time or it can run covering multiple cells in one
shot. Unfortunately, neither the physical shape of the corridor nor the physical
guarantees of the robot’s actuators are fully known to the designer. Because
of that, in some scenarios, some cells may be impossible to navigate and the
robot may get damaged or even broken. So, the knowledge engineer considers
various possible assumption levels on the environment’s behavior together with
corresponding adequate objectives, as shown in Figure B.2.

In the most idealized model D3, the designer assumes that both walking and
running actions succeed with no negative side-effects. The goal there is for the
robot to reach a destination cell located at the end of the corridor (c0) and intact.
In a less idealized D2, both running and walking actions still cause the robot to
advance, but no assumption can be made on their side effects and movement
may cause minor damages. The robot should then just aim to reach the target
destination c0. Finally, in the least idealized D1, a walking action may sometimes
cause the robot to get minor damages without even advancing, and even worse,
a running action may get the robot broken and render it unusable. Under those
weaker assumptions, the robot should return to base location c2 for servicing.

Under the above multi-tier specification, the robot tries its best, but adapts its
behavior as it discovers some assumptions may not hold. To do so, the robot
initially assumes the most idealized world model and thus works for the most
ambitious goal: reach destination undamaged. But, upon observing an inconsis-
tency with the assumptions, it must adapt both the model of the environment
as well as the objective being pursued. For example, if the robot succeeds in
advancing when moving but gets a minor damage, it should degrade to D2. If it
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( : a c t i o n walk
: pa ramete r s

(? o − C e l l ?d − C e l l )
: p r e c o n d i t i o n ( and ( at ?o )

( ad j ?o ?d ) ( not ( broken ) ) )
: e f f e c t ( and

( not ( at ?o ) ) ( at ?d ) ) )

( : a c t i o n run
: p r e c o n d i t i o n

( and ( at c2 ) ( not ( broken ) ) )
: e f f e c t ( and

( not ( at c2 ) ) ( at c0 ) ) )

( : goa l ( and ( at c0 )
( not ( s c r a t c h ) )
( not ( broken ) ) ) )

Listing B.1: Model D3.

( : a c t i o n walk
: pa ramete r s

(? o − C e l l ?d − C e l l )
: p r e c o n d i t i o n ( and ( at ?o )

( ad j ?o ?d ) ( not ( broken ) ) )
: e f f e c t ( oneo f

( and ( not ( at ?o ) ) ( at ?d ) )
( and ( not ( at ?o ) ) ( at ?d ) ( s c r a t c h ) ) ) )

( : a c t i o n run
: p r e c o n d i t i o n

( and ( at c2 ) ( not ( broken ) ) )
: e f f e c t ( oneo f

( and ( not ( at c2 ) ) ( at c0 ) )
( and ( not ( at c2 ) ) ( at c0 ) ( s c r a t c h ) ) ) )

( : goa l ( and ( at c0 ) ( not ( broken ) ) ) )

Listing B.2: Model D2.

( : a c t i o n walk
: pa ramete r s (? o − C e l l ?d − C e l l )
: p r e c o n d i t i o n ( and ( at ?o )

( ad j ?o ?d ) ( not ( broken ) ) )
: e f f e c t ( oneo f

( and ( not ( at ?o ) ) ( at ?d ) )
( and ( not ( at ?o ) ) ( at ?d ) ( s c r a t c h ) )
( s c r a t c h ) ) )

( : a c t i o n run
: p r e c o n d i t i o n

( and ( at c2 ) ( not ( broken ) ) )
: e f f e c t ( oneo f

( and ( not ( at c2 ) ) ( at c0 ) )
( and ( not ( at c2 ) ) ( at c0 ) ( s c r a t c h ) )
( broken ) ) )

( : goa l ( and ( at c2 ) ( not broken ) ) )

Listing B.3: Model D1.

Figure B.2: Actions walk left and run left in the three models.
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actually fails to move at all, it should degrade to D1 to operate under such level
weaker assumptions.

A solution to this scenario must, on the one hand, strive for the best possi-
ble solution and, on the other hand, be open to a potential future degradation.
Concretely, the robot should never attempt to perform an action that may pre-
vent graceful degradation. In our example, while, in principle, running would
be the most efficient way to reach the destination, it may cause a catastrophic
failure in tier level 1, precluding the goals of every tier. Thus, the robot must be
conservative and should cautiously move by walking. Hence, we shall call this
example the no-running example.

In what follows, we propose a framework to specify problems like this one in
the realms of automated planning, define its solution concept, and show how
to compute solutions with existing planning technology.

b.2 background

There are many real-world scenarios where the dynamics of the environment
are not well-known in advanced, hindering a succint definition of actions’ ef-
fects. Several planning approaches have been proposed to model and plan
with non-deterministic transition systems where the environment is still fully-
observable. One of the most prevalent is probabilistic planning, which associates
a non-zero probability to each alternative action’s outcome. Most probabilistic
planning techniques are based on Markov Decision Processes (MDPs) (Puter-
man, 1994) formulations (Kolobov et al., 2009), although very successful proba-
bilistic planners use simpler approaches based on a determinization of the input
task (Yoon et al., 2007).

In some cases the stochasticity of a system (1) is not well understood, i.e., we
can not provide accurate probabilities to each action outcome; or (2) its under-
stood is deemed unnecessary. In those cases, Fully-Observable Non-Deterministic
(FOND) planning (Cimatti et al., 2003) offers a valid framework similar to prob-
abilistic planning, but with the exception that there is no commitment to the
probability of the different action’s effects taking place.

We formally define a FOND planning task in a similar fashion as classical
planning tasks (Definition 1), with the exception of actions. Now, action’s effects
are not a set of literals that become true or false in the state after the execution
of action a. Instead, eff(a) = e1| . . . |en with n > 1, is the (non-deterministic)
effect of the action a. Each ei is a (set of) conditional effects C → E, with C
being a Boolean formula over the set of propositions F, and E a set (conjunction)
of propositions. The intended meaning is that one of the ei effects ensues non-
deterministically, by the environment’s choice. We will use S to denote the set
of all possible states of a FOND planning task.

Solutions to FOND planning tasks are no longer sequential plans but policies
that map states into actions. A policy controller is a function π : S → 2A that
maps state s ∈ S to a set of (executable) actions π(s). A policy C executed from
state s ∈ S on a given domain D (understanding F and A as domain) defines
a set of possible executions Exπ(D, s) of the form λ = sooos1 . . . sioisi+1 . . .,
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where s0 = s, oi ∈ π(si), pre(oi) ⊆ si, and si+1 is a possible successor state
when oi is executed in state si w.r.t. domain D, for all i > 0.

Cimatti et al. (2003) identified three different classes of solutions to FOND
problems:

• Weak solutions, which achieve the goal, but without guarantees. In other
words, weak plans are optimistic, and will only achieve the goal if every-
thing goes as expected.

• Strong solutions, which guarantee goal achievement regardless the envi-
ronment casuistry.

• Strong-cyclic solutions, which guarantee goal achievement relying on a
fairness assumption.

Roughly speaking, a fair action is one in which all effects occur infinitively
often when the action is executed infinitively many times in the same state. For
example, it is known that by tossing a (truthful) coin many times, heads will
eventually appear, so it would be a fair action. On the other hand, there is no
guarantee of the coin falling on its edge, even if the coin is tossed infinitely
many times, so it would not be a fair action. When all actions are assumed fair,
a strong-cyclic plan guarantees that the agent, by retrying, eventually achieves
the goal; i.e., heads will appear if the coin is tossed many times. In turn, when
fairness can not be assumed, a plan with acyclic executions that reaches the goal
in a bounded number of steps (a strong policy) is required.

The Dual FOND (or FOND+) hybrid variation has recently been introduced
to deal with domains that have both fair and unfair actions (Camacho & McIl-
raith, 2016; Geffner & Geffner, 2018). In those cases, strong-cyclic solutions
amounts to only use the fair actions of the domain. This framework is useful for
domains in which we are able to separate faulty behaviors from normative ones
in the actions’ dynamics.

Let us put an example of a domain having both fair and unfair actions by
borrowing the blocks world example by Camacho and McIlraith (2016), which
is depicted in Figure B.3. Initially, block A is on top of block B, and the goal is
to put A on the table. The considered actions of the domain are simplifications
over the standard blocks world actions. The agent can pick up blocks from
other blocks (or from the table) and put them on top of other blocks (or on the
table).

( : a c t i o n p ick−up
: pa ramete r s (? x1 − b l o ck )
: p r e c o n d i t i o n ( and

( handempty )
( c l e a r ? x1 )

)
: e f f e c t ( oneo f

( and ( not ( handempty ) ) ( not ( c l e a r ? x1 ) ) )
( and ( c l e a r ? x1 ) ( on t ab l e ? x1 ) )

)
)

Listing B.4: Non-deterministic action in the blocks world domain.
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Figure B.3: Different policies for the blocks world domain. The left image shows a
strong-cyclic solution in FOND. The right image shows a strong-cyclic solu-
tion in Dual FOND.

The pick-up action is non-deterministic in this case, and the gripper may drop
the block onto the table (second non-deterministic effect), but is guaranteed
to eventually pick-up the block (first non-deterministic effect) if tried repeated
times. This action is depicted in Listing 4 in order to better understand it, and
also to show the oneof statement, which is the only addition to PDDL needed
to represent FOND tasks. The put-on action is deterministic and puts the block
held by the gripper on top of another block/table.

Strong-cyclic FOND solutions that assume fairness may rely on the eventual
occurrence of the faulty effect of pick-up in order to reach the goal. The left image
of Figure B.3 shows the strong-cyclic solution that only uses the pick-up action.
The policy picks up block A and puts it on top of B repeatedly until block A is
dropped on the table. Although valid under the FOND framework, it is not a
good solution, since it is relying on a failure to achieve the goal. A better way
to proceed would be to use the put-on action in case pick-up succeeds, since it is
deterministic and also offers a strong-cyclic plan, as depicted in the right part
of Figure B.3.

FOND (and Dual FOND) planning is again more expressive and expensive
than classical planning (Rintanen, 2004a). However, effective optimized tech-
niques and solvers have been developed in the last years (Geffner & Geffner,
2018; Muise et al., 2014).

b.3 multi-tier planning

Following (D’Ippolito et al., 2014), we propose a multi-tier automated planning
framework in which the knowledge engineer can specify a ranked set of as-
sumptions about the environment and a corresponding set of objective goals.
We formally define a multi-tier planning task as follows.

Definition B.1. A multi-tier planning domain (MTD) is a tuple 〈Ω,6〉 such that:

1. Ω is a set of FOND planning domains over the same propositions F and actions
A, and every action has the same preconditions across all domains in Ω;
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2. 6 is a partial-order relation over Ω such that D1 6 D2 implies Ex(D2, s) ⊆
Ex(D1, s) for all states s ∈ S; and

3. 6 has a greatest element in Ω, denoted D̂, as well as a minimum element.

The first condition states that an MTD is just a collection of planning domains
over the same vocabulary. While the action names and their preconditions ought
to be the same in all domains, the effects of each operator may differ across do-
mains. Such differences in operator effects will reflect different assumptions on
the environment. However, the differences cannot be arbitrary: they are to reflect
model “refinements.” This is achieved by the second condition, which specifies
that domains in lower tiers of the hierarchy (D1) must produce the same behav-
iors as higher models (D2), and possibly more. The intuition is that higher-level
models are “refinements" of lower-level models, posing possibly more assump-
tions on the environment (e.g., by actions having fewer non-deterministic ef-
fects), hence permitting fewer execution runs.

As in standard planning, a problem instance task adds a specific initial situa-
tion and a (set of) objectives.

Definition B.2. A multi-tier planning problem (MTP) is a tuple M = 〈〈Ω,6
〉, sI,G〉 where 〈Ω,6〉 is an MTD, sI is M’s initial state, and G is a function mapping
each domain D in Ω to a goal G(D) (or just GD).

Observe that unlike standard planning approaches, we allow the designer
to specify various goals, depending on the assumed environment. Often, the
weaker the assumptions, the lower level of functionality that may be guaran-
teed (2014).

Example B.1. Figure B.2 depicts an MTP for the no-running example previously de-
scribed, in which the modeler specifies three planning domains. The two actions walk

and run are modeled at each of the three tiers. The actions’ schema and preconditions
are the same across all tiers. However, the effects differ progressively, as assumptions
are relaxed from higher tiers to lower tiers. For example, in third tier model D3, the
most idealized model, it is assumed that movement actions always succeed, whereas in
the lowest tier model D1, actions may fail and may even do so catastrophically. Also
observe the goals for each tier may differ, since when assumptions are relaxed, more
ambitious goals may not be achievable. For example, while in D3 and D2 we want the
robot to reach the end of the corridor, in the lowest tier model D1 it is enough for us that
the robot stays in the initial position. Because effects are incrementally relaxed across
tiers, runs at lowers tiers are strict super sets of those in upper tiers.

Finally, we define a structure that associates a specific policy to each domain
in an MTD, prescribing what behavior should ensue from the executor under
the different models.

Definition B.3. A multi-tier controller (MTC) for an MTD 〈Ω,6〉 is a function
C : Ω 7→ (S 7→ 2O) mapping each domain D ∈ Ω to a specific policy C(D) (or just
CD).
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The challenge now is to formally capture when an MTC amounts to a “so-
lution” strategy for a multi-tier planning problem. To do so, it is important to
first understand how the MTC structure is meant to be deployed in the environ-
ment. Intuitively, at any point in time, the executor is operating relative on some
planning domain (i.e., model) of the world D from the ones available in Ω, by
carrying out its corresponding policy C(D) so as to bring about the level’s goal
G(D). Initially, the executor deploys policy C(D̂) from the initial problem state
sI on the most idealized domain D̂, aiming at achieving the most ambitious
goal G(D̂). However, if at any point during execution, an inconsistency with the
current model Di is observed, the executor ought to switch to an alternative
domain Dj ∈ Ω such that Dj 6 Di. Technically, an inconsistency amounts to
observing an actual state s that cannot be explained with planning domain Di.
Of course, once the executor switches downwards—referred as degradation—the
model it operates on to a more permissive one (i.e., one with weaker assump-
tions), the objective sought, and hence the strategy, must be changed too. A
smart executor, though, aims to degrade gracefully, that is, as little as possible,
switching to a planning domain that retains as many assumptions as possible
about the environment (and the most ambitious goal).

Let us now develop the solution concept for MTPs. We define the set of trig-
gering states for a domain in an MTD as those states in which the executor, when
deployed in a given multi-tier controller as per the above operational scheme,
may need to start operating under such domain. As expected, the initial state sI
is the triggering state for the highest level, most idealized, domain D̂. For other
domains, a triggering state amounts to a degradation step.

Definition B.4. Let C be an MTC for a MTD 〈Ω,6〉, and let s be a state (over variables
VΩ). We inductively define the set of triggering initial states for each planning
domain D ∈ Ω under C, denoted Init(D,C), as follows:

1. Init(D̂,C) = {sI};

2. if D is not the maximum in Ω (i.e., D 6= D̂), then

Init(D,C) =

{s | D < D ′, s ′ ∈ Init(D ′),

λ ∈ ExCD ′
(D ′, s ′),o = CD ′(last(λ)),

λos ∈ Ex(D, s ′) \
⋃

D ′′:D<D ′′

Ex(D ′′, s ′).}

Let us explain the second case. Suppose the executor has so far been carrying
out policy CD ′ on a domain model D ′, from some (triggering) state s ′. Suppose
this has yielded execution run λ (consistent with D ′). However, when executing
the next prescribed operator o (as per the corresponding policy CD ′ for D ′), the
resulting evolution to a state s yields an execution λos that can be explained
by (i.e., its a legal execution in) domain D but not by any model higher than
D (including D ′). When this happens, state s is a triggering state for D, that is
state where the executor may have to start operating under domain model D
when using policy CD.
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Next, for a controller C to be a solution for an MTP M, it must achieve the
associated goal of a domain in M from all the triggering states of the domain in
question.

Definition B.5. An MTC C is a solution controller for an MTP M = 〈〈Ω,6〉, sI,G〉
iff for every domain D ∈ Ω, the projected policy CD is a solution plan for planning
problem 〈D, s,GD〉, for every state s ∈ Init(D,C).

Note that, unlike standard planning, this definition requires each policy to
work from more than one initial state. However, it is not the case that all poli-
cies in C need to work from the initial state sI. Such a requirement would be
too demanding for capturing the intended operational framework as described
above, this is because most policies, if not all but CD̂, will ever be used at state
sI (unless the system comes back to such state after some degradation).

b.4 solving multi-tier planning problems

Informally, an MTP is a collection of similar planning problems and a solution
amounts to solution policies for each problem that can be “connected”, if nec-
essary, at degradation time. A naive approach thus would repetitively compute
solution policies for each planning problem, making sure they “connect." We
show here we can solve the whole problem in a principled manner and in one
shot. Concretely, we build a single Dual FOND planning task PM from a given
MTP M such that a strong-cyclic solution for PM amount to an MTC solution for
M. To argue for technique’s generality, we first identify a meaningful fragment
of MTDs.

Definition B.6. A planning domain D2 = 〈F2,A2〉 is an oneof-refinement of a
domain D1 = 〈F1,A1〉 iff A1 = A2 and for every 〈o, Pre2o, Eff2o〉 ∈ A2, there is a
D1-operator 〈o, Pre1o, Eff1o〉∈A1 such that Pre1o=Pre2o and Eff2o⊆Eff1o;

That is, D2 is like D1 but may contain fewer non-deterministic effects on
some operators. It turns out that, in the context of Dual FOND planning, oneof-
refinements capture all possible refinements in a multi-tier planning task—any
MTD is equivalent to a oneof-refinement type.

Theorem B.1. Let 〈Ω,6〉 be an MTD and D1,D2 ∈ Ω. Then, D1 < D2 (i.e., planning
domain D2 is a refinement of domain D1) iff there exists a planning domain D ′2 such
that:

1. Ex(D2, s) = Ex(D ′2, s), for all s ∈ S (that is, D ′2 are equivalent planning do-
mains); and

2. D2 is an oneof-refinement of D1.

This states that the only meaningful difference between ordered domains in
Ω comes, only, in the refined domain (D2) having less (in terms of set inclusion)
non-deterministic effects in some operators.
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Compilation to Dual FOND planning

Let M = 〈〈Ω,6〉, sI,G〉 be a a multi-tier planning problem such that D 6 D ′

if and only if D ′ is a oneof-refinement of D. Due to Theorem B.1, restricting
6 to a oneof-refinement relation does not affect generality. From now on, for
technical legibility and without loss of generality, we assume domains in Ω are
STRIP-like with no conditional effects.

In this section, we shall construct a single dual-FOND planning problem
PM = 〈DM, sM,GM〉 that will fully capture problem M. For compactness, we
use EffDo to denote the effects of operator o in planning domain D.

Let us start by explaining the general strategy being encoded into PM. Roughly
speaking, the planning problem PM will model a dynamic system running as
per multi-tier specification M. As such, at any time, the system is operating rel-
ative to some model D in Ω (initially, the most ambitious D̂), trying to achieve
D’s goal via an appropriate plan, and degrading to an adequate (lower) model
when action outcomes’ do not align with model D. To achieve this, the encoding
will model an iterative two-phase process in which an acting phase is, sometimes
if necessary, followed by an alignment & degradation phase. A special variable
act is used to distinguish both phases. As expected, during an acting phase, an
operator representing some domain action is executed. This step involves the
execution of a non-deterministic action with fair semantics, and the optional
subsequent execution of an unfair version of the action. In the latter case, the
system will then evolve to an alignment phase, in which the encoding verifies
whether the outcomes seen correspond to the assumed current model D; and
if not, the behavior is “degraded” to an appropriate (lower-level) model that is
able to explain the observed outcome.

It turns out that one of the key challenges is to encode a proper and scalable
alignment phase in a planning domain (i.e., in PDDL): how can we encode that
a given effect could be explained by some model in Ω (but not by another model)?
In some sense, doing so would amount to reducing meta-level reasoning to the
object (PDDL) level. We show that, via a clever encoding, that reduction is indeed
possible. The technical difficulty is depicted in the following example.

Example B.2. Consider the case in which the robot is operating in the highest domain
model D3 and decides to execute action walk. Upon execution, the robot senses variable
scratch true—the robot is now damaged. In the standard (intuitive) configuration, in
which the robot starts non-damaged, the robot should degrade its operational model to
domain D2, as that is the highest model explaining the damage. However, if the robot
happens to start damaged (i.e., scratched) already, then domain model D3 still explains
the transition, and no degradation should occur. Here, walk’s effects under D3 and D2
are indistinguishable.

This example shows that just observing a proposition (scratch) in a transition
that does not appear in an effect (walk’s effect under D3) does not directly imply
the effect may not explain the transition. Can we then characterize, succinctly,
under which conditions a set of observed propositions E is explained by some
operator o in a domain model D? It turns out we can.
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Definition B.7 (Effect Explicability). Let E be a set of literals (e.g., effects that have
just seen to be true after an action execution). The conditions for operator o in domain
D to explain E, denoted Explains[o,D,E], is defined as follows (recall ∆ is the set
symmetric difference operation):

Explains[o,D,E] =
∨

E ′∈EffDo

∧
l∈E∆E ′

l.

That is, some effect E ′ of o in model D yields the same result as effect E, if all the
literals that one effect has an the other does not were already true (at the outset
of o’s execution). In our Example B.2, if we take E to be the second effect of walk
in D2 (i.e., E = {(not (at ?o)),(at ?d),(scratch)}) we have Explains[walk,D3,E] =
scratch, as the literal scratch is the only one in the effects’ symmetric difference.

Observe that if E and E ′ are inconsistent, the formula will contain the con-
junction of a proposition and its negation, thus reducing to false. In fact, the
following result guarantees the intended meaning of the above definition.

Lemma 1. Let s, s ′ ∈ 2V∪V be two domain states. Let E ∈ 2V∪V ⊇ s ′ \ s be a
set of literals including at least all new literals in s ′ w.r.t. to s. Then, state s ′ is a
possible successor when operator o is executed in state s ′ under model D if and only if
s |= Explains[o,D,E].

We are now ready to provide the encoding of M into a dual-FOND planning
problem PM = 〈DM, sM,GM〉.

domain variables . The set of propositional variables V+ of DM is obtained
by extending the set of variables V in M’s domains with the following additional
variables:

• εD, for each domain D ∈ Ω, that will be used to signal that model D is
a/the highest model explaining the effect of the last executed action;

• `D, for each domain D ∈ Ω, that will be used to track the most “ambitious”
compatible model so far;

• act, use to denote the system is in the acting phase (otherwise, it is in the
alignment phase);

• uo, for each operator o ∈ D̂, that will be used to ensure the execution of a
unfair action; and

• end, used to denote the goal achievement of the current model of execu-
tion.

initial state & goal condition. The initial state of PM is:

sM = sI ∧ [`D̂ ∧
∧

D∈Ω−

(¬εD ∧¬`D)∧ act ∧¬end].

This encodes the initial state sI of the MTP M and the fact that the system
starts in the Ω’s greatest, most ambitious, domain model D̂ (proposition `D̂
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and all other `x’s are false) and in the action phase. In addition, all effect level
signaling variables εx are initialized to false (no action has been executed), as
well as the goal variable end.

Finally, the goal condition of PM is simply GM = end. We will see below
which actions make variable end true.

domain operators . The planning domain DM will include two types of
operators, one for modeling the actual domain actions and one for implement-
ing the alignment check (and potential degradation) process. Let us start with
the former.

So, for each (domain) operator o in domain D ∈ Ω, we include a operator
〈oD, Pre, Eff 〉 in DM, where:

• Pre = PreDo ∧ `D ∧ act ∧
∧
o∈D̂ ¬uo, that is, action oD is executable when

o itself is executable in D, and the system is currently operating under
model D and is the fair-acting phase (act is true and all ux are false); and

• Eff = EffDo ∪ {uo}, that is, when operator oD is executed, either one of
original effects of o in D ensues or a distinguished predicate ou is made
true.

When one of the effects of o in domain D happens, it just resembles the
dynamics of domain D. However, if the effect that ensues is uo, the system
evolves into a “unfair-acting" phase (act ∧ uo), explained after the following
example.

Example B.3. The resulting walk action for the domain level D2 in the compilation
would look as follows in PDDL:
( : a c t i o n walk_d2

: pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) )

( d2 ) ( ac t ) ( not ( u_walk ) ) ( not ( u_run ) ) )
: e f f e c t ( oneo f
( and ( not ( at ?o ) ) ( at ?d ) )
( and ( not ( at ?o ) ) ( at ?d ) ( s c r a t c h ) )
( u_walk )
) )

Next, when the the system evolves to the unfair-acting phase (e.g., due to
effect u_walk happening in the example above), the only executable action will
be a second version of domain operator o, which in turn will include all effects of
o across all domains in Ω, together with additional book-keeping variables εx to
support the next alignment, and potential degradation, reasoning phase. More
concretely, for each domain operator o in D̂, DM includes a rather powerful
operator 〈ounfair, Pre, Eff 〉, where:

• Pre = act ∧ uo ∧ Preo, that is, the system is in the unfair-acting phase for
operator o; and

• Eff is a set of nondeterministic effects, each being a collection (i.e., con-
junction) of conditional effects built as follows. For every effect E of op-
erator o that is mentioned in a domain D but not in any lower one (i.e.,
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E ∈ EffDo \
⋃

D ′:D ′<D EffD
′

o ), Eff contains, as one of its non-deterministic
effects, the following complex effect:∧

D ′:D ′>D

(CED ′ ⇒ E∧¬act ∧¬uo ∧ εD ′),

where CED ′=Explains[o,D ′,E]∧
∧

D ′′:D ′′>D ′

¬Explains[o,D ′′,E].

Intuitively, the operator ounfair contains each possible effects E of o (from
any domain in M) as a non-deterministic option. In turn, the set of condi-
tional effects for a particular effect E will not only make the effect E itself
ensue, but will also set a “marker" proposition εD signaling the highest
domains explaining the effect in question. To realize that, condition CED ′
above states that the original effect E is explained by (some effect of) op-
erator o at domain model D ′ but not by any other model higher than D ′.
When that is the case, proposition εD ′ is set to true, recording the fact that
D ′ is the highest model explaining such effect. Observe that by the way
all conditions are designed, they ought to be mutually exclusive, so only
one εx will be made true. In addition, act is set to false so as to force the
reasoner into the alignment phase, to be explained shortly. (We note that
the effects of level D itself are accounted when D ′ = D.)

Importantly, while oD operator will be treated fair, action ounfair will be treated
as unfair—this is where dual FOND semantics (Geffner & Geffner, 2018) come
into play. Also, as the following example shows, significant syntactic simplifi-
cations can be achieved in ounfair by analyzing conditions in conditional effects
and precondition of the action.

Example B.4. Let us see complete Example B.3 by showing the unfair version of the
walk action. After syntactic simplification w.r.t. conditions and the action precondition,
we obtain the simpler, more readable, equivalent action:
( : a c t i o n wa lk_un fa i r

: pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( ac t ) ( u_walk )

( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) )
: e f f e c t ( and ( not ( ac t ) ) ( not ( u_walk ) )

( oneo f
(when ( t r u e )

( and ( not ( at ?o ) ) ( at ?d ) ( e3 ) ) )
( and (when ( not ( s c r a t c h ) )

( and ( not ( at ?o ) ) ( at ?d ) ( s c r a t c h ) ( e2 ) ) )
(when ( s c r a t c h )

( and ( not ( at ?o ) ) ( at ?d ) ( e3 ) ) ) )
(when ( t r u e ) ( and ( s c r a t c h ) ( e1 ) ) ) ) ) )

As we discussed before, this unfair action contemplates the effects present in
all the domain models. The intended meaning of this is that whenever an action
executes, it may fail and we may observe effects of any domain level. However,
we do not want the planner to rely on these possible failures, so we contemplate
them as unfair actions.
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alignment & degradation operators . When the unfair version of a
domain operator has been executed, an effect could ensue that might not be
explained by the current domain under which the reasoner is operating under
(encoded via propositions `x). If so, the system ought to gracefully degrade to
a lower level model that is able to explain the last system evolution. We encode
this reasoning, and potential degradation, in the so-called alignment phase (act
is false).

In the best case, the state observed after the execution of an action corre-
sponds to one of the expected ones w.r.t. the current planning domain model
the executor is operating under. Technically, the reasoner continues operating
under current model D (proposition `D is true), provided domain D has been
able to explain the evolution of the last executed action: proposition εD ′ has
been set to true for some domain D ′ that is either D itself or a higher one in the
hierarchy (recall effects in higher level domains are subsets of ). So, in such case,
the planner (and executor) is able to execute special action 〈continueD, Pre, Eff 〉
to keep planning/executing under the current model and goal:

• Pre = (¬act ∧ `D ∧
∨

D ′>D εD ′), that is, the action can be executed during
the alignment phase when the current domain or one of its refinements
accounts for the last effect outcome.

• Eff = (act∧
∧

D∈Ω− ¬εD), that is, effect signals are all reset and the system
goes back to the action phase.

If, on the other hand, the state observed does not conform to the current
operating model (i.e., proposition εD is false), then the system must degrade
to a lower tier where the environment model would fit the observation, and
adjust the objective to the corresponding (often less ambitious) goal. Needless
to say, we expect a “smart” reasoner/executor to degrade as little as possible,
by retaining as many assumptions on the environment as possible and only
dropping those that have been observed to be wrong. This will allow the agent
to aim for the highest, most valuable, goal so far.

Technically, when D,D ′ ∈ Ω such that D ′ < D, we include an operator
〈degradeDD ′ , Pre, Eff 〉 in PM, where:

• Pre = ¬act ∧ `D ∧
∨

{D∗:D∗>D ′,¬(D>D∗>D ′),D∗ 6>D}

εD∗ ; and

• Eff = ¬`D ∧ `D ′ ∧
∧
x∈Ω(¬εx ∧ act).

That is, the controller can degrade from current operating domain D to do-
main D ′ if the last effect seen was explained by lower domain D ′ or any other
domain higher than D ′ that is unrelated to D (so as to handle MTPs with a
non-linear structure). The effect results in the controller being degraded to level
D ′ (proposition `D ′ becomes true), all booking explicability effect prepositions
εx being reset, and the reasoner progressing to the acting phase.

Note that, effectively, the dynamics of level variables `x are outside the control
of the reasoner, as these depend only on which non-deterministic effects have
occurred and how (i.e., how variables εx have been set).
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goal operators . The only part remaining is the overall goal of the multi-
tier problem. Intuitively this should be “achieve the highest level goal”, which
under a conservative degradation process, it reduces to “achieve the goal of the
current operating model.” We therefore include goal actions 〈checkgoalD, (GD∧

`D), end〉, one per domain D ∈ Ω.

This completes the encoding of a multi-tier planning problem M into a sin-
gle non-deterministic planning domain PM. We now prove its correctness w.r.t.
Definition B.5. First, any solution policy for the planning task amounts, as is, to
a solution to the corresponding multi-tier planning problem.

Theorem B.2. If π is a strong-cyclic solution for PM, then controller Cπ(D) is an
MTC solution for M, where:

CπD(s) = π(s∧ `D ∧ act ∧
∧
o∈D̂

¬uo), for all s ∈ S.

Proof. Consider si ∈ S and D ∈ Ω such that si ∈ Init(D,Cπ), and an infinite and
fair execution λ ∈ ExCπ(D, si). We show that goal G(D) holds true somewhere
along λ as follows:

1. We transform λ into an execution λ̂ ∈ ExCπ(DM, s+i ), with s+i = si ∪
{act, `D}, by adding propositions act and `D to every state in λ and re-
placing every domain operator o with its oD version.

2. If soD appears infinitively often in λ̂, we replace every second appearance
of the form soDs

′ by two-action steps soD(s ∪ {uoD
})ounfair(s

′ ∪ {act, εD ′})
such that D ′ > D is the highest domain in Ω that contains the effect of
o that supports the transition soDs ′—we know there is one because λ̂ is
a legal execution in DM from state s+i . By doing this changes in λ̂ we
are guarantee that the execution is fair, while still preserving the fact that
every domain action in it has the effects as per domain D. So, execution
λ̂ mirrors the original λ for domain D but over the extended language of
DM.

3. Because si ∈ Init(D,Cπ), there exists a finite execution λi ∈ Exπ(DM, sI)
(i.e., execution in PM via policy π) that ends in state si ∪ {`D, act}. This
means that λiλ̂ ∈ ExCπ(DM, sI), and since λiλ̂ is fair (w.r.t. the fair actions)
and λ̂ has λD always true, it follows that λ̂ has to reach the PM’s goal by
executing operator checkgoalD. Then, its precondition GD holds true at
some point in λ̂ and therefore in λ too.

That is, the MTC controller C under domain D and in state s, what the strong-
cyclic solution for PM prescribes when `D is true and the reasoning cycle is in
the acting phase.

In addition, any possible MTC solution will be represented by some strong-
cyclic policy of PM (i.e., completeness).
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Theorem B.3. If C is an MTC solution for M, then there exists a strong-cyclic solution
π for PM such that Cπ(D) = C(D), for every domain D in M (where Cπ(D) is as in
B.2).

Proof. Policy π follows the domain actions prescribed by CM exactly, augmented
with the booking auxiliary actions as needed. A similar argument, based on
execution traces, as in Theorem B.2 can be built.

We close by noting that the size of PM is increased by a linear number of book-
keeping propositional variables, and a quadratic number (w.r.t. the number of
domains in Ω) of extra actions. So, while the multi-tier planning framework ap-
pears to be more involved than the standard (non-deterministic) planning, it can
be suitably reduced to the latter, with an encoding that is, arguably, fairly nat-
ural and comparable in size. Importantly, though, the solution proposed relies
on the fact that we can specify both fair and unfair actions in the same planning
model. This is a feature that will prove a challenge when actually realizing the
technique in current planning technology, as we shall see next.

b.5 validation

In this section, we demonstrate that MTPs can indeed be solved today with
existing planning technology, but argue that additional effort in Dual FOND
is necessary. The first obstacle is the availability of FOND planning technology
supporting both fair and unfair assumptions. To the best of our knowledge, the
only off-the-shelf planner to do so is Geffner and Geffner’s (2018) FOND-SAT
system. By leveraging on SAT solvers, their system yields an elegant declarative
technique for FOND planning that features the possibility of combining fair and
unfair actions. So, we report on using FOND-SAT over the encoding for our non-
running example. Notwithstanding, the experiments reported are intended to
demonstrate the existence of systems to solve MTPs and to provide a baseline
for future work, rather than for providing a performance evaluation.

Reproducibility. The experiments were run in an i7-4510 CPU with 8GB of
RAM. The code used to perform the compilation from the multi-tier specifica-
tion to Dual-FOND is available online.1

Listing B.5 shows a fragment, in a readable plan-like format, of the outcome
when FOND-SAT is ran on our encoding for the non-running example. Due
to space issues, the full controller is shown in Appendix C. First of all, the
plan cautiously avoids the run action altogether, as it may get the robot broken
and precludes the achievement of all tier goals. After performing the walk fair-
version action in (line 2) corresponding to the highest model D3, the plan checks
its effects (line 3). If proposition u_walk remains false (lines 4-9), the effect in
model D3 has occurred—the robot has done a successful move. If another walk
(line 4) succeeds as well (lines 5-7), the robot achieves the top level D3’ goal (line
6). Note that, in such a run, no alignment action is included: the walk unfair
version has never been performed and hence only effects of D3 has ensued.

1 https://github.com/ssardina-planning/pypddl-translator

https://github.com/ssardina-planning/pypddl-translator
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1 ( : p l a n [
2 ( walk_d3 c2 c1 )
3 ( i f ( ( not ( u_walk ) ) ) [
4 ( walk_d3 c1 c0 )
5 ( i f ( ( not ( u_walk ) ) ) [
6 ( check_goal_d3 )
7 ] )
8 . . .
9 ]

10 ( e l s e ) [
11 ( wa lk_un fa i r )
12 ( ca se ( eff_e3_walk ) [
13 ( walk_e3_explained_by_d3 )
14 ( cont inue_d3 )
15 . . .
16 ]
17 ( ca se ( eff_e2_walk ) [
18 ( walk_e2_explained_by_d2 )
19 ( degrade_d3_d2 )
20 . . .
21 ]
22 ( ca se ( eff_e1_walk ) [
23 ( walk_e1_explained_by_d1 )
24 ( degrade_d3_d1 )
25 . . .
26 ]
27 ] ] )
28

Listing B.5: A fragment of the policy found by FOND-SAT.

If, instead, the first walking action (line 2) yields the special effect u_walk, the
plan jumps to line 11. There, the only action available is the unfair version of
walking (line 11), which has all the effects, as non-deterministic options, of the
walking action across all domains D3, D2, and D1. As FOND-SAT does not han-
dle conditional effects, we simulate each conditional effect for the effect chosen
by a set of walk_eE_explained_by_dx whose precondition is CEDx

, together with the
original precondition of the operator (walk in this case). Finally, if the effect cho-
sen could be explained by the current operating domain (line 13, explained by
domain D3), the system executes a continue operation at the current level, en-
abling the next domain action. On the other hand, when the effect is explained
by a lower domain than the one operating under (lines 18 and 23), degradation
to the corresponding domain is carried out (line 19 and 24).

It is easy to see how this plan also represents a multi-tier controller which
only outputs the fair version of the operators, and all the other auxiliar actions
and propositions are the controller internal memory.

Now, what would happen if the robot starts scratched as discussed in Ex-
ample B.2? It turns out the problem becomes unsolvable. The reason is that
any observed scratch after movement does not need to be explained by a dif-
ferent model than D3 (e.g., the walk effect of D2 that scratches the robot), as
the scratch is explained already by being true originally. Thus, when walking
always advances the agent, it would never degrade its behavior, remain oper-
ating in D3 without ever achieving D3’s goal. If, however, we drop the non-
scratched requirement from D3, the problem would be solvable again, though
with a slightly different policy. The robot would just try to achieve the top
goal, degrading only to D1 if it does not move after a walk action. Since, as
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discussed, D2’s scratch effect would be explained by D3 itself, line 18 would
become walk_e2_explained_by_l3 and line 19 would become continue_l3. The policy
for this example is shown in Appendix C.

While the above demonstrates the possibility to solve MTPs using (the only)
existing planning technology, running our, arguably simple, example takes more
than 600 seconds to produce the 29 states first controller shown in the Ap-
pendix C, when using the off-the-shelf version of the planner. This clearly in-
dicates the need for more and better dual-FOND implementations or the devel-
opment of specialized optimizations for MTPs.

For example, we can use domain knowledge to tell the planner the number
of controller states we want to start with (by default this number is 2), thus
avoiding numerous calls to the SAT solver. One can approximate this number
by taking into account (1) the number of domains; and (2) running the top level
domain, which will provide a lower bound of the number of states required to
solve the MTP. Another optimization involves the modification of the planner.
As we are only allowing degradation and not upgrades, one can modify the SAT
encoding to specify a number of controllers to be used per domain level, with-
out allowing transitions from lower to upper levels. In preliminary tests we did,
we experienced a speed-up of approx 60% by combining these optimizations.

b.6 related work

The work presented in this chapter is mostly related to existing work that aim to
better handle execution failures and exceptions as well work that aim to provide
richer goal specifications.

Fault Tolerant Planning (FTP) explores how to build plans that can cope with
operations’ failures. Notably, the work of Domshlak (2013) considers the FTP
problem via reductions to planning. There, k-admissible plans are defined as
those that guarantee to achieve the goal even if an operation happens to fail
up to k times. Like ours, the approach reduces to (classical) planning via an
intelligent compilation inspired in that of Bonet and Geffner (2011). In other
words, the problem is reduced to bounded liveness. We do not impose such a
restriction and our adaptive framework is actually orthogonal to theirs. In fact,
it would be possible to accommodate k-admissible plans within our hierarchy,
so that degradation is trigger only after some number of observed failures.

In Robust Planning (RP), the usual approach is to search for the best plan
assuming the worst possible environment, e.g., (Buffet & Aberdeen, 2005). Typ-
ically, RP looks for subclasses of MDPs for which policies are guaranteed to
eventually reach a goal state. Policies are normally computed as solutions to
Stochastic Shortest Path problems. Our approach, instead, is based on a quali-
tative formalization of action and change, with no specification of probabilities,
which can sometimes be not trivial, unfeasible, or simply uneconomical to ob-
tain. More importantly, having a single problem description forces the engineer
to represent a goal that may never be achieved in the actual environment. In-
deed, the engineer may find it difficult, or impossible, to model degraded goals
depending on the actual environment’s dynamics; it would require the goals
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to somehow predicate on the probabilities associated to the assumed degraded
behavior. We in turn provide an accessible formalism for modelling different
levels of assumptions and goals. Also, our technique is not rooted in dynamic
programming or optimization algorithms, but in planning ones.

In terms of representation formalisms, there has been efforts to provide more
powerful goal specifications, such as EaGle language (Lago et al., 2002), Agent
Planning Programs (Giacomo et al., 2016), and Hierarchical Goal Networks
(HGN) (Shivashankar et al., 2012), but always assuming operation on a single
model of the environment aiming for a single goal.

Our work also keeps some relationship with deliberative control architectures
such as T-REX (McGann et al., 2008), and other similar planning-execution-
monitoring architectures like Propice-Plan (Despouys & Ingrand, 1999), CPEF
(Myers, 1999), or ARTUE (Klenk et al., 2013). Our approach differs in that those
systems usually replan when goals (or perceived state) change, whereas our pro-
posal aims to generate a policy that takes into account all the scenarios prior to
the system’s execution (as per model). As a result, we can provide guarantees
of goal achievability and program termination (although it s more demand-
ing computationally). Also, our framework puts more emphasis on formal se-
mantics (based on PDDL and transition systems), modeling, and plan synthesis,
whereas the mentioned agent architectures primarly focus on implemented plat-
forms and execution.

As stated, our work is inspired by work in the area of Software Engineer-
ing (D’Ippolito et al., 2014). At a general level, our account is rooted in Knowl-
edge Representation, and specifically, automated planning, which allows us to
leverage on advanced representation formalisms (e.g., PDDL) as well as com-
putational techniques for such representations. Still, as ours, their approach
provides support for a tiered architecture with multiple behavioural models
and goals. Unlike ours, though, their account is limited to a lineal hierarchy of
models, so independent assumptions, as in our example, cannot be represented.
More importantly, D’Ippolito et al. require solution (sub-)controllers of lower
tiers to simulate those in upper tiers, and thus it would not handle our simple
no-running example. Finally, being rooted in knowledge representation, we are
able to exploit planning technology.

b.7 summary

In this work, we proposed a novel multi-tier framework that integrates planning
and acting with the aim of providing adaptive behavior to intelligent agents. Un-
der such framework, the knowledge engineer has the opportunity to consider
multiple levels of assumptions (domain models) and associated goals. This aug-
ment the autonomy of agents, since now they can reason with a hierarchy of
domains and goals, rather than using a fixed model. The problem amounts to
synthesize a meta-controller that, while running, is able to gracefully degrade
its “level of service” (i.e., the goals to achieve) when the assumptions on the
environment are not met.
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We developed a compilation technique to construct such adaptive meta-controllers
via dual-FOND planning. We note that plain FOND planning, where every ac-
tion is assumed fair, would not work, as the agent may decide to keep trying
an action to obtain one of the “failing" effects to achieve an “easier" lower-level
goal (this artifact was already noted by Camacho and McIlraith (2016)).



C
M U LT I - T I E R P L A N N I N G R E S U LT S

This Appendix contains: (1) the labeled PDDLs that serves as input to the multi-
tier compilation presented in Appendix B; (2) the resulting compiled Dual-
FOND PDDLs; and (3) the controllers obtained after solving the compiled tasks.

c.1 labeled pddl models

PDDL domain definition of the no-running example.
( d e f i n e ( domain no_running_1 )

( : r e qu i r emen t s : t y p i n g )
( : t y p e s C e l l )
( : c o n s t a n t s c0 c1 c2 − C e l l )

5 ( : p r e d i c a t e s
( at ? c − C e l l )
( ad j ?o − C e l l ?d − C e l l )
( broken )
( s c r a t c h )

10 )
( : a c t i o n walk

: pa ramete r s (? o − C e l l ?d − C e l l )
: p r e c o n d i t i o n ( and

( at ?o )
15 ( ad j ?o ?d )

( not ( broken ) ) )
: e f f e c t ( oneo f

( d3
( and ( not ( at ?o ) ) ( at ?d ) )

20 )
( d2

( and ( not ( at ?o ) ) ( at ?d ) ( s c r a t c h ) )
)
( d1

25 ( and ( s c r a t c h ) )
)

)
)
( : a c t i o n run

30 : pa ramete r s ( )
: p r e c o n d i t i o n ( and

( at c2 )
( not ( broken ) ) )

: e f f e c t ( oneo f
35 ( d3

( and ( not ( at c2 ) ) ( at c0 ) )
)
( d2

( and ( not ( at c2 ) ) ( at c0 ) ( s c r a t c h ) )
40 )

( d1
( and ( broken ) )

)
)

45 )
)

151
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PDDL problem definition of the no-running example.
( d e f i n e ( problem p1 )

( : domain no_running_1 )
( : i n i t

4 ( a t c2 )
( ad j c2 c1 )
( ad j c1 c0 )
( ad j c0 c1 )
( ad j c1 c2 )

9 )
( : goa l ( oneo f

( d3 ( and ( at c0 ) ( not ( s c r a t c h ) ) ( not ( broken ) ) ) )
( d2 ( and ( at c0 ) ( not ( broken ) ) ) )
( d1 ( and ( at c2 ) ( not ( broken ) ) ) )

14 )
)

)

c.2 dual-fond compilation

Dual-FOND domain obtained through the MTP compilation for the no-running
example.

( d e f i n e ( domain no_running_1 )
( : r e qu i r emen t s : t y p i n g )
( : t y p e s c e l l )

4 ( : c o n s t a n t s c0 c1 c2 − c e l l )
( : p r e d i c a t e s

( at ? c − c e l l ) ( ad j ?o − c e l l ?d − c e l l ) ( broken ) ( s c r a t c h ) ( end ) ( ac t )
( l_d3 ) ( e_d3 ) ( eff_d3_walk ) ( eff_d3_run ) ( l_d2 ) ( e_d2 ) ( eff_d2_walk )
( eff_d2_run ) ( l_d1 ) ( e_d1) ( eff_d1_walk ) ( eff_d1_run ) ( u_walk ) ( u_run )

9 )
( : a c t i o n cont inue_d3

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( not ( ac t ) ) ( l_d3 ) ( not ( eff_d3_walk ) )
( not ( eff_d3_run ) ) ( not ( eff_d2_walk ) ) ( not ( eff_d2_run ) )

14 ( not ( eff_d1_walk ) ) ( not ( eff_d1_run ) ) ( o r ( e_d3 ) ) )
: e f f e c t ( and ( ac t ) ( not ( e_d3 ) ) ( not ( e_d2 ) ) ( not ( e_d1 ) ) )

)
( : a c t i o n cont inue_d2

: pa ramete r s ( )
19 : p r e c o n d i t i o n ( and ( not ( ac t ) ) ( l_d2 ) ( not ( eff_d3_walk ) )

( not ( eff_d3_run ) ) ( not ( eff_d2_walk ) ) ( not ( eff_d2_run ) )
( not ( eff_d1_walk ) ) ( not ( eff_d1_run ) ) ( o r ( e_d3) ( e_d2 ) ) )
: e f f e c t ( and ( ac t ) ( not ( e_d3 ) ) ( not ( e_d2 ) ) ( not ( e_d1 ) ) )

)
24 ( : a c t i o n cont inue_d1

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( not ( ac t ) ) ( l_d1 ) ( not ( eff_d3_walk ) )
( not ( eff_d3_run ) ) ( not ( eff_d2_walk ) ) ( not ( eff_d2_run ) )
( not ( eff_d1_walk ) ) ( not ( eff_d1_run ) ) ( o r ( e_d3) ( e_d2) ( e_d1 ) ) )

29 : e f f e c t ( and ( ac t ) ( not ( e_d3 ) ) ( not ( e_d2 ) ) ( not ( e_d1 ) ) )
)
( : a c t i o n degrade_d3_d2

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( not ( ac t ) ) ( l_d3 ) ( e_d2) ( not ( eff_d3_walk ) )

34 ( not ( eff_d3_run ) ) ( not ( eff_d2_walk ) ) ( not ( eff_d2_run ) )
( not ( eff_d1_walk ) ) ( not ( eff_d1_run ) ) )
: e f f e c t ( and ( ac t ) ( l_d2 ) ( not ( l_d3 ) ) ( not ( e_d3 ) ) ( not ( e_d2 ) )
( not ( e_d1 ) ) )

)
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39 ( : a c t i o n degrade_d3_d1
: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( not ( ac t ) ) ( l_d3 ) ( e_d1) ( not ( eff_d3_walk ) )
( not ( eff_d3_run ) ) ( not ( eff_d2_walk ) ) ( not ( eff_d2_run ) )
( not ( eff_d1_walk ) ) ( not ( eff_d1_run ) ) )

44 : e f f e c t ( and ( ac t ) ( l_d1 ) ( not ( l_d3 ) ) ( not ( e_d3 ) ) ( not ( e_d2 ) )
( not ( e_d1 ) ) )

)
( : a c t i o n degrade_d2_d1

: pa ramete r s ( )
49 : p r e c o n d i t i o n ( and ( not ( ac t ) ) ( l_d2 ) ( e_d1) ( not ( eff_d3_walk ) )

( not ( eff_d3_run ) ) ( not ( eff_d2_walk ) ) ( not ( eff_d2_run ) )
( not ( eff_d1_walk ) ) ( not ( eff_d1_run ) ) )
: e f f e c t ( and ( ac t ) ( l_d1 ) ( not ( l_d2 ) ) ( not ( e_d3 ) ) ( not ( e_d2 ) )
( not ( e_d1 ) ) )

54 )
( : a c t i o n walk_unfa i r_

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( ac t ) ( u_walk ) )
: e f f e c t ( oneo f ( and ( eff_d3_walk ) ( not ( ac t ) ) ) ( and ( eff_d2_walk )

59 ( not ( ac t ) ) ) ( and ( eff_d1_walk ) ( not ( ac t ) ) ) )
)
( : a c t i o n walk_d3

: pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( l_d3 ) ( ac t )

64 ( not ( u_walk ) ) ( not ( u_run ) ) )
: e f f e c t ( oneo f ( and ( not ( at ?o ) ) ( at ?d ) ) ( u_walk ) )

)
( : a c t i o n walk_d2

: pa ramete r s (? o − c e l l ?d − c e l l )
69 : p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( l_d2 ) ( ac t )

( not ( u_walk ) ) ( not ( u_run ) ) )
: e f f e c t ( oneo f ( and ( not ( at ?o ) ) ( at ?d ) ) ( and ( not ( at ?o ) ) ( at ?d )
( s c r a t c h ) ) ( u_walk ) )

)
74 ( : a c t i o n walk_d1

: pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( l_d1 ) ( ac t )
( not ( u_walk ) ) ( not ( u_run ) ) )
: e f f e c t ( oneo f ( and ( not ( at ?o ) ) ( at ?d ) ) ( and ( not ( at ?o ) ) ( at ?d )

79 ( s c r a t c h ) ) ( s c r a t c h ) )
)
( : a c t i o n walk_eff_d3_explained_by_d3

: pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( eff_d3_walk ) )

84 : e f f e c t ( and ( not ( at ?o ) ) ( at ?d ) ( e_d3) ( not ( eff_d3_walk ) )
( not ( ac t ) ) ( not ( u_walk ) ) )

)
( : a c t i o n walk_eff_d2_explained_by_d3

: pa ramete r s (? o − c e l l ?d − c e l l )
89 : p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( eff_d2_walk )

( s c r a t c h ) )
: e f f e c t ( and ( not ( at ?o ) ) ( at ?d ) ( s c r a t c h ) ( e_d3 ) ( not ( eff_d2_walk ) )
( not ( ac t ) ) ( not ( u_walk ) ) )

)
94 ( : a c t i o n walk_eff_d2_explained_by_d2

: pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( eff_d2_walk )
( o r ( not ( s c r a t c h ) ) ) )
: e f f e c t ( and ( not ( at ?o ) ) ( at ?d ) ( s c r a t c h ) ( e_d2 ) ( not ( eff_d2_walk ) )

99 ( not ( ac t ) ) ( not ( u_walk ) ) )
)
( : a c t i o n walk_eff_d1_explained_by_d3

: pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( eff_d1_walk )

104 ( s c r a t c h ) ( not ( at ?o ) ) ( at ?d ) )



154 multi-tier planning results

: e f f e c t ( and ( s c r a t c h ) ( e_d3) ( not ( eff_d1_walk ) ) ( not ( ac t ) )
( not ( u_walk ) ) )

)
( : a c t i o n walk_eff_d1_explained_by_d2

109 : pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( eff_d1_walk )
( not ( at ?o ) ) ( at ?d ) ( o r ( not ( s c r a t c h ) ) ( at ?o ) ( not ( at ?d ) ) ) )
: e f f e c t ( and ( s c r a t c h ) ( e_d2) ( not ( eff_d1_walk ) ) ( not ( ac t ) )
( not ( u_walk ) ) )

114 )
( : a c t i o n walk_eff_d1_explained_by_d1

: pa ramete r s (? o − c e l l ?d − c e l l )
: p r e c o n d i t i o n ( and ( at ?o ) ( ad j ?o ?d ) ( not ( broken ) ) ( eff_d1_walk )
( o r ( not ( s c r a t c h ) ) ( at ?o ) ( not ( at ?d ) ) ) ( o r ( at ?o ) ( not ( at ?d ) ) ) )

119 : e f f e c t ( and ( s c r a t c h ) ( e_d1) ( not ( eff_d1_walk ) ) ( not ( ac t ) )
( not ( u_walk ) ) )

)
( : a c t i o n run_unfa i r_

: pa ramete r s ( )
124 : p r e c o n d i t i o n ( and ( ac t ) ( u_run ) )

: e f f e c t ( oneo f ( and ( eff_d3_run ) ( not ( ac t ) ) ) ( and ( eff_d2_run )
( not ( ac t ) ) ) ( and ( eff_d1_run ) ( not ( ac t ) ) ) )

)
( : a c t i o n run_d3

129 : pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( l_d3 ) ( ac t ) ( not ( u_walk ) )
( not ( u_run ) ) )
: e f f e c t ( oneo f ( and ( not ( at c2 ) ) ( at c0 ) ) ( u_run ) )

)
134 ( : a c t i o n run_d2

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( l_d2 ) ( ac t ) ( not ( u_walk ) )
( not ( u_run ) ) )
: e f f e c t ( oneo f ( and ( not ( at c2 ) ) ( at c0 ) ) ( and ( not ( at c2 ) ) ( at c0 )

139 ( s c r a t c h ) ) ( u_run ) )
)
( : a c t i o n run_d1

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( l_d1 ) ( ac t ) ( not ( u_walk ) )

144 ( not ( u_run ) ) )
: e f f e c t ( oneo f ( and ( not ( at c2 ) ) ( at c0 ) ) ( and ( not ( at c2 ) ) ( at c0 )
( s c r a t c h ) ) ( broken ) )

)
( : a c t i o n run_eff_d3_explained_by_d3

149 : pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( eff_d3_run ) )
: e f f e c t ( and ( not ( at c2 ) ) ( at c0 ) ( e_d3) ( not ( eff_d3_run ) ) ( not ( ac t ) )
( not ( u_run ) ) )

)
154 ( : a c t i o n run_eff_d2_explained_by_d3

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( eff_d2_run ) ( s c r a t c h ) )
: e f f e c t ( and ( not ( at c2 ) ) ( at c0 ) ( s c r a t c h ) ( e_d3) ( not ( eff_d2_run ) )
( not ( ac t ) ) ( not ( u_run ) ) )

159 )
( : a c t i o n run_eff_d2_explained_by_d2

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( eff_d2_run )
( or ( not ( s c r a t c h ) ) ) )

164 : e f f e c t ( and ( not ( at c2 ) ) ( at c0 ) ( s c r a t c h ) ( e_d2) ( not ( eff_d2_run ) )
( not ( ac t ) ) ( not ( u_run ) ) )

)
( : a c t i o n run_eff_d1_explained_by_d3

: pa ramete r s ( )
169 : p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( eff_d1_run ) ( broken )

( not ( at c2 ) ) ( at c0 ) )
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: e f f e c t ( and ( broken ) ( e_d3 ) ( not ( eff_d1_run ) ) ( not ( ac t ) )
( not ( u_run ) ) )

)
174 ( : a c t i o n run_eff_d1_explained_by_d2

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( eff_d1_run ) ( broken )
( not ( at c2 ) ) ( at c0 ) ( s c r a t c h ) ( o r ( not ( broken ) ) ( at c2 )
( not ( at c0 ) ) ) )

179 : e f f e c t ( and ( broken ) ( e_d2 ) ( not ( eff_d1_run ) ) ( not ( ac t ) )
( not ( u_run ) ) )

)
( : a c t i o n run_eff_d1_explained_by_d1

: pa ramete r s ( )
184 : p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( eff_d1_run )

( or ( not ( broken ) ) ( at c2 ) ( not ( at c0 ) ) )
( o r ( not ( broken ) ) ( at c2 ) ( not ( at c0 ) ) ( not ( s c r a t c h ) ) ) )
: e f f e c t ( and ( broken ) ( e_d1 ) ( not ( eff_d1_run ) ) ( not ( ac t ) )
( not ( u_run ) ) )

189 )
( : a c t i o n check_goal_d3

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c0 ) ( not ( s c r a t c h ) ) ( not ( broken ) ) ( l_d3 ) ( ac t ) )
: e f f e c t ( end )

194 )
( : a c t i o n check_goal_d2

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c0 ) ( not ( broken ) ) ( l_d2 ) ( ac t ) )
: e f f e c t ( end )

199 )
( : a c t i o n check_goal_d1

: pa ramete r s ( )
: p r e c o n d i t i o n ( and ( at c2 ) ( not ( broken ) ) ( l_d1 ) ( ac t ) )
: e f f e c t ( end )

204 )
)

Dual-FOND problem obtained through the MTP compilation for the no-running
example.

( d e f i n e ( problem p1 )
( : domain no_running_1 )
( : i n i t
( a t c2 )

5 ( ad j c2 c1 )
( ad j c1 c0 )
( ad j c0 c1 )
( ad j c1 c2 )
( ac t )

10 ( l_d3 ) )
( : goa l ( and

( end ) )
)

)
15

c.3 solution controllers

Graphical representation of the policy obtained by running Geffner and Geffner’s
(2018) in the above mentioned Dual-FOND planning task.
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Figure C.1: Graphical representation of the policy obtained for the non-running sce-
nario.
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Figure C.2: In turn, this is the controller for the variant of the scenario where (1) the
robot is initially scratched; and (2) the non-scratched requirement from D3’s
goal is dropped.





D
C O U N T E R P L A N N I N G D O M A I N S

This Appendix contains the domains used in Chapters 5 and 6.

d.1 police control

seek

1 ( d e f i n e ( domain t e r r o r i s t )
( : r e qu i r emen t s : t y p i n g : a c t i on−c o s t s )
( : t y p e s
c e l l s t a t i o n − o b j e c t s
t e r r o r i s t p o l i c e − movable

6 )
( : p r e d i c a t e s
( at ? x1 − movable ? x2 − c e l l )
( i n ? x1 − c e l l ? x2 − s t a t i o n )
( connected ? x1 − c e l l ? x2 − c e l l )

11 ( f r e e ? x1 − c e l l )
( phone−booth ? x1 − c e l l )
( c a l l −made )
( phone−a v a i l a b l e )
)

16 ( : f u n c t i o n s
( t o t a l−c o s t )
)

( : a c t i o n move
21 : pa ramete r s (? x1 − t e r r o r i s t ? x2 − c e l l ? x3 − c e l l )

: p r e c o n d i t i o n ( and
( at ? x1 ? x2 )
( f r e e ? x3 )
( connected ? x2 ? x3 )

26 )
: e f f e c t ( and
( not ( at ? x1 ? x2 ) )
( at ? x1 ? x3 )
( f r e e ? x2 )

31 ( not ( f r e e ? x3 ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

36 ( : a c t i o n make−c a l l
: pa ramete r s (? x1 − t e r r o r i s t ? x2 − c e l l )
: p r e c o n d i t i o n ( and
( at ? x1 ? x2 )
( phone−a v a i l a b l e )

41 ( phone−booth ? x2 )
)
: e f f e c t ( and
( c a l l −made )
( not ( phone−a v a i l a b l e ) )

46 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)
)

159
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prev

1 ( d e f i n e ( domain p o l i c e )
( : r e qu i r emen t s : t y p i n g : a c t i on−c o s t s )
( : t y p e s
c e l l s t a t i o n − o b j e c t s
t e r r o r i s t p o l i c e − movable

6 )
( : p r e d i c a t e s
( at ? x1 − movable ? x2 − c e l l )
( i n ? x1 − c e l l ? x2 − s t a t i o n )
( connected ? x1 − c e l l ? x2 − c e l l )

11 ( f r e e ? x1 − c e l l )
( phone−booth ? x1 − c e l l )
( c a l l −made )
( phone−a v a i l a b l e )
( o f f i c e −at ? x1 − c e l l )

16 )
( : f u n c t i o n s
( t o t a l−c o s t )
)

21 ( : a c t i o n move
: pa ramete r s (? x1 − p o l i c e ? x2 − c e l l ? x3 − c e l l )
: p r e c o n d i t i o n ( and
( at ? x1 ? x2 )
( f r e e ? x3 )

26 ( connected ? x2 ? x3 )
)
: e f f e c t ( and
( not ( at ? x1 ? x2 ) )
( at ? x1 ? x3 )

31 ( f r e e ? x2 )
( not ( f r e e ? x3 ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

36

( : a c t i o n tap−phone−booths
: pa ramete r s (? x1 − p o l i c e ? x2 − c e l l )
: p r e c o n d i t i o n ( and
( at ? x1 ? x2 )

41 ( o f f i c e −at ? x2 )
)
: e f f e c t ( and
( not ( phone−a v a i l a b l e ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)

46 )
)
)

d.2 painted blocks-words

seek

( d e f i n e ( domain b l o c k s )
2 ( : r e qu i r emen t s : s t r i p s )

( : t y p e s
b l o ck room − o b j e c t
)
( : p r e d i c a t e s

7 ( on ? x1 − b l o ck ? x2 − b l o ck )
( on t ab l e ? x1 − b l o ck )
( c l e a r ? x1 − b l o ck )
( handempty )
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( h o l d i n g ? x1 − b l o ck )
12 ( p a i n t ed ? x1 − b l o ck )

( have−p a i n t i n g ? x1 − b l o ck )
( at−p a i n t i n g ? x1 − b l o ck ? x2 − room )
( connected ? x1 − room ?x2 − room )
( at−p r e v e n t i n g ? x1 − room )

17 ( b l ock s−room ?x1 − room )
)

( : f u n c t i o n s
( t o t a l−c o s t )

22 )

( : a c t i o n p ick−up
: pa ramete r s (? x1 − b l o ck )
: p r e c o n d i t i o n ( and

27 ( c l e a r ? x1 )
( on t ab l e ? x1 )
( handempty )
)
: e f f e c t ( and

32 ( not ( on t ab l e ? x1 ) )
( not ( c l e a r ? x1 ) )
( not ( handempty ) )
( h o l d i n g ? x1 )
( i n c r e a s e ( t o t a l−c o s t ) 1)

37 )
)

( : a c t i o n put−down
: pa ramete r s (? x1 − b l o ck )

42 : p r e c o n d i t i o n ( and
( ho l d i n g ? x1 )
)
: e f f e c t ( and
( not ( h o l d i n g ? x1 ) )

47 ( c l e a r ? x1 )
( handempty )
( on t ab l e ? x1 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)

52 )

( : a c t i o n s t a c k
: pa ramete r s (? x1 − b l o ck ? x2 − b l o ck )
: p r e c o n d i t i o n ( and

57 ( h o l d i n g ? x1 )
( c l e a r ? x2 )
)
: e f f e c t ( and
( not ( h o l d i n g ? x1 ) )

62 ( not ( c l e a r ? x2 ) )
( c l e a r ? x1 )
( handempty )
( on ? x1 ? x2 )
( i n c r e a s e ( t o t a l−c o s t ) 1)

67 )
)

( : a c t i o n uns tack
: pa ramete r s (? x1 − b l o ck ? x2 − b l o ck )

72 : p r e c o n d i t i o n ( and
( on ? x1 ? x2 )
( c l e a r ? x1 )
( handempty )
)
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77 : e f f e c t ( and
( ho l d i n g ? x1 )
( c l e a r ? x2 )
( not ( c l e a r ? x1 ) )
( not ( handempty ) )

82 ( not ( on ? x1 ? x2 ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)
)

prev

( d e f i n e ( domain counte r−b l o c k s )
( : r e qu i r emen t s : s t r i p s )
( : t y p e s

4 b l o ck room − o b j e c t
)
( : p r e d i c a t e s
( on ? x1 − b l o ck ? x2 − b l o ck )
( on t ab l e ? x1 − b l o ck )

9 ( c l e a r ? x1 − b l o ck )
( handempty )
( h o l d i n g ? x1 − b l o ck )
( have−p a i n t i n g ? x1 − b l o ck )
( at−p a i n t i n g ? x1 − b l o ck ? x2 − room )

14 ( at−p r e v e n t i n g ? x1 − room )
( connected ? x1 − room ?x2 − room )
( b lock s−room ?x1 − room )
)

19 ( : f u n c t i o n s
( t o t a l−c o s t )
)

( : a c t i o n p a i n t
24 : pa ramete r s (? x1 − b l o ck ? x2 − room )

: p r e c o n d i t i o n ( and
( have−p a i n t i n g ? x1 )
( at−p r e v e n t i n g ? x2 )
( b l ock s−room ?x2 )

29 )
: e f f e c t ( and
( not ( c l e a r ? x1 ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)

34 )

( : a c t i o n p ick−pa i n t
: pa ramete r s (? x1 − b l o ck ? x2 − room )
: p r e c o n d i t i o n ( and

39 ( at−p a i n t i n g ? x1 ? x2 )
( at−p r e v e n t i n g ? x2 )
)
: e f f e c t ( and
( not ( at−p a i n t i n g ? x1 ? x2 ) )

44 ( have−p a i n t i n g ? x1 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

49 ( : a c t i o n move
: pa ramete r s (? x1 − room ?x2 − room )
: p r e c o n d i t i o n ( and
( at−p r e v e n t i n g ? x1 )
( connected ? x1 ? x2 )

54 )
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: e f f e c t ( and
( not ( at−p r e v e n t i n g ? x1 ) )
( at−p r e v e n t i n g ? x2 )
( i n c r e a s e ( t o t a l−c o s t ) 1)

59 )
)
)

d.3 counter logistics

seek

( d e f i n e ( domain l o g i s t i c s )
( : r e qu i r emen t s : s t r i p s : t y p i n g )
( : t y p e s

4 c i t y p l a c e phy sob j − o b j e c t
package bomb v e h i c l e − physob j
t r u c k a i r p l a n e enemytruck − v e h i c l e
a i r p o r t l o c a t i o n − p l a c e
)

9

( : p r e d i c a t e s
( in−c i t y ? x1 − p l a c e ? x2 − c i t y )
( at ? x1 − physob j ? x2 − p l a c e )
( i n ? x1 − package ? x2 − v e h i c l e )

14 ( in−bomb ?x1 − bomb ?x2 − v e h i c l e )
)

( : f u n c t i o n s
( t o t a l−c o s t )

19 )

( : a c t i o n LOAD−TRUCK
: pa ramete r s (? x1 − package ? x2 − t r u c k ? x3 − p l a c e )
: p r e c o n d i t i o n ( and

24 ( a t ? x2 ? x3 )
( at ? x1 ? x3 )
)
: e f f e c t ( and
( not ( at ? x1 ? x3 ) )

29 ( i n ? x1 ? x2 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

34 ( : a c t i o n LOAD−AIRPLANE
: pa ramete r s (? x1 − package ? x2 − a i r p l a n e ? x3 − p l a c e )
: p r e c o n d i t i o n ( and
( at ? x1 ? x3 )
( at ? x2 ? x3 )

39 )
: e f f e c t ( and
( not ( at ? x1 ? x3 ) )
( i n ? x1 ? x2 )
( i n c r e a s e ( t o t a l−c o s t ) 1)

44 )
)

( : a c t i o n UNLOAD−TRUCK
: pa ramete r s (? x1 − package ? x2 − t r u c k ? x3 − p l a c e )

49 : p r e c o n d i t i o n ( and
( at ? x2 ? x3 )
( i n ? x1 ? x2 )
)
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: e f f e c t ( and
54 ( not ( i n ? x1 ? x2 ) )

( at ? x1 ? x3 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

59

( : a c t i o n UNLOAD−AIRPLANE
: pa ramete r s (? x1 − package ? x2 − a i r p l a n e ? x3 − p l a c e )
: p r e c o n d i t i o n ( and
( i n ? x1 ? x2 )

64 ( a t ? x2 ? x3 )
)
: e f f e c t ( and
( not ( i n ? x1 ? x2 ) )
( at ? x1 ? x3 )

69 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

( : a c t i o n DRIVE−TRUCK
74 : pa ramete r s (? x1 − t r u c k ? x2 − p l a c e ? x3 − p l a c e ? x4 − c i t y )

: p r e c o n d i t i o n ( and
( not (= ?x2 ? x3 ) )
( at ? x1 ? x2 )
( in−c i t y ? x2 ? x4 )

79 ( in−c i t y ? x3 ? x4 )
)
: e f f e c t ( and
( not ( at ? x1 ? x2 ) )
( at ? x1 ? x3 )

84 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

( : a c t i o n FLY−AIRPLANE
89 : pa ramete r s (? x1 − a i r p l a n e ? x2 − a i r p o r t ? x3 − a i r p o r t )

: p r e c o n d i t i o n ( and
( not (= ?x2 ? x3 ) )
( at ? x1 ? x2 )
)

94 : e f f e c t ( and
( not ( at ? x1 ? x2 ) )
( at ? x1 ? x3 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)

99 )
)

prev

( d e f i n e ( domain counte r− l o g i s t i c s )
( : r e qu i r emen t s : s t r i p s : t y p i n g )
( : t y p e s
c i t y p l a c e phy sob j − o b j e c t

5 package bomb v e h i c l e − physob j
t r u c k a i r p l a n e enemytruck − v e h i c l e
a i r p o r t l o c a t i o n − p l a c e
)

10 ( : p r e d i c a t e s
( in−c i t y ? x1 − p l a c e ? x2 − c i t y )
( at ? x1 − physob j ? x2 − p l a c e )
( i n ? x1 − package ? x2 − v e h i c l e )
( in−bomb ?x1 − bomb ?x2 − v e h i c l e )

15 )
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( : f u n c t i o n s
( t o t a l−c o s t )
)

20

( : a c t i o n LOAD−ENEMY−TRUCK
: pa ramete r s (? x1 − bomb ?x2 − enemytruck ? x3 − p l a c e )
: p r e c o n d i t i o n ( and
( at ? x2 ? x3 )

25 ( a t ? x1 ? x3 )
)
: e f f e c t ( and
( not ( at ? x1 ? x3 ) )
( in−bomb ?x1 ? x2 )

30 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

( : a c t i o n LOAD−ENEMY−AIRPLANE
35 : pa ramete r s (? x1 − bomb ?x2 − enemytruck ? x3 − p l a c e )

: p r e c o n d i t i o n ( and
( at ? x1 ? x3 )
( at ? x2 ? x3 )
)

40 : e f f e c t ( and
( not ( at ? x1 ? x3 ) )
( in−bomb ?x1 ? x2 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)

45 )

( : a c t i o n UNLOAD−ENEMY−TRUCK
: pa ramete r s (? x1 − bomb ?x2 − enemytruck ? x3 − p l a c e )
: p r e c o n d i t i o n ( and

50 ( a t ? x2 ? x3 )
( in−bomb ?x1 ? x2 )
)
: e f f e c t ( and
( not ( in−bomb ?x1 ? x2 ) )

55 ( a t ? x1 ? x3 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

60 ( : a c t i o n UNLOAD−ENEMY−AIRPLANE
: pa ramete r s (? x1 − bomb ?x2 − enemytruck ? x3 − p l a c e )
: p r e c o n d i t i o n ( and
( in−bomb ?x1 ? x2 )
( at ? x2 ? x3 )

65 )
: e f f e c t ( and
( not ( in−bomb ?x1 ? x2 ) )
( at ? x1 ? x3 )
( i n c r e a s e ( t o t a l−c o s t ) 1)

70 )
)

( : a c t i o n DRIVE−ENEMY−TRUCK
: pa ramete r s (? x1 − enemytruck ? x2 − p l a c e ? x3 − p l a c e ? x4 − c i t y )

75 : p r e c o n d i t i o n ( and
( not (= ?x2 ? x3 ) )
( at ? x1 ? x2 )
( in−c i t y ? x2 ? x4 )
( in−c i t y ? x3 ? x4 )

80 )
: e f f e c t ( and
( not ( at ? x1 ? x2 ) )
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( a t ? x1 ? x3 )
( i n c r e a s e ( t o t a l−c o s t ) 1)

85 )
)

( : a c t i o n FLY−ENEMY−AIRPLANE
: pa ramete r s (? x1 − enemytruck ? x2 − a i r p o r t ? x3 − a i r p o r t )

90 : p r e c o n d i t i o n ( and
( not (= ?x2 ? x3 ) )
( at ? x1 ? x2 )
)
: e f f e c t ( and

95 ( not ( at ? x1 ? x2 ) )
( at ? x1 ? x3 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

100

( : a c t i o n BREAK−UP−TRUCK
: pa ramete r s (? x1 − t r u c k ? x2 − p l a c e ? x3 − bomb)
: p r e c o n d i t i o n ( and
( at ? x3 ? x2 )

105 ( a t ? x1 ? x2 )
)
: e f f e c t ( and
( not ( at ? x1 ? x2 ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)

110 )
)

( : a c t i o n BREAK−UP−PLANE
: pa ramete r s (? x1 − a i r p l a n e ? x2 − p l a c e ? x3 − bomb)

115 : p r e c o n d i t i o n ( and
( at ? x3 ? x2 )
( at ? x1 ? x2 )
)
: e f f e c t ( and

120 ( not ( at ? x1 ? x2 ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)
)

d.4 rovers & martians

seek

1 ( d e f i n e ( domain Rover )
( : r e qu i r emen t s : t y p i n g )
( : t y p e s
r o v e r waypo int s t o r e camera mode l a n d e r o b j e c t i v e
)

6

( : p r e d i c a t e s
( at ?x − r o v e r ?y − waypo int )
( a t_ lande r ?x − l a n d e r ?y − waypo int )
( can_t rave r s e ? r − r o v e r ?x − waypo int ?y − waypo int )

11 ( e qu i pp ed_ fo r_so i l_ana l y s i s ? r − r o v e r )
( equ ipped_fo r_rock_ana l y s i s ? r − r o v e r )
( equ ipped_for_imaging ? r − r o v e r )
( empty ? s − s t o r e )
( have_rock_ana l y s i s ? r − r o v e r ?w − waypo int )

16 ( h a v e_so i l_ana l y s i s ? r − r o v e r ?w − waypo int )
( f u l l ? s − s t o r e )
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( c a l i b r a t e d ? c − camera ? r − r o v e r )
( s uppo r t s ? c − camera ?m − mode)
( a v a i l a b l e ? r − r o v e r )

21 ( v i s i b l e ?w − waypo int ?p − waypo int )
( have_image ? r − r o v e r ?o − o b j e c t i v e ?m − mode)
( communicated_soi l_data ?w − waypo int )
( communicated_rock_data ?w − waypo int )
( communicated_image_data ?o − o b j e c t i v e ?m − mode)

26 ( at_so i l_sample ?w − waypo int )
( at_rock_sample ?w − waypo int )
( v i s i b l e_ f r om ?o − o b j e c t i v e ?w − waypo int )
( s t o r e_o f ? s − s t o r e ? r − r o v e r )
( c a l i b r a t i o n _ t a r g e t ? i − camera ?o − o b j e c t i v e )

31 ( on_board ? i − camera ? r − r o v e r )
( channe l_ f r e e ? l − l a n d e r )
( at−mart i an ?w − waypo int )
)

36 ( : f u n c t i o n s
( t o t a l−c o s t )
)

41 ( : a c t i o n n a v i g a t e
: pa ramete r s (? x − r o v e r ?y − waypo int ? z − waypo int )
: p r e c o n d i t i o n ( and
( can_t rave r s e ?x ?y ? z )
( a v a i l a b l e ?x )

46 ( a t ?x ?y )
( v i s i b l e ? y ? z )
)
: e f f e c t ( and
( not ( at ?x ?y ) )

51 ( a t ?x ? z )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

56 ( : a c t i o n samp l e_so i l
: pa ramete r s (? x − r o v e r ? s − s t o r e ?p − waypo int )
: p r e c o n d i t i o n ( and
( at ?x ?p )
( at_so i l_sample ?p )

61 ( e qu i pp ed_ fo r_so i l_ana l y s i s ? x )
( s t o r e_o f ? s ?x )
( empty ? s )
)
: e f f e c t ( and

66 ( not ( empty ? s ) )
( f u l l ? s )
( h a v e_so i l_ana l y s i s ? x ?p )
( not ( at_so i l_sample ?p ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)

71 )
)

( : a c t i o n sample_rock
: pa ramete r s (? x − r o v e r ? s − s t o r e ?p − waypo int )

76 : p r e c o n d i t i o n ( and
( at ?x ?p )
( at_rock_sample ?p )
( equ ipped_fo r_rock_ana l y s i s ? x )
( s t o r e_o f ? s ?x )

81 ( empty ? s )
)
: e f f e c t ( and
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( not ( empty ? s ) )
( f u l l ? s )

86 ( have_rock_ana l y s i s ? x ?p )
( not ( at_rock_sample ?p ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

91

( : a c t i o n drop
: pa ramete r s (? x − r o v e r ?y − s t o r e )
: p r e c o n d i t i o n ( and
( s to r e_o f ?y ?x )

96 ( f u l l ? y )
)
: e f f e c t ( and
( not ( f u l l ? y ) )
( empty ?y )

101 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

( : a c t i o n c a l i b r a t e
106 : pa ramete r s (? r − r o v e r ? i − camera ? t − o b j e c t i v e ?w − waypo int )

: p r e c o n d i t i o n ( and
( equ ipped_for_imaging ? r )
( c a l i b r a t i o n _ t a r g e t ? i ? t )
( a t ? r ?w)

111 ( v i s i b l e_ f r om ? t ?w)
( on_board ? i ? r )
)
: e f f e c t ( and
( c a l i b r a t e d ? i ? r )

116 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

121

( : a c t i o n take_image
: pa ramete r s (? r − r o v e r ?p − waypo int ?o − o b j e c t i v e ? i − camera ?m − mode)
: p r e c o n d i t i o n ( and

126 ( c a l i b r a t e d ? i ? r )
( on_board ? i ? r )
( equ ipped_for_imaging ? r )
( s uppo r t s ? i ?m)
( v i s i b l e_ f r om ?o ?p )

131 ( a t ? r ?p )
)
: e f f e c t ( and
( have_image ? r ?o ?m)
( not ( c a l i b r a t e d ? i ? r ) )

136 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

141 ( : a c t i o n communicate_soi l_data
: pa ramete r s (? r − r o v e r ? l − l a n d e r ?p − waypo int ?x − waypo int ?y − waypo int )
: p r e c o n d i t i o n ( and
( at ? r ?x )
( a t_ lande r ? l ? y )

146 ( h a v e_so i l_ana l y s i s ? r ?p )
( v i s i b l e ? x ?y )
( a v a i l a b l e ? r )
( channe l_ f r e e ? l )
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)
151 : e f f e c t ( and

( not ( a v a i l a b l e ? r ) )
( not ( channe l_ f r e e ? l ) )
( channe l_ f r e e ? l )
( communicated_soi l_data ?p )

156 ( a v a i l a b l e ? r )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

161 ( : a c t i o n communicate_rock_data
: pa ramete r s (? r − r o v e r ? l − l a n d e r ?p − waypo int ?x − waypo int ?y − waypo int )
: p r e c o n d i t i o n ( and
( at ? r ?x )
( a t_ lande r ? l ? y )

166 ( have_rock_ana l y s i s ? r ?p )
( v i s i b l e ? x ?y )
( a v a i l a b l e ? r )
( channe l_ f r e e ? l )
)

171 : e f f e c t ( and
( not ( a v a i l a b l e ? r ) )
( not ( channe l_ f r e e ? l ) )
( channe l_ f r e e ? l )
( communicated_rock_data ?p )

176 ( a v a i l a b l e ? r )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

181

( : a c t i o n communicate_image_data
: pa ramete r s (? r − r o v e r ? l − l a n d e r ?o − o b j e c t i v e ?m − mode ?x − waypo int ?y − waypo int )
: p r e c o n d i t i o n ( and
( at ? r ?x )

186 ( a t_ lande r ? l ? y )
( have_image ? r ?o ?m)
( v i s i b l e ? x ?y )
( a v a i l a b l e ? r )
( channe l_ f r e e ? l )

191 )
: e f f e c t ( and

( not ( a v a i l a b l e ? r ) )
( not ( channe l_ f r e e ? l ) )
( channe l_ f r e e ? l )

196 ( communicated_image_data ?o ?m)
( a v a i l a b l e ? r )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

201 )

prev

( d e f i n e ( domain Rover )
( : r e qu i r emen t s : t y p i n g )
( : t y p e s

4 r o v e r waypo int s t o r e camera mode l a n d e r o b j e c t i v e
)

( : p r e d i c a t e s
( at ?x − r o v e r ?y − waypo int )

9 ( a t_ lande r ?x − l a n d e r ?y − waypo int )
( can_t rave r s e ? r − r o v e r ?x − waypo int ?y − waypo int )
( e qu i pp ed_ fo r_so i l_ana l y s i s ? r − r o v e r )
( equ ipped_fo r_rock_ana l y s i s ? r − r o v e r )
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( equ ipped_for_imaging ? r − r o v e r )
14 ( empty ? s − s t o r e )

( have_rock_ana l y s i s ? r − r o v e r ?w − waypo int )
( h a v e_so i l_ana l y s i s ? r − r o v e r ?w − waypo int )
( f u l l ? s − s t o r e )
( c a l i b r a t e d ? c − camera ? r − r o v e r )

19 ( s uppo r t s ? c − camera ?m − mode)
( a v a i l a b l e ? r − r o v e r )
( v i s i b l e ?w − waypo int ?p − waypo int )
( have_image ? r − r o v e r ?o − o b j e c t i v e ?m − mode)
( communicated_soi l_data ?w − waypo int )

24 ( communicated_rock_data ?w − waypo int )
( communicated_image_data ?o − o b j e c t i v e ?m − mode)
( at_so i l_sample ?w − waypo int )
( at_rock_sample ?w − waypo int )
( v i s i b l e_ f r om ?o − o b j e c t i v e ?w − waypo int )

29 ( s t o r e_o f ? s − s t o r e ? r − r o v e r )
( c a l i b r a t i o n _ t a r g e t ? i − camera ?o − o b j e c t i v e )
( on_board ? i − camera ? r − r o v e r )
( channe l_ f r e e ? l − l a n d e r )
( at−mart i an ?w − waypo int )

34 )

( : f u n c t i o n s
( t o t a l−c o s t )
)

39

( : a c t i o n n a v i g a t e
: pa ramete r s (? y − waypo int ? z − waypo int )
: p r e c o n d i t i o n ( and

44 ( at−mart i an ?y )
( v i s i b l e ? y ? z )
)
: e f f e c t ( and
( not ( at−mart i an ?y ) )

49 ( at−mart i an ? z )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

54 ( : a c t i o n break−channe l
: pa ramete r s (? l − l a n d e r ?p − waypo int )
: p r e c o n d i t i o n ( and
( at ? l ?p )
( channe l_ f r e e ? l )

59 ( at−mart i an ?p )
)
: e f f e c t ( and
( not ( channe l_ f r e e ? l ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)

64 )
)

( : a c t i o n sample_rock
: pa ramete r s (? x − r o v e r ? s − s t o r e ?p − waypo int )

69 : p r e c o n d i t i o n ( and
( at ?x ?p )
( at_rock_sample ?p )
( equ ipped_fo r_rock_ana l y s i s ? x )
( s t o r e_o f ? s ?x )

74 ( empty ? s )
)
: e f f e c t ( and
( not ( empty ? s ) )
( f u l l ? s )
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79 ( have_rock_ana l y s i s ? x ?p )
( not ( at_rock_sample ?p ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

84

( : a c t i o n s t ea l_samp le
: pa ramete r s (? x − waypo int ?y − r o v e r ? z − s t o r e )
: p r e c o n d i t i o n ( and
( at−mart i an ?x )

89 ( a t ?y ?x )
( f u l l ? z )
)
: e f f e c t ( and
( not ( f u l l ? z ) )

94 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)
)

d.5 starcraft

seek

( d e f i n e ( domain s t a r c r a f t −s e e k i n g )
( : r e qu i r emen t s : t y p i n g )

3 ( : t y p e s
squa r e l o c a t i o n − o b j e c t
)
( : p r e d i c a t e s
( connected ? x1 − squa r e ? x2 − squa r e )

8 ( a t ? x1 − squa r e )
( at−enemy ?x1 − squa r e )
( at−t a r g e t ? x1 − squa r e )
( empty ? x1 )
( at−vespene ? x1 − squa r e )

13 ( at−mine r a l ? x1 − squa r e )
( at−r e f i n e r y ? x1 − squa r e )
( at−ba r r a c k s ? x1 − squa r e )
( at−command−c e n t e r ? x1 − squa r e )
( at−r e f i n e r y −enemy ?x1 − squa r e )

18 ( at−ba r r a ck s−enemy ?x1 − squa r e )
( at−command−cen t e r−enemy ?x1 − squa r e )
( r e f i n e r y −b u i l t )
( ba r r a ck s−b u i l t )
(command−cen t e r−b u i l t )

23 ( r e f i n e r y −b u i l t −enemy )
( ba r r a ck s−b u i l t −enemy )
(command−cen t e r−b u i l t −enemy )
( c a r r y i n g−mine r a l )
( c a r r y i n g−vespene )

28 ( c a r r y i n g−mine ra l−enemy )
( c a r r y i n g−vespene−enemy )
( have−mine r a l )
( have−vespene )
( have−mine ra l−enemy )

33 ( have−vespene−enemy )
( a l i v e −enemy )
( a l i v e )
( under−at tack−command−c e n t e r )
( under−at tack−command−cen t e r−enemy )

38 ( under−at tack−r e f i n e r y )
( under−at tack−r e f i n e r y −enemy )
( under−at tack−ba r r a c k s )
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( under−at tack−ba r r a ck s−enemy )
( marine−t r a i n e d )

43 ( marine−t r a i n e d−enemy )
)

( : a c t i o n bu i l d−ba r r a ck s−enemy
: pa ramete r s (? x1 − squa r e ? x2 − squa r e )

48 : p r e c o n d i t i o n ( and
( a l i v e −enemy )
( have−mine ra l−enemy )
( empty ? x1 )
( at−enemy ?x2 )

53 ( connected ? x1 ? x2 )
)
: e f f e c t ( and
( not ( empty ? x1 ) )
( at−ba r r a ck s−enemy ?x1 )

58 ( ba r r a ck s−b u i l t −enemy )
( i n c r e a s e ( t o t a l−c o s t ) 128)
)
)

63 ( : a c t i o n bu i l d−r e f i n e r y −enemy
: pa ramete r s (? x1 − squa r e ? x2 − squa r e )
: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( have−mine ra l−enemy )

68 ( at−vespene ? x1 )
( at−enemy ?x2 )
( connected ? x1 ? x2 )
)
: e f f e c t ( and

73 ( at−r e f i n e r y −enemy ?x1 )
( not ( at−vespene ? x1 ) )
( r e f i n e r y −b u i l t −enemy )
( i n c r e a s e ( t o t a l−c o s t ) 60)
)

78 )

( : a c t i o n t r a i n−marine−enemy
: pa ramete r s ( )
: p r e c o n d i t i o n ( and

83 ( have−vespene−enemy )
( ba r r a ck s−b u i l t −enemy )
( not ( marine−t r a i n e d−enemy ) )
)
: e f f e c t ( and

88 ( marine−t r a i n e d−enemy )
)
)

( : a c t i o n gather−vespene−enemy
93 : pa ramete r s (? x1 − squa r e ? x2 − squa r e )

: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( at−enemy ?x1 )
( at−r e f i n e r y ? x2 )

98 ( not ( c a r r y i n g−vespene−enemy ) )
( not ( c a r r y i n g−mine ra l−enemy ) )
)
: e f f e c t ( and
( c a r r y i n g−vespene−enemy )

103 ( i n c r e a s e ( t o t a l−c o s t ) 4)
)
)
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( : a c t i o n gather−mine ra l−enemy
108 : pa ramete r s (? x1 − squa r e ? x2 − squa r e )

: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( at−enemy ?x1 )
( at−mine r a l ? x2 )

113 ( not ( c a r r y i n g−vespene−enemy ) )
( not ( c a r r y i n g−mine ra l−enemy ) )
)
: e f f e c t ( and
( c a r r y i n g−mine ra l−enemy )

118 ( i n c r e a s e ( t o t a l−c o s t ) 9)
)
)

( : a c t i o n s t o r e−vespene−enemy
123 : pa ramete r s (? x1 − squa r e ? x2 − squa r e )

: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( at−enemy ?x1 )
( at−command−c e n t e r ? x2 )

128 ( connected ? x1 ? x2 )
( c a r r y i n g−vespene−enemy )
)
: e f f e c t ( and
( have−vespene−enemy )

133 ( not ( c a r r y i n g−vespene−enemy ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

138 ( : a c t i o n s t o r e−mine ra l−enemy
: pa ramete r s (? x1 − squa r e ? x2 − squa r e )
: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( at−enemy ?x1 )

143 ( at−command−c e n t e r ? x2 )
( connected ? x1 ? x2 )
( c a r r y i n g−mine ra l−enemy )
)
: e f f e c t ( and

148 ( have−mine ra l−enemy )
( not ( c a r r y i n g−mine ra l−enemy ) )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

153

( : a c t i o n at tack−enemy
: pa ramete r s (? x1 − squa r e ? x2 − squa r e )
: p r e c o n d i t i o n ( and
( a l i v e −enemy )

158 ( at−enemy ?x1 )
( at ? x2 )
( connected ? x1 ? x2 )

) : e f f e c t ( and
163 ( not ( a l i v e ) )

)
)

( : a c t i o n at tack−ba r r a ck s−enemy
168 : pa ramete r s (? x1 − squa r e ? x2 − squa r e )

: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( at−enemy ?x1 )
( at−ba r r a c k s ? x2 )
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173 ( connected ? x1 ? x2 )
)
: e f f e c t ( and
( under−at tack−ba r r a c k s )
( not ( ba r r a ck s−b u i l t ) )

178 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

( : a c t i o n at tack−r e f i n e r y −enemy
183 : pa ramete r s (? x1 − squa r e ? x2 − squa r e )

: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( at−enemy ?x1 )
( at−r e f i n e r y ? x2 )

188 ( connected ? x1 ? x2 )
)
: e f f e c t ( and
( under−at tack−r e f i n e r y )
( not ( r e f i n e r y −b u i l t ) )

193 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

( : a c t i o n at tack−command−cen t e r−enemy
198 : pa ramete r s (? x1 − squa r e ? x2 − squa r e )

: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( at−enemy ?x1 )
( at−command−c e n t e r ? x2 )

203 ( connected ? x1 ? x2 )
)
: e f f e c t ( and
( under−at tack−command−c e n t e r )
( not (command−cen t e r−b u i l t ) )

208 ( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

( : a c t i o n move−enemy
213 : pa ramete r s (? x1 − squa r e ? x2 − squa r e )

: p r e c o n d i t i o n ( and
( a l i v e −enemy )
( at−enemy ?x1 )
( connected ? x1 ? x2 )

218 ( empty ? x2 )
)
: e f f e c t ( and
( not ( at−enemy ?x1 ) )
( at−enemy ?x2 )

223 ( not ( empty ? x2 ) )
( empty ? x1 )
( i n c r e a s e ( t o t a l−c o s t ) 1)
)
)

228 )

prev

( d e f i n e ( domain s t a r c r a f t −p r e v e n t i n g )
2 ( : r e qu i r emen t s : t y p i n g )

( : t y p e s
squa r e l o c a t i o n − o b j e c t
)
( : p r e d i c a t e s

7 ( connected ? x1 − squa r e ? x2 − squa r e )
( at ? x1 − squa r e )
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( at−enemy ?x1 − squa r e )
( at−t a r g e t ? x1 − squa r e )
( empty ? x1 )

12 ( at−vespene ? x1 − squa r e )
( at−mine r a l ? x1 − squa r e )
( at−r e f i n e r y ? x1 − squa r e )
( at−ba r r a c k s ? x1 − squa r e )
( at−command−c e n t e r ? x1 − squa r e )

17 ( at−r e f i n e r y −enemy ?x1 − squa r e )
( at−ba r r a ck s−enemy ?x1 − squa r e )
( at−command−cen t e r−enemy ?x1 − squa r e )
( r e f i n e r y −b u i l t )
( ba r r a ck s−b u i l t )

22 (command−cen t e r−b u i l t )
( r e f i n e r y −b u i l t −enemy )
( ba r r a ck s−b u i l t −enemy )
(command−cen t e r−b u i l t −enemy )
( c a r r y i n g−mine r a l )

27 ( c a r r y i n g−vespene )
( c a r r y i n g−mine ra l−enemy )
( c a r r y i n g−vespene−enemy )
( have−mine r a l )
( have−vespene )

32 ( have−mine ra l−enemy )
( have−vespene−enemy )
( a l i v e −enemy )
( a l i v e )
( under−at tack−command−c e n t e r )

37 ( under−at tack−command−cen t e r−enemy )
( under−at tack−r e f i n e r y )
( under−at tack−r e f i n e r y −enemy )
( under−at tack−ba r r a c k s )
( under−at tack−ba r r a ck s−enemy )

42 ( marine−t r a i n e d )
( marine−t r a i n e d−enemy )
)

( : a c t i o n a t t a c k
47 : pa ramete r s (? x1 − squa r e )

: p r e c o n d i t i o n ( and
( at ? x1 )
)
: e f f e c t ( and

52 ( not ( a l i v e −enemy ) )
( i n c r e a s e ( t o t a l−c o s t ) 12)
)
)

57 ( : a c t i o n at tack−ba r r a c k s
: pa ramete r s (? x1 − squa r e ? x2 − squa r e )
: p r e c o n d i t i o n ( and
( at ? x1 )
( at−ba r r a ck s−enemy ?x2 )

62 ( connected ? x1 ? x2 )
)
: e f f e c t ( and
( under−at tack−ba r r a ck s−enemy )
( not ( ba r r a ck s−b u i l t −enemy ) )

67 ( i n c r e a s e ( t o t a l−c o s t ) 516)
)
)

( : a c t i o n at tack−r e f i n e r y
72 : pa ramete r s (? x1 − squa r e ? x2 − squa r e )

: p r e c o n d i t i o n ( and
( at ? x1 )
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( at−r e f i n e r y −enemy ?x2 )
( connected ? x1 ? x2 )

77 )
: e f f e c t ( and
( under−at tack−r e f i n e r y −enemy )
( not ( r e f i n e r y −b u i l t −enemy ) )
( i n c r e a s e ( t o t a l−c o s t ) 401)

82 )
)

( : a c t i o n at tack−command−c e n t e r
: pa ramete r s (? x1 − squa r e ? x2 − squa r e )

87 : p r e c o n d i t i o n ( and
( at ? x1 )
( at−command−cen t e r−enemy ?x2 )
( connected ? x1 ? x2 )
)

92 : e f f e c t ( and
( under−at tack−command−cen t e r−enemy )
( not (command−cen t e r−b u i l t −enemy ) )
( i n c r e a s e ( t o t a l−c o s t ) 810)
)

97 )

( : a c t i o n move
: pa ramete r s (? x1 − squa r e ? x2 − squa r e )
: p r e c o n d i t i o n ( and

102 ( a t ? x1 )
( connected ? x1 ? x2 )
( empty ? x2 )
)
: e f f e c t ( and

107 ( not ( at ? x1 ) )
( at ? x2 )
( not ( empty ? x2 ) )
( empty ? x1 )
( i n c r e a s e ( t o t a l−c o s t ) 1)

112 )
)
)
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