
This is a postprint/accepted version of the following published document:

González Morín, D.; Pérez, P.; García Armada, A. Toward the distributed
implementation of immersive augmented reality architectures on 5G
networks, in IEEE Communications Magazine, vol. 60, no. 2, Feb. 2022, pp.
46-52

DOI: 10.1109/MCOM.001.2100225

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

https://doi.org/10.1109/MCOM.001.2100225
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Toward the Distributed Implementation of Immersive

Augmented Reality Architectures on 5G Networks

Diego González Morín, Pablo Pérez and Ana García Armada

Abstract

Augmented Reality (AR) has been lately presented as one of
the key technology fields in which 5G networks can become
a disruptive tool, rising interest from both industry and
academia. The main goal of this article is to extend the
current state of the art of distributed AR studies and
implementations by extracting the main AR algorithms
offloading requirements individually. This extension is further
achieved by depicting the data flow between these
algorithms and their hardware requirements. From the
obtained results, we estimate a preliminary set of network
Key Performance Indicators (KPIs) for a subset of three
examples of distributed AR implementations highlighting the
necessity of 5G technologies and their ecosystem to unveil
the full potential of AR. Finally, and based on these KPIs, we
propose a set of 5G configuration parameters for a
successful distributed AR implementation. As most of the
described algorithms are also used in VR applications, our
contributions can facilitate future distributed
implementations of both AR and VR applications.

Introduction
The improvement of Augmented Reality (AR) and Virtual
Reality (VR) technologies has enabled the proposition of novel
use cases which entail a new manner of interacting with the
real world and with each other. While VR aims to allow the
user to fully immerse in a virtual scenario AR targets to blend
the real scenario with overlaid virtual content, greatly
enhancing the user experience. However, there are still
several technological constraints, such as limited computing
power or battery life, which hinder AR and VR applications to
reach their full potential. The fifth generation of mobile
telecommunication networks (5G) includes a set of three
services: enhanced mobile broadband (eMBB), ultra-reliable
low-latency communications (URLLC), and massive machine-
type communications (mMTC). Both eMBB and URLLC 5G
services match AR and VR applications’ extremely high
communication data rate requirements under demanding
low latency constraints. From the resource allocation
perspective, both eMBB and URLLC are competing services
which consume resources from each other. Consequently,
smart network designs, including multi-access edge
computing (MEC), are required for immersive and enhanced
AR/VR experiences.

AR and VR network requirements are mostly use-case or
application dependent. There are plenty of research studies
[1] of 5G-based wireless VR implementations and
architectures, which commonly focus on the high-quality and
low-latency downlink video-stream. However, it is more
seldom to find research avenues focused on distributed AR
implementations on 5G networks.

The future of AR aims to create an enhanced reality which
will reveal new ways of human to human interaction, learning
or entertaining. In industry, for instance, AR devices could
display on-site real-time instructions to an operator, or
automatically detect safety failures or incorrect procedures.
On the social side, AR can add an extra dimension to the
current remote human communications: in realistic 3D
avatar-based real-time communication users would be able
to simultaneously interact with virtual objects or, as a longer-
term goal, with each other, demolishing the distance barriers
in human communication.

AR applications should not only properly place the virtual
content but allow both the user and the real scenario to
interact with it. This requires the real environment to be
analyzed as accurately as possible and in real-time, requiring
multiple heavy duty algorithms, such as semantic
segmentation and 3D reconstruction, to concurrently run in
real-time. Even though there are some real-time state-of-
the-art implementations of these processes [2][3], they
require modern hardware which is usually not portable and
energy consuming. Besides, the AR content should be
rendered with a motion to photon delay below 15 ms [4],
deadline to which most of the previously mentioned
processes need to comply. Even more constraint is the case
in which the user needs to interact with a virtual object: the
virtual object’s reaction and haptic feedback latencies must
be smaller than 10 ms [4].

These tight processing deadlines along with very demanding
hardware requirements justify the idea of offloading some or
all these algorithms from the device. 5G eMBB and URLLC
services theoretically allow to upload the data streams from
the different sensors and receive the processed results while
satisfying the tight real-time requirements. To that end, the
most latency-critical processes should be handled as close to
the device as possible: MEC can be considered a pivotal piece
in the distributed implementation of AR applications. There
are some studies [5] which thoroughly analyze the distributed
implementation of AR, proposing several offloading
architectures and some use case-dependent requirements.
While the proposed use cases’ requirements and their link to
proposed 5G solutions and architectures are well described,
[5] lacks a study on how and where the individual algorithms
should run, and what are the individual offloading
requirements. Each individual AR application requires
different combinations of AR algorithms. Knowing the
specific offloading requirements for each algorithm is a key
factor for an optimal architecture design: different offloading
combinations can be deployed for the same use case or
application depending on the available network resources.
Consequently, our work can be considered as an extension
of the current state of the art with the following
contributions:

- A thorough and in-depth analysis of the main AR
algorithms and the data flow between these algorithms,
pinpointing which of them are robust candidates to be
offloaded from the AR devices and under which network
conditions.

- A set of latency and throughput requirements for
different offloading scenarios.

- Aligned with the architectures described in [5], we
propose an AR offloading architecture for a set of
representative algorithms.

- An enabling network configuration tightly linked with the
standards which satisfy the offloading requirements.

Our final goal is to facilitate distributed AR deployments by
characterizing which algorithms should run where and what
are their offloading requirements given an offloading
architecture. Besides, the individual analysis of these
algorithms can be useful for successful offloading in other
fields such VR and autonomous driving. An example
architecture is depicted in Fig. 1, which represents the
analyzed algorithms and general network elements.

A Breakdown of Augmented Reality
Algorithms

Any complex AR application involves numerous algorithms
and processing blocks which interact with each other. To
study the challenges and requirements of AR offloading we
need to understand each process individually and the data
flow between them.

Sensor Capture and Preprocessing

In every AR application data is periodically gathered from the
different sensors and shared between the processing blocks.
Cutting edge AR devices include several sensors: multiple RGB
cameras, one or more depth cameras, microphones, etc. The
recently released Hololens 2 [6] is a perfect example of such
sensor capture complexity. Running at 60 Hz, the Hololens 2
is producing around 500 Mbps of raw sensor data.

The stability of the virtual content placement is directly
affected by the Frames Per Second (FPS) reached by the
device, as humans can perceive visual changes as fast as 13

ms [7]. Hence, the AR device update time should be as close
as possible to this reference threshold. In practice, it is
considered that 60 FPS is the minimum update frequency to
have a tolerable motion-to-photon latency, and current
devices typically work at such frame rate. Any AR offloading
attempt must ensure a frame update time of less than 16.6
ms.

Simultaneous Localization and Mapping

One key feature of any AR device is the capability of
accurately estimating its own pose in real-time using the
available sensor data. This pose is used to anchor the virtual
content to the real scenario, so that the device movement
does not affect the pose and behavior of the virtual objects.
This estimation is done using Simultaneous Localization and
Mapping (SLAM) algorithms [8]. The minimum set of sensors
required for a robust AR-targeted SLAM algorithm, is an RGB
camera and an IMU. In some examples, the SLAM algorithm
is also fed with the depth information, increasing the
algorithm’s accuracy and robustness. On the other hand, the
output bitrate could be neglected as it is only composed by
some few dozens of floats for every processed frame.

 In some cases, the SLAM algorithm output is used for 3D
reconstruction, requiring the generated point cloud and
RGB/depth key frames to be exported, considerably
increasing the output bit rate. Offloading the SLAM process
would require both the 5G eMBB and URLLC capabilities to
fulfil the constraint update times.

3D Reconstruction

3D reconstruction is a crucial step for a successful immersive
experience: the AR engine uses the 3D model of the world to
realistically place and anchor the virtual content allowing
realistic interactions with the real scenario. Besides, 3D
reconstruction can be used to partially hide the virtual
objects that are placed behind a real object in a process
called AR occlusion. Incorrect AR occlusion handling might
produce the virtual content to be perceived unrealistically,
with inconsistent size and position.

Furthermore, 3D reconstruction can be considered an
extension of SLAM algorithms to an extent in which some

Figure 1: Simplified offloading architecture for a complex Augmented Reality application.

SLAM algorithms simultaneously handle the pose tracking
and the 3D updates along with the corresponding color
textures. It is not efficient to continuously export the entire
mesh, but only the sections which are modified. The
offloading requirements are less restrictive as the generated
mesh updates can be transmitted at a lower rate, 0.5-1 Hz,
and higher latencies (below a second), allowing this process
to be offloaded to a further server. Finally, the final 3D
reconstruction could be stored on the device or a server after
each session and be reloaded in a posterior session.

Semantic Understanding

Semantic understanding algorithms obtain semantic
information from the real scene, such as which real objects
are in the scene along with their shape, pose, and size. In our
analysis, we focus in three of the most important semantic
understanding algorithms: object detection, hand tracking,
and semantic segmentation.

Object detection is a very populated research topic for its
importance on uncountable fields such as autonomous
driving or AR. Consequently, its state of the art has improved
rapidly, reaching real time performance on standalone
devices with limited computing power such as smartphones.
However, the hardware usage is very high while achieving
lower detection accuracies than in GPU-enabled computing
systems.

Hand tracking is a particular use case of object detection in
which the user hands along with the individual fingers’ joints
and their poses are tracked. It is a key step to allow seamless
interactions between the user and the virtual objects and
GUIs.

Semantic segmentation can be understood as a natural
extension of object detection algorithms: once the object is
detected, its accurate shape and 2D position is extracted.
This step can be used, for instance, to handle the occlusion
of dynamic objects like the user’s hands.

When these algorithms are used for real-time tasks, the
latency requirements are given by the device update rate, as
the estimated result is used to render the immediate next
frame. The current research trend of semantic
understanding is to study how to significantly decrease the

size of these networks while preserving their accuracy. Two
key examples of these shallow networks are the YOLO-Tiny
which runs at 244Hz on a GPU, while YOLO-LITE reaches 20
FPS running on a CPU [11]. While in the object detection and
hand tracking cases the output bit rate can be neglected, the
semantic segmentation’s output consists of a pixel
classification mask per frame considerably increasing the
output bit rate. Offloading these algorithms requires the
combination of intensive computing resources and low
latency data transmission, demanding a near MEC with the
URLLC service to offload this process from the device.

Real-time Dynamic Occlusion

Dynamic occlusion handling is a tough task which is still
considered an open AR problem. If the virtual content is not
properly occluded behind a moving object, for instance the
user’s hands, it would produce a wrong perception of its
position within the real world, ruining the experience. It
requires a perfect segmentation of the moving object, with
very constrained processing times. The input is usually
composed by the RGB and depth. The output consists of just
the occlusion mask which can be considered a high resolution
grayscale feed. Some state of the art examples can run in
real time, as in [12], reaching 60 Hz on a high-end GPU.

These demanding hardware and processing requirements
impose the usage of a dedicated GPU-enabled MEC.
Furthermore, both the URLCC and eMBB services are
necessary to satisfy the throughput and latency
requirements. Real-time dynamic occlusion is a perfect
example of a demanding machine learning algorithm whose
analysis can be later used as a reference for offloading other
complex AR algorithms.

AR Engine and Frame Rendering

The AR engine simulates the physics of the virtual content
and renders a new frame accordingly. Contrary to VR, in AR
this step is not extremely demanding, allowing the devices to
be completely wireless. However, targeting to decrease the
size and weight of the device, it is natural to consider the
possibility of offloading these steps. The AR engine is fed with
all the processed data in all the previously described

Figure 2: Simplified AR architecture including estimated processing times and required input and output data

rates.

algorithms, while the output is the high definition rendered
frame to be displayed

The latency requirements are severe as no frame can be
skipped or received with a delay greater than a frame’s
period, demanding the URLLC service to ensure an extremely
low latency and reliable connectivity between a nearby MEC
and the device.

AR Algorithms Summary

From the AR breakdown, we extracted a set of input and
output data rates and latency requirements of each of the
described algorithms, gathered in Table 1. To estimate these
values, we use the Hololens 2 [6] as the reference device, with
RGB and depth resolutions of 1920x1080 and 720x720
respectively and a refresh rate of 60 Hz. As indicated in [13]
we assumed the individual frames are compressed in JPEG
with a quality corresponding to a pixel weight of 1.2 bit, from
which we estimate the values summarized in Table 1. Besides,
Fig. 2 depicts the described algorithms, along with their input
and output frame sizes and processing times.

Hardware Requirements
The state of the art of the described algorithms involves a
wide range of different approaches, demanding the
hardware requirements to be specific for each individual
solution. SLAM algorithms [8] do not need high-end
hardware to run at rates higher than 20 Hz. On the contrary,
even in optimized hand segmentation algorithms [14] the
processing hardware must be equipped with a dual high-end
GPU with at least 12 GB of memory and 3,584 cores for
inference times below 30 ms.

Network Requirements for AR Offloading
In this section we describe what are the actual estimated
network requirements to offload some or all of the
aforementioned processes while ensuring a satisfactory
immersive experience. For our analysis, we simplify the ideal
transmission time of a single frame, considering that it is only

affected by the amount of data to be sent divided by the
effective throughput. We also define the total transmission
latency as the aggregation of the ideal transmission time and
the total transmission latency. This latency includes not only
the propagation latency, but other network-specific latencies
such as the ones associated with the hybrid automatic repeat
request (HARQ) process, among others.

In AR offloading, the total update time is the aggregation of
the sensor feed (uplink) transmission time, data processing,
retrieved results (downlink) transmission time and frame
display time. The summatory of the algorithms processing,
AR rendering and display times is what we refer to as AR
processing time. Finding a general and unique value of the
AR processing time is extremely hard as it does not only
depend on the algorithms that are implemented, but also on
the machine capabilities, or available hardware resources. For
this reason, we present some illustrative results of a simple
optimization problem to find the less restrictive roundtrip
transmission latency and uplink and downlink throughput
requirements which ensure an update rate of 60 Hz given
different possible AR processing times. The optimization
problem has been solved using Python’s SciPy library with the
Nelder-Mean algorithm. The goal is to present the most
suitable pairs of peak throughput and latency for both the
uplink and downlink streams given a range of AR processing
times spanning from 1 ms to 14 ms.

To obtain these values, we designed a straightforward reward
function which favors low uplink and downlink throughputs,
high round trip latencies, and total transmission times. It
includes individual weights to fine-tune the influence of each
of these parameters. To obtain bounded results we impose
a set of constraints to the optimization solver. First, we
constrain the total update time to be smaller than the
update period (16.7 ms). Second, we limit the minimum
roundtrip latency to be 1 ms, as it is the duration of a
subframe according to 5G specifications. Finally, we constrain
the maximum total peak throughput to be 10 Gbps.

We consider that 5G networks are initially designed to use the
Time Division Duplex (TDD). According to the 3GPP 38.213
specification, the TDD configuration in 5G is very flexible,
allowing tens of different slot configurations, which can be
fixed or dynamically selected. The slot configuration
determines which OFDM symbols are assigned to uplink or
downlink within a slot. For extremely demanding applications,
the proper selection of the slot configuration is crucial to
satisfy the link requirements. To simplify the estimation, we
consider the number of slots reserved for downlink and
uplink to be balanced in our optimization problem. In a later
analysis of the results, we analyze how different
configurations comply with the estimated latency and
throughput requirements. For our analysis, we consider that
no adaptive offloading technique [15] is used as we want to
study the most restrictive case in which the environment is
highly dynamic. In this case, all the captured frames are sent
to the server. We use the estimated uplink and downlink
frame sizes included in Table 1 for our analysis.

For the sake of simplicity, we choose the 3 most
representative AR offloading scenarios. In use case A, we
analyze the full AR offloading scenario, which is necessary to
enable ultra-light mobile AR devices with almost no
computation capabilities. In the case in which the AR device
includes a computationally powerful companion or can

 Data
Rate
(Hz)

Frame
Size

(Mbit)

Bit Rate
(Mbps)

(1)

RGB + IMU 60 2.50 150
RGB + D + IMU 60 3.83 230

Pose + RGB 20 2.50 50
Pose + RGB + D 20 3.83 77

(2)
RGB + Pose 20 2.50 50

RGB + Pose + D 20 3.83 77
3D Mesh + Tex 1 <<1 <<1

(3)
RGB 60 2.50 150

Bounding Box 60 <<1 <<1

(4)
RGB 60 2.50 150

Semantic Mask 60 0.32 20

(5)
RGB + Depth 60 3.83 230

Occlusion Mask 60 0.32 20

(6)
Masks + Pose 60 0.32 20

HD Frame 60 2.50 150
Table 1: Update rates and, input (green) and output (blue)

bitrates for a set of Augmented Reality algorithms: (1)
SLAM, (2) 3D Reconstruction, (3) Object Detection, (4)

Semantic Understanding, (5) Dynamic Occlusion, (6) AR
Rendering

achieve heavier computations, only some of the mentioned
algorithms need to be offloaded. We analyze the offloading
of two different demanding algorithms separately: object
detection and semantic segmentation (use case B) and
occlusion handling (use case C), as they are crucial AR
computationally intensive algorithms. The red dash lines in
Fig. 2 represent which algorithms are offloaded in each use
case. Notice that the throughput values are not the mean
values but the peak throughput values that the network
needs to supply during the frame transmission time.

Use Case A. Full Offloading

In this first use case we the full AR processing stack to be
offloaded from the device. In this setup the uplink stream is
expected to include all the sensor data. On the downlink side,
the system is transmitting the rendered scene back to the
device. The estimated mean uplink rate for this first use case
is between 150 and 230 Mbps for a device running at 60 FPS.
On the downlink side, we estimate the transmission to
require 2.5 Mbit per frame, as the transmitted data
corresponds to the high definition rendered frame. In Fig. 3
we can observe the estimated pairs of round-trip latencies
and uplink and downlink peak throughput optimal values
which satisfy the 16.6 ms of total update time for different
AR processing times. The depicted latency corresponds to
the total roundtrip latency, including any latency added by
the entire network stack. We can observe that for AR
processing times between 6 and 8 ms, the estimated
roundtrip latencies are 4 ms and above. Within these bounds,
the required peak throughput values lay around 1.3 Gbps on
the downlink side and 1.2 on the uplink.

Use Case B: Object Detection and Segmentation

In this case, the only offloaded process is the object
detection and segmentation algorithm. The uplink stream
corresponds to the RGB and depth feeds, while the downlink
only includes the single-channel segmentation mask. This
setup requires uplink and downlink rates of around 2.5 Mbit
and 0.33 Mbit per frame respectively. To analyze the current

use case, we choose the same AR processing times span as
in the previous example. As expected, we can observe in Fig.
3 how the downlink peak throughput requirements
considerably drop below 0.4 Gbps as the downlink data
steam is slimmer than in the previous use case. On the uplink
side, the required peak throughput remains high, with
estimated values below 1.2 Gbps. The estimated roundtrip
latency is higher than 5 ms for AR processing times below 8
ms.

Use Case C: Occlusion Handling Offloading

Occlusion handling algorithms require at least the depth and
RGB frames to be constantly transmitted. Besides, some
state-of-the-art algorithms use the output from the 3D
reconstruction and hand tracking algorithms, which in this
case are sent from the device. Consequently, we estimate
the required input to weight 4.17 Mbit per frame while the
output is lighter: 0.33 Mbit per frame from the high-
resolution occluding mask. We can observe in Fig. 3 how the
estimated peak throughput and round-trip latency
requirements slightly increase compared to the previous use
case. However, real-time occlusion is a hard and unsolved
problem which we can expect to require higher AR processing
times. In that case, the required round-trip latency might
drop below 4 ms with uplink peak throughput values above
1.4 Gbps.

5G RAN Configuration
To fulfil the above detailed requirements, we propose an
initial 5G RAN configuration which can lead to a successful AR
offloading scheme. In general, AR offloading demands tight
peak throughput requirements on the uplink side, with values
above 1 Gbps. On the downlink side, the required peak
throughput can reach similar values. Finally, the required
roundtrip network latency might decrease to values below 4
ms if we are constrained to hardware providing AR processing
times above 8 ms. These requirements demand a very
specific and well-designed network configuration. The
required roundtrip latencies are extremely hard to achieve
for several reasons. Current RAN are very complex systems
with very different processes which add extra latency to the
transmission. First, low latency demanding processes must
run as close as possible to the gNB, avoiding any backhauling
connectivity if possible. Consequently, the use of well-
equipped MEC systems is crucial. There are other potential
sources of latency such as the HARQ process. This
acknowledgement-based error control tool is a key element
of current wireless networks. However, it can induce high
packet transmission latencies if many retransmissions are
required. To avoid this scenario, the modulation and coding
scheme (MCS) selection must be well aligned with the current
network conditions. Incorrectly selected MCS might produce
high error rates and, consequently, higher latencies and peak
throughput requirements.

Consequently, the scheduling algorithm must be designed to
prioritize the AR user. This prioritization is crucial both to
achieve high peak throughput and low latency
communication. Packets corresponding to the prioritized
user should be allocated as soon as they are ready, along
with any necessary packet retransmission. Besides, the TDD
scheme should be carefully selected. As there is a higher
demand on the uplink side, TDD slot configurations must
prioritize the uplink stream. According to the 3GPP TS 38.213
specification, TDD configurations 34 to 42 and 50 to 55

Figure 3: Set of optimal pairs of roundtrip latencies (𝑅𝑇𝑇 −

𝐿) and uplink and downlink peak throughputs (𝑇𝑈 and 𝑇𝐷) for

a set of given AR processing times for the 3 use cases

running at 60 Hz.

prioritize higher the uplink stream. Ideally, the slot
configuration should be dynamically selected depending on
the network status, connected users and scheduling
decisions, as described in the 3GPP TS 38.213 specification.

From the resource allocation side, it is key to select the
proper subcarrier spacing (or numerology) to ensure that the
network can provide the required data rates. According to
the 3GPP TS 38.306 specification, the estimated data rate
requirements can be sufficed using a subcarrier spacing of
120 KHz (numerology 3) and a bandwidth of 400 MHz. High
numerology also has positive impact on the latency, as they
correspond to shorter OFDM symbols.

Given the previous analysis and the tight estimated
requirements, we conclude that the throughput
requirements can be better covered on high frequency
bands: millimeter wave (mmW) along with MIMO and Carrier
Aggregation can reach bandwidths above 2 GHz according to
the 3GPP TS 38.101 specification, becoming a key enabler of
portable immersive AR. Besides, we would need to make use
of other crucial capacities of 5G, such as Non-Public Networks
(NPNs) which, as described in 3GPP TS 28.807, allow controlled
user prioritization and very specific scheduling schemes.

AR offloading may require heavy peaks of upstream
throughput with low latency. AR traffic should travel through
a specific network slice where RAN resources are properly
reserved and QoS policies are established throughout the
network. This slice could coexist with other slices in the same
NPN with different requirements (e.g., mMTC for IoT devices
in a connected factory, and eMBB, mostly with downlink
capabilities, for general intranet/internet access).

Finally, as the offloading sets demanding hardware
requirements for the MEC, particularly in terms of GPU
resources, it is important to use dynamic resource allocation
and virtualization. The idle MEC capacity available in low-
usage hours (e.g. during the nights) may be dynamically
released to other tasks that can be performed offline and
scheduled for such hours (e.g. heavy data analytics).
Therefore, the AR slice should also be able to acquire and
release the computing resources whenever they are needed.

The proposed 5G network architecture for AR offloading, is
shown in Fig. 4. We can observe how the latency-constrained
algorithms, such as dynamic occlusion, semantic
segmentation, and object tracking, run on a MEC with no
required backhaul connection. Other non-real-time
processes, such as 3D reconstruction, can run on a further
server, which involves the backhaul link and the 5G core.

Conclusions
In this article we have analyzed the main technology and
network requirements for an immersive AR distributed
architecture and how 5G can become a key enabler of fully
immersive AR. We have described the current state of the art
of AR algorithms, along with their individual required inputs
and outputs, and hardware requirements. We have studied
the latency and peak throughput requirements necessary to
succesfully offload some of the described algorithms.
Furthermore, we have numerically exemplified how the
latency, throughput and AR processing times are related with
each other, proposing possible network configurations that
may guarantee them. The estimated required peak
throughput and latency values call for the use of 5G milimeter
wave spectrum along with massive MIMO, smart resource
allocation slicing, and NPNs. Besides, we have described the
importance of novel and optimized schedulling approaches
to fullfil the tight requirements for AR offloading. Finally, we
characterized the parameters and algorithm distribution of a
plausible 5G network architecture to enable the presented
distributed AR offloading implementation. As a main
conclusion we can foresee that the time has come for the
implementation of AR on feasible devices thanks to the
efficient architecture, throughput and latency enabled by 5G.

Acknowledgments
This work has received funding from the European Union (EU)
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie ETN TeamUp5G, grant agreement
No. 813391.

References

[1] M. S. Elbamby et al, "Toward Low-Latency and Ultra-
Reliable Virtual Reality", in IEEE Network, vol. 32, no. 2, pp. 78-
84, March-April 2018.

[2] H. Zhao et al. “ICNet for Real-Time Semantic
Segmentation on High-Resolution Images”, ECCV, 2018

[3] A. Dai et al. “BundleFusion: Real-Time Globally Consistent
3D Reconstruction Using On-the-Fly Surface Reintegration”.
ACM ToG. 36, 3, Article 24 (May 2017), 18 pages.

[4] F. Zheng et al., "Minimizing latency for augmented reality
displays: Frames considered harmful" 2014 IEEE ISMAR,
Munich, 2014, pp. 195-200.

[5] Y. Siriwardhana, et al., "A Survey on Mobile Augmented
Reality With 5G Mobile Edge Computing: Architectures,

Figure 4: 5G RAN proposed architecture.

Applications, and Technical Aspects," in IEEE Communications
Surveys & Tutorials, vol. 23, no. 2, pp. 1160-1192, 2021

[6] Hololens 2—Overview, Features, And Specs | Microsoft
Hololens. [online] Available at:
https://www.microsoft.com/en-us/hololens/hardware,
accessed Dec. 13, 2021

[7] Mary Potter et al. “Detecting meaning in RSVP at 13 ms
per picture”. Attention, perception & psychophysics, Springer
(2013).

[8] J. Delmerico and D. Scaramuzza, "A Benchmark
Comparison of Monocular Visual-Inertial Odometry
Algorithms for Flying Robots" 2018 IEEE ICRA.

[9] Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM2: an
Open-Source SLAM System for Monocular, Stereo and RGB-
D Cameras”. IEEE Transactions on Robotics, vol. 33, no. 5, pp.
1255-1262, 2017

[10] Dai, Angela et al. “BundleFusion: Real-Time Globally
Consistent 3D Reconstruction Using On-the-Fly Surface
Reintegration” 2016 ACM ToG

[11] Jonathan Pedoeem and Rachel Huang, “YOLO-LITE: A
Real-Time Object Detection Algorithm Optimized for Non-
GPU Computers”, arXiv, 2018

[12] Anna Katharina Hebborn et al., “Occlusion Matting:
Realistic Occlusion Handling for Augmented Reality
Applications”, IEEE ISMAR 2017.

[13] G. K. Wallace, "The JPEG still picture compression
standard," in IEEE Transactions on Consumer Electronics, vol.
38, no. 1, pp. xviii-xxxiv, Feb. 1992

[14] E. Gonzalez-Sosa, et al., "Enhanced Self-Perception in
Mixed Reality: Egocentric Arm Segmentation and Database
With Automatic Labeling," in IEEE Access, vol. 8, pp. 146887-
146900, 2020

[15d] Luyang Liu, Hongyu Li, and Marco Gruteser, “Edge
Assisted Real-time Object Detection for Mobile Augmented
Reality”, ACM MobiCon, New York, NY, USA, Article 25, 1–16,
2019

Biographies

Diego González Morín (diego.gonzalez_morin@nokia-bell-
labs.com) is a Ph.D student at Nokia Bell Labs Spain, enrolled
with Universidad Carlos III de Madrid, Spain. He received his
B.Sc. and M.Sc. in Industrial Engineering from Universidad
Politécnica de Madrid in 2015 and 2018 respectively. In 2018,
he received his M.Sc. in Systems, Control and Robotics from
Kunliga Tekniska Högskolan (KTH) in Stockholm, Sweden. After
receving his M.Sc. degrees, he joined Ericsson Research’s
Devices Technologies group as a researcher, where his
research interest focused on Augmented Reality
technologies, field in which he holds 3 patents. From august
2019, he joined Nokia Bell Labs as a Ph.D student. He is
currently pursuing his Ph.D. focused on the application of
ultra-dense networks for the implementation of distributed
media rendering.

Pablo Pérez received the Telecommunication Engineering
degree (integrated BSc-MS) in 2004 and the Ph.D. degree in
Telecommunication Engineering in 2013 (Doctoral Graduation
Award), both from Universidad Politécnica de Madrid (UPM),
Madrid, Spain. From 2004 to 2006 he was a Research
Engineer in the Digital Platforms Television in Telefónica I+D
and, from 2006 to 2017, he has worked in the R&D

department of the video business unit in Alcatel-Lucent (later
acquired by Nokia), serving as technical lead of several video
delivery products. Since 2017, he is Senior Researcher in the
Distributed Reality Solutions department at Nokia Bell Labs.
His research interests include multimedia quality of
experience, video transport networks, and immersive
communication systems.

Ana Garcia Armada (S’96–A’98–M’00–SM’08) is a Professor at
University Carlos III of Madrid, Spain. She has published
approximately 150 referred papers and she holds four
patents. She serves on the editorial board of IEEE Trans. on
Communications and IEEE Open Journal of the
Communications Society. She has served on the TPC of more
than 50 conferences, and she has been part of many
organizing committees. She has received several awards
from University Carlos III of Madrid, including an excellent
young researcher award and an award to best practices in
teaching. She was awarded the third place Bell Labs Prize
2014 for shaping the future of information and
communications technology. She received the outstanding
service award from the IEEE ComSoc Signal Processing for
Communications & Computing Technical Committee
(formerly SPCE). Her research mainly focuses on signal
processing applied to wireless communications.

https://www.microsoft.com/en-us/hololens/hardware
mailto:diego.gonzalez_morin@nokia-bell-labs.com
mailto:diego.gonzalez_morin@nokia-bell-labs.com

	portadilla_postprint_IEEE
	González Morín, D.; Pérez, P.; García Armada, A. Toward the distributed implementation of immersive augmented reality architectures on 5G networks, in IEEE Communications Magazine, vol. 60, no. 2, Feb. 2022, pp. 46-52
	DOI: 10.1109/MCOM.001.2100225

	Toward the Distributed Implementation - Armada 2022.pdf

