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Toward the Distributed Implementation of Immersive 

Augmented Reality Architectures on 5G Networks 

Diego González Morín, Pablo Pérez and Ana García Armada 

Abstract 

Augmented Reality (AR) has been lately presented as one of 
the key technology fields in which 5G networks can become 
a disruptive tool, rising interest from both industry and 
academia. The main goal of this article is to extend the 
current state of the art of distributed AR studies and 
implementations by extracting the main AR algorithms 
offloading requirements individually. This extension is further 
achieved by depicting the data flow between these 
algorithms and their hardware requirements. From the 
obtained results, we estimate a preliminary set of network 
Key Performance Indicators (KPIs) for a subset of three 
examples of distributed AR implementations highlighting the 
necessity of 5G technologies and their ecosystem to unveil 
the full potential of AR. Finally, and based on these KPIs, we 
propose a set of 5G configuration parameters for a 
successful distributed AR implementation. As most of the 
described algorithms are also used in VR applications, our 
contributions can facilitate future distributed 
implementations of both AR and VR applications.  

Introduction 
The improvement of Augmented Reality (AR) and Virtual 
Reality (VR) technologies has enabled the proposition of novel 
use cases which entail a new manner of interacting with the 
real world and with each other. While VR aims to allow the 
user to fully immerse in a virtual scenario AR targets to blend 
the real scenario with overlaid virtual content, greatly 
enhancing the user experience. However, there are still 
several technological constraints, such as limited computing 
power or battery life, which hinder AR and VR applications to 
reach their full potential. The fifth generation of mobile 
telecommunication networks (5G) includes a set of three 
services: enhanced mobile broadband (eMBB), ultra-reliable 
low-latency communications (URLLC), and massive machine-
type communications (mMTC). Both eMBB and URLLC 5G 
services match AR and VR applications’ extremely high 
communication data rate requirements under demanding 
low latency constraints. From the resource allocation 
perspective, both eMBB and URLLC are competing services 
which consume resources from each other. Consequently, 
smart network designs, including multi-access edge 
computing (MEC), are required for immersive and enhanced 
AR/VR experiences.  

AR and VR network requirements are mostly use-case or 
application dependent. There are plenty of research studies 
[1] of 5G-based wireless VR implementations and
architectures, which commonly focus on the high-quality and
low-latency downlink video-stream. However, it is more
seldom to find research avenues focused on distributed AR
implementations on 5G networks.

The future of AR aims to create an enhanced reality which 
will reveal new ways of human to human interaction, learning 
or entertaining. In industry, for instance, AR devices could 
display on-site real-time instructions to an operator, or 
automatically detect safety failures or incorrect procedures. 
On the social side, AR can add an extra dimension to the 
current remote human communications: in realistic 3D 
avatar-based real-time communication users would be able 
to simultaneously interact with virtual objects or, as a longer-
term goal, with each other, demolishing the distance barriers 
in human communication. 

AR applications should not only properly place the virtual 
content but allow both the user and the real scenario to 
interact with it. This requires the real environment to be 
analyzed as accurately as possible and in real-time, requiring 
multiple heavy duty algorithms, such as semantic 
segmentation and 3D reconstruction, to concurrently run in 
real-time. Even though there are some real-time state-of-
the-art implementations of these processes [2][3], they 
require modern hardware which is usually not portable and 
energy consuming. Besides, the AR content should be 
rendered with a motion to photon delay below 15 ms [4], 
deadline to which most of the previously mentioned 
processes need to comply. Even more constraint is the case 
in which the user needs to interact with a virtual object: the 
virtual object’s reaction and haptic feedback latencies must 
be smaller than 10 ms [4].  

These tight processing deadlines along with very demanding 
hardware requirements justify the idea of offloading some or 
all these algorithms from the device. 5G eMBB and URLLC 
services theoretically allow to upload the data streams from 
the different sensors and receive the processed results while 
satisfying the tight real-time requirements. To that end, the 
most latency-critical processes should be handled as close to 
the device as possible: MEC can be considered a pivotal piece 
in the distributed implementation of AR applications. There 
are some studies [5] which thoroughly analyze the distributed 
implementation of AR, proposing several offloading 
architectures and some use case-dependent requirements. 
While the proposed use cases’ requirements and their link to 
proposed 5G solutions and architectures are well described, 
[5] lacks a study on how and where the individual algorithms
should run, and what are the individual offloading
requirements. Each individual AR application requires
different combinations of AR algorithms. Knowing the
specific offloading requirements for each algorithm is a key
factor for an optimal architecture design: different offloading
combinations can be deployed for the same use case or
application depending on the available network resources.
Consequently, our work can be considered as an extension
of the current state of the art with the following
contributions:



- A thorough and in-depth analysis of the main AR
algorithms and the data flow between these algorithms,
pinpointing which of them are robust candidates to be
offloaded from the AR devices and under which network
conditions.

- A set of latency and throughput requirements for
different offloading scenarios.

- Aligned with the architectures described in [5], we
propose an AR offloading architecture for a set of
representative algorithms.

- An enabling network configuration tightly linked with the
standards which satisfy the offloading requirements.

Our final goal is to facilitate distributed AR deployments by 
characterizing which algorithms should run where and what 
are their offloading requirements given an offloading 
architecture. Besides, the individual analysis of these 
algorithms can be useful for successful offloading in other 
fields such VR and autonomous driving. An example 
architecture is depicted in Fig. 1, which represents the 
analyzed algorithms and general network elements.  

A Breakdown of Augmented Reality 
Algorithms 

Any complex AR application involves numerous algorithms 
and processing blocks which interact with each other. To 
study the challenges and requirements of AR offloading we 
need to understand each process individually and the data 
flow between them.  

Sensor Capture and Preprocessing 

In every AR application data is periodically gathered from the 
different sensors and shared between the processing blocks. 
Cutting edge AR devices include several sensors: multiple RGB 
cameras, one or more depth cameras, microphones, etc. The 
recently released Hololens 2 [6] is a perfect example of such 
sensor capture complexity. Running at 60 Hz, the Hololens 2 
is producing around 500 Mbps of raw sensor data.  

The stability of the virtual content placement is directly 
affected by the Frames Per Second (FPS) reached by the 
device, as humans can perceive visual changes as fast as 13 

ms [7]. Hence, the AR device update time should be as close 
as possible to this reference threshold. In practice, it is 
considered that 60 FPS is the minimum update frequency to 
have a tolerable motion-to-photon latency, and current 
devices typically work at such frame rate. Any AR offloading 
attempt must ensure a frame update time of less than 16.6 
ms.  

Simultaneous Localization and Mapping 

One key feature of any AR device is the capability of 
accurately estimating its own pose in real-time using the 
available sensor data. This pose is used to anchor the virtual 
content to the real scenario, so that the device movement 
does not affect the pose and behavior of the virtual objects. 
This estimation is done using Simultaneous Localization and 
Mapping (SLAM) algorithms [8]. The minimum set of sensors 
required for a robust AR-targeted SLAM algorithm, is an RGB 
camera and an IMU. In some examples, the SLAM algorithm 
is also fed with the depth information, increasing the 
algorithm’s accuracy and robustness. On the other hand, the 
output bitrate could be neglected as it is only composed by 
some few dozens of floats for every processed frame.  

 In some cases, the SLAM algorithm output is used for 3D 
reconstruction, requiring the generated point cloud and 
RGB/depth key frames to be exported, considerably 
increasing the output bit rate. Offloading the SLAM process 
would require both the 5G eMBB and URLLC capabilities to 
fulfil the constraint update times.  

3D Reconstruction 

3D reconstruction is a crucial step for a successful immersive 
experience: the AR engine uses the 3D model of the world to 
realistically place and anchor the virtual content allowing 
realistic interactions with the real scenario. Besides, 3D 
reconstruction can be used to partially hide the virtual 
objects that are placed behind a real object in a process 
called AR occlusion. Incorrect AR occlusion handling might 
produce the virtual content to be perceived unrealistically, 
with inconsistent size and position.  

Furthermore, 3D reconstruction can be considered an 
extension of SLAM algorithms to an extent in which some 

        

           

        

           

             
             

        

           
           

           

         

                 

             

                                       

Figure 1: Simplified offloading architecture for a complex Augmented Reality application. 



SLAM algorithms simultaneously handle the pose tracking 
and the 3D updates along with the corresponding color 
textures. It is not efficient to continuously export the entire 
mesh, but only the sections which are modified. The 
offloading requirements are less restrictive as the generated 
mesh updates can be transmitted at a lower rate, 0.5-1 Hz, 
and higher latencies (below a second), allowing this process 
to be offloaded to a further server. Finally, the final 3D 
reconstruction could be stored on the device or a server after 
each session and be reloaded in a posterior session. 

Semantic Understanding 

Semantic understanding algorithms obtain semantic 
information from the real scene, such as which real objects 
are in the scene along with their shape, pose, and size. In our 
analysis, we focus in three of the most important semantic 
understanding algorithms: object detection, hand tracking, 
and semantic segmentation.  

Object detection is a very populated research topic for its 
importance on uncountable fields such as autonomous 
driving or AR. Consequently, its state of the art has improved 
rapidly, reaching real time performance on standalone 
devices with limited computing power such as smartphones. 
However, the hardware usage is very high while achieving 
lower detection accuracies than in GPU-enabled computing 
systems.  

Hand tracking is a particular use case of object detection in 
which the user hands along with the individual fingers’ joints 
and their poses are tracked. It is a key step to allow seamless 
interactions between the user and the virtual objects and 
GUIs.  

Semantic segmentation can be understood as a natural 
extension of object detection algorithms: once the object is 
detected, its accurate shape and 2D position is extracted. 
This step can be used, for instance, to handle the occlusion 
of dynamic objects like the user’s hands. 

When these algorithms are used for real-time tasks, the 
latency requirements are given by the device update rate, as 
the estimated result is used to render the immediate next 
frame. The current research trend of semantic 
understanding is to study how to significantly decrease the 

size of these networks while preserving their accuracy. Two 
key examples of these shallow networks are the YOLO-Tiny 
which runs at 244Hz on a GPU, while YOLO-LITE reaches 20 
FPS running on a CPU [11]. While in the object detection and 
hand tracking cases the output bit rate can be neglected, the 
semantic segmentation’s output consists of a pixel 
classification mask per frame considerably increasing the 
output bit rate. Offloading these algorithms requires the 
combination of intensive computing resources and low 
latency data transmission, demanding a near MEC with the 
URLLC service to offload this process from the device.   

Real-time Dynamic Occlusion 

Dynamic occlusion handling is a tough task which is   still 
considered an open AR problem. If the virtual content is not 
properly occluded behind a moving object, for instance the 
user’s hands, it would produce a wrong perception of its 
position within the real world, ruining the experience. It 
requires a perfect segmentation of the moving object, with 
very constrained processing times. The input is usually 
composed by the RGB and depth. The output consists of just 
the occlusion mask which can be considered a high resolution 
grayscale feed. Some state of the art examples can run in 
real time, as in [12], reaching 60 Hz on a high-end GPU.  

These demanding hardware and processing requirements 
impose the usage of a dedicated GPU-enabled MEC. 
Furthermore, both the URLCC and eMBB services are 
necessary to satisfy the throughput and latency 
requirements. Real-time dynamic occlusion is a perfect 
example of a demanding machine learning algorithm whose 
analysis can be later used as a reference for offloading other 
complex AR algorithms. 

AR Engine and Frame Rendering 

The AR engine simulates the physics of the virtual content 
and renders a new frame accordingly. Contrary to VR, in AR 
this step is not extremely demanding, allowing the devices to 
be completely wireless. However, targeting to decrease the 
size and weight of the device, it is natural to consider the 
possibility of offloading these steps. The AR engine is fed with 
all the processed data in all the previously described  

                        

  
   
  
 
  
  
 
  

 
  
 

 
  
   

  
  
 
  
 
  

 
  
 

                 

              

  
   

  
  

  
  
 
 
  
 

 
  
   

  
  
  
  

 

                 

                        

  
   
  
 
  
  
 
  

 
  
 

 
  
   

  
  
 
  
 
  

 
  
 

                      

                        

  
   
  
 
  
  
 
  

 
  
 

 
  
   

  
  
  
  

 

                  

                       

  
   

  
  
 
  
 
  

 
  
 

 
  
   
  
  
  
  

 
  
 

            

                        

  
   
  
 
  
  
 
  

 
  
 

 
  
   

  
  
  
  

 

                         

                        

  
   
  
 
  
  
 
  

 
  
 

 
  
   

  
  
  
  

 

                       

           

         

              

              

          

          

          

Figure 2: Simplified AR architecture including estimated processing times and required input and output data 

rates.



 

 

algorithms, while the output is the high definition rendered 
frame to be displayed  

The latency requirements are severe as no frame can be 
skipped or received with a delay greater than a frame’s 
period, demanding the URLLC service to ensure an extremely 
low latency and reliable connectivity between a nearby MEC 
and the device.  

 

AR Algorithms Summary 

From the AR breakdown, we extracted a set of input and 
output data rates and latency requirements of each of the 
described algorithms, gathered in Table 1. To estimate these 
values, we use the Hololens 2 [6] as the reference device, with 
RGB and depth resolutions of 1920x1080 and 720x720 
respectively and a refresh rate of 60 Hz. As indicated in [13] 
we assumed the individual frames are compressed in JPEG 
with a quality corresponding to a pixel weight of 1.2 bit, from 
which we estimate the values summarized in Table 1. Besides, 
Fig. 2 depicts the described algorithms, along with their input 
and output frame sizes and processing times. 

Hardware Requirements 
The state of the art of the described algorithms involves a 
wide range of different approaches, demanding the 
hardware requirements to be specific for each individual 
solution. SLAM algorithms [8] do not need high-end 
hardware to run at rates higher than 20 Hz. On the contrary, 
even in optimized hand segmentation algorithms [14] the 
processing hardware must be equipped with a dual high-end 
GPU with at least 12 GB of memory and 3,584 cores for 
inference times below 30 ms.  

Network Requirements for AR Offloading 
In this section we describe what are the actual estimated 
network requirements to offload some or all of the 
aforementioned processes while ensuring a satisfactory 
immersive experience. For our analysis, we simplify the ideal 
transmission time of a single frame, considering that it is only 

affected by the amount of data to be sent divided by the 
effective throughput. We also define the total transmission 
latency as the aggregation of the ideal transmission time and 
the total transmission latency. This latency includes not only 
the propagation latency, but other network-specific latencies 
such as the ones associated with the hybrid automatic repeat 
request (HARQ) process, among others. 

In AR offloading, the total update time is the aggregation of 
the sensor feed (uplink) transmission time, data processing, 
retrieved results (downlink) transmission time and frame 
display time. The summatory of the algorithms processing, 
AR rendering and display times is what we refer to as AR 
processing time. Finding a general and unique value of the 
AR processing time is extremely hard as it does not only 
depend on the algorithms that are implemented, but also on 
the machine capabilities, or available hardware resources. For 
this reason, we present some illustrative results of a simple 
optimization problem to find the less restrictive roundtrip 
transmission latency and uplink and downlink throughput 
requirements which ensure an update rate of 60 Hz given 
different possible AR processing times. The optimization 
problem has been solved using Python’s SciPy library with the 
Nelder-Mean algorithm. The goal is to present the most 
suitable pairs of peak throughput and latency for both the 
uplink and downlink streams given a range of AR processing 
times spanning from 1 ms to 14 ms.   

To obtain these values, we designed a straightforward reward 
function which favors low uplink and downlink throughputs, 
high round trip latencies, and total transmission times. It 
includes individual weights to fine-tune the influence of each 
of these parameters. To obtain bounded results we impose 
a set of constraints to the optimization solver. First, we 
constrain the total update time to be smaller than the 
update period (16.7 ms). Second, we limit the minimum 
roundtrip latency to be 1 ms, as it is the duration of a 
subframe according to 5G specifications. Finally, we constrain 
the maximum total peak throughput to be 10 Gbps.  

We consider that 5G networks are initially designed to use the 
Time Division Duplex (TDD). According to the 3GPP 38.213 
specification, the TDD configuration in 5G is very flexible, 
allowing tens of different slot configurations, which can be 
fixed or dynamically selected. The slot configuration 
determines which OFDM symbols are assigned to uplink or 
downlink within a slot. For extremely demanding applications, 
the proper selection of the slot configuration is crucial to 
satisfy the link requirements.  To simplify the estimation, we 
consider the number of slots reserved for downlink and 
uplink to be balanced in our optimization problem. In a later 
analysis of the results, we analyze how different 
configurations comply with the estimated latency and 
throughput requirements. For our analysis, we consider that 
no adaptive offloading technique [15] is used as we want to 
study the most restrictive case in which the environment is 
highly dynamic. In this case, all the captured frames are sent 
to the server. We use the estimated uplink and downlink 
frame sizes included in Table 1 for our analysis. 

For the sake of simplicity, we choose the 3 most 
representative AR offloading scenarios. In use case A, we 
analyze the full AR offloading scenario, which is necessary to 
enable ultra-light mobile AR devices with almost no 
computation capabilities. In the case in which the AR device 
includes a computationally powerful companion or can 

 Data 
Rate 
(Hz) 

Frame 
Size 

(Mbit) 

Bit Rate 
(Mbps) 

(1) 

RGB + IMU 60 2.50 150 
RGB + D + IMU 60 3.83 230 

Pose + RGB 20 2.50 50 
Pose + RGB + D 20 3.83 77 

(2) 
RGB + Pose 20 2.50 50 

RGB + Pose + D 20 3.83 77 
3D Mesh + Tex 1 <<1 <<1 

(3) 
RGB 60 2.50 150 

Bounding Box 60 <<1 <<1 

(4) 
RGB 60 2.50 150 

Semantic Mask 60 0.32 20 

(5) 
RGB + Depth 60 3.83 230 

Occlusion Mask 60 0.32 20 

(6) 
Masks + Pose 60 0.32 20 

HD Frame 60 2.50 150 
Table 1: Update rates and, input (green) and output (blue) 

bitrates for a set of Augmented Reality algorithms: (1) 
SLAM, (2) 3D Reconstruction, (3) Object Detection, (4) 

Semantic Understanding, (5) Dynamic Occlusion, (6) AR 
Rendering 



 

 

achieve heavier computations, only some of the mentioned 
algorithms need to be offloaded. We analyze the offloading 
of two different demanding algorithms separately: object 
detection and semantic segmentation (use case B) and 
occlusion handling (use case C), as they are crucial AR 
computationally intensive algorithms. The red dash lines in 
Fig. 2 represent which algorithms are offloaded in each use 
case. Notice that the throughput values are not the mean 
values but the peak throughput values that the network 
needs to supply during the frame transmission time. 

Use Case A. Full Offloading 

In this first use case we the full AR processing stack to be 
offloaded from the device. In this setup the uplink stream is 
expected to include all the sensor data. On the downlink side, 
the system is transmitting the rendered scene back to the 
device. The estimated mean uplink rate for this first use case 
is between 150 and 230 Mbps for a device running at 60 FPS. 
On the downlink side, we estimate the transmission to 
require 2.5 Mbit per frame, as the transmitted data 
corresponds to the high definition rendered frame. In Fig. 3 
we can observe the estimated pairs of round-trip latencies 
and uplink and downlink peak throughput optimal values 
which satisfy the 16.6 ms of total update time for different 
AR processing times. The depicted latency corresponds to 
the total roundtrip latency, including any latency added by 
the entire network stack. We can observe that for AR 
processing times between 6 and 8 ms, the estimated 
roundtrip latencies are 4 ms and above. Within these bounds, 
the required peak throughput values lay around 1.3 Gbps on 
the downlink side and 1.2 on the uplink.  

Use Case B: Object Detection and Segmentation 

In this case, the only offloaded process is the object 
detection and segmentation algorithm. The uplink stream 
corresponds to the RGB and depth feeds, while the downlink 
only includes the single-channel segmentation mask. This 
setup requires uplink and downlink rates of around 2.5 Mbit 
and 0.33 Mbit per frame respectively. To analyze the current 

use case, we choose the same AR processing times span as 
in the previous example. As expected, we can observe in Fig. 
3 how the downlink peak throughput requirements 
considerably drop below 0.4 Gbps as the downlink data 
steam is slimmer than in the previous use case. On the uplink 
side, the required peak throughput remains high, with 
estimated values below 1.2 Gbps. The estimated roundtrip 
latency is higher than 5 ms for AR processing times below 8 
ms.  

Use Case C: Occlusion Handling Offloading 

Occlusion handling algorithms require at least the depth and 
RGB frames to be constantly transmitted. Besides, some 
state-of-the-art algorithms use the output from the 3D 
reconstruction and hand tracking algorithms, which in this 
case are sent from the device. Consequently, we estimate 
the required input to weight 4.17 Mbit per frame while the 
output is lighter: 0.33 Mbit per frame from the high-
resolution occluding mask. We can observe in Fig. 3 how the 
estimated peak throughput and round-trip latency 
requirements slightly increase compared to the previous use 
case. However, real-time occlusion is a hard and unsolved 
problem which we can expect to require higher AR processing 
times. In that case, the required round-trip latency might 
drop below 4 ms with uplink peak throughput values above 
1.4 Gbps.  

5G RAN Configuration 
To fulfil the above detailed requirements, we propose an 
initial 5G RAN configuration which can lead to a successful AR 
offloading scheme. In general, AR offloading demands tight 
peak throughput requirements on the uplink side, with values 
above 1 Gbps. On the downlink side, the required peak 
throughput can reach similar values. Finally, the required 
roundtrip network latency might decrease to values below 4 
ms if we are constrained to hardware providing AR processing 
times above 8 ms. These requirements demand a very 
specific and well-designed network configuration. The 
required roundtrip latencies are extremely hard to achieve 
for several reasons. Current RAN are very complex systems 
with very different processes which add extra latency to the 
transmission. First, low latency demanding processes must 
run as close as possible to the gNB, avoiding any backhauling 
connectivity if possible. Consequently, the use of well-
equipped MEC systems is crucial. There are other potential 
sources of latency such as the HARQ process. This 
acknowledgement-based error control tool is a key element 
of current wireless networks. However, it can induce high 
packet transmission latencies if many retransmissions are 
required. To avoid this scenario, the modulation and coding 
scheme (MCS) selection must be well aligned with the current 
network conditions. Incorrectly selected MCS might produce 
high error rates and, consequently, higher latencies and peak 
throughput requirements.  

Consequently, the scheduling algorithm must be designed to 
prioritize the AR user. This prioritization is crucial both to 
achieve high peak throughput and low latency 
communication. Packets corresponding to the prioritized 
user should be allocated as soon as they are ready, along 
with any necessary packet retransmission. Besides, the TDD 
scheme should be carefully selected. As there is a higher 
demand on the uplink side, TDD slot configurations must 
prioritize the uplink stream. According to the 3GPP TS 38.213 
specification, TDD configurations 34 to 42 and 50 to 55 

Figure 3: Set of optimal pairs of roundtrip latencies (𝑅𝑇𝑇 −

𝐿) and uplink and downlink peak throughputs (𝑇𝑈 and 𝑇𝐷) for 

a set of given AR processing times for the 3 use cases 

running at 60 Hz.  



 

 

prioritize higher the uplink stream. Ideally, the slot 
configuration should be dynamically selected depending on 
the network status, connected users and scheduling 
decisions, as described in the 3GPP TS 38.213 specification. 

From the resource allocation side, it is key to select the 
proper subcarrier spacing (or numerology) to ensure that the 
network can provide the required data rates. According to 
the 3GPP TS 38.306 specification, the estimated data rate 
requirements can be sufficed using a subcarrier spacing of 
120 KHz (numerology 3) and a bandwidth of 400 MHz. High 
numerology also has positive impact on the latency, as they 
correspond to shorter OFDM symbols.  

Given the previous analysis and the tight estimated 
requirements, we conclude that the throughput 
requirements can be better covered on high frequency 
bands: millimeter wave (mmW) along with MIMO and Carrier 
Aggregation can reach bandwidths above 2 GHz according to 
the 3GPP TS 38.101 specification, becoming a key enabler of 
portable immersive AR. Besides, we would need to make use 
of other crucial capacities of 5G, such as Non-Public Networks 
(NPNs) which, as described in 3GPP TS 28.807, allow controlled 
user prioritization and very specific scheduling schemes. 

AR offloading may require heavy peaks of upstream 
throughput with low latency. AR traffic should travel through 
a specific network slice where RAN resources are properly 
reserved and QoS policies are established throughout the 
network. This slice could coexist with other slices in the same 
NPN with different requirements (e.g., mMTC for IoT devices 
in a connected factory, and eMBB, mostly with downlink 
capabilities, for general intranet/internet access). 

Finally, as the offloading sets demanding hardware 
requirements for the MEC, particularly in terms of GPU 
resources, it is important to use dynamic resource allocation 
and virtualization. The idle MEC capacity available in low-
usage hours (e.g. during the nights) may be dynamically 
released to other tasks that can be performed offline and 
scheduled for such hours (e.g. heavy data analytics). 
Therefore, the AR slice should also be able to acquire and 
release the computing resources whenever they are needed. 

The proposed 5G network architecture for AR offloading, is 
shown in Fig. 4. We can observe how the latency-constrained 
algorithms, such as dynamic occlusion, semantic 
segmentation, and object tracking, run on a MEC with no 
required backhaul connection. Other non-real-time 
processes, such as 3D reconstruction, can run on a further 
server, which involves the backhaul link and the 5G core.  

Conclusions 
In this article we have analyzed the main technology and 
network requirements for an immersive AR distributed 
architecture and how 5G can become a key enabler of fully 
immersive AR. We have described the current state of the art 
of AR algorithms, along with their individual required inputs 
and outputs, and hardware requirements. We have studied 
the latency and peak throughput requirements necessary to 
succesfully offload some of the described algorithms. 
Furthermore, we have numerically exemplified how the 
latency, throughput and AR processing times are related with 
each other, proposing possible network configurations that 
may guarantee them. The estimated required peak 
throughput and latency values call for the use of 5G milimeter 
wave spectrum along with massive MIMO, smart resource 
allocation slicing, and NPNs. Besides, we have described the 
importance of novel and optimized schedulling approaches 
to fullfil the tight requirements for AR offloading. Finally, we 
characterized the parameters and algorithm distribution of a 
plausible 5G network architecture to enable the presented 
distributed AR offloading implementation. As a main 
conclusion we can foresee that the time has come for the 
implementation of AR on feasible devices thanks to the 
efficient architecture, throughput and latency enabled by 5G. 
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