
This is a postprint version of the following published document:

Moreno, V., Génova, G., Parra, E. et al. Application of
machine learning techniques to the flexible assessment
and improvement of requirements quality. Software
Qual J 28, 1645–1674 (2020).

DOI: 10.1007/s11219-020-09511-4

© 2020, Springer Science Business Media, LLC, part of Springer
Nature

Universidad
uc3m Carlos Ill

de Madrid
0 -Archivo

https://doi.org/10.1007/s11219-020-09511-4

1

Application of machine learning techniques to the flexible

assessment and improvement of requirements quality

Valentín Moreno, Gonzalo Génova (ORCID 0000-0003-0299-286X)*, Eugenio Parra, Anabel Fraga
vmpelayo@inf.uc3m.es, ggenova@inf.uc3m.es, eparra@kr.inf.uc3m.es, afraga@inf.uc3m.es
Knowledge Reuse Group, Departamento de Informática, Universidad Carlos III de Madrid
Avda. Universidad 30, 28911 Leganés (Madrid), Spain
* Corresponding author, ggenova@inf.uc3m.es, +34 91 624 8846

Keywords: requirements quality; machine learning; automatic classification;
automatic improvement; experts’ judgment; flexible assessment.

Abstract

Context: It is already common to compute quantitative metrics of requirements to
assess their quality. However, the risk is to build assessment methods and tools that are
both arbitrary and rigid in the parameterization and combination of metrics.
Specifically, we show that a linear combination of metrics is insufficient to adequately
compute a global measure of quality.

Objective: In this work we propose to develop a flexible method to assess and
improve the quality of requirements that can be adapted to different contexts, projects,
organizations and quality standards, with a high degree of automation.

Method: The domain experts contribute with an initial set of requirements that they
have classified according to their quality, and we extract their quality metrics. We then
use machine learning techniques to emulate the implicit expert’s quality function. We
provide also a procedure to suggest improvements in bad requirements.

Results: We compare the obtained rule-based classifiers with different machine
learning algorithms, obtaining measurements of effectiveness around 85%. We show as
well the appearance of the generated rules and how to interpret them.

Conclusion. The method is tailorable to different contexts, different styles to write
requirements, and different demands in quality. The whole process of inferring and
applying the quality rules adapted to each organization is highly automated.

Acknowledgments

This research has received funding from the CRYSTAL project – Critical System
Engineering Acceleration (European Union’s Seventh Framework Program FP7/2007-
2013, ARTEMIS Joint Undertaking grant agreement n° 332830); and from the AMASS
project – Architecture-driven, Multi-concern and Seamless Assurance and Certification
of Cyber-Physical Systems (H2020-ECSEL grant agreement nº 692474; Spain’s
MINECO ref. PCIN-2015-262). This research would not have been possible without the
support and help of Gauthier Fanmuy, expert in Requirements Engineering and Model-

2

Based Systems Engineering, member of INCOSE (International Council on Systems
Engineering) and AFIS (Association Française d'Ingénierie Système).

1. Introduction: requirements quality

Requirements Engineering is a “systematic process of developing requirements
through an iterative co-operative process of analyzing the problem, documenting the
resulting observations in a variety of representation formats, and checking the accuracy
of the understanding gained” [Loucopoulos & Karakostas 1985]. Requirements
engineers are the professional specialists who elicit and write the requirements, and as
such they are often called also ‘authors of requirements’ or even ‘requirements authors’
[INCOSE 2012, Terzakis & Gregory 2016, Gregory & Terzakis 2017]. Organizations
developing software for critical sectors like aerospace, automotive, and medical systems
need to apply process requirements coming from different sources: industrial standards,
customer-provided requirements, and procedures from internal quality management
systems [Eito-Brun & Amescua 2017]. As it has been often pointed out [Brooks 1987,
The Standish Group 2015, IEEE Computer Society 2014], most of the defects in the
delivered software originate in a deficient requirements analysis, and they are generally
the most difficult and costly to repair [Fanmuy et al. 2011]. That is why it is of major
importance to provide this field with engineering discipline, particularly by means of
quality controls since the very beginning of the process. If we do not demand that the
requirements meet certain quality criteria, then it will be more difficult to search for
quality in later development phases.

Since the very beginning of quality measurement in requirements engineering
[Wilson et al. 1997], researchers have found that the need of communication among all
stakeholders requires that the privileged form to express requirements is natural
language, as opposed to formal languages that are more or less inaccessible, mainly to
clients. Therefore, the use of linguistic techniques and tools may perform a crucial role
in providing support for requirements analysis [Mich et al. 2004] and, in particular, in
order to obtain quality metrics. Besides, the large quantity of requirements in many
projects, as well as the different roles involved in their specification (users or clients,
analysts, designers, developers, testers, etc.), recommend the use of guides [Hooks
1993, Magee & Tripp 1997, Rosenberg & Linda 2001, Alexander & Stevens 2002, Turk
2006, Bøegh 2008] and standards [ESA 1995, IEEE 1998, ISO/IEC 2007, INCOSE
2012] to achieve high quality from the start.

In order to obtain quality metrics, we must first define what we understand as good
or bad quality of a requirement or set of requirements. In a previous work we have
distinguished between qualitative desirable properties of requirements, dependent on
subjective judgment, and quantitative measurable indicators, based on objective
characteristics of requirements [Génova et al. 2013]. We synthesized the different lists
of desirable properties that can be found in the literature in three hierarchical levels:

� First level: validability, verifiability and modifiability.
� Second level: completeness, consistency, understandability, unambiguity,

traceability and abstraction; or, more synthetically, CCC (completeness,
consistency, correctness).

� Third level: precision and atomicity.

 3

These properties depend on subjective judgment, which does not mean that they are
arbitrary, but that they are not easy to quantify. Therefore, we need to define a series of
measurable indicators that are related with the qualitative properties we wish to
evaluate. For example, we can use as an indicator the size of a requirement, measured
by the number of words in its description: the size indicator affects the desirable
properties of the requirement, particularly atomicity, and all the others through
atomicity. Equally, we can measure the number of imperative verbal forms, the number
of domain terms, the number of ambiguous expressions, and so on. In this work we
consider only metrics related to correctness of individual requirements, leaving global
properties of the set (i.e. consistency and completeness) for future research.

Summing up, we can compute a set of quantitative metrics of textual requirements,
and through them we can assess the quality of requirements. However, the risk of this
approach is to build assessment methods and tools that are both arbitrary in the
parameterization of metrics and rigid in the combination of metrics to evaluate the
different properties. This is why we propose in this work to develop a flexible

assessment method that can be adapted to different contexts, with a high degree of
automation. The method consists basically in the emulation of the experts’ judgment on
quality through artificial intelligence techniques: first, obtain the expert’s implicit
quality function through machine learning; and, second, apply this function to
automatically assess the quality of textual requirements.

Our approach to emulate the experts’ judgment, as explained later in detail, is based
on well-known machine learning techniques: we have a computer tool learn from a
previous human-made classification of requirements according to their quality.
Therefore, our work’s intent is not to improve machine learning techniques, but rather
to devise a novel application to the field of requirements quality assessment.

The rest of the paper is structured as follows. Section 2 reviews the related work on
automatic measurement and improvement of requirements quality. Section 3 describes
the research process we have followed for designing our solution approach. Section 4
justifies the need for the flexible assessment of requirements quality in different
contexts, where the experts’ judgment on quality is the best starting point to satisfy the
needs and peculiarities of each project and organization. Section 5 shows that the
regions of good and bad quality in the hyperspace of requirements metrics is not
adequately modeled through a linear combination of metrics, but rather demand a more
refined computation that could be solved with a versatile combination of rectangular
hyper regions. Section 6 explains those well-known machine learning techniques that
constitute the fundamentals of our method to build an automatic rule-based classifier
that solves the problem of computing the concrete intervals for each metric and the
combination of intervals of different metrics. Section 7 describes the initial data set
from which a concrete set of rules has been generated, as well as the experiments
performed to validate the rules, together with their results in effectiveness and
efficiency. Section 8 analyzes the appearance of the obtained rule-based classifiers, and
how to interpret the rules. Section 9 complements the flexible assessment of quality
with a procedure to suggest improvements in the requirements that are classified with
bad quality, providing a mathematical formulation of the resulting optimization
problem, and application examples. Sections 10 and 11 discuss the potential weaknesses
of our work, as well as the alleged generalizability of our approach. Finally, Section 12
summarizes our main contributions and the opportunities we envision for future
research.

 4

2. Related work

The literature on the definition of requirements quality is extensive. A recent
systematic literature review on quality criteria for requirements can be found in [Heck
& Zaidman 2018], where the authors summarize 28 different quality criteria for agile
requirements specifications and compare them with those from traditional requirements
engineering. Our work is based on our own previous systematization of quality criteria
in three hierarchical levels of qualitative desirable properties (see the Introduction) and
18 quantitative measurable indicators (metrics) shortly described in Appendix I. See an
extensive description of both criteria and metrics in [Génova et al. 2013] and [Parra et
al. 2015]. This hierarchical arrangement has been the ground for the implementation of
the Requirements Quality Analyzer (RQA) [Reuse Company 2016], which is the tool
we use to extract the requirements metrics that feed, first, the learning algorithms, and
second, the automatic rule-based classifier that assess the quality of new requirements.

Recent research on automation in requirements quality (still without artificial
intelligence techniques) has progressed in different directions. Some works have been
focused on the detection of ambiguities, inconsistencies and conflicts [Chantree 2006,
Popescu et al. 2008, Kiyavitskaya et al. 2008, De Sousa et al. 2010, Wang et al. 2013,
Sardinha et al. 2013, Ali et al. 2013, Aceituna et al. 2014]. Other works have developed
algorithmic methods to measure the quality of more structured requirements in the
shape of user stories [Lucassen et al. 2016]. There have been also projects aimed at the
classification of requirements by topic, in order to assist reviewers in the evaluation of
consistency and completeness of requirements [Ko et al. 2007, Ott 2013]. The detection
of forward references to not yet defined terms has also been used as a measure of both
individual quality of single requirements and global quality of requirements documents
[Siahaan & Umami 2011]. Similar use of textual patterns, even if not directly focused
on quality, has been applied to the classification of functional and non-functional
requirements [Cleland-Huang et al. 2006, Cleland-Huang et al. 2007, Hussain et al.
2008]. Other studies have developed quantitative methods to evaluate the quality of
requirements, with the goal of obtaining a prioritization of requirements that demand
improvement [Fabbrini et al. 2001, Bucchiarone et al. 2005, Berry et al. 2006, Kasser et
al. 2006, Otero et al. 2010, Génova et al. 2013, Thakurta 2013, Thitisathienkul &
Prompoon 2015]. In general, however, all these methods are not tailorable to different
contexts (see Section 4) or they are limited in the way they combine the different
metrics (see Section 5); therefore, we think our method is really novel in this respect.

Artificial intelligence techniques, and specifically machine learning algorithms to
emulate human judgment, have not been so extensively applied in this field. With a
similar goal, but purporting the use of different techniques, there was a proposal
(without implementation) to use neural networks and case-based reasoning to improve
the quality of requirements [Jani & Islam 2012]. More akin to our research is the
application of machine learning techniques to build a classifier that detects ambiguities
in textual requirements [Hussain et al. 2007], a very good work that, to our knowledge,
has had however no direct continuation; moreover, their focus was only on the
ambiguous expression of requirements, whilst ours considers many more aspects of
quality, such as the use of domain vocabulary, the size of requirements, the structure of
sentences, and so on. The assurance of testability in non-functional requirements
[Rashwan 2015] is another particular concern of requirements quality that has been

 5

targeted with machine learning techniques (in this case, employing support vector
machines).

Other works have applied machine learning to detect software defects under the
influential Orthogonal Defect Classification (ODC) framework, developed initially at
IBM for software defect classification and analysis [Huang et al. 2015]; this work is
indeed related to the quality of software, but not of textual requirements. Less related to
quality, but still using machine learning, is a research aimed at the identification and
annotation of requirements in user-generated content [Dollmann & Geierhos 2016].
Unsupervised pattern-based machine learning has also been used to determine
requirements clusters for optimal definition of software development sprints in the
context of agile software development [Belsis et al. 2014].

Search-Based Software Engineering [Harman & Jones 2001, Harman et al. 2012] is
very apt for the application of metaheuristic search techniques, such as genetic
algorithms, simulated annealing and machine learning, among others. It has been
successfully applied to solve, for example, the Multi-Objective Next Release Problem
(MONRP) [Zhang et al. 2007], which is a good example of a Feature Subset Selection
search problem.

3. Research Methodology

As it is well known, in the last decades of the 20th century a growing conviction

consolidated: the scientific method developed for studying and analyzing natural
phenomena was not apt to understand the design and construction of human artifacts,
i.e. the products of engineering and technology [Génova et al. 2012]. The required
method to produce an artifact should not start with the observation of phenomena, but
rather with the identification of a need, followed by artifact construction and evaluation
[Hevner et al. 2004]. This emerging field of construction-oriented research was called
design science, the scientific study of design, and it was based on two assumptions:
first, the design of artifacts can be a sophisticated task that contributes to the
development of scientific knowledge; second, the scientific design of artifacts requires a
specific research method [Frank 2006].

According to these guidelines, we succinctly describe now the research methodology
we have followed in this work, with references to the sections of the paper where we
deal more in-depth each aspect of the methodology. We also enumerate some basic
assumptions in our research.

Identification of a need: problem statement and explicitation of goals. Problem:

the perceived quality of requirements is not universal, but highly subjective and context-

dependent. The demanded quality is not the same in large projects as in small ones, in
safety-critical transportation or medical systems as in sheer news-displaying systems.
Therefore, measuring quality based on universal rules is not enough; it should be based,
instead, on the experts’ interpretation of demanded quality in each different context,
taking into account the needs and peculiarities of each project and organization.

However, since the involvement of domain experts is very costly and, at the same
time, the automatic measurement of quality has demonstrated its partial success, we
propose in this project the following Goal: to develop a tool to automatically emulate

the experts’ judgment on requirements quality and automatically provide

recommendations to improve it. In order to achieve a quality assessment that is really

 6

tailored to a particular context, the emulation is performed based on previous expert
quality judgments in that same context and organization.

The problem and the goals are described more in-depth in Sections 4 and 5.

Artifact construction. The constructive part of this project produces two different

artifacts: first, an automatic classifier of requirements according to their perceived level
of quality (see Sections 6, 7 and 8); second, an automatic recommender of modifications
to improve the quality of a requirement that has been judged deficient (see Section 9). A
high-level description of the construction process is also contained in Section 4.

The automatic classifier operates on objective metrics obtained from the
requirements. Each metric constitutes a dimension in a multidimensional hyperspace of
metrics, where regions of good and bad quality can be identified (see Section 5), i.e.
certain combination of metrics values that can be associated with a given quality level.
The classifier consists in a quality function that discriminates those regions by
computing different combinations of metrics that correspond to each region.

Instead of defining an a priori quality function (e.g. based on universal definitions of
quality), the procedure employs artificial intelligence techniques (machine learning) to
learn and emulate the experts’ quality judgment, and build a quality function that is
tailored to the particular context of application (see Section 6). This requires a previous
training data set of requirements, extracted from a particular domain with its particular
level of demanded quality, which the experts have manually classified according to their
perceived quality.

The automatic recommender operates on the same objective metrics obtained from
the requirements, and it applies search-based software engineering principles to find a
list of modifications, sorted according to the required effort to achieve them, so that the
user can choose one that entails a real improvement and the defective requirement, once
amended, can satisfy the quality function that emulates expert judgment (and
presumably also the experts themselves).

Artifact evaluation. The automatic classifier has been evaluated through stratified

10-fold cross validation, which is a standard procedure in the field of machine learning.
Specifically, the effectiveness of the classification is measured as its accuracy, which is
a standard performance metric consisting in the percentage of agreement between the
experts’ classification and the automatic classifier, i.e. the ratio of true positives plus
true negatives to all existing training instances. The initial data set we have used in our
experiments is a corpus of 1035 textual software requirements from the domain of
aerospace industry, together with their quality classification, provided by experts of the
INCOSE’s Requirements Working Group. The classifier obtained reaches more than
85% in accuracy, which qualifies it as reasonably good in order to provide useful advice
to requirements authors. When the training set is imbalanced, other metrics such as
precision, recall and F-measure are more meaningful than accuracy; therefore, even if
our data set is very well balanced, we define all these metrics (see Section 6) and
provide their results for a more complete picture (see Section 7).

The automatic recommender, in contrast, has not undergone a full-blown evaluation
of its effectiveness. However, we consider that it is useful to present the recommender
as a complement to the classifier, since it offers concrete suggestions to achieve the
desired quality for defective requirements (see Sections 8 and 9).

 7

Basic assumptions. We think it is useful to enumerate some basic assumptions in
our research. Checking that they are realistic assumptions strengthens our position
(some may look too evident to some readers, but not to others):

� Requirements are written in natural language.
� Requirements are stored in electronic format, in individualized units.
� The text of the requirements is electronically processable.
� Requirements should adhere to recognized style guides and standards; departing

from this rule is considered a defect.
� Requirements must use the domain vocabulary; departing from this rule is

considered a defect.
� There exists a definition for the domain vocabulary, in the form of an ontology.
� There exists a tool (in our case, RQA, but it could be a different one) by means

of which we can extract a certain number N of objective requirements metrics,
so that each requirement can be represented as a vector in an N-dimensional
hyper-space.

� Points representing requirements with similar quality will be closely situated in
this hyperspace, forming more or less compact clusters or regions in the cloud of
requirements; these groupings form the basis for the extraction of patterns of
good or bad quality.

4. Motivation: flexible assessment of requirements quality

Measuring and classifying is the first step towards automation. As we have stated in

a previous work, we can measure certain objective metrics on textual requirements, and
through them we can obtain the desired evaluation of requirements quality [Génova et
al. 2013]. However, the perceived quality of requirements is not universal, but highly
subjective and context-dependent. For example, if we consider the typical distinctions
between user requirements and software requirements [ESA 1995], it is clear that they
demand different writing styles: user requirements, which are client-oriented, must be
perfectly understandable to stakeholders and solution-independent; software

requirements, instead, may be allowed to mention terms that, from a user’s viewpoint,
are too close to design. Therefore, performing automatic measures based on fixed
policies is not enough.

One of the most decisive factors for a good assessment of requirements quality must
be the involvement of domain experts, since their personal (subjective) evaluation is
strongly linked to the needs and peculiarities of the project and the organization. Today,
the most widely used techniques for the analysis of requirements that automatically
compute quality metrics do not take into account the experts’ interpretation of quality
and quality levels of requirements in each different context, but rather rely on general
rules of quality. Besides, these techniques are not tailorable, they are not flexible and
adaptable to different projects and organizations; they are, therefore, rather limited.

In this work we present a method for the evaluation of the quality of requirements in
an automatic way, according to the quality rules and criteria employed, more or less
implicitly, by the domain experts in the organization, without need of a previous and
explicit definition of those criteria, which besides could be a very costly task. The
objective of this method is to emulate the experts’ judgment on the quality of new
requirements that are entered in the system. In order to achieve this goal, the experts

 8

must contribute with an initial set of requirements that they have previously classified
according to their quality, and that they have chosen as appropriate for establishing the
demanded standard quality (this implies that the initial set must include requirements
classified in all quality levels; in other words, including only good requirements is not
enough). For each of the requirements in the given set, we extract metrics that quantify
the various dimensions of quality already presented in previous works [Génova et al.
2013, Parra et al. 2015].

We then use machine learning techniques (namely Rule Inference) to emulate the
implicit expert’s quality function, i.e. the value ranges for the metrics, as well as the
way the metrics are combined, to yield the interpretation of requirements quality by the
domain expert. The result will be a computable formula made of simple arithmetic and
logical operations. The advantage of using a combination of rules, in contrast to neural
networks and other techniques [Major & Mangano 1995], is that, even if the complete
formula need not be simple, each component rule is easily interpretable by the experts
and other users, so that the rule can be edited if necessary.

Obviously, the expert does not apply a computable formula to judge on the quality of
requirements. Moreover, the expert’s judgment can be based on metrics that are
different from those we use, or not based on metrics at all. However, we assume (this is
our working hypothesis) that we can learn and emulate, at least to a certain degree, the
expert’s ‘educated taste for quality’ [Génova & González 2016] with our method. We
don’t expect machine learning will be apt to tell us what ‘Quality’ is, which metrics are
adequate and representative of requirements quality, or how to measure them. But we
do think that, once those metrics have been proposed and defined, machine learning can
help us to tell whether and how they are related to the expert’s judgment, and what
computable formula has the best fit.

More formally, our hypothesis is that an automatic rule-based classifier obtained
through machine learning algorithms, fed with training data extracted from a particular
domain and a particular level of demanded quality, can emulate the expert’s judgment
on requirements quality, with a level of effectiveness enough to provide useful advice to
requirements authors. The details of the hypothesis are explained in Section 6, and the
experimental results that support our hypothesis (more than 85% in percentage of
agreement) are presented in Section 7. See also the discussion about the goodness of
these results in Section 10.

This method has the advantage of being tailorable to different situations, different
domains, different styles to write requirements, and different demands in quality. In
order to achieve this, we need a tool that computes quality metrics on textual
requirements, and the initial set of requirements previously classified by the expert, so
that we can feed the learning algorithms. Of course, the method requires a significant
investment in order to obtain and tune the quality metrics tool, and to obtain a
sufficiently large set of labeled requirements pertaining to the domain, so that machine
learning algorithms can be assured to produce useful and trustworthy automatic
classifiers.

The main contribution of our work, then, is a method to build a classifier that, using
conventional machine learning techniques, learns from the information provided by the
expert of that particular organization, and that adapts itself to best emulate the expert’s
judgment; above all, the method generates human-readable rules from the expert’s tacit
knowledge, which can be reworked and improved. Besides, we can provide automatic
suggestions to improve the requirements, by computing the quality rules that could be

 9

satisfied to change a requirement from Bad to Good. We think the method will be useful
in medium/large projects and organizations; small organizations, in contrast, will not
benefit from it, since the payoff is probably not worth the necessary investment.

The stakeholders that will directly benefit from the method are requirements authors,
who will have a new tool at hand to achieve, with less effort, their own goal of
improving requirements quality; their supervisors and the clients of the system are also
indirect stakeholders that will benefit from any improvement in the quality of
requirements. Requirements authors will have a tool to automatically assess the quality
of the requirements they are writing, based on expert judgment adapted to the concrete
working context; the tool will also provide concrete recommendations to improve the
quality of requirements that are found to be deficient.

For the demonstration of the reliability of the proposed method, we examine a set of
requirements provided by the INCOSE (International Council on Systems Engineering).
This set of requirements is protected by confidentiality, but we provide a table [Moreno
et al. 2016] with the metrics we extracted with the RQA tool, Requirements Quality

Analyzer [Reuse Company 2016], together with the classification given by the experts,
without disclosing the text of the requirements themselves. In this case the classification
of quality is binary (Good, Bad), not because we demanded it to be so, but because it
was what the experts provided. In any case, the method is independent of the number of
quality levels: it will yield as many levels as they are present in the initial set.

5. The problem: quality functions in the hyperspace of metrics

Since the quality of requirements is multi-facetted, that is, it consists of different

properties that are not directly correlated to each other (e.g. completeness, consistency,
correctness), then measuring and improving quality by combining different metrics
becomes a multi-objective problem that usually cannot be solved with the simplest
methods (i.e. linear combinations of metrics).

Suppose we classify requirements by their quality based on a single variable or
metric, for example the ‘number of domain terms’ (NDT) used in the requirement. We
can then formulate a simple rule to transform the metric into a quality level [Génova et
al. 2013], such as “if NDT = 0 then Bad, else Good”. The rule can be easily refined to
account for more quality levels (Bad, Dubious, Good), using more intervals in the value
of the metric, such as “if NDT <= 0 then Bad, else if NDT > 4 then Dubious, else
Good” (see Figure 1). For simplicity, since the argument is easily generalizable to
whatever number of quality levels, we will assume in the rest of the paper that the
number of quality levels is only two (Bad, Good), whilst the number of metric intervals
is open: “if NDT <= 0 then Bad, else if NDT > 4 then Bad, else Good”.

 Good
Quality Dubious
 Bad
 0 1 5
 NDT

Fig. 1 A simple rule to transform a metric such as the number of domain terms (NDT) into a quality
level

Now, suppose we want to combine two different metrics to assign a quality level,

such as NDT and ‘size in words’ (SW). We can represent both variables on the X-Y

 10

plane, where each point is a requirement and the color is the quality level. The simplest
way to discriminate quality within the cloud of points is by a linear combination of the
variables, i.e. the traditional method of weighted average of metrics: “if (a*NDT +
b*SW) <= L, then Bad, else Good”, where a, b and L are convenient values. When the
cloud of points is naturally split in two regions of quality separated by a straight line,
the values of a, b and L can be easily obtained with simple mathematical methods (see
Figure 2). The method generalizes to any number of dimensions (metrics) that define a
hyperspace of requirements split in two regions by a hyperplane.

Fig. 2 Combination of two arbitrary metrics using a straight line to discriminate quality in the simplest

case (white: Good quality, black: Bad quality)

However, this simplicity is not usually the case when the variables present a more

complex relationship with quality that can be very difficult to estimate a priori (see
Figure 3). In these situations, a more convenient, yet simple way to combine the metrics
is by means of a rectangular region: quality is Good inside the region, otherwise it is
Bad. Note that the region could be open in one or more sides: “if NDT between [1, 4]
and SW between [10, –] then Good, else Bad”. The method is also rather simple and
generalizes to hyper-rectangular regions in the hyperspace of requirements.

Fig. 3 Combination of two metrics using a single (open) rectangle to discriminate between Good

(white) and Bad (black) quality

 11

The most usual case in the combination of metrics, however, is not at all so simple,

and the cloud of points is not easily discriminated by a single (hyper-) rectangle. In this
situations we can still generalize the procedure to a combination of regions that can be
better adjusted to the cloud of points (see Figure 4), such as: “if NDT between [1, 3] and
SW between [10, 30] then Good, else if NDT between [4, 7] and SW between [20, –]
then Good, else Bad”. Note that the regions could be overlapping (requiring that they do
not overlap could produce a worse adjustment of the rule, or a more complex rule with
more rectangles).

Fig. 4 Combination of two metrics using a combination of rectangular regions to discriminate between

Good (white) and Bad (black) quality

Summing up, the discrimination of regions by means of hyperplanes (Figure 2) is

generally very inadequate, and the use of simple rectangular regions (Figure 3) is still
insufficient. Instead, a combination of rectangular regions (Figure 4) is a versatile
method when the different metrics employed present complex relationships manifested
in the clustering of points. The higher the number of regions, the better the adjustment
of the discriminating rule to the data set. However, computing the concrete intervals for
each metric, i.e. the sizes of hyper-regions, becomes a difficult problem. This is where
machine learning techniques prove particularly useful to generate the rules.

6. Method: machine learning techniques

The discrimination of requirements quality is achieved in this project by an

automatic classifier that has been trained by means of machine learning in order to
identify those hyper-regions of similar quality that have been explained in the previous
section. Machine learning is a well-known subfield of computer science that evolved
from the study of pattern recognition and computational learning theory in artificial
intelligence, therefore we provide only a brief explanation. Machine learning explores
the construction and study of algorithms that can learn from data, by building a model

from example inputs in order to make data-driven predictions or decisions, rather than
following strictly static program instructions [Bishop 2006]. On the other hand, Search-
Based Software Engineering is an approach of Software Engineering in which search-
based optimization is applied to software engineering [Harman & Jones 2001]; machine

 12

learning, then, is one of the techniques that can be used to perform search-based
software engineering.

Machine learning techniques can be supervised or unsupervised [Russell & Norvig
2003, Weiss & Indurkhya 1998]:

� Supervised learning: the algorithm is presented with example inputs and their

desired outputs, and the goal is to learn a general function that maps inputs to
outputs.

� Unsupervised learning: the inputs to the learning algorithm are given no output
labels, leaving the algorithm on its own to find a structure or pattern in its input.

Fig. 5 Format of the training instances used as input to the learning algorithm. Testing instances have

the same format

More specifically, supervised learning is the task of inferring a function from labeled

training data, where each input is described by a vector of common attributes (see
Figure 5). The training data consist of a set of training examples, each example
consisting of an input object (in our case, the vector of quality metrics obtained from
each textual requirement) and a desired output value (in our case, the requirement’s
quality as judged by the expert). A supervised learning algorithm analyzes the training
data and infers a generalized function, which can be used for classifying new inputs.
The effectiveness of the automatic classifier obtained is then measured against the
testing set, which has been previously segregated from the initial data, so that training
and testing are performed with different data sets.

The effectiveness (or performance) of the classification can be measured in different
ways, each standard measurement having different properties. Let DS be the absolute
number of instances in the data set; TP the number of ‘true positives’, TN the number of
‘true negatives’, FP the number of ‘false positives’, and FN the number of ‘false
negatives’. Obviously, DS = TP + TN + FP + FN. Then:

� Accuracy A = (TP+TN)/DS is the ratio of true positive classifications plus true

negative classifications to all existing instances, i.e. the percentage of agreement
between the automatic classifier and the experts’ input classification.

� Precision for positives Pp = TP/(TP+FP) is the ratio of true positive
classifications to all positive classifications, i.e. the percentage of positive
instances correctly classified as positive. Respectively, Precision for negatives is
Pn = TN/(TN+FN).

� Recall for positives Rp = TP/(TP+FN) is the ratio of true positive classifications
to all relevant instances, i.e. the percentage of relevant instances correctly
classified as positive. Respectively, Recall for negatives is Rn = TN/(TN+FP).

� F-Measure for positives Fp = 2/(1/Pp+1/Rp) is the harmonic mean of Precision
and Recall for positives, and F-Measure for negatives is Fn = 2/(1/Pn+1/Rn).

 13

Accuracy is the most intuitive measurement, but it is also the weakest one when the
data set is imbalanced (a naïve classifier giving always the answer ‘true’ would be
perfectly useless, even if it would have a 99% accuracy in a data set with 99% positives
and 1% negatives). Precision is better against false positives, and Recall is better against
false negatives (respectively Precision and Recall for negatives). F-Measure considers
both at the same time. In the next section we give the results of all these measurements.

In terms of search-based software engineering, the optimization problem consists in

finding a function of the quality metrics (a piecewise function defined by a set of rules),
such that it minimizes the distance with the experts’ quality evaluation over the set of all
requirements. This can receive the following mathematical formulation:

� Let R be a set of textual requirements,	� = ���, … , �	
.
� Let C be the quality classifications over the set of requirements, � = ���, … , �	
,

such that � 	 ∈ �0, 1
 is the quality provided by the experts to requirement � ,
where 0 represents bad quality and 1 represents good quality.

� Let M be a set of correctness metrics applied to requirements,	� = ���, … ,��
,
such that ��: � → ℝ	(1 ≤ � ≤ �).

Goal:

Find a function �:	ℝ� → �0, 1
 such that it minimizes

�|	� ��(�),… ,��(�)! − �
	

#�
|

Among various machine learning techniques, rule induction (or rule inference) is a

kind of supervised learning that process input training data and produce a set of IF-

THEN rules used to classify the new examples [Clark & Niblett 1989, Hong et al. 1986].
Two main strategies are commonly used:

� Produce a decision tree and then extract its rules.
� Generate the rules covering all the examples in a given class; exclude the

covered examples and proceed with the next given class, until all classes are
covered.

The first strategy is implemented in the C4.5 system [Quinlan 1993], which extends

the previous ID3 [Quinlan 1986]. Other algorithms such as PRISM [Cendrowska 1987]
are based only on covering, whilst PART [Frank & Witten 1998] combines both
strategies.

These strategies present the following advantages to minimize the impact of
unintentional errors in the expert’s classification of the quality of requirements used as
training examples:

� Robustness against noise due to errors, omissions or insufficient data.
� Identification of irrelevant attributes.
� Detection of absent attributes or knowledge gaps.
� Extraction of expressive and easy to understand rules.

 14

� Possibility to interpret or modify the produced rules with aid of expert
knowledge, or even to incorporate new rules inferred by the experts themselves
[Major & Mangano 1995].

In order to improve the effectiveness of the individual classifiers obtained by means

of rule induction, ensemble methods construct a set of classifiers instead of a single one,
and then classify new instances by taking a vote of their decisions (it can be a weighted
vote, the mode of the votes, etc.) [Dietterich 1997]. The technique has two main
variants:

� Homogeneous classifiers are generated with the same learning algorithm

[Dietterich 2000]. The main methods are Bagging [Breiman 1996] and Boosting
[Schapire 1990].

� Heterogeneous classifiers, instead, are generated with different learning
algorithms. The most used method is Stacking (Stacked Generalization)
[Wolpert 1992].

We performed experiments using the C4.5 and the PART algorithms, as well as these

two algorithms enhanced through homogeneous classifiers (Bagging and Boosting). We
explain the experiments in detail in the next section.

Summing up, the whole process consists of two main stages: rule inference and rule

application. The inference stage can be summarized in the following steps (see Figure
6):

1. Obtain the initial set of textual requirements.
2. Classify requirements according to their quality, as judged by human experts.
3. Extract quality metrics by means of an automated tool, in our case the RQA tool.
4. Build the training and testing data for the supervised machine learning algorithm,

combining the two previous outputs: each requirement is represented as a vector
of quality metrics and human-judged quality level (see Figure 5).

5. Launch the rule inference learning algorithm (in our case, run in the Weka tool)
to obtain as output the automatic classifier, i.e. the function made of rules that
maps requirements to quality levels, thus emulating the human experts; this step
includes a standard validation of the classifier through testing data, providing the
different effectiveness metrics mentioned before (accuracy, precision, recall, and
F-measure).

Fig. 6 Inference stage: obtaining the expert’s implicit quality function through machine learning

 15

Once we have built a validated rule-based classifier, we can use it as input in the

application stage to automatically classify new requirements as the emulated human
experts would do (see Figure 7):

6. Obtain a new set of textual requirements and extract their quality metrics.
7. Classify the requirements using both the definition of the automatic rule-based

classifier and the new requirements metrics as input to the Weka tool.

Fig. 7 Application stage: emulating the expert’s judgment with the generated rule-based classifier

Note that the classification of requirements is now automatic, which is the whole

point of this research. But this classification is performed according to rules that have
been extracted from training examples provided by experts. If the training examples
were different, the automatic classification would be different, too. This is what makes
the whole process tailorable to different contexts, different styles to write requirements,
and different demands in quality, without need that the experts explicitly formulate their
quality rules, and saving the effort required to do that. There is no gold quality standard,
no universal rules that can be applied in every context.

7. Description of the experiments and results in effectiveness and efficiency

The initial data set we have used in our experiments is a corpus of 1035 textual
software requirements from the domain of aerospace industry, together with their
quality classification, provided by experts of the INCOSE’s Requirements Working
Group. These are experienced requirements engineers and researchers, both from
academy and industry, whose purpose is to advance the state of the practices, education
and theory of requirements engineering and its relationship to other systems engineering
functions [INCOSE 2012]. The requirements were originally classified by these experts
in two well-balanced levels: 545 requirements with good quality and 490 with bad
quality.

Next we automatically extracted quality metrics from the requirements with the RQA
tool [Reuse Company 2016], using its standard out-of-the-box configuration. The set of
18 quality metrics used in this project has been extensively described and justified in
[Génova et al. 2013] and [Parra et al. 2015], so we give only a short description in
Appendix I. As we mentioned before, the text of the requirements is confidential,
therefore we provide a table [Moreno et al. 2016] only with the extracted metrics and
the original quality classification.

Based on this data set, we launched the six different learning algorithms (C4.5 and
PART, in three variants each) to build the corresponding automatic classifiers. In order
to estimate their effectiveness, we performed, as it is usual, a stratified 10-fold cross

 16

validation [Kohavi 1995]. This means that the whole sample is randomly partitioned
into 10 equal sized subsamples (folds) with the same proportion of good and bad
requirements. Each fold is then used as a testing set, with the remaining 9 folds used as
training set. The cross validation process is repeated 10 times, so that 10 different
testing classifiers are obtained, with each of the 10 subsamples used exactly once as
validation data. This standard method has the advantage that all instances are used for
both training and testing, and each instance is used for validation exactly once. In other
words, for each learning algorithm, a final classifier is obtained with training based on
the whole data set, and its effectiveness is estimated through the average effectiveness
of the 10 testing classifiers obtained with the 10-fold cross validation method.

The experiments (generation of classifiers and estimation of effectiveness) were
implemented in the popular Weka suite [Witten & Frank 2000], version 3.6.12, keeping
its standard default parameter configuration. We show in Table 1 the results obtained in
the effectiveness of the classification of both C4.5 and PART, as well as the enhanced
versions of these two algorithms by means of the bagging and boosting techniques. As
we have mentioned before, we give four different metrics of effectiveness (defined in
the previous section): accuracy, precision, recall, and F-measure, respectively for
positives (i.e. instances classified as Good) and for negatives (classified as Bad).

Table 1 Effectiveness of the classifiers obtained with each algorithm, estimated through 10-fold cross

validation (average accuracy, precision, recall and F-measure, respectively for positives on the left and
negatives on the right)

Algorithm C4.5 PART
Bagging

C4.5

Bagging

PART

Boosting

C4.5

Boosting

PART

Average

Accuracy
82.51 85.31 85.12 86.18 87.25 86.57

Average

Precision
83.2 81.7 85.7 84.9 85.2 85.0 86.8 85.5 86.9 87.6 86.8 86.3

Average

Recall
83.7 81.2 86.6 83.9 86.8 83.3 87.0 85.3 89.2 85.1 87.9 85.1

Average

F-Measure
83.4 81.5 86.1 84.4 86.0 84.1 86.9 85.4 88.0 86.3 87.3 85.7

As it can be observed, PART is generally better than C4.5, Boosting is better than

Bagging, and Bagging is better than the base algorithms without ensemble
enhancement. Boosting C4.5 is finally the most effective algorithm in our experiments,
peaking to 88% in the F-measure that combines precision and recall.

Regarding the efficiency of the algorithms, Table 2 shows the time required by the
rule learning process with the generation algorithms using the Weka suite. The
algorithms have been executed on a computer with Windows 10 operative system on
top of an Intel microprocessor Core i7-4770 to 3.40 GHz and a RAM capacity of 16
GB. These values are interesting because of the necessity to regenerate the classifiers in
new contexts (new projects, new quality constraints on the requirements, new computed
values of the metrics, etc.). It can be noted that the enhancement by means of Bagging
and Boosting requires more time than the base algorithms C4.5 and PART alone, as it
would be expected. In any case, the differences are not so relevant, since the

 17

regeneration of the rules will not be a frequent task. In fact, these generation times can
be considered practically negligible, but it is important that we know that.

Table 2 Efficiency of generation: time in seconds reported by Weka to generate the classifiers with

the different learning algorithms

Algorithm C4.5 PART
Bagging

C4.5

Bagging

PART

Boosting

C4.5

Boosting

PART

Generation

Time (s)
0.17 0.09 0.28 0.84 0.32 0.90

8. Analysis of the obtained rule-based classifiers

The output of the learning algorithms has the appearance shown in Figures 8 and 9.

C4.5 produces a decision tree, where branches express conditions, and leaves represent
final decisions. In this example, the first leaf tells that the requirement is classified as
Bad if it contains no design sentences and no domain verbs. This rule classifies 166
instances as Bad, of which 4 instances have been wrongly classified, according to the
original classification provided by the experts (i.e. the rule gives its precision in
classifying instances; in this case, the first leaf has a precision of (166-4)/166=0.976). If
that leaf is not reached, the evaluation proceeds down the decision tree. The classifier
generated with our data produce a tree with 71 leaves (35 resulting Good, 36 resulting
Bad).

Design_sentences <= 0

| Domain_verbs <= 0: Bad (166/4)

| Domain_verbs > 0

| | Flow_sentences <= 0

| | | Domain_verbs <= 1: Bad (91/6)

| | | Domain_verbs > 1

| | | | Readability <= 7: Good (7/0)

| | | | Readability > 7

| | | | | Conditional_mode <= 0

| | | | | | Domain_verbs <= 2: Bad (37/2)

| | | | | | Domain_verbs > 2

| | | | | | | Readability <= 10: Good (3/0)

| | | | | | | Readability > 10: Bad (6/1)

| | | | | Conditional_mode > 0: Good (3/0)

| | Flow_sentences > 0: Good (8/0)

…

…

Fig. 8 Appearance of the first lines of the output of the C4.5 rule learning algorithm

On the other hand, PART produces a decision list made of rules with precedence.

The first rule in the example tells that the requirement is classified as Bad if it contains
no design sentences, no domain verbs, and no connectors. Again, this rule classifies 142
instances as Bad, of which 1 instance has been wrongly classified. If the rule is not
satisfied, the evaluation proceeds with the next rule. The classifier generated with our
data produce a list of 54 rules (27 resulting Good, 27 resulting Bad).

 18

Design_sentences <= 0 AND

Domain_verbs <= 0 AND

Connectors <= 0: Bad (142/1)

Design_sentences <= 0 AND

Flow_sentences <= 0 AND

Text_length_(words) > 30: Bad (56/0)

…

…

Fig. 9 Appearance of the first lines of the output of the PART rule learning algorithm

Reaching a leaf in the first case (decision tree) or satisfying a rule in the second case

(decision list) means the requirement, as represented by its metrics vector, has been
enclosed within a region of defined quality (Good or Bad) in the hyperspace of
requirements (see Section 5). When the application of the rules proceeds on, the rule
that is finally satisfied, and the definition of the corresponding hyper-region, is more
and more complex, due to the precedence of the previous rules. For example, the
satisfaction of the second rule in Figure 9 implies certain intervals of values not only for
the metrics Design_sentences, Flow_sentences and Text_length_(words), but also for
Domain_verbs and Connectors in the first rule.

As we have mentioned above (see Section 6), one of the advantages of rule induction
algorithms is that they are able to discard irrelevant attributes, i.e. metrics that in fact are
not necessary to emulate the experts’ judgment. In our case, the finally obtained
classifiers do not use the metrics Rationale_sentences, i.e. they use only 17 from the 18
metrics computed by the RQA tool in this project.

Now, one of the most interesting and practical aspects of the obtained rule-based
classifiers is that, for a given requirement that has been classified as Bad, we can find
the list of rules that can be satisfied to improve the requirement. In other words, we can
offer a list of recommendations to modify a bad requirement so that it becomes Good.
We explain the mathematical details of this problem in the next section.

9. Getting recommendations to improve requirements

Similarly to the problem of finding a function that emulates the experts’ quality

classification of requirements, we can formulate the optimization problem of finding a
least-effort modification of a requirement that changes its class from Bad to Good. The
best modification is the one that most improves the quality of the requirement, not
necessarily the least costly. However, in the context of a binary classification any
change of class (from Bad to Good) implies the same increment of quality. Our
approach, then, is to provide the requirements author with a list of suggested
modifications, sorted according to the required effort to achieve them, so that the user
can choose one that entails a real improvement and at the same time is relatively easy to
achieve.

In terms of search-based software engineering, the mathematical formulation is as
follows:

� Let C be an automatic rule-based binary classifier that decides on the quality of a
requirement. The decision is taken on a set of N numerical attributes of the
requirement, previously computed with a quality analyzer tool, in our case RQA.

 19

� Let R be a requirement that has been classified by C with Bad quality.
� Let Mi, i∈{1..N}, be the values of the metrics obtained for R, based on which C

has classified R as Bad. R can be represented also as the vector (M1, M2, …,
MN).

� Let Pj, j∈{1..L}, be the antecedents of the positive rules in C, i.e. those rules that
classify a requirement as Good. Then we have, ∀j∈{1..L}, ¬Pj(R), or
equivalently ¬Pj(M1, M2, …, MN). In other words, all antecedents of positive
rules, when applied to the vector of metrics of a bad requirement, classify it as
Bad.

Suppose now we want to rewrite R into R’, so that R’ is evaluated as Good; that is,

R’ is such that it satisfies the antecedent of some positive rule: ∃j∈{1..L}, Pj(R’), or
equivalently ∃j∈{1..L}, Pj(M’1, M’2, …, M’N).

Besides, we want to minimize the effort to obtain R’. Suppose there is a fixed cost to
modify the value of a metric, and a cost dependent on the magnitude of the
modification. Let Fi∈	ℝ+

∪{0}, i∈{1..N}, be the estimated fixed cost to modify the
value of Mi; and let Ki∈ℝ+

∪{0}, i∈{1..N}, be the estimated cost to increase or decrease
by an amount of 1 the value of Mi.

Then the cost to modify R so that Mi becomes M’i is Fi + Ki· |Mi-M’i|. We want to
minimize the function Σn

i=1 Fi + Ki· |Mi-M’i|.

Goal:

Find a modification R’ of R so that

∃j∈{1..L}, Pj(M’1, M’2, …, M’N)

and with a minimum modification cost

� $ + & · |	� −�′
	

�))		∧	*+,*´+
|

Note that, in the preceding formula, we add the fixed cost Fi only when the

modification of the requirement affects the i-th metric, i.e. when Mi ≠ M’i. The
formulation could also be generalized to consider that the cost to increase the value of a
given metric is different from the cost to decrease it (for example, adding a domain term
could be more costly than deleting one).

We have implemented an algorithm that solves this optimization problem in the case
of C4.5 generated rules, with heuristic values for the Fi and Ki coefficients. The
algorithm provides not only the absolute least-effort modification (R’), but a list of
suggestions sorted according to their cost (R’, R’’, R’’’…), so that the user can consider
other relevant factors beyond cost to accept a suggestion. For example, we can use the
precision and the number of classified instances for each rule generated by the learning
algorithm (see the explanation of the decision tree in Figure 8) as another useful
criterion to choose among the proposed list of modifications (a rule that classifies many

 20

instances with higher precision is better related to quality). Next we show an example
application of the algorithm, with only the least-effort modification for simplicity.

Example:

Let’s take the following requirement that has been classified as Bad by the C4.5

classifier obtained in Section 7:

Typically the interface component must be able to handle at least one fast

connection with the service component and one connection with the predefined data

base component.

This requirement has the following non-null metrics:

Paragraphs 1

Words 27

Readability 16

Punctuation 171

Connectors 1 and

Ambiguous 2 typically, fast

Design 1 data base

Imperative 1 must

Domain concepts 1 connection (twice)

Domain verbs 1 handle

We find that a least-effort modification can be achieved to satisfy the following rule,

extracted from the decision tree:

Design_sentences > 0

| Incomplete_sentences <= 0

| | Domain_verbs <= 1

| | | Domain_concepts > 3: Good (17/1)

The requirement satisfies all the values in the rule, safe for domain concepts, which

according to the rule should be strictly greater than 3 (remember that this rule has sense
only within the context of all rules, i.e. as defining a hyper region among other hyper
regions in the hyperspace of metrics). Therefore, the rule can be satisfied by the
requirement with the modification of a single metric, by adding three domain concepts.
Then we can provide the following recommendation: “increase the number of domain
concepts by 3”, so that the modified requirement could become:

Typically the interface module must be able to handle at least one fast connection

with the service module and one connection with the predefined data base module.

We have replaced ‘interface component’, ‘service component’ and ‘data base

component’ by their corresponding domain concepts in the ontology: ‘interface
module’, ‘service module’ and ‘data base module’. In fact, we could change the
ontology instead of the requirement to make the fit. Once the requirement has been
modified, we must extract the new metrics and check that its quality level is acceptable,
as it is the case in this example.

 21

Obviously, it is not simply a question of adding domain terms to satisfy the rule and
deceive the tool; but it could happen that the requirements engineer could have
inadvertently used wrong terms instead of the approved ones (‘interface component’
instead of ‘interface module’, say) and the tool can help discover those mistakes. Of
course, the engineer should not blindly follow the recommendations of the tool. Since
our algorithm produces a list of recommendations ordered by the effort required, if the
first recommendation is not appropriate from a professional viewpoint, the engineer can
take the next one, and so on. Similarly, in a general authoring context, a writing
assistant (such as modern word processors offer) can tell some of the sentences in a text
are too long: the recommendation can be responsibly followed or not, but the tool is
giving useful advice anyway.

Note that the two ambiguous sentences detected (‘typically’, ‘fast’) need not be
removed in order to satisfy this rule. What does this mean? We can interpret it as
follows: the automatic rule-based classifier has learned from the expert that the lack of
domain concepts is a severe defect, while the presence of ambiguous sentences is
tolerable; then, the original version of this requirement is easier to amend by adding
domain concepts than by removing ambiguous sentences (because the latter change
would not be enough). Of course, a different expert could have put more emphasis on
ambiguity-related defects, and that would have been reflected in a different machine-
learning generated classifier. The point is, we do not intend to provide an ‘absolute’
quality assessment, but to emulate with flexibility the particular judgment of a given
expert in a given context.

10. Potential risks and threats to validity

As it happens with every machine learning process, the effectiveness of the output

assessment algorithm is highly dependent on its inputs. First, the selection of metrics,
the reliability of the metrics computing tool, and its configuration. In this case we refer
to our previous works [Génova et al. 2013, Parra et al. 2015] where the metrics have
been justified and the industrial acceptance of the RQA tool [Reuse Company 2016] has
been demonstrated.

Second, the initial classification by the experts (the set of training and testing
instances) is also of capital importance. If the initial data set is wrong, the automatic
classification of requirements by their quality will be useless. This factor is completely
out of our control. However, its importance is relative: what we demonstrate is that we
can emulate the experts’ judgment on the basis of (a) their personal (subjective) quality
assessment and (b) objective, measurable attributes of the requirements; if the learned
rules are “wrong”, it is the experts’ fault, not ours. The better the original classification,
the better the automatic classification. This apparent weakness is in fact one of the
strongest points in our method, since it allows us to build a flexible, context-dependent
evaluation tool. For example, the vocabulary in software requirements might accept
terms that are closer to the solution, in contrast to user requirements that would tag them
as unacceptable design terms.

The experts themselves might be inconsistent in their quality assessment. For
example, we have detected a disagreement of 10-20% among different experts working
in the domain of photographic image quality [Robledano et al. 2016]. Even the same
expert might give different evaluations in successive rounds on the same set of
requirements. We consider this is a natural phenomenon, since the experts are not

 22

machines that behave always the same: they are people that are influenced by their
experience (they are ‘experts’), and that can change their behavior accordingly as their
experience increases [Génova et al. 2012]. In fact, reaching more than 85% in
effectiveness qualifies our method as reasonably good. Remember this effectiveness has
been estimated, as it is usual in machine learning, through four different metrics
(accuracy, precision, recall and F-measure) with the 10-fold cross validation method.
This means that the rule-based classifier can pretty well emulate the experts’ judgment,
even if the experts do not use explicit rules to assess quality. The automatic assessment
has still false positives and false negatives (around 15%), but it undoubtedly provides a
fruitful ground to suggest improvements.

It could also happen that requirements with similar metrics receive different
classification by the experts. This means that those metrics have not sufficient
discriminatory power, therefore their weight will be automatically minimized by the
learning process. In this sense, rule induction algorithms are particularly robust.

One of the limitations of our method is that it is focused only on individual properties
(correctness). If the experts had classified the requirements also according to global
properties (completeness, consistency), then the learned rules could not adequately
emulate their classification, which would be reflected in a lower effectiveness, as
measured by the learning process itself. Extending the method to consider also global
properties of requirements is a promising research field that we intend to undertake in
future works.

The use of an algorithm to suggest improvements has two obvious risks. First, a
change in the requirement text that improves the desired metric can have a bad influence
in a different metric, so that the result is still not good, or even worse than before,
leading to a new improvement cycle that perhaps could be avoided; this encourages us
to find a better algorithm that accounts for both the present requirement and its modified
version.

The second risk has a more psychological flavor, it is a phenomenon we can call ‘the
bureaucrat engineer’ [Génova & González 2016], an inherent risk of every automatic
quality control mechanism. A bureaucrat engineer is one that is satisfied with following
the rules, instead of searching for genuine quality. It is the reverse side of a policeman
mechanism of penalties in quality management, as opposed to the counselor’s view
[James 1999, Génova et al. 2013]. Given a suggestion to improve a requirement, it is
probably easy to add or remove some words without scruples such that the modified
requirement complies with the rule, even if it becomes nonsense. Nonetheless, we think
this does not deprive our proposed method of utility, when it is used as a
recommendation system by responsible engineers. We want to emphasize that the
method provides not only a single least-effort modification, but a list of suggestions
from which the user can follow one that entails a real improvement.

11. Generalizability of the method

In this section we discuss the generalizability of our approach, along the lines

presented in [Wieringa & Daneva 2015]. These authors emphasize the value of middle-

range theories, i.e. theories whose generalizations, in contrast to the theories of basic
science, do not have universal scope, but which nevertheless give sufficient
understanding of a sufficiently large class of cases. The concept of middle-range theory

 23

was originally developed for the social sciences [Merton 1968], but is also very well
applicable to the engineering sciences [Wieringa 2014].

According to their categorization of strategies to generalize software engineering
theories [Wieringa & Daneva 2015], our approach falls in the category of lab-to-field
strategies, i.e. artifacts that are first developed under idealized laboratory conditions and
are then scaled up to operate under uncontrolled field conditions. Besides, our research
presents aspects of both sample-based and case-based generalization strategies, as we
show below.

The machine learning procedure of finding patterns of quality metrics in a sample of
requirements, and using them to predict quality in new samples, is clearly a kind of
statistical learning, which is one of the sub-categories of sample-based generalization

strategies identified in [Wieringa & Daneva 2015]. On the other hand, we have used a
sample of requirements that originate in a single, even if very reliable, source (experts
of the INCOSE’s Requirements Working Group); we argue that the good results
obtained (the ability of our tool to emulate the experts’ judgment) can be similarly
expected if the procedure is applied to another source of requirements; we are then
exercising case-based generalization, which, as the authors explain, is acceptable when
it is shown that there exists a reasonable similarity in the underlying mechanisms (what
they call “architectural similarity” [Ghaisas et al. 2013, Wieringa & Daneva 2015]). In
this case the underlying mechanism is the relationship between measurable indicators of
quality in textual requirements and the perceived level of quality by experts, which we
have explained in-depth in previous works [Génova et al. 2013].

We can also point to the following factors of independence that contribute to the
generalizability of the approach:

� Language independence. Even if our experiments have been performed with

requirements written in English, the method is essentially language-independent,
as long as the tool used to extract quality metrics can account for different
languages (in our case, the RQA tool provides support for eight different
languages: English, French, German, Japanese, Spanish, Swedish, Italian, and
Dutch). It is true that the natural-language processing techniques necessary to
compute requirements quality metrics have been developed mainly for English,
and to a lesser extent for other common languages. The method we have
developed depends on the existence of a tool that computes quality metrics, but
the method as such does not depend on any particular language or tool.

� Domain independence. Quality metrics are domain independent, safe for the last
two items ‘domain concepts’ and ‘domain verbs’ (see Appendix I). These two
metrics certainly depend on the configuration of the auxiliary RQA tool, which
must have been provided a suitable ontology of domain terms. However, as long
as the ontology has been properly defined, the machine learning procedure to
emulate expert quality assessment is, as such, independent of the concrete
domain.

� Size independence. According to our experiments, the learning algorithms work
well with a training set of at least 500 randomly chosen requirements, i.e. the
effectiveness reached (accuracy, precision, recall and F-measure) is very close
(less than 1% difference) to the values obtained with the whole data set of 1035
requirements. On the other side, once the classifier has been obtained from
similar projects with enough requirements from both classes, the approach is

 24

independent of the size of the new project to be evaluated. We have argued
before (see Section 4) that the method will be most beneficial for medium/large
projects and organizations; but this does not mean that the method will not work
in small projects, only that the benefit-cost ratio will probably be not so
attractive.

� Quality levels independence. The classifier obtained through machine learning
techniques is independent of the number of quality levels present in the training
data set: it will yield as many levels as they are initially present. Our classifier is
binary (two levels, Good and Bad) because that was what the experts provided.

� Quality demanded independence. The method to obtain a classifier is
independent of the degree of quality demanded in the organization. In fact, what
the method achieves is an automatic emulation of the experts’ interpretation of
quality according to the concrete needs and demands of quality in their particular
context, projects and organizations.

These factors of independence are the ground for the alleged tailorablity of the

method to different situations, different domains, different styles to write requirements,
and different demands in quality.

12. Conclusions and implications

Even if the usages of machine learning techniques to emulate human judgment have

been numerous in very different contexts, there are scarce references in the literature, to
our knowledge, that describe their application for quality assessment in the field of
requirements engineering; that is why we consider our research manifests a high degree
of novelty.

Our main contribution in this work has been the development of a method for the
flexible evaluation of requirements in an automatic way. We have built an automatic
rule-based classifier that emulates the experts’ judgment on the quality of requirements
and is made of human-readable rules extracted from the expert’s tacit knowledge, which
can be reworked and improved. The rule generation algorithms take as input an initial
set of requirements classified by the experts according to the needs and peculiarities of
each project and organization, as well as the quality metrics of those requirements
computed with the RQA tool. The generated rules are then applied to automatically
assess the quality of new textual requirements, with a high level of agreement between
the experts’ classification and the automatic classifier (more than 85% in accuracy,
precision, recall and F-measure), which is more than enough to provide useful advice to
requirements authors.

The experts do not need to make explicit the quality criteria they apply in their
assessment of requirements, and the metrics could be computed with a different tool.
Therefore, the method is tailorable to different contexts, different styles to write
requirements, and different demands in quality, with a high degree of automation. The
method is highly general because its results change according to its inputs. The whole
process generates a rule-based classifier that emulates the experts’ judgment on the
quality of requirements (the experts’ implicit quality function). These set of quality
rules, generated by machine learning, depend both on the set of initial requirements and
on the experts’ classification of those requirements in several quality levels. Therefore,
a different set of classified requirements (i.e. the training data), will produce a different

 25

automatic classifier, better adapted to the particular context reflected in the vocabulary
of the requirements, and to the particular demands in quality that can be inferred from
the experts’ classification. In other words, the method builds a classifier that learns from
the information provided by the experts, and adapts itself to best emulate them.

Moreover, we can provide a list of automatic recommendations to modify the
requirements that have been classified with the lowest quality level, so that they satisfy
the obtained quality rules that emulate the experts’ judgment. In this way, we are able to
point out not only those requirements that need improvement, but also to suggest
concrete modifications to achieve the demanded quality; from this list of suggestions
the user can choose one that entails a real improvement and at the same time is
relatively easy to achieve.

The method is still experimental and has been developed to form an integral part of
the Requirements Quality Suite by the Reuse Company [Reuse Company 2016],
together with the Requirements Quality Analyzer (RQA) and the Requirements
Authoring Tool (RAT). The suite follows a knowledge-centric approach to the
requirements definition process, with the application of ontologies and linguistic tools
to the analysis and improvement of the quality of specifications. The Requirements
Quality Suite has been successfully employed in industry, in companies such as Alstom,
as described in [Gallego 2016] and [Chalé-Góngora et al. 2017]. The suite is having a
high impact in the domain of Systems Engineering, as reflected in the series of INCOSE
(International Council on Systems Engineering) conferences (see for example [Dick et
al. 2017]).

The adoption of the method and tool will have some implications for practitioners.
First of all, the alleged improvement in quality and flexibility in its assessment, with the
economic benefits associated. But, also, requirements authors will have to adapt their
working environment, and themselves, to account for the new writing assistant and take
advantage of it. This adaptation positively entails, too, that engineers will learn to write
requirements in the way the organization wants while they are doing the actual job
(learning on the job [Marsick & Volpe 1999]). On the negative side, we have already
mentioned a possible drift towards the “bureaucratization” of their work (the uncritical
submission to a mechanical quality assessment); however, we think the analogy with
today-common general-purpose writing assistants allows us not to be pessimistic in this
regard. In the end, the best improvement in writing skills will be obtained with a
combination of smart tools together with mentoring of requirements authors in basic
techniques [Terzakis & Gregory 2016, Gregory & Terzakis 2017].

From a more theoretical viewpoint, this research provides empirical evidence that a
non-linear combination of metrics, i.e. the function made of rules obtained through
machine learning, provides a better fit to expert judgment than the traditional weighted
average of metrics; and it provides empirical evidence, too, that subjective quality
(evaluated by experts) can be emulated based on the measurement of objective, low-
level features. It is not so obvious that this could be so; a possible “architectural
explanation” [Wieringa & Daneva 2015] is that the writer who cares about low level
details also cares about high level features of requirements; but this is not more than a
conjecture that may well deserve more research.

 26

References

[Aceituna et al. 2014] Aceituna, D., Walia, G., Do, H., Lee S.W. (2014). Model-based requirements

verification method: Conclusions from two controlled experiments. Information and Software Technology
56(3):321–334.

[Alexander & Stevens 2002] Alexander, I., Stevens, R. (2002). Writing Better Requirements. London:
Addison-Wesley.

[Ali et al. 2013] Ali, R., Dalpiaz, F., Giorgini, P. (2013). Reasoning with contextual requirements:

Detecting inconsistency and conflicts. Information and Software Technology 55(1):35–57.

[Belsis et al. 2014] Belsis, P., Koutoumanos, A., Sgouropoulou, C. (2014). PBURC: A patterns-based,

unsupervised requirements clustering framework for distributed agile software development.
Requirements Engineering 19(2):213-225.

[Berry et al. 2006] Berry, D.M., Bucchiarone, A., Gnesi, S., Lami, G., Trentanni, G. (2006). A new

quality model for natural language requirements specifications. Proceedings of the 12th International
Working Conference on Requirements Engineering: Foundation of Software Quality (REFSQ-06).
Luxembourg, June 5-6 2006. Held in conjunction with CAiSE’06.

[Bishop 2006] Bishop, C.M. (2006). Pattern Recognition and Machine Learning. New York:
Springer.

[Bøegh 2008] Bøegh, J. (2008). A new standard for quality requirements. IEEE Software 25(2):57–
63.

[Breiman 1996] Breiman, L. (1996). Bagging predictors. Machine Learning 24(2):123–140.

[Brooks 1987] Brooks, F.P. (1987). No Silver Bullet. Essence and Accidents of Software Engineering.
IEEE Computer 20(4):10-19. Reprinted in: F.P. Brooks. The Mytical Man-Month, Essays on Software

Engineering. Addison-Wesley, 1995 (20th Anniversary Edition).

[Bucchiarone et al. 2005] Bucchiarone, A., Gnesi, S., Pierini, P. (2005). Quality Analysis of NL

Requirements: An Industrial Case Study. Proceedings of the 13th IEEE International Requirements
Engineering Conference, pp. 390-394. Paris, France, August 29 – September 2, 2005.

[Cendrowska 1987] Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules.
International Journal of Man-Machine Studies 7(4):349–370.

[Chalé-Góngora et al. 2017] Chalé-Góngora, H.G., Llorens, J., Gallego, E. (2017). Your Wish, My

Command – Speeding up Projects in the Transportation Industry Using Ontologies. Proceedings of the
27th Annual INCOSE International Symposium (IS 2017), pp. 1070–1086. Adelaide, Australia, July 15-
20, 2017.

[Chantree 2006] Chantree, F.J. (2006). Identifying Nocuous Ambiguity in Natural Language

Requirements. PhD Dissertation, The Open University, Faculty of Maths and Computing, UK.

[Clark & Niblett 1989] Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine
Learning 3(4):261–283.

[Cleland-Huang et al. 2006] Cleland-Huang, J., Settimi, R., Zou, X., Solc, P. (2006). The Detection

and Classification of Non-Functional Requirements with Application to Early Aspects. Proceedings of
14th IEEE International Requirements Engineering Conference (RE 2006), Minneapolis, MN, USA,
September 11-15 2006, pp. 36–45.

[Cleland-Huang et al. 2007] Cleland-Huang, J., Settimi, R., Zou, X., Solc, P. (2007). Automated

classification of non-functional requirements, Requirements Engineering 12(2): 103–120.

[De Sousa et al. 2010] De Sousa, T.C., Almeida, J.R., Viana, S., Pavón, J. (2010). Automatic analysis

of requirements consistency with the B method. ACM SIGSOFT Software Engineering Notes 35(2):1-4.

[Dick et al. 2017] Dick, J., Wheatcraft, L., Long, D., Ryan, M., Llorens, J., Zinni, R., Svensson, C.
(2017). Integrating Requirement Expressions with System Models. International Council on Systems
Engineering (INCOSE), Annual Systems Engineering Conference, ASEC 2017. University of Warwick,
Coventry, UK., 21-22 November 2017.

 27

[Dietterich 1997] Dietterich, T.G. (1997). Machine learning research: four current directions.
Artificial Intelligence Magazine 18(4):97–136.

[Dietterich 2000] Dietterich, T.G. (2000). An experimental comparison of three methods for

constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning
40(2):139–157.

[Dollmann & Geierhos 2016] Dollmann, M., Geierhos, M. (2016). On- and Off-Topic Classification

and Semantic Annotation of User-Generated Software Requirements. Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing (Austin, Texas, November 1-5 2016), pp. 1807–
1816.

[Eito-Brun & Amescua 2017] Eito-Brun, R., Amescua, A. (2017) Dealing with software process

requirements complexity: an information access proposal based on semantic technologies. Requirements
Engineering 22(4): 527–542.

[ESA 1995] European Space Agency. (1995). ESA PSS-05-03. Guide to the Software Requirements

Definition Phase. ESA Board for Software Standardisation and Control (BSSC)
(ftp://ftp.estec.esa.nl/pub/wm/anonymous/wme/bssc/PSS0503.pdf).

[Fabbrini et al. 2001] Fabbrini, F., Fusani, M., Gnesi, S., Lami, G. (2001). The Linguistic Approach to

the Natural Language Requirements Quality: Benefit of the Use of an Automatic Tool. Proceedings of the
26th Annual NASA Goddard Software Engineering Workshop, pp. 97-105.

[Fanmuy et al. 2011] Fanmuy, G., Fraga, A., Llorens, J. (2011). Requirements Verification in the

Industry. Proceedings of the Second International Conference on Complex Systems Design &
Management CSDM 2011 (Paris, France, December 7–9, 2011), pp. 145–160.

[Frank & Witten 1998] Frank, E., Witten, I. H. (1998). Generating accurate rule sets without global

optimization. Proceedings of the 15th International Conference on Machine Learning ICML-98 (Madison,
WI, USA, July 24–27, 1998), pp. 144–151.

[Frank 2006] Frank, U. (2006). Towards a Pluralistic Conception of Research Methods in Information

Systems Research. ICB-Research Report No. 7. Institute for Computer Science and Business Information
Systems, University Duisburg-Essen (http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReport07.pdf).

[Gallego et al. 2016] Gallego, E., Chalé-Góngora, H.G., Llorens, J., Fuentes, J., Álvarez, J., Génova,
G., Fraga, A. (2016). Requirements Quality Analysis: A successful case study in the industry. Proceedings
of the Seventh International Conference on Complex Systems Design & Management, CSDM 2016, pp.
187-201. Paris, December 13-14, 2016.

[Génova et al. 2012] Génova, G., Llorens, J., Morato, J. (2012). Software engineering research: the

need to strengthen and broaden the classical scientific method. In Manuel Mora, Ovsei Gelman, Annette
L. Steenkamp and Mahesh Raisinghani (eds.), Research Methodologies, Innovations and Philosophies in
Software Systems Engineering and Information Systems. Hershey, PA: IGI Global, 2012, pp. 106-125.

[Génova et al. 2013] Génova, G., Fuentes, J.M., Llorens, J., Hurtado, O., Moreno, V. (2013). A

Framework to Measure and Improve the Quality of Textual Requirements. Requirements Engineering
18(1):25-41.

[Génova & González 2016] Génova, G., González, M.R. (2016). Educational Encounters of the Third

Kind. Science and Engineering Ethics 23(6):1791-1800, December 2017.

[Ghaisas et al. 2013] Ghaisas, S., Rose, P., Daneva, M., Sikkel, K., Wieringa, R. (2013). Generalizing

by similarity: lessons learnt from industrial case studies. Proceedings of the 1st International Workshop
on Conducting Empirical Studies in Industry, CESI’13. Held at ICSE’13, 35th International Conference
on Software Engineering, San Francisco, CA, USA, May 18-26, 2013, pp. 37-42.

[Gregory & Terzakis 2017] Gregory, S., Terzakis, J. (2017). Viewpoint: effectiveness of focused

mentoring to improve requirements engineering industrial practice. Requirements Engineering 22(3):
413–417.

[Harman & Jones 2001] Harman, M., Jones, B.F. (2001). Search-based software engineering.
Information and Software Technology 43(14):833–839.

28

[Harman et al 2012] Harman, M., McMinn, P., De Souza, J., Yoo, S. (2012). Search Based Software

Engineering: Techniques, Taxonomy, Tutorial. Empirical Software Engineering and Verification.
International Summer Schools, LASER 2008-2010, Elba Island, Italy, Revised Tutorial Lectures.
Springer Lecture Notes in Computer Science, 7007, pp. 1–59.

[Heck & Zaidman 2018] Heck, P., Zaidman, A. (2018). A systematic literature review on quality

criteria for agile requirements specifications. Software Quality Journal 26(1):127–160.

[Hevner et al. 2004] Hevner, A.R., March S.T., Park, J., Ram, S. (2004). Design science in

information systems research. MIS Quarterly 28(1), 75–105.

[Hong et al. 1986] Hong, J., Mozetic, I. and Michalski, R.S. (1986). AQ15: Incremental learning of

attribute-based descriptions from examples, the method and user’s guide. Report ISG 85-5, UIUCDCS-F-
86-949, Department of Computer Science, University of Illinois at Urbana-Champaign.

[Hooks 1993] Hooks, I. (1993). Writing good requirements. Proceedings of the 3rd NCOSE
International Symposium, vol. 2, pp. 1–12.

[Huang et al. 2015] Huang, L., Ng, V., Persing, I., Chen, M., Li, Z., Geng, R., Tian, J. (2015).
AutoODC: Automated generation of orthogonal defect classifications. Automated Software Engineering
22(1): 3–46.

[Hussain et al. 2007] Hussain, I., Ormandjieva, O., Kosseim, L. (2007). Automatic quality assessment

of SRS text by means of a decision-tree-based text classifier. Proceedings of the Seventh International
Conference on Quality Software (QSIC 2007), Portland, OR, 11-12 Oct. 2007, pp. 209–218.

[Hussain et al. 2008] Hussain, I., Kosseim, L., Ormandjieva, O. (2008). Using linguistic knowledge to

classify non-functional requirements in SRS documents. Proceedings of the International Conference on
Application of Natural Language to Information Systems, NLDB 2008, London, UK, June 24-27 2008.
Springer Lecture Notes in Computer Science, 5039, pp. 287–298.

[IEEE 1998] IEEE Std 830-1998. IEEE Recommended Practice for Software Requirements

Specifications (http://ieeexplore.ieee.org/iel4/5841/15571/00720574.pdf).

[IEEE Computer Society 2014] IEEE Computer Society. (2014). SWEBOK Guide to the Software

Engineering Body of Knowledge, Version 3.0. (http://www.computer.org/portal/web/swebok).

[INCOSE 2012] International Council on Systems Engineering (INCOSE), Requirements Working
Group. (2012). Guide for Writing Requirements.
(http://www.incose.org/ProductsPublications/techpublications/GuideRequirements).

[ISO/IEC 2007] ISO/IEC 25030:2007. Software engineering — Software Product Quality

Requirements and Evaluation (SQuaRE) — Quality requirements
(http://www.iso.org/iso/catalogue_detail.htm?csnumber=35755).

[James 1999] James, L. (1999). Providing Pragmatic Advice On How Good Your Requirements Are -

The Precept ‘Requirements Councillor’ Utility. Proceedings of the 9th INCOSE International
Symposium, Brighton, England, 6–11 June 1999, pp. 1427–1430.

[Jani & Islam 2012] Jani, H., Islam, A. (2012). A Framework of Software Requirements Quality

Analysis System using Case-Based Reasoning and Neural Network. (2012). Proceedings of the 6th
International Conference on New Trends in Information Science and Service Science and Data Mining
(ISSDM), Taipei, 23-25 Oct. 2012, pp. 152-157.

[Kasser et al. 2006] Kasser, J.E., Scott, W., Tran, X.L., Nesterov, S. (2006). A Proposed Research

Programme for Determining a Metric for a Good Requirement. The Conference on Systems Engineering
Research, Los Angeles, California, USA, 2006.

[Kiyavitskaya et al. 2008] Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M. (2008). Requirements for

tools for ambiguity identification and measurement in natural language requirements specifications.
Requirements Engineering 13(3):207-239.

[Ko et al. 2007] Ko, Y., Park, S., Seo, J., Choi, S. (2007). Using classification techniques for informal

requirements in the requirements analysis-supporting system. Information and Software Technology
49(11-12):1128–1140.

 29

[Kohavi 1995] Kohavi, R (1995). A study of cross-validation and bootstrap for accuracy estimation

and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence IJCAI-95 (Montreal, Quebec, Canada, August 20–25, 1995), vol. 2, pp. 1137–1143.

[Loucopoulos & Karakostas 1985] Loucopoulos, P., Karakostas, V. (1985). Systems Requirements

Engineering. New York: McGraw-Hill.

[Lucassen et al. 2016] Lucassen, G., Dalpiaz, F., Van Der Werf, J.M., Brinkkemper, S. (2016).
Improving agile requirements: the Quality User Story framework and tool. Requirements Engineering
21(3):383-403.

[Magee & Tripp 1997] Magee, S., Tripp, L.L. (1997). Guide to software engineering standards and

specifications. Boston: Artech House.

[Major & Mangano 1995] Major, J.A. and Mangano, J.J. (1995). Selecting among rules induced from

a hurricane database. Journal of Intelligent Information Systems 4(1):39–52.

[Marsick & Volpe 1999] Marsick, V.J., Volpe, M. (1999). (Eds.). Informal learning on the job. San
Francisco: Berrett-Koehler Publishers.

[Merton 1968] Merton, R. (1968). On sociological theories of the middle range. In: Social Theory and
Social Structure, enlarged edition. New York: The Free Press, 1968, pp. 39–72.

[Mich et al. 2004] Mich, L., Franch, M., Inverardi, P.L.N. (2004). Market research for requirements

analysis using linguistic tools. Requirements Engineering 9(1):40-56.

[Moreno et al. 2016] Moreno, V., Génova, G., Parra, E., Fraga, A. (2016). Metrics obtained with the

RQA tool from a set of 1035 requirements provided by INCOSE Requirements Working Group. July 2016
(available at https://gonzalogenova.files.wordpress.com/2020/02/incose-rqa-20-metrics-1035-
requirements.pdf).

[Otero et al. 2010] Otero, C.E., Dell, E., Qureshi, A., Otero, L.D. (2010). A quality-based requirement

prioritization framework using binary inputs. Proceedings of the 4th Asia International Conference on
Mathematical/Analytical Modelling and Computer Simulation, Kota Kinabalu, Malaysia, 26-28 May
2010, pp. 187–192.

[Ott 2013] Ott, D. (2013). Automatic requirement categorization of large natural language

specifications at Mercedes-Benz for review improvements. Requirements Engineering: Foundation for
Software Quality. Proceedings of the 19th International Working Conference, REFSQ 2013, Essen,
Germany, April 8-11, 2013. Springer Lecture Notes in Computer Science, 7830, pp. 50–64.

[Parra et al. 2015] Parra, E., Dimou, C., Llorens, J., Moreno, V. and Fraga, A. (2015). A methodology

for the classification of quality of requirements using machine learning techniques. Information and
Software Technology 67:180–195.

[Popescu et al. 2008] Popescu, D., Rugaber, S., Medvidovic, N., Berry, D.M. (2008). Reducing

Ambiguities in Requirements Specifications via Automatically Created Object-Oriented Models.
Proceedings of the 14th Monterey Workshop on Requirements Analysis. Monterey, CA, USA, September
10-13 2007. Springer Lecture Notes in Computer Science, 5320, pp. 103-124.

[Quinlan 1986] Quinlan, J.R. (1986). Induction of Decision Trees (ID3 algorithm). Machine Learning
1(1):81–106.

[Quinlan 1993] Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Francisco: Morgan
Kaufmann.

[Rashwan 2015] Rashwan, A. (2015). Automated Quality Assurance of Non-Functional Requirements

for Testability. Masters thesis, Concordia University, Montréal, Québec, Canada, April 2015.

[Reuse Company 2016] The Reuse Company. (2016). RQA Requirements Quality Analyzer
(http://www.reusecompany.com/requirements-quality-analyzer).

[Robledano et al. 2016] Robledano, J., Moreno, V., Pereira, J.M. (2016). Aproximación experimental

al uso de métricas objetivas para la estimación de calidad cromática en la digitalización de patrimonio

documental gráfico. Revista Española de Documentación Científica 39(2):e128.

30

[Rosenberg & Linda 2001] Rosenberg, L.H., Linda, H. (2001). Generating High Quality

Requirements. Proceedings of the AIAA Space 2001 Conference and Exposition, AIAA Paper 2001-
4524. American Institute of Aeronautics and Astronautics, Albuquerque, NM, August 28-30, 2001.

[Russell & Norvig 2003] Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern

Approach (2nd ed.). Englewood Cliffs, NJ: Prentice Hall.

[Sardinha et al. 2013] Sardinha, A., Chitchyan, R., Weston, N., Greenwood, P., Rashid, A. (2013).
EA-Analyzer: Automating conflict detection in a large set of textual aspect-oriented requirements.
Automated Software Engineering 20(1):111–135.

[Schapire 1990] Schapire, R.E. (1990). The strength of weak learnability. Machine Learning
5(2):197–227.

[Siahaan & Umami 2011] Siahaan, D., Umami, I. (2011). Natural Language Processing for Detecting

Forward Reference in a Document. IPTEK, The Journal for Technology and Science 22(4):138–142.

[Terzakis & Gregory 2016] Terzakis, J., Gregory, S. (2016). RAMP: Requirements Authors Mentoring

Program. Proceedings of the 24th International Requirements Engineering Conference (RE 2016),
Beijing, China, September 12-16 2016, pp. 323–328.

[Thakurta 2013] Thakurta, R. (2013). A framework for prioritization of quality requirements for

inclusion in a software project. Software Quality Journal 21(4):573–597.

[The Standish Group 2015] The Standish Group. (2015). Chaos Report

(http://www.standishgroup.com/).

[Thitisathienkul & Prompoon 2015] Thitisathienkul, P., Prompoon, N. (2015). Quality Assessment

Method for Software Requirements Specifications Based on Document Characteristics and Its Structure.
Proceedings of the Second International Conference on Trustworthy Systems and Their Applications
(TSA 2015), Hualien, Taiwan, July 8-9 2015, pp. 51–60.

[Turk 2006] Turk, W. (2006). Writing requirements for engineers. IET Engineering Management
16(3):20–23.

[Wang et al. 2013] Wang, Y., Gutiérrez, I.L.M., Winbladh, K., Fang, H. (2013). Automatic Detection

of Ambiguous Terminology for Software Requirements. In Natural Language Processing and Information
Systems, Proceedings of the 18th International Conference on Applications of Natural Language to
Information Systems, NLDB 2013, Salford, UK, June 19-21, 2013. Springer Lecture Notes in Computer
Science, 7934, pp. 25-37.

[Weiss & Indurkhya 1998] Weiss, S.M., Indurkhya, N. (1998). Predictive data mining: a practical

guide. San Francisco: Morgan Kaufmann.

[Wieringa 2014] Wieringa, R. (2014). Design Science Methodology for Information Systems and

Software Engineering. New York: Springer.

[Wieringa & Daneva 2015] Wieringa, R., Daneva, M. (2015). Six strategies for generalizing software

engineering theories. Science of Computer Programming 101:136-152.

[Wilson et al. 1997] Wilson, W.M., Rosenberg, L.H., Hyatt, L.E. (1997). Automated Analysis of

Requirement Specifications. Proceedings of the 19th International Conference on Software Engineering-
ICSE’97, May 17-23, 1997, Boston, Massachusetts, USA, pp. 161-171.

[Witten & Frank 2000] Witten, I.H. and Frank, E. (2000). Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations. San Francisco: Morgan Kaufmann.

[Wolpert 1992] Wolpert, D.H. (1992). Stacked generalization. Neural Networks 5(2):241–259.

[Zhang et al. 2007] Zhang, Y., Harman, M., Mansouri, S. (2007). The Multi-Objective Next Release

Problem. Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO
‘07), London July 7-11, 2007, pp. 1129-1137.

31

APPENDIX I – Description of quality metrics

For a more complete description and justification of the metrics, see our previous
works [Génova et al. 2013, Parra et al. 2015].

Morphological

Paragraphs The requirement should not be expressed in too many paragraphs to avoid over-
specification, redundancy of information and expression of various needs in the
same requirement.

Words The requirement should not have an excessive number of words to avoid the same
problems related to size.

Readability Readability measures the degree of difficulty to read a text, based on average
syllables/characters per word and average words per sentence. Bad readability may
cause confusion.

Punctuation Measured as the number of characters between punctuation marks. Incorrect
punctuation hinders the readability of the requirement.

Lexical

Connectors Number of copulative-disjunctive connectors in the requirement. Using multiple
connectors may indicate different needs in the same requirement and therefore
compromise the atomicity.

Negative Negative expressions can make the requirement hard to understand.

Control-flow The requirement should avoid pseudocode and control-flow expressions to avoid
specifying the solution to the problem.

Implicit The requirement should be explicit, avoid the use of personal pronouns.

Ambiguous Using ambiguous expressions may render the requirement difficult to understand.

Incomplete Sentences such with incomplete enumerations (‘etc.’, ‘not limited to’, ‘as a
minimum’) demonstrate the requirement has not a clear scope or it is not atomic.

Speculative The use of speculative expressions (‘enough’, ‘sufficient’, ‘approximately’, etc.)
may indicate that the real need of the requirement is not clear.

Rationale Avoid justifications in the requirement.

Design The requirement should focus on a necessity instead of expressing a solution.

Analytical

Imperative The requirement should have at least one imperative verb.

Conditional The requirement should be written in assertive way.

Passive voice The use of verbs in passive voice may hinder the understanding of the requirement.

Domain concepts A large number of domain concepts used in the same requirement can indicate
over-specification.

Domain verbs Too many domain verbs may indicate that the requirement has expressed too many
needs.

