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Abstract 

Context: It is already common to compute quantitative metrics of requirements to 
assess their quality. However, the risk is to build assessment methods and tools that are 
both arbitrary and rigid in the parameterization and combination of metrics. 
Specifically, we show that a linear combination of metrics is insufficient to adequately 
compute a global measure of quality. 

Objective: In this work we propose to develop a flexible method to assess and 
improve the quality of requirements that can be adapted to different contexts, projects, 
organizations and quality standards, with a high degree of automation. 

Method: The domain experts contribute with an initial set of requirements that they 
have classified according to their quality, and we extract their quality metrics. We then 
use machine learning techniques to emulate the implicit expert’s quality function. We 
provide also a procedure to suggest improvements in bad requirements. 

Results: We compare the obtained rule-based classifiers with different machine 
learning algorithms, obtaining measurements of effectiveness around 85%. We show as 
well the appearance of the generated rules and how to interpret them. 

Conclusion. The method is tailorable to different contexts, different styles to write 
requirements, and different demands in quality. The whole process of inferring and 
applying the quality rules adapted to each organization is highly automated.  
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1. Introduction: requirements quality

Requirements Engineering is a “systematic process of developing requirements 
through an iterative co-operative process of analyzing the problem, documenting the 
resulting observations in a variety of representation formats, and checking the accuracy 
of the understanding gained” [Loucopoulos & Karakostas 1985]. Requirements 
engineers are the professional specialists who elicit and write the requirements, and as 
such they are often called also ‘authors of requirements’ or even ‘requirements authors’ 
[INCOSE 2012, Terzakis & Gregory 2016, Gregory & Terzakis 2017]. Organizations 
developing software for critical sectors like aerospace, automotive, and medical systems 
need to apply process requirements coming from different sources: industrial standards, 
customer-provided requirements, and procedures from internal quality management 
systems [Eito-Brun & Amescua 2017]. As it has been often pointed out [Brooks 1987, 
The Standish Group 2015, IEEE Computer Society 2014], most of the defects in the 
delivered software originate in a deficient requirements analysis, and they are generally 
the most difficult and costly to repair [Fanmuy et al. 2011]. That is why it is of major 
importance to provide this field with engineering discipline, particularly by means of 
quality controls since the very beginning of the process. If we do not demand that the 
requirements meet certain quality criteria, then it will be more difficult to search for 
quality in later development phases.  

Since the very beginning of quality measurement in requirements engineering 
[Wilson et al. 1997], researchers have found that the need of communication among all 
stakeholders requires that the privileged form to express requirements is natural 
language, as opposed to formal languages that are more or less inaccessible, mainly to 
clients. Therefore, the use of linguistic techniques and tools may perform a crucial role 
in providing support for requirements analysis [Mich et al. 2004] and, in particular, in 
order to obtain quality metrics. Besides, the large quantity of requirements in many 
projects, as well as the different roles involved in their specification (users or clients, 
analysts, designers, developers, testers, etc.), recommend the use of guides [Hooks 
1993, Magee & Tripp 1997, Rosenberg & Linda 2001, Alexander & Stevens 2002, Turk 
2006, Bøegh 2008] and standards [ESA 1995, IEEE 1998, ISO/IEC 2007, INCOSE 
2012] to achieve high quality from the start.  

In order to obtain quality metrics, we must first define what we understand as good 
or bad quality of a requirement or set of requirements. In a previous work we have 
distinguished between qualitative desirable properties of requirements, dependent on 
subjective judgment, and quantitative measurable indicators, based on objective 
characteristics of requirements [Génova et al. 2013]. We synthesized the different lists 
of desirable properties that can be found in the literature in three hierarchical levels:  

� First level: validability, verifiability and modifiability. 
� Second level: completeness, consistency, understandability, unambiguity, 

traceability and abstraction; or, more synthetically, CCC (completeness, 
consistency, correctness). 

� Third level: precision and atomicity. 
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These properties depend on subjective judgment, which does not mean that they are 
arbitrary, but that they are not easy to quantify. Therefore, we need to define a series of 
measurable indicators that are related with the qualitative properties we wish to 
evaluate. For example, we can use as an indicator the size of a requirement, measured 
by the number of words in its description: the size indicator affects the desirable 
properties of the requirement, particularly atomicity, and all the others through 
atomicity. Equally, we can measure the number of imperative verbal forms, the number 
of domain terms, the number of ambiguous expressions, and so on. In this work we 
consider only metrics related to correctness of individual requirements, leaving global 
properties of the set (i.e. consistency and completeness) for future research. 

Summing up, we can compute a set of quantitative metrics of textual requirements, 
and through them we can assess the quality of requirements. However, the risk of this 
approach is to build assessment methods and tools that are both arbitrary in the 
parameterization of metrics and rigid in the combination of metrics to evaluate the 
different properties. This is why we propose in this work to develop a flexible 

assessment method that can be adapted to different contexts, with a high degree of 
automation. The method consists basically in the emulation of the experts’ judgment on 
quality through artificial intelligence techniques: first, obtain the expert’s implicit 
quality function through machine learning; and, second, apply this function to 
automatically assess the quality of textual requirements. 

Our approach to emulate the experts’ judgment, as explained later in detail, is based 
on well-known machine learning techniques: we have a computer tool learn from a 
previous human-made classification of requirements according to their quality. 
Therefore, our work’s intent is not to improve machine learning techniques, but rather 
to devise a novel application to the field of requirements quality assessment. 

The rest of the paper is structured as follows. Section 2 reviews the related work on 
automatic measurement and improvement of requirements quality. Section 3 describes 
the research process we have followed for designing our solution approach. Section 4 
justifies the need for the flexible assessment of requirements quality in different 
contexts, where the experts’ judgment on quality is the best starting point to satisfy the 
needs and peculiarities of each project and organization. Section 5 shows that the 
regions of good and bad quality in the hyperspace of requirements metrics is not 
adequately modeled through a linear combination of metrics, but rather demand a more 
refined computation that could be solved with a versatile combination of rectangular 
hyper regions. Section 6 explains those well-known machine learning techniques that 
constitute the fundamentals of our method to build an automatic rule-based classifier 
that solves the problem of computing the concrete intervals for each metric and the 
combination of intervals of different metrics. Section 7 describes the initial data set 
from which a concrete set of rules has been generated, as well as the experiments 
performed to validate the rules, together with their results in effectiveness and 
efficiency. Section 8 analyzes the appearance of the obtained rule-based classifiers, and 
how to interpret the rules. Section 9 complements the flexible assessment of quality 
with a procedure to suggest improvements in the requirements that are classified with 
bad quality, providing a mathematical formulation of the resulting optimization 
problem, and application examples. Sections 10 and 11 discuss the potential weaknesses 
of our work, as well as the alleged generalizability of our approach. Finally, Section 12 
summarizes our main contributions and the opportunities we envision for future 
research. 
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2. Related work 

 

The literature on the definition of requirements quality is extensive. A recent 
systematic literature review on quality criteria for requirements can be found in [Heck 
& Zaidman 2018], where the authors summarize 28 different quality criteria for agile 
requirements specifications and compare them with those from traditional requirements 
engineering. Our work is based on our own previous systematization of quality criteria 
in three hierarchical levels of qualitative desirable properties (see the Introduction) and 
18 quantitative measurable indicators (metrics) shortly described in Appendix I. See an 
extensive description of both criteria and metrics in [Génova et al. 2013] and [Parra et 
al. 2015]. This hierarchical arrangement has been the ground for the implementation of 
the Requirements Quality Analyzer (RQA) [Reuse Company 2016], which is the tool 
we use to extract the requirements metrics that feed, first, the learning algorithms, and 
second, the automatic rule-based classifier that assess the quality of new requirements. 

Recent research on automation in requirements quality (still without artificial 
intelligence techniques) has progressed in different directions. Some works have been 
focused on the detection of ambiguities, inconsistencies and conflicts [Chantree 2006, 
Popescu et al. 2008, Kiyavitskaya et al. 2008, De Sousa et al. 2010, Wang et al. 2013, 
Sardinha et al. 2013, Ali et al. 2013, Aceituna et al. 2014]. Other works have developed 
algorithmic methods to measure the quality of more structured requirements in the 
shape of user stories [Lucassen et al. 2016]. There have been also projects aimed at the 
classification of requirements by topic, in order to assist reviewers in the evaluation of 
consistency and completeness of requirements [Ko et al. 2007, Ott 2013]. The detection 
of forward references to not yet defined terms has also been used as a measure of both 
individual quality of single requirements and global quality of requirements documents 
[Siahaan & Umami 2011]. Similar use of textual patterns, even if not directly focused 
on quality, has been applied to the classification of functional and non-functional 
requirements [Cleland-Huang et al. 2006, Cleland-Huang et al. 2007, Hussain et al. 
2008]. Other studies have developed quantitative methods to evaluate the quality of 
requirements, with the goal of obtaining a prioritization of requirements that demand 
improvement [Fabbrini et al. 2001, Bucchiarone et al. 2005, Berry et al. 2006, Kasser et 
al. 2006, Otero et al. 2010, Génova et al. 2013, Thakurta 2013, Thitisathienkul & 
Prompoon 2015]. In general, however, all these methods are not tailorable to different 
contexts (see Section 4) or they are limited in the way they combine the different 
metrics (see Section 5); therefore, we think our method is really novel in this respect. 

Artificial intelligence techniques, and specifically machine learning algorithms to 
emulate human judgment, have not been so extensively applied in this field. With a 
similar goal, but purporting the use of different techniques, there was a proposal 
(without implementation) to use neural networks and case-based reasoning to improve 
the quality of requirements [Jani & Islam 2012]. More akin to our research is the 
application of machine learning techniques to build a classifier that detects ambiguities 
in textual requirements [Hussain et al. 2007], a very good work that, to our knowledge, 
has had however no direct continuation; moreover, their focus was only on the 
ambiguous expression of requirements, whilst ours considers many more aspects of 
quality, such as the use of domain vocabulary, the size of requirements, the structure of 
sentences, and so on. The assurance of testability in non-functional requirements 
[Rashwan 2015] is another particular concern of requirements quality that has been 
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targeted with machine learning techniques (in this case, employing support vector 
machines). 

Other works have applied machine learning to detect software defects under the 
influential Orthogonal Defect Classification (ODC) framework, developed initially at 
IBM for software defect classification and analysis [Huang et al. 2015]; this work is 
indeed related to the quality of software, but not of textual requirements. Less related to 
quality, but still using machine learning, is a research aimed at the identification and 
annotation of requirements in user-generated content [Dollmann & Geierhos 2016]. 
Unsupervised pattern-based machine learning has also been used to determine 
requirements clusters for optimal definition of software development sprints in the 
context of agile software development [Belsis et al. 2014]. 

Search-Based Software Engineering [Harman & Jones 2001, Harman et al. 2012] is 
very apt for the application of metaheuristic search techniques, such as genetic 
algorithms, simulated annealing and machine learning, among others. It has been 
successfully applied to solve, for example, the Multi-Objective Next Release Problem 
(MONRP) [Zhang et al. 2007], which is a good example of a Feature Subset Selection 
search problem. 

 
3. Research Methodology  

 
As it is well known, in the last decades of the 20th century a growing conviction 

consolidated: the scientific method developed for studying and analyzing natural 
phenomena was not apt to understand the design and construction of human artifacts, 
i.e. the products of engineering and technology [Génova et al. 2012]. The required 
method to produce an artifact should not start with the observation of phenomena, but 
rather with the identification of a need, followed by artifact construction and evaluation 
[Hevner et al. 2004]. This emerging field of construction-oriented research was called 
design science, the scientific study of design, and it was based on two assumptions: 
first, the design of artifacts can be a sophisticated task that contributes to the 
development of scientific knowledge; second, the scientific design of artifacts requires a 
specific research method [Frank 2006].  

According to these guidelines, we succinctly describe now the research methodology 
we have followed in this work, with references to the sections of the paper where we 
deal more in-depth each aspect of the methodology. We also enumerate some basic 
assumptions in our research. 

 
Identification of a need: problem statement and explicitation of goals. Problem: 

the perceived quality of requirements is not universal, but highly subjective and context-

dependent. The demanded quality is not the same in large projects as in small ones, in 
safety-critical transportation or medical systems as in sheer news-displaying systems. 
Therefore, measuring quality based on universal rules is not enough; it should be based, 
instead, on the experts’ interpretation of demanded quality in each different context, 
taking into account the needs and peculiarities of each project and organization. 

However, since the involvement of domain experts is very costly and, at the same 
time, the automatic measurement of quality has demonstrated its partial success, we 
propose in this project the following Goal: to develop a tool to automatically emulate 

the experts’ judgment on requirements quality and automatically provide 

recommendations to improve it. In order to achieve a quality assessment that is really 
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tailored to a particular context, the emulation is performed based on previous expert 
quality judgments in that same context and organization. 

The problem and the goals are described more in-depth in Sections 4 and 5. 
 
Artifact construction. The constructive part of this project produces two different 

artifacts: first, an automatic classifier of requirements according to their perceived level 
of quality (see Sections 6, 7 and 8); second, an automatic recommender of modifications 
to improve the quality of a requirement that has been judged deficient (see Section 9). A 
high-level description of the construction process is also contained in Section 4. 

The automatic classifier operates on objective metrics obtained from the 
requirements. Each metric constitutes a dimension in a multidimensional hyperspace of 
metrics, where regions of good and bad quality can be identified (see Section 5), i.e. 
certain combination of metrics values that can be associated with a given quality level. 
The classifier consists in a quality function that discriminates those regions by 
computing different combinations of metrics that correspond to each region. 

Instead of defining an a priori quality function (e.g. based on universal definitions of 
quality), the procedure employs artificial intelligence techniques (machine learning) to 
learn and emulate the experts’ quality judgment, and build a quality function that is 
tailored to the particular context of application (see Section 6). This requires a previous 
training data set of requirements, extracted from a particular domain with its particular 
level of demanded quality, which the experts have manually classified according to their 
perceived quality. 

The automatic recommender operates on the same objective metrics obtained from 
the requirements, and it applies search-based software engineering principles to find a 
list of modifications, sorted according to the required effort to achieve them, so that the 
user can choose one that entails a real improvement and the defective requirement, once 
amended, can satisfy the quality function that emulates expert judgment (and 
presumably also the experts themselves). 

 
Artifact evaluation. The automatic classifier has been evaluated through stratified 

10-fold cross validation, which is a standard procedure in the field of machine learning. 
Specifically, the effectiveness of the classification is measured as its accuracy, which is 
a standard performance metric consisting in the percentage of agreement between the 
experts’ classification and the automatic classifier, i.e. the ratio of true positives plus 
true negatives to all existing training instances. The initial data set we have used in our 
experiments is a corpus of 1035 textual software requirements from the domain of 
aerospace industry, together with their quality classification, provided by experts of the 
INCOSE’s Requirements Working Group. The classifier obtained reaches more than 
85% in accuracy, which qualifies it as reasonably good in order to provide useful advice 
to requirements authors. When the training set is imbalanced, other metrics such as 
precision, recall and F-measure are more meaningful than accuracy; therefore, even if 
our data set is very well balanced, we define all these metrics (see Section 6) and 
provide their results for a more complete picture (see Section 7). 

The automatic recommender, in contrast, has not undergone a full-blown evaluation 
of its effectiveness. However, we consider that it is useful to present the recommender 
as a complement to the classifier, since it offers concrete suggestions to achieve the 
desired quality for defective requirements (see Sections 8 and 9). 
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Basic assumptions. We think it is useful to enumerate some basic assumptions in 
our research. Checking that they are realistic assumptions strengthens our position 
(some may look too evident to some readers, but not to others): 

 
� Requirements are written in natural language. 
� Requirements are stored in electronic format, in individualized units. 
� The text of the requirements is electronically processable. 
� Requirements should adhere to recognized style guides and standards; departing 

from this rule is considered a defect. 
� Requirements must use the domain vocabulary; departing from this rule is 

considered a defect. 
� There exists a definition for the domain vocabulary, in the form of an ontology. 
� There exists a tool (in our case, RQA, but it could be a different one) by means 

of which we can extract a certain number N of objective requirements metrics, 
so that each requirement can be represented as a vector in an N-dimensional 
hyper-space.  

� Points representing requirements with similar quality will be closely situated in 
this hyperspace, forming more or less compact clusters or regions in the cloud of 
requirements; these groupings form the basis for the extraction of patterns of 
good or bad quality. 

 
4. Motivation: flexible assessment of requirements quality 

 
Measuring and classifying is the first step towards automation. As we have stated in 

a previous work, we can measure certain objective metrics on textual requirements, and 
through them we can obtain the desired evaluation of requirements quality [Génova et 
al. 2013]. However, the perceived quality of requirements is not universal, but highly 
subjective and context-dependent. For example, if we consider the typical distinctions 
between user requirements and software requirements [ESA 1995], it is clear that they 
demand different writing styles: user requirements, which are client-oriented, must be 
perfectly understandable to stakeholders and solution-independent; software 

requirements, instead, may be allowed to mention terms that, from a user’s viewpoint, 
are too close to design. Therefore, performing automatic measures based on fixed 
policies is not enough.  

One of the most decisive factors for a good assessment of requirements quality must 
be the involvement of domain experts, since their personal (subjective) evaluation is 
strongly linked to the needs and peculiarities of the project and the organization. Today, 
the most widely used techniques for the analysis of requirements that automatically 
compute quality metrics do not take into account the experts’ interpretation of quality 
and quality levels of requirements in each different context, but rather rely on general 
rules of quality. Besides, these techniques are not tailorable, they are not flexible and 
adaptable to different projects and organizations; they are, therefore, rather limited. 

In this work we present a method for the evaluation of the quality of requirements in 
an automatic way, according to the quality rules and criteria employed, more or less 
implicitly, by the domain experts in the organization, without need of a previous and 
explicit definition of those criteria, which besides could be a very costly task. The 
objective of this method is to emulate the experts’ judgment on the quality of new 
requirements that are entered in the system. In order to achieve this goal, the experts 



  8 
 

must contribute with an initial set of requirements that they have previously classified 
according to their quality, and that they have chosen as appropriate for establishing the 
demanded standard quality (this implies that the initial set must include requirements 
classified in all quality levels; in other words, including only good requirements is not 
enough). For each of the requirements in the given set, we extract metrics that quantify 
the various dimensions of quality already presented in previous works [Génova et al. 
2013, Parra et al. 2015].  

We then use machine learning techniques (namely Rule Inference) to emulate the 
implicit expert’s quality function, i.e. the value ranges for the metrics, as well as the 
way the metrics are combined, to yield the interpretation of requirements quality by the 
domain expert. The result will be a computable formula made of simple arithmetic and 
logical operations. The advantage of using a combination of rules, in contrast to neural 
networks and other techniques [Major & Mangano 1995], is that, even if the complete 
formula need not be simple, each component rule is easily interpretable by the experts 
and other users, so that the rule can be edited if necessary. 

Obviously, the expert does not apply a computable formula to judge on the quality of 
requirements. Moreover, the expert’s judgment can be based on metrics that are 
different from those we use, or not based on metrics at all. However, we assume (this is 
our working hypothesis) that we can learn and emulate, at least to a certain degree, the 
expert’s ‘educated taste for quality’ [Génova & González 2016] with our method. We 
don’t expect machine learning will be apt to tell us what ‘Quality’ is, which metrics are 
adequate and representative of requirements quality, or how to measure them. But we 
do think that, once those metrics have been proposed and defined, machine learning can 
help us to tell whether and how they are related to the expert’s judgment, and what 
computable formula has the best fit. 

More formally, our hypothesis is that an automatic rule-based classifier obtained 
through machine learning algorithms, fed with training data extracted from a particular 
domain and a particular level of demanded quality, can emulate the expert’s judgment 
on requirements quality, with a level of effectiveness enough to provide useful advice to 
requirements authors. The details of the hypothesis are explained in Section 6, and the 
experimental results that support our hypothesis (more than 85% in percentage of 
agreement) are presented in Section 7. See also the discussion about the goodness of 
these results in Section 10. 

This method has the advantage of being tailorable to different situations, different 
domains, different styles to write requirements, and different demands in quality. In 
order to achieve this, we need a tool that computes quality metrics on textual 
requirements, and the initial set of requirements previously classified by the expert, so 
that we can feed the learning algorithms. Of course, the method requires a significant 
investment in order to obtain and tune the quality metrics tool, and to obtain a 
sufficiently large set of labeled requirements pertaining to the domain, so that machine 
learning algorithms can be assured to produce useful and trustworthy automatic 
classifiers. 

The main contribution of our work, then, is a method to build a classifier that, using 
conventional machine learning techniques, learns from the information provided by the 
expert of that particular organization, and that adapts itself to best emulate the expert’s 
judgment; above all, the method generates human-readable rules from the expert’s tacit 
knowledge, which can be reworked and improved. Besides, we can provide automatic 
suggestions to improve the requirements, by computing the quality rules that could be 
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satisfied to change a requirement from Bad to Good. We think the method will be useful 
in medium/large projects and organizations; small organizations, in contrast, will not 
benefit from it, since the payoff is probably not worth the necessary investment.  

The stakeholders that will directly benefit from the method are requirements authors, 
who will have a new tool at hand to achieve, with less effort, their own goal of 
improving requirements quality; their supervisors and the clients of the system are also 
indirect stakeholders that will benefit from any improvement in the quality of 
requirements. Requirements authors will have a tool to automatically assess the quality 
of the requirements they are writing, based on expert judgment adapted to the concrete 
working context; the tool will also provide concrete recommendations to improve the 
quality of requirements that are found to be deficient. 

For the demonstration of the reliability of the proposed method, we examine a set of 
requirements provided by the INCOSE (International Council on Systems Engineering). 
This set of requirements is protected by confidentiality, but we provide a table [Moreno 
et al. 2016] with the metrics we extracted with the RQA tool, Requirements Quality 

Analyzer [Reuse Company 2016], together with the classification given by the experts, 
without disclosing the text of the requirements themselves. In this case the classification 
of quality is binary (Good, Bad), not because we demanded it to be so, but because it 
was what the experts provided. In any case, the method is independent of the number of 
quality levels: it will yield as many levels as they are present in the initial set. 

 
5. The problem: quality functions in the hyperspace of metrics 

 
Since the quality of requirements is multi-facetted, that is, it consists of different 

properties that are not directly correlated to each other (e.g. completeness, consistency, 
correctness), then measuring and improving quality by combining different metrics 
becomes a multi-objective problem that usually cannot be solved with the simplest 
methods (i.e. linear combinations of metrics). 

Suppose we classify requirements by their quality based on a single variable or 
metric, for example the ‘number of domain terms’ (NDT) used in the requirement. We 
can then formulate a simple rule to transform the metric into a quality level [Génova et 
al. 2013], such as “if NDT = 0 then Bad, else Good”. The rule can be easily refined to 
account for more quality levels (Bad, Dubious, Good), using more intervals in the value 
of the metric, such as “if NDT <= 0 then Bad, else if NDT > 4 then Dubious, else 
Good” (see Figure 1). For simplicity, since the argument is easily generalizable to 
whatever number of quality levels, we will assume in the rest of the paper that the 
number of quality levels is only two (Bad, Good), whilst the number of metric intervals 
is open: “if NDT <= 0 then Bad, else if NDT > 4 then Bad, else Good”.  

 
 Good      
Quality Dubious       
 Bad       
  0 1 5 
   NDT  

Fig. 1 A simple rule to transform a metric such as the number of domain terms (NDT) into a quality 
level 

 
Now, suppose we want to combine two different metrics to assign a quality level, 

such as NDT and ‘size in words’ (SW). We can represent both variables on the X-Y 
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plane, where each point is a requirement and the color is the quality level. The simplest 
way to discriminate quality within the cloud of points is by a linear combination of the 
variables, i.e. the traditional method of weighted average of metrics: “if (a*NDT + 
b*SW) <= L, then Bad, else Good”, where a, b and L are convenient values. When the 
cloud of points is naturally split in two regions of quality separated by a straight line, 
the values of a, b and L can be easily obtained with simple mathematical methods (see 
Figure 2). The method generalizes to any number of dimensions (metrics) that define a 
hyperspace of requirements split in two regions by a hyperplane. 

 

 
Fig. 2 Combination of two arbitrary metrics using a straight line to discriminate quality in the simplest 

case (white: Good quality, black: Bad quality) 
 
However, this simplicity is not usually the case when the variables present a more 

complex relationship with quality that can be very difficult to estimate a priori (see 
Figure 3). In these situations, a more convenient, yet simple way to combine the metrics 
is by means of a rectangular region: quality is Good inside the region, otherwise it is 
Bad. Note that the region could be open in one or more sides: “if NDT between [1, 4] 
and SW between [10, –] then Good, else Bad”. The method is also rather simple and 
generalizes to hyper-rectangular regions in the hyperspace of requirements. 

 

 
Fig. 3 Combination of two metrics using a single (open) rectangle to discriminate between Good 

(white) and Bad (black) quality 
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The most usual case in the combination of metrics, however, is not at all so simple, 

and the cloud of points is not easily discriminated by a single (hyper-) rectangle. In this 
situations we can still generalize the procedure to a combination of regions that can be 
better adjusted to the cloud of points (see Figure 4), such as: “if NDT between [1, 3] and 
SW between [10, 30] then Good, else if NDT between [4, 7] and SW between [20, –] 
then Good, else Bad”. Note that the regions could be overlapping (requiring that they do 
not overlap could produce a worse adjustment of the rule, or a more complex rule with 
more rectangles). 

 

 
Fig. 4 Combination of two metrics using a combination of rectangular regions to discriminate between 

Good (white) and Bad (black) quality 
 
Summing up, the discrimination of regions by means of hyperplanes (Figure 2) is 

generally very inadequate, and the use of simple rectangular regions (Figure 3) is still 
insufficient. Instead, a combination of rectangular regions (Figure 4) is a versatile 
method when the different metrics employed present complex relationships manifested 
in the clustering of points. The higher the number of regions, the better the adjustment 
of the discriminating rule to the data set. However, computing the concrete intervals for 
each metric, i.e. the sizes of hyper-regions, becomes a difficult problem. This is where 
machine learning techniques prove particularly useful to generate the rules. 

 
6. Method: machine learning techniques 

 
The discrimination of requirements quality is achieved in this project by an 

automatic classifier that has been trained by means of machine learning in order to 
identify those hyper-regions of similar quality that have been explained in the previous 
section. Machine learning is a well-known subfield of computer science that evolved 
from the study of pattern recognition and computational learning theory in artificial 
intelligence, therefore we provide only a brief explanation. Machine learning explores 
the construction and study of algorithms that can learn from data, by building a model 

from example inputs in order to make data-driven predictions or decisions, rather than 
following strictly static program instructions [Bishop 2006]. On the other hand, Search-
Based Software Engineering is an approach of Software Engineering in which search-
based optimization is applied to software engineering [Harman & Jones 2001]; machine 
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learning, then, is one of the techniques that can be used to perform search-based 
software engineering. 

Machine learning techniques can be supervised or unsupervised [Russell & Norvig 
2003, Weiss & Indurkhya 1998]: 

 
� Supervised learning: the algorithm is presented with example inputs and their 

desired outputs, and the goal is to learn a general function that maps inputs to 
outputs.  

� Unsupervised learning: the inputs to the learning algorithm are given no output 
labels, leaving the algorithm on its own to find a structure or pattern in its input. 

 

 
Fig. 5 Format of the training instances used as input to the learning algorithm. Testing instances have 

the same format 
 
More specifically, supervised learning is the task of inferring a function from labeled 

training data, where each input is described by a vector of common attributes (see 
Figure 5). The training data consist of a set of training examples, each example 
consisting of an input object (in our case, the vector of quality metrics obtained from 
each textual requirement) and a desired output value (in our case, the requirement’s 
quality as judged by the expert). A supervised learning algorithm analyzes the training 
data and infers a generalized function, which can be used for classifying new inputs. 
The effectiveness of the automatic classifier obtained is then measured against the 
testing set, which has been previously segregated from the initial data, so that training 
and testing are performed with different data sets.  

The effectiveness (or performance) of the classification can be measured in different 
ways, each standard measurement having different properties. Let DS be the absolute 
number of instances in the data set; TP the number of ‘true positives’, TN the number of 
‘true negatives’, FP the number of ‘false positives’, and FN the number of ‘false 
negatives’. Obviously, DS = TP + TN + FP + FN. Then: 

 
� Accuracy A = (TP+TN)/DS is the ratio of true positive classifications plus true 

negative classifications to all existing instances, i.e. the percentage of agreement 
between the automatic classifier and the experts’ input classification.  

� Precision for positives Pp = TP/(TP+FP) is the ratio of true positive 
classifications to all positive classifications, i.e. the percentage of positive 
instances correctly classified as positive. Respectively, Precision for negatives is 
Pn = TN/(TN+FN). 

� Recall for positives Rp = TP/(TP+FN) is the ratio of true positive classifications 
to all relevant instances, i.e. the percentage of relevant instances correctly 
classified as positive. Respectively, Recall for negatives is Rn = TN/(TN+FP). 

� F-Measure for positives Fp = 2/(1/Pp+1/Rp) is the harmonic mean of Precision 
and Recall for positives, and F-Measure for negatives is Fn = 2/(1/Pn+1/Rn). 
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Accuracy is the most intuitive measurement, but it is also the weakest one when the 
data set is imbalanced (a naïve classifier giving always the answer ‘true’ would be 
perfectly useless, even if it would have a 99% accuracy in a data set with 99% positives 
and 1% negatives). Precision is better against false positives, and Recall is better against 
false negatives (respectively Precision and Recall for negatives). F-Measure considers 
both at the same time. In the next section we give the results of all these measurements. 

 
In terms of search-based software engineering, the optimization problem consists in 

finding a function of the quality metrics (a piecewise function defined by a set of rules), 
such that it minimizes the distance with the experts’ quality evaluation over the set of all 
requirements. This can receive the following mathematical formulation: 

� Let R be a set of textual requirements,	� = ���, … , �	
. 
� Let C be the quality classifications over the set of requirements, � = ���, … , �	
, 

such that � 	 ∈ �0, 1
 is the quality provided by the experts to requirement � , 
where 0 represents bad quality and 1 represents good quality. 

� Let M be a set of correctness metrics applied to requirements,	� = ���, … ,��
, 
such that ��: � → ℝ	(1 ≤ � ≤ �). 

 
Goal: 

 
Find a function �:	ℝ� → �0, 1
 such that it minimizes 
 

�|	� ��(�),… ,��(�)! − �
	

#�
| 

 
Among various machine learning techniques, rule induction (or rule inference) is a 

kind of supervised learning that process input training data and produce a set of IF-

THEN rules used to classify the new examples [Clark & Niblett 1989, Hong et al. 1986]. 
Two main strategies are commonly used: 

 
� Produce a decision tree and then extract its rules. 
� Generate the rules covering all the examples in a given class; exclude the 

covered examples and proceed with the next given class, until all classes are 
covered. 

 
The first strategy is implemented in the C4.5 system [Quinlan 1993], which extends 

the previous ID3 [Quinlan 1986]. Other algorithms such as PRISM [Cendrowska 1987] 
are based only on covering, whilst PART [Frank & Witten 1998] combines both 
strategies. 

These strategies present the following advantages to minimize the impact of 
unintentional errors in the expert’s classification of the quality of requirements used as 
training examples: 

 
� Robustness against noise due to errors, omissions or insufficient data. 
� Identification of irrelevant attributes. 
� Detection of absent attributes or knowledge gaps. 
� Extraction of expressive and easy to understand rules. 



  14 
 

� Possibility to interpret or modify the produced rules with aid of expert 
knowledge, or even to incorporate new rules inferred by the experts themselves 
[Major & Mangano 1995].  

 
In order to improve the effectiveness of the individual classifiers obtained by means 

of rule induction, ensemble methods construct a set of classifiers instead of a single one, 
and then classify new instances by taking a vote of their decisions (it can be a weighted 
vote, the mode of the votes, etc.) [Dietterich 1997]. The technique has two main 
variants: 

 
� Homogeneous classifiers are generated with the same learning algorithm 

[Dietterich 2000]. The main methods are Bagging [Breiman 1996] and Boosting 
[Schapire 1990].  

� Heterogeneous classifiers, instead, are generated with different learning 
algorithms. The most used method is Stacking (Stacked Generalization) 
[Wolpert 1992]. 

 
We performed experiments using the C4.5 and the PART algorithms, as well as these 

two algorithms enhanced through homogeneous classifiers (Bagging and Boosting). We 
explain the experiments in detail in the next section. 

 
Summing up, the whole process consists of two main stages: rule inference and rule 

application. The inference stage can be summarized in the following steps (see Figure 
6): 

 
1. Obtain the initial set of textual requirements. 
2. Classify requirements according to their quality, as judged by human experts. 
3. Extract quality metrics by means of an automated tool, in our case the RQA tool. 
4. Build the training and testing data for the supervised machine learning algorithm, 

combining the two previous outputs: each requirement is represented as a vector 
of quality metrics and human-judged quality level (see Figure 5). 

5. Launch the rule inference learning algorithm (in our case, run in the Weka tool) 
to obtain as output the automatic classifier, i.e. the function made of rules that 
maps requirements to quality levels, thus emulating the human experts; this step 
includes a standard validation of the classifier through testing data, providing the 
different effectiveness metrics mentioned before (accuracy, precision, recall, and 
F-measure).  

 

 
Fig. 6 Inference stage: obtaining the expert’s implicit quality function through machine learning 
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Once we have built a validated rule-based classifier, we can use it as input in the 

application stage to automatically classify new requirements as the emulated human 
experts would do (see Figure 7): 

 
6. Obtain a new set of textual requirements and extract their quality metrics. 
7. Classify the requirements using both the definition of the automatic rule-based 

classifier and the new requirements metrics as input to the Weka tool. 
 

 
Fig. 7 Application stage: emulating the expert’s judgment with the generated rule-based classifier 
 
Note that the classification of requirements is now automatic, which is the whole 

point of this research. But this classification is performed according to rules that have 
been extracted from training examples provided by experts. If the training examples 
were different, the automatic classification would be different, too. This is what makes 
the whole process tailorable to different contexts, different styles to write requirements, 
and different demands in quality, without need that the experts explicitly formulate their 
quality rules, and saving the effort required to do that. There is no gold quality standard, 
no universal rules that can be applied in every context. 

 
7. Description of the experiments and results in effectiveness and efficiency 

 

The initial data set we have used in our experiments is a corpus of 1035 textual 
software requirements from the domain of aerospace industry, together with their 
quality classification, provided by experts of the INCOSE’s Requirements Working 
Group. These are experienced requirements engineers and researchers, both from 
academy and industry, whose purpose is to advance the state of the practices, education 
and theory of requirements engineering and its relationship to other systems engineering 
functions [INCOSE 2012]. The requirements were originally classified by these experts 
in two well-balanced levels: 545 requirements with good quality and 490 with bad 
quality. 

Next we automatically extracted quality metrics from the requirements with the RQA 
tool [Reuse Company 2016], using its standard out-of-the-box configuration. The set of 
18 quality metrics used in this project has been extensively described and justified in 
[Génova et al. 2013] and [Parra et al. 2015], so we give only a short description in 
Appendix I. As we mentioned before, the text of the requirements is confidential, 
therefore we provide a table [Moreno et al. 2016] only with the extracted metrics and 
the original quality classification. 

Based on this data set, we launched the six different learning algorithms (C4.5 and 
PART, in three variants each) to build the corresponding automatic classifiers. In order 
to estimate their effectiveness, we performed, as it is usual, a stratified 10-fold cross 
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validation [Kohavi 1995]. This means that the whole sample is randomly partitioned 
into 10 equal sized subsamples (folds) with the same proportion of good and bad 
requirements. Each fold is then used as a testing set, with the remaining 9 folds used as 
training set. The cross validation process is repeated 10 times, so that 10 different 
testing classifiers are obtained, with each of the 10 subsamples used exactly once as 
validation data. This standard method has the advantage that all instances are used for 
both training and testing, and each instance is used for validation exactly once. In other 
words, for each learning algorithm, a final classifier is obtained with training based on 
the whole data set, and its effectiveness is estimated through the average effectiveness 
of the 10 testing classifiers obtained with the 10-fold cross validation method.  

The experiments (generation of classifiers and estimation of effectiveness) were 
implemented in the popular Weka suite [Witten & Frank 2000], version 3.6.12, keeping 
its standard default parameter configuration. We show in Table 1 the results obtained in 
the effectiveness of the classification of both C4.5 and PART, as well as the enhanced 
versions of these two algorithms by means of the bagging and boosting techniques. As 
we have mentioned before, we give four different metrics of effectiveness (defined in 
the previous section): accuracy, precision, recall, and F-measure, respectively for 
positives (i.e. instances classified as Good) and for negatives (classified as Bad). 

 
Table 1 Effectiveness of the classifiers obtained with each algorithm, estimated through 10-fold cross 

validation (average accuracy, precision, recall and F-measure, respectively for positives on the left and 
negatives on the right) 
 

Algorithm C4.5 PART 
Bagging 

C4.5 

Bagging 

PART 

Boosting 

C4.5 

Boosting 

PART 

Average 

Accuracy 
82.51 85.31 85.12 86.18 87.25 86.57 

Average 

Precision 
83.2 81.7 85.7 84.9 85.2 85.0 86.8 85.5 86.9 87.6 86.8 86.3 

Average 

Recall 
83.7 81.2 86.6 83.9 86.8 83.3 87.0 85.3 89.2 85.1 87.9 85.1 

Average  

F-Measure 
83.4 81.5 86.1 84.4 86.0 84.1 86.9 85.4 88.0 86.3 87.3 85.7 

 
As it can be observed, PART is generally better than C4.5, Boosting is better than 

Bagging, and Bagging is better than the base algorithms without ensemble 
enhancement. Boosting C4.5 is finally the most effective algorithm in our experiments, 
peaking to 88% in the F-measure that combines precision and recall. 

Regarding the efficiency of the algorithms, Table 2 shows the time required by the 
rule learning process with the generation algorithms using the Weka suite. The 
algorithms have been executed on a computer with Windows 10 operative system on 
top of an Intel microprocessor Core i7-4770 to 3.40 GHz and a RAM capacity of 16 
GB. These values are interesting because of the necessity to regenerate the classifiers in 
new contexts (new projects, new quality constraints on the requirements, new computed 
values of the metrics, etc.). It can be noted that the enhancement by means of Bagging 
and Boosting requires more time than the base algorithms C4.5 and PART alone, as it 
would be expected. In any case, the differences are not so relevant, since the 
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regeneration of the rules will not be a frequent task. In fact, these generation times can 
be considered practically negligible, but it is important that we know that. 

 
Table 2 Efficiency of generation: time in seconds reported by Weka to generate the classifiers with 

the different learning algorithms 
 

Algorithm C4.5 PART 
Bagging 

C4.5 

Bagging 

PART 

Boosting 

C4.5 

Boosting 

PART 

Generation 

Time (s) 
0.17 0.09 0.28 0.84 0.32 0.90 

 
8. Analysis of the obtained rule-based classifiers 

 
The output of the learning algorithms has the appearance shown in Figures 8 and 9. 

C4.5 produces a decision tree, where branches express conditions, and leaves represent 
final decisions. In this example, the first leaf tells that the requirement is classified as 
Bad if it contains no design sentences and no domain verbs. This rule classifies 166 
instances as Bad, of which 4 instances have been wrongly classified, according to the 
original classification provided by the experts (i.e. the rule gives its precision in 
classifying instances; in this case, the first leaf has a precision of (166-4)/166=0.976). If 
that leaf is not reached, the evaluation proceeds down the decision tree. The classifier 
generated with our data produce a tree with 71 leaves (35 resulting Good, 36 resulting 
Bad). 

 
Design_sentences <= 0 

|   Domain_verbs <= 0: Bad (166/4) 

|   Domain_verbs > 0 

|   |   Flow_sentences <= 0 

|   |   |   Domain_verbs <= 1: Bad (91/6) 

|   |   |   Domain_verbs > 1 

|   |   |   |   Readability <= 7: Good (7/0) 

|   |   |   |   Readability > 7 

|   |   |   |   |   Conditional_mode <= 0 

|   |   |   |   |   |   Domain_verbs <= 2: Bad (37/2) 

|   |   |   |   |   |   Domain_verbs > 2 

|   |   |   |   |   |   |   Readability <= 10: Good (3/0) 

|   |   |   |   |   |   |   Readability > 10: Bad (6/1) 

|   |   |   |   |   Conditional_mode > 0: Good (3/0) 

|   |   Flow_sentences > 0: Good (8/0) 

… 

… 

 

Fig. 8 Appearance of the first lines of the output of the C4.5 rule learning algorithm 
 
On the other hand, PART produces a decision list made of rules with precedence. 

The first rule in the example tells that the requirement is classified as Bad if it contains 
no design sentences, no domain verbs, and no connectors. Again, this rule classifies 142 
instances as Bad, of which 1 instance has been wrongly classified. If the rule is not 
satisfied, the evaluation proceeds with the next rule. The classifier generated with our 
data produce a list of 54 rules (27 resulting Good, 27 resulting Bad). 
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Design_sentences <= 0 AND 

Domain_verbs <= 0 AND 

Connectors <= 0: Bad (142/1) 

 

Design_sentences <= 0 AND 

Flow_sentences <= 0 AND 

Text_length_(words) > 30: Bad (56/0) 

… 

… 

 

Fig. 9 Appearance of the first lines of the output of the PART rule learning algorithm 
 
Reaching a leaf in the first case (decision tree) or satisfying a rule in the second case 

(decision list) means the requirement, as represented by its metrics vector, has been 
enclosed within a region of defined quality (Good or Bad) in the hyperspace of 
requirements (see Section 5). When the application of the rules proceeds on, the rule 
that is finally satisfied, and the definition of the corresponding hyper-region, is more 
and more complex, due to the precedence of the previous rules. For example, the 
satisfaction of the second rule in Figure 9 implies certain intervals of values not only for 
the metrics Design_sentences, Flow_sentences and Text_length_(words), but also for 
Domain_verbs and Connectors in the first rule. 

As we have mentioned above (see Section 6), one of the advantages of rule induction 
algorithms is that they are able to discard irrelevant attributes, i.e. metrics that in fact are 
not necessary to emulate the experts’ judgment. In our case, the finally obtained 
classifiers do not use the metrics Rationale_sentences, i.e. they use only 17 from the 18 
metrics computed by the RQA tool in this project. 

Now, one of the most interesting and practical aspects of the obtained rule-based 
classifiers is that, for a given requirement that has been classified as Bad, we can find 
the list of rules that can be satisfied to improve the requirement. In other words, we can 
offer a list of recommendations to modify a bad requirement so that it becomes Good. 
We explain the mathematical details of this problem in the next section. 

 
9. Getting recommendations to improve requirements 

 
Similarly to the problem of finding a function that emulates the experts’ quality 

classification of requirements, we can formulate the optimization problem of finding a 
least-effort modification of a requirement that changes its class from Bad to Good. The 
best modification is the one that most improves the quality of the requirement, not 
necessarily the least costly. However, in the context of a binary classification any 
change of class (from Bad to Good) implies the same increment of quality. Our 
approach, then, is to provide the requirements author with a list of suggested 
modifications, sorted according to the required effort to achieve them, so that the user 
can choose one that entails a real improvement and at the same time is relatively easy to 
achieve. 

In terms of search-based software engineering, the mathematical formulation is as 
follows: 

 

� Let C be an automatic rule-based binary classifier that decides on the quality of a 
requirement. The decision is taken on a set of N numerical attributes of the 
requirement, previously computed with a quality analyzer tool, in our case RQA. 
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� Let R be a requirement that has been classified by C with Bad quality. 
� Let Mi, i∈{1..N}, be the values of the metrics obtained for R, based on which C 

has classified R as Bad. R can be represented also as the vector (M1, M2, …, 
MN). 

� Let Pj, j∈{1..L}, be the antecedents of the positive rules in C, i.e. those rules that 
classify a requirement as Good. Then we have, ∀j∈{1..L}, ¬Pj(R), or 
equivalently ¬Pj(M1, M2, …, MN). In other words, all antecedents of positive 
rules, when applied to the vector of metrics of a bad requirement, classify it as 
Bad. 

 
Suppose now we want to rewrite R into R’, so that R’ is evaluated as Good; that is, 

R’ is such that it satisfies the antecedent of some positive rule: ∃j∈{1..L}, Pj(R’), or 
equivalently ∃j∈{1..L}, Pj(M’1, M’2, …, M’N). 

Besides, we want to minimize the effort to obtain R’. Suppose there is a fixed cost to 
modify the value of a metric, and a cost dependent on the magnitude of the 
modification. Let Fi∈	ℝ+

∪{0}, i∈{1..N}, be the estimated fixed cost to modify the 
value of Mi; and let Ki∈ℝ+

∪{0}, i∈{1..N}, be the estimated cost to increase or decrease 
by an amount of 1 the value of Mi.  

Then the cost to modify R so that Mi becomes M’i is Fi + Ki· |Mi-M’i|. We want to 
minimize the function Σn

i=1 Fi + Ki· |Mi-M’i|. 
 

Goal: 

 
Find a modification R’ of R so that  
 

∃j∈{1..L}, Pj(M’1, M’2, …, M’N) 
 
and with a minimum modification cost 
 

� $ + & · |	� −�′
	

�))		∧	*+,*´+
| 

 
Note that, in the preceding formula, we add the fixed cost Fi only when the 

modification of the requirement affects the i-th metric, i.e. when Mi ≠ M’i. The 
formulation could also be generalized to consider that the cost to increase the value of a 
given metric is different from the cost to decrease it (for example, adding a domain term 
could be more costly than deleting one). 

We have implemented an algorithm that solves this optimization problem in the case 
of C4.5 generated rules, with heuristic values for the Fi and Ki coefficients. The 
algorithm provides not only the absolute least-effort modification (R’), but a list of 
suggestions sorted according to their cost (R’, R’’, R’’’…), so that the user can consider 
other relevant factors beyond cost to accept a suggestion. For example, we can use the 
precision and the number of classified instances for each rule generated by the learning 
algorithm (see the explanation of the decision tree in Figure 8) as another useful 
criterion to choose among the proposed list of modifications (a rule that classifies many 
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instances with higher precision is better related to quality). Next we show an example 
application of the algorithm, with only the least-effort modification for simplicity. 

 
Example: 
 
Let’s take the following requirement that has been classified as Bad by the C4.5 

classifier obtained in Section 7: 
 
Typically the interface component must be able to handle at least one fast 

connection with the service component and one connection with the predefined data 

base component. 

 
This requirement has the following non-null metrics: 
 
Paragraphs 1 

Words 27 

Readability  16 

Punctuation 171 

Connectors 1 and 

Ambiguous 2 typically, fast 

Design 1 data base 

Imperative 1 must 

Domain concepts 1 connection (twice) 

Domain verbs 1 handle 

 
We find that a least-effort modification can be achieved to satisfy the following rule, 

extracted from the decision tree: 
 
Design_sentences > 0 

|   Incomplete_sentences <= 0 

|   |   Domain_verbs <= 1 

|   |   |   Domain_concepts > 3: Good (17/1) 

 
The requirement satisfies all the values in the rule, safe for domain concepts, which 

according to the rule should be strictly greater than 3 (remember that this rule has sense 
only within the context of all rules, i.e. as defining a hyper region among other hyper 
regions in the hyperspace of metrics). Therefore, the rule can be satisfied by the 
requirement with the modification of a single metric, by adding three domain concepts. 
Then we can provide the following recommendation: “increase the number of domain 
concepts by 3”, so that the modified requirement could become: 

  
Typically the interface module must be able to handle at least one fast connection 

with the service module and one connection with the predefined data base module. 

 
We have replaced ‘interface component’, ‘service component’ and ‘data base 

component’ by their corresponding domain concepts in the ontology: ‘interface 
module’, ‘service module’ and ‘data base module’. In fact, we could change the 
ontology instead of the requirement to make the fit. Once the requirement has been 
modified, we must extract the new metrics and check that its quality level is acceptable, 
as it is the case in this example. 
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Obviously, it is not simply a question of adding domain terms to satisfy the rule and 
deceive the tool; but it could happen that the requirements engineer could have 
inadvertently used wrong terms instead of the approved ones (‘interface component’ 
instead of ‘interface module’, say) and the tool can help discover those mistakes. Of 
course, the engineer should not blindly follow the recommendations of the tool. Since 
our algorithm produces a list of recommendations ordered by the effort required, if the 
first recommendation is not appropriate from a professional viewpoint, the engineer can 
take the next one, and so on. Similarly, in a general authoring context, a writing 
assistant (such as modern word processors offer) can tell some of the sentences in a text 
are too long: the recommendation can be responsibly followed or not, but the tool is 
giving useful advice anyway. 

Note that the two ambiguous sentences detected (‘typically’, ‘fast’) need not be 
removed in order to satisfy this rule. What does this mean? We can interpret it as 
follows: the automatic rule-based classifier has learned from the expert that the lack of 
domain concepts is a severe defect, while the presence of ambiguous sentences is 
tolerable; then, the original version of this requirement is easier to amend by adding 
domain concepts than by removing ambiguous sentences (because the latter change 
would not be enough). Of course, a different expert could have put more emphasis on 
ambiguity-related defects, and that would have been reflected in a different machine-
learning generated classifier. The point is, we do not intend to provide an ‘absolute’ 
quality assessment, but to emulate with flexibility the particular judgment of a given 
expert in a given context. 

 
10. Potential risks and threats to validity 

 
As it happens with every machine learning process, the effectiveness of the output 

assessment algorithm is highly dependent on its inputs. First, the selection of metrics, 
the reliability of the metrics computing tool, and its configuration. In this case we refer 
to our previous works [Génova et al. 2013, Parra et al. 2015] where the metrics have 
been justified and the industrial acceptance of the RQA tool [Reuse Company 2016] has 
been demonstrated. 

Second, the initial classification by the experts (the set of training and testing 
instances) is also of capital importance. If the initial data set is wrong, the automatic 
classification of requirements by their quality will be useless. This factor is completely 
out of our control. However, its importance is relative: what we demonstrate is that we 
can emulate the experts’ judgment on the basis of (a) their personal (subjective) quality 
assessment and (b) objective, measurable attributes of the requirements; if the learned 
rules are “wrong”, it is the experts’ fault, not ours. The better the original classification, 
the better the automatic classification. This apparent weakness is in fact one of the 
strongest points in our method, since it allows us to build a flexible, context-dependent 
evaluation tool. For example, the vocabulary in software requirements might accept 
terms that are closer to the solution, in contrast to user requirements that would tag them 
as unacceptable design terms. 

The experts themselves might be inconsistent in their quality assessment. For 
example, we have detected a disagreement of 10-20% among different experts working 
in the domain of photographic image quality [Robledano et al. 2016]. Even the same 
expert might give different evaluations in successive rounds on the same set of 
requirements. We consider this is a natural phenomenon, since the experts are not 
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machines that behave always the same: they are people that are influenced by their 
experience (they are ‘experts’), and that can change their behavior accordingly as their 
experience increases [Génova et al. 2012]. In fact, reaching more than 85% in 
effectiveness qualifies our method as reasonably good. Remember this effectiveness has 
been estimated, as it is usual in machine learning, through four different metrics 
(accuracy, precision, recall and F-measure) with the 10-fold cross validation method. 
This means that the rule-based classifier can pretty well emulate the experts’ judgment, 
even if the experts do not use explicit rules to assess quality. The automatic assessment 
has still false positives and false negatives (around 15%), but it undoubtedly provides a 
fruitful ground to suggest improvements. 

It could also happen that requirements with similar metrics receive different 
classification by the experts. This means that those metrics have not sufficient 
discriminatory power, therefore their weight will be automatically minimized by the 
learning process. In this sense, rule induction algorithms are particularly robust. 

One of the limitations of our method is that it is focused only on individual properties 
(correctness). If the experts had classified the requirements also according to global 
properties (completeness, consistency), then the learned rules could not adequately 
emulate their classification, which would be reflected in a lower effectiveness, as 
measured by the learning process itself. Extending the method to consider also global 
properties of requirements is a promising research field that we intend to undertake in 
future works. 

The use of an algorithm to suggest improvements has two obvious risks. First, a 
change in the requirement text that improves the desired metric can have a bad influence 
in a different metric, so that the result is still not good, or even worse than before, 
leading to a new improvement cycle that perhaps could be avoided; this encourages us 
to find a better algorithm that accounts for both the present requirement and its modified 
version.  

The second risk has a more psychological flavor, it is a phenomenon we can call ‘the 
bureaucrat engineer’ [Génova & González 2016], an inherent risk of every automatic 
quality control mechanism. A bureaucrat engineer is one that is satisfied with following 
the rules, instead of searching for genuine quality. It is the reverse side of a policeman 
mechanism of penalties in quality management, as opposed to the counselor’s view 
[James 1999, Génova et al. 2013]. Given a suggestion to improve a requirement, it is 
probably easy to add or remove some words without scruples such that the modified 
requirement complies with the rule, even if it becomes nonsense. Nonetheless, we think 
this does not deprive our proposed method of utility, when it is used as a 
recommendation system by responsible engineers. We want to emphasize that the 
method provides not only a single least-effort modification, but a list of suggestions 
from which the user can follow one that entails a real improvement. 

 
11. Generalizability of the method  

 
In this section we discuss the generalizability of our approach, along the lines 

presented in [Wieringa & Daneva 2015]. These authors emphasize the value of middle-

range theories, i.e. theories whose generalizations, in contrast to the theories of basic 
science, do not have universal scope, but which nevertheless give sufficient 
understanding of a sufficiently large class of cases. The concept of middle-range theory 



  23 
 

was originally developed for the social sciences [Merton 1968], but is also very well 
applicable to the engineering sciences [Wieringa 2014]. 

According to their categorization of strategies to generalize software engineering 
theories [Wieringa & Daneva 2015], our approach falls in the category of lab-to-field 
strategies, i.e. artifacts that are first developed under idealized laboratory conditions and 
are then scaled up to operate under uncontrolled field conditions. Besides, our research 
presents aspects of both sample-based and case-based generalization strategies, as we 
show below.  

The machine learning procedure of finding patterns of quality metrics in a sample of 
requirements, and using them to predict quality in new samples, is clearly a kind of 
statistical learning, which is one of the sub-categories of sample-based generalization 

strategies identified in [Wieringa & Daneva 2015]. On the other hand, we have used a 
sample of requirements that originate in a single, even if very reliable, source (experts 
of the INCOSE’s Requirements Working Group); we argue that the good results 
obtained (the ability of our tool to emulate the experts’ judgment) can be similarly 
expected if the procedure is applied to another source of requirements; we are then 
exercising case-based generalization, which, as the authors explain, is acceptable when 
it is shown that there exists a reasonable similarity in the underlying mechanisms (what 
they call “architectural similarity” [Ghaisas et al. 2013, Wieringa & Daneva 2015]). In 
this case the underlying mechanism is the relationship between measurable indicators of 
quality in textual requirements and the perceived level of quality by experts, which we 
have explained in-depth in previous works [Génova et al. 2013].  

We can also point to the following factors of independence that contribute to the 
generalizability of the approach: 

 
� Language independence. Even if our experiments have been performed with 

requirements written in English, the method is essentially language-independent, 
as long as the tool used to extract quality metrics can account for different 
languages (in our case, the RQA tool provides support for eight different 
languages: English, French, German, Japanese, Spanish, Swedish, Italian, and 
Dutch). It is true that the natural-language processing techniques necessary to 
compute requirements quality metrics have been developed mainly for English, 
and to a lesser extent for other common languages. The method we have 
developed depends on the existence of a tool that computes quality metrics, but 
the method as such does not depend on any particular language or tool.  

� Domain independence. Quality metrics are domain independent, safe for the last 
two items ‘domain concepts’ and ‘domain verbs’ (see Appendix I). These two 
metrics certainly depend on the configuration of the auxiliary RQA tool, which 
must have been provided a suitable ontology of domain terms. However, as long 
as the ontology has been properly defined, the machine learning procedure to 
emulate expert quality assessment is, as such, independent of the concrete 
domain.  

� Size independence. According to our experiments, the learning algorithms work 
well with a training set of at least 500 randomly chosen requirements, i.e. the 
effectiveness reached (accuracy, precision, recall and F-measure) is very close 
(less than 1% difference) to the values obtained with the whole data set of 1035 
requirements. On the other side, once the classifier has been obtained from 
similar projects with enough requirements from both classes, the approach is 
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independent of the size of the new project to be evaluated. We have argued 
before (see Section 4) that the method will be most beneficial for medium/large 
projects and organizations; but this does not mean that the method will not work 
in small projects, only that the benefit-cost ratio will probably be not so 
attractive. 

� Quality levels independence. The classifier obtained through machine learning 
techniques is independent of the number of quality levels present in the training 
data set: it will yield as many levels as they are initially present. Our classifier is 
binary (two levels, Good and Bad) because that was what the experts provided. 

� Quality demanded independence. The method to obtain a classifier is 
independent of the degree of quality demanded in the organization. In fact, what 
the method achieves is an automatic emulation of the experts’ interpretation of 
quality according to the concrete needs and demands of quality in their particular 
context, projects and organizations. 

 
These factors of independence are the ground for the alleged tailorablity of the 

method to different situations, different domains, different styles to write requirements, 
and different demands in quality. 

 
12. Conclusions and implications 

 
Even if the usages of machine learning techniques to emulate human judgment have 

been numerous in very different contexts, there are scarce references in the literature, to 
our knowledge, that describe their application for quality assessment in the field of 
requirements engineering; that is why we consider our research manifests a high degree 
of novelty. 

Our main contribution in this work has been the development of a method for the 
flexible evaluation of requirements in an automatic way. We have built an automatic 
rule-based classifier that emulates the experts’ judgment on the quality of requirements 
and is made of human-readable rules extracted from the expert’s tacit knowledge, which 
can be reworked and improved. The rule generation algorithms take as input an initial 
set of requirements classified by the experts according to the needs and peculiarities of 
each project and organization, as well as the quality metrics of those requirements 
computed with the RQA tool. The generated rules are then applied to automatically 
assess the quality of new textual requirements, with a high level of agreement between 
the experts’ classification and the automatic classifier (more than 85% in accuracy, 
precision, recall and F-measure), which is more than enough to provide useful advice to 
requirements authors. 

The experts do not need to make explicit the quality criteria they apply in their 
assessment of requirements, and the metrics could be computed with a different tool. 
Therefore, the method is tailorable to different contexts, different styles to write 
requirements, and different demands in quality, with a high degree of automation. The 
method is highly general because its results change according to its inputs. The whole 
process generates a rule-based classifier that emulates the experts’ judgment on the 
quality of requirements (the experts’ implicit quality function). These set of quality 
rules, generated by machine learning, depend both on the set of initial requirements and 
on the experts’ classification of those requirements in several quality levels. Therefore, 
a different set of classified requirements (i.e. the training data), will produce a different 
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automatic classifier, better adapted to the particular context reflected in the vocabulary 
of the requirements, and to the particular demands in quality that can be inferred from 
the experts’ classification. In other words, the method builds a classifier that learns from 
the information provided by the experts, and adapts itself to best emulate them. 

Moreover, we can provide a list of automatic recommendations to modify the 
requirements that have been classified with the lowest quality level, so that they satisfy 
the obtained quality rules that emulate the experts’ judgment. In this way, we are able to 
point out not only those requirements that need improvement, but also to suggest 
concrete modifications to achieve the demanded quality; from this list of suggestions 
the user can choose one that entails a real improvement and at the same time is 
relatively easy to achieve. 

The method is still experimental and has been developed to form an integral part of 
the Requirements Quality Suite by the Reuse Company [Reuse Company 2016], 
together with the Requirements Quality Analyzer (RQA) and the Requirements 
Authoring Tool (RAT). The suite follows a knowledge-centric approach to the 
requirements definition process, with the application of ontologies and linguistic tools 
to the analysis and improvement of the quality of specifications. The Requirements 
Quality Suite has been successfully employed in industry, in companies such as Alstom, 
as described in [Gallego 2016] and [Chalé-Góngora et al. 2017]. The suite is having a 
high impact in the domain of Systems Engineering, as reflected in the series of INCOSE 
(International Council on Systems Engineering) conferences (see for example [Dick et 
al. 2017]). 

The adoption of the method and tool will have some implications for practitioners. 
First of all, the alleged improvement in quality and flexibility in its assessment, with the 
economic benefits associated. But, also, requirements authors will have to adapt their 
working environment, and themselves, to account for the new writing assistant and take 
advantage of it. This adaptation positively entails, too, that engineers will learn to write 
requirements in the way the organization wants while they are doing the actual job 
(learning on the job [Marsick & Volpe 1999]). On the negative side, we have already 
mentioned a possible drift towards the “bureaucratization” of their work (the uncritical 
submission to a mechanical quality assessment); however, we think the analogy with 
today-common general-purpose writing assistants allows us not to be pessimistic in this 
regard. In the end, the best improvement in writing skills will be obtained with a 
combination of smart tools together with mentoring of requirements authors in basic 
techniques [Terzakis & Gregory 2016, Gregory & Terzakis 2017]. 

From a more theoretical viewpoint, this research provides empirical evidence that a 
non-linear combination of metrics, i.e. the function made of rules obtained through 
machine learning, provides a better fit to expert judgment than the traditional weighted 
average of metrics; and it provides empirical evidence, too, that subjective quality 
(evaluated by experts) can be emulated based on the measurement of objective, low-
level features. It is not so obvious that this could be so; a possible “architectural 
explanation” [Wieringa & Daneva 2015] is that the writer who cares about low level 
details also cares about high level features of requirements; but this is not more than a 
conjecture that may well deserve more research. 
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APPENDIX I – Description of quality metrics 

For a more complete description and justification of the metrics, see our previous 
works [Génova et al. 2013, Parra et al. 2015]. 

Morphological 

Paragraphs The requirement should not be expressed in too many paragraphs to avoid over-
specification, redundancy of information and expression of various needs in the 
same requirement. 

Words The requirement should not have an excessive number of words to avoid the same 
problems related to size. 

Readability Readability measures the degree of difficulty to read a text, based on average 
syllables/characters per word and average words per sentence. Bad readability may 
cause confusion.  

Punctuation Measured as the number of characters between punctuation marks. Incorrect 
punctuation hinders the readability of the requirement. 

Lexical 

Connectors Number of copulative-disjunctive connectors in the requirement. Using multiple 
connectors may indicate different needs in the same requirement and therefore 
compromise the atomicity. 

Negative Negative expressions can make the requirement hard to understand. 

Control-flow The requirement should avoid pseudocode and control-flow expressions to avoid 
specifying the solution to the problem. 

Implicit The requirement should be explicit, avoid the use of personal pronouns. 

Ambiguous Using ambiguous expressions may render the requirement difficult to understand. 

Incomplete Sentences such with incomplete enumerations (‘etc.’, ‘not limited to’, ‘as a 
minimum’) demonstrate the requirement has not a clear scope or it is not atomic. 

Speculative The use of speculative expressions (‘enough’, ‘sufficient’, ‘approximately’, etc.) 
may indicate that the real need of the requirement is not clear. 

Rationale Avoid justifications in the requirement. 

Design The requirement should focus on a necessity instead of expressing a solution. 

Analytical 

Imperative The requirement should have at least one imperative verb. 

Conditional The requirement should be written in assertive way. 

Passive voice The use of verbs in passive voice may hinder the understanding of the requirement. 

Domain concepts A large number of domain concepts used in the same requirement can indicate 
over-specification. 

Domain verbs Too many domain verbs may indicate that the requirement has expressed too many 
needs. 




