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Abstract

A novel methodology to introduce Periodic Boundary Conditions (PBC) on
periodic Representative Volume Elements (RVE) in Finite Element (FE)
solvers with dynamic explicit time integration is presented. This implementa-
tion aims at overcoming the difficulties of the explicit FE method in dealing
with standard PBC. The proposed approach is based on the implementa-
tion of a user-defined element, named a Periodic Boundary Condition Ele-
ment (PBCE), that enforces the periodicity between periodic nodes through
a spring-mass-dashpot system. The methodology is demonstrated in the mul-
tiscale simulation of composite materials. Two showcases are presented: one
at the scale of computational micromechanics, and another one at the level
of computational mesomechanics. The first case demonstrates that the pro-
posed PBCE allows the homogenization of composite ply properties through
the explicit FE integration approach with similar reliability to the equivalent
implicit simulations with traditional PBC. The second case demonstrates
that the PBCE can be applied to the computational technique of Periodic
Laminate Elements (PLE) to homogenize elastic and strength properties of
entire laminates. Both demonstrations strongly support the method for the
application of multiscale virtual testing to the building-block certification of
composite materials.
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1. Introduction1

The use of Representative Volume Elements (RVE) has become a very2

popular numerical approach for the purpose of homogenization in highly3

heterogeneous materials. This technique allows the reproduction of uniform4

stress states in a domain and thus, the prediction of the homogenized thermo-5

mechanical properties including elasticity and strength. Apart from the se-6

lection of the RVE size, which must be sufficient to capture the stress-strain7

response and failure mechanisms of the composite, the applied boundary8

conditions play a key role on the assessment of the homogenized proper-9

ties. There are three common types of boundary conditions: uniform bound-10

ary displacements or isostrain (Hill-Reuss), uniform boundary tractions or11

isostress (Hill-Voigt) and Periodic Boundary Conditions (PBC). The use of12

PBC on the RVE boundaries implies that smaller analysis domains are suffi-13

cient to obtain reliable homogenized properties [1]. Due to this reason, PBCs14

have been extensively employed in computational homogenization.15

The classical approach to introduce PBC in a RVE is by means of the16

definition of strong relations (equations) between periodic nodes, hence im-17

posing constraints to their allowed displacements. In its essence, this method18

requires the mesh to be periodic, in such a way that every node on each19

RVE boundary has its homologous node on the respective opposite (peri-20

odic) boundary, although enhancements, based on polynomial interpolation21

[2, 3] and Lagrange multipliers [4], have been proposed in order to avoid the22

need of matching the mesh topology on opposite RVE boundaries. Either23

way, the traditional PBC approach is generally appropriate for implicit in-24

tegration numerical schemes. In dynamic explicit time integration solvers,25

however, the fulfilment of the periodicity equations leads to spurious dis-26

placement oscillations that often invalidate the numerical solution. To over-27

come this issue, this work proposes the imposition of PBC in explicit FE28

solvers through special-purpose elements, named Periodic Boundary Condi-29

tion Elements (PBCE). This approach is specially well suited for multiscale30

computational analyses of composite materials.31

With the advances in computing power and the growing costs associated32

to physical experiments for certification of composites, multiscale virtual test-33

ing based on the Finite Element Method (FEM) has become a popular tool34
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in the characterization and evaluation of composite materials and structures35

[5]. This approach often requires homogenization techniques, as the physical36

response of composite materials at the macroscale is a direct consequence of37

their microstructural features and architecture. Moreover, the behaviour of38

the composite might depend on microstructural features other than the prop-39

erties and topology of the microconstituents (fibres, matrix and interfaces),40

such as fibre volume fraction, fibre size and shape distributions, distance41

between neighbouring fibres, voids, among others. Computational homoge-42

nization techniques are ideal tools to take all these effects into account.43

The elastic, plastic and fracture responses of laminated Fibre Reinforced44

Polymers (FRP) at the macroscale can be computed efficiently by following45

a stepwise bottom-up multiscale approach [5–7]. In the first step, compu-46

tational micromechanics is employed to predict the homogenized behaviour47

of a unidirectional fibre-reinforced yarn or ply, in 2D (e.g. [8–11]) or 3D48

spaces (e.g. [12–15]), with input properties resulting from the experimental49

characterization of the composite microconstituents: fibre [16], matrix [11]50

and fibre/matrix interface [17]. In the case of ply architectures with higher51

complexity than unidirectional fibres, such as in textile composites, a subse-52

quent homogenization step needs to be performed based on the previously53

computed behaviour of the unidirectional yarns, the response of the bulk54

resin matrix and on the topology of the Representative Unit Cell (RUC) of55

the fabric (e.g. [18–21]). From the orthotropic ply behaviour and lamina ori-56

entations within a ply stacking, computational mesomechanics can be used57

to predict the behaviour of the laminate (e.g. [22–24]). At this step, the58

response of the discrete ply interfaces also needs to be taken into account,59

as laminated FRP are prone to delamination. The homogenized behaviour60

of the laminate can then be applied to the design of composite laminated61

structures, by employing computational structural mechanics [5–7].62

Some of the aforementioned modelling techniques impose severe non-63

linearities to the respective numerical problems which become intractable64

by implicit integration FE solvers. In such cases, explicit numerical schemes65

become the only viable alternative to achieve meaningful results. Hence, the66

PBCE approach proposed in this paper constitutes an enabling technology67

for multiscale computational homogenization in composite materials.68

The formulation of the PBCE for general 3D FE problems and its imple-69

mentation as a user-defined element in Abaqus/Explicit [25] are detailed in70

section 2. The reliability and applicability of the approach are then demon-71

strated in the framework of multiscale computational analysis of composites,72
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in section 3. First, the PBCE method in combination with RVE is applied to73

micromechanical homogenization of unidirectional FRP yarns or plies. The74

results are evaluated through the correlation of numerical results obtained75

with traditional PBC and new PBCE. Then, PBCE in combination with76

Representative Laminate Elements (RLE) are proposed for the homogeniza-77

tion of laminate behaviour through computational mesomechanics. Finally,78

the concluding remarks are drawn in section 4.79

2. Definition of the Periodic Boundary Element80

Periodic boundary conditions guarantee the periodicity of the mechanical81

fields and ensure the continuity with the neighboring RVE as a jigsaw puzzle.82

These boundary conditions are set by enforcing that the difference between83

displacement vectors, u, of opposite sides of an RVE of lengths `1 × `2 × `384

is equal to an imposed relative displacement, Ui, that is:85

ϕ1(x2, x3,U1) = (u(0, x2, x3)− u(`1, x2, x3))−U1 = 0
ϕ2(x1, x3,U2) = (u(x1, 0, x3)− u(x1, `2, x3))−U2 = 0
ϕ3(x1, x2,U3) = (u(x1, x2, 0)− u(x1, x2, `3))−U3 = 0

(1)

whereϕi=1,3 are the three constraint equations relating relative displacements86

Ui=1,3 of pair of opposite nodes in the RVE sides. The constraints can be87

introduced in the discrete potential energy associated to the weak form of88

the elastic equilibrium problem:89

Πh(uh) =
1

2

∫
Ωh

σ(uh)·∇uhdΩ−
∫

Ωh

uh ·f dΩ−
∫
∂Ωh

uh ·h d(∂Ω)+Ψ(uh) (2)

where σ(uh) and ∇uh stands for stress and strain tensors associated to90

the discrete displacement field uh, and f and h the body forces and con-91

tact stresses at the volume and boundary of the solid, respectively. Finally,92

Ψ(uh) represents the potential energy associated to the introduction of the93

periodicity constraints. In case of explicit time integration, equation 2 can be94

generalized to the dynamic problem by introducing the inertia and damping95

forces in the system.96

The constraint equations (1) can be rearranged to obtain a more appropri-97

ate form for the FE assembly procedure. For the easy imposition of periodic98

conditions, the global reference nodes (master nodes) Mi and M ′
i are defined99

(figure 1) such that:100
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Ui = uMi
− uM ′

i
(3)

Figure 1: Four nodes involved in the PBC of displacement of nodes P-P’: M2,M
′
2, P, P

′

The relative motion between a local point P belonging to a given plane of101

the RVE and point P ′ on the parallel plane displaced `i (length of the RVE102

in the direction i) can be expressed as the 4-point condition:103

ϕi(uP ,uP ′ ,uMi
,uM ′

i
) = (uP − uP ′)− (uMi

,uM ′
i
) = 0 (4)

for all pair of opposite nodes P and P ′ being OP
′

= OP + `iei, where ei is104

the unit vector perpendicular to the RVE planes. The linear constraint [26]105

between the displacements of these four points can be defined as:106
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ϕe(uP ,uP ′ ,uM ,uM ′) =

 ϕ1

ϕ2

ϕ3

 = Lue =

=

 1 0 0 −1 0 0 −1 0 0 1 0 0
0 1 0 0 −1 0 0 −1 0 0 1 0
0 0 1 0 0 −1 0 0 −1 0 0 1





u1
P

u2
P

u3
P

u1
P ′

u2
P ′

u3
P ′

u1
M

u2
M

u3
M

u1
M ′

u2
M ′

u3
M ′



= 0

(5)

Instead of satisfying the constraint exactly, a penalty approach is used107

such that the deviation from the exact fulfilment of the constraint penalizes108

the potential energy. If the constraint ϕe = 0 is verified, the element-wise109

elastic potential is minimum:110

Ψe(ue) =
1

2
k ϕe(ue) ·ϕe(ue) =

1

2
k Lue · Lue (6)

and the internal forces necessary to obtain a good approximation of the111

constraints are calculated from the gradient of the potential, according to:112 (
∂Ψe

∂ue

)
= k LTLue = Fe

k (7)

This approach can be seen as a generalized spring network between nodes113

belonging to the boundaries, pulling the system back to the periodic con-114

straint. Hence, its natural implementation in Abaqus/Explicit [25] is by115

means of 4-node user-defined elements, henceforth named Periodic Bound-116

ary Condition Elements (PBCE), defined by means of a subroutine VUEL.117

Each PBCE mimics a local “penalty” constraint between opposite nodes P ,118

P ′, and master nodes Mi, M
′
i , as in the system of equations 1. The points119

{Mi,M
′
i} are assembled to be the same for each pair of opposite surfaces120
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so that the globally imposed displacement difference Ui, is the same for all121

pairs of opposite nodes P , P ′.122

The global constraint Ψ(uh) and the external forces Fext appear natu-123

rally when the elements associated with the nodes belonging to the domain124

boundaries are assembled, and the displacements/forces are imposed to the125

master nodes. The constraint is satisfied approximately for each pair of oppo-126

site nodes. With the PBCE, the displacements of nodes Mi are constrained,127

whereas the displacements of nodes M ′
i are imposed, as in equation 3. It128

should be noted that either relative displacements Ui or forces Fi can be129

externally imposed through the master nodes. For instance, an uniaxial test130

in the direction 3 is imposed by means of U3 = (0, 0, ε̄3`3) and U1 = (u1, 0, 0)131

and U2 = (0, u2, 0), being ε̄3 the average strain imposed to the RVE in the132

direction 3. In this case, u1 and u2 stand for the output lateral Poisson133

contraction resulting from the FEM computation.134

As it is presented, this method originates undamped oscillations in dy-135

namic analyses, as verified in preliminary simulations. Hence, damping mech-136

anisms are implemented in the PBCE while preventing that its valid motions137

are affected. Viscous Rayleigh damping gives a force proportional to the neg-138

ative rate of change of Lu̇e and parallel to the elastic force:139

Fe
c = c LTLu̇e (8)

where c is a damping coefficient. For low loading rates, for which the effect of140

inertial forces is negligible, an additional mass m can be added to the system141

in the same way:142

Fe
m = m LTLüe (9)

The resulting equation of motion of the element, taking into account the143

external forces, is:144

0 = Fe
k + Fe

c + Fe
m − Fe

ext = LTL(kue + cu̇e +müe)− Fe
ext (10)

3. Multiscale computational applications145

The traditional approach to implement PBC is by means of constraint146

equations (*EQUATION in Abaqus [25]). This method has strong foundations147

for implicit solvers based on static equilibrium, but exhibits several draw-148

backs when explicit dynamic time integration (i.e. central differences) is149

used. Firstly, the relationships between master and slave displacements is150
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translated into equations that introduce intense high-frequency oscillations151

in the system. Secondly, in the specific case of Abaqus/Explicit [25], there is152

a limitation in the number or constraint equations supported (around 90000153

for Abaqus v6.14 [25]), and no parallel computation is allowed when con-154

straint equations involve different element domains. Finally, the method155

with traditional PBC is computationally expensive. The Periodic Boundary156

Condition Element (PBCE) approach proposed in this paper is more efficient157

under similar conditions.158

In the following, the PBCE method is applied and validated under two159

computational homogenization scenarios in composite materials: microme-160

chanical and mesomechanical homogenization.161

3.1. Micromechanical homogenization162

Micromechanical homogenization in composite materials is generally used163

to compute the elastic and strength properties of an orthotropic lamina and164

predict ply failure envelopes, e.g. [9–11, 15]. The behaviour of the ply trans-165

verse to the fibres direction can be analysed with two-dimensional or quasi-2D166

RVE, as shown in figure 2. Herewith, a 2D version of the PBCE presented167

above is used in the computation of transverse tensile properties of the uni-168

directional Carbon-Fibre Reinforced Polymer (CFRP) material AS4/8552.169

Figure 2: The composite mechanical behaviour is determined by solving numerically the
boundary value problem for a RVE of the composite which is much larger than the het-
erogeneities in the microstructure.

The microstructure of the RVE of an unidirectional composite is ideal-170

ized as a dispersion of parallel and circular fibres randomly distributed in171
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the polymer matrix. A total of 50 fibres is enough to capture adequately172

the essential features of the microstructure of the material while maintain-173

ing reasonable computing efforts, as demonstrated by González and LLorca174

[27]. Synthetic fibre distributions statistically equivalent to the real ones are175

generated with a modified Random Sequential Adsorption (RSA) algorithm176

[12].177

The RVE is discretized in Abaqus/Explicit [25] in the following way: the178

matrix and the fibres are modelled with 4-node fully integrated quad isopara-179

metric elements under the assumption of plane strain (CPE4), while the fibre-180

matrix interface debonding is simulated with 4-node cohesive isoparametric181

elements (COH2D4) inserted at the interfaces between fibres and matrix.182

Perfect and homogeneous contact between fibres and matrix is assumed. The183

carbon fibres are assumed to behave as linear elastic transversely isotropic184

solids. The matrix is modelled as an isotropic elastic-plastic solid accord-185

ing to a modified Drucker-Prager plasticity yield surface including damage186

[25, 28]. The fibre-matrix interface behaviour follows a mixed-mode bilinear187

traction-separation law [25]. More detailed information about the materials188

constitutive models and properties can be found in [8, 11].189

A reference analysis was carried out with Abaqus/Standard [25] within190

the framework of the finite deformations theory. In addition, explicit dy-191

namic analyses employing the default Abaqus/Explicit [25] PBC scheme, by192

means of constraint equations, were also run for comparison with the devel-193

oped PBCE approach. In each analysis, the first thermo-mechanical loading194

step simulates the cooling-down process from curing to ambient tempera-195

tures, given the significant influence of the respective residual stresses on the196

homogenized properties. This step is followed by the application of mechan-197

ical load up to failure. Two typical load-cases were analysed herein: pure198

transverse tension and pure transverse compression.199

A careful selection of the mechanical parameters of the PBCE was done200

in advance to maximize the accuracy of the simulation without penalizing201

its computational cost. To this end, the stiffness, k, and damping, c, of the202

PBCE were estimated to minimize their penalization on the analysis stable203

time step, ∆tstab. A value of damping c = 0.001 mN µs/µm was sufficient to204

remove spurious oscillations, while a stiffness k = 100 mN/µm guaranteed205

the periodicity between opposite edges without penalizing ∆tstab. The nodal206

mass of the PBCE was taken as the average nodal mass of the RVE. For207

both load cases, the steady-state loading rate selected was 0.1 µm/µs with a208

peak acceleration of 3 µm/µs2.209
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The stress-strain curves resulting of the different analyses, as well as stress210

fields for the tensile cases and strain fields for the compression cases, are211

shown in figure 3. For transverse tension, it is observed that the mechanical212

fields are equivalent between implicit and explicit analyses, and that ultimate213

failure is triggered by the same cracking mechanisms at similar applied stress214

level (≈ 51.5 MPa) in both schemes. However, the explicit FE results using215

constraint equations, *EQUATION, are highly oscillatory and under-predict the216

transverse tensile strength of the material. For transverse compression, the217

match between implicit and explicit analyses with PBCE is again remarkable218

in terms of strain fields and load at failure (≈ 205 MPa). The explicit analysis219

with constraint equations also shows an oscillatory response although the220

obtained transverse compression strength of the material matches the one221

predicted by the other two methods.222

3.2. Mesomechanical homogenization223

The use of PBC at the mesoscale allows for the definition of a Represen-224

tative Laminate Element (RLE), in essence a RVE of a laminate [22, 23], as225

represented in figure 4. The use of PBC aims at introducing an uniform far-226

field stress to a small portion of the laminated material structure, assuming227

that the RLE behaviour is statistically representative of the whole specimen228

[29]. In this way, this approach allows the computation of the homogenized229

elastic and strength properties for a given laminate configuration in all or-230

thotropic directions, and the prediction of a laminate failure envelope.231

The traditional way to determine laminate properties and qualify compos-232

ite materials for structural applications is through costly and time consuming233

experimental testing following carefully devised test standards. In the recent234

years, numerical simulation arose as a promising alternative towards efficient235

material certification by virtual testing, with the added advantage that a236

much larger range of configurations can be considered [5, 6, 30]. The standard237

test methods can be modelled with high-fidelity and accurate predictions of238

laminate behaviour and relevant properties achieved, as demonstrated by239

Falcó et al. [24]. Both physical and virtual approaches aim at reproducing a240

macroscopically homogeneous stress state such that the resultant behaviour241

can be considered intrinsic to the laminate configuration. However, because242

of the finite width of the coupons and the three dimensional stress states at243

their edges [31, 32], the behaviour is significantly affected by edge cracking244

and delamination. By means of the RLE approach proposed in this paper,245

edge effects are removed from the boundaries of the numerical model and246
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Figure 3: Comparison of the results obtained with Periodic Boundary Conditions Ele-
ments (PBCe) in Explicit against the Periodic Boundary Conditions (PBC) in Standard
and Explicit by means of constraint equations. Transverse tension (left column) and com-
pression (middle column) load cases are shown. The resulting stress-strain curves for each
load case (tension and compression) for the three different schemes are shown in the right
column.

replaced by PBC, so that the analysis addresses only the material response.247

Moreover, the computational requirements are remarkably reduced since the248

RLE can be much smaller than the virtual coupon.249

To capture the relevant mechanisms of laminate behaviour, the RLE do-250

main is discretized in plies and ply interfaces. While interlaminar damage is251
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Figure 4: Representative Laminate Element (RLE).

assumed to occur in the form of delaminations along predefined and discrete252

crack planes, ply damage might occur in the form of fibre breakage, fibre253

pull-out, kink-banding and matrix cracking at any location within the plies.254

Hence, the appropriate description of the ply interface behaviour is achieved255

by means of cohesive and frictional relations between discrete fracture planes256

whilst the ply deformation mechanisms can be adequately tackled by means257

of a Continuum Damage Model (CDM) [24]. This modelling approach im-258

poses severe non-linearities to the numerical problem which are typically259

intractable by implicit solvers. Therefore, the explicit numerical integration260

of the RLE, coupled with the PBCE proposed in this paper, constitutes the261

enabler of the computational homogenization of laminate behaviour.262

For the purpose of demonstration, the In-Plane Shear (IPS) test on an263

AS4-8552 laminate is addressed herein. This experiment is used to charac-264

terize the in-plane shear response of a ±45 laminate, and is defined according265

to the ASTM D3518 test standard [33]. It consists of a rectangular coupon266

of [±45]s configuration, 25 mm in width by up to 250 mm in length, loaded267

under quasi-static tension up to failure. To define an appropriate RLE, it268

is sufficient to consider an area of 10 x 10 mm2 of the laminate, as shown269

in figure 5. Since the laminate at any point is statistically representative of270

the laminated structure, the only constraint on the dimensions of the RLE271

are that it should be much larger than the characteristic dimensions of the272

physical mechanisms that are to be simulated. In this case, the relevant273

phenomena are matrix cracking and delamination, which are associated to274

fracture process zones of the order of less than a millimetre [34]. Moreover,275

due to the out-of-plane symmetry of the [±45]s configuration, only two plies276
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(±45) need to be modelled with appropriately imposed symmetry boundary277

conditions.278

����

��
��

����

��
��

��	��	

��	

��	

Figure 5: Illustrations of the In-Plane Shear (IPS) test (top) and the corresponding RLE
(bottom) with applied PBCs and loads.

The laminate modelling approach follows the work of Falcó et al. [24]. Ac-279

cordingly, the ply interface response is modelled by means of a general mixed-280

mode cohesive zone method coupled with frictional behaviour. The coupled281

cohesive-frictional approach is adopted to include the possible effects of ply282

friction during and after delamination, and is implemented in the kinematics283

of surface contact interaction algorithms available in Abaqus/Explicit [25].284

The unidirectional FRP plies are modelled by means of a thermodynamically-285

consistent CDM that takes into account the relevant ply deformation mech-286

anisms [24]. The nonlinear elastic-plastic shear behaviour of the material287

is modelled by a Ramberg-Osgood law [35]. The possibility of elastic un-288

loading is tackled by means of a general elastic predictor - plastic corrector289

algorithm. The relevant ply and interface properties required by these models290

are given in [24]. Similar properties for the same material (different batches)291

are available in [36]. A regularized meshing approach is used, with material-292

alignment and directional biasing, as described in [24]. Each ply (0.184 mm293

in thickness) is discretized with a single through-the-thickness plane of reg-294

ular 8-noded hexahedral isoparametric elements of 0.6 x 0.2 x 0.184 mm3
295

in volume with reduced integration (C3D8R), except around the RLE edges296

wherein tetrahedral elements (C3D6R) are used.297

As in the computational micromechanics case above, a judicious selection298

of the mechanical parameters of the PBCE was performed to ensure both299
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the accuracy and the efficiency of the simulation. To this end, the PBCE300

damping and stiffness coefficients were set to c = 0.1 N s/mm and k =301

2 · 105 N/mm, respectively. The nodal mass of the PBCE was taken as the302

average nodal mass of the RLE.303

Quasi-static tensile displacements were imposed to the RLE, as repre-304

sented in figure 5, until collapse was produced by the accumulation of matrix305

cracks and delamination between the +45o and -45o layers. For the purpose306

of qualitative correlation (figure 6), the simulated accumulation of matrix307

cracks is compared with equivalent experimental results of an IPS test on a308

similar carbon/epoxy material which have been obtained by means of X-ray309

computed tomography (XCT) [37, 38].310

Symmetry plane

-45o cracks

+45o cracks

Figure 6: Qualitative correlation between experimentally-obtained (left) and simulated
(right) development of matrix cracking in a plain stress [±45]s laminate (experimental
results adapted from [37]). Note: both experiments and simulations performed in similar
carbon/epoxy [±45]s coupons, although not exactly the same material.

In the experiments (figure 6, left), cracks develop similarly in the +45o
311

and -45o layers, starting from the edges of the specimen, following directions312

parallel to the fibres due to the kinematic constraints imposed by the mi-313

crostructure. The crack density is always higher around the edges than in314

the specimen central sections and it increases with the applied load until315

saturation. Delamination also grows from the specimen edges. Finally, the316

accumulation of matrix cracking and delamination leads to instability and317

specimen collapse. The simulations on the smaller size RLE (figure 6, right)318

capture this damage pattern while discarding the undesirable effects caused319

by the edges. It should be mentioned that, whilst the XCT is able to capture320

critical and sub-critical damage mechanisms, the simulations only predict the321
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first, i.e. cracks completely developed through the thickness of the plies. Al-322

though the CDM does not contain information of the kinematic constraints323

imposed by the ply microstructure (the shear parallel and perpendicular to324

the fibre are represented with the same deformation tensor), this effect is ob-325

tained with the regularized meshing with material-alignment and directional326

biasing [24], leading to the correct simulation of crack directions. Hence, the327

RLE can be considered approximately representative of the central sections328

of the finite-width IPS coupon.329

The results of the simulation in terms of the stress-strain curve are shown330

in figure 7. The behaviour of the RLE is nonlinear in a very similar way to the331

Ramberg-Osgood law [35] implemented at the constitutive level to describe332

the pure shear stress vs. shear strain relation of the ply, although not exactly333

since the IPS test configuration does not create pure shear on the ply but334

a mixed-mode loading situation, with a small fraction of transverse tension.335

For this same reason, the ultimate IPS load, IPSS = 99.7 MPa, also diverges336

from the ply shear strength, SL = 110.4 MPa [36]. This demonstrates that337

this property is not adequately characterized by the IPS experiment [33],338

and a better alternative for that purpose is the Short Beam test standard339

ASTM D2344M [39] that measures the Interlaminar Shear Strength (ILSS)340

in a laminate.341

Through-the-thickness matrix cracking, as shown in figure 6, initiates at342

the highest load and deformation stages, rapidly growing and interacting with343

interface delamination to produce the collapse of the RLE. The simulated344

cracking is, however, not influenced by coupon edge effects as in the IPS345

experiment. As result, the numerically obtained In-Plane Shear Strength,346

IPSS = 99.7 MPa is higher than the average value obtained experimentally347

with the IPS experiment, IPSS = 91.56 MPa [36].348

The numerically-obtained unloading-reloading behaviour of the RLE is349

also represented in figure 7 to demonstrate that the PBCE, and the consti-350

tutive ply model, work well under these circumstances.351

4. Conclusion352

Special-purpose Periodic Boundary Elements (PBCE) were proposed to353

impose Periodic Boundary Conditions (PBC) to general Representative Vol-354

ume Elements (RVE) in FE solvers with dynamic explicit time integration.355

This approach solves the issue of spurious displacement oscillations resulting356
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Figure 7: Stress-strain curves for the plain tension test. The appearance of the relevant
damage events are marked with arrows in the figure. Ply in-plane shear strength, SL

= 110.4 MPa , measured by means of the Short Beam Test [36]. Numerically-obtained
laminate In-Plane Shear Strength, IPSS = 99.7 MPa (at γpl = 0.04%). Experimentally-
obtained [±45]s specimen IPSS = 91.6 MPa (SD = 2.51 MPa) corresponding to γpl = 0.05
[36]. Ply in-plane shear modulus G12 = 4.9 GPa. Ramberg-Osgood exponential, η = 1.9.

from the application of traditional PBC in explicit FE. The PBCE formu-357

lation was implemented by means of a user-defined element through a VUEL358

subroutine in Abaqus/Explicit [25]. The reliability and applicability of the359

approach were demonstrated in the framework of multiscale computational360

analysis of composites. First, the PBCE method in combination with RVEs361

were applied to micromechanical homogenization of unidirectional FRP yarns362

or plies. The correlation between traditional PBC in implicit integration and363

PBCE in explicit FE was remarkable. Then, PBCE in combination with Rep-364

resentative Laminate Elements (RLE) were proposed for the homogenization365

of laminate behaviour through computational mesomechanics to expedite366

the virtual testing of composite materials and eliminate undesired effects of367

coupon-based experiments.368
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[11] F. Naya, C. González, C. S. Lopes, S. V. der Veen, F. Pons, Computa-417

tional micromechanics of the transverse and shear behavior of unidirec-418

tional fiber reinforced polymers including environmental effects, Com-419

posites Part A: Applied Science and Manufacturing 92 (2017) 146–157.420

[12] J. Segurado, J. Llorca, A numerical approximation to the elastic prop-421

erties of sphere-reinforced composites, Journal of the Mechanics and422

Physics of Solids 50 (2002) 2107–2121.423

[13] J. Williams, J. Segurado, J. LLorca, N. Chawla, Three dimensional424

(3D) microstructure-based modeling of interfacial decohesion in particle425

reinforced metal matrix composites, Materials Science and Engineering:426

A 557 (2012) 113–118.427
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