
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Herráez, M., Mora, D., Naya, F., Lopes, C. S., González, 
C. & LLorca, J. (2015). Transverse cracking of cross-ply 
laminates: A computational micromechanics perspective. 
Composites Science and Technology, 110, 196–204. 

DOI: 10.1016/j.compscitech.2015.02.008

© 2015 Elsevier Ltd. All rights reserved.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.compscitech.2015.02.008


Transverse cracking of cross-ply laminates: a

computational micromechanics perspective
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Abstract

Transverse cracking in cross-ply carbon/epoxy and glass/epoxy laminates
in tension is analyzed by means of computational micromechanics. Longitu-
dinal plies were modeled as homogenized, anisotropic elastic solids while the
actual fiber distribution was included in the transverse plies. The mechanical
response was obtained by the finite element analysis of a long representative
volume element of the laminate. Damage in the transverse plies was trig-
gered by interface decohesion and matrix cracking. The simulation strategy
was applied to study the influence of ply thickness on the critical stress for
the cracking of the transverse plies and on the evolution of crack density
in [0◦2/90◦n/2]s laminates, with n = 1, 2, 4 and 8. It was found that the
transverse ply strength corresponding to the initiation and propagation of a
through-thickness crack was independent of the ply thickness and that the
transverse strength of carbon/epoxy laminates was 35% higher than that of
the glass fiber counterparts. In addition, the mechanisms of crack initiation
and propagation through the thickness as well as of multiple matrix cracking
were ascertained and the stiffness reduction in the 90◦ ply as a function of
crack density was computed as a function of the ply thickness.
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1. Introduction.

Fiber-reinforced polymers are nowadays extensively used in engineering
applications which require high specific stiffness and strength. They present
several different physical failure mechanisms and transverse ply cracking (also
denominated matrix cracking) is very often the first one to develop under
the application of thermal or mechanical loads. Nucleation and propagation
of matrix cracks do not normally lead to structural collapse but degrades
very rapidly the laminate resistance to permeation and leakage, limiting the
application of cracked laminates in pressure vessels, fuel tanks, etc. Moreover,
transverse ply cracks induce interply delamination which may have more
serious consequences from the structural viewpoint.

The mechanics of matrix cracking is now well established on the basis
of extensive experimental campaigns and of analytical models. The first
microcrack causes negligible changes in the thermo-mechanical response of
the laminate, but the crack density (the number of cracks per unit length)
increases with the applied strain until saturation, leading to material degra-
dation in terms of a moderate to significant loss in the ply transverse stiffness
and shear modulus. Extensive reviews of matrix cracking and its effect on
the behavior of composite laminates are available in the works of Nairn [1]
and Talreja and Singh [2].

The onset of matrix cracking and the crack density at saturation is dic-
tated by a number of factors, including the quality of the material (which
is controlled by fiber distribution as well as by the mechanical properties
of the matrix and of the fiber/matrix interface) together with the laminate
stacking sequence and thickness [1]. Parvizi et al. [3, 4] studied the influence
of the ply thickness on the strain-to-failure of the 90◦ layers on glass-epoxy
cross-ply cross-ply [0/90]s laminates by varying the relative thickness of the
inner 90◦ layers with respect to the supporting 0◦ plies. They found that the
thinner the internal layers, the higher the critical strain for crack initiation
and the crack density. For sufficiently thin inner plies, matrix cracking could
eventually be suppressed prior to the failure of the supporting layers which
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determines the final collapse of the specimen. In addition, the position of the
90◦ layers relative to the supporting plies also influences the critical strain
and Nairn [1] showed that matrix cracking occurs at early stages in [90/0]s
laminates, due to the lack of constrain on the external plies. Similar trends
were reported in [5, 6] for [±θ/90◦]s carbon-epoxy laminates, with different θ
values. To take advantage of this phenomenon, Kawabe et al. [7] developed
the tow-spreading technique which can be used to produce prepreg tapes
with a thickness below one-third of that of conventional laminates, leading
to thin ply laminates which present outstanding damage tolerance [8, 9].

The mechanics of transverse matrix cracking in cross-ply laminates was
analyzed by Dvorak and Laws [10] from a fracture mechanics perspective.
They assumed the presence of an initial crack nucleus and computed the
energy release rate for the crack propagation through the ply thickness and
parallel to the fibers. Crack propagation occurs when the energy release rate
is equal to the fracture energy Gc. In the case of uniaxial tension perpendic-
ular to the fibers, the critical stress that leads to the through-thickness crack
propagation, Y tt

T , is given by

Y tt
T =

√
2Gc

πδcΛ22

(1)

where δc is the crack length in the through-the-thickness direction (<< t, the
ply thickness) and Λ22 = 2(1/E1 − ν2

12/E2) where E1, E2 and ν12 stand for
the longitudinal and transverse elastic modulus of the ply and the in-plane
Poisson’s ratio, respectively. Dvorak and Laws [10] assumed that the initial
crack nucleus was controlled by the microstructural inhomogeneities in the
composite and thus Y tt

T was independent of the ply thickness.

The energy release rate for through-thickness propagation remains greater
than the energy release rate for propagation parallel to the fibers (tunnel-
ing) until the crack approaches the interface. Assuming that the through-
thickness crack has spanned the whole ply thickness, the critical stress for
the continuation of crack propagation along the fibers, Y l

T , under uniaxial
tension perpendicular to the fibers is given by

3



  

Y l
T =

√
8Gc

πtψI
(2)

where ψI is a coefficient (of the order of the unity) that takes into account
the constraint of the adjacent plies [11]. Transverse ply cracking requires an
applied tensile stress higher than both Y tt

T and Y l
T . Whether Y tt

T > Y l
T or

vice versa depends on the size of the initial crack nucleus, δc and on the ply
thickness t but it is evident that the transverse cracking stress is given by
equation (1) in very thick plies. As the δc is unknown, Dvorak and Laws [10]
related the in situ transverse strength of thick plies to the transverse tensile
strength measured on an unconstrained unidirectional ply, YT , as:

Y tt
T = 1.12

√
2YT (3)

where the factor 1.12 accounts for the stress intensity magnification of a
surface crack. In the case of very thin plies, the transverse strength was
given by equation (2) and it was proportional to 1/

√
t.

These predictions for the behavior of thick and thin plies were in good
agreement with the experimental observations [3, 5, 6] but the model was not
able to predict the critical ply thickness that separates ”thin” from ”thick”
plies because δc is unknown. Moreover, the actual value of the critical stress
for crack initiation, Y tt

T in equation (1), cannot be predicted because is a
function of the unknown size of the initial crack nucleus, while the validity
of the in situ ply strength in equation (3) has not been ascertained [12].
Nevertheless, these limitations can be overcome by means of computational
micromechanics, which can account for the influence of matrix, fiber and
interface properties on the onset and development of matrix cracking. Com-
putational micromechanics is emerging in recent years as a powerful tool to
predict the influence of the constituent properties on the ply behavior under
different loading conditions, including transverse compression [13], shear [14]
and fracture [15, 16, 17]. This information can be used as input in multiscale
modeling strategies aimed at predicting the laminate and component behav-
ior [18]. Computational micromechanics is used here to analyze the effect
of ply thickness on the onset and development of transverse ply cracking in
cross-ply carbon/epoxy and glass/epoxy laminates.
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2. Computational micromechanics strategy

The onset and development of transverse matrix cracking in cross-ply
[02/90n/2]s laminates was studied by means of the finite element analysis of a
representative volume element of the material (RVE). The RVE is rectangular
with length L = 10 mm and thickness t=2(n

2
+2)t0 where t0 is the thickness

of a single ply, Figure 1(a). t0 was equal to 68.75 µm in the case of glass
fiber composites and to 34.38 µm in the case of carbon fiber composites
to account for the smaller radius of carbon fibers. The length of the RVE
was long enough to compute accurately the increment in crack density upon
deformation along the x direction. Obviously, this 2D model can only account
for the through-thickness initiation and propagation of cracks. Simulation of
crack tunneling will require a full 3D simulation which is out of the scope of
this paper.

The 0◦ plies were assumed to be homogenized, transversally isotropic elas-
tic solids, with equivalent effective properties, while the actual random fiber
spatial distribution was included in the 90◦ ply (Figure 1(b). The fiber radius
was constant and equal to R = 9 µm for E glass fibers and to 4.5 µm for AS4
carbon fibers and the fibers were dispersed in the 90◦ ply using the modified
random sequential adsorption algorithm [19]. This algorithm provides ran-
dom fiber distribution within the RVE while imposing some limitations on
the minimum distance between the fiber surfaces (> 0.07R) and between the
fiber surface and the ply edges (> 0.1R) to avoid the presence of distorted
finite element during meshing. The fiber volume fraction within the RVE was
set to 65%. It should be indicated that the fibers intersecting the internal
edges with the 90◦ plies were removed from the model to represent the typical
matrix rich region between adjacent plies with different angle directions, Fig-
ure 1(b), but it was ensured that the final volume fraction was always 65%.
The RVE was discretized with generalized plain strain isoparametric four-
noded quadrilateral elements (CPEG4 in Abaqus/Standard [20]). Special
care was taken to obtain a good mesh discretization between fiber ligaments,
as this is necessary to capture adequately the complex stress gradients in
these regions, Figure 1(c). In addition, four-noded isoparametric cohesive
elements (COH2D4 in Abaqus/ Standard [20]) with thickness of 10−3µm)
were inserted at the fiber/matrix interfaces to address interface decohesion
during the simulations.

5



  

Four different RVEs were generated, corresponding to n = 1, 2, 4 and 8,
to analyze the influence of ply thickness on the mechanics of matrix cracking.
The fiber distribution in a central slice of the RVE is shown in Figure 2 for
the different RVEs. The total length of the RVEs is always 10 mm along the
x axis (not included in Figure 2) while the thickness of the central 90◦ ply is
nt0.

Periodic boundary conditions were applied to the edges of the RVE to
maintain the continuity between adjacent RVE’s. They can be expressed as:

~u(0, z)− ~δx = ~u(L, z)

~u(x,−t/2)− ~δz = ~u(x, t/2)
(4)

where ~δx = (δx, 0) stands for the imposed displacement vector along the x

direction and ~δz = (0, δz) is computed from the condition that the average
stresses along the through-the-thickness direction should be zero, the plane
stress condition in the x− y plane of the laminate [19].

The properties of the E glass and AS4 carbon fibers were taken from
the literature [17, 21]. E-glass fibers were considered as isotropic, thermo-
elastic solids with elastic modulus Ef =74 GPa, Poisson’s ratio νf = 0.2
and coefficient of thermal expansion αf=10−5K−1. AS4 carbon fibers were
transversally isotropic elastic solids, with elastic moduli Ef1 = 232 GPa and
Ef2 = 13 GPa in the fiber and transverse directions, respectively, in plane
and out-of-plane Poisson’s ratios νf12 = 0.3 and νf23 = 0.46, respectively,
and in plane and out-of-plane shear moduli, Gf12 = 11.3 GPa and Gf23 =
4.45 GPa, respectively. The coefficients of thermal expansion of AS4 carbon
fiber in the longitudinal and transverse directions were, respectively, αf1 =
-0.9 10−6K−1 and αf2 = 7.2 10−6K−1.

The properties of the epoxy matrices for the composites reinforced with
carbon or glass fibers were also taken from the literature. Those of the car-
bon fiber composite are characteristic of a Hexply resin 8552 from Hexcel [22]
while those of the glass fiber composite correspond to an MTM57 resin from
the Advanced Composite Group [17]. The epoxy matrices were modelled as
isotropic, elasto-plastic solids, with thermo-elastic constants Em, νm, and αm.
Plastic deformation and damage was accounted for by means of a continuum
plasticity-damage model proposed by Lee and Fenves [23] based on a previ-
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ous model developed by Lubliner [24]. The model, schematically described in
Figure 3, takes into account the pressure-sensitivity of the epoxy flow stress
under compression and its brittle behavior in tension, and has been success-
fully applied to analyze intraply crack propagation in glass fiber-reinforced
polymers [17]. Under compression, the matrix follows the standard Drucker-
Prager yield criterion, which is determined by the compressive flow stress,
σcm and the pressure sensitivity parameter, αps. The mechanical behavior
of the matrix in tension is brittle and the tensile strength of the matrix is
σtm. The post-peak behavior is controlled by a softening law characterized
by the matrix fracture energy Gm. The actual values of the parameters that
characterize the matrix behavior can be found in Table 5. More details about
the constitutive model and the numerical implementation can be found in
[17, 20]

The fiber-matrix interface was modeled as a cohesive crack, whose me-
chanical behavior is expressed in terms of a bilinear traction-separation law
which relates the displacement jump across the interface (defined by normal
and tangential components, δn and δs, respectively) with the traction vector
acting on it (defined by the normal and tangential components, tn and ts)
[25]. The initial response is linear with an elastic stiffness of K = 5.0 × 107

MPa/mm, which is large enough to ensure the displacement continuity at the
interface and to avoid any modification of the stress fields around the fibers
in the absence of damage. The linear behavior ends at the onset of damage,
which is dictated by a maximum stress criterion expressed mathematically
as

max
{〈tn〉
N

,
ts
S

}
= 1 (5)

where N and S stand for interface strength in tension and shear, respectively
[17]. Once the damage begins, the stress transferred through the crack is
reduced depending on the interface damage parameter d, which evolves from 0
(in the absence of damage) to 1 (no stresses transmitted across the interface).
The corresponding traction-separation law is expressed by

tn = (1− d)Kδn if δn > 0
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ts = (1− d)Kδs (6)

The evolution of the damage parameter is controlled by an effective dis-
placement, δ̄, defined as the norm of the displacement jump vector across
the interface as

δ̄ =
√
< δn >2 +δ2

s , (7)

and d depends on the maximum effective displacement at the interface at-
tained during the loading history at each material integration point δ̄max

according to

d =
δ̄f (δ̄max − δ̄0)

δ̄max(δ̄f − δ̄0)
(8)

where δ̄0 and δ̄f stand for the effective displacement at the onset of damage
(d = 0) and when the interface has failed completely (d = 1), respectively.

The mechanical response of the interface is controlled by the normal (N)
and shear (S) interface strength and by the energy necessary to completely
break the interface, Gint, (which is independent of the loading path in this
model). The shear interface strength S = 75MPa was measured by means
of indentation push-out experiments carried out in thin slices of the com-
posite material [17]. The normal strength N = 100 MPa and the interface
fracture energy Gint = 10 J/m2 were calibrated by means of computational
micromechanics simulations of representative volume element of the compos-
ite in tension. More details about the cohesive crack model implementation
can be found in [25, 20].

Finally, the 0◦ layers with the fiber aligned in the loading direction were
assumed to be linear elastic. Their thermo-elastic constants (elastic moduli
parallel and perpendicular to the fibers, E1 and E2, coefficients of thermal
expansion parallel and perpendicular to the fibers, α1 and α2 and the in-
plane Poisson’s ratio and shear modulus, ν12 and G12) were obtained from
the matrix and fiber properties and volume fraction (65%) using the Mori-
Tanaka mean-field approximation [26] and they can be found in Table 2 for
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the AS4 carbon/epoxy and E glass/epoxy plies. Simulations were carried out
under generalized plane strain conditions using Abaqus/Standard and within
the framework of the small deformations theory.

3. Results

Numerical simulations of the four RVEs in Figure 2 were carried out
to assess the influence of the transverse layer thickness on the onset and
propagation of through-thickness cracks. The 2D model cannot take into
account the crack propagation along the fiber direction (tunneling) and it is
appropriate to simulate transverse cracking of thick plies, which is controlled
by Y tt

T according to equation (1). Simulations were performed in two steps.
Firstly, the RVE was subjected to a homogeneous temperature change of ∆T
= -100◦C to generate the thermal residual stresses that develop after curing
upon cooling to ambient temperature. No initial damage in the matrix or
at the fiber/matrix interface was found after this step. Afterwards, tensile
deformation was applied by increasing the displacement δx, leading to the
progressive cracking of the 90◦ layer.

3.1. First microcrack

The initial deformation of the RVE was elastic but the stress field within
the RVE was inhomogeneous. The onset and propagation of the first crack
in the 90◦ ply is depicted in Figs. 4(a) and (b) for the carbon/epoxy cross-
ply laminates with the thinnest ([02/90/02]) and thickest ([02/908/02]) 90◦

ply. Damage started by interface decohesion in one fiber and propagated
very rapidly along the interface of neighbor fibers in the thin ply, leading
to the formation of a thin crack through-the-thickness of the 90◦ ply, Fig.
4(a). Crack initiation in thick 90◦ plies was also triggered by matrix/fiber
decohesion close to the interface between 0◦ and 90◦ plies, Fig. 4(b). As the
applied strain increased, damage in the form of interface decohesion and shear
matrix failure between debonded fibers propagated across the ply. The actual
crack path depended on the fiber distribution leading to significant crack
branching and meandering in the through-thickness crack. The differences
between the thin cracks in thin 90◦ plies and the wider damage zone in thick
90◦, accompanied by crack branching and the formation of oblique cracks
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are in very good agreement with experimental observations in the literature
[17, 27, 28, 29]. Similar results were obtained for E glass/epoxy laminates
and they are not included for sake of brevity.

3.2. Transverse ply strength

The strength of the 90◦ ply, understood as the maximum stress carried
by the transverse ply during deformation, can be computed from the total
force per unit width carried by the laminate, P , minus the contribution of
the 0◦ plies, that are assumed to be linear elastic. Accordingly, the stress on
the 90◦ ply, σx, under plane strain conditions is given by

σx =
P − εxt0 E1

(1−ν12ν21)

t90

+ σthx (9)

where εx is the mechanical strain (computed from the applied displacement
along the loading direction after cooling down at ambient temperature), σthx
the thermal residual stress in the 90◦ ply along the x direction after cooling
down upon ambient temperature and t0 and t90 stand for the thickness of the
0◦ and 90◦ plies, respectively. The thermal residual stress, σthx is given by

σthx = εthx
E2

(1− ν12ν21)
(10)

where εthx is the corresponding thermal residual strain in the 90◦ ply after
cooling down upon ambient temperature.

This definition of the ply strength has two advantages: it can be easily
determined from experimental results and it does not require to ascertain
whether the first matrix crack has propagated through the whole thickness
of the ply, a task that may be very difficult in very thin plies because of the
reduced crack opening displacement of transverse cracks [29]. Nevertheless,
it should be noted that eq. (9) implicitly assumes –following the postulates
of the classical laminate theory– that the stress in the 0◦ plies is constant
and does not take into account the local load transfer from the 90◦ ply to
the 0◦ as a result of the development of a transverse crack. Although this
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contribution to the total load carried by the 0◦ is very small, it can be of
the same order of magnitude that the total load carried by the 90◦ ply and
cannot be neglected in this analysis. One advantage of the computational
micromechanics approach presented in this paper is that the stress carried by
the 90◦ ply can be computed from the results of the finite element analysis
using eq. (9) but it can also be determined as the average stress carried
by the 90◦ ply, σx, obtained by numerical integration of the stress in the x
direction in the whole transverse ply according to

σx =

∑
i σ

i
xΩ

i∑
i Ω

i
(11)

where σix and Ωi stand, respectively, for the stress in the x direction and the
area associated to the Gauss point i in the whole finite element discretization
of the 90◦ ply.

The transverse ply strength, Y tt
T has been plotted as a function of the

transverse ply thickness in Figs. 5(a) and (b) for the carbon/epoxy and
glass/epoxy cross-ply laminates, respectively. The results for the ply strength
obtained from classical laminate theory (eq. 9) and computational microme-
chanics (eq. 11) are plotted together with the broken horizontal line that
is the prediction for the in situ transverse strength of thick plies according
to Dvorak and Laws [10], eq. (3). In this equation, the transverse tensile
strength of an unconstrained unidirectional ply, YT , was computed by means
of computational micromechanics through the finite element analysis of a
square RVE of the microstructure of the composite subjected to transverse
tension with periodic boundary conditions [30]. These simulations were car-
ried out using the fiber volume fraction as well as the matrix, fiber and inter-
face properties of both the AS4 and the E glass fiber/epoxy composites. The
results of computational micromechanics, that provide the actual strength
of the transverse ply, demonstrated that there is not size effect on the stress
necessary to initiate a transverse crack through the laminate thickness, in
agreement with the fracture mechanics postulates. Moreover, the approxi-
mation of Dvorak and Laws [10], eq. (3), for the in situ strength tends to
overestimate slightly the actual transverse strength but it can be considered
fairly accurate for both carbon and glass fiber composites.

The computational micromechanics simulations showed that the trans-
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verse ply strength of carbon fiber composites was ≈ 25 MPa higher than
that of glass fiber composites. This difference in the transverse strength has
to be attributed to the differences between the carbon and glass fiber elastic
modulus, as the matrix and interface properties as well as the fiber volume
fraction were identical in both cases. Transverse cracking was triggered by
interface decohesion and this mechanism developed earlier in the glass fiber
composite because the elastic stress concentration at the fiber/matrix inter-
face was enhanced by the high modulus mismatch between the glass fiber
(74 GPa) and the epoxy matrix (3.5 GPa). On the contrary, the transverse
elastic modulus of the AS4 carbon fiber (13 GPa) was much closer to that of
the matrix, and the stress concentration at the interface weaker.

Interestingly, the ply strength computed from classical laminate theory
is higher than the actual ply strength obtained by averaging the stress in
the transverse ply and predicts a size effect in the case of carbon / epoxy
composites. The differences between both can be understood from Fig. 6
in which the distribution of σx is plotted across a section of the laminate in
which damage has developed in the transverse ply. Figs. 6(a) and (b) corre-
spond to [02/902/02] carbon/epoxy and glass/epoxy laminates, respectively
The load shed by the transverse ply as soon as damage starts near to the
0/90 ply interface leads to the development of a stress concentration in the 0◦

ply. Classical laminate theory assumes that the load carried by the 0◦ plies
is constant (the broken line in Fig. 6 and the extra load carried by these
plies due to the stress concentrations is assigned to the 90◦ ply, overestimat-
ing the strength of the transverse ply. The effect increases with the elastic
mismatch between E1 and E2 and also as the thickness of the transverse ply
decreases. It was maximum and led to a noticeable size effect in the case of
carbon/epoxy composites for which E1/E2 = 15.3 and very limited for glass
/epoxy composites with E1/E2 = 3.1.

3.3. Multiple Microcracking

Further straining after the first matrix crack led to development of mul-
tiple matrix cracks along the 90◦ ply. The evolution of the cracking pattern
with the applied strain is shown in Figure 7a for the [02/904]s laminate. Ma-
trix cracks are evenly distributed along the ply as the stress relief around each
crack impedes the development of new cracks in the vicinity of old cracks.
The numbers of cracks per unit length, i.e. the crack density, depended on
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the ply thickness. This is shown in Figure 7b in which the crack pattern at
the end of the simulations is depicted for the different laminates. It should
be noted that simulations stopped before the maximum crack density was
attained due to convergency problems.

The evolution of the crack density in the transverse ply with the applied
strain in the carbon/ epoxy and glass/epoxy [02/901/2]s cross-ply laminates
is plotted in Fig. 8. The crack density vs. strain curve presented a sigmoidal
shape, in agreement with the experimental results [5]: the number of cracks
per unit length increased linearly with the applied strain after the develop-
ment of the first matrix crack but the development of new matrix cracks
slowed down as the strain increased.

The predictions for the degradation of the elastic modulus of the trans-
verse ply, E90◦

x (normalized by the initial modulus E90◦
x0 ), obtained by com-

putational micromechanics are plotted in Figs. 9(a) and (b) for the car-
bon/epoxy and glass/epoxy cross-ply laminates, respectively. The elastic
modulus of the transverse ply was computed as the average stress carried by
the ply along the x axis, given by equation (11), divided by the total strain
(εx + εthx ). The degradation of the elastic modulus with the applied strain
began earlier in the glass/epoxy laminates, because of the early cracking as a
result of the elastic modulus mismatch between matrix and fibers, and pro-
gressed rapidly afterwards. No influence of the transverse ply thickness on
the reduction of the elastic modulus was found among the thicker laminates.
Nevertheless, the reduction of the modulus with the applied strain was more
limited in the thinnest ply.

4. Concluding remarks

The development of transverse ply cracking during tensile deformation of
cross-ply laminates was studied by means of computational micromechanics.
In this strategy, the longitudinal 0◦ plies were represented by homogeneous,
anisotropic elastic solids while the actual fiber dispersion in the matrix was
included in the model of the transverse 90◦ plies. The mechanical response
of the laminate was simulated by means of the finite element analysis under
plane strain of an elongated RVE of the laminate with periodic boundary
conditions. Both fiber/matrix interface decohesion as well as matrix failure
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were taken into account in the simulations. The emphasis was placed in the
initiation and propagation of through-thickness cracks as crack propagation
along the fibers (tunneling) would require a full 3D model.

This strategy was used to study the influence of the ply thickness on the
onset and development of cracking in carbon/epoxy and glass/epoxy cross-
ply laminates of the family [02/90n/2]s with n = 1, 2, 4, and 8. It was found
that transverse matrix cracking was always triggered by interface decohesion
and leading to the formation of a dominant crack propagated from the in-
terface between 0 and 90 plies towards the center of the ply. Upon further
deformation, damage localized in one single crack that spanned the whole
thickness of the 90◦ ply and the first transverse crack was developed. The
actual crack path depended on the fiber distribution leading to significant
crack branching and meandering in the through-thickness crack for thick
laminates, in agreement with the experimental evidence.

It was found that the transverse ply strength corresponding to the initi-
ation and propagation of a through-thickness crack was independent of the
ply thickness, in agreement with the postulates of fracture mechanics. The
transverse strength of carbon/epoxy laminates was 35% higher than that of
the glass fiber counterparts because of the reduced elastic modulus mismatch
between matrix and fiber in the transverse direction. In addition, the ap-
proximation of Dvorak and Laws [10], eq. (3), for the in situ ply strength
was fairly accurate for both carbon and glass fiber composites. The pro-
gressive cracking of the transverse plies was also simulated and the variation
of the crack density with the applied strain presented a sigmoidal shape, in
agreement with the results in the literature [5].

Finally, the actual potential of this computational micromechanics frame-
work to explore the influence of matrix, fiber and interface properties (elas-
tic constants, strength, toughness) on the development of transverse matrix
cracking in multiaxial laminates should be highlighted. Moreover, the de-
tailed information on the nucleation and growth of damage can lead to im-
proved microstructural design strategies to enhance the resistance to trans-
verse cracking and will help to improve the accuracy of current models based
on the homogenized ply properties to predict cracking as well as damage.
These possibilities will be exploited in future investigations.
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Table 1: Parameters that control the mechanical properties of the epoxy matrices.
Epoxy Em νm αm σcm αps σtm Gm

(GPa) (10−6K−1) (MPa) (MPa) (J/m2)
8552 5.1 0.35 52 176 0.18 121 90

MTM57 3.5 0.35 50 105 0.13 75 100

Table 2: Homogenized ply properties according to the Mori-Tanaka model [26].

Ply E1 E2 ν12 G12 α1 α2

(GPa) (GPa) (GPa) (10−6K−1) (10−6K−1)
AS4 Carbon/epoxy 141 9.2 0.32 4.8 -0.34 34.4

E Glass/epoxy 45.7 14.5 0.25 4.5 6.2 28.9
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Figure 1: (a) RVE of the composite laminate with stacking sequence [02/90]s. (b) Detail of
the 90◦ ply, showing the fiber distribution within the ply. (c) Detail of the fiber distribution
at the interface between 0◦ and 90◦ plies as well as of the finite element discretization.

Figure 2: Central slices of the different RVEs of the [02/90n/2]s. (n = 1, 2, 4 and 8).
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Figure 3: Schematic of the uniaxial tension-compression response of the epoxy matrix
according to the damage-plasticity model for quasi-brittle materials.
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Figure 4: Development of the first matrix crack in the 90◦ ply of the carbon/epoxy cross-
ply laminates. (a) [02/90/02] laminate. (b) [02/908/02] laminate. The mechanical strain
(computed from the applied displacement after cooling at ambient temperature) and the
stress in the loading direction on the 90◦ ply (computed from eq. (10)) are shown above
and below each plot, respectively. See text for details.
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Figure 5: Transverse ply strength , Y tt
T , as a function of the transverse ply thickness.

(a) AS4 carbon /epoxy cross-ply laminate. (b) E glass / epoxy cross ply laminate. The
predictions from laminate theory (eq. 9), computational micromechanics (eq. 10) and
from the in situ transverse strength for thick plies (eq. 3) are included in each plot.
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Figure 6: Variation of σx across one section of the cross-ply laminate for a given strain in
which damaged has developed in the transverse ply. (a) Carbon / epoxy [02/902/02], εx
= 0.64%. (b) Glass / epoxy [02/902/02], εx = 0.35%. The broken line in each plot stands
for the stress carried by the 0◦ plies according to the classical laminate theory.
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Figure 7: a) Evolution of the cracking pattern with the applied strain in the [02/904]s car-
bon/epoxy laminate. The contour plots of σx show the stress relief around the cracks. b)
Final cracking pattern at the end of the simulation for the different laminate configurations
analyzed [02/90n/2]s. The corresponding applied strain is indicated for each laminate.
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Figure 8: Evolution of the crack density in the transverse ply with the applied strain in
the carbon/ epoxy and glass/epoxy [02/901/2]s cross-ply laminates.
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Figure 9: Evolution of the elastic modulus in the transverse ply, E90◦

x , (normalized by
the initial elastic modulus E90◦

x0 ) with the applied strain. (a) Carbon/ epoxy cross-ply
laminates. (b) Glass/epoxy cross-ply laminates
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