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Abstract

To determine the dosage at which antibiotic resistance evolution is most rapid, we treated Escherichia coli in vitro,
deploying the antibiotic erythromycin at dosages ranging from zero to high. Adaptation was fastest just below eryth-
romycin’s minimal inhibitory concentration (MIC) and genotype-phenotype correlations determined from whole ge-
nome sequencing revealed the molecular basis: simultaneous selection for copy number variation in three resistance
mechanisms which exhibited an “inverted-U” pattern of dose-dependence, as did several insertion sequences and an
integron. Many genes did not conform to this pattern, however, reflecting changes in selection as dose increased: putative
media adaptation polymorphisms at zero antibiotic dosage gave way to drug target (ribosomal RNA operon) amplifi-
cation at mid dosages whereas prophage-mediated drug efflux amplifications dominated at the highest dosages. All
treatments exhibited E. coli increases in the copy number of efflux operons acrAB and emrE at rates that correlated with
increases in population density. For strains where the inverted-U was no longer observed following the genetic manip-
ulation of acrAB, it could be recovered by prolonging the antibiotic treatment at subMIC dosages.

Key words: microbial evolution, antibiotic resistance, selection for resistance, efflux pump AcrAB-TolC, genomic
amplification, prophage.

Introduction
We treat the bacterium Escherichia coli at different antibiotic
dosages in vitro to ascertain which one supports the most
rapid resistance adaptation for a variety of genotypic and
phenotypic statistics. No study addresses this question di-
rectly, to the best of our knowledge, although the literature
makes relevant predictions. The mutant selection window
(MSW) hypothesis, for example, predicts that resistant
mutants should be detected above the minimal inhibitory
concentration (MIC) of the drug-treated bacterium (Drlica
2003; Zhu et al. 2012; Pan et al. 2017; Alieva et al. 2018).
Competition experiments and population genetics theory
(Gullberg et al. 2011; Liu et al. 2011; Day et al. 2015; Day
and Read 2016), however, indicate mutants with reduced
drug susceptibility could arise, and experience positive selec-
tion, from low dosages upwards. We therefore propagate
populations at sub and super-MIC dosages and seek the
most rapidly adapting lineages in treatment assays described
below.

The so-called inverted-U is predicted to appear in the
resulting data (Tam et al. 2007; Drusano et al. 2009; Kouyos
et al. 2014; Day and Read 2016), based on the following idea.

Selection for resistance should increase with dose (Ankomah
and Levin 2014) but, due to a declining population size, if we
set aside relationships between antibiotic stresses and DNA
damage (Roth 2011; Maharjan and Ferenci 2015; Long et al.
2016; Sharma et al. 2017), the supply of mutants could de-
crease with increasing dose. Therefore, if one were to regress
dose against a quantitative measure of resistance adaptation,
an inverted-U should appear where its peak marks the dose of
most rapid adaptation. MSW reasoning predicts this peak
should lie above the bacterium’s MIC, although population
genetics theory (Day et al. 2015) indicates this is not
“technically correct,” an observation that accords with recent
in vitro and in vivo tests of MSW theory (Pan et al. 2017).
Despite the disagreement, the inverted-U is said to be (Day
and Read 2016) “arguably the single-most robust finding in all
of the empirical literature.” Our data address both this tech-
nical disagreement and the robustness of the inverted-U.

To obtain those data, we treat E. coli with the antibiotic
erythromycin and quantify the dose-dependent rates at
which resistance mechanisms are enriched in genomic and
phenotypic data. If inverted-Us are absent, or if they peak
below the MIC, that would not support the MSW concept.
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However, treatment duration must be an important param-
eter mediating the absence of an inverted-U and we therefore
study aspects of how both treatment duration and E. coli
resistance genetics can affect the inverted-U. Simple theory
indicates inverted-Us need not arise if the antibiotic is very
effective at suppressing growth or if mutations are too rare, in
which case the lowest dosages could support the most rapid
adaptation. As gene amplifications typically have high muta-
tion rates (Sandegren and Andersson 2009; Roth 2011;
Tomanek et al. 2020), peaks of an inverted-U could, but
need not (Langevin et al. 2020), coincide with the genomic
amplification of resistance mechanisms, even though MSW
theory was not originally motivated by amplifications.

Erythromycin is deployed clinically against Gram negative
bacteria but it is not used to treat E. coli, although it likely
encounters erythromycin as an unintended side-effect. So
whereas our study lacks a clinical context, erythromycin is
helpful for quantifying the evolutionary basis of the inverted-
U because it is a substrate of the efflux pump AcrAB-TolC
found in the genome of the E. coli (George and Levy 1983;
Pena-Miller et al. 2014; Bergmiller et al. 2017). Moreover, E. coli
is known to exhibit acrAB amplification mutants with de-
creased sensitivity to erythromycin that yield evolutionary
genomic data from short-term treatments (Laehnemann
et al. 2014; Pena-Miller et al. 2014). Amplification of the
acrAB operon therefore provides a signal of genomic change
that can be quantified from deep sequencing data of short-
term erythromycin treatments.

When challenging E. coli at as many dosages as practicable,
we are interested in the “nonlinear geometry” that appears
when regressing a population phenotype, like population
density, against dose. As population level phenotypes are se-
lected through mechanisms expressed at the genetic level, we
also seek inverted-U data for single genes by estimating the
dose-dependence of selection for novel polymorphisms. An
inverted-U occurs when the resulting regressions have a single
peak marking the dose of most rapid adaptation and we say
that any regression with a single local maximum is an
inverted-U, even if it exhibits a more complex shape with
many local minima. The shape could be an “M” if two dosages
select for resistance or an “L” if low dosages select most for
resistance, we now investigate which of these occur in
practice.

Results
The following idea is used throughout to quantify pheno-
typic rates of adaptation. For any microbial phenotype, f, be
it population density, growth rate, protein expression levels,
or something else entirely, suppose f depends on time, t,
and erythromycin dose, E. Changes in f correspond to phe-
notypic changes in antibiotic resistance and numerical
derivatives (a.k.a. differences) of f can be used to quantify
rates of resistance adaptation (Hegreness et al. 2008). So,
@f=@t ¼ ðftþ1 � ftÞ=Dt is the change of f with respect to
time. Applying this idea to data, we can seek the dosage, E,
for which the rate of change of f is greatest and we call these
dosing “hotspots” throughout.

Prediction: Greater Antibiotic Sensitivity Supports
Fastest Adaptation at Lower Dosages
Before presenting any data, we first turn to two simple the-
oretical models to show that whereas inverted-Us likely de-
pend on many parameters, they should be independent of a
bacterium’s MIC (Day and Read 2016). To see this, consider
the following exactly solvable model of an exponentially
growing population:

d

dt
S ¼ ðgðAÞ � dÞS� lS; (1a)

d

dt
R ¼ ð‘gðkAÞ � dÞRþ lS: (1b)

Here, l is mutation rate from a drug susceptible ancestral
strain (S) to a resistant mutant (R). We assume an initially
clonal population so Sð0Þ ¼ 1 and Rð0Þ ¼ 0, g is a dose-
dependent per capita growth rate, d is a natural death rate
and A is antibiotic dosage. The MIC of S occurs at the dose, A,
where g(A) ¼ d and the MIC of R (a.k.a. the mutant preven-
tion concentration [MPC]) occurs where ‘gðkAÞ ¼ d. The
scaling parameter k (between 0 and 1) is a simple device to
reduce the drug concentration that R experiences relative to S
but this reduction comes at a fitness cost controlled by ‘ <
1 (‘ multiplies the growth rate of R, reducing it).

Define h1 :¼ gðAÞ � d� l; h2 :¼ ‘gðkAÞ � d, (1) has
an exact solution:

SðtÞ ¼ expðh1tÞ; RðtÞ ¼ l
h1 � h2

expðh1tÞ � expðh2tÞÞð

wherein the frequency of S in the population, q, is indepen-
dent of S’s MIC because h1 � h2 is independent of d:

q :¼ S

Sþ R
¼ 1

1 þ lð1 � expððh2 � h1ÞtÞÞ=ðh1 � h2Þ
:

Now, if h2 > h1 then qðtÞ ! 0 as t ! 1 and the resis-
tant mutant approaches fixation. If h1 > h2 then mutation-
selection equilibrium is reached with qðtÞ ! 1=ð1 þ l=ðh1

�h2ÞÞ as t ! 1 and the rate of convergence is determined
by the exponential in the definition of q, so we define the
selection coefficient (Day et al. 2015)

sðAÞ :¼ h2 � h1 ¼ ‘gðkAÞ � gðAÞ þ l:

Doses where the maximum rate of adaptation (ROA) are to
be sought in data correspond here to the dose where s(A) is
maximal and we call both “hotspot” dosages. By elementary cal-
culus, the maximum of s(A) occurs either at A¼ 0, in the limit
A !1 or else where (using a dash 0 to denote a derivative).

ds

dA
¼ k‘g0ðkAÞ � g0ðAÞ ¼ 0 (2)

and d2s=dA2 ¼ k2‘g00ðkAÞ � g00ðAÞ < 0.
Hill functions provide standard models for g but an expo-

nential decline (Smith and Waltman 1995), gðAÞ ¼
expð�pAÞ, controlled by parameter p yields a simple and
instructive calculation. Solving equation (2) we find,
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A ¼ Ahot ¼
1

pð1 � kÞ lnð‘kÞ�1

which is positive because 0 < ‘; k < 1. Ahot could lie above
or below S’s MIC because the latter is the solution, for A, of
g(A) ¼ d which is independent of both ‘ and k. The inverted-
U form of s(A) is illustrated in figure 1A and B.

Now, if one could use genetic manipulation in practice to
synthetically increase sensitivity to the antibiotic, this could
increase p which would decrease Ahot, or, to put it differently,
increasing antibiotic efficacy reduces the hotspot dose in this
simple model. The hotspot could, therefore, occur close to
zero for sufficiently severe genetic perturbations which, for
E. coli and erythromycin, could entail the removal of rrl oper-
ons, manipulation of the mar regulatory network or loss of
function of the acrAB operon; we investigate the latter below.
Moreover, the dosing hotspot clearly depends on several bi-
ological parameters by equation (2) and because different
mutations would associate with different modeled parameter
values, this logic predicts different resistance mechanisms
could have different hotspots.

The unchecked exponential growth of equation (1) is not
necessarily realistic so a second model predicts how inverted-
Us might appear in empirical population density data:

d

dt
S ¼ S � ð1 � A� ðSþ RÞÞ � lS; (3a)

d

dt
R ¼ R � ð1 � ðSþ RÞÞ þ lS: (3b)

As in equation (1a and 1b), S is susceptible and R is resis-
tant to the antibiotic, A, where unit carrying capacity is now
assumed. We impose no costs of resistance but one could be
included. Now, dose–responses of equation (3a and b) where
population density, SðtÞ þ RðtÞ, is plotted against antibiotic,
A, are not monotone (fig. 1C) because those densities increase
most rapidly at intermediate dosages. We therefore observe
complex inverted-U-like shapes that change through time
when we seek the most rapid changes in population density
by taking the time difference of the latter (fig. 1D). An analytic
selection coefficient is not available for equation (3a and b)
but these nonmonotone dose–responses are an important
feature of E. coli in vitro, as we now show.

Antibiotic Treatments of E. coli
We sought inverted-Us in population density data by treating
four strains of E. coli K12 (AG100, AG100A, TB108, and eTB108)
in minimal M9 media supplemented with erythromycin at
concentrations 0, 5, 10, . . .., 50mg/ml once daily for 7 days
(a.k.a. seasons, eight replicates per dose). With each round of
treatment E. coli may experience a lag phase and a period of
exponential growth followed by the stresses of resource deple-
tion and stationary phase, or very little growth at all, each of
which is mediated by antibiotic (see Materials and Methods,
supplementary figs. 16–18, Supplementary Material online).
AG100A is a knockout strain derived from E. coli AG100 that
lacks functional AcrA, E. coli MG1655 is the parent of TB108
which has GFP fused to AcrB and eTB108 is derived from TB108

by adapting it to sublethal dosages of erythromycin (see
Materials and Methods). Accordingly, all four differ in their
dose–responses to erythromycin: AG100A is most sensitive,
then TB108, whereas AG100 and eTB108 have similar responses
(supplementary fig. 1, Supplementary Material online).

We measured population densities continually during
treatment, we also measured efflux protein (AcrB) expression
continually for TB108 and eTB108, as explained below. We
then quantified evolved dose–responses for the four strains
and sought resistance mechanisms by destructively sequenc-
ing 3, AG100 metapopulations sampled from three replicate
lineages every other day (days 1, 3, and 5). Moreover, spec-
trophotometry was used to estimate both mean AcrB-GFP
and optical density (OD at 600 nm) levels which, because the
latter is a unit of biomass that correlates with cell counts
(adjusted R2 > 0:95, supplementary fig. 25, Supplementary
Material online), dividing AcrB-GFP by OD data provides ap-
proximate data on the mean expression of AcrB per cell.

Population Density Adaptation Correlates With Changes in

Efflux
The continuous measurement of optical densities (OD, taken at
600 nm, Materials and Methods) as a proxy of AG100 popula-
tions’ biomass initially formed a dose–response that, as
expected, declined with increasing drug concentration (fig. 2A,
24h data), putting the MIC (IC99) at 32.16 1.8mg/ml (mean 6

95% C.I., n¼ 8; supplementary fig. 1, Supplementary Material
online). By season 3, AG100 was detected at dosages where it
previously had not been (fig. 2A, 72h) and all populations
exhibited increasing densities, indicating reduced antibiotic effi-
cacy (fig. 2B).

To quantify the rate of adaptation (ROA), we applied a prior
rate of change measure (Hegreness et al. 2008) to population
densities (see Materials and Methods): the ROA of AG100 to
erythromycin has a nonlinear, nonmonotone dependence on
dose that exhibits qualitative consistency with equation (3a and
b) (c.f. figs. 3A and 1D [blue line]). Moreover, populations
adapted fastest at near-MIC dosages (30 and 35 mg/ml,
fig. 3A) and the latter figure exhibits an inverted-U. eTB108
behaves analogously (fig. 3) with a high correlation between
ROA in population density (OD, fig. 3A) and ROA of population
mean AcrB-GFP per OD (fig. 3B; Deming regression
R2 � 0:84; P � 0:05, supplementary fig. 2, Supplementary
Material online). Thus, increases in AcrB expression correlate
with population density increases for eTB108.

In order to quantify phenotypic increases in resistance, one
could sample populations each day and determine their re-
spective changes in erythromycin MIC. As this requires a
dose-response assay for each replicate of each lineage each
day, we reduced the overhead by introducing a measure, the
effective antibiotic dose (EAD), which can be determined
directly from population density data as it is collected. The
EAD (fig. 2B) is the dose that if it had been applied to the
ancestral strain, it would have resulted in the same popula-
tion density as the drug-adapted population (see Materials
and Methods). For example, if a drug-treated strain grows to
the same density as the untreated ancestral strain, then the
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EAD is zero, but if a treated strain grows to the same density
as that achieved by the ancestral strain when cultured at dose
x, then the EAD is x. The EAD can, therefore, be determined
from the dose-response of the ancestral strain and just one
culture of a treated strain (see Materials and Methods). Now,
for the fastest adapting AG100 populations, the EAD reduces
by approximately 50% within 72 h (fig. 2B).

Dynamic, Wave-Like Correlations between Antibiotic Dose

and AcrB Expression
We expected the acrAB operon would mediate resistance but
because erythromycin binds the ribosomal 50S subunit and
inhibits protein synthesis (Sparling and Blackman 1973), we first
reasoned this inhibition might create a negative correlation be-
tween dose and AcrB per cell. However, a second expectation
was also plausible whereby AcrB per cell could increase with
dosage, mediated by the mar resistance regulon (Alekshun and
Levy 1999). In practice we observe much more nuanced behav-
ior than either of these possibilities whereby dose-dependent,

“wave-like” dynamics appeared in the changing correlations
between erythromycin and AcrB expression.

To elucidate this relationship, spectrophotometry data ap-
proximating mean AcrB per cell (AcrB-GFP per OD) increase
at 24 h as drug passes from 0 to 10 mg/ml (fig. 3C) but they
then decrease as drug is further increased, up to and beyond
the MIC. This remains true in late phase bacterial growth (12–
18 h, fig. 3D). However, this pre24h, predominantly negative
efflux pump-drug correlation is replaced in a step-wise man-
ner by an increasingly positive correlation as treatment pro-
ceeds which creates a wave-like front in changing AcrB-GFP
per OD expression profiles (fig. 3C and supplementary fig. 6,
Supplementary Material online).

acrAB Amplification Correlates With Loss of Drug Efficacy

and Increased AcrB Expression
acrAB helps bacteria negotiate different phases of growth
in vitro, even without antibiotics (Zhang et al. 2011) and,
accordingly, AcrB-GFP expression dynamics are qualitatively
similar here in the absence and presence of erythromycin

0 0.5 1 1.5 2 2.5 3
drug dose

-1

0

1

gr
ow

th
 r

at
e 

(p
er

 h
)

MSCMIC MPC

hotspot
dose

MSW

susceptible wild type (S)
resistant mutant (R)
selection coefficient

0 0.5 1 1.5 2 2.5 3
drug dose

-1

0

1

gr
ow

th
 r

at
e 

(p
er

 h
)

MSC MIC MPC

hotspot
dose

MSW

susceptible wild type (S)
resistant mutant (R)
selection coefficient

gurd xamgurd dimgurd on
antibiotic concentration

0

0.5

1

po
pu

la
tio

n 
de

ns
ity

 (
S

+
R

)

very short-term dose response
short-term dose response
response @ time = 11 units
response @ time = 12 units
response @ time = 13 units
response @ time = 14 units

gurd xamgurd dimgurd on
antibiotic concentration

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 (
po

pu
la

tio
n 

de
ns

ity
)

 short-term dose response
 response @ time = 11 units
 response @ time = 12 units
 response @ time = 13 units
 response @ time = 14 units

A B

C D
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Us obtained by taking the time difference of dose–responses in (C) change with the duration of treatment: the dose of most rapid adaptation (the
dots) increase with duration.
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(fig. 3D). When treated with erythromycin, AcrB expression
tends to increase with each treatment round (supplementary
fig. 7, Supplementary Material online) although AcrB-GFP per
OD first declines each day just after treatment begins (in lag
phase) only to increase later through logistic-like dynamics
whether erythromycin is present or not (fig. 3D and supple-
mentary fig. 7, Supplementary Material online).

Changes in AcrB expression are likely to have a genomic
basis here because increases in acrAB per genome should

increase AcrB expression. To quantify this, we used whole
genome sequence data to correlate chromosomal copies of
acrAB with phenotypic AcrB-GFP data, we also compared
rates of adaptation of population density with acrAB copy
number changes inferred this way (see Materials and
Methods). These comparisons show 5 days’ erythromycin
exposure selects for an amplified 302-kb chromosomal region
(Laehnemann et al. 2014) (274–576 kb) containing acrAB
(480–485 kb) whereby just one copy of this region is observed
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at all times in the absence of antibiotic (fig. 4 and supplemen-
tary figs. 8–10, Supplementary Material online). When drug
was present, acrAB copy number increased at rates that
depended on dosage (fig. 5A and B) where the highest rate
occurred at around 30mg/ml (fig. 5B). These acrAB amplifi-
cations are correlated with increases in AcrB-GFP expression
with significantly positive, nonlinear correlations (AcrB per
OD in fig. 6A, AcrB per OD per operon in fig. 6B, AcrB per
OD versus operon copy number in fig. 6C).

By comparison, the amplification of a 25-kb genomic re-
gion containing the ribosomal RNA operon rrlB (a drug tar-
get) occurs at a lower rate (fig. 5C) than acrAB. The efflux
operon acrEF is implicated in erythromycin resistance (Sulavik
et al. 2001) and shares common substrates with acrAB but it
was not amplified in any treatments (supplementary fig. 15,
Supplementary Material online).

Regulatory Changes That Increase AcrB per acrAB Operon
As erythromycin inhibits translation, we reasoned the num-
ber of efflux pumps per cell per acrAB operon could decline
with increasing dose and data concur (fig. 6B). We then rea-
soned both efflux pumps per cell and pumps per cell per op-
eron could increase during treatment due to regulatory
adaptation. However, no mutations were observed in the
acrAB regulators (White et al. 1997; Alekshun and Levy
1999) AcrR and MarR, but we did see the following evidence
of regulatory change.

Little daily variability in acrAB per chromosome and AcrB-
GFP per OD was observed in the absence of erythromycin,
both maintained ancestral levels each day (figs. 5A and 6A).
However, they varied during treatment: at 5–10 mg/ml eryth-
romycin, mean AcrB-GFP per OD increased and reached an
equilibrium at approximately 50% above ancestral levels
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near the MIC (supplementary fig. 14, Supplementary Material online, is analogous for AG100). (B) Rates of adaptation of population mean AcrB
per cell (i.e., AcrB-GFP per OD) clearly correlate with rates of population density adaptation in (A) (R2 � 0:84, see supplementary fig. 2,
Supplementary Material online). (A) and (B) show spline interpolants of the data mean (cyan), dashed horizontal lines indicate zero adaptation,
thick horizontal lines indicate adaptation rate in the absence of erythromycin and significant changes with respect to that are shown by green dots
(two-sided t-tests , mean6 SE, n¼ 8). (C) Green lines are treatment-by-treatment experimental dose-response profiles of mean AcrB-GFP per cell
(i.e., nGFP � OD�1). The changes drug concentration increments have on AcrB-GFP per OD are shown in the right subplots at 24 h and 120 h (mean
6 SE, n¼ 8): increases are green bars and decreases are red bars. Significant changes in mean AcrB-GFP per OD (two-sided t-test) are denoted by
gray dots: note the stepwise change at lower dosages from predominantly negative (black) to positive (green) correlations between erythromycin
and AcrB per OD. (D) Mean AcrB-GFP per OD in the first 24 h season at all erythromycin concentrations used (mean 6 SE, n¼ 8; the oscillations
are an electro-mechanical phenomenon, see supplementary fig. 22, Supplementary Material online).
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(fig. 6A). Mean AcrB-GFP per OD increased further at higher
drug concentrations, achieving twice ancestral levels (fig. 6A).
The rate of increase of AcrB-GFP per OD depended on anti-
biotic and it reached an equilibrium level fastest at dosages
close to the MIC (30 mg/ml in fig. 6A).

Now, a doubling of AcrB-GFP per OD occurred in popu-
lations where acrAB per chromosome had tripled (fig. 6C).
This could result from the amplified repression of acrAB by
AcrR, or from the lon protease (that degrades MarA), both of
which are coamplified with acrAB, causing fewer pumps per

FIG. 4. Normalized Illumina coverage of AG100 at different erythromycin concentrations following 5 days’ treatment (one ring per dose). Genomic
copy number changes were estimated from normalized coverage data for metapopulations treated at the erythromycin concentrations shown in
mg/ml. The outer ring is for populations without erythromycin, subsequent inner rings use increasing concentrations of erythromycin (10–40 mg/
ml; for replicates see supplementary figs. 11 and 12, Supplementary Material online). Coverage in excess of the mean for a gene at the start of
treatment (“relative copies”> 1) indicates gene amplification, values below the mean indicate gene deletions. Novel SNPs above 5% frequency are
black dots, indicating parallelism or divergence between treatments. The amplified operon acrAB is highlighted in red and the amplification of a
�25-kb region between 4,164 and 4,189 kb is highlighted as a black bar (supplementary section 5, Supplementary Material online, describes this
region). A deleted 45-kb putative prophage near 0.8 Mb is also highlighted as a black bar.
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cell to be produced per additional operon; data are consistent
with this in indicating negative correlations (fig. 6B). However
continued treatment mitigates these negative correlations in
the sense that regressions showing pumps expressed per
acrAB operon (fig. 6B) have negative slopes that increase
through time towards zero at higher antibiotic doses.
Despite this phenotypic evidence of regulatory change, muta-
tions found in acrAB regulators in other studies of erythroy-
mycin (Laehnemann et al. 2014) were not observed.

However, regulatory change could occur if an amplified
gene has a regulator that is not coamplified. This is relevant
here because acrAB is repressed by AcrS (also EnvR [Hirakawa
et al. 2008]) and, importantly, envR coverage data per genome
remains constant throughout treatment (supplementary fig.
27, Supplementary Material online). This could increase AcrB
per acrAB operon by virtue of seeing a reduction in the
repressors per acrAB operon when the latter is amplified,
causing EnvR to compete for additional AcrA sites
(Hirakawa et al. 2008). This effect should also have a dose-
dependence whereby greater dosages that select for more

acrAB copies also have more AcrB-GFP per acrAB operon
and this is consistent with data (fig. 6B).

Amplification of the lon protease (at 456–460 kb) inhibits
marA which could reduce, not increase, expression of acrAB
(Nicoloff and Andersson 2013). However, this does point to
other potential mechanisms of regulatory adaptation because
this increases MarA turnover in the mar network whose pro-
teins, MarA, SoxS, and Rob, bind with different affinities to
around 10,000 “marbox” sites on the E. coli chromosome. Not
all of these are regulators of gene expression but many are
(Martin et al. 1999; Sharma et al. 2017) and an increase in
acrAB per genome by one copy increases the length of the
chromosome by 7%, creating approximately 2,000 new mar-
boxes in the most rapidly adapting treatments (fig. 4A) that
could, in theory (Mileyko et al. 2008), mediate acrAB expression.

Other Genomic Amplifications
Coverage data at 24, 72, and 120 h reveal other amplifications
selected during treatment. Amplifications of the dlp12 pro-
phage and efflux pump, emrE (Ovchinnikov et al. 2018),
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exhibit an inverted-U in a manner analogous to acrABwhen a
selection measure is regressed against antibiotic dose (fig. 5B).
Operon rrlB experiences antibiotic-dependent amplification
with an inverted-U (fig. 5B and C), but the hotspot for the rrl
operons occurs near the subMIC dose of 15 mg/ml
erythromycin.

Selection for rrl amplifications differs from acrAB in several
respects. First, acrAB resides within a large contiguous region
encompassing 7% of the chromosome (of size 302 kb) flanked
by, and rich in, IS elements and phage and its amplifications
occur at all dosages. By contrast, rrl amplifications occur in a
narrower dose range of 15–20 mg/ml erythromycin (fig. 7A)
and rrlB resides within a 25-kb region whose amplifications
increase the availability of transcription and translation ma-
chinery (supplementary section 5, Supplementary Material
online; fig. 4) that may help overcome the inhibitory proper-
ties of erythromycin. Evidence of selection for rrl amplifica-
tions is clearest for those operons expressed most in lab

media (Maeda et al. 2015) (namely rrlE) with weaker evidence
for duplications of the rrl operon expressed least (Maeda et al.
2015) which does not exhibit an inverted-U (rrlA; fig. 7A).

The molecular basis for the amplification of the 25-kb re-
gion carrying rrlB is not well understood. Regions between rrl
operons can be hotspots for gene amplification (Reams and
Roth 2015) and rrl operons, as highly expressed regions, can
stall DNA replication. Stress can be also a trigger for gene
amplifications because starvation-induced stalling of DNA
replication (Slack et al. 2006) can lead to the emergence of
3’-single stranded DNA ends. These are prone to template-
switching, generating direct repeats of 7–32 kb bordered by
4–15 base pairs of G-rich microhomology (Slack et al. 2006).
We found some evidence of this whereby one sequence,
GTGGCTGG, lies at the edges of the 25 kb amplified segment
although this microhomology is also relatively frequent
throughout the chromosome. More work is therefore needed
to establish the molecular mechanism that amplifies rrlB.
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FIG. 6. Increases in acrAB copies per genome correlate with increases in AcrB expression. (A) Temporal dynamics of population mean AcrB-GFP per
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Figure 7 summarizes selection data (“selection proxy” de-
fined in Materials and Methods) for the amplification of rrl
operons, acrAB genes, emrE, ins insertion sequences and int
integrons. Where there are multiple copies of any of these in
AG100, selection data are summed across all copies for visu-
alization purposes, denoted in figure 7 by a sigma,R. Of these,
figure 7 highlights genes whose copy number changes have
inverted-Us, where all have dosages of fastest increase ranging
from 15 to 30 mg/ml. Conversely, figure 7 highlights genes that
do not exhibit an inverted-U. To investigate how selection for
gene amplifications varies across the genome, we estimated
the dosage at which the possible amplification rate of every
E. coli gene was maximal (see Materials and Methods). These
data have several gene clusters (fig. 8A): one containing the rrl
operons (with hotspot around 15 mg/ml), one containing
acrAB (hotspot close to 20 mg/ml) and one containing the
dlp12 prophage (hotspot close to 20 mg/ml). Amplifications
of the Qin prophage, however, do not have an inverted-U and
instead see their selection data decline with dose (fig. 8B). We

therefore reason Qin may be implicated in adaptation to
growth media.

Single Nucleotide Polymorphisms
De novo single nucleotide polymorphisms (SNPs) observed
significantly above 5% frequency at 120 h indicate parallel,
between-dosage adaptation (supplementary section 6,
Supplementary Material online, fig. 9). A clinical case of
acrAB evolution found protein structure SNPs (Blair et al.
2015), but we observed none. SNPs were observed in the
ribosomal RNA operon rrlC in all treatments that also oc-
curred in the absence of antibiotic, suggesting media adapta-
tion. We found analogous putative media adaptations at all
drug concentrations with SNPs in fbaA (a glycolytic enzyme),
glnK (a nitrogen assimilation regulator), acnA (an RNA-
binding oxidative stress regulator) alongside substantial poly-
morphisms in phage genes rzoD (a lysis lipoprotein), ycbC (an
envelope biogenesis factor) and nohQ (a DNA packaging pro-
tein) which exhibit between-treatment parallelism (see
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Materials and Methods; supplementary figs. 11 and 12,
Supplementary Material online, show SNPs from different
biological replicates). SNPs above 5% in frequency at 120 h
that are unique to each antibiotic treatment (supplementary
table 6, Supplementary Material online) indicate changes in
amino acid transport and biosynthesis (genes tauA and putP).

It was not possible to use these data to determine an
inverted-U geometry for a resistance SNP as this would
need a highly parallel SNP observed in all drug treatments
that both increases the strain’s MIC and which does not arise
in the absence of the antibiotic. However, we found no genes
satisfying these criteria.

AG100A and TB108 Do Not Have Inverted-Us on the Same

Timescale as AG100
Consistent with the behavior of equations (1) and (3) when
resistance mutations are rare, so Rð0Þ ¼ 0, or Rð0Þ > 0; l
> 0 are small and treatments are short, laboratory treat-
ments of the AcrA-deficient strain AG100A did not yield an
inverted-U and neither the dose–response monotonicity nor
the EAD changed significantly during treatment (supplemen-
tary figs. 3 and 5, Supplementary Material online). This is
consistent with equation (2) when inhibition increases rapidly
with dose, which AG100A does experience (supplementary
fig. 1, Supplementary Material online), where most rapid ad-
aptation occurs at the lowest dosages (cf. supplementary fig.
3, Supplementary Material online). We asked whether this

absence of the inverted-U could depend on the duration of
treatment.

To address this, we noted that strain TB108, with GFP
fused to AcrB (Bergmiller et al. 2017), has a lower erythromy-
cin MIC than AG100 (supplementary fig. 1, Supplementary
Material online), so the fusion may reduce efflux efficacy and
moreover, like AG100A, TB108 did not initially produce an
inverted-U when treated (supplementary fig. 4,
Supplementary Material online). So, we sought to improve
TB108 pump function by treating it with erythromycin at a
subMIC dose until its MIC had increased to that of AG100
(see Materials and Methods, supplementary fig. 1,
Supplementary Material online). This resulted in a strain
(eTB108) which, upon applying the 7-day erythromycin treat-
ment protocol to anew, did exhibit an inverted-U with a peak
near its MIC (supplementary fig. 13, Supplementary Material
online). Thus, the presence, or absence, of the inverted-U can
depend on the duration of treatment.

An Observation on Cell Size
E. coli can filament when treated with erythromycin (Lau and
Zgurskaya 2005) but single cell imaging of eTB108 shows,
instead, that it decreases by approximately 18% in median
size following subMIC erythromycin treatment (20 mg/ml,
Materials and Methods; supplementary fig. 20,
Supplementary Material online, ANOVA P � 0:0016). Cell
size reductions could be the result of erythromycin reducing
protein content per cell, more speculatively they could result
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from selection for decreases in cell volume which would in-
crease the efficiency of efflux pumps.

Single cell image data are consistent with the approximate
doubling seen in AcrB-GFP per OD expression data posttreat-
ment (median change �184%, ANOVA P � 10�10, supple-
mentary fig. 21, Supplementary Material online), corroborating
expression data obtained from spectrophotometry (20 mg/ml
erythromycin data in fig. 6A and supplementary fig. 21B,
Supplementary Material online, are consistent).

Discussion
Microbial competition assays have demonstrated that resis-
tance can be selected from low dosages upwards (Gullberg
et al. 2011; Liu et al. 2011) and our data are consistent with
this: we observe selection for some resistance mechanism at
all positive dosages assayed. Conversely, if we assume the
MSW hypothesis (Baquero and Negri 1997; Tam et al.
2007) extends without modification to amplification
mutants, then this would predict selection for resistant

FIG. 9. AG100 SNPs at different erythromycin dosages following 5 days’ treatment. Dots are SNPs whose colors indicate a proxy measure of
selection, s, as shown in the legend colorbar (see Materials and Methods). The outermost ring shows zero erythromycin dose, inner rings have
greater dosages, as indicated. Triangles in the perimeter indicate a between-treatment parallelism metric based on day 5 SNP frequencies (see
Materials and Methods), parallel evolution (parallelism coefficient above 0.7, Materials and Methods) is highlighted by a black radial line. A 45-kb
deletion and a 25-kb amplification are indicated in the perimeter using black bands, the location of acrAB is a red band. Divergence between low
and high dosage treatments is apparent from differences in the abundance of novel SNPs found at high and low dosages (supplementary fig. 23,
Supplementary Material online).
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subpopulations should be positive above the ancestral MIC
dose. However, our data accord with a growing body of en-
vironmental, in vitro, in vivo and theoretical evidence which
claim the MSW hypothesis is “technically incorrect” (Zhu
et al. 2012; Day et al. 2015; Westhoff et al. 2017; Stanton
et al. 2020) and, to illustrate this, the MSW-predicted
MSWs are marked in figures 2 and 3. Indeed, the hotspot
dosage of most rapid selection for rrl and acrAB in our data
occur below the ancestral MIC.

Similarly, we expected little population density adaptation
above the ancestral MIC and this was the case but the super-
MIC recovery of some populations and some SNPs were ob-
served (supplementary figs. 16–19, supplementary section 6,
Supplementary Material online, Table 6). So, how high must
dose be so that no population recovery is observed at all? To
answer this, we found that dosing erythromycin each day at
2xMIC produced no detectable growth (supplementary fig.
24, Supplementary Material online) at an approximate 105

cells per ml detection limit (Pena-Miller et al. 2014, supple-
mentary fig. 1b, Supplementary Material online).

We have shown that whether the inverted-U is seen in
phenotypic data, or not, exhibits subtleties because the time-
scales over which it appears can be contingent on a single
gene. When it is absent, phenotypic rates of adaptation could
both increase or decrease with drug dose which is also a
feature of genomic data: a poorly annotated 45-kb genomic
region was deleted whereby the mutants sweep to fixation
but only in the absence of erythromycin but this region was
maintained in the drug’s presence (black line, fig. 8B). The
region harbors phage genes rzoD and bet and BLAST searches
reveal high sequence similarity to known phage genes but
why erythromycin should select for their deletion is unclear.

Increased acrAB expression has occurred during clinical
treatments of sepsis (Blair et al. 2015) where a 2-fold increase
in AcrB was detected after 1 week of antibiotic therapy of
Salmonella typhimurium. Our data exhibit similar timescales
because a 3-fold amplification of acrAB occurs in a week.
However, the 256x increase erythromycin MIC and structural
SNPs seen in the patient are not observed here, indicating
factors such as cross-resistance from multidrug therapy or the
immune response may play a role in changing the timescales
over which resistance develops in the clinic relative to our
in vitro assays. Indeed, an antibiotic gradient in tissues
(Fischman et al. 1998) is a feature of clinical treatment that
is absent here and which could hasten resistance (Hermsen
et al. 2012; Baym et al. 2016).

Competitive release (Wargo et al. 2007) has been invoked
to explain nonlinear patterns in drug resistance (Pena-Miller
et al. 2014) and it may be relevant to understanding non-
monotone dose–responses (figs. 1C, D, and 2A). The idea is
this: the competition a resistant subpopulation experiences
with a drug-susceptible subpopulation is a mechanism that
suppresses population growth. Removing, or releasing, that
competition by applying an antibiotic could cause the pop-
ulation as a whole to grow more than if less drug were used.
The dose of most rapid adaptation can, therefore, be viewed
as a sweet spot between how the antibiotic selects for resis-
tant cells and how it reduces competition with drug-

susceptible cells. This argument is not specific to our study
system and, if true, it indicates that nonmonotone dose–
responses and inverted-Us should not be peculiar to eryth-
romycin. Indeed, prior E. coli data (Reding-Roman et al. 2017,
supplementary fig. 13, Supplementary Material online) shows
these features in doxycycline treatments too.

Finally, it was essential that treated isolates were not cul-
tured in the absence of antibiotic prior to DNA extraction.
Had we done so, data on growth rate costs of acrAB ampli-
fication (Laehnemann et al. 2014) indicate genomic amplifi-
cations could have been lost within 24 h. Having avoided that
by sequencing treated populations destructively, our data
demonstrate how structural and single nucleotide variation
can be mediated by an antibiotic to create subMIC dosages of
most rapid change, whether the latter is measured in terms of
population densities, gene expression levels or rates of geno-
mic amplification.

Materials and Methods

Culture Conditions, Strains and the Drug-Treatment
Assay
Strains E. coli K12 AG100, AG100A (DacrAB) were gifts from
Stuart B. Levy. eTB108 is a descendant of TB108 isolated from
a drug-treatment assay described below where TB108
(Bergmiller et al. 2017) (MG1655 acrB-sfGFP-FRT) provides
AcrB data from different types of GFP (green fluorescent
protein) measurements. All strains were cultured in liquid
M9 minimal media supplemented with casamino acids for
all controls and drug treatments.

M9 was prepared by mixing dilute K2HPO4 (350 g),
KH2HPO4 (100 g) in 1 L of de-ionized water and dilute triso-
dium citrate (29.4 g), (NH4)2SO4 (50 g), and MgSO4 (10.45 g)
in 1 L of de-ionized water, autoclaved and diluted accordingly.
Liquid M9 was supplemented with 0.2% (w/v) of glucose and
0.1% casamino acids from a filtered, sterilized 20% stock.
When cultured, all strains were incubated at 30�C, shaken
linearly in a microtitre plate reader (spectrophotometer) and
propagated in 24 h seasons with one drug treatment at the
start of each season. Optical culture densities (OD) for all
strains were read at 600 nm and GFP fluorescence measure-
ments were taken for TB108 and eTB108 at 493/526 nm (ex-
citation/emission wavelengths) with readings every 20 min.

For antibiotic treatments at different dosages, a linear gra-
dient of erythromycin (Duchefa) ranging from 0 up to a fixed,
typically super-MIC, dose across a 96-well microtitre plate was
created by supplementing M9 media with different concen-
trations using prepared stock. Replicate cultures were incu-
bated for 24 h in 150mL of media at that erythromycin
concentration and ODs of these cultures were read to provide
erythromycin dose–response data from where the MIC was
determined using only 24 h data.

To prolong erythromycin treatments, E. coli was sampled
from each of the 96 wells and transferred to a fresh microtitre
plate to permit another 24 h season of treatment using a 96-
pin replicator (Nunc), these transfers were extended for as
many days as required. The same erythromycin concentra-
tion was maintained for each propagated population by using
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a consistent layout for the microtitre plate each day, optical
density and fluorescence readings were taken continually at
20 min intervals. Table 1 indicates all treatments used, the
E. coli strains and erythromycin dose ranges.

Optical density and fluorescence data were blank cor-
rected by fitting the following three growth models to exper-
imental data (raw data is shown in supplementary figs. 16–19,
Supplementary Material online). If B(t) denotes bacterial OD
at a given time, t, as measured by spectrophotometry, these
models are blank-corrected linear growth relevant for lag
phase, blank-corrected exponential growth relevant for the
exponential phase and blank-corrected logistic growth for
resource- or antibiotic-limited growth, respectively:

BðtÞ ¼ B0 þ r � t; B0 þ aert or B0

þ K=ð1 þ a � e�rtÞ: (4)

B0 is a constant blank parameter inferred from fitting B to
OD data. Parameter r is an estimated growth rate, K is a
carrying capacity and a is a coefficient whereby Bð0Þ ¼ B0

þK=ð1 þ aÞ which establishes that a is inversely related to
innoculum density, B(0). We implemented a data-fitting al-
gorithm in MATLAB that chose the most appropriate model
from the corrected Akaike Information Criterion (AICc). We
then blank-corrected the data using the corresponding B0

that resulted from the optimal datafit.
If Bðt; EÞ denotes bacterial densities at time t cultured in

erythromycin, the minimum inhibitory concentration (MIC)
is the concentration, E, satisfying Bð24h; EÞ ¼ Bð24h; 0Þ=100,
that is, the amount of drug required to inhibit 99% of the
growth observed in the absence of antibiotic (a.k.a. the IC99).
These values are estimated (with error bars) by fitting a Hill
function to dose–response data (supplementary fig. 1,
Supplementary Material online).

Treating TB108 SubMIC to Recover AcrAB-TolC Function
We found the erythromycin MIC of TB108 to lie between the
MICs of AG100 and AG100A (supplementary fig. 1,
Supplementary Material online), suggestive of a reduction
in function of AcrAB-TolC due to the GFP-AcrB fusion. To
attempt to recover the AcrB function, we therefore propa-
gated a culture of TB108 in 10mg/ml of erythromycin, sub-
culturing it for 5 days, tracking daily changes in MIC (see
Table 1). We considered the complex GFP-AcrAB-TolC to
be functional when the MIC of the evolved strain, a new
strain called eTB108, was restored to a value close to that
of AG100. Supplementary figure 1, Supplementary Material
online, shows eTB108 and AG100 have similar dose–
responses to erythromycin, both with significantly higher
MICs than TB108. Supplementary figure 21, Supplementary
Material online, uses fluoresence micropscopy image data for
single cells sampled from an adapted population to corrob-
orate spectrophotometry data using a different measurement
technique. These image data demonstrate that eTB108 dou-
bles its per-cell GFP-AcrB expression level when propagated
in erythromycin so we used eTB108 to quantify changes in
GFP-AcrB expression using spectrophotometry.

Whole Genome Sequencing
DNA was extracted destructively from adapted populations,
importantly without any additional culture steps following
antibiotic treatment, and was fragmented by sonication using
a Biorupter for 30 s on, 90 s off, using low power for 10 min on
ice. Libraries were prepared using SPRIworks cartridges for
Illumina (Beckman Coulter) and Nextflex indexed adapters,
with 300–600 bp size selection, amplified with eight PCR
cycles using Kapa HiFi DNA polymerase and purified using
GeneRead kit (Qiagen). Concentrations were determined us-
ing a Bioanalyser 7500 DNA chip. Libraries were pooled in
equimolar amounts, denatured, diluted to 6.5 pMol and clus-
tered on a flowcell using a cBot (Illumina). 100 paired end
sequencing with a custom barcode read was completed on a
HiSeq 2500 using Truseq SBS v3 reagents (Illumina).

Reads were processed with fastq-mcf (Aronesty 2013) to
remove adapters from data and to trim and filter low-quality
reads. Cycles with at least 1% of Ns were removed (com-
mand-line parameter: -x 0.01). The remaining reads were
mapped to the AG100 reference genome using the
Burrows-Wheeler aligner BWA (Li and Durbin 2009; Li
2013) with standard parameters. The resulting alignments
were processed with Samtools 1.3 (Li 2011), with pair/trio
calling enabled (command-line parameter: -T).
Subsequently, alignments were sorted, artifacts and dupli-
cates were removed and finally the alignments were indexed.
Unaligned reads were stored separately.

Copy number variation was detected by analyzing cover-
age per base as measured by Bedtools (Quinlan 2014) after
normalizing against the mean genome coverage. Mean cov-
erage depths ranged from over 200 for genes not amplified
under treatment to over 400–500 for amplified regions (sup-
plementary fig. 26, Supplementary Material online, shows ex-
emplar raw coverage data). Different coverage normalizations
were tested for their robustness in statistical analysis (based
on the use of median, mean or mode coverage for regions
under study) and no qualitative inconsistency was found,
although unimportant quantitative differences from different
normalizations were, of course, observed.

To ensure robustness of SNP reporting we used VarScan
(Koboldt et al. 2012) and Samtools 1.3. SNPs were detected
using VarScan with the following parameters: P-value thresh-
old of 0.05 for calling variants, minimum read depth of 20 to
make a call at a position, base quality not less than 20 at a
position to count a read, frequency to call homozygote of at
least 0.9 (command-line parameters: –P-value 0.05 –min-cov-
erage 20 –min-avg-qual 20 –min-freq-for-hom 0.9). Samtools
used multiway pileup skipping alignments with mapQ
smaller than 1, filtering tags for read depth of the alleles (total,
in reverse and forward strand), and Phred-scaled strand bias
P-value (command-line parameters: mpileup -q1 -t DP -t SP -t
AD -t ADR -t INFO/ADF -t INFO/AD -t INFO/ADR), then
bcftools (Li 2011) with the consensus caller option (-cv) and
we filtered SNPs with frequency � 0:05 in Python. Insertion
and deletion mutations/structural variants were detected us-
ing Pindel with standard parameters.
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Quantifying Selection and Between-Dosage Parallel Genomic

Adaptation
We determined dN/dS data for SNPs in all populations but
did not find it helpful for quantifying relationships between
dose and ROA (Kryazhimskiy and Plotkin 2008). To quantify
selection for SNPs, we fitted the logistic function

fðtÞ ¼ 1=ð1 þ p � e�stÞ (5)

to longitudinal SNP frequency data. We then report the value
of s (or logðsÞ) as a numerical proxy for the strength of se-
lection (in fig. 9 and supplementary table 6, Supplementary
Material online, of SNPs).

Between-treatment parallelism for SNPs observed in gene
g at some fixed timepoint was quantified by first determining
the vector f ¼ ðf1; f2; . . . ; fNÞ of frequencies at which that
SNP was observed for all of the N¼ 7 different dosages
assayed. A parallelism coefficient was then defined as the
Euclidean distance, P, of f from the one-parameter family
of uniform vectors of the form k � ð1; 1; . . . ; 1Þ, namely
PðgÞ ¼ mink>0kf � k � ð1; 1; . . . ; 1Þk2. If G represents a
set of genes of interest, we determined the gene exhibiting
greatest between-treatment parallelism, P	 ¼ maxg2GPðgÞ,
and we then define a coefficient of parallelism, p(g), relative to
that maximum by pðgÞ ¼ PðgÞ=P	ðgÞ. A value of pðgÞ >
0:7 was used to highlight parallelism where G is restricts to
sufficiently common SNPs, namely all SNPs with frequency, fj,
satisfying fj > 0:05. This thresholding criteria is arbitrary and
was merely chosen so fig. 4B would legibly indicate SNPs
commonly found in different drug treatments.

We computed a proxy measure for selection of genomic
amplifications by modeling increases in relative Illumina coverage
data for a genomic region of interest for t � 0 using the function

FðtÞ ¼ p1ð1 þ tÞ
1 þ p2ð1 þ tÞ : (6)

Here, p1, p2 are unknown parameters to be determined
from data and t is time in days (D). We fitted (6) to coverage
data normalized relative to a genomic regions’ mean coverage
as observed in the ancestral strain (see fig. 5A and C), we then
determined the maximum derivative of the fitted F(t). This
derivative quantifies the change in relative coverage and is
called the selection proxy in figures 7 and 8. This value, call it s,
depends on erythromycin dose, so we write s(E), with E
denoting erythromycin dose. Now, s determined at E ¼ 0; 5
; 10; . . . ; 40lg=ml provide data to which a quadratic

regression was applied to predict the dosage, E, at which
s(E) was maximal. We plotted this dose for each gene, restrict-
ing to those for which this value of s was 3 SD above zero
(fig. 8). A logarithmic y-axis is used in figure 8A to aid
visualization.

OD600nm versus Colony Forming Unit (CFU) Tests for eTB108

(supplementary fig. 25, Supplementary Material online)
eTB108 was grown in liquid M9 (see above) for 24 h in 0, 10, and
20 mg/ml erythromycin. Sequential 2-fold dilutions into
nutrient-free M9 were performed, followed by optical density
readings at 600 nm. To quantify the colony forming units
(CFUs), each culture was further diluted by 10�4 and 10�5 in
triplicate, 25 ml of each dilution was spread onto LB agar plates
that were incubated at 30 �C for 24 h and colonies counted
manually.

NonBiological Oscillations in Spectrophotometry

Fluorescence Data
Oscillations in AcrB-GFP expression data were observed
(fig. 3E) on the timescale of �1 h so we sought a mechanism
supporting these. We used the discrete Fourier transform to
quantify their dominant frequencies using the fluorescence
data in figure 3E (fft in MATLAB 2020). Two dominant sub-
harmonics were observed with wavelengths of �10 h and
�0.75 h but control cultures not inoculated with bacteria
only exhibited the latter (supplementary fig. 22,
Supplementary Material online). The long wavelength har-
monic corresponds to a slow timescale of up-regulation of
acrAB in exponential phase whereas the high frequency har-
monic, as it was observed in the absence of biological material,
must be an electro-mechanical phenomenon due to the
microtitre plate reading device.

Quantifying Rates of Adaptation
We determined ROA statistics using a method defined else-
where (Hegreness et al. 2008). The ROA quantifies the rate of
change of any dynamically observable phenotype which could
entail longitudinal GFP data or population densities estimated
from OD. Suppose r(t) denotes OD at time t> 0, the adaptive
time (Hegreness et al. 2008), ta, satisfies rðtaÞ ¼ rð0Þ þ Dr=2
where Dr ¼ rðTÞ � rð0Þ and T is the time at the end of treat-
ment. The ROA is defined to be a :¼ ðDr=2Þ=ta. Figure 3A is
the result of plottinga at different antibiotic concentrations. We
also determine ROAs where the timeseries, r(t), is replaced with

Table 1. Summary of Strains and the Assays in Which They Were Used: AG100 and AG100A Provide OD data, TB108 and eTB108 Provide OD and
GFP Data, AG100 Was Destructively Sequenced Using Illumina Technology.

E. coli Strain Assay Outcome

AG100 7d treatment/0 to 50 mg/ml ery Observed inverted-U
AG100A 7d treatment/0, 0.167. . . 2 mg/ml ery No inverted-U
TB108 7d treatment/0, 5. . . 50 mg/ml ery No inverted-U

5d treatment/10 mg/ml ery Isolated eTB108
eTB108 3d treatment/20 mg/ml ery Isolated eeTB108

7d treatment/0, 5. . . 50 mg/ml ery Observed inverted-U
eeTB108 Single-cell fluorescence microscopy GFP/cell size changes wrt eTB108
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GFP per OD data which serves a proxy for population mean
AcrB per cell (fig. 3B and C).

As bacterial cultures with antibiotics are not necessarily
well captured by one growth law, we verified the robustness
of the ROA of OD by implementing two additional methods.
The first was a forward difference approximation to deriva-
tives of per capita growth rate, called re below, that we applied
to the best AIC-model fit, B(t), determined by fitting (4) to
OD data. The second method uses a reciprocal area under the
curve (rauc) measure which has units of h�1 to reflect a per
capita growth rate. These values are defined for each 24 h
season of growth as follows:

re ¼ max0
 t
 24h
1

BðtÞ �
Bðtþ DtÞ � BðtÞ

Dt
; (7a)

where Dt ¼ 20 min because bacterial densities are read with
that frequency, and

rauc ¼ Bð24hÞ=
ð24h

0

BðtÞ � dt: (7b)

ROAs computed using re are shown in supplementary
figures 13 and 14, Supplementary Material online, uses rauc

and both exhibit similar behavior (fig. 6A shows both, see
black and white heatmaps).

The re measure could be applied directly to raw data if B(t)
represented an empirical, longitudinal population density
data set but applying a mathematical datafit first, as we do,
yields more robust statistical estimates by filtering high-
frequency noise. This is important because growth rate is a
derivative of per capita population density and noise would
be exacerbated when taking this derivative.

The EAD
The EAD (fig. 2B and supplementary fig. 5, Supplementary
Material online) quantifies changes in drug efficacy without
measuring the MIC of an adapted populations. To do this
here would have needed �700 dose–response assays if done
for all replicates, all dosages and all days. We therefore moti-
vate the EAD with this question: an “ancestral” bacterium is
treated with antibiotic for t time units at antibiotic dosageA	,
growing to population density B	. How much antibiotic
would have been needed to limit growth of the ancestral
bacterium to B	 units? The answer is the EAD.

In detail, given a dose-response, B(A), of population density
versus antibiotic for the ancestral strain, and given that strain
following treatment which grows to density B	 (after 24 h,
say), this question asks that we find the value AEAD for which
BðAEADÞ ¼ B	. Now Bð�Þ can be represented mathematically
as a decreasing function, often as a Hill function, and the latter
have well-defined inverse functions and so we define
AEAD ¼ B�1ðB	Þ, where B�1 is the inverse of B. This ensures
the larger B	 is, the smaller AEAD becomes.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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