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Abstract

Let G = (V,E) be a simple connected graph and di be the degree of its ith
vertex. In a recent paper [J. Math. Chem. 46 (2009) 1369-1376] the first geometric-
arithmetic index of a graph G was defined as

GA1 =
∑
uv∈E

2
√
dudv

du + dv
.

This graph invariant is useful for chemical proposes. The main use of GA1 is for de-
signing so-called quantitative structure-activity relations and quantitative structure-
property relations. In this paper we obtain new inequalities involving the geometric-
arithmetic index GA1 and characterize the graphs which make the inequalities tight.
In particular, we improve some known results, generalize other, and we relate GA1

to other well-known topological indices.

1 Introduction

A graph invariant is a property of graphs that is preserved by isomorphisms. Around

the middle of the last century theoretical chemists discovered that some interesting re-
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lationships between various properties of organic substances and the molecular structure

can be deduced by examining some invariants of the underlining molecular graph. Those

graph invariants that are useful for chemical purposes were named topological indices or

molecular structure descriptors. The Wiener index, introduced by Harry Wiener in 1947,

is the oldest topological index related to molecular branching. Wiener defined this topo-

logical index as the sum of all shortest-path distances of a graph, and he showed that it

is closely correlated with the boiling points of alkane molecules [33]. Based on its success,

many other topological indices have been developed subsequently to Wiener’s work.

Topological indices based on vertex degrees have been used over 40 years. Among

them, several indices are recognized to be useful tools in chemical researches. Probably,

the best known such descriptor is the Randić connectivity index [24]. There are more

than thousand papers and a couple of books dealing with this molecular descriptor (see,

e.g., [13, 16, 17, 27, 28] and the references therein). During many years, scientists were

trying to improve the predictive power of the Randić index. This led to the introduction

of a large number of new topological descriptors resembling the original Randić index.

The first geometric-arithmetic index GA1, defined in [32] as

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv

where uv denotes the edge of the graph G connecting the vertices u and v, and du is the

degree of the vertex u, is one of the successors of the Randić index. Although GA1 was

introduced in 2009, there are many papers dealing with this index (see, e.g., [5–9, 20, 25,

26, 29, 32] and the references therein). There are other geometric-arithmetic indices, like

Zp,q [6], where Z0,1 = GA1, but the results in [6, p.598] show that GA1 gathers the same

information on observed molecule as Zp,q.

As described in [6], the reason for introducing a new index is to gain prediction of

target property (properties) of molecules somewhat better than obtained by already pre-

sented indices. Therefore, a test study of predictive power of a new index must be done.

As a standard for testing new topological descriptors, the properties of octanes are com-

monly used. We can find 16 physico-chemical properties of octanes at www.molecularde-

scriptors.eu. The GA1 index gives better correlation coefficients than the Randić index

for these properties, but the differences between them are not significant. However, the

predicting ability of the GA1 index compared with Randić index is reasonably better

(see [6, Table 1]). Although only about 1000 benzenoid hydrocarbons are known, the

number of possible benzenoid hydrocarbons is huge. For instance, the number of pos-
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sible benzenoid hydrocarbons with 35 benzene rings is 5.85 · 1021 [31]. Therefore, the

modeling of their physico-chemical properties is very important in order to predict prop-

erties of currently unknown species. The graphic in [6, Fig.7] (from [6, Table 2], [30])

shows that there exists a good linear correlation between GA1 and the heat of formation

of benzenoid hydrocarbons (the correlation coefficient is equal to 0.972). Furthermore,

the improvement in prediction with GA1 index comparing to Randić index in the case

of standard enthalpy of vaporization is more than 9%. That is why one can think that

GA1 index should be considered for designing so-called quantitative structure-activity re-

lations and quantitative structure-property relations, where “structure” means molecular

structure, “property” some physical or chemical property and “activity” some biologic,

pharmacologic or similar property.

Some inequalities involving the geometric-arithmetic index and other topological in-

dices were obtained in [5–8, 20, 25, 26, 29, 32]. The aim of this paper is to obtain new

inequalities involving the geometric-arithmetic index GA1 and characterize the graphs

which make the inequalities tight. In particular, we improve some known results, gener-

alize other, and we relate GA1 to other well-known topological indices.

2 New equalities involving GA1

Throughout this paper, G = (V,E) = (V (G), E(G)) denotes a (non-oriented) finite simple

(without multiple edges and loops) connected graph with E 6= ∅. Note that the connectiv-

ity of G is not an important restriction, since if G has connected components G1, . . . , Gr,

then

GA1(G) = GA1(G1) + · · ·+GA1(Gr).

Furthermore, every molecular graph is connected.

From now on, the order (the cardinality of V (G)), size (the cardinality of E(G)), and

maximum and minimum degree of G will be denoted by n,m,∆, δ, respectively.

We will denote by M1 and M2 the first and second Zagreb indices, respectively, defined

as

M1 = M1(G) =
∑

u∈V (G)

d2u, M2 = M2(G) =
∑

uv∈E(G)

dudv.

These topological indices have attracted growing interest, see e.g., [3, 4, 10, 14, 18] (in

particular, they are included in a number of programs used for the routine computation

of topological indices).
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The following inequality was given in [20] (see also [6, p.610]) and [25, Theorem 3.7],

GA1(G) ≤ 1

2δ
M1(G). (1)

Since M1(G) ≥ δ2n, Theorem 2.1 below improves (1).

Theorem 2.1. For any graph G,

GA1(G) ≤
√

nM1(G)

2
,

and the equality holds if and only if G is a regular graph.

Proof. First of all, note that for every function f : [δ,∆] → R, we have∑
uv∈E(G)

(f(du) + f(dv)) =
∑

u∈V (G)

duf(du).

Since 4
du+dv

≤ 1
du

+ 1
dv
, by taking f(du) =

1
du

we deduce

∑
uv∈E(G)

1

du + dv
≤ 1

4

∑
uv∈E(G)

(
1

du
+

1

dv

)
=

n

4
.

Cauchy-Schwarz inequality gives

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≤

∑
uv∈E(G)

√
du + dv

1√
du + dv

≤

 ∑
uv∈E(G)

(du + dv)

1/2 ∑
uv∈E(G)

1

du + dv

1/2

≤

 ∑
u∈V (G)

dudu

1/2 (n
4

)1/2
=

√
nM1(G)

2
.

Notice that all the equalities above hold if and only if the graph is regular.

The following elementary lemma will be an important tool to derive some results.

Lemma 2.2. Let g be the function g(x, y) =
2
√
xy

x+y
with 0 < a ≤ x, y ≤ b. Then

2
√
ab

a+ b
≤ g(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b, or x = b

and y = a, and the equality in the upper bound is attained if and only if x = y. Besides,

g(x, y) = g(x′, y′) for some x′, y′ > 0 if and only if x/y is equal to either x′/y′ or y′/x′.

Finally, if 0 ≤ x′ < x ≤ y, then g(x′, y) < g(x, y).
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Theorem 2.3. For any graph G,√
(∆ + δ)2M2(G) + 4∆3δ m(m− 1)

∆(∆ + δ)
≤ GA1(G) ≤

√
M2(G) + δ2m(m− 1)

δ
,

and each equality holds if and only if G is regular.

Proof. By Lemma 2.2, for any edge uv ∈ E(G) we have

2
√
dudv

du + dv
≥ 2

√
∆δ

∆+ δ
. (2)

Notice also that
1

∆2
≤ 4

(du + dv)2
≤ 1

δ2
(3)

Inequalities (2) and (3) lead to

(GA1(G))2 =

 ∑
uv∈E(G)

2
√
dudv

du + dv

2

=
∑

uv∈E(G)

4dudv
(du + dv)2

+ 2
∑

uv, xy ∈ E(G),
uv 6= xy

2
√
dudv

du + dv

2
√

dxdy

dx + dy

≥ 1

∆2

∑
uv∈E(G)

dudv +
∑

uv, xy ∈ E(G),
uv 6= xy

8∆δ

(∆ + δ)2

=
M2(G)

∆2
+

4∆δ

(∆ + δ)2
m(m− 1)

=
(∆ + δ)2M2(G) + 4∆3δ m(m− 1)

∆2(∆ + δ)2
.

In a similar way, we obtain

(GA1(G))2 =
∑

uv∈E(G)

4dudv
(du + dv)2

+ 2
∑

uv, xy ∈ E(G),
uv 6= xy

2
√
dudv

du + dv

2
√

dxdy

dx + dy

≤ 1

δ2

∑
uv∈E(G)

dudv + 2
∑

uv, xy ∈ E(G),
uv 6= xy

1 =
M2(G)

δ2
+m(m− 1)

=
M2(G) + δ2m(m− 1)

δ2
.

To conclude the proof we can observe that equality (2) holds for uv ∈ E(G) if and only

if du = ∆ and dv = δ or du = δ and dv = ∆. Furthermore, the equalities in (3) hold for

every uv ∈ E(G) if and only if G is regular.
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We recall that the Randić index is defined as

R(G) =
∑

uv∈E(G)

1√
dudv

.

The following result provides a bound on GA1 involving the Randić index.

Theorem 2.4. The following statements hold for any graph G.

• GA1(G) ≥ 2m−∆R(G).

• GA1(G) ≥ 2m− M1(G)
2δ

.

Furthermore, the equalities hold if and only if G is a regular graph.

Proof. It is well-known that for all a, b > 0,

a

b
+

b

a
≥ 2,

and the equality holds if and only if a = b. Applying this inequality, we obtain∑
uv∈E(G)

2
√
dudv

du + dv
+

∑
uv∈E(G)

du + dv

2
√
dudv

≥ 2m.

Hence, ∑
uv∈E(G)

2
√
dudv

du + dv
+

∑
uv∈E(G)

∆√
dudv

≥ 2m

and ∑
uv∈E(G)

2
√
dudv

du + dv
+

∑
uv∈E(G)

du + dv
2δ

≥ 2m,

which implies that GA1(G) + ∆R(G) ≥ 2m and GA1(G) + M1(G)
2δ

≥ 2m.

To conclude the proof we only need to observe that the above equalities hold if and

only if 2
√
dudv = du + dv = 2∆ and 2δ = 2

√
dudv = du + dv for every uv ∈ E(G).

In order to compare the above bounds we consider the following examples. If G ∼= Kr,s

is a complete bipartite graph, where r < s, then ∆R1(G) = s
√
rs < s(r+s)

2
= M1(G)

2δ
. Now,

if G ∼= K1 + Cn is a wheel graph obtained as the join of K1 and the cycle graph of order

n ≥ 4, then ∆R1(G) = n
(

n
3
+ n√

3n

)
> n2+9n

6
= M1(G)

2δ
.

In 1998 Bollobás and Erdös [2] generalized the Randić index by replacing 1/2 by any

real number. Thus, for α ∈ R \ {0}, the general Randić index is defined as

Rα = Rα(G) =
∑

uv∈E(G)

(dudv)
α .
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The general Randić index, also called variable Zagreb index in 2004 by Milicević and

Nikolić [19], has been extensively studied [16]. Note that R−1/2 is the usual Randić index,

R1 is the second Zagreb index M2, R−1 is the modified Zagreb index [23], etc. In Randić’s

original paper [24], in addition to the particular case α = −1/2, also the index with

α = −1 was briefly considered.

Next, we will prove some bounds on GA1 involving the general Randić index. To this

end, we need the following additional tool.

Lemma 2.5. [29, Lemma 3] Let h be the function h(x, y) = 2xy
x+y

with δ ≤ x, y ≤ ∆.

Then

δ ≤ h(x, y) ≤ ∆ .

Furthermore, the lower (respectively, upper) bound is attained if and only if x = y = δ

(respectively, x = y = ∆).

As we will show in Theorems 2.6 and 2.8, bounds on Rα immediately impose bounds

on GA1.

Theorem 2.6. Let G be a graph and α ∈ R \ {0}. Then the following statements hold.

(a) If α ≤ −1/2, then δ−2αRα(G) ≤ GA1(G) ≤ ∆−2αRα(G).

(b) α ≥ −1/2, then δ∆−2α−1Rα(G) ≤ GA1(G) ≤ ∆δ−2α−1Rα(G).

Furthermore, each equality holds if and only if G is a regular graph.

Proof. Lemma 2.5 gives
δ√
dudv

≤ 2
√
dudv

du + dv
≤ ∆√

dudv
.

If α ≥ −1/2, then

δ(dudv)
α ≤ ∆2α+12

√
dudv

du + dv
, δ2α+12

√
dudv

du + dv
≤ ∆(dudv)

α.

If α ≤ −1/2, then

δ(dudv)
α ≤ δ2α+12

√
dudv

du + dv
, ∆2α+12

√
dudv

du + dv
≤ ∆(dudv)

α.

We obtain the results by summing up these inequalities for uv ∈ E(G).

If the graph is regular, then the lower and upper bounds are the same, and they

are equal to GA1(G). If the equality holds in the lower bound, then Lemma 2.5 gives

du = dv = δ for every uv ∈ E(G); hence, du = δ for every u ∈ V (G) and the graph is

regular. If the equality is attained in the upper bound, then Lemma 2.5 gives du = dv = ∆

for every uv ∈ E(G) and we conclude du = ∆ for every u ∈ V (G).
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We would emphasize the following direct consequence of Theorem 2.6. The upper

bound was previously stated in [25] and the lower bound in [29].

Corollary 2.7. For any graph G,

δR(G) ≤ GA1(G) ≤ ∆R(G),

and each equality holds if and only if G is regular.

Theorem 2.8. Let G be a graph and α ∈ R \ {0}. Then the following statements hold.

(a) If α ≤ 1/2, then δ−2α+1∆−1Rα(G) ≤ GA1(G) ≤ ∆−2α+1δ−1Rα(G).

(b) α ≥ 1/2, then ∆−2αRα(G) ≤ GA1(G) ≤ δ−2αRα(G).

Furthermore, each equality holds if and only if G is a regular graph.

Proof. Notice that

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
= 2

∑
uv∈E(G)

(dudv)
α(dudv)

−α+1/2

du + dv
.

Now, if α ≤ 1/2, then δ−2α+1 ≤ (dudv)
−α+1/2 ≤ ∆−2α+1, which implies that

δ−2α+1∆−1Rα(G) ≤ GA1(G) ≤ ∆−2α+1δ−1Rα(G).

Analogously, if α ≥ 1/2, then ∆−2α+1 ≤ (dudv)
−α+1/2 ≤ δ−2α+1, which implies that

∆−2αRα(G) ≤ GA1(G) ≤ δ−2αRα(G).

If the graph is regular, then the lower and upper bounds are the same, and they are equal

to GA1(G). If a bound is attained, then we have either dudv = δ or dudv = ∆ for every

uv ∈ E(G), so that G is a regular graph.

It is readily seen that if α < 0, then Theorem 2.6 gives better results than Theorem

2.8 and, if α > 0, then Theorem 2.8 gives better results than Theorem 2.6.

The well-known Pólya-Szegö inequality can be stated as follows.

Lemma 2.9. [15, p.62] If 0 < n1 ≤ aj ≤ N1 and 0 < n2 ≤ bj ≤ N2 for 1 ≤ j ≤ k, then(
k∑

j=1

a2j

)1/2( k∑
j=1

b2j

)1/2

≤ 1

2

(√
N1N2

n1n2

+

√
n1n2

N1N2

)(
k∑

j=1

ajbj

)
.
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Theorems 2.10, 2.11 and 2.12 will show the usefulness of Pólya-Szegö inequality to

deduce lower bounds on GA1.

Theorem 2.10. For any graph G,

2∆δ2

∆2 + δ2

√
mR−1(G) ≤ GA1(G) ≤ ∆

√
mR−1(G) ,

and each equality holds if and only if G is a regular graph.

Proof. First of all, Lemma 2.5 gives

δ ≤ 2dudv
du + dv

≤ ∆. (4)

We also have
1

∆
≤ 1√

dudv
≤ 1

δ
. (5)

These inequalities and Pólya-Szegö inequality give

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≥

(∑
uv∈E(G)

1
dudv

)1/2 (∑
uv∈E(G)

(2dudv)2

(du+dv)2

)1/2
1
2

(
∆
δ
+ δ

∆

)
≥ 2∆δ

∆2 + δ2

√
R−1(G)

 ∑
uv∈E(G)

δ2

1/2

=
2∆δ2

∆2 + δ2

√
mR−1(G) .

The upper bound is a direct consequence of Theorem 2.1, as

GA1(G) ≤
√
nM1(G)

2
≤

√
2nm∆

2
≤ ∆

√
mR−1(G). (6)

If the graph is regular, then the lower and upper bounds are the same, and they are

equal to GA1(G). If the equality holds in the lower bound, then the left hand side equality

holds in (4), so that Lemma 2.5 gives du = dv = δ for every uv ∈ E(G); hence, du = δ for

every u ∈ V (G) and the graph is regular. Analogously, if the equality holds in the upper

bound, then the equalities hold in (6), so that M1(G) = 2m∆, which implies that G is a

regular graph.

Theorem 2.11. For any graph G,

4∆2δ2
√

2δM1(G)R−1(G)

(∆2 + δ2)(δ +∆)2
≤ GA1(G) ≤

√
2∆M1(G)R−1(G)

2
,

and each equality holds if and only if G is a regular graph.
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Proof. The upper bound is a direct consequence of Theorem 2.1, as

GA1(G) ≤
√

nM1(G)

2
≤
√

2∆M1(G)R−1(G)

2
. (7)

Let us prove the lower bound. Notice that

2
√
dudv

du + dv
=

4dudv
(du + dv)2

du + dv

2
√
dudv

.

By Lemma 2.2, we have
4∆δ

(∆ + δ)2
≤ 4dudv

(du + dv)2
≤ 1.

Since
2
√
dudv

du + dv
≥ 4δ∆

(δ +∆)2
du + dv

2
√
dudv

,

we have

GA1(G) ≥ 4δ∆

(δ +∆)2

∑
uv∈E(G)

du + dv

2
√
dudv

.

Since δ ≤ du+dv
2

≤ ∆, 1
∆
≤ 1√

dudv
≤ 1

δ
, the Pólya-Szegö inequality gives

∑
uv∈E(G)

du + dv

2
√
dudv

≥

 ∑
uv∈E(G)

(du + dv)
2

4

1/2 ∑
uv∈E(G)

1

dudv

1/2

1
2

(
∆
δ
+ δ

∆

)
≥

∆δ
√
2δM1(G)R−1(G)

∆2 + δ2
.

Therefore,

GA1(G) ≥ 4δ∆

(δ +∆)2
∆δ
√

2δM1(G)R−1(G)

∆2 + δ2
.

If G is a regular graph, then the lower and upper bounds are the same, and they are

equal to GA1(G). If we have the equality in the upper bound, then the equalities hold in

(7), so that R−1(G) = n
2δ
, which implies that G is a regular graph. Now, if we have the

equality in the lower bound, then du + dv = 2δ for every uv ∈ E(G), and du = δ for every

u ∈ V (G).

Theorem 2.12. For any graph G and α > 0,

kα
√

Rα(G)R−α(G) ≤ GA1(G) ≤
√

Rα(G)R−α(G) ,

with

kα :=


2∆1/2δ3/2

∆2 + δ2
, if 0 < α ≤ 1,

2∆α−1/2δα+1/2

∆2α + δ2α
, if α ≥ 1,
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and each inequality holds only if G is a regular graph.

Proof. Cauchy-Schwarz inequality and Lemma 2.2 give

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≤

 ∑
uv∈E(G)

(dudv)
−α

1/2 ∑
uv∈E(G)

4dudv(dudv)
α

(du + dv)2

1/2

≤

 ∑
uv∈E(G)

(dudv)
−α

1/2 ∑
uv∈E(G)

(dudv)
α

1/2

=
√

Rα(G)R−α(G) .

Lemma 2.5 gives

δα ≤ 2dudv
du + dv

(dudv)
(α−1)/2 ≤ ∆α, if α ≥ 1,

δ∆α−1 ≤ 2dudv
du + dv

(dudv)
(α−1)/2 ≤ ∆δα−1, if 0 < α ≤ 1,

If α ≥ 1, then these inequalities, ∆−α ≤ (dudv)
−α/2 ≤ δ−α and Lemmas 2.9 and 2.5

give

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

≥

(∑
uv∈E(G)(dudv)

−α
)1/2 (∑

uv∈E(G)
4(dudv)2

(du+dv)2
(dudv)

α−1
)1/2

1
2

(
∆α

δα
+ δα

∆α

)
=

2∆αδα

∆2α + δ2α

√
R−α(G)

 ∑
uv∈E(G)

2

du + dv

2dudv
du + dv

(dudv)
α

1/2

≥ 2∆αδα

∆2α + δ2α

√
R−α(G)

 δ

∆

∑
uv∈E(G)

(dudv)
α

1/2

=
2∆α−1/2δα+1/2

∆2α + δ2α

√
Rα(G)R−α(G) .

If 0 < α ≤ 1, then similar computations (using the bounds for 0 < α ≤ 1) give the

lower bound.

If the graph is regular, then the two bounds are the same, and they are equal to

GA1(G). If the lower bound is attained, then Lemma 2.5 gives du = dv = δ for every

uv ∈ E(G) and we conclude du = δ for every u ∈ V (G). If the lower bound is attained,

then Lemma 2.5 gives du = dv = ∆ for every uv ∈ E(G) and we conclude du = ∆ for

every u ∈ V (G).

In [29, Theorem 4] appear the inequalities

2δ2

∆2 + δ2

√
M2(G)R−1(G) ≤ GA1(G) ≤

√
M2(G)R−1(G) .
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Theorem 2.12 generalizes these bounds. Furthermore, the following consequence of The-

orem 2.12 (with α = 1) improves the lower bound above.

Corollary 2.13. We have for any graph G

2δ

∆2 + δ2

√
δ∆M2(G)R−1(G) ≤ GA1(G) ≤

√
M2(G)R−1(G) ,

and the equality is attained if and only if G is a regular graph.

The modified Narumi-Katayama index

NK∗ = NK∗(G) =
∏

u∈V (G)

dduu =
∏

uv∈E(G)

dudv

was introduced in [11], inspired in the Narumi-Katayama index defined in [22] (see also

[12], [21]). Next, we prove some inequalities relating the modified Narumi-Katayama

index with others topological indices.

Theorem 2.14. We have for any graph G and α ∈ R \ {0}

Rα(G) ≥ mNK∗(G)α/m,

and the equality holds if and only if (dudv) has the same value for every uv ∈ E(G).

Proof. Using the fact that the geometric mean is at most the arithmetic mean, we obtain

1

m
Rα(G) =

1

m

∑
uv∈E(G)

(dudv)
α ≥

 ∏
uv∈E(G)

(dudv)
α

1/m

= NK∗(G)α/m.

The equality holds if and only if (dudv) has the same value for every uv ∈ E(G).

Theorems 2.6 and 2.14 have the following consequence.

Corollary 2.15. We have for any graph G and α ∈ R \ {0}

GA1(G) ≥ δ−2αmNK∗(G)α/m, if α ≤ −1/2,

GA1(G) ≥ δ∆−2α−1mNK∗(G)α/m, if α ≥ −1/2,

and the equality holds if and only if G is regular.
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[31] M. Vöge, A. J. Guttmann, I. Jensen, On the number of benzenoid hydrocarbons, J.

Chem. Inf. Comput. Sci. 42 (2002) 456–466.
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