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Abstract: The densification of multiple wireless communication systems that coexist nowadays, as
well as the 5G new generation cellular systems advent towards the millimeter wave (mmWave)
frequency range, give rise to complex context-aware scenarios with high-node density heterogeneous
networks. In this work, a radiofrequency electromagnetic field (RF-EMF) exposure assessment
from an empirical and modeling approach for a large, complex indoor setting with high node
density and traffic is presented. For that purpose, an intensive and comprehensive in-depth RF-
EMF E-field characterization study is provided in a public library study case, considering dense
personal mobile communications (5G FR2 @28 GHz) and wireless 802.11ay (@60 GHz) data access
services on the mmWave frequency range. By means of an enhanced in-house deterministic 3D ray
launching (3D-RL) simulation tool for RF-EMF exposure assessment, different complex heterogenous
scenarios of high complexity are assessed in realistic operation conditions, considering different user
distributions and densities. The use of directive antennas and MIMO beamforming techniques, as
well as all the corresponding features in terms of radio wave propagation, such as the body shielding
effect, dispersive material properties of obstacles, the impact of the distribution of scatterers and
the associated electromagnetic propagation phenomena, are considered for simulation. Discussion
regarding the contribution and impact of the coexistence of multiple heterogeneous networks and
services is presented, verifying compliance with the current established international regulation limits
with exposure levels far below the aforementioned limits. Finally, the proposed simulation technique
is validated with a complete empirical campaign of measurements, showing good agreement. In
consequence, the obtained datasets and simulation estimations, along with the proposed RF-EMF
simulation tool, could be a reference approach for the design, deployment and exposure assessment
of the current and future wireless communication technologies on the mmWave spectrum, where
massive high-node density heterogeneous networks are expected.

Keywords: radiofrequency electromagnetic fields (RF-EMF); mmWave; electromagnetic safety; 3D
ray launching (3D-RL); 5G; 802.11ay; propagation modeling

1. Introduction

A step forward toward the use of millimeter waves (mmWaves) in fifth-generation
(5G) radio interface technology allows the use of larger bandwidth than previous mobile
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generations, allowing the possibility to deliver gigabit per second (Gb/s) wireless services.
This significant increase in traffic data has been conceived to cover multiple usage scenarios,
from enhanced mobile broadband to ultra-reliable low-latency communications (URLLC),
going through massive Internet of Things (IoT) connections. New standards, such as the
5G New Radio (5G-NR) [1–3], have included innovative techniques and procedures to
overcome the unique challenges associated with mmWave transmissions. For example,
mmWave transmitter antennas must be directional to take advantage of beamforming
gains and cope with increased path loss and other propagation losses compared to sub-6
GHz frequency bands. Besides, 5G-NR benefits from a high flexibility level in several
domains, such as the time domain (i.e., variable Time Division Duplex (TDD) schemes),
frequency domain (i.e., bandwidth fractions), spatial domain (i.e., high adaptability in the
implementation of beam sweeping or Multi-User Multiple Input Multiple Output (MU-
MIMO) technology) and scalable numerology (enabling variations in subcarrier spacing
as a function of the numerology parameter µ ranging from 0 to 5 from 15 kHz to 480 kHz
and slot lengths given by 1/2 µ ms) in order to optimize the usage of temporal and spatial
resources in the communication channel.

For indoor scenarios with a high user density (i.e., convention centers, event halls,
concerts, indoor stadiums, etc.) and/or enterprise deployments (i.e., office buildings, shop
floors, meeting rooms, auditoriums, libraries, etc.), 5G-NR mmWave can complement exist-
ing Wireless Local Area Network (WLAN) deployments with new and enhanced mobile
broadband experiences, bringing a multi-Gb/s low-latency channel capacity, supporting
devices beyond smartphones (i.e., tablets, always-connected laptops, augmented reality
(AR)/virtual reality (VR), etc.) and therefore leveraging the existing infrastructure.

The advantages of 5G networks are well-discussed in the literature [4,5], and there
is no doubt about the need for faster and more reliable wireless communication system
deployments, with broadband data access in crowded locations. However, at the same
time, the implementation of mmWave new technologies has increased the population
concern over the possible impact on health and safety arising from the radiated electro-
magnetic field (EMF) exposure by these systems. This concern has led to the requirement
of having accurate EMF simulation and measurement techniques to analyze the radiation
exposure in the current and future wireless crowded scenarios. These techniques can verify
compliance or not with the regulations from the point of view of radioelectric exposure of
nonionizing radiation.

In the past few years, there has been a significant effort by the research community
to provide clear EMF exposure insight with the presentation of different models for the
RF-EMF assessment of 5G communication systems. From an engineering perspective,
these RF-EMF exposure assessment models can aid in the design and deployment of 5G
communication systems, achieving a good tradeoff between efficiency and operation, mini-
mizing radiation exposure. On the one hand, most of the works are carried out in outdoor
scenarios and present EMF assessments focused on the downlink (DL) of a 5G system. The
work presented in Reference [6] proposed a simulation technique to assess EMF exposure
in 5G cellular systems operating at sub-6 GHz frequencies. The novelty of their work is
that they propose a localization-enhanced pencil beamforming technique in which the
traffic beams are tuned in accordance with the uncertainty localization levels of the User
Equipment (UE) in the DL configuration. The authors in Reference [7] presented a compu-
tational method based on ray tracing techniques (RT) to estimate human EMF exposure
in DL 5G base stations at sub-6 GHz frequencies in outdoor macrocell environments. The
same authors presented in References [8–10] a combined numerical approach based on RT
and Finite Difference Time Domain (FDTD) techniques, which estimates EMF exposure
for 5G massive MIMO in different environments, such as an industrial environment [8],
an urban microenvironment (UMi) [9] or an urban macro-environment (UMa) [10], all of
them at 5G frequencies below 6 GHz. The work in Reference [11] presented a statistical
approach to obtain realistic maximum power levels of 5G gNodeB (gNB) for the assessment
of EMF exposure, employing massive MIMO for DL scenarios. An experimental and
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sequential statistical analysis for the assessment of EMF exposure from a massive MIMO
5G testbed was presented in Reference [12]. The work focused on a 5G DL operating at
sub-6 GHz frequency bands in an indoor empty scenario with low topological complexity.
The impact of different beam profiles and number of users was assessed by means of a
campaign of measurements. Moreover, an EMF exposure assessment from DL base station
transmissions in a commercial 5G network was also analyzed in Reference [13]. Finally,
the work in Reference [14] presented a comprehensive exposure assessment methodology
to measure EMF radiation exposure from DL 5G NR base stations, using conventional
spectrum analyzer equipment.

On the other hand, other works in the literature focused on the EMF assessment
of the uplink (UL) from the UE in a 5G system. These works usually focused on the
exposure assessment of a unique user device and its interactions with the human body.
The authors in References [15–18] presented the impact of EMF exposure from mmWave
phased arrays in mobile devices for 5G communication systems. The work presented in
Reference [19] investigated the maximum Effective Isotropic Radiated Power (EIRP) that
can be achieved at 28 and 39 GHz considering beamforming UE under the constraints of
the incident power density regulation limits. Colombi et al. presented in Reference [20] the
analysis of radio frequency (RF) energy absorption by biological tissues from mmWave 5G
wireless devices in near-field conditions, showing low radiation effects of the near-field
body interactions when evaluating EMF compliance at mmWave frequencies. In addition,
the authors in Reference [21] presented actual 5G UE output power levels operating in the
current commercial 5G networks below 6 GHz, showing that the time-averaged output
power levels were, in all cases, well below the regulation limits. Table 1 summarizes
the different proposed methodologies for the RF-EMF exposure assessment of 5G com-
munication systems presented in recent years. As it can be seen from the table, there
were few works in the literature that presented an approximation in which simulation
estimations were simultaneously combined with measurement results. References [6–11]
presented different methodologies based only on simulation techniques, all for DL and
sub-6 GHz frequency bands. Conversely, the works in References [12–14] presented EMF
exposure assessment methodologies based on measurements campaigns, again at sub-6
GHz frequency bands and DL assessments. Nevertheless, less attention has been given
in the literature to the assessment of human EMF exposure considering both DL and UL
in complex heterogeneous real-world crowded environments, where multiple wireless
communication systems coexist, which is the focus of this work, providing a multi-Gb/s
low-latency channel capacity and enhanced mobile broadband experiences to the users.

Accordingly, based on an in-house implemented deterministic 3D ray launching
(3D-RL) approach, a novel enhanced simulation tool for RF-EMF exposure assessment is
presented, allowing the EMF characterization of complex context-aware scenarios with
high node density heterogeneous networks. In this sense, combined wireless commu-
nication scenario setups with both DL and UL connections in crowded environments
can be analyzed considering realistic operation conditions. The previous version of the
simulation tool has already been validated for the assessment of EMF exposure of the
current wireless cellular technologies in complex environments [22–24]. In Reference [22],
the spatial characterization of UL personal RF-EMF exposure in public transportation
buses was presented, where worst-case studies considering different user densities and
distributions for sub-6 GHz cellular communication systems were evaluated in terms of
legislation compliance. The work in Reference [23] reported a simulated and experimental
comprehensive analysis of the UL from a 2G–5G cellular system exposure assessment
within a public tramway. Although both scenarios, the bus and the tram wagon car, could
be considered as complex indoor scenarios in terms of radio wave propagation, the metal
structure influence of the tram, as well as the supplying lines and towers and, specifically,
its presence in the city central urban districts with huge passenger affluence, involved
much more challenging propagation phenomena and, thus, presented higher exposure
average levels. Reference [24] presented an environmental RF-EMF radiation exposure
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assessment from an empirical and simulation approach in public shopping malls, focusing
on the current wireless communication systems at sub-6 GHz frequency bands. The main
differences of these works, as well as the differences with the presented work, are shown
in Table 1.

In this work, a step further is proposed for the EMF exposure assessment technique
by considering mmWave frequency bands, allowing beamforming emulation with flexible
beams, single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) for both DL/UL
(although, nowadays, MU-MIMO is only a DL feature, the simulation tool can consider
MU-MIMO also in UL to emulate a potential technology development taking advantage of
cooperative receiver schemes), different heterogeneous wireless communication technology
analyses, complex indoor environments considering all the scatterers of the scenario, UE
and gNB scenario densification and multifrequency operation, etc. The enhanced 3D-RL
simulation technique has been implemented for the EMF exposure assessment of a potential
complex indoor crowded scenario where two wireless communication systems will coexist
in the mmWave frequency range. The selected scenario is a two-floor partial area of a new
library building located on a university campus in which two different systems have been
implemented: 5G personal mobile communications at frequency range 2 (5G-FR2) and
wireless data access services WLAN 802.11ay at 60 GHz. The novel aspects of this work in
relation with the previous works are the following:

- High-node user density environments: Software implementations have been per-
formed in the 3D-RL algorithm kernel to allow user densification scenarios. By means
of multiple integrated simulations considering high-node user density scenarios of
increased complexity, the raw data is merged and collected in a new module to pro-
vide accurate final results. Following this procedure, the enhanced simulation tool is
able to adequately reproduce the behavior and influence of environmental RF-EMF
radiation exposure, considering different approaches: from a specific local exposure
assessment in a particular communication beam to the overall exposure distribution
in all the selected scenarios.

- Beamforming techniques: The consideration of 5G MIMO antennas and beamforming
is provided by means of a new enhanced beamforming strategy that has been imple-
mented using postprocess modules and multiple integrated simulations in order to
simulate real antenna operations under future expected severe UL and DL conditions
in complex high-node user dense context-aware heterogeneous environments.

- Complex heterogeneous environments at mmWaves: The consideration of hetero-
geneous environments in terms of electromagnetic fields and, specifically, in the
exposure assessment and dosimetric characterization, is pivotal due the advent of
new wireless communication systems and their unstoppable widespread use. It is
a reality that current and future communication systems have become and will be
increasingly heterogeneous, providing services and applications relying on coexisting
merged heterogeneous networks in order to comply with coverage/capacity relations.
Technically, when considering a complex heterogeneous system in the proposed en-
hanced simulation tool, a full analysis of the spectrum use needs to be performed in
order to provide an adequate exposure assessment and evaluation based on the fact
that multiple systems are operating at the same time in different frequency ranges,
increasing the overall spectral usage. Thus, this corresponding electromagnetic influ-
ence is characterized in a new synchronized and integrated module by implementing
merging techniques, as more intensive spectrum uses with multiple systems have
unique characteristics. In addition, these challenging environments need to consider
high complex scenario spatial designs in terms of the morphology and topology, with
special attention on the scatterers’ frequency dispersive material properties. In this
sense, the material properties’ database library of the new enhanced version of the
simulation tool has been upgraded to consider material properties up to mmWaves.
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Table 1. Different methodologies for the assessment of RF-EMF exposure for 5G.

EMF Assessment Carrier Frequency Beamforming
Ref.

DL UL Sub-6 GHz mmWave Fixed
Beams

Flexible
Beams

Environment Simulation Measurements Channel Model
Analysis Description

[6] X 7 X 7 7 X UMi X 7
3GPP UMi-Street
Canyon Model
Release 16 [25]

Localization-enhanced pencil
beamforming technique, in which
the traffic beams are tuned in
accordance with the uncertainty
localization levels of User
Equipment (UE).

[7] X 7 X 7 X X UMa X 7 RT

Computational method to estimate
human EMF exposure in DL 5G
base stations in outdoor macrocells
environments.

[8] X 7 X 7 X 7 Industrial env. X 7
Hybrid approach:
RT/FDTD

Numerical approach for massive
MIMO human exposure assessment
in industrial environments.

[9] X 7 X 7 X X UMi X 7
Hybrid approach:
RT/FDTD

Numerical approach that estimates
EMF exposure for 5G massive
MIMO considering the effects of
electromagnetic coupling between a
user and the receiving device.

[10] X 7 X 7 7 X UMa X 7
Hybrid approach:
RT/FDTD/Network
planning methods

Novel method to design massive
MIMO 5G networks under power
consumption and EMF constraints.

[11] X 7 X X X 7 LoS conditions X 7 -
Model for time-averaged realistic
maximum power levels gNBs
based on a statistical approach.

[12] X 7 X 7 7 X Indoor empty
room 7 X -

Statistical assessment from
experimental measurements in DL
5G at sub-6 GHz frequency bands
considering an empty room with
low topological complexity.

[13] X 7 X 7 7 X Dense urban
area 7 X -

EMF exposure assessment based on
real network data from base
stations in a commercial 5G
network.
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Table 1. Cont.

EMF Assessment Carrier Frequency Beamforming
Ref.

DL UL Sub-6 GHz mmWave Fixed
Beams

Flexible
Beams

Environment Simulation Measurements Channel Model
Analysis Description

[14] X 7 X 7 X X Urban 7 X -

Exposure assessment methodology
for measure with common
spectrum analyzer equipment 5G
NR base stations DL exposure.

[21] 7 X X 7 7 X
Dense urban
area/Urban
area

7 X -

EMF exposure assessment based on
real network data from 5G UE
operating in commercial 5G
networks.

[23] 7 X X X X 7 Indoor vehicle X X RL [26]

Deterministic model to assess
RF-EMF exposure of different
systems within indoor metallic
vehicles with different users’
densities and distributions, and
comparison with current cellular
technologies.

[24] X 7 X 7 X 7
Shopping
malls case
study

X X RL [26]

Empirical and deterministic model
to assess RF-EMF exposure on
sub-6 GHz shopping malls case
study.

This
work X X 7 X X X Indoor

complex env. X X RL [26]

Empirical and deterministic model
to assess RF-EMF exposure on
mmWave high-node density
complex heterogeneous
environments, with high
topological complexity where all
the scatterers are included.

UMi: urban microenvironment; UMa: urban macroenvironment; RT: ray tracing; RL: ray launching; FDTD: Finite Difference Time Domain.
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The rest of the paper is organized as follows. Section 2 presents the Materials and
Methods, where the enhanced EMF exposure tool is presented, as well as the scenario
description with the considered simulated study cases and the measurement campaign
in order to validate the proposed EMF-enhanced technique. Then, Section 3 reports the
simulation results with the analysis of the different study cases and the measurement
results. Finally, the conclusions are presented in Section 4.

2. Materials and Methods
2.1. Ray Launching Technique

As it has been previously introduced, the EMF exposure simulation tool has already
been used in previous works in order to analyze nonionizing radiation exposure in complex
indoor environments when multiple cellular technologies coexist. In this work, a step
further is proposed in order to analyze an EMF exposure assessment in a crowded indoor
complex environment where 5G-FR2 and WLAN 802.11ay wireless communication systems
operating at 28 and 60 GHz, respectively, coexist. For that purpose, the EMF exposure
tool has been enhanced in order to consider the distinctive characteristics of these wireless
communication systems. The most significant ones are presented in Figure 1 and can be
described as follows: (i) possibility to simulate mid-band frequencies and mmWave system
operations, (ii) multifrequency operations, (iii) flexible beamforming depending of the
number of UEs served, (iv) possibility of considering SU/MU-MIMO in both UL and DL,
(v) consideration of different complex scenarios with all the scatterers/obstacles within
them, (vi) a geometric-based deterministic channel model (GBDM) based on an in-house
three-dimensional ray launching (3D-RL) technique, (vii) feasibility of the densification of
the UE and base stations/access points and (viii) UL and DL EMF exposure can be assessed
in a high-user density indoor/outdoor environment.
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GBDM based on full-wave techniques are considered highly accurate, as they take
into account all the geometry and obstacles of the environment, but they present the
disadvantage of a higher computational cost, which can be unaffordable for typical real-
world scenarios [27,28]. In this sense, GBDM based on ray tracing or ray launching
techniques such as the in-house 3D-RL algorithm presented in this work achieve good
accuracy with a reasonable computational load for typical real-world scenarios [29,30].
Traditionally, ray launching and ray tracing are both classified as ray tracing methods,
although, more recently, both methods have been distinguished. The differences are
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principally due to different methodologies. The principle of ray launching techniques is to
launch sets of test rays from the transmitter to determine the true path by looking for the
rays that arrive at the receiver. Conversely, in ray tracing methods, the basic principle is to
compute the image of the transmitter or the receiver to find the reflected paths by using
walls and furniture.

The proposed in-house 3D-RL algorithm is based on Geometrical Optics (GO) and
the Uniform Theory of Diffraction (UTD). It has been previously validated in different
indoor/outdoor complex environments [31,32] for different applications, such as vehicular
communications [33,34], Intelligent Transportation Systems (ITS) [35–37], interference
analysis [38,39], Wireless Local Area Networks (WLAN) [40,41], Wireless Sensor Networks
(WSNs) [42,43] or Public Land Mobile Networks (PLMN) [23,24], among others. These
applications have been validated for different operating frequencies (from mid-bands to
mmWave frequency bands) and different wireless communication system configurations,
achieving, in general, a Root Mean Square Error (RMSE) of 3–6 dB, an absolute mean
error of 4–5 dB and a Standard Deviation (SD) of 1–7 dB. The algorithm basis is that a
certain number of rays is launched from the transmitter to the receiver with a determined
angular and spatial resolution. Depending on the UE and access point locations in the
considered scenario, the angles for the different beams are defined and then launched
from the transmitter (which can be one or more UE or access points), depending on the
selected input parameters of the algorithm. The implemented flexible beamforming in
the enhanced simulation tool consists of the simulation of a set of spatial orientations
(beams) with a defined angular and spatial resolution in the 3D scenario. The algorithm
beamforming strategy is based on the instantaneous mapping of each defined beam in the
considered scenario. At this step, all possible cases of angular variation can be considered
by simulation (both in the base station and in the UE). Then, once all simulations are
performed, in a postprocessing algorithm step, flexible beamforming takes place. By
considering all the simulation-based cases, the beamforming can be defined and analyzed
depending on the wireless system operating conditions under analysis.

It is worth noting that the algorithm is not influenced by the type of beamforming
strategy considered for the wireless system, exhibiting, in principle, no limitation in this
sense. This is given by the fact that, considering the selected beamforming strategy,
the corresponding sequence of simulations to be performed is scheduled. Once these
simulations have been performed, in the simulation postprocessing step, the different 3D
spatial planes can be overlapped, obtaining the final results.

The algorithm principle is the following: when a ray hits an obstacle, reflected and
refracted rays are created, and when a ray hits an edge, a new family of diffracted rays is
created. These new rays are created according to the material properties of all the obstacles
within the environment for the operation frequency of the system under analysis.

The electric field E created by GO and the diffracted electric field created by UTD are
calculated by [44]

EGO =

√
PradDt(θt, ∅t)η0

2Π
e−jβ0r

r
X⊥‖L⊥‖ (1)

EUTD = e0
e−jks1

s1
Ds,h

√
s1

s2(s1 + s2)
e−jks2 (2)

where β0 = 2π fc
√

ε0µ0, ε0= 8.854 × 10−12 F/m, µ0 = 4π × 10−7 H/m and η0 = 120 π Ω.
Prad is the radiated power of the transmitter antenna. Dt(θt, ∅t) is the directivity of the
beam radiation pattern where rays are launched, as defined in the spherical coordinate
system at an elevation angle θt and an azimuth angle ∅t. For each polarization, X⊥‖ and
L⊥‖ are the polarization ratio and path loss coefficients, r is the distance in the free space
and fc is the transmission frequency. In the diffracted electric field created by UTD, Ds,h

are the diffraction coefficients for soft and hard polarization determined by considering
the edge-fixed incidence plane, e0 is the free-space field strength, k is the propagation
constant and s1 and s2 are the distances from the source to the edge and from the edge to
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the receiver point [44,45]. The diffraction phenomena can be activated or disactivated by
the user, as one of the simulation software parameters. The complete scenario is divided
in a predetermined 3D mesh, and the total electric field is calculated with the sum of the
reflected, refracted, diffracted and incident electric vector fields at an instantaneous time
inside each cuboid of the defined mesh. From these results, the incident power density can
be calculated as the modulus of the complex Poynting vector [46]:

Sinc = |E×H∗| (3)

where E is the E-field in volts per m (V/m), and H∗ is the complex conjugate of the magnetic
field in amperes per m (A/m). In the case of the far field, the incident power density is
derived as

Sinc =

∣∣E2
∣∣

Z0
= Z0

∣∣∣H2
∣∣∣ (4)

where Z0 is the characteristic impedance of free space (i.e., 120 π Ω). Some restrictions apply
when considering RL simulation techniques concerning near field possible discrepancies
and uncertainties in the proximity of the transmitter location. The presented environmental
RF-EMF assessment study considers only far field conditions and the influence of the
user presence, density and distribution but does not include an in-body assessment, as RT
techniques are not suitable for those purposes. Consequently, in order to prevent unreliable
near field results, an adaptable/dynamic exclusion area of 5λ (λ as the wavelength of
the propagating wave under consideration) is applied around the transmitter antenna,
considering the different frequencies under analysis [44].

Furthermore, the in-house developed 3D-RL tool allows the possibility of applying
hybrid techniques to decrease the computational cost given by the complexity of the
environment under analysis. These hybrid techniques are the Neural Network (NN)
module [31], the Diffusion Equation module [47] or the Collaborative Filtering module [48],
which achieve accurate simulation results while the computational load decreases con-
siderably. Figure 2 presents a flowchart of the enhanced 3D-RL simulation methodology
for RF-EMF radiation exposure and regulation assessment, where the main steps of the
algorithm, along with its main capabilities, are presented.

2.2. Scenario Description

The selected scenario is a complex indoor environment that corresponds with two
floors of a new library building located on the university campus of Tecnologico de Mon-
terrey, Campus Monterrey in Mexico. Figure 3a shows a picture of the real scenario. The
first floor has workspaces in the open area, as well as within the wooden bookshelves, as
can be seen in the detailed picture of Figure 3b, which represents the inner part inside the
wooden shelf. The second floor has an aisle with workspaces in the left part of the scenario
and three aisles to access the second floor of workspaces within the wooden bookshelves.
Figure 4 shows the rendered 3D view of the simulated scenario, where all the objects within
the environment have been considered.

In the considered scenario, 9 Wi-Fi access points are currently installed, 6 of them
located on the second-floor ceiling at a 6-m height and 3 more are placed within the
workspaces inside the wooden bookshelves. These access points can be seen in the central
part of the ceiling shown in Figure 3.

From an economical and aesthetic point of view, it is desirable to reuse existing indoor
access point locations in the library as new communication systems are deployed in order
to provide greater capacity, higher data rates and lower energy consumption in future
networks. Thus, in the proposed future scenario, we have considered that the existing
current Wi-Fi access points will be mounted co-sited with 9 mmWave gNodeB (gNB)
hot spots operating at 5G-FR2 and 9 WLAN 802.11ay access points operating at 60 GHz.
Figure 5 presents a schematic overview of the locations of all these proposed access points.
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The total area to be assessed by the future deployment is approximately 640 m2 for
the first floor, plus 60 m2 that corresponds with the corridors and floor in the upper part
of the bookshelves on the second floor, which is a total of 700 m2 of floor space available
for users. Likewise, the maximum seated workspaces in the selected area of the campus
library are 202; out of which, 52 are on the second floor and 150 on the first floor. Thus, the
maximum high-density occupation considered in the simulations is that all workspaces
are occupied with an active user (i.e., a user making use of his/her full network capacity).
Then, as the medium-density occupation, 70% of the high density is considered, which
corresponds with approximately 140 active users.

For the simulations, all the dispersive material properties of all the objects within
the environment are taken into account for the frequency of the operation under analysis
(considering the conductivity and relative dielectric permittivity). These properties are
presented in Table 2 [26]. Specifically, the skin tissue model is considered for tissues of
high-water contents as a function of the wavelength in the air [49].

Table 3 presents the main input parameters for the 5G and Wi-Fi 802.11ay simulation
setup in the scenario under analysis. We use 64 element antennas for the access points,
which is a typical value for an indoor environment at mmWave frequency bands [50], and
8 antennas per polarization for the UE antenna. For comparison purposes, a uniform power
distribution per user in the scenario is considered, where each beam always transmits at
the same power in the DL direction (15 dBm) and in the UL direction (10 dBm), i.e., no
traffic adaptation mechanisms are applied to the power radiated by the beam.
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Table 2. Material properties for the 3D ray launching simulations.

Relative Permittivity (εr)
Conductivity (σ) (S/m)

Real Part (ε
′
) Imaginary Part (ε

′ ′
)

Frequency (GHz) 28 60 28 60 28 60

Material

Concrete 0.48 0.89 5.31 5.31 0.31 0.26

Brick 0.03 0.03 3.75 3.75 0.02 0.01

Plasterboard 0.12 0.21 2.94 2.94 0.07 0.06

Wood 0.16 0.37 1.99 1.99 0.10 0.11

Glass 0.22 0.56 6.27 6.27 0.14 0.17

Ceiling board 0.02 0.05 1.5 1.5 0.01 0.01

Chipboard 0.29 0.52 2.58 2.58 0.18 0.15

Floorboard 0.39 1.11 3.66 3.66 0.25 0.33

Metal 107 107 1 1 6.4 × 106 2.9 ×106

Skin tissue 73.22 210.52 28.54 11.97 0 0

Table 3. Setting of the main input parameters for 5G and Wi-Fi 802.11ay simulation setup in the considered scenario.

Description Value Ref

Number of AP * 9

AP * antenna configuration 64 [50]

TX power per considered AP * beam 15 dBm [6,51]

AP * antenna element gain 0 dBi [6,51]

AP * azimuth beam width 30◦ [52]

AP * elevation beam width 30◦ [52]

FTDD 0.75 [11,53]

UE antenna configuration 8 [50]

TX power per considered UE beam 10 dBm [23]

UE azimuth beam width 65◦ [51]

UE elevation beam width 65◦ [51]

UE antenna element gain 0 dBi [6,51]

Carrier frequency 5G/Wi-Fi 802.11ay 28/60 GHz

3D-RL Angle Resolution 0.4◦

Maximum number of reflections 4

Maximum number of refractions 1

Diffraction Yes

Maximum number of diffractions/Diffracted ray angular resolution 1/0.25◦

Scenario size 18 × 47 × 7

Unitary volume analysis 1 m

* AP: gNodeBs/Wi-Fi 802.11ay.

As previously stated, future wireless communication systems such as 5G-NR or
WLAN 802.11ay will have benefits in several domains, such as the time domain with
variable TDD schemes. In this sense, in TDD, the UL is separated from the DL by the
allocation of different time slots within the same frequency band.
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From an exposure assessment point of view, the realistic maximum exposure should
be proportional to the fraction of the DL transmission time to the total time given by [11]

FTDD =
DL : UL

DL : UL + 1
(5)

where DL:UL denotes the DL/UL transmission configuration (ratio of DL transmission
time to UL transmission time). In this paper, FTDD = 0.75 is assumed as a reasonable value
for future wireless communication systems [11].

In order to analyze the EMF exposure in the considered scenario, three different cases
are considered for comparison purposes. These three cases are the following:

- Case I: We consider that 100% of the users in the library are connected to 5G and no one
to WLAN 802.11ay, so we can assess EMF exposure only from the 5G communication
system at 5G-FR2 (@28 GHz) in a crowded environment.

- Case II: We consider that 100% of the users in the library are connected to WLAN
802.11ay and no one to 5G, so we can assess EMF exposure only from the WLAN
802.11ay (@60 GHz) communication system in a crowded environment.

- Case III: We consider a case where both systems coexist, and 30% of the users are
connected to 5G and 70% to WLAN 802.11ay. The higher percentage for the WLAN
versus 5G is considered, because in an indoor environment where both systems will
be deployed, as in a campus library, we assume that students will prefer to use WLAN
for free instead of their own cellular data.

For all cases, among the users of WLAN 802.11ay and 5G, we consider that 70% are
using DL and 30% UL. For reference, the exact distribution of active users for the different
cases is presented in Table 4.

Table 4. Distribution of active users for the different considered cases for the medium user density
(MD) and high user density (HD) within the scenario.

Number of Active Users

5G UL 5G DL 802.11ay UL 802.11ay DL

MD 42 98 - -
Case I

HD 60 142 - -

MD - - 42 98
Case II

HD - - 60 142

MD 12 30 29 69
Case III

HD 18 42 42 100

2.3. Measurement Campaign

In order to validate the proposed EMF exposure-enhanced algorithm, a campaign of
measurements is performed within the real scenario of the new building library presented in
Figure 3 for both the 28 and 60 GHz operating frequencies. For that purpose, two different
measurement setups are configured for the 28 and 60 GHz frequency bands. Table 5
presents the different setups, along with the used equipment and its description.
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Table 5. Measurement transmitter/receiver setup summaries for both frequencies under analysis.

Setup Equipment Description

Signal generator SMB100A from Rohde &
Schwarz, Munich, Germany

Signal generator up to 20 GHz. The
transmitted power has been set at 14 dBm

Frequency multiplier FDA-K/28 from
Farran Technologies, Cork, Ireland

Frequency multiplier connected to the
signal generator to increase the CW
transmitted signal up to 28 GHzTransmitter @28 GHz

Ka-band pyramidal horn antenna, model
SAR-2013-28KF-E2 from SAGE
Millimeter, Inc.

The antenna offers 20 dBi nominal gain
and a typical half power beamwidth of
14 degrees on the E-plane and 16 degrees
on the H-plane

Spectrum analyzer N9952A 50 GHZ
FieldFox from Keysight Technologies,
Santa Rosa, CA, USA

Portable spectrum analyzer up to 50 GHz
(see Figure 6 for reference)

Receiver @28 GHz
Ka-band omnidirectional antenna Model
SAO-2734033045-KF-C1-BL from SAGE
Millimeter, Inc.

The antenna model is equipped with a
low noise amplifier (LNA) of 30 dBi

Signal generator SMB100A from Rohde &
Schwarz

Signal generator up to 20 GHz. The
transmitted power has been set at 5 dBm

Transmitter @60 GHz
Frequency multiplier FES-12 from Farran
Technologies

Frequency multiplier connected to the
signal generator to increase the CW
transmitted signal up to 60 GHz

E-band pyramidal horn antenna
23 dBi nominal gain and a typical half
power beamwidth of 10 degrees on the
E-plane and 11 degrees on the H-plane

Spectrum analyzer N9952A 50 GHZ
FieldFox from Keysight Technologies

Portable spectrum analyzer up to 50 GHz
(see Figure 7 for reference)

Receiver @60 GHz
WR-12 Harmonic Mixer Module from
OML Inc., Morgan Hill, CA, USA

The Harmonic Mixer Module is designed
specifically for handheld spectrum
analyzers (see Figure 7 for reference)

E-band pyramidal horn antenna
23 dBi nominal gain and a typical half
power beamwidth of 10 degrees on the
E-plane and 11 degrees on the H-plane

Figures 6 and 7 show examples of the transmitter and receiver setups in the experimen-
tal campaign of measurements for the 28 and 60 GHz operating frequencies, respectively.

For each operating frequency, two different measurement setups are considered, the
first one with the transmitter placed at 1.3 m on the first floor and the second one with
the transmitter placed at 1.85 m on the second floor. The antennas are placed with the
aid of a tripod constructed from wood and nylon materials (AT-812 Antenna Tripod from
Com-Power Corporation (Silverado, CA, USA) (see Figures 6 and 7 for reference). When
considering the first setup case (transmitter antenna on the first floor), an antenna angular
sweep from 0 to 180◦ with steps of 15◦ is performed, while measurements points are taken
for each antenna position along the radial distance each 2 m at the same height as the
transmitter. The minimum and maximum radial distances between the transmitter and
receiver antenna are 22 m and 11 m, respectively. The transmitter antenna is directed
towards the receiver points with the aid of an antenna positioner from Thors Labs (Newton,
NJ, USA). The antenna alignment is performed with a laser pointer. By means of this setup
of 15◦ radials, with a measurement distance of 2 m per measurement location point, the
complete library area of the first floor is characterized, allowing simulation comparisons.
For clarification purposes, the different measured radials for each transmitter antenna
beamforming are depicted in Figure 8.
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For the second setup case (transmitter antenna placed on the second floor), the antenna
is aligned with different fixed receiver points on the first floor with the aid of the antenna
positioner and the laser pointer in order to perform the different measurements for each
operating frequency. Figure 9 shows the considered transmitter antenna position on the
second floor and the different measured receiver points for both frequencies.
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3. Results and Discussion
3.1. Simulation Results

From all the 3D-RL simulation results, the relevant E-field and power density charac-
terization, impact and behavior patterns were obtained:

Firstly, Figures 10–12 present the Cumulative Density Function (CDF) for the received
E-field and power density values in V/m and W/m2, respectively, at the XY bi-dimensional
plane of a 1.6-m height, which corresponded with the head height of the seated active
users at the first floor of the library. First, Figure 10 presents the results for Case I, in which
we considered that 100% of the users in the library were connected to 5G and no one to
WLAN 802.11ay. In Figure 10a, an assessment between the 5G UL and DL connections
was done, with different user densities (i.e., MD and HD). It could be seen that the, in the
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higher user density scenario, both UL and DL had higher E-field and power density values
than the MD scenario in the order of 0.1–0.2 V/m or 0.005–0.01 W/m2, approximately.
In addition, it was observed that the DL connection results presented, on average, more
E-field levels than UL for this case. This was due to the fact that we considered 70% of
active users as using DL and 30% UL. Although the analyzed height was closer to the
active user in the UL, the influence of the E-field/power density levels by nearby users due
to UL was lower in average than the DL from the access points in the order of 0.1 V/m or
0.005 W/m2. In order to have insight into the differences of both UL and DL in the different
user densities considered, Figure 10b shows the CDF for the total E-field and power density
values received at the same height in the scenario. As stated before, in order to calculate
the realistic maximum exposure, FTDD was applied to calculate these results considering
the ratio of the DL transmission time to UL transmission time. It could be seen that the
total E-field exposure was higher for HD yet lower than 2 V/m for all user locations in the
considered scenario. The same trend could be seen for the power density values, obtaining
higher values for HD yet lower than 0.1 W/m2 for all cases.
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Secondly, Figure 11 presents the results for Case II, in which we considered that 100%
of the users in the library were connected to WLAN 802.11ay and none to 5G. Following
the same E-field and power density pattern than in the previous case, it could be seen
that higher E-field and power density levels were obtained for the HD case yet remained
for all cases below 2 V/m and 0.1 W/m2, respectively. In comparison with Case I, the
increasing frequency up to 60 GHz resulted in slightly lower exposure levels (in the order
of 0.1–0.2 V/m for the E-field and 0.005–0.01 W/m2 for the power density) than in a
28 GHz 5G system, as can be observed in Figure 11b, where the maximum exposure was
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calculated for Case II. This phenomenon was the result of the higher signal attenuation at
higher frequencies.
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Finally, Figure 12 presents the most realistic case, where both systems coexisted (i.e.,
30% of the users were connected to 5G and 70% to WLAN 802.11ay). In Figure 12a, the
difference of the maximum exposure values considering the ratio of DL transmission time
to UL transmission time for the different systems and user densities is shown. From the
obtained E-field and power density results, the maximum exposure values corresponded to
the HD 802.11ay system, which was the predominant system in this case (realistic case), yet
remained with very low levels: E-field levels lower than 2 V/m and power density levels
lower than 0.1 W/m2 for all cases. In order to gain insight into the maximum exposure
levels that potential users in this scenario could be exposed to, Figure 12b presents the total
E-field and power density levels received for both systems operating at the same time for
the HD and MD cases. In conclusion, for the worst case of HD when all working places of
the library had active users using one of the two considered systems, the maximum E-field
and power density exposure levels remained below 2 V/m and 0.1 W/m2, respectively, for
all user locations.
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In addition, Figure 13 shows the environmental E-field and power density exposure
levels considering the XY bi-dimensional plane at the height of a seated person in a working
space on the first floor of the library for Case III HD (realistic case conditions). From the
results obtained, we could conclude that there were no significant variations in the E-
field or power density level distribution, and the highest levels were encountered within
the user working spaces inside the bookshelves, as these spaces were subject to higher
reflection phenomena produced by the bookshelf’s walls. Nevertheless, as it has been
clearly remarked before, the higher E-field values encountered remained lower than 2 V/m,
and the higher power density levels remained lower than 0.1 W/m2. The current regulation
limits based on the ICNIRP guidelines [54] state that when determining the compliance
for frequencies between 2 and 300 GHz, the incident power density must be considered.
Thus, it can be stated that the obtained power density for all the cases was far below the
current regulation limit for the general population for these frequency bands, which was
10 W/m2 [54].
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3.2. Measurement Results

A complete campaign of the measurements was performed in the library scenario
under analysis to validate the enhanced simulation tool for RF-EMF exposure assessment at
28 and 60 GHz following the previously described measurement guidelines in Section 2.3.

Figures 14 and 15 present the received power comparison between the experimental
measurements and the 3D-RL simulation at the 28 and 60 GHz operating frequencies, re-
spectively, along the different radials of the transmitter antenna beamforming (see Figure 8
for reference) when the transmitter was placed on the first floor. In this case, most of the
measurements were performed under line-of-sight (LOS) conditions, but the measurements
performed within the bookshelves were done under non-line-of-sight (NLOS) conditions
(the indoor environment within the bookshelves can be seen in Figure 3). LOS conditions
can be considered as a higher risk situation in terms of the nonionizing radiation exposure
levels. As it can be seen from the comparisons, the simulation and measurements were in
good agreement for both cases. Table 6 shows the differences between the measurements
and simulation estimations for both frequencies at each linear distribution radial, ranging
from 1.20–3.59 dB for the 28 GHz frequency band to 1.40–5.09 dB for the 60 GHz frequency
band. This difference reflects both uncertainties in the measurements and assumptions
made in computing. The maximum level of power using the Max Hold function in the
handheld spectrum analyzer was used for the measurement results when compared to the
simulations. However, we experimentally observed in the campaign of measurements that
they fluctuated, with an average value of approximately 2.5 dB.
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Figure 15. Experimental measurements and 3D-RL simulation comparison at 60 GHz frequency
along the different linear radial distributions R1, . . . , R11 depicted in Figure 8.

Table 6. Differences between the measurements and simulation for the different linear distribution
radials presented in Figures 14 and 15 and the measurements points of Figure 16.

Difference Sim. vs. Meas. (dB)

Frequency 28 GHz 60 GHz

Radials Figures 14 and 15
R1 1.52 1.84
R2 1.55 2.18
R3 1.30 1.84
R4 1.48 3.23
R5 1.71 1.40
R6 1.67 3.88
R7 3.59 1.89
R8 2.42 5.09
R9 1.20 2.38
R10 1.51 4.13
R11 1.20 4.50

Measurement Points Figure 16 0.86 2.64
TOTAL Difference (mean) 1.67 2.92
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Moreover, Figure 16 presents the experimental measurements and 3D-RL comparisons
for both frequencies (28 and 60 GHz) at the different points represented in Figure 9 when
the transmitter was placed on the second floor of the scenario (see Figure 9 for reference).
In this case, all measurement points were under LOS conditions. When comparing LOS
condition measurement spatial points, it did not mean that we compared only the LOS
component, since, although they were under LOS conditions, we also detected multipath
components, which could be from different phenomena, such as a reflected, transmitted
or diffracted field. The in-house enhanced simulation EMF exposure software considered
the full three-dimensional characteristics of the scenario at the geometry level and clutter
location, as well as the dispersive properties by means of the conductivity and relative
permittivity, of all the obstacles within the environment. In this way, and taking into
account that the rays were launched in a volumetric way, the impact of everything that
surrounded the radiant sources was considered, whether they were under LOS or NLOS
conditions. In addition, the differences between the simulation and measurement results
represented in Figure 16 at both frequencies are summarized in Table 6, showing good
agreement between them. Finally, the total mean difference is also calculated in Table 6,
achieving 1.67 dB at 28 GHz and 2.92 dB at 60 GHz, which validated the potential use of
the proposed simulation tool for the RF-EMF exposure assessment before the deployment
of 5G and 802.11ay systems at complex indoor environments.
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4. Conclusions

In this work, environmental RF-EMF exposure was assessed from an empirical and
modeling approach in a complex heterogeneous indoor environment when considering
dense personal mobile communications operating at 28 and 60 GHz. For that purpose,
an enhanced in-house deterministic 3D-RL simulation tool for a RF-EMF exposure assess-
ment was proposed, allowing E-field and incident power density level characterizations
in different complex heterogenous scenarios of increased complexity. Realistic operation
conditions were considered, as well as different user distributions and densities, emu-
lating advanced mmWave communication systems with directive antennas and MIMO
beamforming techniques.

From the obtained results, a discussion regarding the contribution, impact and health
effects of the coexistence of multiple heterogeneous networks and services was provided.
The main conclusion that must be stated is that wireless communication systems operating
at both the 28 and 60 GHz frequency bands considering realistic and worst-case scenarios
in terms of user densities, as well as directive antennas and beamforming techniques,
generated environmental E-field exposure levels lower than 2 V/m and incident power



Sensors 2021, 21, 8419 23 of 25

density levels lower than 0.1 W/m2 for all the analyzed cases. Therefore, the compliance
with the current established international regulation limits with the exposure levels for the
general population far below the aforementioned limits (10 W/m2 [54]) was verified even
in the worst-case conditions and, at the same time, denying the hypothesis of an increase
in the total RF-EMF exposure by the use of mmWave frequencies or directive antennas in
complex dense heterogeneous indoor environments. In this sense, these results guaranteed
that E-field distributions and received power levels within the complete scenario under
analysis were below the thresholds and, hence, complied with the current regulatory
frameworks in relation with the health assessment.

Moreover, the proposed simulation methodology was validated with a complete
empirical campaign of measurements, showing good agreement with the experimental
results. Thus, the obtained measurement datasets and simulation estimations, along with
the presented enhanced 3D-RL simulation tool, could be a reference approach for the
design, deployment and exposure assessment of the current and future wireless communi-
cation systems, where complex context aware scenarios with massive high-node density
heterogenous networks are expected in the mmWave frequency range.
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