Universidad

ucdm | CarloslIl -Archivo
de Madrid

This document is published at:

D. D. Sanchez-Gallegos et al., "On the Continuous
Processing of Health Data in Edge-Fog-Cloud
Computing by Using Micro/Nanoservice
Composition," in IEEE Access, vol. 8, pp.
120255-120281, 2020

DOI: 10.1109/ACCESS.2020.3006037

© The Authors, 2020

[cMom

This work is licensed under a Creative Commons Attribution

https://doi.org/10.1109/ACCESS.2020.3006037
https://creativecommons.org/licenses/by/4.0/

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 6, 2020, accepted June 27, 2020, date of publication June 30, 2020, date of current version July 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006037

On the Continuous Processing of Health Data
in Edge-Fog-Cloud Computing by Using
Micro/Nanoservice Composition

DANTE D. SANCHEZ-GALLEGOS"“', ALEJANDRO GALAVIZ-MOSQUEDA “2,

J. L. GONZALEZ-COMPEAN ", SALVADOR VILLARREAL-REYES 3, (Member, IEEE),
ALDO E. PEREZ-RAMOS?, DIANA CARRIZALES-ESPINOZA™,

AND JESUS CARRETERO 4, (Senior Member, IEEE)

I Cinvestav Tamaulipas, Victoria 87130, Mexico

2CICESE, Unidad Monterrey, Ensenada 66629, Mexico

3CICESE, Ensenada 22860, Mexico

4Computer Architecture and Technology Area (ARCOS), Department of Computer Science and Engineering, Universidad Carlos I de Madrid,
28991 Leganés, Spain

Corresponding author: J. L. Gonzalez-Compean (joseluis.gonzalez@cinvestav.mx)
This work was supported in part by the Council for Science and Technology of Mexico (CONACYT) through the Basic Scientific Research

under Grant 2016-01-285276, and in part by the Project CABAHLA-CM: Convergencia Big data-Hpc: de los sensores a las Aplicaciones
from Madrid Regional Government under Grant S2018/TCS-4423.

ABSTRACT The edge, the fog, the cloud, and even the end-user’s devices play a key role in the management
of the health sensitive content/data lifecycle. However, the creation and management of solutions including
multiple applications executed by multiple users in multiple environments (edge, the fog, and the cloud) to
process multiple health repositories that, at the same time, fulfilling non-functional requirements (NFRs)
represents a complex challenge for health care organizations. This paper presents the design, development,
and implementation of an architectural model to create, on-demand, edge-fog-cloud processing structures
to continuously handle big health data and, at the same time, to execute services for fulfilling NFRs. In this
model, constructive and modular blocks, implemented as microservices and nanoservices, are recursively
interconnected to create edge-fog-cloud processing structures as infrastructure-agnostic services. Continuity
schemes create dataflows through the blocks of edge-fog-cloud structures and enforce, in an implicit
manner, the fulfillment of NFRs for data arriving and departing to/from each block of each edge-fog-
cloud structure. To show the feasibility of this model, a prototype was built using this model, which was
evaluated in a case study based on the processing of health data for supporting critical decision-making
procedures in remote patient monitoring. This study considered scenarios where end-users and medical staff
received insights discovered when processing electrocardiograms (ECGs) produced by sensors in wireless
IoT devices as well as where physicians received patient records (spirometry studies, ECGs and tomography
images) and warnings raised when online analyzing and identifying anomalies in the analyzed ECG data.
A scenario where organizations manage multiple simultaneous each edge-fog-cloud structure for processing
of health data and contents delivered to internal and external staff was also studied. The evaluation of these
scenarios showed the feasibility of applying this model to the building of solutions interconnecting multiple
services/applications managing big health data through different environments.

INDEX TERMS Big health data, edge-fog-cloud, the health-IoT processing, the Internet of Things,
microservice architecture.

I. INTRODUCTION radically improve health care services and applications such
Internet of Things (IoT) is considered by the industry and as ambient assisted living (AAL) [1]-[3] and remote patient
the research community as a key enabling technology to monitoring [4], [5]. The health-IoT devices currently repre-
sent 40% of the total IoT devices [6]-[9]. This technology

The associate editor coordinating the review of this manuscript and is also becoming pivotal for users of these devices to acquire
approving it for publication was Noor Zaman . important data (i.e., vital signs, and activity level) and to make

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 8, 2020 120255

https://orcid.org/0000-0003-0944-9341
https://orcid.org/0000-0001-7304-1442
https://orcid.org/0000-0002-2160-4407
https://orcid.org/0000-0002-7219-361X
https://orcid.org/0000-0002-3925-031X
https://orcid.org/0000-0002-1413-4793
https://orcid.org/0000-0001-8116-4733

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

decisions for improving their health care [10]-[13]. More-
over, users, health care professionals, and organizations can
obtain insights for improving decision-making procedures by
using and processing data extracted from [oT devices and also
from other sources such as medical images, studies, historical
documents from expedients, and health records [14], [15].

To achieve insights and useful information to support crit-
ical decision-making processes, different management tasks
are performed during the health data lifecycle. In a typical
health data lifecycle, the data are acquired, preserved, pro-
cessed, and analyzed by using multiple applications deployed
at different types of infrastructures [16]-[18]. Moreover,
insights and information are shared with users, physicians,
professionals, and health care organizations [1], [6].

In this context, the edge, the fog, the cloud, and even
the end-user’s devices play a key role in the management
of the health sensitive content/data lifecycle [19]-[22]. This
relevance is evident in scenarios where: the data are acquired
from health devices and preprocessed at the edge; large vol-
umes of data are processed at the fog; data are processed to
produce useful information at the fog/cloud, or the informa-
tion is visualized in end-users’ devices.

For example, data are acquired from health-IoT
devices [23]-[25], preprocessed at the edge [26], [27], pro-
cessed at the fog/cloud to produce useful information [22],
[28]-[31], and then this information is visualized in end-
users’ devices [32], [33]. Thus, the edge, the fog, the cloud,
and even the end-users’ devices play a key role in the lifecycle
of the management of sensitive contents (i.e., healthcare
data).

In real scenarios of processing [oT health data, the tasks
executed at the different stages should be performed in
either an automatic or semi-automatic manner to support
critical decision-making processes [14], [34]. Also, the pro-
cessing of health data requires to accomplish different
non-functional requirements for attending health manage-
ment norms and laws imposed by government and organi-
zations [35], [36]. In this sense, the services for fulfilling
non-functional requirements (NRF) such as security, relia-
bility, and efficiency are also relevant for organizations to
accomplish norms and regulations when managing health
data.

The most relevant NFRs in real scenarios of management
and processing of health data are, but not limited to, security,
reliability, and efficiency. Security services are required to
solve problems that arise when data and information are man-
aged and shared with multiple users through non-controlled
and untrusted environments. This is the case of the cloud
(outsourcing models), where users lose physical control over
the data [37]-[43]. In this context, data integrity, data con-
fidentiality, and data access controls are important security
aspects when using outsourced services (i.e., cloud).

The reliability services are required to solve problems
related to outages in the infrastructure where the data are pro-
cessed and stored as outages commonly result in the unavail-
ability of the data [44]-[49]. This requirement results key for

120256

avoid end-users and organizations to suffer side-effects from
data unavailability.

The efficiency is a key requirement to solve issues related
to the costs of storage and transportation of the data through
the different environments of processing [50]-[53], as well
as to reduce delays in the delivering information required in
decision-making processes, which are critical in real health
scenarios [54], [55].

However, creating portable and flexible solutions that can
be deployed on different environments (any combination of
edge, fog, cloud, and/or end-users’ devices) [56]-[59] by
using multiple services and applications, and at the same time
these solutions enforce the fulfilling of mandatory NFRs in
continuous, transparent integrated and efficient manners is
still an open research challenge [60]-[63].

Three main issues are involved in this challenge and are
faced in this paper:

o The first issue is creating, in configuration and deploy-

ment times, solutions including multiple applications
(functional components) that are executed by multiple
users in multiple environments.
In this paper, to face this issue is proposed an archi-
tectural model based on recursive maps of abstractions
called blocks and execution environments (edge, fog,
cloud, or end-user’s devices). The goal of this model is to
enable organizations to build edge-fog-cloud processing
structures.

o The second issue is to produce dataflows through

the blocks considered in an edge-fog-cloud processing
structure.
In this paper, this issue is solved by using continu-
ous delivery schemes, which establishes controls on the
execution sequence of the blocks in the defined envi-
ronments as well as establishing channels for the data
exchange between pairs of blocks. This scheme produces
uninterrupted dataflows from the IoT devices through
the blocks deployed on any of the edge, fog, cloud,
or end-users’ devices to the end-users of the solution.

o The third issue is the fulfillment of NFRs for each data

arriving/departing to/from each block in an edge-fog-
cloud processing structure.
In this paper, this issue is solved by continuity schemes
of NFRs, that are coupled to the blocks to ensure the
fulfillment of NFRs for each data arriving/departing
to/from each block in an automatic and transparent
manners. These schemes produce a continuous fulfilling
of NFRs through the different environments where a
solution has been deployed on (any combination of edge,
fog, cloud, or end-users’ devices).

This paper thus presents an architectural model that
enables organizations to build processing structures deploy-
able on any combination of edge, fog, or cloud environ-
ments for health decision-making processes. This architec-
tural model creates edge-fog-cloud processing structures by
using maps based on recursive and modular abstractions
called blocks.

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

A block is built as a self-contained reusable software
piece that includes an application (for processing health data)
as well as services for enforcing the fulfilling of NFRs
and I/O interfaces for coupling it to other blocks. In this
model, depending on the deployment environment, the blocks
are classified in regular (for the cloud and the fog) and
microblocks (for the edge). A block is managed by an exe-
cution map that considers: i) the place where a block will
extract data from any source during execution time, ii) the
environment where that block will be executed in (i.e., edge,
fog or cloud), and iii) the place where the data transformed
by that block will be stored in. An edge-fog-cloud processing
structure thus is created by coupling the I/O interfaces of a
set of blocks (by using the execution maps of the blocks).
The blocks are implemented in the form of nanoservices' or
microservices? [66]-[68], which are abstract representations
of modular and independent software pieces.

A continuous delivery scheme (CD) is a map that is used in
this model to perform, in automatic and transparent manners,
the correct deployment and execution of the blocks (by using
execution maps), as well as the continuous data delivery
to the blocks of an edge-fog-cloud structure, which will be
deployed on any combination of edge, fog, cloud, or end-
user devices. The continuity schemes enforce the fulfilling
of non-functional requirements (NFRs) in the management
of the data arriving and departing to/from the blocks encap-
sulated into an edge-fog-cloud processing structure. These
continuity schemes are created by taking advantage of the
recursive creation and management of blocks proposed in the
architectural model. This means that the continuity schemes
are created by using reserved blocks. This type of block
is coupled to the blocks of an edge-fog-cloud processing
structure to create continuous and simultaneous enforcement
of the fulfilling of the NFRs associated with each functional
block of an edge-fog-cloud processing structure.

The following continuity schemes were created for the
architectural model presented in this paper:

« Continuous security (CS), for producing integrity, con-
fidentiality, and access controls at each stage of the
sensitive data processing lifecycle. The reserved blocks
considered in this scheme are managed by maps linking
a block with integrity, confidentiality, access control,
and signatures services.

« Continuous reliability (CR), for adding fault-tolerance to
data for withstanding lost data as well as cloud outages
and/or fog servers unavailability. Reliability is managed
as a map linking a fault-tolerant service with a block,
whereas the blocks are recursive as the different services

A nanoservice is a small software piece created by using a template
invoking an application, I/O calls, and a reduced configuration file, which
is suitable for edge environments.

2A microservice, in this architectural model can include applications,
database, and a set of I/O interfaces. This type of piece is encapsulated
into a portable light virtual container [64], [65] enabling the solutions to be
deployed on any of the fog, cloud or end-users’ devices.

VOLUME 8, 2020

for fulfilling NFR are also created by using blocks and
microblocks.

« Continuous efficiency (CE), for improving the delivery
and processing of data by applying implicit parallelism
on the processing tasks, and data compressing to reduce
the volume of the data stored. A map for linking software
pieces that creates parallel patterns with a block of an
edge-fog-cloud solution is considered in this scheme.
These pieces are also managed as reserved blocks.

The continuity schemes thus are managed as a matrix of
NFRs (see security, reliability, and efficiency requirements
in Fig. 1) and deployment environments (see edge, fog, cloud,
and end-users’ devices environments in Fig. 1).

Edge Fog Cloud End-User
c Al Al 1Al A
AR O ol i |o
s H
ix| |O ® ol { |o
cs [[] O] (O
Simbology
<> Continuous Efficiency (CE) A Continuous Delivery (CD)
O Continuous Reliability (CR) D Continuous Security (CS)

FIGURE 1. Conceptual representation of a matrix of non-functional
requirements and deployment environments managed by the continuity
scheme maps of the architectural model.

A conceptual representation of these continuity scheme
maps applied to the block structures is depicted in Fig. 1. The
area delimited with a blue line represents an example of an
edge-fog-cloud-EndUser processing structure, including four
blocks (one per environment). The set of continuity schemes
that will be included in each block can be defined as required.
In this example, all blocks include CD + CE (automatic data
delivery and continuous efficiency), whereas the blocks at
the fog and end-users’ devices also include CD + CS + CR
schemes.

The basic idea of the proposed architectural model is that
the developers of the organizations can create comprehensive
solutions in three simple steps:

1) Developers associate an either analytic or processing
application to a block, which, in an implicit form, will
be in charge of the management of data I/O operations.

2) Organizations create edge-fog-cloud processing struc-
tures by defining the sequence in which blocks will
be deployed on the different environments (the edge,
the fog, the cloud, and the end-user devices). The
deployment and coupling of blocks through different
environments is also performed in implicit and auto-
matic manners.

3) The organization chooses the continuity scheme for
each block by enabling as many continuity schemes
as needed to fulfilling requirements of laws/norms
or enough for addressing users’ concerns about the

120257

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

e iiiiieeiooo....___Symbology

E Network interface €----> Continuous efficiency ~ InC'S
! Memory interface > Continuous reliability

|

|

................................... !
Incoming continuity scheme '

OutCS Outcoming continuity scheme !
'

'

I File System interface €————> Continuous security v Continuity characteristic applied
cE * [i o cE
B[l 18 o~ 143 0l 9 ol g
] ¢|cr| Block1 [¢k|S o|¢k| Block2 [ek|2 ¢|ek| Block3 |[cr|S 2|cr| Block4 [cr[2
loT devices [€ = = = 1 —° - e F° -- e S -- v o
cs cs cs & & cs
Edge Fog Cloud End-User

FIGURE 2. Example of a an edge-fog-cloud processing structure managed by using microservices and nanoservices.

environment in which the data will be processed in (see
an example in Fig. 1).

Fig. 2 shows an example of blocks interconnected by input
and output interfaces creating an edge-fog-cloud processing
structure. This example also shows the continuity schemes
for the management of NFRs of data arriving at the block
and data departing from the block (see a checkmark for
secure/CS, reliable/CR, or efficient/CE for each block).
Notice that in Fig. 2 these blocks can be deployed in any com-
bination of infrastructure environments to create edge-fog-
cloud-EndUser processing structures to manage and process
big health data by using maps of blocks and environments.

A prototype based on the architectural model proposed in
this paper was built to create edge-fog-cloud structures. These
structures were evaluated when extracting health data from
the IoT devices, preprocessing them at the edge, processing
resultant data at the fog, preserving resultant information at
the cloud, and visualizing the results at the end-users’ devices.

A case study was conducted based on these structures by
considering scenarios where: i) end-users receiving insights
discovered when processing electrocardiogram (ECG) data
produced by IoT sensors; ii) physicians receiving warnings
created from the analysis and identification of peaks in the
ECG data based on remote patient monitoring produced by
a wireless network of IoT devices deployed on an emer-
gency room. The performance of the structures is compared
with a state-of-the-art solution. iii) Simultaneous manage-
ment of spirometry, medical imagery, and ECGs to sup-
port making-decision procedures; iv) organizations managing
multiple processing structures including the management of
ECG data, medical imagery, and spirometry. In addition,
an evaluation study was conducted to the assessment of the
impact of edge-fog-cloud processing structures on the storage
utilization and the computation complexity of big health data
solutions built by the model proposed in this paper.

The experimental evaluation revealed the feasibility of
applying this model to the building of solutions interconnect-
ing multiple services and applications for the management
of big and heterogeneous sensitive data through different
environments.

The main contribution of this paper includes are:

1) An architectural service composition model based on
modular infrastructure-agnostic structures for edge-
fog-cloud computing.

120258

2) A multi-continuity model for the application of services
fulfilling non-functional requirements that are critical
for the management of sensitive information (health
data and contents). The following schemes were devel-
oped and evaluated in this paper:

o Continuous security schemes for establishing
access controls, data integrity verification, and data
confidentiality when structures edge V fog Vv cloud
Vv EndUser exchange sensitive data (i.e., medical
imagery, ECG data, or spirometry data).

o Continuous reliability schemes for adding fault-
tolerance to data when structures edge V fog Vv
cloud v EndUser exchange and store sensitive
data.

o Continuous efficiency schemes to convert appli-
cations/services used by structures edge V fog Vv
cloud v EndUser into parallel patterns improving
not only the performance of these structures but
also the cost-efficiency of data storage and trans-
portation.

3) An implicit management scheme to control the contin-
uous security, reliability, and efficiency schemes for the
management of large volumes of data.

The rest of the paper is organized as follows. Section II
describes the related work of this paper. Section III presents
the design and implementation of the workflow architectural
model based on microservices and nanoservices composition
for edge-fog-cloud computing. Section IV presents the case
study based on an emergency room, and also shows the results
of the experimental evaluation conducted. Finally, Section V
gives conclusions remarks and future work.

Il. RELATED WORK

The challenge of the processing big IoT sensitive health
data has been addressed in different scopes: isolated analytic
applications, big data solutions, and some solutions focused
on non-functional requirements (NFRs).

On the data analytic scope, different solutions have been
proposed to extract relevant features from IoT devices [17],
[69], [70]. Artificial intelligent (AI) algorithms [14], [71],
[72] performing periodic monitoring over historical data have
been proposed to discover patterns from the data collected.
Moreover, applications and models are available for sending
warnings to patients and physicians [73]-[75]. In this context,

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

Zhang et al. [76], Chze and Leong [77] proposed solutions
where different sensors and applications interact through
multiple hops in continuous integration to create a dataflow
between devices and decision-makers.

On the scope of big data scenarios, cloud-based solutions
have emerged as the election for many health organizations
to manage, preserve, and share large volumes of data in
a cost-effective manner [78]. Different solutions have been
proposed in the literature for managing, processing, and pre-
serving health data [22], [79] by using big data tools like
Hadoop [80], [81], and Spark [82].

Nevertheless, this type of solution could result either in
the loss of control over the data sent to the cloud or in a
vendor lock-in dependency, when the management of the
accumulating data in outsourced processing services [37],
[83], [84]. These issues may not be acceptable in health IoT
data scenarios where it is crucial to guarantee the privacy,
management, security, and integrity of the data [38]. In turn,
the architectural model proposed in this paper avoids vendor
lock-in scenarios and recover control of data when the cloud
services are used to manage the IoT health data by using:
i) portable infrastructure-agnostic structures to deploy appli-
cations/services (blocks), and ii) controls over the processing
and management of data through continuity schemes fulfill-
ing non-functional requirements in automatic and transparent
manners.

On the scope of the management of NFRs the main
proposals have been focused on security and reliability
requirements. End-to-end processing schemes have been pro-
posed to mitigate the lack of control over the data in out-
sourced environments [85]-[87]. In this type of scheme,
data are preprocessed before sending them to the cloud by
applying techniques such as encryption to reduce security
issues [39], [88], [89], and reliability schemes based on
coding and redundancy to face outages [47]-[49], [90] or
failures in the cloud [44], [91]. Indexing and hashing tech-
niques have been proposed to verify the integrity of the
data [92], [93]. For instance, Moosavi et al. [94] proposed
an end-to-end scheme to ensure the data before sending
them to the transportation stage in a mobility environment.
Authentication and authorization of entities participating
are established in this scheme. SecFilter [95] is a secu-
rity filter that applies different security policies to data in
information-sharing environments before sending them to the
cloud. The policies are automatically defined by the risk level
that is discovered by SecFilter by using mining data tech-
niques. Nevertheless, these solutions are focused on a specific
environment such as the edge [21], [96]-[98], the fog [20],
[99], [100], or the cloud [28], [101], [102]. Moreover, these
solutions are only focused on the accomplishment of a
specific NFR (security [103], [104], reliability [86], [105],
or integrity [93], [106], [107]). The model presented in this
paper differs from end-to-end solutions as the security and
reliability requirements are fulfilling in implicit and auto-
matic manners. These processes are independent of the envi-
ronment where the applications are deployed.

VOLUME 8, 2020

The issue of deploying services and applications on
different environments has been addressed by traditional
computational workflows [86], [108]-[111]. However,
in practice, users have to perform troubleshooting procedures
to deploy a workflow on a given infrastructure [112]. More-
over, the heterogeneity of the stages in a workflow [113] and
its schedule of processes [114] could produce an impact on
the performance of the workflow in execution time.

Microservice architectures [66], [115] represents a solu-
tion for developers to convert large services into small,
independent heterogeneous and isolated services that are
managed by using exchange data and messages [116]. Never-
theless, the creation of comprehensive solutions with implicit
resource management and flexible portability is still an issue
for microservice architectures [117]. In turn, the model pro-
posed in this paper introduces software pieces called blocks
(implemented in the form of microservices and nanoser-
vices), which include methods for managing the exchange
of data and messages in implicit, secure, reliable, and
cost-efficiency manners. Moreover, these blocks are man-
aged by using recursive, reusable, and chainable structures
encapsulated into virtual containers. These structures are self-
contained, which means no troubleshooting is required and
that such structures can be deployed on any of the edge,
fog, or cloud. These structures allow users to create different
processing structures that can be deployed on any combina-
tion of edge, fog, or cloud. Also, continuity schemes [85]
simultaneously enforce the continuous delivery of data in
each stage of a processing structure and to fulfilling the NFRs
for data processed by the blocks of the processing structures.

A. QUALITATIVE COMPARISON OF CONTINUITY TOOLS
This section presents a qualitative analysis of the architectural
model proposed in this paper and solutions identified in
the state-of-the-art focused on the continuous processing of
IoT data.

Table 1 shows a qualitative comparison between the pro-
posed model, based on blocks and microblocks, and dif-
ferent solutions from the state-of-the-art focused on build-
ing workflows and pipelines. Table 1 includes traditional
workflow engines for the building of processing solutions
(i.e., Comps [118], Pycomps [119], Sacbe [86], Parsl [121],
and DagOnStar [124]), and software for building distributed
processing IoT dataflows based on message exchange
(i.e., Apache Kafka [122] and Amazon kinesis [123]). The
qualitative comparison was performed considering reliability,
security, and efficiency features and the different applications
of these non-functional requirements.

The reliability property was evaluated considering the data
transfer point-of-view, data storage, and data processing. Data
transfer reliability was assessed as the capacity of the solu-
tions to provide data with fault tolerance in distributed infras-
tructures. Reliability in data storage refers to the capacity of
the solutions to store data for withstanding failures in storage
nodes, especially in the fog and in the cloud. Reliability in
data processing refers to support fault-tolerant computing

120259

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

TABLE 1. Qualitative comparison between the model based on blocks and microblocks with different workflow engines and loT processing pipelines.

Reliability

Work IoT oriented

Efficiency Security

Processing

Transport Storage

(fault-tolerance)

Parallelism Compressing Integrity Confidentiality Access control

Sacbe [86] v

Comps [118]

PyComps [119]
Makeflow [120]

Pars] [121]

Apache Katka [122]
Amazon Kinesis [123]
DagOnStar [124]
Blocks and Microblocks

ENEN
AN N N N NENENEN

EENENEN

AN N N NN

ANENENEN

mechanisms. As shown in Table 1, existing solutions only
provide reliability in data processing, whereas the blocks and
microblocks of the proposed model offer the three types of
reliability evaluated in this analysis.

Efficiency was evaluated in terms of performance by
considering whether a solution supports parallelism or not.
In this sense, solutions like Parsl, Comps, Makeflow and
DagOnStar produces implicit parallelism by using a mul-
tithreading model, whereas Apache Kafka and Amazon
Kinesis provide it by manually cloning instances of the
application and implementing load balancing services to dis-
tribute the load between the cloned instances. In the case
of the proposed architectural model, the blocks produce
implicit parallelism by using parallel patterns based on virtual
containers. These patterns automatically clone microblocks
(n processing workers) and implement not only task
parallelism as do the evaluated solutions but also data
parallelism, pipe&filters, shared resources, and combina-
tions of these patterns. Moreover, the blocks also con-
sider automatic load balancing and workload distribution.
Furthermore, the blocks are self-contained and portable
pieces of software, which produces infrastructure-agnostic
solutions.

Three characteristics of security were considered: integrity,
confidentiality, and access control. Integrity refers to the
ability of the solutions to use checksums (e.g, SHA3
hashing or MDS5) to ensure that data have not been mod-
ified in the transmission from one environment to another
one [125]. Confidentiality was evaluated as the capac-
ity of the solutions to preserve data privacy between
processing stages and nodes [126], [127]. Finally, access
controls were evaluated by considering techniques to estab-
lish cryptography-based controls to access the processing
solutions [128].

Based on the previous discussion, it can be stated
that the architectural model proposed in this paper has
two main advantages. Firstly, it offers more quality fea-
tures than available models, and secondly provides the
solutions created by using this model with a continuous
enforcing of offered features through the different environ-
ments where the solutions are deployed on. Thus, the pro-
posed architectural model represents a quite useful tool
for an organization to process big sensitive IoT health
data.

120260

lll. A WORKFLOW ARCHITECTURAL MODEL FOR
EDGE-FOG-CLOUD COMPUTING BASED ON
MICRO/NANOSERVICES COMPOSITION

This section presents an architectural model based on the
composition of blocks implemented as micro/nanoservices
to build processing structures in edge-fog-cloud computing
environments. This section also presents continuity schemes
for simultaneously managing the exchange of data and mes-
sages through the blocks included in the edge-fog-cloud pro-
cessing structures and to fulfilling, in a continuous manner,
non-functional requirements (security, reliability, and effi-
ciency) of data arriving and departing to/from the blocks
considered in a processing structure.

A. AN ARCHITECTURAL MODEL BASED ON
MICRO/NANOSERVICES COMPOSITION

This model considers a service composition based on an
abstract representation of nanoservices and microservices
called blocks. A block represents thus a self-contained
reusable software piece that includes an application (for pro-
cessing health data), I/O interfaces for coupling it to other
blocks as well as services for enforcing the fulfillment of
NFRs. A block is managed by an execution map that con-
siders: i) the place where a block will extract data from
any source during execution time, ii) the environment where
that block will be executed in (i.e., edge, fog or cloud), and
iii) the place where the data transformed by that block will be
stored in.

A block can be chained to other blocks by using its
I/O interfaces, for creating processing structures such as par-
allel patterns, pipelines, and workflows (see an example of
pipeline structure including blocks in Fig. 2). The input and
output interfaces of a constructive block are denoted as In — I
and Out —I respectively, and they could be any of the memory
(denoted by <), the network (denoted by <——) or the file
system (denoted by <—).

In this model, the blocks are classified into two types
depending on the environment where the blocks are deployed
on: the first one is a regular block that is implemented as
microservices encapsulated into a portable light virtual con-
tainer [64], [65]. This type of block can be allocated in any of
the fog, cloud, or end-users’ devices [66]-[68]. The second
one is a small block or microblocks that is implemented

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

Symbology

———> Push operation
«—— Pull operation
——— File System interface
=——— Network interface
rrrrrrrrrrrr Memory interface
inC'S Incoming continuity scheme

outCS Outcoming continuity scheme

1 Block 2

' | nCS F;l Visualization |—>| outC'S |
)

End-User]

IoT _devices : - I inCS I [Hubj

'
| Analytics I IoutCS : n

FIGURE 3. Example of blocks chained to create health workflows.

in the form of nanoservices, which are suitable for edge
environments. See an example of blocks deployed in edge-
fog-cloud-EndUsers environments in Fig. 2.

In this model, a microservice is denoted as microSy,
whereas a nanoservice is represented by nanoS,. These struc-
tures are encapsulated into portable and light virtual con-
tainers (VC) [64] for avoiding troubleshooting or missing
software dependencies as well as vendor lock-in dependency.
As a result, a block mapped with a microservice can be
deployed on the following environments (Env): the fog (fog),
the cloud (CI), and end-user’ devices (EU). Moreover, a block
mapped with a microS, could include a set of applica-
tions (Apps) or nanoservices and exposed them by an API
that developers can consume with their apps, thus enabling
the interaction with other microSy. Therefore, a microS, is
denoted as follows:

microSy = VC(In — I, Apps Vv nanoS, Out — I, API). (1)

A nanoservice, in turn, is a small software piece created
by using a template invoking an application, I/O calls, and
a reduced configuration file, which is suitable for edge (Ed)
environments where the computational resources are limited.
A block mapped with a nanoSy is built by using a template
containing a function that can be used to process data, as well
as the input and output interfaces (In — I and Out — I
respectively). Thus, it is denoted as follows:

nanoS, = template(In — I, function, Out — I) 2)

The notation of nanoS; and microS, generalizes the def-
inition of a block (Blk) and the control and management of
data and workload in these structures are implicitly performed
within the blocks.

1) BUILDING EDGE-FOG-CLOUD PROCESSING STRUCTURES
FOR HEALTH DATA

This subsection describes a model for the construction of
edge-fog-cloud processing structures. To build these struc-
tures, the first step is to define the execution maps which,

VOLUME 8, 2020

as previously described, manage the blocks in execution time
by using the notation of a nanoservice (nanoS,) or a microser-
vice (microSy). These maps are built by following the ETL
processing model traditionally used in big data applications:
i) to extract data from a data source, ii) to transform the
acquired data into information, and iii) to load the informa-
tion to a data sink [129]. These maps convert a block into
independent software that can be used in an isolated manner.

The second step is to define the environment maps for each
block in a solution. These maps are created by linking a block
(Blk) with either a nanoservice (nanoSy) or a microservice
(microSy), which is associated to an environment (Env, =
Ed v fog v Cl v EU). A map (map,(Env, Blk)) represents
the association of a block (Blk) with a specific environment
(Env) where the Blk will be deployed. Those maps are used
to deploy the solutions on an edge-fog-cloud computing
environment. In this architectural model, each map (map,)
produces a specific configuration file for each Env specified
in that map.

The last step is to create the coupling maps by intercon-
necting the Out — I of a block with the In — I of another one.
Thus, an edge-fog-cloud processing structure is created in
configuration time by deploying blocks using a set of chained
coupling maps. Fig. 3 shows an example of blocks organized
as an edge-fog-cloud structure built, for example, to manage
and process health data, and delivering the results to the
end-users. In this example, blocks are chained by using the
network interfaces.

At this point, the blocks can be related to functional aspects
of a health processing (any of data analytics, visualization of
information, or sharing of contents).

2) MAPS OF PARALLEL PATTERNS TO IMPROVE BLOCKS
EFFICIENCY

The interconnection of blocks through different I/O interfaces
defined in the maps produces patterns of blocks that create
structures such as pipelines, workflows, and different parallel
schemes. These structures are focused on improving the

120261

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

functional properties of end-fog-cloud solutions. The
pipelines and workflows enable developers to create com-
prehensive solutions in one single environment. For instance,
an analytic procedure could include a pipeline of three blocks:
one block for data preparation, the second one for classifi-
cation, and the third one for indexing resultant information.
The same example can be applied to a workflow structure
but deploying the three blocks on different environments
(i.e., the first one on the edge, the second one on the fog,
and the last one on the cloud). In (3) is showed the notation to
build this workflow structure with tree blocks (blky, blk, and
blk3) deployed at the edge, fog, and cloud environments.

PattBlks = mapi(edge, blk1) — mapi(fog, blks)
— mapi(cloud, blk3) (3)

In turn, the parallel patterns are managed to improve the
efficiency of blocks. These patterns consider to clone a given
Blk and organize them in the form of a task-parallel or
data-parallel method. A parallel pattern could be represented
by the following expression:

Blkpa: = (src, pattern, Blk, cl, snk), “4)

where src represents the data source, pattern represents the
type of parallelism, Blk is the block to be executed in parallel,
snk the data sink, and ¢/ the number of Blk clones. In practice,
Blkp,; represents a parallel version of Blk as both perform the
same functionality. We recall that a Blk can be implemented
as either microservice or nanoservice encapsulated into a
virtual container. This produces a recursive scheme where Blk
represents a microblock for Blkpay.

As a result of this coupling, ¢! replicas of the application
linked with Blk are executed in a concurrent manner process-
ing data/workload in parallel. Notice that snk of the Blkyy;
will be linked to either a Blk output or a data Sink. This means
this pattern can be chained to other patterns (any of pipeline,
workflow, or another parallel structure) in a recursive manner
and the map scheme of this model supports this recursive
feature.

In this paper, we have considered two types of patterns:
i) mw for manager/worker patterns used to process a large
volume of data (i.e., digital electrocardiogram produced con-
stantly); and ii) dg, created by using the divide&conquer
technique to process files of large size (i.e., medical images
and spirometry studies).

A manager/worker (pattern = mw) pattern considers
reserved blocks associated to two software artifacts called
manager and workers. The manager performs the following
actions: i) the creation of the Blk clones (workers); ii) the
interception of the data arriving at the block; iii) the creation
of tasks (where a task is equal to a content, a file, or a record
in a database) of workload to be processed; iv) the distribu-
tion of these fasks to the workers by using a load-balancing
technique; and v) the supervision that each worker collects
tasks, produces results, and delivers them to the output of
the sink (i.e., a folder, or the input interface of the next Blk

120262

or pattern) [130], [131]. The workers are in charge of two
functions: i) to execute the applications/services associated
to the Blk to process the tasks sent by the manager, and ii) to
deliver their results to an In — I of a block or a sink.

The second technique used to create parallel patterns is
divide&conquer. This technique is focused on contents of
big size (i.e., tomography images) and considers three blocks
(artifacts): the divide, the workers, and the conquer. The
divide is in charge of splitting the input data into segments,
which are delivered to the workers. The workers process
the segments and deliver results to the conquer entity. And,
the conquer consolidates the results into a single one and
delivers consolidated results to either an In — I of a block,
or a sink.

3) CONTINUOUS DELIVERY SCHEMES BASED ON
COUPLING MAPS

At this point has been described the process of building
edge-fog-cloud processing structures in configuration and
deployment times. In this section, is described the method
for delivering data through all the components of an edge-
fog-cloud processing structure in a continuous manner.

Push and pull methods [132] were designed to establish
controls over the execution of blocks and the data exchange
through the blocks of an edge-fog-cloud processing structure.
These methods produce a dataflow by following coupling
maps of the solution. These methods are applied to each pair
of blocks in a solution. Push means that the first block is in
charge to send the data to the second block, whereas pull
means that the second one is in charge to go to the output
interface of the first block. This means that when using a
single method to set up a block-to-block communication,
an asynchronous channel is established between the pairs of
blocks. In turn, a synchronous channel is established where
both blocks are using both modes (one using push and the
other one is using pull). In any case, the channels produce
a continuous exchange of data (dataflow). These operational
modes, for instance, are used when an edge node sends data
to the fog (push mode), the data are processed and the results
are sent to the cloud (push mode), and an end-user’s device
requesting insights of the data from the cloud (pull mode).

A continuous delivery scheme is built when configuring
these modes for following the coupling schemes of an edge-
fog-cloud processing structure. To add these dataflow meth-
ods to the model, the push mode has been denoted as a right
arrow from the block that is sending the data to the block
that is receiving the data, such as follows: map; — map;.
Whereas, the pull mode is denoted as map; <— map,, which
means that the map is requesting data from the map,.

These operation modes are used in run-time for controlling
data exchange in a decentralized manner to avoid dependen-
cies among blocks. A bidirectional operation is required for
delivering the status of the push and pull operations to the
blocks involved in these operations (synchronous communi-
cation). This is represented as map; <> map.

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

Following this notation, a workflow composed of n cou-
pling maps would be denoted by the following expression:

Wfy = map; <— mapy <— ... <—> mapy, 5)

In this example, the behavior of a workflow (Wfy) in
run-time is similar to a block: i) the workflow extracts data
from a source (srcy), which could be any health-IoT device
(for example a spirometer, electrocardiogram, or a health
wearable) or a static data repository; ii) the workflow trans-
forms the acquired data into either useful information or a
new version of the acquired data by executing the considered
blocks; and iii) the workflow loads the results in a sink (snk,)
or another block (i.e., in an end-user’s device).

In this sense, a health workflow [133] could be represented
as amap of a data source (srcy), a processing workflow (Wf,,),
and a data sink (snk,). This is denoted as:

HWf,. = (srcy, Wfy, snky) 6)

To clarify the usage of this notation, an example of an
edge-fog-cloud-EndUser processing structure built by using
this notation is showed in (7). This processing structure was
built using five maps (one per processing stage). Each map
includes two metadata structures to define the environment
(Env) and a block (blk). Maps are interconnected with other
maps through an input/output interface (In — I and Out —I).
Therefore, the first two maps are interconnected through a
memory interface (mem), whereas the rest of the maps are
interconnected through a network interface (net).

The blocks associated with the first and second maps indi-
cate the deployment of blocks on a personal computer at the
edge (Ed). The third map indicates the deployment of blocks
on a private cloud instance at the fog (fog1). The fourth map
indicates the deployment of blocks on public cloud provider
(Cly), and the fifth map indicates the deployment of blocks
on an end-user device (EU}).

Wf1 = mapi(Edy, blk)) <= map>(Edy, blky) <—
map3(fog, blk3) <—— map4(Cly, blky) <~—
maps(EU, blks), @)

The blk;,. . s are blocks created by using the following

configurations:

blky = (mem, rety, hub, prep1, mem)

blky = (mem, ret, indexing, prepa, net)

blks = (net, ret3, analytics, preps, net)

blks = (net, rety, preservation, prepa, net)

blks = (net, rets, visualization, preps, net),)
where, hub is a nanoservice for the acquisition of data from
different sensors, indexing is a nanoservice that registers the
acquired data in a database, analytics microservice processes
the acquired data at the fog, preservation microservice is
deployed at the cloud, and it is in charge of storing the

data acquired in a cloud storage location, visualization is
a microservice consumed by the end-users to visualize the

VOLUME 8, 2020

results of the processing of data, and prep; .. 5 are the con-
tinuity schemes attached to each block (see Section III-B).
Thus, these micro/nanoservices are created from the follow-
ing maps:
hub = template(mem, scpyp, ment)
indexing = template(mem, SCindex , net)
analytics = VC(net, sCapaly, net, API)
preservation = VC(net, SCpres, net, API)
visualization = VC (net, scyis, net, API),)

where sc, represents the source code, application or function
deployed by the micro/nanoservice x. Therefore, the health
processing structure HWf] includes three elements: i) the Wfj
presented in (7), ii) the data source (src), and iii) the data sink
(snky), as follows:

HWfi = (srcy, Wiy, snky), (10)

where src| represents a link to a spirometry repository and
snki is a link to a storage service to preserve the processed
data.

An edge-fog-cloud-EndUser structure for the continu-
ous processing of health data, similar to the one previ-
ously described, also can be chained with other edge-fog-
cloud structure by following the very same principles of the
chaining of blocks (either microservices or nanoservices).
We called this chain as macroworkflows (MWf,), and it is
denoted as:

MWf, = HWf,, <— HWf,_1 <— ... <— HWf1 (11)

B. CONTINUITY SCHEMES FOR FULFILLING
NON-FUNCTIONAL REQUIREMENTS

The previous subsection introduced the architectural model
for the continuous processing of health data by using edge-
fog-cloud structures (focused mainly on functional require-
ments). The next step is to provide mechanisms for blocks to
transparently exchange data in a secure, efficient, and reliable
manners. This subsection describes a multi-continuity model
for the application of non-functional requirements such as
efficiency, reliability, and security, which are that critical for
the management of sensitive information (i.e., health data)
processed in multiple environments (any of edge, fog, cloud
or end-user devices).

We recall that this model considers the building of three
types of continuous schemes that are built in the form of
patterns and managed as blocks. These schemes are:

o Continuous security or CS schemes that were created by
using blocks linked to services for establishing access
controls, data integrity verification, and data confiden-
tiality (and privacy of their owners) when structures edge
V fog V cloud v EndUser exchange sensitive data.

o Continuous reliability or CR schemes were created
by developing blocks that include fault-tolerance algo-
rithms for recovering data in scenarios of failure (out-
ages) when structures edge V fog V cloud v EndUser
exchange sensitive data.

120263

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

o Continuous efficiency or CE schemes convert applica-
tions and services deployed by blocks in structures edge
V fog Vv cloud v EndUser into parallel patterns, which
improve not only the performance of these structures but
also the cost-efficiency of data storage and transporta-
tion.

In this model, the previous schemes are built in the very
same form in which the blocks are built. This means a service
developed to fulfilling a given NFR is encapsulated into a
block, which can be coupled to other blocks to create com-
prehensive solutions for fulfilling multiple NFRs. We called
these solutions as continuity schemes.

The idea is to attach a continuity scheme to each block in an
edge-fog-cloud processing structure to enforce the fulfillment
of NFRs for data arriving and departing to/from a block
in the processing structures. These schemes are defined in
coordination with the push and pull operations invoked by
the blocks of a structure [85].

A continuity scheme is built in two versions. The first one
is called outcoming schemes (outCS) and it has been created
to add properties such as security, reliability, integrity, and
cost-efficiency management to the data before sending them
from a block to another one through any of the fog, the cloud,
or end-users’ devices. In our model, the algorithms that fulfill
NFRs are organized as a processing pipeline. This pipeline
is triggered each time a Blk invokes a push operation for
transporting data to a remote location, either to the input
interface of a block or a sink. The second version is called
incoming scheme (inCS) and it was created to manage data
prepared by an OutCS scheme but the blocks of this scheme
version are invoked in an inverse manner. This means outCS
represents the coding of departing data from a block to fulfill-
ing NFRs configured for that block. In turn, inCS represents
the decoding of data when valid blocks (or end-users) are
consuming arriving data. This continuity scheme is used by
blocks in pull operations to retrieve data.

The inCS schemes are executed each time a data arriving
to the input interfaces of the nano/microservices (see inCS
in Fig. 3). The OutCS schemes are executed each time a data
is departing from a nano/microservices (see OutCS in Fig. 3).

In this paper, the pipelines created by using continuity
schemes include microblocks (MBIks) such as data compress-
ing (comp), data hashing&indexing (h&i), data coding (cod),
data encryption (enc), and data uploading (upl). This means
that the pipelines created by using inCS schemes include
MBIks such as data downloading (down), data decryption
(decr), data decoding (deco), and uncompressing (unco).

1) A TREE OF RECURSIVE MAPS FOR BUILDING OF
EDGE-FOG-CLOUD PROCESSING STRUCTURES

The building of edge-fog-cloud structures is performed by
using a tree of coupling maps (see an example of a structure
built by using coupling maps in Fig. 4). This tree represents
the configuration of an edge-fog-cloud processing structure.
This configuration is the basis used in this model to deploy a
processing structure on edge-fog-cloud environments. It also

120264

is used to ensure that functional services/systems (blocks
associated to the data lifecycle such as analytic, preprocess-
ing, processing, and visualization), as well as the services
for fulfilling NFRs (the blocks included in the outCS and
inCS continuity schemes such as security, reliability, and
efficiency), are both invoked and executed in a well-defined
sequence. This is achieved by following the coupling maps
both of continuous deliver schemes of the solution (functional
applications and services) as well as the continuity schemes
outCS and inCS (services for NFRs).

Fig. 4 shows a conceptual representation of this tree of
maps and its corresponding notation. In the first level of
this tree is placed the coupling map of the functional ser-
vices (Blks) that in this model are implemented in the form
of patterns, which can be deployed on any of edge, fog,
cloud or end-user depending on the execution maps of each
blk. In this level each block branch produces two branches:
the first one to invoke non-functional continuity schemes
(see InCS and/or outCS). The second one is the microser-
vice/nanoservice that will execute the functional application
associated with the ““father” Blk defined in its execution
map. The inCS/outCS branch produces a new level based
on the coupling map for the NFRs blocks (see MBlkpayern),
which is a recursive representation of the first level of the
tree. This means that each NFR blk in a MBlkpayern produces
again two branches, the first one for NRF continuity schemes
and the second one for the microservice/nanoservice. This
creation of new levels continues until finding a blk that does
not invoke a inCS/outCS, which meaning the leaves of the
tree (microservice/nanoservice) have been found.

C. DEVELOPING CONTINUITY SCHEMES FOR FULFILLING
NFRs IN REAL HEALTH DATA PROCESSING SCENARIOS
This section presents the development of continuity schemes
(see inCS/outCS of the continuity schemes in Fig. 4) for
edge-fog-cloud processing scenarios. These schemes were
built by using a tree of recursive maps described in the
previous section.

Three continuity schemes suitable in real health scenar-
ios were developed by using security (CS), reliability (CR),
and cost-efficiency storage applications (CE). These schemes
were implemented in the form of parallel patterns (see
MBlkpayern in Fig. 4). These schemes were incorporated into
the prototype used for the experimental evaluation.

1) CE: EFFICIENCY CONTINUITY SCHEME BASED ON
PATTERNS

The continuity schemes were implemented as parallel pat-
terns by following the very same notation of Blkspa,
described in Section III-A2 to build a parallel pattern called
MB lkpattem .

The CE scheme was defined to speed up the performance
of any block (blk) in a solution. A MBIk could be part of
a more complex pattern to improve the performance of the
data exchange performance. This can be performed by using

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

Notation
serv = microS V nanoS
inCS, = MBlk; — MBlky — --- — MBIk,

PM - Physical Machine Virtual Container

! 1
! 1
! 1
1 1
outCS, — MBIk, — --- — MBIk, — MBIk, : : . : : !
Bik, = {In — I,ret,, serv,prep,,,Out — I} ' r;l;c:(-. -------- 1T -_--_:__----'--- '
Env=EdV fogV Cl : ! ' BIk ' '
map, (Env, Blk,) ;o ! © : !
W f, = mapy — maps — - -+ — map, ! X] ')
M Blkygtern = (src, pattern, MBlk,, cl, snk) ! lmmmmm e '
O Recursively ! 1

1
1
1
1
1
1
1
1
1
VM/VC- Virtual Machine/ B | e T Ty -
1
1
1
1
1
1
1

microS /nanoS

LM dwmive

M Blks

Leontents

results

M
,
'
,
H
:
,
'
,
H
:
,
'
,
H
:
,
'
,
H
:

. o, L 0y
m—‘.| MBIk, |—1‘._>| Manager | srrs]
i
|
H
:
,
'
,
H
:
,
'
,
H
:
,
'
,
H
:
,
'
,
H

v

M Blkyaez

On-— Oy
deliver S M Bk,
.
i
h
h
h
h
Sy "

FIGURE 5. Maps of the reliability MBIk implementing a combination of patterns.

the recursive feature of this model (see microblock level in
MBlkpayern branch depicted in Fig. 4).

Fig. 5 shows an example of a pipeline pattern of a CR
scheme. This scheme was created by using the tree of recur-
sive maps described in the previous section. This pipeline
includes a set of MBlks (MBlky, MBlk;, ..., MBIk, € edge-
fog-cloud structure). The MBIk, considers a pipeline pattern
built by three microblocks such as the manager, ShFS (a
shared resource pattern that can be linked to any of file
system, partition, or cloud location) and a data deliver.
This scheme reuses the ShFS pattern as in-memory storage

VOLUME 8, 2020

(ShM 1 and ShM>) for improving the exchange of data of the
blocks using this scheme.

In this example, the MBIk, pattern acquires incoming
data (O1) from MBIk, transforms data ({c{,c2,...,c,y} €
0)) into information and delivers information (Q;) to the
next MBIk,. The manager in this pattern invokes another
pattern (a traditional manager/worker), where the manager
sends tasks ({cly,clp,...,cl,} € Op) to a set of workers
({w1, ..., wp}). The workers receive tasks from the manager
and gets the data associated to the tasks ({cly, cla, ..., cl,} €
0;) from ShFS. Each worker invokes a third pattern: a

120265

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

divide&conquer (D&C), which results in the execution of
MBlkpay1 and MBIk,q patterns. Each block (Div) splits the
contents sent by the workers into s segments ({s1, ..., sp}).
The segments then are delivered to the workers of the D&C
({dwy, ..., dwy}) through local in-memory shared resources
(ShMy and ShM3). The segments processed by each dw are
sent to the divs through the shared in-memory resource pat-
terns (ShM and ShM>). The deliver can retrieve the resultant
data (O;) from the shared pattern (ShFS) and then delivers it
to the next MBIk in the original pipeline pattern.

2) CR: CONTINUOUS RELIABILITY SCHEME FOR
EDGE-FOG-CLOUD PROCESSING STRUCTURES

A continuous reliability scheme (MBlk;4.pp) was created in
the form of divide &conquer pattern, to provide data (medical
images, spirometry studies, and backups of digital ECGs)
with fault-tolerance properties. This pattern implements a
coding Mblk (MBIlk.,q) that executes an application based
on the IDA algorithm [134], [135]. This app splits the data
into n segments including redundancy for m segments are
sufficient to recover the original whenever n > m, which
allows n — m cloud/fog outage scenarios. The codification
scheme (OutCS € MBIk.,q) splits a file into the segments,
adds redundancy to data for fault tolerance, and transports
the encoded data to other MBIk. The decoding of data
(InCS € MBIlk;,q) scheme includes a MBlkg.., to recover
the original data.

The parallel patterns described in Section III-A2 were
used to implement MBlk.,q, and the MBlkg.., in an effi-
cient manner. The MBlk.,; is implemented in the form of
a manager/worker pattern, where each worker is a clone of
the IDA algorithm which is implemented as a memory-based
divide&conquer pattern. In this way, the notation to build
MBlk,,q is as follows:

MBlkiqupo = (input, dq, MBlkiqq, 5, output) (12)
MBlkcoq = (input, mw, MBlkiqupo, 3, network) — (13)

MBlkiqupg is denoted in (12), which reads data from
the input directory and implements the IDA algorithm as
a divide&conquer pattern including five workers. In turn,
(13) denotes the construction of the manager/worker pattern
by using three workers, which invoking three replicas of the
MBlkigapg. MBlkgeco is implemented as a manager/worker
pattern. The Manager reads the directory of the downloaded
segments, creates a list of all contents, and sends the tasks
to the workers, which retrieves the contents to be pro-
cessed. Each worker decodes the content previously encoded
by MBlk;yq.

3) CS: CONTINUOUS SECURITY SCHEME FOR ENSURING OF
loT DATA

The CS schemes mitigate security risks when an edge-fog-
cloud processing structure manages sensitive data. These
schemes include a Blk built by using a pipeline of three
security services encapsulated into MBlks. The first MBlk;

120266

encrypts data by using a symmetric cryptosystem based on
AES [136]. The confidentiality of access controls is managed
by MBIlk,, whereas the last one (MBlk3) ensures the integrity
of data by using a digital signature and a secure envelope
created by using CP-ABE algorithm [137], [138].

The outCS and inCS version of the CS scheme were cre-
ated as encryption and decryption pipelines respectively. The
three blocks of these pipelines (MBlk, MBlk, and MBlk3)
were developed in the form of a manager/worker pattern
(described in section III-A2) to speed up the performance of
their encryption/decryption blocks. outCS is executed before
sending data outside of a block, whereas the inCS is executed
immediately before data are retrieved from the remote loca-
tion.

D. ARCHITECTURE AND DESIGN PRINCIPLES

This section describes an architecture that materializes the
model for building edge-fog-cloud processing structures.
This architecture was developed as a service composition
based on patterns of micro/nanoservices to achieve two
main goals: i) to enable the deployment of the edge-fog-
cloud structures on the subjacent infrastructure; and ii) to
enforce the controls defined for each block of each processing
structure.

It is important to note that this architecture has been
designed to manage all edge-fog-cloud processing structures
as well as each block considered in the structure as a service.
This architecture builds these services by using the trees of
maps created for each processing structure.

Four types of requests are supported in this architecture:
i) creating services from blocks available in the service mesh;
ii) launching a processing structure as a service; iii) delivering
data to services; and iv) recovering raw data and results
produced by services.

Fig. 6 depicts the stack architecture for the management of
data proposed to materialize the model of building of edge-
fog-cloud processing structures. As can be seen, the stack
considers the following five layers:

10T Clients (¢*3)

Data and
access tokens

Health apps !’

Requests and

access tokens
Response

Access control ﬂ
Multitenancy ‘-T-l
Apps verification

C inerization Coupling
Metadata/data manager 8

Edge-Fog-Cloud App manager Q:

Multicloud storage O

Cloud-loT

FIGURE 6. Stack architecture of the loT-edge-fog-cloud management
service.

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

o Access control: this layer represents a front-end to man-
age incoming requests performed by external agents
(IoT clients and health apps). The access is performed
by using an authentication system that validates the
tokens provided by external agents. This simple tok-
enization system can be changed by a system based on
private/public keys.

o Multi-tenancy: is a layer that establishes isolation for
users validated in the previous layer. Service projects
are associated with users for creating privacy as it is
assumed that some services will be used by multiple
users. This avoids unauthorized access to both, the ser-
vices as well as the data and results produced by these
services.

« Edge-fog-cloud app manager: this layer manages the
applications executed by each service (serv = MicroS v
NanoS) associated with each service by using the tree of
maps (see Section III-B1).

o Metadata/data management: this layer manages the
maps defined in this model such as execution, coupling,
patterns, and environment maps. This layer includes a
mechanism for verifying of the continuous delivery of
data and continuity schemes.

o Multicloud storage: this layer contains a content deliv-
ery network for supporting the delivery and retrieval
of data/results to/from each service managed by this
architecture using a layer of multi-cloud storage.

The architecture includes client software for end-users to
interact with processing structures. The IoT clients collect
data produced by different IoT sensors and send the collected
data to edge-fog-cloud service. The health apps are in charge
of receiving from the architecture the results processed by the
services. This client also can react depending on the received
information (i.e., to generate notifications to physicians or
nurses).

Fig. 7 depicts a stack architecture of both types of appli-
cations sending requests to edge-fog-cloud services. The IoT
clients are shown on the left side of this figure, whereas the
health apps are depicted on the right side. The IoT client
stack is deployed on the edge, and it considers five layers:
the front-end, access, data hub, credentials management, and
outcoming continuity layers. The front-end layer receives the
data produced by the sensors through a network interface.
The access layer manages the credentials for the IoT devices

Front end

Front end

Access

>
S
<

Access
Data hub

Credentials management

8o X

Credentials management

Outcoming continuity scheme #fp Application

Security management i
m i i
Data management 8 w > inuity scheme
lapps

loT-Clients

Data/metadata management

D@8t

FIGURE 7. Stack architecture of the loT clients and health applications to
interact with the edge-fog-cloud services (cloud-loT).

VOLUME 8, 2020

presented/created. The data hub layer creates tokens that
are associated with the packets sent by each IoT device.
The management of the received data is associated with a
valid IoT device in the credentials management layer. Finally,
the outcoming continuity layer implements an outCS scheme
to prepare the data before to be sent to either the fog or the
cloud (represented by IoT cloud).

Health apps are connected to an architectural stack
deployed on either the cloud or the end-user side. This stack
also includes an access layer that manages the incoming
requests sent by different users. The credentials management
layer is in charge of managing the users and applications
tokens. The app layer associates the tokens of the users/apps
to a corresponding and valid edge-fog-cloud service. The
metadata/data management layer process the execution map
of the microservice (health app) for getting access to the
source data, execute the application, and deliver results in a
data sink. The outcoming/incoming continuity layer imple-
ments a outCS and inCS continuity schemes assigned to the
health app (generally defined by the user of the app).

At this point, it has been shown how the applications
used by the clients of the edge-fog-cloud service have been
organized to send data and to receive results to/from a service.
Fig. 8, in turn, shows the architecture stacks for the services
(serv = MicroS v NanoS) of all the environments where
a workflow could be deployed. In this way, engineers can
develop services based on edge-fog-cloud processing struc-
tures by following the protocol established by the architecture
stacks. For instance, services can be designed to acquire data
through the cloud from the IoT devices to deliver them to

End-users' apps

Front end Front end Front end Front end
App App App App
Data Data Data Data

Back end Back end Back end Back end

Cloud computing

Fog computing
Back end Back end
(o] ing CS OL ing CS
Processing Pr ing
Incoming CS Incoming CS
Front end Front end
AN A,
Edge computing
Back end Back end Back end
OL ing CS OL ing CS (o] ing CS
Hub Hub Hub
Front end Front end Front end

() («-,»)

FIGURE 8. Architecture stack of edge-fog-cloud structures management
service.

120267

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

end-users’ devices by following the front and back ends of
the stacks available in the architecture for each environment.

IV. EXPERIMENTAL EVALUATION: A CASE STUDY BASED
ON DATA PROCESSING IN AN EMERGENCY ROOM

An experimental evaluation for measuring the performance of
the architectural model proposed in this paper has been con-
ducted in the form of a case study. This case study considers
four experimental scenarios.

The first scenario considers experiments where health care
heterogeneous data (i.e., vital signs, and activity level) are
acquired from different sensors and applications to be trans-
ported from the edge to the cloud through multiple hops.
This scenario is suitable as industry and research commu-
nity have identified the Internet of Things (IoT) as a key
enabling technology to radically improve health care services
and applications such as ambient assisted living (AAL) and
remote patient monitoring [139].

In the second scenario, the attention was focused on edge-
fog-cloud service created for the continuous monitoring of
electrocardiogram (ECG) data of users. These data were
collected by IoT devices and were used for detecting QRS
complexes. This service also considers the creation of alerts
for both end-users and physicians. This evaluation scenario
is relevant as continuous monitoring of health parameters
allows patient care teams to improve the early tracking of
upcoming adverse episode indicators (i.e., cardiac arrest) for
timely treatment and intervention when needed. Particularly,
centralized monitoring systems help to enable predictive
analytic approaches, which are expected to play a key role
to early recognize patient deterioration [140]. One of the
most relevant health parameters is the ECG, which is widely
adopted as a diagnostic tool that enables the diagnosis of
minor to major health risks [141].

The third scenario is focused on evaluating multiple ser-
vices producing dataflows of health IoT data through edge-
fog-cloud environments consumed by multiple health care
professionals. This scenario is because medical staff could
require different tests and studies of patients coming from
heterogeneous sources to improve the diagnosis process in
an emergency room.

The fourth scenario considers the creation of continuous
delivering, through the cloud, of health data to external health
care professionals for health care professionals getting sec-
ond opinions. In this scenario, simultaneous edge-fog-cloud
services were created for continuous monitoring of ECG
data, transporting spirometry studies [142], and transport-
ing tomography studies [143], which could be consulted by
health care professionals in the emergency room and external
professionals by using health apps.

In addition, an evaluation study was conducted to the
assessment of the impact of edge-fog-cloud processing struc-
tures on the storage utilization and the computation complex-
ity of big health data solutions built by the model proposed in
this paper.

120268

A. TEST ENVIRONMENT

Table 2 shows the main characteristics of the servers, virtual
machines, and containers used to conduct the experimental
evaluation. EC2-1 is a virtual machine deployed on Amazon,
whereas Computel and Compute?2 are physical servers used
as fog nodes (Mexico). And, the workstation is a personal
computer at the edge used as a sink where the sensors push
the collected data.

TABLE 2. Characteristics of the infrastructure used for experimentation.

Compute Description Cores RAM (GB) Storage 0S
EC2-1 Cloud node 16 32 600 GB Ubuntu 18.04
Computel Fog node 12 64 2.7TB Centos6
Compute2 Fog node 6 12 256 TB Centos6
Compute3 Fog node 12 64 256 TB Centos6
Workstation Edge node 4 16 2TB Ubuntu 18.04

B. SCENARIO I: CONTINUOUS ACQUISITION/
MONITORING OF HEALTH CARE IloT DATA

Continuous monitoring of health parameters allows patient
care teams to improve the early tracking of upcoming adverse
episode indicators (i.e., cardiac arrest) for timely treatment
and intervention when it is needed. Particularly, central-
ized monitoring systems help to enable predictive analytic
approaches, which are expected to play a key role to early rec-
ognize patient deterioration [140]. One of the most relevant
health parameters is the ECG, which is widely adopted as a
diagnostic tool that enables the diagnosis of minor to major
health risks [141].

1) CONFIGURATIONS, EXPERIMENTS, AND METRICS

In the experimental deployment, IoT devices were connected
to an edge node (Hub) through an IEEE 802.15.4 WSN
network. Each IoT device was implemented in a CC2650 Sen-
sortag with the IEEE 802.15.4 stack of the Contiki OS. The
WSN was based on the IEEE 802.15.4 non-beacon enabled
mode with unslotted CSMA/CA protocol, which is operated
in the unlicensed 2.4 GHz ISM band. Thus, the inter-arrival
time of data packets in the edge node will fluctuate with
the number of active IoT devices. In addition, according to
the CSMA/CA MAC protocol, an IoT device could discard
packets when the wireless medium remains occupied with
active transmissions for a period determined by the exponen-
tial back-off algorithm [144]. Moreover, two or more trans-
mission could collide when nodes select the same back-off
timer.

The edge node is a physical server at CICESE Monterrey
(a research center at northeast state of Mexico) with two
network interfaces, Ethernet and IEEE 802.15.4. Particularly,
the Ethernet interface is used for the IoT cloud connection,
and the IEEE 802.15.4 transceiver was used for WSN com-
munication (see Table 2). The IoT cloud is a physical server
in a datacenter at another state in Mexico (Tamaulipas state at
the northeast). ECG nodes are IoT devices deployed on a star
topology, where the sink is the edge node connected to the

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

cloud through an Ethernet interface. In this evaluation, each
wireless node continuously transmits a 1-lead ECG signal.’
This ECG was obtained from an online synthetic data library.
The obtained ECG data were sampled at 500 Hz with 12 bits
per sample.

Three different configurations were performed to evaluate
the block of data acquisition:

1) Low packet rate (LPR): IoT devices transmitting
14 packets per second (pps), with 55 ECG samples each
(i.e., 110 Bytes of payload per packet).

2) High packet rate (HPR): IoT devices transmitting
128 pps, with 16 ECG samples each (i.e., 32 Bytes of
payload per packet).

3) Heterogeneous: half IoT devices with 128 pps and half
IoT devices with 14 pps.

a: EXPERIMENTS

The experiments performed with these configurations con-
sider that each minute was deployed one IoT device transmit-
ting ECG data packets until it reaches eight [oT devices. That
is, in the first minute, there is one IoT device working, and at
the final slot (the beginning of minute eight) eight IoT devices
are transmitting ECG data packets. Each IoT device is turned
on and starts transmitting 14 pps for configuration 1 and
128 pps for configuration 2, respectively. When an IoT device
is turned on, it remains on until the end of the experiment.
For the heterogeneous scenario (configuration 3), the first
IoT device starts transmitting a packet rate of 128 pps, and
the following IoT devices alternate the packet rate between
14 and 128 pps. The experiment duration of three scenarios
was eight minutes.

b: METRICS

Two different sets of metrics were used in this performance
evaluation. One set is used at the edge node to measure the
performance of the WSN network. And, the second set of
metrics is used at the IoT cloud to measure the response
time (performance) of the architectural model. Note that the
experiments measure the impact of load increment on the
response time of the services. Therefore, all metrics were
calculated considering the ECG data of the first IoT device
turned on. The rest of the IoT devices were used to generate
load for the services.

The server response time (SRT) is defined as the average
response time of the server (any of the fog or the cloud) to
attend a portion of packages received at the edge node. The
SRT is calculated as:

Np—1

SRT = ——) pti = pti-y (14)
N i3

where pt; is the arrival time of the i — th portion of packages
at the server, pt is a portion of packages received in the

3The design and evaluation of ECG data collection are beyond the scope
of this paper.

VOLUME 8, 2020

same request from the edge node to the server, and Ny, is the
number of portions received.

The packet delivery ratio (PDR) was measured to evaluate
the performance of the network where the block of the WSN
was placed at. The PDR is the average number of ECG data
packets that are successfully received at the edge node. It is
calculated as:

ECGy
ECGy

where ECG,, is the number of data packets received at the
edge node and ECGy, is the number of ECG data transmitted
for IoT devices.

The inter-arrival time (IAT) is the average arrival time
between packets successfully received at the edge node. The
average AT provides a measure of the arrival time variability
by each packet and it is calculated as:

PDR = (15)

| Nl
IAT = i — Xi— 16
N —1 ZZZZ Xi — Xi—1 (16)

where x; is the arrival time at the edge node of the iy, packet,
x;—1 is the arrival time at the edge node of the previous packet,
and N, is the total number of ECG data packets received from
the first [oT device at the edge node.

2) EVALUATION RESULTS

This subsection presents the evaluation results of the phase I.
Fig. 9 and Fig. 10 present the set of WSN metrics of PDR and
IAT when increasing the number of IoT devices. Recall that
IoT devices contend for the channel access in the deployed
WSN (see Section IV-B1). Thus, the greater number of con-
tenders, the less probability of accessing the channel, which
reducing the network performance.

As it can be seen in Fig. 9, the PDR of low packet
rate (LPR) configuration (55 samples) performs better than
the other two configurations because each IoT device gen-
erates a significantly lower number of packets per second,
14 pps in LPR configuration versus 128 pps in the high packet
rate configuration. This means the contention and packet
losses are lower in LPR configuration.

100 T
55 samples —+—
16 samples —>—
16 and 55 samples —¥—
80 |- : 4

40 1

Packet Delivery Ratio (%)

0 I I I I I I
1 2 3 4 5 6 7 8

Number of IoT devices transmitting ECG data

FIGURE 9. Packet delivery ratio (PDR) obtained at the edge node as the
number of transmitting loT devices increases for low packet rate

(55 samples), high packet rate (16 samples), and heterogeneous

(16 and 55 samples) configurations.

120269

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

0.14 T
55 samples ——
16 samples —>—
0.12 | 16 and 55 samples —%—

0.1

0.08

Interarrival (seconds)

1 2 3 4 5 6 7 8
Number of loT devices transmitting ECG data

FIGURE 10. Inter-arrival time (IAT) obtained at the edge node as the
number of transmitting loT devices increases for low packet rate

(55 samples), high packet rate (16 samples), and heterogeneous (16 and
55 samples) configurations.

Elapsed time (seconds)

0 60 120 180 240 300 360 420
30 T T T T

16 samples —+—
55 samples —%—
25 |16 and 55 samples —%—

20 q

15 q

Server response time (seconds)

1 2 3 4 5 6 7 8
Number of IoT devices transmitting ECG data

FIGURE 11. Response time observed by the edge node when a block of
packages is sent to the cloud node as the number of transmitting loT
devices increases for low packet rate (55 samples), high packet rate

(16 samples), and heterogeneous (16 and 55 samples) configurations.

Conversely, the IAT is higher for LPR configuration,
because packets in LPR configurations are significantly
larger, 110 bytes than in high packet rate (HPR) configura-
tion, 32 bytes. Thus, as the air time in LPR configurations is
larger, the IAT is also higher. It is worth noting that metrics,
PDR, and IAT, for the heterogeneous configuration are very
similar to HPR configuration. It can be explained because
IoT devices transmitting at a higher packet rate capture the
channel access.

Fig. 11 presents the server response time (SRT) observed
by the edge node when a portion of packages is sent to the
cloud. Every two seconds a bot, programmed at the edge
node reads the ECG traces, generates groups of ECG packets
that are sent to the fog, where a proxy redirects the groups
to a processing worker. Also, the groups size is closely
related to the packet IAT at the edge node. Thus, as can be
seen in Fig. 11, the response time increases with the group
size.

Results in this subsection show that the architectural model
can be used to enable a continuous monitoring system for
health parameters as ECG. The results highlight that an end-
to-end approach design is required for health care applica-
tions, showing also that a design consideration in the first
stage (i.e., packet generation rate), could heavily impact the
system performance.

120270

C. SCENARIO II: EDGE-FOG-CLOUD SERVICE FOR
CONTINUOUS ECG MONITORING

In this section, we describe a prototype based on an edge-
fog-cloud service created for the continuous monitoring of
wireless ECG (IoT devices). The blocks of this service detect
QRS complexes and create alerts for both end-users and
physicians. This section also presents the methodology to
evaluate this service and the results of such an evaluation.

1) CONFIGURATIONS AND EXPERIMENTS

This edge-fog-cloud service was implemented in a prototype
to create continuity schemes (CS-security, CR-reliability,
and CE-efficiency). These schemes prepare ECG data each
time these data are transported from the edge to the fog
or the cloud. Different wireless ECG monitoring systems
deployed in an emergency room were considered for differ-
ent patients could be simultaneously monitored. The devices
were connected to an edge node through a wireless sensor
network (WSN).

The edge-fog-cloud service showed in Fig. 12 was used for
the management and processing of these health data. In this
service, the IoT device sends signals to a nanoservice at the
edge, which includes an application called hub. This block
writes the acquired data into a file for each IoT device that
is placed in a given directory. This directory is processed
by using a manager/worker pattern, where a block called
monitor (the manager) acquires the files (F). These files are
associated with a token and credentials that are distributed to
n workers by using the two-choices algorithm [145], [146] for
load balancing purposes.

This type of distribution creates n subsets of files (f;)
as well as one thread per worker. Each worker thus
reads a f; file and transforms it into a JSON format (D).
The JSON files are sent to a block in the fog called
proxy, which is in charge of distributing the load between
n blocks (processingy, processings, . .., processing,). Each
block processes the data with the QRS complex detector algo-
rithm [147]. QRS complexes and processed data are stored in
a database (D).

A block in this edge-fog-cloud solution executes a
publication-subscription model (Pub/Sub) that makes the
data and QRS complexes available for end-users to consume
them. This block has been implemented by using an IoT
Pub/Sub traditionally used to send data either to the fog or
the cloud [148], [149]. This pub/sub block sends new notifi-
cations to subscribed users, which are generated by a block
analyzing QRS and registering events in a database. Finally,
a visualization block was developed to make available, both
the alerts and the data processed for health apps, to end-
users through the cloud. Fig. 13 shows an example of the
visualization of ECGs.

2) EXPERIMENTAL RESULTS
Fig. 14 shows, in vertical axis, the response time of the
continuous processing of ECG data, as well as the creation

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

Cloud computing End-users' devices

Results
A

o

Edge computing Fog computing
Health sensors |
i = worker; D,
J]@ (DN fLeF
el (0 3 o e]2
((.)) fn€F .
] \| worker, {'Dn
ﬁ Data preparation/retrieval scheme Iﬁ |'_.17| ﬁ

Health
products

N

Data preparation/retrieval scheme m 13

N meN
Dz,
preprocessing, |—>| processing; |-. D;+ N PUB/SUB c
model ~
. D
D, » Database n3 €

Zo (o> @

’. Content delivery network ’. 2ot "’Ezz":‘;’é”e'”“aj m [y

Spirometer
Health devices

Tomography

FIGURE 12. Conceptual design of the edge-fog-cloud workflow used in this case study.

Raw ECG measurement ts Download

g

FIGURE 13. ECGs visualization block.

of alerts for different number of samples (10 in Fig. 14a,
100 in Fig. 14b, and 1000 in Fig. 14c). These response times
were captured when the blocks use a different number of
clones/workers in the patterns launched the service (hori-
zontal axis). As expected, the time spent in the processing
of data is increased with the number of samples. Never-
theless, it was also observed that the information available
for decision-making processes increases with the amount of
processed data. In this context, the usage of implicit parallel
patterns of the services improves the performance observed
by end-users. In terms of time, the patterns enable any of the
medical staff, end-users, or health applications, to get more
information in less time in comparison with a single solution.
For instance, Fig. 14c shows that medical staff could receive,
in a secure and reliable manner, the EGCs graphs and alerts
of 1000 samples when the workflow is using 14 workers,
whereas in the same time a traditional solution (one worker)
only processes 100 samples in the same period.

D. SCENARIO IlI: SIMULTANEOUS HEALTH DATA
PROCESSING SERVICES FOR MULTIPLE HEALTH CARE
PROFESSIONALS

To conduct the third scenario of this case study, three edge-
fog-cloud services were developed for transporting contents
from continuous monitoring of ECG data, spirometry studies,
and tomography images to the medical staff and end-users’
devices as shown in Fig. 15.

VOLUME 8, 2020

The first edge-fog-cloud service manages the continuous
monitoring of ECGs and QRS, as well as the alert processing,
is shown on the top of Fig. 15. These blocks and the dataset
processed by this service were described in Section IV.

The second service starts in a data source including a
repository of spirometry studies. Each spirometry study is
managed as a compressed file including 10 tests with spirom-
etry data, Kinect imagery, calibration data, and evaluation
of the tests [150]. This source is connected to a service,
which includes outcoming/incoming continuity schemes.
These schemes add to the spirometry studies properties such
as security, reliability, and efficiency in a continuous manner
(CS, CR, and CE respectively). The outcoming continuity
scheme CS includes blocks of privacy and confidentiality
based on cryptography-based access controls (previously
described at Section I1I-C3). The scheme CR includes a block
of fault-tolerant (see the description of the IDA reliability
algorithm at Section III-C2). The scheme CE includes blocks
of compression and deduplication to reduce the amount of
data being transferred by this service. The data processed
by the continuity schemes are sent to the cloud where are
retrieved by health applications (described at Section III-
D). These health applications execute the incoming version
(inCS) of the CS + CR + CS schemes. These schemes enable
medical staff to retrieve spirometry studies and get access to
their content.

The third service is similar to the second one but processing
medical tomography images.

These scenarios could arise during the patient stay in
the emergency room, where these health contents would be
required for improving the diagnosis process. The service
collects the contents and delivers them automatically to med-
ical staff in an emergency room in a secure and reliable
manner.

Table 3 shows the characteristics of the two datasets used
to evaluate the performance of second and third services.
The first one is a dataset of spirometry contents of ten
patients [150]. Whereas, the second one is a set of computer
tomography images of 44 patients [152].

120271

IEEE Access

D. D. Sanchez-Gallegos et al.

: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

Response time mmmm Throughput —li— Response time

Throughput —li—

Response time mmmm Throughput —li—
T

7 T T T T T

70 T T T

Response time (minutes)
Throughput (MB/s)
Response time (minutes)

Number of workers.

(a)10 samples.

Number of workers.

(b)100 samples.

T T 300 T T

Throughput (MB/s)
Response time (minutes)
Throughput (MB/s)

Number of workers.

(c)1000 samples.

FIGURE 14. Response time for the processing of ECG sensors traces varying the number of workers in the pattern.

Scenary 3: Doctor analyzing patient's ECG, spirometry, and electrocardiogram

Scenary 1: ECG alerts for patients

Preprocessing QRS detector

Electrocardiogram

manager

Alerts

End-user
device

‘q

Q

Patient

1]

Spirometer

Scenary 2: Doctor analyzing spirometry results

Preparation Preservation

Doctor

FIGURE 15. Simultaneous edge-fog-cloud services in an

TABLE 3. Datasets used in the experimentation.

Preparation Preservation

Q

Specialist

9

Health
app

emergency room.

Dataset Type Size No. Files Avg. file size
Compressed file with spirometry data,

spirometry kinect imagery, calibration data, evaluation 50GB 10 5.27 Gb
metrics, and results from an analysis of data [150].

Tomographies Imagery in DICOM format [151]. 89GB 23335 397.21 MB

a: EXPERIMENTS AND CONFIGURATIONS

The performance of these services was evaluated by experi-
ments where the services were added to the edge-fog-cloud
solution in a gradual manner by performing the following
experiments:

1) The service processing the tomography image reposi-
tory was evaluated in a separated and isolated manner.
The service that process spirometry studies was added
to the solution and both services were evaluated when
processing contents in a simultaneous manner.

An experiment adds the three services to the edge-
fog-cloud solution, which simultaneously executes the
three services.

An experiment was performed by comparing the edge-
fog-cloud solution with a workflow engine available in
the state-of-the-art called DagOnStar [153].

2)

3)

4)

1) EXPERIMENTAL RESULTS
Fig. 16 shows the response times produced by a ser-
vice when processing medical tomography images. In this

120272

experiment, 44 images were prepared for making them
available for medical staff to retrieve them in a secure
and reliable manner. As can be seen, the impact of the
efficiency continuity scheme (CE) used in this service on
the solution performance is evident. The patterns of the
CE scheme using 12 workers could deliver the secured
images in 10 minutes, which was one magnitude order better
than a traditional service using a single worker. This behavior
was also observed when the service processing spirometry
studies.

Fig. 17 shows the response times of two simultaneous
services (one processing tomography images and the other
spirometry studies). As can be seen, the efficiency of the
patterns is preserved by the architectural model even when
processing heterogeneous contents by simultaneous services.
The main difference between these results and the previous
ones is that the peak of performance improvement is achieved
earlier. In this scenario, the pattern produces overhead on
the response times because very large contents (5.2 GBs
per each spirometry study) are processed, which produces

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

Response time m— Throughput —ill—
110 T T T T 1000

Response time (minutes)
Throughput (MB/m)

1 3 6 12
Number of workers

FIGURE 16. Response time and throughput observed when processing
medical images.

Response time mm— Throughput —l—
T 2000

1750

1500

1250

1000

750

Throughput (MB/m)

500

Response time (minutes)

250

1 3 6 12
Number of workers

FIGURE 17. Response time and throughput observed when processing
tomography images and spirometry studies.

delays when the blocks process “small” contents (300 MB
per tomography image).

Fig. 18 shows the results of three services previously
described, which retrieve all data of one patient from three
different data sources (ECGs alerts warnings, spirometry
studies, and tomography images). This edge-fog-cloud ser-
vice processed 8.5 GB of health data in 15.46 minutes. This
time includes the expedient collection plus the time spent by
the outcoming continuity scheme to sent the data in secure
and reliable manners to the fog, where these contents were
preserved in local storage. This time also includes the time

Edge
Sensor1 | %Fog
2Cloud
ECG processing L BEnd-user
Push l
x
]
o
@ 1
L}
Retrieval |

EEREREEED EREEREEED EREEREEED EREEREEED EEREREEED EEREREEED EEREREEED EEREREEED \
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00
Response time (hours)

FIGURE 18. Timeline for the acquisition of ECG data and their processing,
plus the outcoming continuity scheme of spirometry studies and
tomography for one patient.

VOLUME 8, 2020

spent on a health application to retrieve these contents and to
develop a block created for a decision-making process.

a: PERFORMANCE COMPARISON WITH A SOLUTION OF
STATE-OF-THE-ART WORKFLOW

A performance comparison of the architectural model pro-
posed in this paper with DagOnStar [153], a state-of-the-
art solution, was performed as the last experiment of this
experimental evaluation scenario.

DagOnStar is also based on the parallel processing of
data. Note that in the qualitative comparison (see Section II),
DagOnStar showed similar properties to the architectural
model proposed in this paper. It is important to note
that DagOnStar does not include a continuous processing
approach. Therefore, only the outcoming block is considered
in this comparison. Supposedly, there is a version of DagOn-
Star that implements this characteristic, but it is not published.

Fig. 19 shows that the architectural model produces a better
performance than DagOnStar when processing spirometry
studies (36.80%) and the tomography dataset (33.12%). This
is significant, as it would expect to achieve this improvement
for each block of each service created by the architectural
model proposed in this paper.

100000

Microblocks (w=12)‘ [esees)
DagOnStar (w=12) m—

10000

1000

100

10

Response time (minutes)

Dataset

FIGURE 19. Response time for the processing of the tomography and
spirometry dataset by using the proposed approach and DagOnStar.

E. SCENARIO IV: HEALTH IoT DATA IN EDGE-FOG-CLOUD
COMPUTING FOR MULTIPLE USERS

This section presents a big picture of the events that arise
in the execution of edge-fog-cloud solutions tested in the
previous scenario but delivering data to external health pro-
fessionals by using a public cloud.

Medical inter-consultation for patients is a regular activity
in general hospitals today. For instance, in the emergency
room, patients are admitted and evaluated by a specialist in
emergency medicine. However, in different cases, a second
opinion from other specialists could be required. In these
scenarios, the required specialist could be in any of the
same hospital, another specialty hospital, or even in house
(in extraordinary cases).

In this scenario, studies, medical images, and electronic
health records of the patient must be shared with the
corresponding specialist to provide her with the tools for
the diagnosis. Moreover, due to health data management

120273

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

laws [154], [155], the studies not only must be ensured by
continuity schemes to fulfill NFRs but also must be stored
for a large period.

1) EXPERIMENTS AND CONFIGURATIONS
Four experiments were conducted to show the feasibility of
using edge-fog-cloud solutions to support this type of sce-
nario: supporting medical and inter-consulting for patients
preserving health data. In this experimental scenario were
evaluated the very same services described in the previous
experimental scenario (see Section I'V-D).
The following are the experiments performed:

1) Experiment I: the preparation of a tomography image
of one patient, which was requested by an end-user
through the cloud.

2) Experiment II: the preparation of a spirometry study
requested by an end-user and downloaded from an edge
node.

3) Experiment III: spirometry studies and tomography
images of 10 patients in an emergency room are sent
for a second opinion from a health specialist in a remote
geographic location.

4) Experiment I'V: the three services were simultaneously
executed to process the request of a health application
for the results of eight patients.

2) EXPERIMENTAL RESULTS

Fig. 20 depicts the timeline for the Experiment I, where
incoming and outcoming continuity schemes were applied
to a tomography image of one patient that was requested by
an end-user through the cloud. To serve the request, the con-
tents were downloaded by the blocks of the services from an
edge node. Fig. 20 shows, in the horizontal axis, the blocks
included in the service. As expected, the microblocks of trans-
porting data (SecUp) and the incoming of data (DownSec) are
the tasks consuming the major portion of the response time,
whereas the implicit management actions performed by the
service only represents a small portion of this response time.

Edge
nFog

Compress ~ —

Hashing I B Cloud
Indexing I
Coding L

]

S Sec/Up - WUUNNRNURRRRRRRRRNEIY

o
Down/Sec LLLRLTRRR LR
Deconding L
Decompress =

P P P P P N P P o P |
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Response time (minutes)

FIGURE 20. Timeline of the continuity schemes of a tomography image
requested by an end-user and downloaded from an edge node.

120274

The constant communication between the blocks deployed on
the fog and those deployed on the cloud is evident.

Fig. 21 shows that the performance of the blocks for the
Experiment II, when processing spirometry studies is similar
to the timeline of the processing tomography images showed
in Fig. 20. This means that the major costs in this workflow
are produced by data transportation from one environment to
another one.

Edge
xFog

Hash i RClotd

Compress il

Index |

Code —- [R

Block

SeclUp - I/l H B B .=~

Down/Sec

Decode }

Uncomp 1

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00
Response time (minutes)

FIGURE 21. Timeline for the outcoming and incoming of a spirometry
study requested by an end-user and downloaded from an edge node.

In Experiment III, spirometry studies and tomography
images of 10 patients in an emergency room are sent for
a second opinion from a health specialist in a remote geo-
graphic location. Fig. 22 shows the timeline of the service
times for two simultaneous services: one for processing and
delivering tomography images and the other for spirometry
studies. Both services were configured to manage the con-
tents of 10 patients and deliver these contents to medical staff
through health applications in secure and reliable manners.

Edge
#Fog

Compress -l

Hashing . ¥Clotid

Indexing }

Coding — [

Block

Sec/Up - SERRRNRRRRRRRRRRRRRRN

Down/Sec

D i i

D 1

L
00:00:00 00:30:00 01:00:00 01:30:00 02:00:00 02:30:00 03:00:00 03:30:00

Response time (minutes)

FIGURE 22. Timeline for the outcoming and incoming of health data
(spirometry + tomographies) for ten patients.

We recall that the mean size of a spirometry study is
5 GBs, whereas the mean size of an image is 300 MB. In this
context, 53 GBs contents were delivered from the fog to the
cloud (Amazon) in 2 hours and 38 minutes, to preserve them.

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

This content is retrieved from the cloud by the health appli-
cation in another region of Mexico in 1 hour and 35 minutes.

Again, performance is similar to the previous two ser-
vices (processing images and spirometry studies) showed
in Figs. 20 and 21 respectively.

Fig. 23 shows the results of Experiment IV, in which were
executed simultaneously to process the request of a health
application for the results of eight patients (44 GBs). The
expedients were extracted from the emergency room (at the
fog of the Mexican site), sent to the cloud (Amazon) (previ-
ously prepared for this transportation) and then downloaded
by a health application in a different location fog for asking
a second opinion.

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8
ECG 1

Esez WENd:User

Edge

¥Fog

¥Cloud.

Block
B
S
&
S
o

Notification &
Notification 7
Notification 8
Preparation
Retrieval

00:00:00 00:33:00 01:06:00 01:40:00 02:13:00 02:46:00 03:20:00
Response time (hours)

FIGURE 23. Timeline for the acquisition of ECG data and their processing,
plus the outcoming continuity scheme of spirometry studies and
tomography for eight patients.

The expedients were prepared in 25 minutes (in Mexico),
sent to the cloud (Amazon) in 1.75 hours, and delivered to a
health application in another location (in Mexico) in 57 min-
utes. In practice, it is expected that the emergency room may
have at least a server to receive data in advance (acting as a
fog) for temporizing the delays of transportation. Therefore,
this experiment represents the worst scenario as all the expe-
dients are requested by one single health application from the
cloud not from the hospital servers.

As can be seen, the continuous processing by enforcing
the fulfilling of NFRs is feasible in real scenarios, for both
reduced and complex scenarios. It is also feasible for observ-
ing the policies of health data management laws in terms of
access controls as shown in Section IV-E. This means that
the contents are not clear at the cloud and even at the fog in
some scenarios. Only the producers of the contents (hospitals)
and the consumers (health professionals and patients) are
enabled to get access in a clear manner. To this end, original
contents are encoded and secured in order to only producers
and consumers can decode them.

F. EVALUATING THE DATA STORAGE COSTS PRODUCED BY
EDGE-FOG-CLOUD PROCESSING STRUCTURES

In this section, are evaluated the storage utilization and the
overhead generated by continuous delivery (CD), continuous

VOLUME 8, 2020

security (CS), continuous reliability (CR), and continuous
efficiency (CE) schemes.

1) EXPERIMENTS AND CONFIGURATIONS
The following scenarios were considered in this experimental
evaluation:

1) Scenario I: the preparation of tomography images at
the fog, which was acquired at the edge, and down-
loaded by an end-user computer from the cloud.

2) Scenario 2: the preparation of spirometry studies at the
fog, its preservation in the cloud, and its acquisition
from end-user devices.

3) Scenario 3: the preparation of the spirometry studies
and tomography imagery of eight patients from the
edge to an end-user computer.

For each scenario, we evaluated the following three con-
figurations of the continuity provided by the incoming and
outcoming continuity schemes:

e CD + CE: in this configuration, the data are only com-
pressed by a parallel pattern before sending them to the
next environment;

e CD+CR: in this configuration, the data are only encoded
to withstand failures before sending them to the next
environment;

e CD + CE + CR + CS: in this configuration, the data
are prepared to send them to different environ-
ments by applying security (CS), reliability (CR) and
cost-efficiency (CE).

2) EXPERIMENTAL RESULTS

Fig. 24 shows, left-vertical axis, the storage utilization, and
the percentage of a resultant capacity of storage after applying
an outcoming scheme to the data (right-vertical axis). The
three scenarios considered in this evaluation and previously
described are shown in Figs. 24a, 24b, and 24c respectively.
As it can be seen in the graphs shown in Fig. 24, the CD +
CR represents the configuration producing the highest costs
(redundancy is added to the data), whereas the CD + CE
produces the lowest costs. The original contents are not
transported but encoded (prepared), which is the goal when
managing sensitive data in this type of scenario.

The contents acquired from the edge and delivered to the
end-users are both exact copies; as a result, the 100% of
capacity observed in both edge and end-user environments for
all tested scenarios is represented by the filled bar in the plot.
This means the configurations producing more than 100%
are producing a capacity overhead. See mainly CD + CR in
all graphs showed in Fig. 24. In comparison with original
data (acquired at the edge and delivered to the end-users) this
configuration produced a 88%, 82% and 80% of overhead
in Fig. 24a, Fig. 24b and Fig. 24c respectively.

As it can be seen, the CD + CE + CR + CS configuration
that applies the three continuity schemes (security, reliability
and storage cost-efficiency) produces a quite reduced over-
head at the worst scenario (see 6.64% of overhead for this
configuration in Fig. 24¢ in comparison with original data).

120275

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

CD + CE XXX CD+CE+CR+ CS —%—
CD + CE + CR + CS baasasl CD + CR ——
CD+CR L5 W CD + CE —%—
Original content
0.4 T

B 18 2

L pu| >
g

- ©

s 03r N\ 4120 2
& \\ 4130 S
= 025 NN 4 120 =
g N 41110 §
o AN J 1650 2
N 0.2 NN\ 3 90 2
S AN 48 ¢
£ 0.15 [L\ = 70 4
[NN\ 4 60 o
© o1 AN = 50 S
WY 15 £

0.05 - =R 320 8
11 ¢

0 0 &

Cloud
Environment

(a) Scenario 1: tomography exchange.

Edge Fog End-user

CD + CE XXX CD+CE+ CR+CS —%—
CD + CE + CR + CS sz CD + CR ——
CD + CR [~ CD + CE —%—

Original content

8 ‘ 22@ J1i% B

7 N\ 4 160 >
N\ 1150 S

=z 6 \\ 1i% &
& 5 \\ 1120 8
r 4110 €

8 \\ 110 &
w4t \\ 49 3
c \ -1 80 &
3 3t NN 4 70 =
8 N 18 ¢
2 \\\ .l §8 g
1r é\\\ =4 20]
N -4 10 <4

1 jo)

0 0 a

Cloud
Environment

(b) Scenario 2: spirometry study exchange.

Edge Fog End-user

CD + CE £xxX3 CD+ CE+ CR+ CS —%—

CD + CE + CR + CS @zaam
CD+CR L =1
Original content s

CD + CR —B—
CD + CE —%—

100 T

s

90 -~
80 -
70 -
60 -

/S /S
/S /S S

;;i;///

50 -
40 -

30 -
20 -
10 -

Content size (GB)

Percentage of resultant capacity (%)

Edge Fog

Cloud End-user

Environment

(c) Scenario 3: exchanging sets of tomography and spirometry studies

FIGURE 24. Storage utilization by applying the different continuous characteristics to the incoming and outcoming continuity schemes.

Besides, the CD + CE + CR + CS configuration also pro-
duces a reduction in the capacity to be transported to the fog
and the cloud (see lines for this configuration in the graphs
of Fig. 24). Moreover, this configuration also produces an
improvement in the resultant capacity when applying these
schemes to the processing structures (see bars for these con-
figurations in all graphs presented by Fig. 24). Specifically,
Fig. 24a shows that the additional capacity (overhead) created
when processing images (tomography) acquired at the edge
(204.85 MB), to add only reliability property (CD + CR) was
of 180.28 MBs. This overhead is produced by the redundancy
added to the contents by the IDA algorithm used in CR
continuity scheme. In the case of the continuous efficiency
property, (CD + CE), the size of the contents is reduced
to 31.48 MB. When the continuity scheme built by CD +
CE + CR + CS configuration by adding security, reliability,
and storage/transportation cost-efficiency properties to the
contents, the resultant size of the processed image was 49.48
MB. This means no capacity overhead was produced by this
continuity scheme.

Similar behavior is observed in Fig. 24b in which was
processed a spirometry study by using the three configura-
tions described. The spirometry study has a size of 4.31 GB.
CD + CR configuration increases the size of this content
to 7.31 GBs. In turn, the size of the data was reduced to

120276

0.29 GB (~ 298 MB), whereas the resultant capacity pro-
duced by CD + CE + CR + CS configuration was 0.53 GB
(~ 536.40 MB).

In the scenarios showed in Fig. 24c, when 10 spirometry
and 10 tomographies were prepared by using the three config-
urations, the initial size of the dataset was 53.44 GB. CD+CR
produced an increment of 42,76 GBs (as the resultant capacity
was 96.20 GBs). As expected, CD + CE reduced the dataset
to 31.66 GB, whereas CD + CE + CR + CS configuration
produced almost the same capacity than the original dataset
(67.99 MB was the overhead produced by this outcoming
scheme).

The results of the experiments showed in Figs. 24a and 24b
reveals a significant reduction in the data to be transported
to the fog and to the cloud (it only represents a fraction of
the original health data) when using the continuous schemes
(CD + CE + CR + CS) proposed in this paper to prepare the
data.

In the worst-case scenario when managing a set of con-
current heterogeneous health data processed by simultaneous
services, the costs of assuring the data in terms of continuous
security (integrity, confidentiality, and privacy), and contin-
uous reliability (fault tolerance to withstand lost data and
cloud outages) was only of 6% (capacity overhead). In this
sense, note that in traditional approaches assuring data could

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

represent 67% for codification schemes (n = 5, m/k = 3)
and 200% for replication schemes.

G. RESULTS DISCUSSION: FLEXIBILITY OF THE MODEL
AND COMPLEXITY REDUCTION MANAGEMENT

The experimental evaluation has revealed the efficacy and
efficiency of the continuity schemes presented in this paper.
The continuous delivery (CD) enables the developers to
create comprehensive infrastructure-agnostic processing
structures for solutions that can be deployed on different
environments (any of edge, fog, cloud, or end-users’ devices).
The flexibility of this type of scheme provides solutions with
a dynamic composition of nano/microservices for fulfilling
functional requirements.

The continuous security and reliability (CS + CR) enable
developers to accomplish the strict rules associated with sen-
sitive data, which also are based on the CD continuity scheme
to create dataflows for the processing structures deployed in
different environments.

The overhead and computational complexity produced by
the continuity schemes (CD + CS + CR) are issues managed
by continuous efficiency (CE) by using two strategies. The
first one is focused on reducing the overhead produced by the
continuity schemes by implementing parallel patterns, which
performs the tasks of the CD + CS + CR schemes in a concur-
rent manner. This has a direct impact on the service times of
the continuity schemes, and thus, in the response times at each
continuity stage, which improves the experience of the end-
users. The second strategy is focused on reducing the address
space by using data compression before executing any task
of the continuity schemes, and before sending data from an
environment to another one. This significantly improves the
performance of continuity schemes, as the tasks performed by
these schemes are dealing with less data than without doing
this previous process.

This means the continuous management of properties
improves the protection of the data that are managed through
different environments (fog, cloud, or end-users). Moreover,
in the worst case, these tasks are achieved at non-significant
cost as, in some cases, even there is no overhead observed
when performing these tasks. The beneficial effects of these
continuity schemes are produced by two causes: i) the com-
pression processes as the first stage in the schemes, which
reduces the capacity processed by the next stages and com-
pensates the redundancy added by other stages, and ii) the
usage of parallel patterns, which reduces the service times of
the continuity schemes.

All the experiments described in the previous sections of
this paper were performed using a CD+CE+CR+CS config-
uration because all the scenarios considered the processing of
very sensitive data. This configuration seems a framework for
organizations to support the continuous processing of sensi-
tive data over heterogeneous and honest-but-curious environ-
ments, fulfilling NFRs such as cost-efficiency, security, and
reliability.

VOLUME 8, 2020

V. CONCLUSION AND FUTURE WORK

This paper presented the design, development, and imple-
mentation of an architectural model based on recursive and
modular structures called constructive blocks. These blocks
can be used to create patterns for the edge-fog-cloud comput-
ing environment. The secure, reliable, and efficient manage-
ment of data are tasks performed inside of these structures
in an implicit manner. The experimental evaluation revealed
the feasibility of using the infrastructure-agnostic edge-fog-
cloud processing structures for facing up of the challenge
of producing different types of continuity schemes in real
scenarios.

The case studies showed the efficacy of applying the fol-
lowing schemes to the management of sensitive big [oT health
data:

o Continuous Delivery (CD), for creating processing
structures that can be deployed on different environ-
ments to process sensitive data from IoT to the end-users
through different environments (edge, fog, and cloud).

o Continuous Security (CS), for producing integrity, con-
fidentiality, and access controls at each stage of the
sensitive data processing lifecycle.

o Continuous Reliability (CR), for adding fault tolerance
to data for withstanding lost data as well as cloud outages
and/or fog servers unavailability.

o Continuous Efficiency (CE), for improving the delivery
and processing of data by applying two techniques:
implicit parallelism on the processing tasks, and data
compressing to reduce the volume of the data stored.

Advantages of the architectural model over state-of-the-
art proposals such as cost-efficiency storage consumption,
reduction of data transportation, and improvement of the
delivering data to the end-users have been observed in the
study cases evaluated in real scenarios. The achieved advan-
tages by this architectural model can be explained as follows:
the compression processes performed at the first stage in the
schemes reduce the capacity processed by the next stages
and compensates the redundancy added by other stages.
The usage of parallel patterns reduces the service times of
the continuity schemes, and the in-memory storage, in the
input/output interfaces, reduces the expensive I/O tasks per-
formed when exchanging data during the stages of the conti-
nuity schemes.

Future work will include optimizing the performance
of some components of the system, creating new compo-
nents for different instruments, and extending the architec-
ture to create complex networks of devices and intelligent
IoT devices so that we can include the monitoring of multiple
IoT devices and/or data sources for several hospitals in the
system.

REFERENCES

[1] L. Mainetti, L. Patrono, A. Secco, and I. Sergi, “An loT-aware AAL
system for elderly people,” in Proc. Int. Multidisciplinary Conf. Comput.
Energy Sci. (SpliTech), Jul. 2016, pp. 1-6.

[2] M. A.HailandS. Fischer, “IoT for AAL: An architecture via information-
centric networking,” in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2015, pp. 1-6.

120277

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

[3]

[4]

(3]

[6

[7]
[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. Rashidi and A. Mihailidis, ‘A survey on ambient-assisted living tools
for older adults,” IEEE J. Biomed. Health Informat., vol. 17, no. 3,
pp- 579-590, May 2013.

A. Vegesna, M. Tran, M. Angelaccio, and S. Arcona, “Remote patient
monitoring via non-invasive digital technologies: A systematic review,”
Telemed. e-Health, vol. 23, no. 1, pp. 317, Jan. 2017.

K. N. Griggs, O. Ossipova, C. P. Kohlios, A. N. Baccarini, E. A. Howson,
and T. Hayajneh, “Healthcare blockchain system using smart contracts
for secure automated remote patient monitoring,” J. Med. Syst., vol. 42,
no. 7, p. 130, Jul. 2018.

N. Scarpato, A. Pieroni, L. D. Nunzio, and F. Fallucchi, “E-health-IoT
universe: A review,” Management, vol. 21, no. 44, p. 46, 2017.

D. V. Dimitrov, ‘“Medical Internet of Things and big data in healthcare,”
Healthcare Inform. Res., vol. 22, no. 3, pp. 156163, 2016.

Y. Yin, Y. Zeng, X. Chen, and Y. Fan, “The Internet of Things in
healthcare: An overview,” J. Ind. Inf. Integr., vol. 1, pp. 3—13, Mar. 2016.
M. Elhoseny, A. Abdelaziz, A. S. Salama, A. M. Riad, K. Muhammad,
and A. K. Sangaiah, “A hybrid model of Internet of Things and cloud
computing to manage big data in health services applications,” Future
Gener. Comput. Syst., vol. 86, pp. 1383-1394, Sep. 2018.

K. Tsiounia, N. Dimitrioglou, D. Kardaras, and S. Barbounaki, “A pro-
cess modelling and analytic hierarchy process approach to investigate
the potential of the IoT in health services,” in World Congress on Med-
ical Physics and Biomedical Engineering. Singapore: Springer, 2019,
pp. 381-386.

Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias,
“Monitoring of vital signs with flexible and wearable medical devices,”
Adv. Mater., vol. 28, no. 22, pp. 43734395, Jun. 2016.

H. Wu, Q. Liu, W. Du, C. Li, and G. Shi, “Transparent polymeric
strain sensors for monitoring vital signs and beyond,” ACS Appl. Mater.
Interface, vol. 10, no. 4, pp. 3895-3901, Jan. 2018.

J. Liu, Y. Chen, Y. Wang, X. Chen, J. Cheng, and J. Yang, ‘‘Monitoring
vital signs and postures during sleep using WiFi signals,” IEEE Internet
Things J., vol. 5, no. 3, pp. 2071-2084, Jun. 2018.

K. Lin, F. Xia, W. Wang, D. Tian, and J. Song, “System design for
big data application in emotion-aware healthcare,” IEEE Access, vol. 4,
pp. 6901-6909, 2016.

S. V. B. Peddi, P. Kuhad, A. Yassine, P. Pouladzadeh, S. Shirmohammadi,
and A. A. N. Shirehjini, “An intelligent cloud-based data processing bro-
ker for mobile e-health multimedia applications,” Future Gener. Comput.
Syst., vol. 66, pp. 71-86, Jan. 2017.

T. Park, N. Abuzainab, and W. Saad, “Learning how to communicate in
the Internet of Things: Finite resources and heterogeneity,” IEEE Access,
vol. 4, pp. 7063-7073, 2016.

S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato,
“A survey on network methodologies for real-time analytics of massive
IoT data and open research issues,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1457-1477, 3rd Quart., 2017.

Z. Zhao, G. Min, W. Gao, Y. Wu, H. Duan, and Q. Ni, “Deploying edge
computing nodes for large-scale IoT: A diversity aware approach,” IEEE
Internet Things J., vol. 5, no. 5, pp. 3606-3614, Oct. 2018.

T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and
H. Tenhunen, “Fog computing in healthcare Internet of Things: A case
study on ECG feature extraction,” in Proc. IEEE Int. Conf. Comput. Inf.
Technol., Ubiquitous Comput. Commun., Dependable, Autonomic Secure
Comput., Pervasive Intell. Comput., Oct. 2015, pp. 356-363.

B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and
K. Mankodiya, “Towards fog-driven IoT eHealth: Promises and chal-
lenges of IoT in medicine and healthcare,” Future Gener. Comput. Syst.,
vol. 78, pp. 659-676, Jan. 2018.

P. Pace, G. Aloi, R. Gravina, G. Caliciuri, G. Fortino, and A. Liotta,
“An edge-based architecture to support efficient applications for health-
care industry 4.0,” [IEEE Trans. Ind. Informat., vol. 15, no. 1,
pp. 481-489, Jan. 2019.

Z. Goli-Malekabadi, M. Sargolzaei-Javan, and M. K. Akbari, “An effec-
tive model for store and retrieve big health data in cloud computing,”
Comput. Methods Programs Biomed., vol. 132, pp. 75-82, Aug. 2016.
S. Huh, S. Cho, and S. Kim, “Managing IoT devices using blockchain
platform,” in Proc. 19th Int. Conf. Adv. Commun. Technol. (ICACT),
Feb. 2017, pp. 464-467.

R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, and K. Salah,
“A user authentication scheme of IoT devices using blockchain-enabled
fog nodes,” in Proc. IEEE/ACS 15th Int. Conf. Comput. Syst. Appl.
(AICCSA), Oct. 2018, pp. 1-8.

120278

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

E. Ahmed, I. Yaqoob, I. A. T. Hashem, I. Khan, A.I. A. Ahmed, M. Imran,
and A. V. Vasilakos, “The role of big data analytics in Internet of Things,”
Comput. Netw., vol. 129, pp. 459-471, Dec. 2017.

W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78-81, May 2016.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
Oct. 2016.

Z.Yang, Q. Zhou, L. Lei, K. Zheng, and W. Xiang, “An IoT-cloud based
wearable ECG monitoring system for smart healthcare,” J. Med. Syst.,
vol. 40, no. 12, p. 286, Dec. 2016.

K. Hwang and M. Chen, Big-Data Analytics for Cloud, IoT and Cognitive
Computing. Hoboken, NJ, USA: Wiley, 2017.

M. Wazid, A. K. Das, R. Hussain, G. Succi, and J. J. P. C. Rodrigues,
“Authentication in cloud-driven loT-based big data environment: Survey
and outlook,” J. Syst. Archit., vol. 97, pp. 185-196, Aug. 2019.

H. S.Narman, M. S. Hossain, M. Atiquzzaman, and H. Shen, ““Scheduling
Internet of Things applications in cloud computing,” Ann. Telecommun.,
vol. 72, nos. 1-2, pp. 79-93, Feb. 2017.

T. J.-J. Li, Y. Li, E. Chen, and B. A. Myers, ‘“Programming IoT devices
by demonstration using mobile Apps,” in Proc. Int. Symp. End User
Develop. Cham, Switzerland: Springer, 2017, pp. 3-17.

J. Coutaz and J. L. Crowley, “A first-person experience with end-user
development for smart homes,” IEEE Pervas. Comput., vol. 15, no. 2,
pp. 26-39, Apr. 2016.

H. Cao, M. Wachowicz, C. Renso, and E. Carlini, “‘Analytics everywhere:
Generating insights from the Internet of Things,” IEEE Access, vol. 7,
pp. 71749-71769, 2019.

C. H. Mier and V. T. Delgadillo, “Regulacién del acceso al expediente
clinico con fines de investigacion en México,” Revista CONAMED,
vol. 22, no. 1, pp. 27-31, 2018.

M. Phillips, “International data-sharing norms: From the OECD to the
general data protection regulation (GDPR),” Hum. Genet., vol. 137, no. 8,
pp. 575-582, Aug. 2018.

K. Bhushan and B. B. Gupta, ““Security challenges in cloud computing:
State-of-art,” Int. J. Big Data Intell., vol. 4, no. 2, pp. 81-107, 2017.

R. French-Baidoo, D. Asamoah, and S. O. Oppong, “Achieving confiden-
tiality in electronic health records using cloud systems,” Int. J. Comput.
Netw. Inf. Secur., vol. 10, no. 1, p. 18, 2018.

A. Singh and K. Chatterjee, “Cloud security issues and challenges:
A survey,” J. Netw. Comput. Appl., vol. 79, pp. 88115, Feb. 2017.

I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Proc. Federated Conf. Comput. Sci. Inf. Syst.,
Sep. 2014, pp. 1-8.

M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag,
N. Choudhury, and V. Kumar, “Security and privacy in fog computing:
Challenges,” IEEE Access, vol. 5, pp. 19293-19304, 2017.

M. Frustaci, P. Pace, G. Aloi, and G. Fortino, ““Evaluating critical security
issues of the IoT world: Present and future challenges,” IEEE Internet
Things J., vol. 5, no. 4, pp. 2483-2495, Aug. 2018.

N. Vurukonda and B. T. Rao, “A study on data storage security issues
in cloud computing,” Procedia Comput. Sci., vol. 92, pp. 128-135,
Jan. 2016.

H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why does the cloud stop computing?:
lessons from hundreds of service outages,” in Proc. 7th ACM Symp. Cloud
Comput., Oct. 2016, pp. 1-16.

A. Bala and I. Chana, “‘Fault tolerance-challenges, techniques and imple-
mentation in cloud computing,” Int. J. Comput. Sci. Issues, vol. 9, no. 1,
p. 288, 2012.

A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the Internet
of Things realize its potential,” Computer, vol. 49, no. 8, pp. 112-116,
Aug. 2016.

E. N. Power, “Understanding the cost of data center downtime: An
analysis of the financial impact on infrastructure vulnerability,” Emerson
Netw. Power, Columbus, OH, USA, White Paper SL-24661 RO05-11,
2011.

TI Process Institute. (Jun. 2019). The Real Cost of Business Interruption.
Accessed: Jul. 15, 2019. [Online]. Available: http://calyxit.com/the-real-
cost-of-business-interruption/

Ponemon Institute’ Research Report. (2011). Calculating the
Cost of Data Center Outages. Accessed: Sep. 19, 2019. [Online].
Available: https://airandpowersolutions.com/wp-content/uploads/2015/
09/Calculating-the-%Cost-of-Data-Center-Outages-Ponemon-Institute-
‘White-Paper-R0211-SL-24659.pdf

VOLUME 8, 2020

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

IEEE Access

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67

[68]

[69]

[70]

[71]

[72]

[73]

M. Li, C. Qin, and P. P. Lee, ““Cdstore: Toward reliable, secure, and cost-
efficient cloud storage via convergent dispersal,” in Proc. USENIX Annu.
Tech. Conf. (USENIX ATC), 2015, pp. 111-124.

A. Reichman, File Storage Costs Less in the Cloud Than in-House.
Cambridge, MA, USA: Forrester Research, 2011.

Y. Demchenko, P. Grosso, C. de Laat, and P. Membrey, “Addressing big
data issues in scientific data infrastructure,” in Proc. Int. Conf. Collabo-
ration Technol. Syst. (CTS), May 2013, pp. 48-55.

F. L. F. Almeida and C. Calistru, ““The main challenges and issues of big
data management,” Int. J. Res. Stud. Comput., vol. 2, no. 1, pp. 11-20,
Apr. 2013.

M. Frohlich, M. Mutschler, M. Caspers, U. Nienaber, V. Jicker,
A. Driessen, B. Bouillon, and M. Maegele, “Trauma-induced coagu-
lopathy upon emergency room arrival: Still a significant problem despite
increased awareness and management?” Eur. J. Trauma Emergency Surg.,
vol. 45, no. 1, pp. 115-124, Feb. 2019.

D. Laborde, “System, client device, server and method for provid-
ing a cross-facility patient data management and reporting platform,”
U.S. Patent 10354 750, Jul. 16, 2019.

S. L. Albuquerque and P. R. L. Gondim, ““Security in cloud-computing-
based mobile health,” IT Prof., vol. 18, no. 3, pp. 37-44, May 2016.

A. Mxoli, M. Gerber, and N. Mostert-Phipps, “Information security risk
measures for cloud-based personal health records,” in Proc. Int. Conf. Inf.
Soc. (i-Soc.), Nov. 2014, pp. 208-216.

J. J. M. Seddon and W. L. Currie, “Cloud computing and trans-border
health data: Unpacking U.S. and EU healthcare regulation and compli-
ance,” Health Policy Technol., vol. 2, no. 4, pp. 229-241, Dec. 2013.
L.J. Sotto, B. C. Treacy, and M. L. McLellan, ‘‘Privacy and data security
risks in cloud computing,” World Commun. Regulation Report, vol. 5,
no. 2, p. 38, 2010.

J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and privacy
for cloud-based IoT: Challenges,” IEEE Commun. Mag., vol. 55, no. 1,
pp. 26-33, Jan. 2017.

I. Lee and K. Lee, “The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises,” Bus. Horizons, vol. 58, no. 4,
pp. 431-440, Jul. 2015.

M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions,
and open challenges,” Future Gener. Comput. Syst., vol. 82, pp. 395-411,
May 2018.

Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel, ““Program
analysis of commodity IoT applications for security and privacy: Chal-
lenges and opportunities,” ACM Comput. Surv., vol. 52, no. 4, pp. 1-30,
Sep. 2019.

D. Bernstein, “Containers and cloud: From LXC to docker to kuber-
netes,” IEEE Cloud Comput., vol. 1, no. 3, pp. 81-84, Sep. 2014.

C. de Alfonso, A. Calatrava, and G. Moltd, “Container-based virtual
elastic clusters,” J. Syst. Softw., vol. 127, pp. 1-11, May 2017.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering. Cham, Switzerland:
Springer, 2017, pp. 195-216.

Sutrisno, F. Panduwinata, and P. Yugopuspito, “Nanoservices as general-
ization services in service-oriented architecture,” in Proc. Int. Conf. Soft
Comput., Intell. Syst. Inf. Technol. (ICSIIT), Sep. 2017, pp. 131-137.

J. Islam, E. Harjula, T. Kumar, P. Karhula, and M. Ylianttila, “Docker
enabled virtualized nanoservices for local IoT edge networks,” in Proc.
IEEE Conf. Standards Commun. Netw. (CSCN), Oct. 2019, pp. 1-7.

K. Lee, A. Agrawal, and A. Choudhary, “Real-time disease surveillance
using Twitter data: Demonstration on flu and cancer,” in Proc. 19th
ACM SIGKDD Int. Conf. Knowl. Dscovery Dta Mning KDD, 2013,
pp. 1474-1477.

R. A. Neher and T. Bedford, ‘“Real-time analysis and visualization of
pathogen sequence data,” J. Clin. Microbiol., vol. 56, no. 11, pp. 1-9,
Aug. 2018.

J. B. Seal, C. Stewart, J. McGee, T. Nguyen, D. Sonnier, R. Milani,
G. Loss, and K. Sarkar, “Image processing workflow for virtual and
augmented reality platforms in liver surgery,” HPB, vol. 21, p. S180,
Mar. 2019.

P. Ohnemus, A. Naef, L. Jacobs, and D. Leason, “Automated health
data acquisition, processing and communication system,” U.S. Patent
8706530, Apr. 22, 2014.

L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono,
M. L. Stefanizzi, and L. Tarricone, “‘An IoT-aware architecture for smart
healthcare systems,” IEEE Internet Things J., vol. 2, no. 6, pp. 515-526,
Dec. 2015.

VOLUME 8, 2020

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]
[91]
[92]

[93]

[94]

[95]

E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, “Doctor ai:
Predicting clinical events via recurrent neural networks,” in Proc. Mach.
Learn. Healthcare Conf., 2016, pp. 301-318.

G. Alex, B. Varghese, J. G. Jose, and A. Abraham, “‘A modern health care
system using IoT and Android,” Int. J. Comput. Sci. Eng., vol. 8, no. 4,
2016.

L. Zhang, C. Wu, T. Yoshinaga, X. Chen, T. Murase, and Y. Ji, “Mul-
tihop data delivery virtualization for green decentralized IoT,” Wireless
Commun. Mobile Comput., vol. 2017, pp. 1-9, Dec. 2017.

P. L. R. Chze and K. S. Leong, “A secure multi-hop routing for IoT
communication,” in Proc. IEEE World Forum Internet Things (WF-IoT),
Mar. 2014, pp. 428-432.

A. Shatnawi, M. Orru, M. Mobilio, O. Riganelli, and L. Mariani, “Cloud-
health: A model-driven approach to watch the health of cloud services,”
in Proc. Ist Int. Workshop Softw. Health SoHeal, May 2018, pp. 40-47.
J.R. Vest, S. J. Grannis, D. P. Haut, P. K. Halverson, and N. Menachemi,
“Using structured and unstructured data to identify patients’ need for
services that address the social determinants of health,” Int. J. Med.
Informat., vol. 107, pp. 101-106, Nov. 2017.

L. Jiang, L. Da Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-oriented
data storage framework in cloud computing platform,” IEEE Trans. Ind.
Informat., vol. 10, no. 2, pp. 1443-1451, May 2014.

V. N. Kumar and P. Shindgikar, Modern Big Data Processing With
Hadoop: Expert Techniques for Architecting End-to-End Big Data Solu-
tions to Get Valuable Insights. Birmingham, U.K.: Packt Publishing,
2018.

L. R. Nair, S. D. Shetty, and S. D. Shetty, “Applying spark based machine
learning model on streaming big data for health status prediction,” Com-
put. Electr. Eng., vol. 65, pp. 393-399, Jan. 2018.

J. Opara-Martins, R. Sahandi, and F. Tian, “Critical review of vendor
lock-in and its impact on adoption of cloud computing,” in Proc. Int.
Conf. Inf. Soc. (i-Soci., Nov. 2014, pp. 92-97.

J. Opara-Martins, R. Sahandi, and F. Tian, “Critical analysis of vendor
lock-in and its impact on cloud computing migration: A business per-
spective,” J. Cloud Comput., vol. 5, no. 1, p. 4, Dec. 2016.

D. Carrizales, D. D. Sanchez-Gallegos, H. Reyes, J. Gonzalez-Compean,
M. Morales-Sandoval, J. Carretero, and A. Galaviz-Mosqueda, “A data
preparation approach for cloud storage based on containerized parallel
patterns,” in Proc. Int. Conf. Internet Distrib. Comput. Syst. Cham,
Switzerland: Springer, 2019, pp. 478-490.

J. L. Gonzalez-Compean, V. Sosa-Sosa, A. Diaz-Perez, J. Carretero, and
J. Yanez-Sierra, “Sacbe: A building block approach for constructing
efficient and flexible end-to-end cloud storage,” J. Syst. Softw., vol. 135,
pp. 143-156, Jan. 2018.

S. S. Samant, M. Baruwal Chhetri, Q. Bao Vo, R. Kowalczyk, and
S. Nepal, “Towards end-to-end QoS and cost-aware resource scaling in
cloud-based IoT data processing pipelines,” in Proc. IEEE Int. Conf.
Services Comput. (SCC), Jul. 2018, pp. 287-290.

X. A. Wang, J. Ma, F. Xhafa, M. Zhang, and X. Luo, “Cost-
effective secure E-health cloud system using identity based crypto-
graphic techniques,” Future Gener. Comput. Syst., vol. 67, pp. 242-254,
Feb. 2017.

R. Kalaiprasath, R. Elankavi, and R. Udayakumar, “Cloud security and
compliance—A semantic approach in end to end security,” Int. J. Smart
Sens. Intell. Syst., vol. 10, no. 4, pp. 482-494, 2017.

T. Pisello and B. Quirk, “How to quantify downtime,” Netw. World, vol. 5,
p. 41, Jan. 2004.

M. O. Rabin, “The information dispersal algorithm and its applications,”
in Sequences. New York, NY, USA: Springer, 1990, pp. 406-419.

S. Kan and J. Dworak, “IJTAG integrity checking with chained hashing,”
in Proc. IEEE Int. Test Conf. (ITC), Oct. 2018, pp. 1-10.

B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain based data
integrity service framework for IoT data,” in Proc. IEEE Int. Conf. Web
Services (ICWS), Jun. 2017, pp. 468-475.

S. R. Moosavi, T. N. Gia, E. Nigussie, A. M. Rahmani, S. Virtanen,
H. Tenhunen, and J. Isoaho, “End-to-end security scheme for mobility
enabled healthcare Internet of Things,” Future Gener. Comput. Syst.,
vol. 64, pp. 108—124, Nov. 2016.

J. L. Gonzalez-Compean, O. Telles, 1. Lopez-Arevalo,
M. Morales-Sandoval, V. J. Sosa-Sosa, and J. Carretero, ““A policy-based
containerized filter for secure information sharing in organizational
environments,” Future Gener. Comput. Syst., vol. 95, pp.430-444,
Jun. 2019.

120279

IEEE Access

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106

[107]

[108

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117

J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable
IoT architecture based on transparent computing,” IEEE Netw., vol. 31,
no. 5, pp. 96-105, Aug. 2017.

T. Muhammed, R. Mehmood, A. Albeshri, and I. Katib, “Ubehealth: A
personalized ubiquitous cloud and edge-enabled networked healthcare
system for smart cities,” IEEE Access, vol. 6, pp. 32258-32285, 2018.
M. Chen, W. Li, Y. Hao, Y. Qian, and I. Humar, “Edge cognitive comput-
ing based smart healthcare system,” Future Gener. Comput. Syst., vol. 86,
pp. 403-411, Sep. 2018.

M. Al-Khafajiy, L. Webster, T. Baker, and A. Waraich, “Towards fog
driven iot healthcare: Challenges and framework of fog computing in
healthcare,” in Proc. 2nd Int. Conf. Future Netw. Distrib. Syst., 2018,
pp- 1-7.

M. Al-khafajiy, T. Baker, C. Chalmers, M. Asim, H. Kolivand, M. Fahim,
and A. Waraich, ‘“‘Remote health monitoring of elderly through wearable
sensors,” Multimedia Tools Appl., vol. 78, no. 17, pp. 24681-24706,
Sep. 2019.

S. M. Babu, A. J. Lakshmi, and B. T. Rao, “A study on cloud based
Internet of Things: CloudloT,” in Proc. Global Conf. Commun. Technol.
(GCCT), Apr. 2015, pp. 60-65.

N. C. Taher, I. Mallat, N. Agoulmine, and N. El-Mawass, “An IoT-cloud
based solution for real-time and batch processing of big data: Application
in healthcare,” in Proc. 3rd Int. Conf. Bio-Eng. Smart Technol. (BioS-
MART), Apr. 2019, pp. 1-8.

M. Morales-Sandoval, J. L. Gonzalez-Compean, A. Diaz-Perez, and
V.J. Sosa-Sosa, ““A pairing-based cryptographic approach for data secu-
rity in the cloud,” Int. J. Inf. Secur., vol. 17, no. 4, pp. 441-461, Aug. 2018.
J. Zhang and Z. Zhang, ‘“‘Secure and efficient data-sharing in clouds,”
Concurrency Comput., Pract. Exper, vol. 27, no. 8, pp. 2125-2143,
Jun. 2015.

B. Mao, S. Wu, and H. Jiang, “Improving storage availability in cloud-
of-clouds with hybrid redundant data distribution,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., May 2015, pp. 633-642.

H. Xiong, X. Zhang, W. Zhu, and D. Yao, “Cloudseal: End-to-end content
protection in cloud-based storage and delivery services,” in Secure Comm.
Berlin, Germany: Springer, 2011, pp. 491-500.

Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo, Y. Dai, and G. Min,
“Identity-based remote data integrity checking with perfect data pri-
vacy preserving for cloud storage,” IEEE Trans. Inf. Forensics Security,
vol. 12, no. 4, pp. 767-778, Apr. 2017.

R. Montella, D. Kelly, W. Xiong, A. Brizius, J. Elliott, R. Madduri,
K. Maheshwari, C. Porter, P. Vilter, M. Wilde, M. Zhang, and 1. Foster,
“FACE-IT: A science gateway for food security research,” Concurrency
Comput., Pract. Exper., vol. 27, no. 16, pp. 4423-4436, Nov. 2015.

J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy: A compre-
hensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences,” Genome Biol., vol. 11, no. 8,
p- R86, 2010.

Y. Babuji, K. Chard, I. Foster, S. Daniel Katz, M. Wilde, A. Woodard, and
J. Wozniak, ““Parsl: Scalable parallel scripting in python,” in Proc. 10th
Int. Workshop Sci. Gateways, 2018, pp. 1-6.

C. Zheng and D. Thain, “Integrating containers into workflows: A
case study using makeflow, work queue, and docker,” in Proc. 8th
Int. Workshop Virtualization Technol. Distrib. Comput. VTDC, 2015,
pp- 31-38.

Z. Wen, J. Cala, P. Watson, and A. Romanovsky, “Cost effective, reliable
and secure workflow deployment over federated clouds,” IEEE Trans.
Services Comput., vol. 10, no. 6, pp. 929-941, Nov. 2017.

K. Maheshwari, E.-S. Jung, J. Meng, V. Morozov, V. Vishwanath, and
R. Kettimuthu, *“Workflow performance improvement using model-based
scheduling over multiple clusters and clouds,” Future Gener. Comput.
Syst., vol. 54, pp. 206-218, Jan. 2016.

G. L. Stavrinides, F. R. Duro, H. D. Karatza, J. G. Blas, and J. Carretero,
“Different aspects of workflow scheduling in large-scale distributed sys-
tems,” Simul. Model. Pract. Theory, vol. 70, pp. 120-134, Jan. 2017.
M. Gabbrielli, S. Giallorenzo, C. Guidi, J. Mauro, and F. Montesi, ““Self-
reconfiguring microservices,” in Theory and Practice of Formal Methods.
Cham, Switzerland: Springer, 2016, pp. 194-210.

E. Afgan, V. Jalili, N. Goonasekera, J. Taylor, and J. Goecks, “‘Federated
galaxy: Biomedical computing at the frontier,” in Proc. IEEE 11th Int.
Conf. Cloud Comput. (CLOUD), Jul. 2018, pp. 871-874.

H. Visti, T. Kiss, G. Terstyanszky, G. Gesmier, and S. Winter, ‘““Micado—
Towards a microservice-based cloud application-level dynamic orches-
trator,” in Proc. 8th Int. Workshop Sci. Gateways, IWSG, 2017,

pp- 1-7.

120280

[118]

[119]

[120]

[121]

[122]
[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez, F. Marozzo,
D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia, “ServiceSs: An interop-
erable programming framework for the cloud,” J. Grid Comput., vol. 12,
no. 1, pp. 67-91, Mar. 2014.

E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres,
T. Cortes, and J. Labarta, “PyCOMPSs: Parallel computational work-
flows in Python,” Int. J. High Perform. Comput. Appl., vol. 31, no. 1,
pp. 66-82, Jan. 2017.

M. Albrecht, P. Donnelly, P. Bui, and D. Thain, ‘“Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,” in
Proc. 1st ACM SIGMOD Workshop Scalable Workflow Execution Engines
Technol. SWEET, 2012, pp. 1-13.

Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and K. Chard,
“Parsl: Pervasive parallel programming in Python,” in Proc. 28th Int.
Symp. High-Perform. Parallel Distrib. Comput., Jun. 2019, pp. 25-36.
N. Garg, Apache Kafka. Birmingham, U.K.: Packt Publishing, 2013.

S. Mathew and J. Varia, “Overview of Amazon Web services,”

Amazon, Seattle, WA, USA, White Papers, 2014. [Online].
Available: http://cabibbo.dia.uniroma3.it/asw-2014-2015/altrui/AWS _
Overview.pdf

D. D. Sanchez-Gallegos, D. Di Luccio, J. L. Gonzalez-Compean, and
R. Montella, “Internet of Tings orchestration using DagOn* workflow
engine,” in Proc. IEEE 5th World Forum Internet Things (WF-IoT),
Apr. 2019, pp. 95-100.

H. C. H. Chen and P. P. C. Lee, “Enabling data integrity protection
in Regenerating-Coding-Based cloud storage: Theory and implementa-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 407-416,
Feb. 2014.

J. Ajayakumar, A. J. Curtis, and J. Curtis, “Addressing the data guardian
and geospatial scientist collaborator dilemma: How to share health
records for spatial analysis while maintaining patient confidentiality,” Int.
J. Health Geographics, vol. 18, no. 1, pp. 1-12, Dec. 2019.

0. Ali and A. Ouda, “A classification module in data masking framework
for business intelligence platform in healthcare,” in Proc. IEEE 7th Annu.
Inf. Technol., Electron. Mobile Commun. Conf. (IEMCON), Oct. 2016,
pp. 1-8.

S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Proc. IEEE
INFOCOM, Mar. 2010, pp. 1-9.

P. Vassiliadis, “A survey of extract—transform—load technology,” Int. J.
Data Warehousing Mining, vol. 5, no. 3, pp. 1-27, 2009.

J. L. Ortega-Arjona, Patterns for Parallel Software Design, 1st ed. Hobo-
ken, NJ, USA: Wiley, 2010.

H. G. Reyes-Anastacio, J. L. Gonzalez-Compean, M. Morales-Sandoval,
and J. Carretero, ““A data integrity verification service for cloud storage
based on building blocks,” in Proc. 8th Int. Conf. Comput. Sci. Inf.
Technol. (CSIT), Jul. 2018, pp. 201-206.

S. Pu, W. Shi, J. Xu, and A. Nedic, “Push-pull gradient methods for
distributed optimization in networks,” IEEE Trans. Autom. Control, early
access, Feb. 10, 2020, doi: 10.1109/TAC.2020.2972824.

K. Zheng, J. Westbrook, T. G. Kannampallil, and V. L. Patel, “Clin-
ical workflow in the health it era,” in Cognitive Informatics. Cham,
Switzerland: Springer, 2019, pp. 3-7.

F. de Asis Lopez Fuentes, J. M. Almanza, R. Marcelin-Jimenez, and
B. Velazquez-Mendez, “Efficient content distribution and storage P2P
system based on information dispersal,” in Proc. 6th Int. Conf. Control,
Decis. Inf. Technol. (CoDIT), Apr. 2019, pp. 1604-1609.

M. O. Rabin, “Efficient dispersal of information for security, load bal-
ancing, and fault tolerance,” J. ACM (JACM), vol. 36, no. 2, pp. 335-348,
Apr. 1989.

J. Yanez-Sierra, A. Diaz-Perez, V. Sosa-Sosa, and J. L. Gonzalez,
“Towards secure and dependable cloud storage based on user-defined
workflows,” in Proc. IEEE 2nd Int. Conf. Cyber Secur. Cloud Comput.,
Nov. 2015, pp. 405-410.

J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 321-334.

S. Pérez, D. Rotondi, D. Pedone, L. Straniero, M. J. N. Niiiez,
and F. Gigante, “Towards the CP-ABE application for privacy-
preserving secure data sharing in IoT contexts,” in Proc. Int. Conf.
Innov. Mobile Internet Services Ubiquitous Comput., Springer, 2017,
pp. 917-926

S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak,
“The Internet of Things for health care: A comprehensive survey,” I[EEE
Access, vol. 3, pp. 678-708, 2015.

VOLUME 8, 2020

http://dx.doi.org/10.1109/TAC.2020.2972824

D. D. Sanchez-Gallegos et al.: On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing IEEEACCGSS

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151

[152]

[153]

[154]

[155]

J. Reyes-Garcia, H. Galeana-Zapien, A. Galaviz-Mosqueda, and
C. Torres-Huitzil, ““Evaluation of the impact of data uncertainty on the
prediction of physiological patient deterioration,” IEEE Access, vol. 6,
pp. 38595-38606, 2018.

M. M. Baig, H. Gholamhosseini, and M. J. Connolly, “‘A comprehensive
survey of wearable and wireless ECG monitoring systems for older
adults,” Med. Biol. Eng. Comput., vol. 51, no. 5, pp. 485-495, May 2013.
A. Maach, J. el Alami, and E. H. el Mazoudi, ““A fog-driven IoT e-Health
framework to monitor and control asthma exacerbation,” in Proc. Int.
Conf. Wireless Netw. Mobile Commun. (WINCOM), Oct. 2019, pp. 1-6.

J. Clemente, M. Valero, J. Mohammadpour, X. Li, and W. Song, “Fog
computing middleware for distributed cooperative data analytics,” in
Proc. IEEE Fog World Congr. (FWC), Oct. 2017, pp. 1-6.

G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp. 535-547, Mar. 2000.

M. J. Luczak and C. McDiarmid, “On the power of two choices:
Balls and bins in continuous time,” Ann. Appl. Probab., vol. 15, no. 3,
pp. 1733-1764, Aug. 2005.

P. Morales-Ferreira, M. Santiago-Duran, C. Gaytan-Diaz, J. L. Gonzalez-
Compean, V. J. Sosa-Sosa, and 1. Lopez-Arevalo, “A data distribution
service for cloud and containerized storage based on information disper-
sal,” in Proc. IEEE Symp. Service-Oriented Syst. Eng. (SOSE), Mar. 2018,
pp. 86-95.

M. Sznajder and M. Lukowska, “Python online and offline ECG
QRS detector based on the pan-tomkins algorithm,” Jagiellonian Univ.,
Krakéw, Poland, Tech. Rep. 10.5281/zenodo.826614, May 2017.

V. John and X. Liu, “A survey of distributed message broker
queues,” 2017, arXiv:1704.00411. [Online]. Available: http://arxiv.org/
abs/1704.00411

T. R. Mayer, L. Brunie, D. Coquil, and H. Kosch, “On reliability in
publish/subscribe systems: A survey,” Int. J. Parallel, Emergent Distrib.
Syst., vol. 27, no. 5, pp. 369-386, 2012.

V. Soleimani, M. Mirmehdi, D. Damen, M. Camplani, S. Hannuna,
C. Sharp, and J. Dodd, “Depth-based whole body photoplethysmogra-
phy in remote pulmonary function testing,” IEEE Trans. Biomed. Eng.,
vol. 65, no. 6, pp. 1421-1431, Jun. 2018.

P. Mildenberger, M. Eichelberg, and E. Martin, “Introduction to the
DICOM standard,” Eur. Radiol., vol. 12, no. 4, pp. 920-927, Apr. 2002.
B. Albertina, M. Watson, C. Holback, R. Jarosz, S. Kirk, Y. Lee, and
J. Lemmerman, “Radiology Data from The Cancer Genome Atlas Lung
Adenocarcinoma [TCGA-LUAD] collection,” Cancer Imag. Arch., 2016,
doi: 10.7937/K9/TCIA.2016.JGNIHEPS.

R. Montella, D. Di Luccio, and S. Kosta, “DagOn*: Executing direct
acyclic graphs as parallel jobs on anything,” in Proc. IEEE/ACM Work-
flows Support Large-Scale Sci. (WORKS), Nov. 2018, pp. 64-73.

M. Anwar, A. Gill, and G. Beydoun, “A review of information privacy
laws and standards for secure digital ecosystems,” in Proc. 29th Aus-
tralas. Conf. Inf. Syst., Jan. 2018, pp. 1-12.

C. de diputados de México, “Ley general de proteccion de datos
personales en posesion de sujetos obligados,” Camara de Diputa-
dos del H. Congreso de la Unién, Mexico City, Mexico, Tech. Rep.
DOF 26-01-2017, 2017.

DANTE D. SANCHEZ-GALLEGOS received the
B.E. degree in IT engineering from the Poly-
technic University of Victoria, Mexico, in 2016,
and the master’s degree in sciences from the
Cinvestav Tamaulipas, Mexico, in 2019, where
he is currently pursuing the Ph.D. degree. His
research interests include processing workflows,
distributed systems, and cloud computing.

ALEJANDRO GALAVIZ-MOSQUEDA received
the M.Sc. degree in computer science from the
University of Colima, Mexico, in 2006, and the
Ph.D. degree from the CICESE Research Center,
Mexico, in 2013. He is currently a Researcher
with the CONACYT-CICESE, Unidad Monter-
rey, Mexico. His main research interests include
mobile and wireless networks for intelligent trans-
port systems and mhealth.

VOLUME 8, 2020

J. L. GONZALEZ-COMPEAN received the Ph.D.
degree in computer architecture from the UPC
Universitat Politecnica de Catalunya, Barcelona,
in 2009. He was a Visiting Professor with the
Universidad Carlos III de Madrid, Spain, and
a Researcher with the Cinvestav, Mexico. His
research lines are cloud-based storage systems,
linguistic archival systems, and federated storage
networks. His research interests include design of
fault-tolerant, adaptability and availability strate-
gies, task scheduling, and storage virtualization.

SALVADOR VILLARREAL-REYES (Member,
IEEE) received the B.Sc. degree (Eng.) in elec-
tronics engineering from the Durango Institute of
Technology, Durango, Mexico, in 1998, the M.Sc.
degree in electronics engineering (telecommuni-
cations) from the Monterrey Institute of Technol-
ogy and Higher Education, Monterrey, Mexico,
in 2001, and the Ph.D. degree in electrical and
electronics engineering from Loughborough Uni-
versity, U.K., in 2007. He is currently a Titular
Researcher with the CICESE Research Center, Ensenada, Mexico. His
research interests include ad-hoc networks, vehicular ad-hoc networks,
flying ad-hoc networks, the 10T, the Internet of Medical Things (m-IoT),
e-health systems, m-health systems, wireless sensor networks, digital signal
processing, embedded systems, and so on.

ALDO E. PEREZ-RAMOS received the B.Sc.
degree (Eng.) in electronics engineering from
the Oaxaca Institute of Technology, Oaxaca,
Mexico, and the M.Sc. and Ph.D. degrees in elec-
tronics and telecommunications from the CICESE
Research Center, Ensenada, Mexico, in 2008 and
2016, respectively. He is currently a CONACyT
Researcher assigned to CICESE Monterrey. His
main research interests include wireless per-
sonal area networks, wireless sensor networks,
low-power wide area networks, the Internet of Medical Things, e-health
systems, radio over fiber architectures, embedded systems, and so on.

DIANA CARRIZALES-ESPINOZA received the
B.Sc. degree (Eng.) in IT engineering from
the Polytechnic University of Altamira, Mexico,
in 2016. She is currently pursuing the master’s
degree with the Cinvestav Tamaulipas, Mexico.
Her research interests include distributed systems
and cloud storage.

JESUS CARRETERO (Senior Member, IEEE) is
currently a Senior Full Time Professor-Researcher
with the Computer Science and Engineering
Department, Universidad Carlos III de Madrid,
Madrid. He is also a Leader of the Research Group
ARCOS, Universidad Carlos III de Madrid, and
the Director of the Master in Administration and
Management of information systems. He has pub-
lished 17 books and 52 research projects. He has
written 200 journal and congress articles. His
major research lines are high-performance computing, cloud computing,
parallel and distributed systems, computational linguistics, and real-time
systems.

120281

http://dx.doi.org/10.7937/K9/TCIA.2016.JGNIHEP5

