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Resource-on-Demand Schemes in 802.11 WLANs
with Non-Zero Start-Up Times

Jorge Ortı́n, Carlos Donato, Pablo Serrano Senior member, IEEE, Albert Banchs, Senior member, IEEE

Abstract—Increasing the density of access points is one of
the most effective mechanisms to cope with the growing traff c
demand in wireless networks. To prevent energy wastage at
low loads, a resource-on-demand (RoD) scheme is required to
opportunistically (de)activate access points as network traff c
varies. While previous publications have analytically modelled
these schemes in the past, they have assumed that resources
are immediately available when activated, an assumption that
leads to inaccurate results and might result in inappropriate
conf gurations of the RoD scheme.
In this paper, we analyse a general RoD scenario with N

access points and non-zero start-up times. We f rst present an
exact analytical model that accurately predicts performance but
has a high computational complexity, and then derive a simplif ed
analysis that sacrif ces some accuracy in exchange for a much
lower computational cost. To illustrate the practicality of this
model, we present the design of a simple conf guration algorithm
for RoD. Simulation results conf rm the validity of the analyses,
and the effectiveness of the conf guration algorithm.

Index Terms—WLAN, 802.11, Resource on Demand, Energy
Consumption, Infrastructure on Demand

I. INTRODUCTION
To cope with the growing demand of wireless traff c, one

of the most effective approaches is to increase the density
of access points (AP) in the network. The side effect of
this strategy, though, is the increase of the power consumed,
which can result in energy wastage if all the infrastructure is
kept powered on when the load is low [1], [2]. Techniques
to “green” the operation of the network include the design
of more energy eff cient hardware [3], the optimization of
the radio transmission chain [4], or the implementation of
resource-on-demand (RoD) strategies that dynamically adapt
to the network load, activating resources as it grows and
deactivating them when it shrinks [5].
RoD schemes are relatively easy to deploy, as they do not

require the introduction of major changes in the network, and
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have been proposed to decrease the energy consumption of
base stations in “traditional” mobile networks (GSM, UMTS)
[6], [7], as these devices account for up to 60% of the total
energy consumed [3]. Following [8], RoD policies can be
divided into static and dynamic, depending on whether the
switching on/off of the devices is scheduled or it follows
real-time traff c patterns. In general, dynamic approaches are
more eff cient than static solutions, although they require
higher switching on/off rates. In [5], a number of dynamic
approaches are classif ed according to the wireless technology,
performance metric, reaction time of the algorithm and control
scheme (centralized or distributed).
Regarding WLAN networks, it has been shown that RoD

techniques can potentially provide substantial gains in energy
savings when the number of considered APs increases (gains
of approx. 37%, or 26 kW, can be achieved for a university
campus [9] or even higher [10]). Several publications have
shown the feasibility of RoD policies in campus networks
[11], [12]. The f rst analytical model for these techniques
[13] focuses on the case of “clusters” of APs covering the
same area, and studies the impact of the strategy used to
(de)activate APs on parameters such as the energy savings and
the switch-off rate of the devices. In [14], the work is extended
to account for the case when APs do not completely overlap
their coverage areas. Following this interest in RoD schemes
for WLANs, new publications analyse the performance when
some assumptions are relaxed,1 e.g., in [15] authors analyse
the impact of using an accurate energy consumption model on
performance.
In this paper, we analyse the impact of start-up times on the

performance of a RoD scheme. By “start-up time” we mean
the time it takes between the AP is activated until the WLAN
is announced. According to the seminal work of [16], typical
start-up times of an AP range between 12 and 35 seconds, yet
they have not been considered in previous analytical models.
However, in our previous work [17], we already showed that
for the simple case of 2 APs, start-up times have a notable
impact on performance, both qualitatively and quantitatively,
as compared to the ideal case of immediate boot times. In that
work, we also conf rmed that the time to power on an AP is is
on the same order of magnitude –approx. 45 s– and practically
constant.
We analyse now the general case of a RoD scenario con-

sisting of N overlapping APs with non-zero start-up times.
We present an analytic exact model that accurately predicts

1In fact, in both [5] and [8] it is noted that current RoD policies are made
using over-simplif ed models.
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performance in terms of energy consumption and service time,
but with a high computational complexity. Because of this
complexity, we then present a simplif ed model that sacrif ces
some numerical accuracy in exchange for more affordable
computational times. Finally, we present one possible use
of this simplif ed model, namely, the design of a simple
conf guration algorithm for RoD, based on the minimization
of the average service time. As the results show, the simplif ed
model supports the design of optimisation policies that trade-
off performance for signif cant gains in energy eff ciency.

II. SYSTEM MODEL

A. Scenario

We consider a cluster model like the one analysed in [13],
consisting of N identical APs serving the same area but using
non-overlapping channels. Although in typical high-density
deployments the APs may not be located exactly at the same
position, the high level of overlapping allows making this
assumption, which simplif es the theoretical analysis. Indeed,
as will be seen in Section V, this assumption does not impact
the validity of the RoD strategy.
The need for a dense deployment such as the one addressed

in this paper is motivated by the current trends in the increase
of traff c demand. This trend has been forecasted by a number
of sources. According to [18], the number of devices and
connections per user is steadily growing, which increases user
densities; in addition, the throughput required per user is also
increasing, as new services such as HD video streaming are
becoming ubiquitous. Along the same lines, the forecasts for
future 5G networks,2 predict data rates 100 times higher than
today’s. Even now, a recent research estimates that typical
densities in the deployment of APs may exceed 4000 APs per
square kilometre [10].
The scenario considered could be mapped to a very-dense

802.11a setup, where there are many available channels in the
5 GHz band (the specif c number depending on the country).
One of the APs is always on, in order to maintain the WLAN
coverage, while the other APs are opportunistically powered
on (off) as users arrive (leave) the system. Powering an AP
takes a deterministic time Ton and, during this time, the AP
is not available, so arriving requests are served by any of the
other APs. We neglect the time required to power off an AP.
Each AP consumes PAP units of power when active (i.e.,

during start-up and when powered on) and zero otherwise.
Although commodity hardware can support an intermediate
state (i.e., switching on/off the wireless card), this does not
bring as much savings as powering on/off the complete device
[19]. A “user” is a new connection generated by a wireless
client. Following [20] and [12], these are generated according
to a Poisson process at rate λ and are always served by the
less loaded AP. Also following [12], we further assume that
users’ demands are exponentially distributed (i.e., each user
downloads an amount of data that is exponentially distributed)

2http://5g-ppp.eu/.

and that the AP bandwidth is evenly shared among all the
users.3
Based on the above assumptions, service times (i.e., the

time elapsed since a user arrives to the WLAN until it has
fully downloaded its demanded data) would be exponentially
distributed (with mean 1/µ) if every user got all the bandwidth
of an AP, and the service rate (i.e., the inverse of the average
service time) is µ when there is only one serving AP, 2µ when
there are two APs serving, etc. (i.e., we neglect the impact of
channel sharing via contention). The total load is given by
ρ = λ/Nµ.
We also assume a load-balancing algorithm such that

users (re)associate while they are being served, and that
this (re)association time is negligible –note that this can be
achieved with the recent 802.11v and 802.11r amendments
[23], which support triggering re-associations and performing
fast transitions, respectively, with minor disruption of the
service.

B. Resource on Demand policy
In order to power on/off the APs we assume there is a

“target” number M > 1 of users per AP, i.e., the system
will opportunistically power on/off APs in order to keep that
“target” number across resources (except for one AP that
will be always on, to guarantee coverage). Based on this, we
assume a threshold-based policy with hysteresis, namely:

• An AP will be powered on when the number of user per
AP is ρh higher than this target value.

• An AP will be powered off when the number of user per
AP is ρl lower than this target value.

In this way, with K APs powered on, the K+1-th AP will
be powered on when the number of users reaches

Threshold to power on another AP (NK): ⌈(1 + ρh)KM⌉

while with K APs powered on, one AP will be powered off
when the number of user reaches

Threshold to power off an AP (nK): ⌊(1− ρl)KM⌋

We next impose some conditions on these thresholds to
support an eff cient operation. On the one hand, with K APs
powered on we impose that there are at least K associated
users, so all APs are serving traff c. This results in that the
threshold to power off an AP with K users has to be at least
K , i.e.,

nK = ⌊(1− ρl)KM⌋ ≥ K , (1)

which results on the following condition for ρl

ρl < 1−
1

M
. (2)

On the other hand, to prevent (or, at least, reduce) “f ip-
f op” effects in the WLAN (i.e., to power on an AP and, once

3The assumption on the Poissonian nature of user arrivals is aligned with
the characterisation driven by measurements provided by [21] and [22].
Furthermore, [12] shows that, while the distribution of the duration of user
connections is not a memory-less process, it can still be approximated by an
exponential distribution with reasonable accuracy. In the numerical evaluation,
we will rely on a more accurate traff c model in order to assess the impact
of the simplifying assumptions upon which our analysis relies.
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active, immediately power it off), we assume that the ρh and
ρl thresholds are set such that the number of users to power
on an AP when K of them are already serving traff c is larger
than the number of users required to power off an AP when
K + 1 are serving traff c, i.e.,

⌈(1 + ρh)KM⌉ > ⌊(1 − ρl)(K + 1)M⌋ . (3)

Based on the above condition, and neglecting the round-
ing operations, to prevent the f ip-f op effects the following
condition between ρh and ρl should hold

ρh >
1− ρl
K

− ρl , (4)

where the rhs of (4) is maximum for K = 1, i.e., the case
of one AP, and therefore the ρh threshold should be set to at
least4

ρh > 1− 2ρl . (5)

In addition to the above, for analytical tractability we
introduce the following restriction on the RoD policy: at any
point in time there will be at most one AP being powered on.
More specif cally, while one AP is powering on there will be
no decisions taken w.r.t. powering on or off other resources,
and only once the AP is available the system will decide on
the amount of resources needed.

III. EXACT ANALYSIS
A. Model overview
We model the system with the semi-Markov process illus-

trated in Fig. 1. The label in each arrow corresponds to the
number of users (or range of users) in the system that triggers
the transition between the corresponding stages. There are four
types of stages, depending on the transitions that could happen
between them:

• Stage 1, which is the initial situation with only one AP
active. The only possible transition is to stage 1∗ (another
AP is powered on), that is triggered when the number of
users reaches N1.

• Stage N , when all APs are active and serving traff c.
The only possible transition is to stage N − 1 (one AP
is powered off), what happens when the number of users
is nN .

• Stages K (with 1 < K < N ), where there are K active
APs. In this case there are two possible transitions: one
to stage K∗, triggered when the number of users reaches
NK and another AP is powered on (label NK in Fig. 1);
and other to stage K − 1, triggered when the number of
users in the system is nK and one AP is powered off
(label nK in Fig. 1).

• Stages K∗ (with 1 ≤ K < N ), where in addition to
the K active APs there is another AP booting up. For
this type of stage there is a larger number of possible
transitions, which are determined by the number of users
in the system after Ton:
– If there are NK+1 or more users, the system will
move to stage K + 1∗, as the number of users is

4Note that for simplicity our policy is set on f xed values of ρh and ρl ,
i.e., they do not change with the number of active APs.

Fig. 1. Semi-Markov process for an IoD scheme with N = 4 APs.

already above the threshold to switch on an addi-
tional AP. These transitions are marked with the label
≥ NK+1 in Fig. 1.

– If there are between nK+1 + 1 and NK+1 − 1
users, the system will move to stage K + 1. These
transitions are marked with the label (nK+1, NK+1)
in Fig. 1.

– If there are nK+1 users or less, the next stage will
depend on whether the number of users is also less
than or equal to n2 (and therefore the next stage will
be ‘1’), between n2 + 1 and n3 (the next stage will
be ‘2’), and so on. These transitions are marked with
the labels ≤ n2, (n2, n3], . . . in Fig. 1.

With the above, we have introduced the different stages of
the semi-Markov process. We next analyse each type of stage,
their holding times, and the transition probabilities between
them.

B. Modelling the stages of the semi-Markov model
1) Stage 1 (S1): For the initial situation with only one AP

active, following our assumptions the system can be modelled
with the continuous-time Markov chain (CTMC) illustrated
in Fig. 2, where each state represents the number of users
being served and therefore reaching the absorbing state N1

corresponds to the case when another AP will be powered on
(and stage 1 will be left).
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Fig. 2. CTMC for stage 1: one active AP and no AP powering on

The average time in this stage H1 corresponds to the time
until absorption of the Markov chain, i.e., the time since the
system arrived to the chain until it reaches the absorbing state
N1. If we def ne Li(t) as the expected total time that a CTMC
spends in state i during the interval [0, t), H1 can be expressed
as the sum of the terms Li(t) for all the non-absorbing states
of the CTMC when t → ∞ [24]

H1 =

N1−1
∑

i=0

L
(1)
i (∞) . (6)

The values of L(1)
i (∞) (the superscript (1) indicates that we

are referring to the CTMC modelling stage 1) can be obtained
solving the following system of equations:

L(1)(∞)Q(1) = −π(1) (0) , (7)

where

L(1)(∞) =
[

L
(1)
0 (∞), L

(1)
1 (∞), . . . L

(1)
N1−1(∞)

]

, (8)

π(1)(0) =
[

π
(1)
0 (0), π

(1)
1 (0), . . . π

(1)
N1−1(0)

]

, (9)

with π(1)
i (0) the initial probability of state i, and Q(1) a N1×

N1 matrix with the following non-zero elements:

qij =



















−λ i = 1, j = 1

−λ− µ i = 2, . . . , N1, j = i

λ i = 1, . . . , N1 − 1, j = i+ 1

µ i = 2, . . . , N1, j = i− 1

(10)

The computation of π(1)(0) is not straightforward, as it
depends on the stage the system was before arriving to stage
1, which could be stage 2 or any other stage K∗, with K ≥ 1.
We detail how to compute π(1)(0) for this and the other cases
in the next section, after we present the modelling of the other
stages of the semi-Markov process.
Finally, let P (ST | ST ′) denote the transition probability

from stage T ′ to stage T , with T and T ′ referring indistinctly
to any stage K , including stages 0 and N , or K∗. For the case
of stage 1, we have that

P (S1∗ | S1) = 1 . (11)

2) Stages K (SK), 1 < K < N : For these stages,
the resulting CTMC is illustrated in Fig. 3. In this case,
while the arrival rate is also λ, the service rate accounts
for the total number of powered-on APs, which is constant
and equal to K · µ for all states.5 As described above, there
are two absorbing states: one corresponding to the powering
on of another AP (when the system reaches NK users), and
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λ
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Fig. 3. CTMC for Stage K: K active APs and no AP powering on

another corresponding to the de-activation of one AP (when
the number of users is nK).
Similarly to the previous case, the average time in a stage

K can be computed as

HK =

NK−1
∑

i=nK+1

L
(K)
i (∞) . (12)

In order to compute L(K)
i (∞) we use the same expression as

in the previous case

L(K)(∞)Q(K) = −π(K) (0) , (13)

where

L(K)(∞) =
[

L
(K)
nK+1(∞), L

(K)
nK+2(∞), . . . L

(K)
NK−1(∞)

]

,

(14)

π(K)(0) =
[

π
(K)
nK+1(0), π

(K)
nK+2(0), . . . π

(K)
NK−1(0)

]

, (15)

and Q(K) is a (NK−nK−1)×(NK−nK−1) matrix, whose
non-zero elements are

qij =











−λ−Kµ i = 1, . . . , NK − nK − 1, j = i

λ i = 1, . . . , NK − nK − 2, j = i+ 1

Kµ i = 2, . . . , NK − nK − 1, j = i− 1
(16)

Again, the computation of π(K)(0) requires the knowledge
of the stage of the system before entering stage K , which we
will address in the next section.
To f nalise the analysis of this stage, we have to compute the

two transition probabilities from this stage to stage K∗ (when
the chain ends in the absorbing state NK) and to stage K − 1
(when the chain falls into the absorbing state nK), denoted as
P (NK) and P (nK) respectively,

P (SK∗ | SK) = P (NK) , (17)
P (SK−1 | SK) = P (nK) . (18)

These can be computed as [25]

[P (nK) P (NK)] = π(K)(0)B(K) , (19)

with B(K) a (NK −nK − 1)× 2 matrix whose element bij is
the probability of ending in the absorbing state j, given that
the chain starts in the transient state i. This matrix can be
computed as

B(K) =
[

I− T(K)
]−1

R(K) , (20)

where I is the identity matrix, T(K) is a (NK − nK − 1) ×
(NK−nK−1) matrix with the transition probabilities between
non-absorbing states, and R(K) is a (NK−nK−1)×2 matrix

5Note that we have imposed nK > K with (1).
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Fig. 4. Markov chain when all APs are active

denoting the transition probabilities from non-absorbing to ab-
sorbing states. Both matrices are obtained from the associated
discrete-time Markov chain (DTMC) of the CTMC, and their
non-zero elements are

tij =

{

λ
λ+Kµ

i = 1, . . . , NK − nK − 2, j = i+ 1
Kµ

λ+Kµ
i = 2, . . . , NK − nK − 1, j = i− 1

(21)

rij =

{

Kµ
λ+Kµ

i = 1, j = 1
λ

λ+Kµ
i = NK − nK − 1, j = 2

(22)

3) Stage N (SN ): When all APs are active and serving
traff c the resulting CTMC is the one depicted in Fig. 4, where
the arrival rate is λ and the service rate is N · µ. As in the
case of stage 1, there is only one absorbing state, the one
corresponding to the switching off of one AP when there are
nN users in the system and all the APs are on, but now the
chain has an inf nite number of states.
To compute the holding time in this stage, we assume that

the system is stable (i.e., λ < Nµ), so there is a state nD with
nD > nN such that

∞
∑

i=nD+1

L
(N)
i (∞) ≈ 0 , (23)

and therefore the holding time is

HN ≈

nD
∑

i=nN+1

L
(N)
i (∞) , (24)

where L(N)(∞) is obtained from

L(N)(∞)Q(N) = −π(N) (0) , (25)

with

L(N)(∞) =
[

L
(N)
nN+1(∞), L

(N)
nN+2(∞), . . . L

(N)
ND

(∞)
]

, (26)

π(N)(0) =
[

π
(N)
nN+1(0), π

(N)
nN+2(0), . . . π

(N)
nD

(0)
]

, (27)

and Q(N) is a (nD − nN ) × (nD − nN ) matrix with the
following non-zero elements

qij =











−λ−Nµ i = 1, . . . , nD − nN , j = i

λ i = 1, . . . , nD − nN − 1, j = i+ 1

Nµ i = 2, . . . , nD − nN , j = i− 1
(28)

The computation of π(N)(0) is described in the next section.
From this stage, the only possible transition is to stage N −1,
i.e.,

P (SN−1 | SN ) = 1 . (29)
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Fig. 5. Markov chain for the case of K active APs and one AP powering on

4) Stages K∗ (SK∗): For the stages with K active APs
and one AP being powered on, the resulting Markov chain is
illustrated in Fig. 5. In these stages there are no absorbing
states that trigger the transition to other stages, since this
happens when the amount of time spent in the stage is Ton.
Because of this, the number of users that can be in the system
during this stage varies between zero an inf nity. Additionally,
the service rate depends on the number of users as there should
be at least one user per active AP for the total rate to be Kµ.6
For completeness, the time spent in a stage K∗ is given by

HK∗ = Ton . (30)

In this case, we need to obtain the expected time that the
system spends in each state i during the Ton seconds that a
stage K∗ lasts, L(K∗)

i (Ton), and the probability of each state
after Ton, π

(K∗)
i (Ton). These terms are required to compute

the transition probabilities from stage K∗ to the other stages
and to obtain the performance f gures of the system. The
values for L(K∗)

i (Ton) and π
(K∗)
i (Ton) can be obtained with

the expressions of the transient analysis of an M/M/K queue,
which are

L
(K∗)
i (t) =

∫ t

0

π
(K∗)
i (u)du , (31)

where π
(K∗)
i (t) is the probability of being in state i at time

t, which is determined by the fundamental equations of the
CTMC

dπ(K∗) (t)

dt
= π(K∗) (t)Q(K∗) , (32)

with π(K∗) (t) = [π
(K∗)
i (t)]i the transient state probability

vector and Q(K∗) the inf nitesimal generator matrix of the
CTMC. The non-zero elements of Q(K∗) are

qij =































−λ− (i − 1)µ i = 1, . . . ,K, j = i

−λ−Kµ i = K + 1, . . . , j = i+ 1

λ i = 1, ..., j = i+ 1

(i− 1)µ i = 2, . . . ,K, j = i− 1

Kµ i = K + 1, . . . , j = i− 1

(33)

Note that to solve (31) and (32), we need again the vector
of initial state probabilities π(K∗)(0). On the other hand, as
there are no closed expressions for the transient behaviour
of an M/M/K queue, we need to use approximate methods
(such as uniformization [24]) to solve it and compute Li(Ton)
and πi(Ton). Like in the previous cases, the computation of
π(SK∗)(0) is described in the next section.

6In fact, the CTMC corresponds to the classic M/M/K queue
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Finally, as noted before, from stage K∗ the system can go
to any other stage K ′, with K ′ ≤ K+1, and to stage K+1∗.
In this way, after Ton the system can have K or less APs
powered on, with the following probabilities

P (SK′ | SK∗) =

{

∑n2

i=0 π
(K∗)
i (Ton), K ′ = 1

∑nK′+1

i=nK′+1 π
(K∗)
i (Ton), 1 < K ′ ≤ K

(34)
while the probability of having more APs on (or being powered
on) after Ton depends on whether there are more APs to be
powered on, i.e., if K < N − 1, or not (K = N − 1). For the
former case, we have that

P (SK+1 | SK∗) =

Nk+1−1
∑

i=nK+1+1

π
(K∗)
i (Ton) , (35)

P (SK+1∗ | SK∗) =

∞
∑

i=Nk+1

π
(K∗)
i (Ton) , (36)

while for the case of K = N − 1 there are no more APs to
activate, and therefore

P (SN | SN−1∗) =

∞
∑

i=nN+1

π
(N−1∗)
i (Ton) . (37)

C. Computing the steady-state distribution
To complete the analysis of the steady-state distribution

of the semi-Markov process, we have to express the set of
initial conditions for every stage in terms of the f nal state
probabilities of the other stages. To this end, we denote
π
(T )
i (0) as the probability that the initial state is i for the stage

T (again we use T for generalization purposes, with stage T
we refer indistinctly to any stage K , including stages 0 and
N , or K∗). This probability can be computed with the law of
total probability as

π
(T )
i (0) =

∑

ST ′∈TT

π
(T |T ′)
i (0)PT (T

′) , (38)

where
• TT is the set of stages that can reach stage T in one
transition between stages,

• π
(T |T ′)
i (0) is the probability that the initial state of the
CTMC modelling stage T is i, given that the system was
in stage T ′ and transitioned to state T ,

• PT (T
′) is the probability that the system was in stage T ′

before the stage transition, given that it is now in stage
T .

The set T can be easily derived for each stage from the
Semi-Markov model described in Section III-A. Specif cally
we have,

T1 = {S2, S1∗, . . . SN−1∗} , (39)

TK = {SK+1, SK−1∗, . . . SN−1∗} for 1 < K < N, (40)

TN = {SN−1∗} , (41)

T1∗ = {S1} , (42)

TK∗ = {SK , SK−1∗} for 1 < K < N − 1 . (43)

As an example, for the case of Fig. 1 with 4 APs, we have
T1 = {S2, S1∗, S2∗, S3∗}, T2 = {S3, S1∗, S2∗, S3∗}, T3 =
{S4, S2∗, S3∗}, T4 = {S3∗}, T1∗ = {S1}, T2∗ = {S2, S1∗},
T3∗ = {S3, S2∗}.
The computation of π(T |T ′)

i (0) depends on whether stage
T ′ corresponds to a stage with an AP being powered on or
not. For the latter case, the transition is triggered because the
number of stations reached a (de)activation threshold (i.e., an
absorbing state), and therefore we have

π
(K∗|K)
i (0) =

{

1, i = NK

0, otherwise
(44)

for 1 ≤ K < N (note that we have included here the transition
from stage 1 to stage 1∗ as well), and

π
(K−1|K)
i (0) =

{

1, i = nK

0, otherwise
(45)

for 1 < K ≤ N (we have included the transition from stage
N to stage N − 1 as well). On the other hand, when stage
T ′ is a K∗ stage, there are multiple states that can result in a
transition to a stage, which results in the following cases:
(i) If the transition is to stage 1 (ST = S1), then

π
(1|K∗)
i (0) =







π
(K∗)
i

(Ton)
∑n2

j=0 π
(K∗)
j

(Ton)
, 0 ≤ i ≤ n2

0, n2 < i < N1

(46)

(ii) If the transition is to a stage 1 < K ′ ≤ K , then

π
(K′|K∗)
i (0) =







π
(K∗)
i

(Ton)
∑n

K′+1
j=n

K′+1 π
(K∗)
j

(Ton)
, nK′ < i ≤ nK′+1

0, nK′+1 < i < NK′

(47)
(iii) If K < N − 1 (i.e. ST ′ 6= SN−1) and the transition is to
stage K + 1, then

π
(K+1|K∗)
i (0) =

π
(K∗)
i (Ton)

∑NK+1−1
j=nK+1+1 π

(K∗)
j (Ton)

. (48)

(iv) If K < N − 1 (again ST ′ 6= SN−1) and the transition is
to stage K + 1∗, then

π
(K+1|K∗)
i (0) =







0, 0 ≤ i ≤ NK+1

π
(K∗)
i

(Ton)
∑

∞

j=NK+1
π
(K∗)
j

(Ton)
, i > NK+1

(49)
(v) If K = N − 1 and the transition is to stage N , then

π
(N |N−1∗)
i (0) =

π
(N−1∗)
i (Ton)

∑∞
j=nN+1 π

(K∗)
j (Ton)

. (50)

Finally, the computation of PT (T
′) can be done with the

law of total probability again

PT (T
′) =

P (ST | ST ′)φT ′

∑

SQ∈TT
P (ST | SQ)φQ

, (51)

where P (ST | ST ′) denotes the stage transition probability
computed in (11), (17), (18), (29), (34)-(37), and φT is the
stationary probability of stage T in the embedded Markov
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chain of the semi-Markov process. The computation of φT

is done via the system

φ = φP , (52)

where φ is a row vector whose components are the values
of φT , and P is a matrix composed of the stage transition
probabilities of the embedded Markov chain.
With the above, we have completed the analysis that enables

in the next section the computation of the steady state proba-
bilities of the semi-Markov model. We also address there how
to compute performance f gures based on these probabilities.

D. Performance f gures
We characterise the performance of the system with two

f gures:
• The average power consumed by the infrastructure P .
• The average service time of a user Ts.
The average power consumed by the infrastructure can be

expressed in terms of the average number of APs that are
powered on, NAP , as follows

P = NAPPAP . (53)

NAP is computed as the weighted sum of the number of
APs powered on in each stage times the probability of being
in that stage

NAP =

N
∑

K=1

KPK +

N−1
∑

K=1

(K + 1)PK∗ , (54)

where PK and PK∗ are the stationary probabilities of the
stages of the semi-Markov process, i. e., the probability of
being in stage K (including stages 0 and N ) or K∗ at a
specif c moment. These probabilities are related to the stage
probabilities of the embedded Markov chain as follows

PT =
HTφT

∑N
K=1 φKHK +

∑N−1
K=1 φK∗HK∗

. (55)

The average service time Ts, which corresponds to the time
between the instant when a user generates a service request
and when this request is completely served, can be obtained
via Little’s formula

Ts =
Nu

λ
, (56)

with Nu the average number of users in the system. This can
be computed with the law of total probability as follows

Nu =

∞
∑

i=1

i

(

N
∑

K=1

π
(K)
i PK +

N−1
∑

K=1

π
(K∗)
i PK∗

)

, (57)

where π(K)
i and π(K∗)

i are the average probabilities of having i
users, given that the system is in stage K or K∗, respectively.
This can be computed, for each type of stage, as

π
(K)
i =

L
(K)
i (∞)

HK

, (58)

π
(K∗)
i =

L
(K∗)
i (Ton)

Ton

. (59)

Algorithm 1 Solution to the exact model
1: Set initial estimations of π(K)(0) and π(K∗)(0)
2: repeat
3: Compute L(K)(∞) with (7), (13) and (25)
4: Obtain HK with (6), (12) and (24)
5: Solve (31)-(32) to obtain L(K∗)(Ton) and π(K∗)(Ton)
6: Compute P (T | T ′) with (17)-(20) and (34) - (37)
7: Solve (52) to obtain φ

8: Obtain PT (T
′) with (51)

9: Compute π(T |T ′)
i (0) with (44)-(50)

10: Update π(K)(0) and π(K∗)(0) with (38)
11: until Stopping criterion is met
12: Obtain π

(K)
i and π

(K∗)
i with (58) and (59)

13: Compute PT with (55)
14: Obtain Nu with (57) and NAP with (54)
15: Compute Ts with (56) and P with (53)

As can be seen, all the performance metrics depend on the
variables φT , HT , L

(K)
i (∞) and L(K∗)

i (Ton), whose relation-
ships have been described through Sections III-B to III-C. In
order to obtain an exact solution for them, we should solve
a system of non-linear equations with the additional problem
that there are no closed expressions for the transient analysis of
the CTMC modelling stagesK∗. To solve this, we propose the
iterative algorithm described in Algorithm 1. In this algorithm,
the initial values of π(K)(0) can be set assuming that all
the states with non-zero probabilities according to (46)-(50)
have the same initial probability. Regarding π(K∗)(0), a good
starting guess is to assume that π(K∗)

i (0) = 1 for i = NK and
0 otherwise (this is what would happen if Ton = 0). Finally,
a common stopping criterion is that the norm of the vector
difference between the old and updated version of vectors
π(K)(0) and π(K∗)(0) is below a threshold ǫ.

IV. SIMPLIFIED ANALYSIS
A. Motivation and simplif cation
The main weaknesses of the model derived in the previous

section is that the initial probabilities of a stage depends on
the “f nal” probabilities of the rest of stages, which depend
in turn of their initial probabilities. This causes a loop that
requires the use of an iterative algorithm with non-negligible
computational complexity as the one described above. We next
describe how to simplify the analytical model of Section III
to enable an eff cient computation of the performance f gures,
at the cost of some numerical inaccuracy.
The proposed simplif cation affects exclusively the transi-

tions from stages K∗. As can be seen in Fig. 1, from these
stages the system could go to stage K+1∗ or any other stage
K ′, with K ′ ≤ K + 1. The direct transitions between stages
K∗ make that the initial state probabilities for these stages
π
(K∗)
i (0) could be non-zero for i ≥ NK .
To break the coupling between stages K∗, we assume that

the initial state probabilities of stages K∗ are f xed and equal
to

π
(SK∗)
i (0) =

{

1, i = NK

0, otherwise
(60)
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Fig. 6. Simplif ed model.

This implies that the system enters into stages K∗ always
with NK users. This assumption holds as long as the transition
probability between a stage K∗ and the stage K+1∗ is small,
which is true for typical Ton values.
Once this assumption is made, the transition probabilities

from stages K∗ to other stages are f xed and independent
of the initial state probabilities of the rest of stages. Now,
we also have to tackle the same apparent coupling for the
initial state probabilities of stages K . To solve this, we build
a new semi-Markov model derived from the one depicted in
Fig. 1 substituting stages K by the embedded DTMC of their
corresponding CTMC. The description of this new model is
performed in the next Section.

B. Model description
Fig. 6 shows the embedded DTMC of the semi-Markov

process described above. The leftmost states, which model

stages K (including 0 and N ), are def ned by the pair (i,K),
with i the number of users in the system and K the number
of powered-on APs. The holding time of these states is an
exponential random variable with mean (λ + Kµ)−1. The
rightmost states model the stages K∗ and their holding time is
constant and equal to Ton. To keep a uniform notation, we note
these states as (∗,K). The non-null transitions probabilities are
described in (61).
The f rst two equations model the transitions between states

of Stage 1, the f rst one corresponds to the departure of a user
and the second one its arrival. The third and fourth equations
model the transitions between states of stages 2 ≤ N ≤ N−1
and the f fth and sixth the transitions between states of stage
N . The seventh equation corresponds to the switch off of
an AP when a user departures and stage K remains with
nK users, which triggers the transition to stage K − 1. The
eighth equation models the switching on of a new AP (i.e.
the transition to stage K∗) when the NK-th user arrives
and K APs are on. Note that in all the cases the transition
probabilities only depend on the parameters λ, µ and the
number of APs that are serving traff c at the moment of the
transition.
The next equations model the transitions from states (∗,K),

(i.e., from stages K∗). Now the transition probabilities are
of the form π

(K∗)
i (Ton) and can be computed solving (31)

and (32) assuming the initial state probabilities given in (60).
Specif cally, the ninth equation corresponds to the transition
from stage K∗ to stage K + 1∗ because the system reaches
NK+1 users during the booting-up of the K + 1-th AP. The
tenth equation models the transition from stage K∗ to a state
where there are K + 1 APs powered on and a number of
users ranging between nK+1+1 and NK+1−1. The eleventh
equation is similar to the previous one but for stage N − 1∗.
In this case, there is no upper limit in the number of users
since there is not any remaining AP to boot up. The twelfth
equation models the transition from stage K∗ to states where
the number of APs on is belowK+1. This implies that during
the booting up of the K + 1-th AP several users have left
forcing the system to switch off some APs. The last equation
is similar to the previous one and corresponds to transitions
to states where only one AP is on.
With the previous equations, the DTMC can be easily solved

to obtain the stationary distribution of the state probabilities,
that we name P (i,K) (or P (∗,K)) hereafter. With these,
the stationary probability of each state of the semi-Markov
process, Φ(i,K) (or Φ(∗,K)) are

Φ(i, 1) =
P (i, 1)

Ω · (λ+ µ)
, 0 ≤ i < N1 (62)

Φ(i,K) =
P (i,K)

Ω · (λ+Kµ)
, nK < i < NK , 1 < K < N

(63)

Φ(i, N) =
P (i, N)

Ω · (λ+Nµ)
, i > nN (64)

Φ(∗,K) =
P (∗,K)Ton

Ω
, 1 ≤ K < N (65)
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P (i − 1, 0 | i, 0) = µ
λ+µ

i = {1, . . . , N1 − 1}

P (i + 1, 0 | i, 0) = λ
λ+µ

i = {0, . . . , N1 − 2}

P (i − 1,K | i,K) = Kµ
λ+Kµ

i = {nK + 2, . . . , NK − 1} ,K = {2, . . . , N − 1}

P (i + 1,K | i,K) = λ
λ+Kµ

i = {nK + 1, . . . , NK − 2} ,K = {2, . . . , N − 1}

P (i − 1, N | i, N) = Nµ
λ+Nµ

i = {nN + 2, . . .}

P (i + 1, N | i, N) = λ
λ+Nµ

i = {nN + 1, . . .}

P (nK ,K − 1 | nK + 1,K) = Kµ
λ+Kµ

K = {2, . . . , N}

P (∗,K | NK − 1,K) = λ
λ+Kµ

K = {1, . . . , N − 1}

P (∗,K + 1 | ∗,K) =
∑∞

i=NK+1
π
(K∗)
i (Ton) K = {1 . . . , N − 2}

P (i,K + 1 | ∗,K) = π
(K∗)
i (Ton) i = {nK+1 + 1, . . . , NK+1 − 1} ,K = {1 . . . , N − 2}

P (i, N | ∗, N − 1) = π
(N−1∗)
i (Ton) i = {nN + 1, . . . , }

P (i,K ′ | ∗,K) = π
(K∗)
i (Ton) i = {nK′ + 1, . . . , nK′+1} ,K = {2 . . . , N − 1} ,K ′ = {2 . . . ,K}

P (i, 1 | ∗,K) = π
(K∗)
i (Ton) i = {0, . . . , n2} ,K = {1 . . . , N − 1}

(61)

with

Ω =

N1−1
∑

j=0

P (j, 1)

λ+ µ
+

N−1
∑

K′=2

NK′−1
∑

j=nK′+1

P (j,K ′)

λ+K ′µ

+

∞
∑

j=nN+1

P (j,N)

λ+Nµ
+

N−1
∑

K′=1

P (∗,K ′)Ton . (66)

The stationary probabilities of stages K∗ are directly
PK∗ = Φ(∗,K), while for stages K we have

P1 =

N1−1
∑

i=0

Φ(i, 1) , (67)

PK =

NK−1
∑

i=nK+1

Φ(i,K) , (68)

and

PN =
∞
∑

i=nN+1

Φ(i, N) . (69)

Once these terms are known, we can compute the average
power P with (55) and (54). The average service time Ts is
obtained with (56) as well, but in this case Nu is

Nu =

∞
∑

i=1

i

(

N
∑

K=1

Φ(i,K) +

N−1
∑

K=1

π
(K∗)
i PK∗

)

, (70)

with π
(K∗)
i the same as in (59).

To end this Section, we present in Algorithm 2 the different
steps required to obtain the performance f gures of the system.
As can be seen, in this case we avoid the presence of loops.

V. NUMERICAL RESULTS
We next present a numerical evaluation of a RoD system

in terms of the performance f gures considered, namely, the
average service time Ts and the power consumed by the
infrastructure P . To this end, we compute these two variables
for a variety of scenarios, these being def ned in terms of

Algorithm 2 Solution to the approximate model
1: Set π(K∗)(0) with (60)
2: Solve (31) and (32) to obtain L(K∗)(Ton) and π(K∗)(Ton)
3: Solve the DTMC with transitions given by (61) to obtain

P (i,K) and P (∗,K)
4: Compute (62)-(66) to obtain Φ(i,K) and Φ(∗,K)
5: Obtain P1, PK and PN with (67)-(69)
6: Obtain Nu with (70) and NAP with (54)
7: Compute Ts with (56) and P with (53)

the network load or the conf guration of the RoD scheme
(given by the parametersM , ρh, ρl). In the simulation results
presented, we compare the results of our approximate model
against the ones obtained via simulation,7 while in Section
V-C we assess the computational complexity of this model
against the accurate one.

Throughout all simulations, we consider the following
scenario:8 (i) various APs can be simultaneously activated
(instead of only one, as assumed in the analysis); (ii) there
is no complete overlap of the coverage areas: we assume a
deployment centred around one AP with a 10 m coverage radio
that is always on, andN−1 APs with the same coverage radios
that are randomly deployed within a 4 m circle centred around
the f rst AP and that will be opportunistically (de)activated;
and (iii) users are not static but follow the classical random
waypoint model [26], selecting a novel destination at random
after reaching the previous one, and moving at a speed that is
randomly chosen between 0.3 and 0.7 m/s. We further assume

7Our approximate model is solved numerically using Octave (https:
//www.gnu.org/software/octave/), while simulation results are obtained from
a discrete event simulator written in C++.
8Note that this scenario relaxes some of the simplifying assumptions behind

our model, and thus allows to assess the impact of such assumptions on the
results.
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Fig.7. Averagepowerconsumptionvs.networkload.

thatthereareuptoN =10APsavailable,9thatasingle
APconsumes3.5 Wwhenactive(whichcorrespondstothe
averagepowerconsumedbyaLinksysdevice[19])andzero
otherwise,andthatµ=0.1s−1.

A.Impactofnetworkload

Wefrstanalysethepowerconsumptionasthenetworkload
ρ=λ/(Nµ)varies.Tothisend,wefxatargetdistribution
ofM =5usersperAPandthefollowingtwoconfgurations
ofthe(de)activationthresholds{ρh,ρl}:{100%,30%}and
{50%,25%},theformerbeingmore“reluctant”toincrease
thenumberofAPswhenthenetworkloadincreases.To
understandtheimpactofTononperformance,weconsiderthe
casesofzeroand30sstart-uptimes. Weplotthecomputed
fguresofPinFig.7,whereweusesquaresforthesimulation
values(averageof10simulationruns,eachconsistingofmore
than100kusers)andlinesfortheanalysis.
Accordingtotheresults,thepowerconsumptionis
monotonouslyincreasingwiththenetworkload, withthe
analysispracticallycoincidingwiththesimulationvalues,
withsomeminordeviations(approx.1.8%)forhighloads
(wedepictazoomedversionofthefgureforthesevalues).
Consideringtherelativeperformanceofeachconfguration,
forthecaseofTon=0theresultsoverlap,whileforthecase
ofTon=30s,thepolicythatis“moreeager”topowerAPs
leadstohigherpowerconsumption.
Wenextanalysetheperformanceintermsofservicetime
andthetrade-offwithpowerconsumption.Tothisend,weplot
Tsvs.PinFig.8,witheachsimulationpointcorresponding
toadifferentvalueofρ,whichvariesfrom0.05to0.9
instepsof0.05.Herewealsoprovideforcomparisonthe
“ordinary”caseofnoRoDscheme(allAPsalwayson),
whichleadstothesmallestservicetimesandthelargestpower
consumptions.Asinthepreviouscase,theanalysisaccurately
predictssimulationresults,withdifferencesbelow2.5%.The

9Thisisareasonablenumberfordensescenarios:forinstance,anaudito-
riumwith360users,eachofthemdemanding3MbpsforHDvideo,would
require31802.11nAPswithathroughputof35Mbps(datatakenfrom[18]).
Resultsofthesameorderofmagnitudeareobtainedin[27],[28].
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Fig.8. Averageservicetimevs.averagepowerconsumption.

fgurealsoillustratesthattheservicetimeisamonotonous
increasingfunctionoftheload:steepforρ≤0.3,whichis
causedbythe“drastic”impactofpoweringonanAPwhen
thenumberofactiveresourcesisrelativelylow,andthenmore
gradualuntilρ≈0.9.Concerningtheimpactoftheconsidered
confgurations,forthesamevalueofthe{ρl,ρh}parameters,
thenon-zerostarttimehasanimpactofapprox.5sforthe
moredynamicconfguration,andapprox.2sforthemore
“reluctant”confguration,whiletheimpactoftheactivation
policyresultsindifferencesofapprox.12s.

B.ImpactofRoDconfguration

Next,weconsiderthecaseofafxedvalueofρ=0.5,
andcomputetheservicetimeandpowerconsumedforthe
twoconsidered{ρh,ρl}confgurationsanddifferentvaluesof
thetargetnumberofusersperAPM. Weplottheservice
timeandthepowerconsumptionasafunctionofM,withthe
resultsbeingdepictedinFig.9.
Forthecaseoftheservicetime(Fig.9,top),againsimula-
tionresultspracticallycoincidewiththeanalysis.Thelarger
M is,thelongertheservicetimesare,asusersaremorelikely
tosharethecapacityofasingleAPbeforeactivatingnew
resources.Infact,therelationispracticallylinear,e.g.,when
M changesfrom5to10,theservicetimedoublesforall
consideredscenarios:asthereare,onaverage,moreusersper
AP,theservicetimeswillbelonger.
Forthecaseofthepowerconsumption,theresultingvalues
aredepictedinFig.9(bottom).Here,wenotethattheresults
forbothRoDconfgurationsforTon=0overlap,andresultin
aconstantpowerconsumptionregardlessofthevalueofM.
Thereasonforthisbehaviouristhat,asM increases,more
usersperAParerequiredtopoweronadditionalresources,
butalsolongerservicetimeswillresult,leadingtomoreusers
inthesystem.Infact,thepowerconsumptionof17.5 W
impliesthat,onaverage,5outofthe10availableAPsare
on,which matchestheρ=0.5load. Whenthestart-up
timesarenon-zero,thereisasmallreductionofPasM
increases.Thereasonforthisisthat,onaverage,thesystem
islesslikelytopoweronadditionalAPs,whichincursinthe
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Fig.9.Averageservicetime(top)andpowerconsumption(bottom)vs.target
numberofusersperAP.

overheadofthestart-upprocess.Finally,wealsonotethat
simulationvaluesareveryclosetothosefromtheanalysis,
withrelativedifferencesofapprox.4%(thesmallerM is,the
largerthedifferencesare,astheimpactofnon-perfectoverlap
ofcoverageareasismorenoticeableforasmallnumberof
users).

C.Computationalcomplexity

Wenextestimatethecomputationalcomplexityofobtaining
thenumericalsolutionfortheexactandthesimplifedanalysis.
Tothisend,weassumeascenario withN =10 APs,
fxM =4,andconsiderdifferentconfgurationsofTon,
ρ,and{ρh,ρl}parameters.Foreachsetofparameters,we
computetheaverageservicetimeTsandpowerconsumption
P usingtheexactandthesimplifedanalysis,aswellas
thetimerequiredtocomputethesevaluesforeachcase. We
notethatweuseOctavetocomputethenumericalsolution
fortheseanalysis,runningoveranIntel Xeon X5550
@2.67GHzwith48GBRAM,andthereforeourcomparison
servestoillustratetherelativedifferencesincomplexity,and
notabsolutevalues.
WeprovideinTableItheresultsoftheabovecomputation.
Morespecifcally,weprovideintheTable,foreachconsidered
confguration,therelativedifferencebetweenthetwoanalyses
intermsofservicetime(denotedas∆Ts)andpowerconsump-
tion(denotedas∆P),andthecorrespondingcomputation
times.Therearetwomainobservationsfromtheresults:(i)on
theonehand,forbothpowerandservicetimefgures,the
resultingdifferencesbetweenthenumericalanalysesareat
most3%,andinmanycaseswellbelow1%;and(ii)onthe
otherhand,forthecomputationaltimes,therearetwoorders
ofmagnitudeofdifferencebetweentheminallbutfortwo
cases.Finally,itisalsoworthnotingthat,forthecaseof
theexactanalysis,computationaltimesgrowwithTon,which
confrmstosomeextentthattheK∗stagesareresponsiblefor
thecomputationalburden.

TABLEI
RELATIVEDIFFERENCESANDCOMPUTATIONALTIMESOFTHEEXACT

ANDSIMPLIFIEDANALYSES.

Ton(s) ρh,ρl ρ
Error Comp.time(s)

∆Ts ∆P Exact Simpl.

0
{0.5,0.75}

0.25 ≈0% ≈0% 104.28 2.35
0.75 ≈0% ≈0% 102.34 2.35

{1,0.7}
0.25 ≈0% ≈0% 102.78 2.40
0.75 0.06% 0.04% 104.58 2.30

15
{0.5,0.75}

0.25 0.22% 0.14% 167.69 3.62
0.75 0.91% 0.58% 269.43 5.77

{1,0.7}
0.25 0.02% 0.01% 166.94 3.9
0.75 0.17% 0.14% 276.20 5.65

30
{0.5,0.75}

0.25 1.97% 1.05% 320.52 6.75
0.75 3.09% 1.80% 519.96 11.36

{1,0.7}
0.25 0.41% 0.23% 316.62 7.03
0.75 1.17% 0.66% 541.04 11.72
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Fig.10. Averagedelayvs.powerconsumedwithnon-exponentialservice
demands.

D.Realistictraffcmodel

Toanalysetheimpactofthesimplifyingassumptionsonthe
traffcmodelofouranalysis,inthefollowingwecomparethe
resultsobtainedwithouranalysisagainstthoseobtainedfrom
simulationswitha“realistic”traffcmodel.Inparticular,we
follow[29]andassumethatwhenastationjoinstheWLAN,it
performsarandomnumberofdownloadrequeststhatfollows
aBiParetodistribution.Thelengthofeachdownloadalso
followsaBiParetodistribution,andtheinterarrivaltimeof
requestsfollowsalognormaldistribution.Wefxtheaverage
numberofrequeststo10,withthefollowingparametersof
theBiParetodistribution:α=0.06,β=1.73,c=6.61and
k=1;thelognormaldistributionissimulatedwithparameters
µ=0.34andσ=0.63;andtherequestlengthsareinitially
modelledwithparametersα=0.0,β=2.13,c=20.0and
k=1.5(whichleadstoanaveragedownloadsizeof30MB),
whiletheuserarrivalrateisPoissonianataraterangingfrom
0.05to0.9s−1.
WeshowinFig.10theresultingaverageservicetime
vs.powerconsumptionfordifferentconfgurationsoftheRoD
schemeandvaluesofTon,where(likeinFig.8)wevarythe
loadfrom0.05to0.9instepsof0.05. Weobservethatthe
accuracyofthemodelworsensastheservicerateincreases:
thedeviationsaresmallerthan5%forρ<0.8butnotably
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TABLE II
PERFORMANCE AN OPTIMAL CONFIGURATIONS OF A ROD SCHEME.

µ(s−1) ρ Ton(s) M ρh ρl Ts(s) P (W )

0.05

0.25
0 3 1.20 0.55 75.93 8.76
15 4 0.75 0.30 79.17 8.96
30 3 1.20 0.30 74.77 9.16

0.5
0 3 1.20 0.30 76.89 17.33
15 3 1.15 0.30 76.60 17.55
30 3 1.15 0.30 78.41 17.81

0.75
0 3 1.20 0.30 77.44 25.35
15 3 1.20 0.30 79.75 26.00
30 2 0.95 0.45 53.00 25.34

0.10

0.25
0 3 1.20 0.55 37.96 8.76
15 3 1.20 0.30 37.38 9.16
30 3 1.20 0.30 39.98 9.50

0.5
0 3 1.20 0.30 38.44 17.33
15 3 1.15 0.30 39.21 17.81
30 2 0.95 0.45 28.41 17.88

0.75
0 3 1.20 0.30 38.72 25.35
15 2 0.95 0.45 26.50 26.34
30 2 0.95 0.45 28.20 25.98

0.20

0.25
0 3 1.20 0.55 18.98 8.76
15 3 1.20 0.30 19.99 9.50
30 3 0.80 0.30 19.87 10.12

0.5
0 3 1.20 0.30 19.22 17.33
15 2 0.95 0.45 14.21 17.88
30 2 1.00 0.45 16.36 17.61

0.75
0 3 1.20 0.30 19.36 25.35
15 2 0.95 0.45 14.10 25.98
30 2 0.95 0.45 15.90 25.42

higher as the system gets closer to saturation. We conclude
from these results that overall the accuracy of the model is
reasonable for the range of loads of interest (i.e., suff ciently
far from congestion).

E. Optimal Conf guration of a RoD scheme
While the exact analysis incurs in a notable complexity,

we have seen that the simplif ed analysis is able to compute
the performance f gures of a RoD scheme in an affordable
manner while keeping a notable accuracy. In this way, it can
be used, for instance, to compute the optimal conf guration of
a RoD algorithm, given a set of estimated network conditions,
these being expressed in terms of λ and µ. In the following,
we present one example of such conf guration algorithms,
although we restrict ourselves for simplicity to the considered
RoD policy (although there could be many others) and a
simple optimisation criterion. Our optimisation scheme works
as follows. Given an estimation of the network conditions, we
set a bound on the maximum service time Tmax, and perform
a sweep on the conf guration space {M,ρh, ρl} to look for
the conf guration that minimises power while guaranteeing an
average service time Ts below Tmax. In our search, M goes
from 2 to 10 in steps of one, while ρh and ρl go from 0.05
to 1.25 in steps of 0.05.
The conf guration resulting from this search and the corre-

sponding performance f gures are given in Table II for three
different service rates µ = {0.05, 0.1, 0.2} s−1 and the corre-
sponding three service time bounds Tmax = {80, 40, 20} s,
respectively. If we compare the consumed power with a
reference scenario of the 10 APs always on (i.e., consuming
35 W), the reduction is quite considerable, ranging between
25% and 75% depending on the network load. Finally, it is

also worth remarking that Ton has a non-negligible effect on
the resulting conf guration parameters.

VI. CONCLUSIONS
Resource-on-Demand schemes are required in dense net-

works to adapt to the varying load while maintaining an energy
eff cient performance. In this paper, we have developed an
analytical model of these schemes that, in contrast to previous
publications, accounts for the non-zero start-up times of real
hardware. We have also presented a simplif ed model, whose
computational times are appox. 50x shorter while maintaining
relative errors below 3%. We have illustrated the practicality
of this simplif ed model with a simple algorithm to derive the
optimal conf guration of a RoD scheme.
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