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Abstract 

Nonlinear bending and forced vibration of graphene platelets (GPLs) reinforced composite (GPLRC) 

beam with dielectric permittivity are investigated. The tensile modulus and dielectric permittivity as 

required for structural analysis are obtained by using effective-medium theory (EMT) while Poisson’s 

ratio and mass density are evaluated by rule of mixture. Based on Timoshenko beam theory, governing 

equations for nonlinear bending and forced vibration of the GPLRC beam are established and numerically 

solved through differential quadrature method (DQM). The dependency of the structural behaviours of 

the GPLRC beams on the attributes of GPL, applied external loading and electrical field are 

comprehensively studied. The analysis demonstrates that the performances of the GPLRC beam can be 

designed and actively tuned through adjusting several parameters. The bending and vibration behaviours 

of the beam are sensitive to smaller beam thickness, larger GPL aspect ratio and electrical voltage. Snap-

through behaviour is observed for the bending and vibration of the composite beam within the involved 

AC frequency range. Reasons underlying the above observations are analyzed and discussed to 

increasingly understand the structural behaviours of graphene reinforced composite structures with 

dielectric property. 
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1. Introduction 

Materials with dielectric properties, which are named as high-κ materials [1-3], have demonstrated great 

potential in developing smart materials and structures for various engineering applications. This is 

attributed to their unique capability of active tuning of material properties and structure behaviours after 

manufacturing. Certain polymers, such as dielectric elastomer [4-7], have been proved as suitable high-κ 

candidates for various smart structures owning to their tunable attributes, flexibility, easy processability 

and low prices. However, these pure polymers’ dielectric constant is usually not sufficiently large, which 

has significantly restricted the application spectrum of these polymer materials. To address this restriction, 

the dispersion of conductive particles, including carbon black (CB) [8, 9] and carbon nanotubes (CNTs) 

[10-12] into polymer matrix has been evidenced as an effective solution to develop composites with 

significantly improved dielectric properties. 

Recently, graphene and graphene-derived materials, such as graphene platelet (GPL) and graphene 

oxide (GO), have been regarded as effective additives for polymer matrix to develop high-κ composites 

[13-15]. This interest stems from their significant reinforcing effect in the mechanical and physical 

performances. For instance, an addition of 0.04 wt% of graphene into polymer improves the fracture 

toughness and energy by 150% and 240%, respectively, compared to those of pristine epoxy [16]. Rafiee 

et al. [17] found the bulking resistance of epoxy would grow by 52% with a loading of 0.1 wt% of GPL. 

By adding 1.8 vol% of fully exfoliated graphene [18], the tensile modulus of Polyvinyl alcohol (PVA) 

composites can be improved by 10-folds. By using atomistic modelling, Rahman and Haque [19] and Sun 

et al. [20] also observed remarkable increase in the elastic properties of the graphene reinforced 

nanocomposites. The prediction by micromechanics models [21-24] also verified the reinforcing effects 

of graphene fillers on the mechanical properties of the nanocomposites. In addition to mechanical 

properties, Fan et al.’s [15] experiments demonstrated that adding 1.77 vol% of graphene into 

polyvinylidene fluoride (PVDF), the dielectric constant can reach as high as 7940 at 100 Hz. He et al. [25] 

manufactured PVDF nanocomposites with a loading of 1.01 vol% of GPL and observed that the dielectric 

constant can be more than 200 and 2700 at 1000 Hz and 100 Hz of AC (Alternating Current) frequency, 

respectively. Chen et al.’s [14] examination evidenced the dielectric permittivity of graphene/polymer 

nanocomposites is five times larger than that of pure polymer. In addition to experiments, Xia et al.’s [26] 

developed model, which was validated by comparing with experiments, also perceived obvious 

enhancement in dielectric permittivity of graphene reinforced polymer nanocomposites. 



4 

 

Apart from the efforts on characterizing and predicting the material properties of graphene reinforced 

nanocomposites, researches have been working on analysing structural performances of graphene 

reinforced composite components, including beams [27-32], plates [33-38] and shells [39-42]. Their 

results showed that the bending, vibration and buckling performances of these structures can be 

considerably improved by adding graphene and its derivatives as reinforcing fillers into polymers. 

Although plenty of work has been carried out on graphene reinforced composite structures, most of the 

previous work is focused on structural behaviours without considering the intrinsic dielectric attributes of 

the graphene reinforced nanocomposites. However, taking the advantages of the dielectric properties of 

these composites is essential for developing smart structures whereas limited work has been found on such 

topic despite of importance and great potential for engineering application. 

Therefore, the present work will be the first concentration on nonlinear bending and forced vibration 

behaviours of graphene reinforced composite beam with considering the dielectric property of the 

composite material. For case study, PVDF and GPL are chosen as constituent components for the 

composite beam. Fig. 1 shows the GPL reinforced composite (GPLRC) beam with applied electrical 

voltage. It should be noted that the beam’s top and bottom surfaces are coated with conductive paste 

serving as the compliant electrodes to accommodate the applied electrical voltage. Effective-medium 

theory (EMT) and rule of mixture will be employed to calculate the composite’s material properties as 

required for structural analysis. Parametric study on the bending and forced vibration of the GPLRC beam 

is conducted through numerically solving the governing equations, which are derived by Timoshenko 

beam theory taking account of von Kármán geometrical nonlinearity. 

 

 

Fig. 1. Schematic configuration of GPLRC beam. 

 

2. Effective material properties of GPLRC 
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Prior to structural analysis, the material properties of the GPLRC as required need to be determined. 

For GPLRC with randomly and uniformly dispersed reinforcing fillers, its effective Poisson’s ratio and 

mass density can be estimated by rule of mixture rule as 

 

 e m m f f e m m f f          = + = +，  (1) 

 

where the subscripts “m”, “f” and “e” refer to polymer matrix, reinforcing fillers and effective composite, 

respectively, and ν, ρ and φ refer to Poisson’s ratio, mass density and volume fraction, respectively. 

Regarding to the elastic properties of GPLRC, Halpin-Tsai formula has been used as an effective 

method for prediction [43]. Apart from elastic modulus, dielectric permittivity of the GPLRC also needs 

to be determined. However, using Halpin-Tsai equation to derive composites’ dielectric permittivity with 

capturing the underlying physical mechanisms is challenging. Therefore, in this paper, EMT is introduced 

and adopted to evaluate the effective elastic modulus together with the dielectric permittivity of GPLRC. 

According to Maxwell’s approach [44] of far field matching, the field of the homogeneous GPLRC can 

be determined as  

 

 e

1

n

i i

i


=

= Τ T  (2) 

 

where φi and Ti denote the volume fraction and the field of the ith scattered constituent component at far 

distance, respectively. Selecting a reference medium, the filed Ti can be written as 
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where Li and Si are the moduli and Eshelby’s tensors of the ith constituent component, respectively, and 

Lr denotes the moduli tensor of the reference medium. Particularly, selecting effective medium itself as 

reference medium, i.e. Lr = Le, Eq. (2) becomes the expression for EMT as  
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When constituent components are randomly and uniformly distributed in the effective medium, we can 

average the term over all orientations to cast Eq. (4) as 
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1
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where < > denotes term averaging. For two-phase GPLRC composites, Eq. (5) can be written as 
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Considering isotropic attributes of graphene reinforced composites, Eq. (6) becomes a scalar equation 

after averaging, i.e. 
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where Lk (k = 1, 2, 3) is the moduli component of GPL filler in its local coordinate system. 

 

2.1.  Effective dielectric permittivity 

The moduli tensors in Eq. (7) can be electrical conductivity of the effective medium. Substituting the 

corresponding moduli tensors, one can have 
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m e e
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1
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+ =
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where σ* denote complex electrical conductivity. It consists of two parts, i.e. σ* = σ+2πfACεj, wherein σ is 

the DC (direct current) conductivity and the second imaginary term is the AC conductivity with fAC being 

AC frequency of electrical field and ε the dielectric permittivity of the material.  

Treating GPLs as reinforcing fillers with thin oblate spheroid shape [45], the elements of Eshelby’s 

tensor used in Eq. (8) can be expressed as [46] 
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where α = tGPL/DGPL denotes GPL’s thickness-to-diameter ratio with tGPL being the thickness and DGPL 

being the diameter. 

To capture the imperfect bonding/interaction between reinforcements and matrix, an interphase 

surrounding the reinforcements is usually introduced [47, 48]. According to [49], the effective electrical 

conductivity and dielectric permittivity of the coated reinforcing fillers, i.e. 
( )c

k  and 
( )c

k , can be 

approximated as 
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 (10) 

 

where 
( )int

0 and 
( )int

0  correspond to the interphase’s electrical conductivity and dielectric permittivity, 

respectively. All the electrical conductivity and dielectric permittivity of the GPL fillers involved in Eq. 

(8) should be substituted by the ones in Eq. (10). φint in Eq. (10) denotes the volume fraction of the 

interphase in the coated GPL, which is 
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 (11) 

 

where tint is the thickness of the interphase. 

It is easily understood that when more reinforcing fillers are dispersed, the average distance between 

adjacent fillers will decrease, leading to enhanced probability of interfacial electron hopping and MWS 

polarization. To capture such process of enhancement, 
( )int

0 and 
( )int

0 , in Eq. (10) can be modified as [26] 
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wherein the subscript “static” represents the parameters’ independence on AC frequency of the electrical 

field, 
*

f denotes the percolation threshold of the GPL/polymer composites, and static

 and static

 are the 

scale factors describing electron hopping and MWS polarization, respectively. ( )*

f f static, ,      in Eq. (12) 

is a function written as [26, 49-51] 
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*

* f f
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, , arctan
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F
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
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 is Cauchy’s cumulative probabilistic function.  

Subjected to AC electrical loading, AC frequency can facilitate the interfacial tunneling and MWS 

polarization effects. Therefore, 
( )int

static  and 
( )int

static  are further modified as functions depending on AC 

frequency as [26, 52] 
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where 
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In Eqs. (14) and (15), tσ is the characteristic time of electron tunneling, tε is the relaxation time of Debye 

theory, 
( )int

inf  is the interface’s dielectric permittivity at infinite AC frequency and inf

  is the scale factor 

denoting nanocapacitors formation at infinite AC frequency. 

Choosing GPLs and PVDF as the reinforcing fillers and the polymer matrix, respectively, the EMT 

model on predicting the dielectric permittivity of GPL/PVDF composites was validated by Xia et al. [26].  

 

2.2.  Effective elastic modulus 

Substituting the parameters with mechanical quantities, Eq. (7) becomes the following form 
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where Ee is the elastic modulus of the homogeneous GPLRC. Like the electrical property, considering the 

imperfect bonding between fillers and polymer, the effective elastic modulus of coated GPL is 
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where 
( )int

0E  is the elastic modulus of the interphase. This elastic modulus of coated GPLs will substitute 

Ek in Eq. (17). Excellent prediction on elastic modulus by EMT model is observed comparing with the 

experimental data in [53]. 

 

3. Problem Formulation 

Employing Timoshenko beam theory, the displacement field is given as 
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where U(x, t) and W(x, t) are the displacements of the middle plane of the beam in x and z directions, 

respectively, Ψ(x, t) is the rotation of the cross section and t is the time. Using von Kármán geometrical 

nonlinearity, the normal and shear strains in the beam are 
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Correspondingly, the normal stress and shear stress are obtained as 
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where E and ν represent the elastic modulus and Poisson’s ratio of the material of the beam, respectively. 

Considering an existing axial stress  in the beam, the total normal stress is updated as 
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The existing axial stress in the beam can be determined as following 
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0 2

V

h
  = −  (22) 

 

where 0 denotes initial stress applied in the beam’s longitudinal direction, ε is the dielectric permittivity 

of the material. V is the voltage applied across the beam. In Eq. (22), the second term on the right hand 

side denotes the electrostatic stress produced by the voltage due to the dielectric property of the beam. 

The voltage applied consists of two parts, i.e. V = VDC+VACsin(2πfACt), in which VDC and VAC are the 

amplitudes of DC and AC voltage, respectively, and fAC is the AC frequency of the voltage in Hertz. Here 
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it should be noted the AC voltage is normally used for actively tuning or periodic excitation and its 

magnitude is usually much smaller than DC component [54]. Therefore, the magnitude of DC voltage will 

be used in Eq. (22) to calculate the axial stress. 

Integrating the normal and shear stresses over corresponding domains, the internal forces and moment 

in the beam are derived as  
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where A00, B00, A11, B11, D11 and A55 are coefficients determined as 
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with ks being the shear correction factor. 

Based on the stress and strain, the virtual strain energy in the beam can be given as 
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The kinetic energy of the beam is 
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where I1, I2, I3 are inertial components defined as  
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Considering external loading Q(x, t), the virtual work done by this load is 
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Based on Hamilton’s principle, the governing equations for bending and vibration behaviours can be 

obtained as 

 

 ( )
0

0
t

eW T U dt  + − =  (29) 

 

Setting the coefficients of δU, δW and δΨ in Eq. (29) as zero produces 
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 (30) 

 

The governing equations of the beam can be derived by replacing Eq. (23) into Eq. (30) as 
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For clamped end (denoted as C), the boundary conditions can be obtained by setting axial and transverse 

displacements together with rotations as zero, i.e. U = 0, W = 0 and Ψ = 0. Setting the axial and transverse 

displacements and bending moments as zero will produce the corresponding boundary conditions for 

hinged end (denoted as H), i.e. U = 0, W = 0 and Mx = 0. 

 

4. Solution 

To normalize the governing equations, the following dimensionless quantities are defined 
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 (32) 

 

where A110 and I10 are the corresponding values of A11 and I1 of beam made of pure polymer, respectively, 

λ is the dimensionless excitation frequency, and ω and ωl are the radian excitation frequency and 

corresponding fundamental frequency of the composites beam, respectively. Then Eq. (31) can be cast as 

the following dimensionless form 
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The dimensionless governing equations can be solved numerically with the aid of differential 

quadrature method (DQM). First, the following forms for displacements of the beam and their derivatives 

are introduced 
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where  , ,m m mu w   is the displacement vector at position ξ = ξm, ( )ml x is the Lagrange interpolation 

polynomials and 
( )k

imc  is the weighting coefficients of the kth derivative at ξ = ξi, and N is the total number 

of grid points distributed along the whole length of the beam. In present work, we adopted the following 

expression for the distribution of the grid points [55] 
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Substituting Eq. (34) into Eq. (33) will yield the governing equations in the following discretized form 
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 (36) 

 

Correspondingly, the boundary conditions for clamped and hinged ends become  

 

 0, 0, 0u w = = =  (37) 
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Eq. (36) can also be re-arranged in a simplified matrix form as 

 

 ( )L NL+ + =  Md K K d d q  (39) 

 

where KL denotes linear stiffness matrix, KNL denotes the nonlinear stiffness matrix depending on 

displacement vector       , ,
T

T T T

i i iu w =d , M denotes mass matrix and q denotes force vector 

expressed as 
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1 11
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iN NN
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= =q  (40) 

 

Considering damping of the system, Eq. (39) can also be written as 
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 ( )L NL+ + =Md Cd + K K d q  (41) 

 

where C = (2ζ/ωl)/KL is the damping coefficient matrix defined with ζ being damping ratio and ωl the 

beam’s fundamental natural frequency [56]. For nonlinear bending of the composite beam, Eq. (41) can 

be reduced to 

 

 ( )L NL+ =K K d q  (42) 

 

where   ( )     ( )
1 11

0 , , 0 1,2, ,
T

TT T

iN NN
q i N

 
= =q . 

Eq. (42) can be solved by direct iteration method for nonlinear bending while the time response of the 

beam under transverse load can be obtained through solving Eq. (41) with direction integration by Runge-

Kutta method. 

 

5. Results and Discussion 

5.1.  Convergence and Validation Study 

Table 1 tabulates dimensionless midpoint deflection of GPL/PVDF composite beams with different 

numbers of grid points and boundary conditions. The concentration of GPL in the composites is 1.5 wt%. 

The dimensions of the beam are L = 10 mm and h = 0.5 mm, respectively. No electrical field and initial 

axial stress and are applied on the beam. The total number of grid points N increases from 7 to 25. As can 

be seen, grid points are required to achieve convergent results for beams subjected to larger loading. For 

example, 17 grid points are needed to achieve convergent results for H-H beam when the dimensionless 

load is 0.01 while 23 grid points are required as the dimensionless load increases to 0.03. Considering 

computational efficiency with enough accuracy, 19 grid points will be used for analysis thereafter. 

 

Table 1 Dimensionless midpoint deflection of GPLRC beam with different boundary conditions. 

N 
q = 0.01  q = 0.03 

C-C C-H H-H  C-C C-H H-H 

7 0.049122 0.095589 0.210426  0.145767 0.262646 0.483511 

9 0.049103 0.095574 0.210428  0.145293 0.262355 0.465535 

11 0.049103 0.095574 0.210428  0.145293 0.262357 0.465868 
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13 0.049103 0.095574 0.210428  0.145293 0.262357 0.46599 

15 0.049103 0.095574 0.210428  0.145293 0.262357 0.465978 

17 0.049103 0.095574 0.210428  0.145293 0.262357 0.465978 

19 0.049103 0.095574 0.210428  0.145293 0.262357 0.465978 

21 0.049103 0.095574 0.210428  0.145293 0.262357 0.465978 

23 0.049103 0.095574 0.210428  0.145293 0.262357 0.465978 

25 0.049103 0.095574 0.210428  0.145293 0.262357 0.465978 

 

The numerical results are validated by comparing the dimensionless midpoint deflections of a C-C 

isotropic homogenous beam with the results by Feng et al. [29] and Reddy et al. [57] in Table 2. The 

elastic modulus and Poisson’s ratio are E = 30×106 psi and ν = 0.3, respectively. The dimensions of the 

beam are b = h = 1 in and L = 100 in. The comparison indicates the present results agree well with FEM 

and previous reported results, especially for bigger external loadings.  

 

Table 2 Comparion of dimensionless midpoint deflections of beams with various loadings. 

Q (lb/in) 
Centre deflection (in) 

Present FEM Feng et al. [29] Reddy et al. [57] 

1 0.10349 0.10349 0.09853 0.10271 

5 0.45339 0.45354 0.44972 0.45003 

10 0.74344 0.74380 0.72753 0.74132 

 

5.2.  Nonlinear Bending 

As indicated, the beam thickness will have obvious effect on the beam’s axial stress. In this sub-section, 

an H-H GPL/PVDF beam will be considered for parametric study on nonlinear bending. Fig. 2 examines 

the effects of the beam thickness on the dimensionless midpoint deflection of the beam. As expected, with 

the increase of the beam thickness, the deflection decreases due to the change in the beam geometry. The 

effects of beam thickness on the deflection depend on the applied electrical voltage, especially when the 

beam thickness is relatively small. With the same beam thickness, the deflection enhances as the electrical 

voltage increases. For example, as the beam thickness increases from 0.5 mm to 1.0 mm, the deflections 

decrease by 53.40% and 68.70% when the voltage is 0 V and 250 V, respectively. However, as the beam 
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thickness becomes sufficiently large, the electrical voltage will have limited effects on the deflection. The 

above phenomena can be explained by the fact that when the beam thickness is relatively small, the 

reduction in the axial stress of beam due to electrical voltage is very significant, resulting in significant 

drop in the rigidity of the beam. As the beam thickness increases to sufficiently large, the variation of 

axial stress in the beam due to electrical voltage become limited, resulting in the overlap of the curves 

regardless of the magnitude of the voltage. The above analysis suggests that with fixed beam geometry, 

the bending behaviours of the beam can be actively tuned by changing applied electrical voltage. 
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Fig. 2. Variation of dimensionless midpoint deflection with thickness of GPL/PVDF beam. 

 

Fig. 3 plots the variation of the dimensionless midpoint deflection of the GPL/PVDF beam. As seen 

from Fig. 3a, the same decrease of the dimensionless midpoint deflection is observed when GPL 

concentration reaches a critical value, i.e. fGPL = 1.3 wt%, for all voltages considered. However, when 

GPL concentration further increases, the deflection becomes highly dependent on the applied electrical 

voltage. For example, when the applied voltage is 0 V, the deflection undergoes a minor decrease from 

0.28084 to 0.24293 when the GPL weight fraction increases from 1.3 wt% to 2 wt%. As the voltage 

increases, the deflection of the beam diverges depending on the magnitude of the voltage. Particularly, the 

deflection even starts to increase for higher voltages. For example, when the applied voltage reaches 50 

V, the dimensionless deflection grows from 0.28084 to 0.29702 as the GPL weight fraction increases from 

1.3 wt% to 2 wt%. These results are owning to the fact that when the GPL concentration is below the 

percolation threshold, the variation of the beam deflection is ascribed to the change of the elastic modulus 
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of the composites. Once the GPL concentration exceeds its percolation threshold, the electrical voltage 

will significantly reduce the axial stress, resulting in increase of the beam deflection. In Fig. 3b, the 

magnitude of DC voltage is fixed as 50 V while the AC frequency varies from 0 Hz and 107 Hz. Similar 

trend of the dependency of the deflection on GPL weight fraction is found as observed in Fig. 3a. A snap-

through phenomenon is observed for the bending deflection of the beam when the GPL concentration 

exceeds the critical GPL concentration. When AC frequency is less than 10 Hz the curves converge to 

constitute the upper limit of the deflection. The deflection drops dramatically to a position when the AC 

frequency increases to 100. Then curves converge once again and constitute the lower limit of deflection 

when the AC frequency becomes greater than 103 Hz. This indicates that the bending deflection of the 

beam is very sensitive to a certain range of AC frequency (i.e. around 100 Hz in this case). 
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Fig. 3. Variation of dimensionless deflection of GPL/PVDF beam with GPL concentration (a) fAC = 0 Hz; 

(b) VDC = 50 V. 

 

Fig. 4 demonstrates the dependency of dimensionless midpoint deflection of GPL/PVDF beam on the 

GPL aspect ratio DGPL/tGPL, in which the GPL thickness is fixed as 50 nm. The GPL concentration in this 

case is 1.5 wt%. As seen from the figure, the dimensionless deflections for different AC frequency overlap 

each other for all voltages considered, i.e. 10 V, 20 V, 30 V and 40 V, when the GPL aspect ratio is a 

critical value, i.e. approximate 200. As the GPL aspect ratio further increases, i.e. larger than 200, AC 

frequency demonstrates different influences on the deflection for different electrical voltages. For example, 

the deflection always drops with the GPL aspect ratio for relatively low voltages, i.e. 10 V and 20 V, as 
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demonstrated in Fig. 4a and Fig. 4b. When the electrical voltage increases to larger values, i.e. 30 V and 

40 V, as shown in Fig. 4c and Fig. 4d, the deflection of the beam still decreases with the GPL aspect ratio 

for bigger AC frequency, i.e. 103 Hz and 104 Hz. However, the deflection starts to increase with the GPL 

aspect ratio for smaller AC frequency, i.e. 0, 1 and 10 Hz. The above observations can be ascribed to the 

dependency of the elastic modulus and dielectric permittivity of the composites on the GPL aspect ratio 

and AC frequency. GPLs with larger aspect ratio can better reinforce the elastic modulus and dielectric 

permittivity of the nanocomposites. When the GPL aspect ratio is small, i.e. less than 200, the GPL weight 

fraction is below the percolation threshold and the dielectric property of the composites can be neglected 

regardless of the magnitudes of the AC frequency and electrical voltages. Thus, the deflection decreases 

with GPL aspect ratio for all cases owning to increased elastic modulus of the composites. When the GPL 

aspect ratio increases, the GPL concentration approaches the percolation threshold. For smaller voltage, 

the decrease of deflection is dominated by the increased elastic modulus. In contrast, for smaller AC 

frequency at larger electrical voltage, deflection decreased due to dielectric property of the beam becomes 

more significant compared to the contribution by elastic modulus. 
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Fig. 4. Variation of dimensionless midpoint deflection of GPL/PVDF with GPL aspect ratio (a) VDC = 10 

V (b) VDC = 20 V (c) VDC = 30 V (d) VDC = 40 V.  

 

Fig. 5 plots the variation of the dimensionless midpoint deflection of GPL/PVDF beam with electrical 

voltage. When the GPL weight fraction is 1.3 wt%, the dimensionless deflection is independent on the 

electrical voltage. This is because this weight fraction is smaller than the percolation threshold and the 

dielectric property of the composites and resultant variation in the axial stress can be neglected. As the 

GPL concentration increases, the deflection increases with enhanced increasing rate. For example, the 

dimensionless deflection slightly grows from 0.27166 to 0.27657 as the voltage increases from 0 V to 100 

V when the GPL concentration is 1.4 wt%. In contrast, the dimensionless deflection goes up from 0.2595 

to 0.30665 when the GPL concentration is 1.6 wt%. The above phenomenon is contrary to the trend as 

normally expected, i.e. the increase of GPL concentration would decrease the deflection due to enhanced 

beam stiffness. This is because the increase of GPL results in significant enhancement in dielectric 

property of the composite, softening the stiffness of the beam. Such softening effect is more significant 

than the increase of beam stiffness due to increased GPL concentration. 
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Fig. 5. Variation of dimensionless midpoint deflection of GPL/PVDF composite beam with voltage. 

 

The variation of the dimensionless midpoint deflection of the GPL/PVDF beam with AC frequency is 

described in Fig. 6. The amplitude of the DC component is fixed as 100 V. As seen from this figure, the 

dimensionless deflection is independent on the AC frequency when the GPL concentration is relatively 

low (i.e. fGPL = 1.3 wt%). When the GPL concentration further increases, there exists a transition region, 

wherein dimensionless deflection decreases sharply as the AC frequency increases. Within the transition 

region, the increase of the GPL concentration will result in the increase of the variation rate of the 

dimensionless deflection. As the AC frequency becomes sufficiently large, the dimensionless deflection 

once again becomes independent on the AC frequency. 
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Fig. 6. Variation of dimensionless midpoint deflection of GPL/PVDF composite beam with AC frequency. 

 

5.3.  Forced vibration 

For forced vibration, steady-state response is of the most interest in engineering practice. Thus, 

parametric study will be conducted on the steady-state response of C-C composite beams in the following. 

Unless stated otherwise, the dimensionless amplitude and excitation frequency of the periodic transverse 

loading are set to be constants, i.e. qmax = 10 and λ = 5, respectively, and the damping ratio is ζ = 0.1. Fig. 

7 studies the steady-state response of the beam with different thicknesses, in which two voltages, i.e. 0 V 

and 250 V, are considered. It can be concluded from the figure the vibration amplitude decreases with the 

increase of the beam thickness owning to enhanced rigidity of the beam. Considering electrical voltage, 

the vibration amplitude and velocity are more sensitive to the beam with smaller thickness. This can be 

evidenced by the significant enlargement of the phase portrait for 0.5 mm thickness while the others have 

limited change when an electrical voltage of 250 V is applied. The significant enlargement of the phase 

portrait indicates that the beams with smaller thickness will have wider range of reaction when subjected 

to external loading. This is beneficial for developing smart structures with better capability of active tuning. 

However, the beam with larger area of phase portrait corresponds to higher energy, which may increase 

the risk of mechanical failure. 
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Fig. 7. Steady-state response of GPL/PVDF composite beam with different beam thicknesses (a) Time 

history at VDC = 0 V; (b) Time history at VDC = 250V; (c) Phase portrait at VDC = 0 V; (b) Phase portrait 

at VDC = 250 V. 

 

Fig. 8 compares the steady-state responses of GPL/PVDF beam with different initial axial stresses, in 

which the electrical voltage is set as zero. As observed in Fig. 8a, the vibration amplitude drops with the 

increase of the initial axial stress due to beam’s reinforced stiffness. Shown in Fig. 8b, the phase portrait 

with initial stress being 2.5 MPa has the largest area, which corresponds to the highest energy in the beam 

structure. Fig. 9 exhibits the steady-state response of the GPL/PVDF composite beam subjected to 

different damping ratios, in which the initial axial stress is 10 MPa and no electrical voltage is applied. 

Expectedly, the vibration amplitude weakens with the increase of the damping ratio. It is found that the 
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effect of the damping ratio becomes limited as it increases to larger values. Due to the more energy 

dissipated, the phase portrait shrinks for larger damping ratio as observed in Fig. 9b.  

 

 

Fig. 8. Steady-state response of GPL/PVDF beam with different initial axial stresses (a) Time history; (b) 

Phase portrait. 
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Fig. 9. Steady-state response of GL/PVDF beam with different damping ratios (a) Time history; (b) Phase 

portrait. 

 

The effects of GPL concentration on the steady-state response of the beam are demonstrated in Fig. 10. 

Without considering electrical field, the vibration amplitude slightly decreases with the GPL concentration 

195 196 197 198 199 200
-4

-2

0

2

4
 

0
 = 2.5 MPa    

0
 = 5.0 MPa

 
0
 = 7.5 MPa    

0
 = 10.0 MPa

(a)D
im

en
si

o
n
le

ss
 d

ef
le

ct
io

n
 w

m
id
/h

Dimensionless time 

-4 -2 0 2 4
-8

-4

0

4

8

D
im

en
si

o
n
le

ss
 v

el
o
ci

ty
 w

m
id
/h

Dimensionless deflection w
mid

/h

(b)

 
0
 = 2.5 MPa    

0
 = 5.0 MPa

 
0
 = 7.5 MPa    

0
 = 10.0 MPa

195 196 197 198 199 200
-4

-2

0

2

4
  =      =      =      = 

(a)D
im

en
si

o
n
le

ss
 d

ef
le

ct
io

n
 w

m
id
/h

Dimensionless time 



26 

 

as demonstrated in Fig. 10a. In contrast, when an electrical voltage of 250 V is applied, the vibration 

amplitude firstly decreases and then increases as GPL concentration grows (as shown in Fig. 10b). The 

above observations can also be evidenced by the corresponding phase portraits. For example, without 

electrical voltage, phase portraits are distributed closely with limited gaps between neighboring ellipses 

and their area always decreases as the GPL concentration increases (Fig. 10c). This trend is also true for 

relatively small GPL weight fraction, i.e. 1.2 wt% and 1.3 wt%, when subjected to electrical voltage (Fig. 

10d). However, as the GPL further increases, the phase portrait starts to enlarge, which becomes more 

significant for higher GPL concentration. This non-monotonic variation with GPL concentration with 

considering electrical voltage is ascribed to the combined effects of electrical voltage and GPL’s 

reinforcement on elastic modulus. The addition of more GPLs enhances the elastic modulus of the 

composites whereas it decreases the beam’s stiffness when considering electrical voltage due to increased 

dielectric permittivity and resultant release of axial stress. When GPL concentration is small, the increase 

in beam stiffness by the variation of elastic modulus is more significant than the reduced axial stress by 

the electrical voltage due to limited dielectric permittivity. As GPL concentration further increases, the 

significant increase of the dielectric permittivity will release more axial stress, resulting in dominant 

decrease in the stiffness of the beam.  
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Fig. 10. Steady-state response of GPL/PVDF beam with different GPL weight fractions (a) Time history 

at VDC = 0; (b) Time history at VDC = 250 V; (c) Phase portrait at VDC = 0 (d) Phase portrait at VDC = 250 

V. 

 

The steady-state responses of the composite beam reinforced by GPLs with different aspect ratio are 

presented in Fig. 11, in which the electrical loading only consists of DC component and two DC voltages, 

0 and 100 V are considered. Without applying electrical voltage, i.e. VDC = 0, the vibration amplitude 

always decreases as the GPL aspect ratio increases. In contrast, when an electrical voltage of 100 V is 

applied, the GPL aspect ratio has different effects on the vibration amplitude. Seen from Fig. 11b, the 

vibration amplitudes are almost the same as the ones in Fig. 11a for relatively small GPL aspect ratio, i.e. 

DGPL/tGPL = 100 and 200. However, as the GPL aspect ratio increases to 300 and 400, the vibration 

amplitude in Fig. 11b increases instead of decreasing compared to the variation in Fig. 11a. The phase 

portraits for different voltages also indicate the same trend. For example, in Fig. 11c the area of the 

elliptical phase portrait decreases steadily as the GPL aspect ratio increases. However, considering the 

electrical voltage, the elliptical phase portrait enlarges for larger GPL aspect ratios, i.e. DGPL/tGPL = 300 

and 400. Particularly, the enlarged phase portraits have some collapses in certain positions. This is 

attributed to the effects of nonlinear geometry when subjected to large amplitude vibration. 
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Fig. 11. Steady-state response of GPL/PVDF composite beam with different GPL aspect ratios (a) Time 

history at VDC = 0; (b) Time history at VDC = 100 V; (c) Phase portrait at VDC = 0; (d) Phase portrait at VDC 

= 100 V. 

 

The steady-state responses of GPL/PVDF composite beam subjected to different electrical loadings are 

investigated in Fig. 12, in which the initial axial stress is 10 MPa and AC frequency is set as zero. Seen 

from Fig. 12a. The increase of the electrical voltage induces larger vibration amplitude as the beam is 

more softened by the drop in the axial stress. Moreover, it is found that the reaction of the beam to the 

same external loading is more sensitive for higher electrical voltage. This indicates that applying larger 

electrical voltage enables the structure to have better actuation performance, which is desired for smart 
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structures. However, higher voltage should be constrained within a safe range to avoid electrical 

breakdown of the composites. 

 

    

Fig. 12. Steady-state response of GPL/PVDF beam subjected to different electrical voltages (a) Time 

history; (b) Phase portrait. 

 

Subjected to an electrical voltage of 250 V, the effects of AC frequency on the steady-state response of 

the beam are presented in Fig. 13. From the time history and the phase portrait, it can be seen that there 

exists a snap through phenomenon similar to the one for nonlinear bending behaviours. For example, when 

the AC frequency is small, i.e. 0 and 10 Hz, it has limited effects on the beam’s steady-state response of 

the beam. When the AC frequency reaches 100 Hz, the amplitudes of deflection and velocity jump to 

certain values. Then the response of the beam converges again as the AC frequency becomes sufficiently 

large. This snap-through phenomenon is attributed to the dependency of the dielectric permittivity of the 

composite on the AC frequency, for which there exists a transition region. Within this transition region, 

the dielectric permittivity drops sharply as the AC frequency increases. Beyond this transition, the 

dielectric permittivity hardly depends on the AC frequency. 
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Fig. 13. Steady-state response of GPL/PVDF beam subjected to different AC frequencies (a) Time history; 

(b) Phase portrait. 

 

6. Conclusions 

Nonlinear bending and forced vibration of GPLRC dielectric beam are investigated by numerically 

solving governing equations, which are derived based on Timoshenko beam theory and von Kármán 

geometrical nonlinearity. The analysis demonstrates that there exists a critical GPL concentration, below 

which the electrical loading has limited effects on nonlinear bending and forced vibration of the composite 

beam. For higher GPL concentration, it is found that the effects of electrical loading on the structural 

behaviours of the GPL/PVDF beam comprehensively depend on the thickness of the beam, the GPL aspect 

ratio and AC frequency. Due to the effects of dielectric property, the increase of GPL concentration results 

in increase of deflection when the beam is subjected to electrical voltage, which is different from the 

observation as usually expected. A transition region is observed for the effects of AC frequency. Within 

this region, the structural performances of the composite beam are very sensitive to the change of the AC 

frequency. A slight variation in the AC frequency can result dramatic change in the structural behaviours 

of the composite beam. More parametric study is also conducted on the effects of damping ratio and initial 

axial stress. 
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Table Captions 

Table 1 Dimensionless midpoint deflection of GPLRC beam with different boundary conditions. 

Table 2 Comparion of dimensionless midpoint deflections of beams with various loadings. 
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Figure Captions 

Fig. 1. Schematic configuration of GPLRC beam. 

Fig. 2. Variation of dimensionless midpoint deflection with thickness of GPL/PVDF beam. 

Fig. 3. Variation of dimensionless deflection of GPL/PVDF beam with GPL concentration (a) fAC 

= 0 Hz; (b) VDC = 50 V. 

Fig. 4. Variation of dimensionless midpoint deflection of GPL/PVDF with GPL aspect ratio (a) 

VDC = 10 V (b) VDC = 20 V (c) VDC = 30 V (d) VDC = 40 V. 

Fig. 5. Variation of dimensionless midpoint deflection of GPL/PVDF composite beam with 

voltage. 

Fig. 6. Variation of dimensionless midpoint deflection of GPL/PVDF composite beam with AC 

frequency. 

Fig. 7. Steady-state response of GPL/PVDF composite beam with different beam thicknesses (a) 

Time history at VDC = 0 V; (b) Time history at VDC = 250V; (c) Phase portrait at VDC = 0 V; (b) 

Phase portrait at VDC = 250 V. 

Fig. 8. Steady-state response of GPL/PVDF beam with different initial axial stresses (a) Time 

history; (b) Phase portrait. 

Fig. 9. Steady-state response of GL/PVDF beam with different damping ratios (a) Time history; 

(b) Phase portrait. 

Fig. 10. Steady-state response of GPL/PVDF beam with different GPL weight fractions (a) Time 

history at VDC = 0; (b) Time history at VDC = 250 V; (c) Phase portrait at VDC = 0 (d) Phase portrait 

at VDC = 250 V. 

Fig. 11. Steady-state response of GPL/PVDF composite beam with different GPL aspect ratios (a) 

Time history at VDC = 0; (b) Time history at VDC = 100 V; (c) Phase portrait at VDC = 0; (d) Phase 

portrait at VDC = 100 V. 

Fig. 12. Steady-state response of GPL/PVDF beam subjected to different electrical voltages (a) 

Time history; (b) Phase portrait. 

Fig. 13. Steady-state response of GPL/PVDF beam subjected to different AC frequencies (a) Time 

history; (b) Phase portrait. 
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