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Abstract Resumen

Current network infrastructures handle a di-
verse range of network services such as video
on demand services, video-conferences, so-
cial networks, educational systems, or photo
storage services. These services have been
embraced by a significant amount of the
world population, and are used on a daily ba-
sis. Cloud providers and Network operators’
infrastructures accommodate the traffic rates
that the aforementioned services generate, and
their management tasks do not only involve
the traffic steering, but also the processing of
the network services’ traffic. Traditionally,
the traffic processing has been assessed via
applications/programs deployed on servers
that were exclusively dedicated to a specific
task as packet inspection. However, in re-
cent years network services have stated to be
virtualized and this has led to the Network
Function Virtualization (Network Function
Virtualization (NFV)) paradigm, in which the
network functions of a service run on con-
tainers or virtual machines that are decoupled
from the hardware infrastructure. As a result,
the traffic processing has become more flex-
ible because of the loose coupling between
software and hardware, and the possibility
of sharing common network functions, as
firewalls, across multiple network services.

NFV eases the automation of network op-
erations, since scaling and migrations tasks
are typically performed by a set of commands
predefined by the virtualization technology,
either containers or virtual machines. How-
ever, it is still necessary to decide the traf-

Las infraestructuras de red actuales soportan una
variedad diversa de servicios como video bajo de-
manda, video conferencias, redes sociales, sistemas
de educación, o servicios de almacenamiento de
fotografías. Gran parte de la población mundial ha
comenzado a utilizar estos servicios, y los utilizan
diariamente. Proveedores de Cloud y operadores
de infraestructuras de red albergan el tráfico de
red generado por estos servicios, y sus tareas de
gestión no solo implican realizar el enrutamiento
del tráfico, sino también el procesado del tráfico de
servicios de red. Tradicionalmente, el procesado
del tráfico ha sido realizado mediante aplicació-
nes/programas desplegados en servidores que es-
taban dedicados en exclusiva a tareas concretas
como la inspección de paquetes. Sin embargo, en
los últimos años los servicios de red se han vir-
tualizado y esto ha dado lugar al paradigma de
virtualización de funciones de red (Network Func-
tion Virtualization (NFV) siguiendo las siglas en
inglés), en el que las funciones de red de un servicio
se ejecutan en contenedores o máquinas virtuales
desacopladas de la infraestructura hardware. Co-
mo resultado, el procesado de tráfico se ha ido
haciendo más flexible gracias al laxo acople del
software y hardware, y a la posibilidad de compar-
tir funciones de red típicas, como firewalls, entre
los distintos servicios de red.

NFV facilita la automatización de operaciones
de red, ya que tareas como el escalado, o la mi-
gración son típicamente llevadas a cabo mediante
un conjunto de comandos previamente definidos
por la tecnología de virtualización pertinente, bien
mediante contenedores o máquinas virtuales. De
todos modos, sigue siendo necesario decidir el en-
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fic steering and processing of every network
service. In other words, which servers will
hold the traffic processing, and which are the
network links to be traversed so the users’ re-
quests reach the final servers, i.e., the network
embedding problem. Under the umbrella of
NFV, this problem is known as Virtual Net-
work Embedding (VNE), and this thesis refers
as “NFV orchestration algorithms” to those
algorithms solving such a problem. The VNE
problem is a NP-hard, meaning that it is im-
possible to find optimal solutions in polyno-
mial time, no matter the network size. As a
consequence, the research and telecommuni-
cations community rely on heuristics that find
solutions quicker than a commodity optimiza-
tion solver.

Traditionally, NFV orchestration algo-
rithms have tried to minimize the deployment
costs derived from their solutions. For ex-
ample, they try to not exhaust the network
bandwidth, and use short paths to use less
network resources. Additionally, a recent
tendency led the research community towards
algorithms that minimize the energy con-
sumption of the deployed services, either
by selecting more energy efficient devices
or by turning off those network devices that
remained unused. VNE problem constraints
were typically summarized in a set of re-
sources/energy constraints, and the solutions
differed on which objectives functions were
aimed for. But that was before 5th generation
of mobile networks (5G) were considered
in the VNE problem. With the appearance
of 5G, new network services and use cases
started to emerge. The standards talked about
Ultra Reliable Low Latency Communication
(Ultra-Reliable and Low Latency Communi-
cations (URLLC)) with latencies below few
milliseconds and 99.999% reliability, an en-
hanced mobile broadband (enhanced Mobile
Broadband (eMBB)) with significant data
rate increases, and even the consideration
of massive machine-type communications
(Massive Machine-Type Communications
(mMTC)) among Internet of Things (IoT) de-
vices. Moreover, paradigms such as edge and
fog computing blended with the 5G technol-
ogy to introduce the idea of having computing
devices closer to the end users. As a result,

rutamiento y procesado del tráfico de cada servicio
de red. En otras palabras, qué servidores tienen
que encargarse del procesado del tráfico, y qué
enlaces de la red tienen que utilizarse para que las
peticiones de los usuarios lleguen a los servidores
finales, es decir, el conocido como embedding prob-
lem. Bajo el paraguas del paradigma NFV, a este
problema se le conoce en inglés como Virtual Net-
work Embedding (VNE), y esta tesis utiliza el térmi-
no “NFV orchestration algorithm” para referirse
a los algoritmos que resuelven este problema. El
problema del VNE es NP-hard, lo cual significa
que que es imposible encontrar una solución ópti-
ma en un tiempo polinómico, independientemente
del tamaño de la red. Como consecuencia, la co-
munidad investigadora y de telecomunicaciones
utilizan heurísticos que encuentran soluciones de
manera más rápida que productos para la resolu-
ción de problemas de optimización.

Tradicionalmente, los “NFV orchestration al-
gorithms” han intentado minimizar los costes de
despliegue derivados de las soluciones asociadas.
Por ejemplo, estos algoritmos intentan no consumir
el ancho de banda de la red, y usar rutas cortas
para no utilizar tantos recursos. Además, una ten-
dencia reciente ha llevado a la comunidad inves-
tigadora a utilizar algoritmos que minimizan el
consumo energético de los servicios desplegados,
bien mediante la elección de dispositivos con un
consumo energético más eficiente, o mediante el
apagado de dispositivos de red en desuso. Típica-
mente, las restricciones de los problemas de VNE se
han resumido en un conjunto de restricciones asoci-
adas al uso de recursos y consumo energético, y las
soluciones se diferenciaban por la función objetivo
utilizada. Pero eso era antes de la 5a generación de
redes móviles (5G) se considerase en el problema
de VNE. Con la aparición del 5G, nuevos servicios
de red y casos de uso entraron en escena. Los es-
tándares hablaban de comunicaciones ultra rápias
y fiables (Ultra-Reliable and Low Latency Commu-
nications (URLLC) usando las siglas en inglés) con
latencias por debajo de unos pocos milisegundos y
fiabilidades del 99.999%, una banda ancha mejo-
rada (enhanced Mobile Broadband (eMBB) usando
las siglas en inglés) con notorios incrementos en
el flujo de datos, e incluso la consideración de co-
municaciones masivas entre máquinas (Massive
Machine-Type Communications (mMTC) usando
las siglás en inglés) entre dispositivos IoT. Es más,
paradigmas como edge y fog computing se incor-
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the VNE problem had to incorporate the new
requirements as constraints to be taken into
account, and every solution should either
satisfy low latencies, high reliability, or larger
data rates.

This thesis studies the VNE problem, and
proposes some heuristics tackling the con-
straints related to 5G services in Edge and
fog scenarios, that is, the proposed solutions
assess the assignment of Virtual Network
Functions to resources, and the traffic steering
across 5G infrastructures that have Edge and
Fog devices. To evaluate the performance
of the proposed solutions, the thesis studies
first the generation of graphs that represent
5G networks. The proposed mechanisms to
generate graphs serve to represent diverse 5G
scenarios. In particular federation scenarios
in which several domains share resources
among themselves. The generated graphs
also represent edge servers, so as fog devices
with limited battery capacity. Additionally,
these graphs take into account the standard
requirements, and the expected demand for
5G networks. Moreover, the graphs differ de-
pending on the density of population, and the
area of study, i.e., whether it is an industrial
area, a highway, or an urban area.

After detailing the generation of graphs
representing the 5G networks, this thesis pro-
poses several NFV orchestration algorithms
to tackle the VNE problem. First, it focuses
on federation scenarios in which network ser-
vices should be assigned not only to a single
domain infrastructure, but also to the shared
resources of the federation of domains. Two
different problems are studied, one being the
VNE itself over a federated infrastructure, and
the other the delegation of network services.
That is, whether a network service should be
deployed in a local domain, or in the pool
of resources of the federation domain; know-
ing that the latter charges the local domain
for hosting the network service. Second, the
thesis proposes OKpi, a NFV orchestration
algorithm to meet 5G network slices quality
of service. Conceptually, network slicing con-
sists in splitting the network so network ser-
vices are treated differently based on the slice
they belong to. For example, an eHealth net-
work slice will allocate the network resources

poraron a la tecnología 5G, e introducían la idea
de tener dispositivos de cómputo más cercanos al
usuario final. Como resultado, el problema del VNE
tenía que incorporar los nuevos requisitos como
restricciones a tener en cuenta, y toda solución
debía satisfacer bajas latencias, alta fiabilidad, y
mayores tasas de transmisión.

Esta tesis estudia el problema des VNE, y pro-
pone algunos heurísticos que lidian con las re-
stricciones asociadas a servicios 5G en escenarios
edge y fog, es decir, las soluciones propuestas se
encargan de asignar funciones virtuales de red a
servidores, y deciden el enrutamiento del tráfico
en las infraestructuras 5G con dispositivos edge y
fog. Para evaluar el rendimiento de las soluciones
propuestas, esta tesis estudia en primer lugar la
generación de grafos que representan redes 5G.
Los mecanismos propuestos para la generación de
grafos sirven para representar distintos escenar-
ios 5G. En particular, escenarios de federación en
los que varios dominios comparten recursos entre
ellos. Los grafos generados también representan
servidores en el edge, así como dispositivos fog con
una batería limitada. Además, estos grafos tienen
en cuenta los requisitos de estándares, y la deman-
da que se espera en las redes 5G. La generación de
grafos propuesta sirve para representar escenarios
federación en los que varios dominios comparten
recursos entre ellos, y redes 5G con servidores edge,
así como dispositivos fog estáticos o móviles con
una batería limitada. Los grafos generados para
infraestructuras 5G tienen en cuenta los requisitos
de estándares, y la demanda de red que se espera
en las redes 5G. Además, los grafos son diferentes
en función de la densidad de población, y el área
de estudio, es decir, si es una zona industrial, una
autopista, o una zona urbana.

Tras detallar la generación de grafos que repre-
sentan redes 5G, esta tesis propone algoritmos de
orquestación NFV para resolver con el problema
del VNE. Primero, se centra en en escenarios fed-
erados en los que los servicios de red se tienen que
asignar no solo a la infraestructura de un dominio,
sino a los recursos compartidos en la federación
de dominios. Dos problemas diferentes han sido es-
tudiados, uno es el problema del VNE propiamente
dicho sobre una infraestructura federada, y el otro
es la delegación de servicios de red. Es decir, si
un servicio de red se debe desplegar localmente
en un dominio, o en los recursos compartidos por
la federación de dominios; a sabiendas de que el
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necessary to meet low latencies for network
services such as remote surgery. Each net-
work slice is devoted to specific services with
very concrete requirements, as high reliability,
location constraints, or 1ms latencies. OKpi is
a NFV orchestration algorithm that meets the
network service requirements among differ-
ent slices. It is based on a multi-constrained
shortest path heuristic, and its solutions satisfy
latency, reliability, and location constraints.
After presenting OKpi, the thesis tackles the
VNE problem in 5G networks with static/mov-
ing fog devices. The presented NFV orchestra-
tion algorithm takes into account the limited
computing resources of fog devices, as well
as the out-of-coverage problems derived from
the devices’ mobility.

To conclude, this thesis studies the scaling
of Vehicle-to-Network (V2N) services, which
require low latencies for network services as
collision avoidance, hazard warning, and re-
mote driving. For these services, the presence
of traffic jams, or high vehicular traffic con-
gestion lead to the violation of latency require-
ments. Hence, it is necessary to anticipate to
such circumstances by using time-series tech-
niques that allow to derive the incoming vehic-
ular traffic flow in the next minutes or hours,
so as to scale the V2N service accordingly.

útlimo caso supone el pago de cuotas por parte del
dominio local a cambio del despliegue del servi-
cio de red. En segundo lugar, esta tesis propone
OKpi, un algoritmo de orquestación NFV para con-
seguir la calidad de servicio de las distintas slices
de las redes 5G. Conceptualmente, el slicing con-
siste en partir la red de modo que cada servicio
de red sea tratado de modo diferente dependien-
do del trozo al que pertenezca. Por ejemplo, una
slice de eHealth reservará los recursos de red nece-
sarios para conseguir bajas latencias en servicios
como operaciones quirúrjicas realizadas de man-
era remota. Cada trozo (slice) está destinado a
unos servicios específicos con unos requisitos muy
concretos, como alta fiabilidad, restricciones de
localización, o latencias de un milisegundo. OKpi
es un algoritmo de orquestación NFV que consigue
satisfacer los requisitos de servicios de red en los
distintos trozos, o slices de la red. Tras presentar
OKpi, la tesis resuelve el problema del VNE en re-
des 5G con dispositivos fog estáticos y móviles. El
algoritmo de orquestación NFV presentado tiene
en cuenta las limitaciones de recursos de cómputo
de los dispositivos fog, además de los problemas
de falta de cobertura derivados de la movilidad de
los dispositivos.

Para concluir, esta tesis estudia el escalado
de servicios vehiculares Vehicle-to-Network (V2N),
que requieren de bajas latencias para servicios co-
mo la prevención de choques, avisos de posibles
riesgos, y conducción remota. Para estos servicios,
los atascos y congestiones en la carretera pueden
causar el incumplimiento de los requisitos de la-
tencia. Por tanto, es necesario anticiparse a esas
circunstancias usando técnicas de series tempo-
rales que permiten saber el tráfico inminente en los
siguientes minutos u horas, para así poder escalar
el servicio V2N adecuadamente.
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1. 5G Networks & Paradigms

The 5th generation of mobile networks does not only correspond to the new set of radio technologies
promising higher bandwidth, and lower delays than its predecessor 4G. Although 5G-related radio
technologies, and new devices are the most visible part; the new standard conveys a wider set
of innovations related to new paradigms as edge computing, fog computing, Network Function
Virtualization (NFV), or network slicing. These paradigms, are introduced in the following
subsections to ease the understanding of the present thesis. And their target is to reduce the latency
bringing resources closer to the end user (edge & fog computing), and to increase the flexibility
and Quality of Service (QoS) using NFV and network slicing.

The present section starts with an overview of the different standardization bodies that have
contributed to the definition of the 5G standards. The standardization process have consisted of
two main phases, one after the other, that provide specifications for the different use cases and
applications that the 5G technology is supposed to provide.

Second of all, this section overviews the NFV paradigm, which essentially states that 5G
networks can benefit from embedding network functionality in virtualized resources. The corre-
sponding subsection overviews the building blocks of the NFV paradigm, and the functionalities
that each of them have.

Third, the section introduces the edge and fog computing paradigms, so as the related stan-
dardization bodies that have proposed both of them. Edge and fog computing, are paradigms that
propose to bring resources closer to the end user, either by means of having servers and computing
resources closer to the access network (edge computing), or by means of considering a whole
continuum of resources between cloud and users/Internet of Things (IoT) devices.

Last of all, this section explains the network slicing paradigm; which essentially consists in
differentiating coexisting 5G applications (as high-quality video streaming, or ultra-low latency
services) within the network infrastructure. As later explained, such differentiation is achieved
using traffic prioritization, and dedicated resource allocation for every application. The result is a
network infrastructure meeting the QoS requirements of 5G applications, thanks to an appropriate
network provisioning (slice) for each application.
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1.1 5G Networks
The 5G technology arises as a set of standards with the aim of satisfying the increasing network
bandwidth, faster and more reliable communications. Not only that, but it tries to provide the
necessary definitions to meet the communication expectations of new services such as Virtual Reality
(VR), Vehicle-to-Everything (V2X), or Industry 4.0. The standardization of the 5G technology is not
something finished yet, as its definition is an iterative process where standardization consortiums,
or even the industry itself, push forward the description of the different entities present.

As done with its predecessors technologies, known as 3G and 4G, the standardization of the 5th

generation of mobile networks has been tackled by the 3rd Generation Partnership Project (3GPP),
a standardization organization responsible of formalizing the requirements and features of the new
standard. 3GPP assesses the definition of a technology by splitting the different tasks into Working
Group (WG)s, which are consortiums of companies/academia members proposing enhancements
to the technology in documents known as Technical Specification (TS). For example, [3GP17a]
describes a set of enhancements for the support of V2X scenarios. The TS have a life cycle that
lead to different versions of the document, so the technology aspect treated in each TS is open to
corrections and improvements. However, the 3GPP defines “releases” serving as milestones for the
definition of 5G (so as for its predecessors). In particular, the 5G technology has already closed1

Release 15, and Release 16; and is currently working in the definition of Release 17. The former is
referred as 5G Phase-1, while the latter as 5G Phase-2. Each release spans over a couple of years
and passes along milestones setting short-term objectives (months) regarding the work being done
by the ongoing TSs, e.g., Release 16 set a milestone in the first quarter of 2020 regarding the Radio
Access Network (RAN) definition. The definitions of Release 15 and Release 16 were closed on
December 2018 and June 2020, respectively. Nevertheless, closing a release does not imply that
the technology is frozen, as the different WGs keep on working on further enhancements of their
respective TSs. Thus, the 5G technology will be enhanced in future releases that will incorporate
upcoming features that either have not been though of yet, or have been evolving since previous
releases.

Roughly speaking, the job of these standards is to define the new RAN and its requirements,
what is known as the 5G Core (5GC) (the successor of the Evolved Packet Core (EPC)), the spectrum
over which the 5G RAN transmits, the new services that 5G offers (e.g., V2X), how these services
interact with the 5GC, the integration and enhancements of Long Term Evolution (LTE) to support
new 5G services, so as the exchange of information in between the EPC and 5GC. In particular, the
Release 15 mainly focused on the definition of 5G services so as the integration of the 5G Access
Network (5GA) with not only the 5GC, but as well with the existing 4G LTE/ EPC Core Network;
this is known as Non-Stand Alone (NSA). Whilst Release 16 pushed forward the definition of the
5G services presented in Release 15, got into detail regarding the 5GA & backhaul of 5G networks,
and it introduced Ultra-Reliable and Low Latency Communications (URLLC) enhancements. As
a result, both documents provide a clear road map with pointers towards TSs that provide the
requirements and architecture design of 5G networks. This is particularly useful for the industry,
so companies responsible of building Radio Unit (RU)s know the frequencies (which depend on
countries’ regulations) and bandwidth in which the antennae have to emit/receive, car manufacturers
will know how to interact with the network to deploy V2X services, and even mobile phone chip
vendors that will need to process the so called New Radio (NR) signals for the upcoming 5G cell
phones.

The first thing coming to the mind of a citizen when she/he hears about 5G, is new base stations
that just by their own will provide the promised services and speeds of 5G services. Although
far from the reality, it is true that what is known as NR plays a key role in the definition of a
5G network as a whole. Users will connect to antennae in the frequency band between 30 and
300 GHz [Niu+15], which result in a higher transmission rate that goes up to the order of magnitude
of Gbps. This is a a huge improvement with respect to the predecessor LTE technology, which

1 this sentence was written in 17/02/2021
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Figure 1.1: (a) NSA and (b) Stand Alone (SA) architecture overview – taken from [3GP19c]

provided data rates of up to 100 Mbps in the uplink, and 50 Mbps in the downlink using 20 MHz
channels [HT11]; and peak downlink latency of 1 Gbps with the LTE advanced [3GP20i] technology.
As a result the user will benefit by achieving higher data rates useful for 4K video streams, of either
broadcasting services, or for video emissions that might exhaust the uplink channel using previous
4G technology.

The significant increase in data rates are a consequence of the research progress on the Millime-
ter Wave (mmWv) technology over the last years. With mmWv, RUs will transmit in the GHz band,
but they have the side-effect of higher signal attenuation than its predecessor technologies working
in the MHz bands. As a consequence, the signal emission should be more directional than in the
past, and their coverage is reduced. This leads to a more dense deployment of antennae in the 5G
network planning, and thus, a higher deployment cost for the infrastructure. Nevertheless, assuming
a denser deployment of NR RU leads to other issues yet to be tackled such as interference in between
the new antennae, and LTE- NR interference problems tackled in 3GPP Release 16 [3GP20h]. In
any case, NR technology presents significant features such as a flexible Subcarrier Spacing (SCS),
or allowing to emit data before the transmission slot finishes. The latter enhancement was defined in
3GPP Release 15 [3GP19c], and it is of high benefit for 5G services requiring low latency. Indeed,
rather than consuming the 10 ms defined for a transmission slot, a User Equipment (UE) could use
a slot fraction of 1 ms to transmit the latency-sensitive packet.

As in previous standardization documents of 3GPP, the 5G standardization also considers the
coexistence of 5G with current LTE deployments of network operators. New network deployments
can benefit from existing LTE infrastructure to provide wider coverage, and reuse RAN resources.
The coexistence between LTE and 5G deployments is known as NSA (see Figure 1.1 (a)), and it
assumes that NR base stations (known as Next Generation NodeB (gNB)) will forward traffic to the
legacy EPC and its constituent functions, namely, the Mobility Management Entity (MME) and
Serving Gateway (SGW). As LTE Evolved Node B (eNB) will coexist with the 5G network, there
has still been ongoing work to improve the data rates and signaling of the legacy RUs. Indeed the
work item [3GP17b] presented how to improve the Downlink (DL) capacity in the connectivity
between LTE eNBs and UEs that remain stationary, as users connected to an antenna in the rooftop
of their homes, or a fixed laptop with LTE connectivity. The modulation-based enhancement allows
reaching DL data rates of up to 3.5Gbps. This enhancement proofs that a coexistence with yet to
be improved LTE deployments, would be beneficial for future 5G infrastructures. However, the
operators’ goal is to achieve what it is known as SA architecture (see Figure 1.1 (b)) in which
all RUs will be 5G gNBs connected to the 5GC rather than to the EPC.

The benefit of SA deployments is that the 5GC provides additional tools for traffic differentia-
tion, QoS enforcement, multiple and diverse QoS flows over the same Protocol Data Unit (PDU).
The 5GC is designed as a Service-Based Architecture (SBA) framework, and it is a compound of
Network Function (NF)s that provide services to other NFs, or authorized users. The main NFs of
the 5GC are (i) the User Plane Function (UPF), (ii) the Session Management Function (SMF); and
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(iii) the Access and Mobility Management Function (AMF). The UPF handles the user data and
performs tasks as traffic routing and inspection, the SMF keeps the users sessions and enforces QoS,
and the AMF deals with the mobility support, and authentication tasks. On top of the aforemen-
tioned NFs, the SBA framework of the 5GC considers the interaction of a NF with an Application
Function (AF), so applications have a more fine grained interaction with the 5G network. Moreover,
AFs are functional elements designed to expose application-related information to consumers,
and to send event notifications over subscription. The advantage of the 5G SBA framework is
that its NFs do not have to be co-located and running under the same facilities, as specified in
Release 15 [3GP19c]; which leads to the discussion of the split of such functions among different
computing hardware nodes, i.e., the so-called functional split [3GP19c]. Not only that, but the 5GC
has a specific NF to expose monitoring information of the existing connectivity, so as the possibility
of issuing policy enforcement on the 5GC. This is the Network Exposition Function (NEF), and it
is useful for services requiring strict latency and high reliability as V2X. For example, thanks to
the NEF V2X services can monitor whether the connectivity of gNBs with cars is good enough to
ensure that applications as car-platooning can operate without any risk – see [3GP20b].

Once the users’ traffic have reached the 5GC, it is up to the UPF NF to perform the traffic
steering. Moreover, within the 5GC, the UPF serves as reporter of the current traffic usage, and
handler of QoS for the user plane [3GP19c]. This means that the UPF plays a key role to ensure the
requirements of 5G traffic, specially the promised high bandwidth rates (e.g., 4K video streaming
services), and high reliability requirements (e.g., eHealth services like remote surgery). Both
reliability and bandwidth requirements are met thanks to functionalities such as packet filtering,
or Uplink (UL) and DL rate enforcement.

Given the UPF traffic forwarding, it is still necessary to steer it towards the data network.
Typically, the traffic goes over fiber links connecting the Baseband processing Unit (BBU)s and the
switches of the core network, i.e., the backhaul portion of the network (see Figure 1.2). However,
the deployment of fiber link relates to a high Capital Expense (CAPEX), as it requires digging
in public facilities such as the sides of the road. When 5G started its standardization, operators
and vendors wondered how to accommodate the high, reliable, and fast traffic promised by 5G
without having to install the required fiber, all at once. This was of special urgency, as the 5G
networks would be more dense than its predecessors, hence requiring more RUs and fiber-based
backhaul connectivity from the latter towards the core network. To overcome the issue of having to
deploy all the required backhaul fiber links at once, the Release 16 [3GP20h] of 3GPP introduced
the concept of Integrated Access and Backhaul (IAB); a new approach of backhaul connectivity
that uses wireless mmWv to forward backhaul traffic (see Figure 1.2). The idea is to have a chain
of radio nodes interconnected among them, and the NR node providing connectivity to the UE.
These radio nodes are seamlessly integrated with the defined 5GC NFs, and are easily updated
with the target fiber-connected RUs, as they use as well Internet Protocol (IP) connectivity. With
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the IAB approach, current network deployments can shift easier to dense 5G networks relying
on fiber wires, as the operators can deploy IAB in residential/suburban scenarios where the fiber
deployment might imply a substantial economical effort. Rather, operators might deploy IAB nodes
in such areas to steer the backhaul traffic via mmWv wireless links. Although it might seem like the
transmission of backhaul through wireless channels is a fault-prone deployment, [3GP18c] accounts
for such scenarios where IAB nodes are connected in a multi-hop fashion establishing mesh-alike
connections that can recover upon link degradation due to seasonal circumstances such as the
foliage increase of the trees. Furthermore, IAB considers the strict QoS requirements of 5G, and
defines an adaption layer to assess QoS enforcement in the connections carrying the users’ data.

Up until now, we have focused on the radio, core, and backhaul changes that 5G networks
bring. All these changes are motivated by the services that 5G networks promise to offer, and it
is their strict latency, bandwidth, and communications’ reliability what motivates the upgrade of
the network infrastructure. Among the different 5G service exemplary services, some of the most
representative are the VR applications, connected drones, smart manufacturing, Machine Type
Communication (MTC), Massive Machine-Type Communications (mMTC) with connected IoT
devices, and V2X services. Each of them have their own requirements, which are specially
demanding for the 4G network deployments by means of bandwidth, reliability, latency, location,
or mobility; and even new requirements regarding battery constrained devices. The remaining of
this subsection briefly introduces some of the 5G service use cases, and their network requirements.

One of the most appealing use cases of 5G, at least for industry, is the smart manufacturing –
see Figure 1.3. Oftenly referred as the fourth industrial revolution, the industry 4.0 envisions the
possibility of fully automating tasks performed on a daily basis on the facilities of every factory.
For example, in an industrial warehouse it might be required to be constantly moving material
towards the production line whenever new goods arrive to the factory. Such a task requires the
coordination in between (i) the production lane, which might be about to run out of production
goods; (ii) the cameras installed in the parking of the warehousing building; and (iii) the mobile
robotics responsible of moving the goods between the truck in the parking, and the production
lane or storage location. Note that the described scenario of mobile robotics in warehousing, must
consider the battery levels of the operating robot that moves the goods, so as its mobility along the
warehousing facility and the respective handovers. Additionally, this moving robot will be driven
remotely by a NF that might take driving decisions using a video-stream of the robot with rates
near ∼100 Mbps [3GP20k]. During its drive the robot communication with the remote driving NF
must be reliable, a 99.9999% to be precise; and the radio coverage should be dense enough so the
moving robot has connectivity throughout all the delivery path.

Although the remote driving use case is a use case benefiting from 5G technology, it is not
as delay and jitter sensitive as other use cases like the motion control. The motion control might
be the most demanding use case in this sense, as it embraces examples such as the closed-loop
applications controlling sensor/actuator operations. This is the case of robot arms used for the
assembly of pieces, such as doors in a car production lane. This requires a low latency in between
the moving arm, and the NF that elaborates instructions using the sensor information of the robot,
e.g., whether there are objects near itself. The latency must be below 1 ms in motion control
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scenarios [3GP20k], and that should be End-to-End (E2E) latency measured from the moment the
robot issues a sensor measurement, until the reception of the remote NF instruction. The strict
latency constraint of 1 ms leaves little room to the processing of the sensor information to assess
the robot movements, and propagate the instruction packets back to the robot. A solution might be
to have a high speed wired connection with the factory robot, however, the tendency of industry
4.0 is to have a wireless access network to allow the movement of robots and actuators across the
installments depending on the daily needs. Thanks to the 5G NR, the latency is reduced in the
connectivity with the antenna, and wireless deployments are considered for industry 4.0 scenarios.
Nevertheless, in the aforementioned robotic arm scenario, the communications should not only be
fast, but reliable. Indeed, the reliability requirements become very strict (a 99.9999% is mandatory
according to [3GP20k]) so the operational errors are avoided. For example, if the robotic arm
detects an assembly piece is broken, the packet containing such sensor information becomes crucial
in the motion control; as upon this packet loss, the robotic arm might further damage the piece;
thus the communication reliability.

This type of communications in which the network must ensure very low latency and extreme
reliability, are known as URLLC; and there are different delay and reliability requirements depend-
ing on each scenario. The 3GPP gives the specific metrics in [3GP20k], where it talks about motion
control, remote control, monitoring and remote control for process automation. These scenarios ask
for latency of 1 ms, 5 ms, and 50 ms; respectively; and need to have communications with reliability
of 99.9999%, 99.999%, 99.9999% and 99.9%; respectively. Thus, the most demanding scenario
have to run over a network ensuring latency below the order of a millisecond, and with only a
0.0001% of error in the communication. To meet such low delays, 3GPP specifies in [3GP19c]
Release 15 the new numerologies for the 5G NR so the SCS can take different values from 15 kHz
up to 240 kHz. Additionally, [3GP19c] talks about mini slots of transmission, so 32 B packets can
be transmitted in 1 ms rather than having to consume the whole Transmission Time Interval (TTI);
so the URLLC packets can achieve a faster transmission. On top of these enhancements, in the
Release 16 the TS [ETS20a] introduced presented an enhancement on the UL power control scheme
to improve the prioritization/multiplexing of UEs transmission. Thanks to these enhancements, it
is possible to achieve the URLLC delay constraints for 5G services. Regarding the reliability of
URLLC packets within 5G networks, there are methods to enhance the transmission success via
redundancy such as sending the same packet over several user plane paths [3GP20h].

Another relevant application service of 5G networks is the V2X services, which comprises
several use cases such as car platooning, remote driving, cooperative awareness, hazard warnings,
and vehicle safety as lane change warning/blind spot warning. Among these services some of them
involve the communication in between cars Vehicle-to-Vehicle (V2V), or between the network
and the cars Vehicle-to-Network (V2N). In the case the communication concerns a segment of the
5G network infrastructure, e.g., the car has to forward a packet to a server to report that it had an
accident; then it becomes crucial that the packet informing of the accident arrives, and as fast as
possible, to not only the server but the other vehicles/cars that might not be reachable in the V2V
connectivity. Thus, some V2X communications lie within the category of URLLC communications.
The Release 16 [3GP20h] contributed to the definition of the aforementioned use cases, so as the
improvement of the 5G standard to technically support the V2X services. Note that services as
the remote driving require delays below 5 ms, and such communication speed must be ensured
throughout all the travel that the vehicle does. Thus, upon vehicle handovers in between RUs, the
vehicle session must be maintained and carefully ensure that handover failures have recovery/backup
mechanisms to mitigate packet loss that might lead to accidents.

For V2X services car manufacturers should collaborate closely with the network infrastructure
so as to be aware of network conditions like congestion, radio interference, packet loss, or whether
the given QoS meets the requirements of the provided V2X service. To this extent, the 3GPP
Release 16 [3GP20h] came up with the concept of Service Enabler Architecture Layer for Verticals
(SEAL). With it, 3GPP proposes to use an abstraction layer over the Internet to provide Verticals of
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Figure 1.4: A car platooning V2XAPP asking for scaling of RAN resources

services satisfying the Key Performance Indicator (KPI)s promised to the users, e.g., latency below
10 ms for a collision avoidance service in V2X [3GP19b]. To this extent, SEAL offers a server
providing different application layers to several verticals at the same time, and it is responsible of
interacting with the network to ask/manage the unicast and multicast resources provided by either
the EPC or 5GC. Additionally, V2X services can benefit of location and grouping functionalities
that SEAL offers to verticals. But the purpose of SEAL was not only to provide of an application
layer to V2X services, but other services provided by verticals, so applications that work closely
with networks are managed by verticals, and not only the infrastructure owners of 5G networks.
However, the definition of SEAL served as starting point to build the concept of V2XAPP [3GP20a],
that is applications for V2X services. With V2XAPPs there is a chance of sending packets to groups
of cars that belong to the same platoon during the driving (see Figure 1.4), by identifying all the
cars within the platoon so as the leader. Furthermore, given the strict requirements by means of
latency and reliability, as the 10 ms E2E latency and 99.99% reliability of platooning services, the
V2XAPP concept considers that the application can monitor the network performance to meet the
service requirements, and additionally it can request for resources for the underlying 3GPP network.
More specifically, V2X applications can ask for QoS analytics regarding the provided service, and
adapt their execution to the current network conditions, such as network congestion due to traffic
jams. This latter example is possible, since the 3GPP Release 16 [3GP20h] considers the possibility
of a V2XAPP asking for QoS notifications regarding a specific geographic area, i.e., the location
where a traffic jam occurs on a daily basis. In case of changing network conditions, not only the
V2XAPP can be conscious of them so as to adapt itself to the existing conditions, but as well the
5G NR will manage the resources so as to meet the delay and reliability requirements asked by the
V2XAPP. This is possible thanks to the per flow QoS differentiation that 5G NR offers.

Apart from smart factory and V2X services, there exist other 5G use cases that are representative
by means of usage of the technology capabilities, e.g., the streaming of 4K quality in crowded events,
VR video streaming/rendering, mission critical communications, or communications with Unmaned
Aerial Vehicle (UAV) over 5G networks. This section has paid attention to V2X and smart factory
because they convey applications that require of URLLC communications, which are studied
throughout the experiments present in this thesis. This is due to the importance of assessing
an adequate orchestration of resources to ensure the latency and reliability of such 5G services.
Because even if the 5G network, briefly introduced in this section, achieves faster communications
and data-rates because of its technologies (e.g., mmWv), it is not enough to rely on them to meet
the promised KPIs. In the deployments of 5G services it is crucial to ensure that traffic routing in
between the access network and the servers (e.g., in the cloud) is fast enough to meet the delay
requirements, not to mention the election of the proper target servers to process the service traffic.
Even more, for location-constrained services, the election of near-user resources is crucial to meet
the constrains, and to shrink the problem size of both steering traffic, and selecting the servers to
process the demanded service. Hence, the focus of this thesis is to solve the resource allocation and
traffic steering of 5G services, using reference 5G infrastructures, and their promised performance.
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1.2 Network Function Virtualization (NFV)
5G networks aim at being more autonomous, and to reduce the human-based maintenance. That
is, it should be able to address changes required as the network demand varies over time, e.g.,
to scale a service to accommodate the new incoming users. Traditionally, such changes required
that the network operator manually increase the network capacity by addition of supplementary
hardware, or instantiation of the used application – as a Content Delivery Network (CDN) server –
within the new supplementary hardware. This obliged the operator to have a dedicated technician
to assess the required tasks each time network demand changes, or even worse, to over-provision
the required hardware resources to meet the peaks of demand foreseen in the traffic history. But
the dimensioning of hardware resources was not the only manually performed task by means
of network management. Despite the robust and already working distributed routing protocols,
like Border Gateway Protocol (BGP), localized traffic routing management had to be assessed
manually by the system administration of networks providing any service. For example, the
additional video streaming demand needed to be redirected towards the CDN server installed inside
the new operating server, which translates into a reconfiguration of traffic rules towards the new
machine.

Static traffic routing, and infrastructure dimensioning leads to large Operational Expense
(OPEX) for a network operator, and its minimization is tightly coupled with the deployments flexi-
bility. The more flexible a deployment is, the less investment for maintenance, as the deployment is
capable of adapting to more various situations such as drops/increase of demand. Additionally, a
flexible service deployment allows to modify aspects such as CPU used, or allocated bandwidth
over a link. NFV aims to bring flexibility to network deployments thanks to the virtualization
technologies such as containers, and virtual machines. The paradigm can additionally make use
of virtualized traffic routing layers as Virtual Extensible Local Area Network (VXLAN) to bring
abstraction and isolation to the network infrastructure. The idea of NFV is to come up with an
architecture in which resources are abstracted as virtual resources later managed by entities that
allocate services over the abstracted pool of resources. For example, in a data center of x10 servers
with x4 CPUs each one, one would have a pool of x40 vCPUs corresponding to the aggregation
of all the CPUs of the data center servers. Moreover, the interconnection among servers might
be abstracted into multiple VXLANs for dedicated purposes such as data-plane and control-plane
traffic. Given the mentioned abstractions, a NFV-based network would be able to manage both the
computational and network resources as an aggregated pool easier to manage than by taking into
account the association in between hardware and resources.

On top of the network infrastructure abstraction, the European Telecommunications Standards
Institute (ETSI) abstracts the composing elements of a service offered by the network. More
specifically, ETSI conceives a functional element of the network as a Virtual Network Function
(VNF), and it is nothing but a part of a service formed by multiple VNFs that are connected as
a graph. For example, a Network Service (NS) providing video streaming would be formed of
x2 VNFs: one acting as a pool of video files; and the other doing the video encoding before it
is downstreamed towards the end user. Therefore, [ETS14] defines a NS as a chain of VNFs
interconnected with link abstractions that are called Virtual Link (VL). Intuitively, a NS would
have one VL per each consecutive VNF, that is, there would be one VL interconnecting the video
pool VNF and the video encoder VNF. But for some NSs the interconnection in between VNFs
might be more elaborated and require more than one link for each VNF. To model this, ETSI
proposes the VNF Forwarding Graph (VNFFG); a graph that represents the traffic flow in between
the VNFs of a given NS, in which every node represents a VNF, and every edge is associated to
a VL. An example of a not so straight forward VNFFG would be a load balancer NS composed
of a firewall VNF that filters and redirects the traffic among several web servers – see Figure 1.5.
Such NS would have one VL for every link interconnecting the firewall with all the subsequent
web servers. Additionally, the VNFFG associated to a NS may have a functional element that
cannot be virtualized, e.g., a camera recording a video that is streamed to the internet. In a video
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streaming NS such camera is known as a Physical Network Function (PNF); and it belongs to the
corresponding VNFFG so as the VNFs.

To manage and orchestrate virtualized services over a pool of computing and network resources,
ETSI proposes a reference architecture [ETS14] known as NFV Management and Orchestration
(MANO) architecture – see Figure 1.6. The idea is to have a common reference architecture that
deals with tasks as (i) scaling of VNFs; (ii) instantiation of NSs; (iii) management of physical
and virtual resources; (iv) providing connectivity in between VNFs or PNFs; (v) providing fault
tolerance support; (vi) update of VNFs; or (vii) healing procedures. All these tasks are delegated
to different functional blocks that are within the NFV MANO architectural framework – see
Figure 1.6. As an overview, the NFV Infrastructure (NFVI) functional block represents the
virtualization infrastructure on top of which the NSs will execute, the Virtualised Infrastructure
Manager (VIM) functional block assesses the management of underlying virtual resources, the VNF
Manager (VNFM) is responsible of the lifecycle management of the deployed VNFs, and the NFV
Orchestrator (NFVO) does both the lifecycle management of NSs, and resource management
via its interaction with the VIM. The next paragraphs provide a more detailed overview of the
interconnections and functionalities of each of the functional blocks. We proceed explaining them
in a bottom-up approach, i.e., first the functional blocks dealing with resources, and later those
dealing with the management and orchestration duties.

In the context of the NFV paradigm, each administrative domain – whether it is the domain
of a tenant, or an infrastructure domain – is responsible of the management of its own resources,
virtual of physical. It does not have to be aware of what is being executed by each of the VNFs
that run within its infrastructure (i.e., it is application agnostic), but it needs to keep track of its
own resources availability over time. Thus, an administrative domain benefits from having a VIM
to have a control of its resources. Inside the NFV MANO architecture, the VIM is aware of the
available physical and virtual resources, and it keeps track of the association of VNFs and VLs to the
underlying resources. For example, the VIM knows that the VL that connects the firewall VNF with
the web server VNF of a NS, is sending the packets across an specific physical link like an Ethernet
cable of the correspondent administrative domain. This is, the VIM is aware of how resources
are allocated for the NSs already running inside the administrative domain. There exist several
solutions that implement the VIM functionality like OpenStack [RB14], or vshepere [GLC13]; that
provide not only VIM functionalities, but other ones that correspond to different functional blocks
of the NFV MANO stack.

Given that the VIM keeps track of the pool of resources, either virtual or physical; the ad-
ministrative domain still needs to assess the corresponding management of the NSs and VNFs
deployed in the underlying resources like CPU, memory, network, or bandwidth. ETSI NFV
delegates the VNF lifecycle management to the VNFM, a functional block inside the NFV MANO
architecture that communicates with the VIM via the Vi-Vnfm interface. The VNFM performs
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the lifecyle tasks of the instantiated VNFs, that is, it deals with the (i) instantiation; (ii) healing;
(iii) scaling; (iv) termination; (v) software update; (vi) modifications; and (vii) event reporting
of the corresponding VNF. [ETS14] specifies that each instance of a VNF should have associ-
ated a VNFM that acts as a watchdog to perform the required lifecycle management actions just
mentioned. However, there is the chance of having a single VNFM dealing with the multiple
existing instances of a VNF; or even a VNFM for all the VNFs deployed by the NFV MANO of the
administrative domain. As explained later in this section, the Virtual Network Function Descriptor
(VNFD)s contain information regarding scaling procedures, so as resources and monitoring-related
tasks. These information present in the VNFs is used by the VNFM to follow the associated scaling,
healing, or instantiation indications. For example, if a VNFs specifies in its flavour that it requires of
x3 CPUs, the VNFM will ask the VIM for such amount of CPUs during the deployment. Similarly,
if the scaling details of the VNFD specify to increase x1 CPU whenever the user demand increase
by a 10%, the VNFM will trigger a scaling procedure towards the VIM. Note that the described
scaling is reactive, i.e., the increase of an additional CPU is triggered by the decrease of demand.
And the scaling procedures one specifies in the description of a VNF are not preemptive. To fill
this gap, Chapter 6 proposes the forecasting of future demand to preemptively trigger the required
scaling of resources. In particular, it studies such a preemptive scaling for V2N services.

On top of the VNFM there is the NFVO, the upper-most functional block of the ETSI MANO
framework architecture, which similar to the VNFM, manages the lifecycle of NSs. The reader
might notice that still none of the mentioned functional blocks perform the decisions of mapping NSs
to resources. This is exactly the other task that a NFVO performs within the ETSI MANO, that is,
the NFVO is responsible of taking the decisions of where the NSs should run among the different
NFVIs present in one or multiple administrative domains. This implies that the NFVO should be
aware of both the pool of resources, and the lifecycle of the VNFs already deployed; tasks that are
assessed by the VIM and VNFM, respectively. Hence, the NFVO coordinates with the VIM via the
Or-Vi interface, and with the VNFM via the Or-Vnfm interface.

The first main functionality of an NFVO is the orchestration of NSs. This means that the NFVO
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is responsible of (i) deploying onboarded Network Service Descriptor (NSD)s (later described in
this section); (ii) manage the instantiation of VNFs coordinating with the VNFM underneath for
operations as VNF scaling; (iii) update an already instantiated NS; (iv) ask for measurements to
a NS; (v) scale a NS and trigger the associated VNF scaling operations to the corresponding VNFMs;
and (vi) do policy management for every NS regarding aspects such as scaling, affinity or location
constraints. All these orchestration functionalities turn the NFVO into a global entity responsible
of coordinating all the lifecycle management of the deployed NSs. As an example, lets imagine
a video streaming NS that is broadcasting the final of a sport competition. The NFVO must be
aware of the current status of the virtual CDN VNF, and of the network bandwidth congestion.
Lets say that by the end of the event both teams tie and there is a sudden peak of demand in the
area where the tying local team is. The NFVO will be monitoring the VLs traffic and detect that
there is a congestion in such an area, however, the allocated links are saturated, and the streamed
video is losing quality. To overcome the situation, following the monitoring and QoS requirements
specified in the NSD, the NFVO will decide to scale the NS and allocate for more bandwidth in the
underlying NFVI, so the service has enough room for the increase of bandwidth demand. Once
the match is finished, the sport season may have come to an end, and it is the duty of the NFVO to
perfom the termination of the service. That is, it will inform the VIM that the associated resources
should be freed, in particular, it will contact the VNFM to terminate the virtual CDN VNF, and ask
the VIM to free the bandwidth allocated in the associated NFVI.

The second functionality of the NFVO is to perform the resource orchestration. This func-
tionality conveys the tasks associated with the (i) validation of allocation requests that the VIM
issues to the NFVI; (ii) manage and optimization of resources’ usage across the different managed
administrative domains; or (iii) management of NFVI resources used by the different VNF instances.
Among the enumerated tasks, the most related to this thesis is the (ii) one, that is, the optimization of
resource allocation, which is discussed in detail in Chapter 5. Note that whenever the ETSI MANO
architecture decides the assignment of NSs to resources, there is an algorithm running inside
the NFVO’s resource orchestrator, that finds a solution for such assignment. The mapping of NSs
to NFVI resources must meet the objectives or policies of the administrative domain managed by
the NFVO. For example, it might be the case that the administrative domain wants to minimize the
energy consumption of its infrastructure. Thus, the NFVO should account for it when deploying
all the NSs held by the architecture, and find a mapping that satisfies the deployment flavour
requirements of every NS, without exceeding a threshold of energy consumption. Note that the
objective does not necessarily have to be the energy consumption minimization. For instance, it
is a common practice to try to maximize the resource usage upon the arrival of NS instantiation
requests, since in that way the administration domain typically achieve higher revenues. These
optimization problem, with the various NS requirements is the object of interest of this thesis, and
chapters 4 and 5 treat it more in detail.

Another important element considered in the NFV MANO architecture is the Operation Support
System (OSS) / Business Support System (BSS) functional block. This block holds the operational
and business logic that is not present in the other functional blocks, and triggers actions such as
instantiation or termination requests based on its inner logic.

Lets now get into the details on how to describe both the NSs and VNFs. To formally define
a NS, ETSI proposes a set of descriptors to define the components and details regarding the
specified NS [ETS19a]. More specifically, a NSD provides information regarding (i) the VNFFG;
(ii) the Service Access Point (SAP); (iii) the deployment flavour; and (iv) the Physical Network
Function Descriptor (PNFD). A SAP specifies the entry point for a service, or in other words, what
is the first VNF to be traversed by the user’s traffic flow. Such information is useful to allocate the
physical resource that is going to provide access to the service, for example, the destination router
towards which the service users will forward their traffic. Additionally, it is required to mention the
size or dimensioning required by the associated NS; and this is done with the information present in
the deployment flavour specified inside the NSD. In particular, the deployment flavour gives details
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regarding how to perform scaling for the described service, the instantiation level (e.g., number of
instances of the associated NS), and what is the profiles of the VNFs, PNFs, and VLs inside the
service. And last of all, it is the description of the PNFs inside the described NS, which is specially
useful to plug functionalities that cannot be virtualized, like hardware components as antennae.
And as a PNF must be placed at a given location, the descriptor associated to the PNF offers the
possibility of specifying the geographical location where it should be, as it might be require for
specific use cases such as giving a video streaming service in a crowded event [Fra+17a], where an
physical antenna must be present to provide radio coverage.

Similar to NSs, ETSI defines descriptors for VNFs, the so called VNFDs [ETS19b]. This
descriptor provides deployment details about the VNF of consideration, e.g., the already mentioned
web server. The elements specified are the (i) Virtualization Deployment Unit (VDU); (ii) the VNF
deployment flavour; (iii) the VL descriptor; and (iv) information related to the connection points –
the so called Connection Point Descriptor (CPD). First of all, when talking about a VNF, ETSI refers
to a VDU as a construct to specify the operational behaviour of the container or Virtual Machine
(VM) running the VNF logic. The latter is referred as a Virtual Network Function Component
(VNFC) and is nothing but an instantiation of the description provided by the VDU, which gives
details regarding how to monitor the performance of the VNFC, what is the software image
associated to the VM or container, what is the virtual CPU and disk that is associated to the VNFC,
so as the pointers to the VLs that are connected to the VNF. Second of all, it is the deployment
flavour of the VNF, which is similar to the NSD deployment flavour by means of specifying how to
scale the VNF, tackle the lifecycle management, whether the VNF is small or large by means of
resources, how to monitor the VNF performance, and affinity constraints to be considered within
the deployment phase. Third of all there are the pointers towards the associated VLs descriptors.
There, the VNF has information regarding the flavour of the VL and its associated QoS, what is the
metrics to be monitoring, e.g., jitter; and what is the type of connectivity of the VL – IPv4, IPv7,
Multiprotocol Label Switching (MPLS), a tree flow pattern, etc. Last of all it is the CPD, that is the
logical representation of a port, and it specifies the connectivity between compute resources and
VLs. In particular, a CPD provides information of the bit rates, the VL associated to a VDU, its
security role, and other details as whether multiple Virtual LAN (VLAN)s can be carried by the
CPD.

Both the NSD and VNFD, provide a reference point for NS developers, and infrastructure
owners. Any NS following the descriptor template would be understood by the MANO stack, which
will just have to follow the described indications to assess tasks such as the lifecyle management,
and assignment of resources for the deployed service. However, the level of detail and expertise
required by NSDs may be too much for verticals. Vertical Service Blueprint (VSB)s fill such a
lack of expertise, and serve as a simplified version of a NSD that verticals can fill according to the
needs of the service they want to provide. Once verticals fill the details required by the VSB, it is
translated into a NSD so the MANO stack deploys it following the requisites. For example, if a
sport streaming company wants to deploy a virtual CDN to emit tonight’s match, it could fill a VSB
that is passed to the infrastructure owner, which will produce a NSD of a generic virtual CDN NS.
Afterwards it can just fill the default values of the descriptors to specify instantiation level details
such as the required resources like CPUs, or VLs bandwidth to support the match retransmission.
European research projects as [Sga+17] or [Man+19] have prototyped solutions implementing the
VSB, NSD and VNF concept in coexistence with the NSD catalogue concept, so any incoming
vertical can deploy on demand a NS if the underlying infrastructure has enough resources.

An advantage of NFV descriptors is the reusability of existing functionalities, as a NSD is just
a pointer to VNFDs, and to descriptors of VLs connecting them. Thus, several NSs can build on
top of common VNFDs. For example, an online store NS might use the Deep Packet Inspector
(DPI) VNF also used by an online chat NS; as both may require to perform packet inspection to
prevent malicious traffic getting inside the application. Other example of a common VNF is a
firewall. Nevertheless, it is worth stating that NSDs allow the reusability of VNFDs, not the reuse
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of VNF instances.
In the context of 5G networks, the 2014 specification [ETS14] supposed a paramount, since

the document served as a reference point in the networking community during the developing of
the 5G technology. Deliverable documents of European projects like [Sga+17] or [Man+19] relied
on it as the fundamental architecture upon which the network management should be envisioned
in 5G networks. The decomposition of traditional network services into their most elemental
functional elements – the VNFs – brought the required deployment flexibility demanded by 5G.
And not only that, but even the 3GPP TSs on the 5G technology have relied on the NFV paradigm
to build up conceptual ideas such as the functional split of certain parts of the 5G networks. For
example Release 15 [3GP19c] talks about the possibility of splitting a gNB into a Central Unit (CU)
and Distributed Unit (DU) that hold the L1 and L2 functionalities, and L2 and L3; respectively. This
functional split of a Base Station (BS) functionality enhances the deployment of a VNF running CU
tasks in a remote computing entity that does not have to be co-located within the DU functionality
that lives inside the gNB. As a result, the CUs can be hosted in a server not necessarily next to
the gNB. For example, a cloud server may be performing the processing of the CU tasks. Moreover,
this enhances a coordinated management of multiple DUs from a single CU, and an all-at-once
scaling/update of the RAN resource allocation. Motivated by the possible decoupling of RAN
functionalities that the NFV paradigm brings in, the O-RAN [ORA20] alliance was created. Its
objective is to converge towards a virtualized RAN of future networks, in which operators can ease
and improve the RAN management and operability.

To conclude this section, it is worth mentioning that the NFV paradigm is not only tightened
to the 5G networks that are a matter of study in the present thesis. The paradigm seems to have
came to the networking community to remain within the upcoming years and 5G-beyond network
technologies, and it is already a reality in the recent networking deployments. Indeed, the trend of
the networks is to go towards a fully virtualization of functionalities, except from those ones that
cannot be detached from the hardware elements of the network, e.g., antennae. However, and as
foreseen in this section, even the “non-virtualizable” components are considered as PNFs that can
operate in consonance with the VNF composing the NSs. Chapters 4 and 5 of this thesis will show
how to exploit the flexibility of NS split into VNFs to maximize revenues, and meet 5G KPI.
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1.3 Multi-access Edge Computing (MEC)
With the arise of latency sensitive applications, the networking community popped up the idea
of bringing the computing resources nearer the end user. Typically this is known as the edge of
the infrastructure, i.e., the resources that are closer to the access network – the BSs. Note that a
server co-located with a BS prevents the traffic from traversing the access ring, aggregation ring,
and core ring. Such bypass translates in a significant reduction of E2E delay, that even if it was in
the order of milliseconds, would be critical for URLLC services, as it is the difference in between
violating the latency requirements or not. There is not a strict definition of what is the edge in an
operator network infrastructure, indeed the edge is frequently divided into (i) far edge; and (ii)
near edge. With the latter referring to those network resources nearer to the BS, and the former
corresponding to resources that are pushed deeper in the network infrastructure, i.e., towards the
core of the network. It is up to the infrastructure owner to decide whether they want to go for far
or near edge deployments, and such a decision is governed by the requirements of the services
provided to the end-users. For example, V2X services sometimes have to offer one way delays
below 5 ms (see [ETS18a] service requirements for remote driving), and this means that upon a
∼ 4 ms transmission delay there is only 1 ms left to tackle both the packet transmission towards the
server, and its processing. This might be unfeasible for some services, that would require a higher
delay budget for the packet processing. Under these scenarios, Multi-access Edge Computing
(MEC) stands up as a paradigm to ease the delay burden in time-sensitive applications, which
are specially present in 5G networks, e.g., car platooning, collision avoidance, or hazard warning
services. And operator might decide to go for the business market of V2X services and install
servers near the BSs along the country most transited highways, so the vehicular traffic is fully
supported by means of latency and reliability requirements. Furthermore, these services running in
the edge can cooperate with a more localized set of neighboring servers that process cars’ traffic
that might be about to handover towards a near BS, which is of special interest in vehicular services
in which the localization constraints are key to provide a proper functionality.

Motivated by the aforementioned services, and delay requirements in the 5G services,
ETSI MEC defines a reference architecture [ETS19c] to provide MEC functionalities in a network
deployment. The idea is to set up a set of functional blocks handling the different tasks required
in the MEC paradigm, i.e., it does not just state that an application server must be nearer the
end-user. Note that MEC initially stood for “Mobile Edge Computing”, however, and due to the
heterogeneity of the Radio Access Technology (RAT), the paradigm acronym shifted the name to
embrace the possibility of supporting multiple radio technologies. Thus, the architecture definition
pays attention to the connectivity of the RAT where the user establishes an E2E connection with
the MEC service. The reference MEC architecture considers as well the orchestration of multiple
MEC hosts across the network infrastructure. MEC hosts are envisioned entities with computational
and network resources to run an application on top. ETSI MEC reference architecture decides if an
MEC host (a server near the edge of the network) is more adequate than another one to execute the
functionality of a given service, e.g., the already mentioned collision avoidance service. Moreover,
ETSI considered the chance of cooperating among several MEC hosts for the sake of sharing critical
information that might be of importance in certain applications, such as location of end-users or
even radio signal strength received by the end-users that are being attended by an MEC host. On
top of these, MEC reference architecture gives mobility support by definition, as one of the first
main goals of the specification group was to provide of full support high mobility services. This
means that handover and traffic rules to control the flows is supported by the architecture, and there
is a management aspect that controls the incoming requests, so as the lifecycle management of
the running applications. Last of all, MEC reference architecture offers a support of a OSS that
may interact with the architecture to ask for the instantiation and management of services deployed
upon its requests. However, it might be even and end user the one requiring the instantiation of a
given service. And last of all, given the arise of NFV, the ETSI MEC considered the possibility of
using virtualization for both the computing resources and network resources, and it envisions a
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Figure 1.7: ETSI MEC reference architecture [ETS19c]

management entity responsible of dealing with it.
In the following, this thesis section overviews the key components of the ETSI MEC reference

architecture (see Figure 1.7), and enters a bit more into details on their functionality. Before doing
that, there are some concepts to be enumerated. The first one is a MEC app, which is an instance of
a network functionality provided by the MEC infrastructure, e.g., a MEC app might be a data filter
to process raw data from users before storing it in a database. The second one is a MEC host, the
entity that runs a MEC app. Given these two key terms, lets proceed and go for the overview of the
functional elements of the architecture in the next two paragraphs.

First of all it is the already mentioned term, i.e., the MEC host. This functional element
might be envisioned as a server holding the successive functional elements as the (i) virtualization
infrastructure; (ii) MEC platform; and (iii) MEC apps. That is, the MEC host is the server holding
all these functional blocks; so it really is a server in the edge of the network to run a considerable
amount of tasks done by a MEC architecture. As in the NFV paradigm, there is a functional
element – the VIM – responsible of keeping track of the availability of virtualized resources as
virtual CPUs, so as the data plane resources offered by the network portioned managed by the
MEC host holding this functional element. On top of it, there is a MEC platform that interacts
with the virtualization infrastructure to provide the necessary traffic rules for traffic control in
the data plane. Additionally, it holds a registry of the applications of the services provided by
the different MEC apps running inside the MEC host. At the same level of the MEC host, there
are both the MEC platform manager, and the virtualization infrastructure manager, i.e., the VIM
already mentioned in section 1.2, which performs the management of the virtual infrastructure
resources offered by the virtualization infrastructure inside a MEC host. On top of the VIM there
is the MEC platform manager, which does the management of MEC platforms, and handles the
lifecycle management of the various MEC apps running in a MEC host, for example, to scale them
up/down to meet the requirements upon peaks of traffic demand of the services offered by each of
the existing MEC apps. As final remark about the MEC host level functional blocks, it is worth
mentioning that all the MEC platforms running inside hosts, can communicate among each other to
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coordinate on tasks such as the migration or power-on of neighboring apps that may need to be
activated upon users’ handovers in between RUs associated to different MEC platforms.

On top of the MEC host level, ETSI defines the MEC system level, where the OSS and
multi-access edge orchestrator reside. The OSS receives the requests of instantiating apps from
the Customer Facing Service (CFS), and then approves whether such operation is accepted to be
processed by the MEC architecture. But for this thesis, the component of highest importance is by
far the MEC application orchestrator, which deals with the monitoring of the overall resources avail-
able in the underneath virtual infrastructures that are managed by the MEC reference architecture.
This implies to be aware of the resources across the different MEC hosts deployed in the network
infrastructure, a quantity that varies depending on the seize of the edge deployment of a network
operator. Moreover, the MEC orchestrator is responsible of triggering the instantiation and termina-
tion of the different MEC apps in the system, and to validate the integrity of those apps that where
asked to be deployed. Its last, but most important duty – for the sake of the thesis, as mentioned –
is the orchestration of the resources and incoming MEC apps, that is, taking the decision of which
MEC host must run each of the MEC apps to satisfy the latency, or even location constraints of the
service to be provided. Note that such a decision must take into account numerous factors as energy
consumption, deployment cost, and of course, the fulfillment of service requirements as reliability,
or latency constraints. The election of the MEC hosts to hold the MEC apps, relates to the more
generic election of servers to host the VNFs of a NS. Such a problem is the topic of discussion of
this thesis, and chapters 4 and 5 discuss in detail possible solutions to such a problem, which is of
special complexity, and well-known in the current literature; with the additive complexity of having
to stick to strict service requirements that have not been of crucial interest up until the appearance
of the 5G services, and their requirements. Thus, the orchestration algorithms present in the MEC
orchestration functional block, relate to the ones discussed in chapter 5 of the present thesis.

Another relevant enhancement brought by the MEC paradigm, is the offloading of computational
capabilities towards the edge of the network. With the increase of bandwidth in 5G technologies –
as 4K video streaming – the network infrastructure faces a dimensioning challenge to support the
promised traffic rates. Note that a bandwidth increase do not only suppose the need of increasing
transmission rates in the access network, but as well an increase of fiber lines to assume the amounts
of traffic that are later aggregated in higher rings as the aggregation, or core ring. In some cases as
video streaming services, there is the possibility of locating a virtual CDN in a Point of Presence
(PoP) nearer the end-user, or in other words, in a MEC host. This prevents the end-user traffic flow
from traversing the whole network operator ring hierarchy, alleviating the bandwidth burden of the
network. However, the computational offloading does not only finishes in a MEC host, indeed, it
goes down to the end-user. For instance, there are numerous applications in which the user device
might ask for the offloading of computational tasks on the edge. That is, the end-device might
not have enough computational capabilities to perform a given task that a MEC host can handle.
This is the case of Augmented Reality (AR)/VR applications that might be quite demanding to
perform physic simulations in the device holding the application. In such a case, a MEC host might
run these physic simulations on demand, and then forward the results back to the end-user of the
AR/VR application. [ETS18c] gives a list of use cases in which the computational offloading is
a must to ensure the performance of the applications. Among the examples there is the already
mentioned AR/VR applications, IPTV offloading, Artificial Intelligence (AI) task offloading, or
multi-RAT offloading.

Nevertheless, not all examples provided in [ETS18c] correspond to offloading use cases of
the MEC paradigm. There is a wide variety of use cases that benefit from it, ranging from smart
industries, to localized services provided in events like sport events in stadiums. In the latter
example, the stadium might have operated drones doing video transmission of different angles
recorded during the match. The video transmission might go over different RAT technologies – the
reason of “multi-access” as first word of the MEC acronym – towards a video processing server,
which is deployed in a MEC host near the stadium where the event is taking place. This MEC host
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Figure 1.8: MEC traffic rule update in a V2X platooning service over 5G

could handle video encoding/decoding operations to later redistribute content across the match
assistants inside the stadium, that could check on their mobile phones the different angles recorded
by the drones of a polemic moment during the match. This example embraces the requirement
of localization constrained services (the MEC host must be present nearby the stadium), and
low-latency requirements (by deploying the service in a MEC host, it is ensured the low latency
towards the end users). The reader might notice that in a sport event it is of high importance for
the user experience, that a replay does not arrive with a considerable time delay with respect to
the polemic moment. If the video was processed in a cloud server, for later redistribution of the
processed video to the stadium spectators, then the video transmission would suffer from such
delay. Works as [Fra+17a] consider this example for research in the context of the 2020 Japan
Olympic games2.

[ETS18c] also mention not so service-oriented benefits that the MEC paradigm brings to the 5G
networks. Particularly, it considers the category of network performance and Quality of Experience
(QoE) improvements, a set of scenarios in which the network leaves out the burden of having to
steer vast amounts of traffic to the cloud even when it could be processed in the cloud; and scenarios
in which the multi-RAT knowledge helps the network management. A concrete example is the
usage of RAT metrics to improve the coordination in between the backhaul and access network of a
network operator. [ETS18c] states that in given situations, the backhaul network might present a
considerable degradation (specially if we think of the IAB technology mentioned in [3GP18c]),
and the network edge has to react accordingly. Upon such a degradation, the MEC architecture can
proceed in several ways as redirecting non delay-sensitive traffic towards non deteriorated backhaul
flows, or even asking a gNB to decrease its microwave capacity due to the congestion existing in
the associated backhaul link. In the latter case, energy efficiency is achieved without worsening the
already damaged QoE due the backhaul deterioration.

To explain the interaction between the MEC architecture and the 5G network, ETSI specifies
in [ETS20b] a description on how the MEC is envisioned as an AF of the 5G network described

2 Due to the pandemic of COVID-19, the proposed solutions could not be tested.
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Figure 1.9: Possible MEC deployments in 4G: (a) bump in the wire; (b) distributed EPC; (c)
distributed SGW & Packet Data Network Gateway (PGW); and (d) distributed SGW with local
breakout – taken from [ETS18b]

in 3GPP standardization documents. A common interaction in between 5G and MEC will be the
update in traffic rules of existing flows in the 5GC. Lets imagine that vehicles traveling along a
highway use a car platooning service offered by the 5G network – see Figure 1.8. The platoon App
will run inside the MEC platform, which is envisioned as an AF for the 5GC. Upon the handover of
vehicles among RUs, the NEF will trigger a path management notification that will reach the MEC
platform of the first MEC host. The latter will realize that it has to trigger a traffic rule update
to maintain the strict delay requirements of V2X services. Consequently, it will ask the MEC
Orchestrator (MEO) to select which is the nearest MEC host with a running platoon App, and it
will ask the NEF to update the traffic routing so the flow travels towards the selected MEC host
(number 3 in Figure 1.8) when the handover is completed.

In the above mentioned example, the MEC is envisioned as an AF requesting the UPF re
selection to the 5GC. However, more details should be provided regarding the implementation, and
even interaction in between components of the described workflow. To this extent, 3GPP talks about
NEF supporting a Common API Framework (CAPIF), a common point to ask for services using
an unified Application Programming Interface (API) where there are consumers and producers
that may ask or publish content, or even interact among them to change the system status (as in
the example of the UPF re selection). The CAPIF context has immediate applications in the MEC
architecture, as services offered by MEC apps have to exchange their information with the external
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entities making use of them, e.g., a localization service has to report periodically where a specific
user is, and a car platooning app would ask for such location information via the CAPIF. Moreover,
the MEC platform can expose the registry of available MEC services using the 3GPP CAPIF.
Thanks to it, MEC has an unified way of not only exposing its capabilities, but as well, a unified
approach to operate in the 5G network.

However, it is worth mentioning that MEC is not only restricted to be deployed in 5G networks,
as the paradigm apply to 4G networks, as discussed in [ETS18b]. The white paper describes
the different deployments of a MEC architecture that can coexist with the 4G EPC. It mentions
how the edge site – that is, where the MEC host is deployed – can be either in site at the access
network, or somewhere in between it and the core network, i.e., at some point in the aggregation
network. Obviously, the nearer it is of the access network, the lower latency, but as well the
more expensive deployments. But this still does not mention how to coexist with the EPC of
4G networks. [ETS18b] specifies the (a) bump in the wire; (b) distributed EPC; (c) distributed
SGW & PGW; and (d) distributed SGW with local break out – see Figure 1.9. Without entering
into details, these are four different manners of deciding which elements of the EPC will coexist
with the MEC host in the access network. In these deployments the EPC and MEC platform can
run under a same virtualization infrastructure, and the local break out options prevent the traffic
to traverse the backhaul to reach the central EPC entity responsible of session management tasks.
This way, strict delay constraints are met, and it might be feasible to achieve them without having
to deploy NR RUs that speed up the transmission in the access network. Additionally, there is
a packet filtering enhancement that the MEC brings to the 4G networks, and that is in the (iv)
distributed SGW with local breakout. Moreover, it brings the support of MEC host mobility, or
pushing applications requiring paging functionalities for ultra low latency services.

In the above paragraph it was mentioned how the MEC architecture can coexist with the EPC.
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This means that both elements may run over a virtualization infrastructure, so the EPC and MEC host
elements are running as VNFs. This requires to blend the components defined in the ETSI specifi-
cation for the NFV paradigm [ETS14], with the functional elements of the ETSI MEC definition
in [ETS19c] – see Figure 1.10. The first clear common point in both architectures is the NFVI,
that is present in the MEC reference architecture as the compound of virtual computational and
network resources. Note that this maps exactly with the NFVI building block mentioned in the NFV
paradigm presented in section 1.2, thus, the possible exchange of these components. Consequently,
the VIM is a necessary component in both a generic NFV and MEC architecture, as both require the
management of the virtual resources. Such virtual resources would be occupied by a VNF holding
a MEC app, or part of a MEC app functionality. In particular, [ETS19c] says that a MEC app
would map to a NS as the one depicted in Figure 1.5 of section 1.2. In a plain MEC architecture,
the management of the MEC apps is performed by the MEC manager, which is virtualized in
one or several VNFs to assess the traffic rules and MEC apps management. Additionally, the
MEC platform, which directly interacts with the MEC apps, is deployed as a VNF in the described
NFV deployment of the MEC architecture. And the lifecycle management of the MEC apps is
performed by one or several VNFMs of the NFV architecture. Last of all, the mapping in between
a MEC architecture and a NFV infrastructure would conclude with the coexistence of both the
MEC app orchestrator and NFVO to perform the decisions of allocating and mapping resources for
incoming VNFs.

With the end of this section, the present thesis concludes the overview of the MEC paradigm,
which is a fundamental element in the 5G networks. Thanks to the MEC standards, the network
community has a unified approach to deploy computing resources nearer the edge, having a
well defined coordination with the already deployed network architecture, whether it is a 4G, or
5G deployment. The result of bringing closer to the edge the computing resources, is the possibility
of offering lower latency to delay-sensitive services that belong to the 5G use cases, as the already
cited V2X services. Last but not least, is the network offloading that MEC offers to the network
deployments. As having resources closer to the end users allow to assess tasks that alleviate both
the computing, and flows burden to the core network. And as final remark, given the key role
that virtualization has in modern network deployments, the MEC reference architecture has been
designed so it can be integrated with the NFV paradigm. In what concerns this thesis, MEC is a
key enabler to map VNFs in those computing resources closer to the edge, so as to satisfy strict
latency and reliability requirements.
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1.4 Fog
The previous section of this thesis reviews how the 5G networks have the chance of benefiting from
the MEC paradigm to meet the services requirements. The core idea is that both computing and
network resources will go closer to the end-user, hence, a latency reduction. Servers will move
towards the edge in the network infrastructure, and traffic of end-users is leveraged there whether
it is to meet latency requirements, or to offload the computing tasks that go up to the cloud. But
it would be a mistake to only assume that computing capabilities exist as a matter of servers, as
we traditionally know them. Indeed, the cell phone that we hold in our hands have computing
capabilities, and their computational power is increasing as years pass. Not only that, but single-
board computers like Raspberry Pis, or connected robots with computing capacity, also belong
to the networking infrastructure. Such devices have less computing resources than commodity
servers, however, they typically have similar capabilities and architectures, as it is the case of the
aforementioned Raspberry Pi single-board computers.

All these devices that are beyond the edge of the network, at the very last hops, if not the last,
of the network infrastructure; are known as fog devices. The term fog refers to a blurry continuum
of resources where everything in the end of the network with computing capacity, is envisioned as
a serving entity of the infrastructure. The fog paradigm considers that both cloud racks of servers,
and a single-board computer with internet connectivity, belong to a pool of computational resources
in which there is no distinction of where the device is within the network operator hierarchy. It is
only required to have information on what the networking and computing capacities of devices are,
so as its level within the network hierarchy. Thanks to this, the pool of resources is widely increased
with the addition of small, but numerous low-capacity devices connected to the network. And that
gives the chance of splitting tasks among numerous devices, having computational presence in
more locations than in traditional deployments, and the chance of measuring a wide variety of
metrics that range from pedestrian presence, to humidity conditions in farming areas.

The Industrial Internet Consorcium (IIC) has put effort in defining what is the fog, so as the
use cases, and a reference architecture [Con17] where the consortium explains the advantages and
functionalities brought by the fog concept. The whole idea proposed by IIC relies on envisioning
each computing element as a fog node, that is an entity holding storage, computing, and networking
capabilities; and even hardware acceleration capabilities as for the case of FPGAs present in
single-board computers. An example of a fog node would be a Raspberry Pi single-board computer
controlling a moving robot that has luminance sensors, connected with a NR RU, and holding a log
of movements in a memory card. Note that this fog node does not only require to manage whether
its computational resources are enough or not to perform a task as reporting the luminance across a
street to a cloud server. If the robot is responsible of such a task, then what is required is that the fog
node manages (i) its storage resources; (ii) the networking considerations, including whether it is
wired, wireless, the coverage, an channel status; (iii) the security of the communications it handles,
to prevent malicious traffic intrusion; (iv) its accelerator resources as GPUs, FPGAS, etc.; and (v)
its computational resources, how the node capacities are already at their maximum, and whether
it can handle the computational operations without running out of battery. Although the previous
example of a moving robot managed by a Raspberry Pi is envisioned as a fog node, it might be the
case that a fog node has associated numerous actuators, or sensors that send it their data. This is of
great interest because many actuators or sensors implement very basic functionality that do not go
beyond the task execution, e.g., report a humidity measurement. If that is the case, then the fog
node holding the multiple connections across actuators or sensors, implements an abstraction layer
that allows the management of all devices underneath, or just the single device associated to the fog
node.

Fog devices are just entities with enough computing resources to hold other network nodes’
functionalities. Typically the CPU and memory of fog devices is limited, as they assess low
demanding tasks like periodic reports of sensor data. Thus, they tend to be not that “smart” to take
autonomously management decisions. This raises the necessity of doing a proper management of
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fog devices so they recover upon failures, and make a more efficient usage of power and resource
consumption. To ease the management of fog devices, typically there is a Hardware Platform
Management (HPM) device collecting all the device measurements, as peaks of temperature in the
processor, to take actions accordingly and mitigate possible failures. For example, a HPM device
would detect that the temperature of the single-board computer is increasing substantially, and
it will trigger an energy-saving mode that would limit the processing capacities of the device.
Such an energy-saving would even have counter-effects in the network transmission, as the device
antenna Tx/Rx may decide to lower the transmission scheme to save battery, and hence, decrement
the bandwidth capacity of the device. Both the computational and networking side-effects, are
of special interest in this thesis – see section 5.2 – as it comes as a consequence of the devices
limitations in the fog, something critical for the orchestration of services with very demanding
constraints.

On top of computational and networking constraints, there exists the battery constraints that
many fog devices present. Many of them might be powered by sun light and have a limited
autonomy of few hours without the required charging, either by plugging the device to a power
supply, or an external power source. Whenever a battery supplied fog device runs out of power, it
is not only that it stops executing the task it has associated, e.g., an irrigation device; but it also
will loose its connectivity towards the device controlling it, or simply collecting its information.
Following the example, an agriculture NS with a irrigation control system, may loose connectivity
with the fog device activating the irrigation, with the consequent service failure. Thus, it is of vital
importance to keep track of the battery levels of devices to decide if they can perform a specific
task. To do this the network should be aware of monitoring information of fog devices present in
the network infrastructure. In the case of the reference architecture proposed in [Con17], IIC gives
a high level reference that mentions a node management for all the underlying sensors, actuators
that might increase in an infrastructure deployment. The consortium explicitly mentions that it is
required to know the state of the devices (as battery levels), and the network they are connected to,
so the network planning is performed correctly.

Another aspect of crucial importance is the mobility of some fog devices. Note that within the
cloud-to-thing continuum that IIC envisions as “the fog”, not every node remains statically in the
same location over time. Devices as moving robots may change their location, or even drones may
act as fog devices going away from the coverage area of a RU providing internet connectivity. For
those situations it is required to keep track of the robot mobility patterns, and such aspect is as
well considered in the wireless connection considerations of the IIC reference architecture [Con17].
The mobility aspect involves the location information of fog devices across the network, as the
mobility comes as a consequence of the change of location itself. Hence, the location reporting and
tracking becomes as crucial as knowing or inferring mobility patterns of the fog devices. Services
with location constraints, as a mobile robotics service for warehousing [3GP20l], require to be
deployed in-place at the factory facilities, i.e., only robotic fog devices in that location can host
the service functionalities. Indeed, section 5.2 of this thesis formulates the service orchestration
problem so it meets the location constraints that may apply. However, it is not enough to ensure that
the fog devices are in-place where the service happens, as it is of same importance the existence of
communication in between the fog device – as the mobile robot – and the internet. To ensure the
connectivity, the radio coverage is another aspect IIC points out in [Con17], as it is what determines
whether a fog device is detached from the operator network infrastructure. Therefore, the coverage
of fog devices must be considered in the orchestration of a NS to meet avoid loss of connection (see
section 5.2 of the present thesis to check how to consider both mobility and coverage constraints in
mobile robotics scenarios).

On top of the battery and mobility challenges introduced by fog devices, there is the wireless
channel conditions of the medium fog devices are attached to. For instance, a non-reliable wireless
channel should be neglected for usage of fog services as fire alert sensors, as a communication
failure may lead to deaths. IIC also considers for the channel reliability as a requirement in the
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communications, and that may be expressed by means of packet loss, or channel downtime. Either
it is one metric or the other which determines the channel reliability (packet loss is considered in
section 5.2 of this thesis), there must be a monitoring of the channel/network status, as pointed
out by the in band node management in IIC reference infrastructure [Con17]. Thanks to such
information, the deployed fog services ensure a reliable communication towards the cloud, or
neighboring fog nodes. In the fire alarm example mentioned before, it might be that a heat sensor
decides to connect to an exterior LTE RU rather than a Wi-Fi access point, so the communication is
more reliable upon a fire in a house.

Due to the device heterogeneity in the fog paradigm, the computational resources range from
sensors with no computational capacity, up to cloud racks with considerable computing resources.
Not only that, but the positioning of the resources within the network is different as well, since
sensors or IoT devices are typically co-located next to the end user, before the jump towards the
access ring, whilst cloud resources are pushed towards the core of the network. Hence the channel
and medium heterogeneity mentioned in the previous paragraph, is not only concerning the nature
of the wireless link, but as well if the connectivity is wired, and what kind of wired connectivity,
which in most cases end-up being optical networks as we go up in the network hierarchy. Thus, a
whole fog architecture comprising all the rings of the network operator, require the management of
the vast heterogeneity of the network.

The management of a fog architecture is eased by using the NFV paradigm of section 1.2, as
it allows having a high flexibility in the management of the services running on top of a network
architecture. For instance, the concept of splitting a NS into VNFs is specially useful in the
context of fog architectures. For example, the aforementioned irrigation service for a farm benefits
from the VNF splitting, as the service is broken down into an irrigation control VNF to decide
whether each humidity sensor VNF has to trigger the irrigation or not. With such a split, the NS
deployment becomes more flexible, and the execution of some of the VNFs can take place among
different computing nodes across the whole cloud-to-thing continuum of the fog architecture. In
the example above, the irrigation control mechanism could be running either in a cloud server, or in
a single-board computer with connectivity to the humidity sensors. It is up to the deploying agent
to decide where it wants to deploy each of the VNFs of the service.

The deployment and assignment of VNFs to servers is of crucial importance, and the decision
on how to steer the traffic of the fog services is not a trivial task. If both decisions are not done
correctly, the deployment of the fog-based service may not meet the imposed latency, reliability
and computational constraints; not to mention the possible battery, mobility, or even coverage
constrains already discussed. If the NFV paradigm is used for fog deployments, the elements of
the whole architecture overviewed in section 1.2 are reusable in any fog deployment. For instance,
a VIM and NFV orchestrator are specially useful to tackle the assignment problem stated by the
beginning of this paragraph. Inside the NFV orchestrator there would be an algorithm to decide
the assignment, and it would be an algorithm as the ones solving the problem solved later in this
thesis in section 5.2, i.e., the assignment of resources in fog environments, where both the volatility
and fixed location of resources are considered. But note that any assignment algorithm in the fog
needs to know the updated information of every parameter introduced by the fog services. Battery
levels, channel status, type of device (e.g., a single-board computer), location and mobility are
new metrics to be monitored in a VIM managing a fog architecture. [Con17] already mentions
that all these metrics should be monitored, however, its high-level architecture does not get into
the details on how to tackle it. The 5G-CORAL European project [Mou+18] describes precisely
a whole ETSI NFV-alike architecture to assess the management and orchestration of resources
in fog environments. The project proved that it is feasible to extend the NFV paradigm to tackle
fog scenarios, and provide an end-to-end solution capable of managing and orchestrating services
for the cloud-to-thing continuum. Indeed, the 5G-CORAL project supposed the inflexion point in
the development of a publish/subscribe protocol for the exchange of information in fog network
environments. This protocol is called zenoh [Ang19] and it serves as communication overlay



56 Chapter 1. 5G Networks & Paradigms

OCS

EFS

EFS App/

Func

Manager

Third-

party(ies)

EFS

Service

Platform

Manager

NFVI

Computing
Hardware

Storage
Hardware

Network
Hardware

Virtualisation Layer

Virtual
Computing Virtual Storage Virtual Network

EFS Function

Virtualisation

Infrastructure

Manager (VIM)

Operation Support System / Business Support System

Third-party(ies)

Proxy

Other
EFS

Service
Platform

EFS

Resource

Orch.

Other
OCS(s)

EFS Interface

OCS Interface

Federation Interface

OSS/Third-party Interface

O1 ~= Nf-Vi

O2 ~= Vi-Vnfm

O4 ~= Or-Vi

E1 ~= Nf-Vn

F1 ~= Mp3

T1 ~= Mm2 T2 ~= Os-Ma-nfvo

T5 ~= Mm9

T3

T4 ~= Mm8

T6 ~= Mx1/2
Stack, VNF, and

Infrastructure

Description

E4

O5 ~= Ve-Vnfm-vnf

EFS Application

F2

Element
Manager

E4

Element
Manager

E2 ~= Mp1

E3 ~= Mm5

O6 ~= Ve-Vnfm-em

EFS Service Platform Element Manager

EFS Service Platform

E2 ~= Mp1
T8

Non-EFS
App(s)/Func(s)

E2 ~= Mp1

EFS Stack

Orch.

Om1

O3 ~= Or-Vnfm

Oo1

Figure 1.11: 5G-CORAL architecture – taken from [Mou+18]

for the [CB18] infrastructure, which envisions the whole network as a server-less cloud-to-thing
continuum of networking and computing resources. The implementation of the infrastructure
is a perfect blend of the NFV paradigm into the fog ecosystem, and it accounts for less heavy
virtualization technologies as unikernels [Oli+19].

The architecture design of 5G-CORAL [Mou+18] is based on the ETSI NFV architec-
ture [ETS14], and it accounts for the required VIM to handle the heterogeneity of computing
devices by means of virtualization. Furthermore, the reference architecture of 5G-CORAL does
not restrict its components to run in the cloud or edge, as it considers that any computational
resource is capable of hosting architectural components as long as it has enough capacity. The
5G-CORAL envisions two main components: (i) the Edge and Fog computing System (EFS); and
(ii) the Orchestration and Control System (OCS). With the first one being a logical block containing
management of an administrative domain edge or fog resource, and a point to provide services.
And the latter being acting as an orchestrator holding the actual VIM functionality of the ETSI NFV
architecture. Additionally, the OCS orchestrates and manages the NSs deployed in the platform,
which are referred as EFS stacks. As mentioned earlier, the 5G-CORAL has the advantage of
allowing the EFS to run in any computing node, and it is an architecture design that considers the
volatility, location constraints, mobility, and Device-to-Device (D2D) communications among fog
devices as single-board computers. Moreover, the project has presented its applicability to use cases
of fog-assisted robotics [Sam19], where 5G-CORAL managed the deployment and management of
coordinating robots for tasks as warehousing.

As the reader might have noticed, the 5G-CORAL architecture – which is an actual proof-of
concept of design principles stated in the OpenFog high-level reference architecture – considers the
computational resources as the cloud-to-thing continuum, i.e., as the convergence of cloud, edge,
and fog resources. It does not only focus at the very end of the network infrastructure. Indeed,
another of the use cases proposed by the project was the usage of the 5G-CORAL architecture
to provide an infotainment service for traffic jam situations, that is, cars/passengers act as fog
devices that broadcast content they have cached among other end-users co-located in the traffic
jam. Note this is an example in which multiple RAT technologies are considered, namely, the D2D
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Figure 1.12: 5G-DIVE architecture – taken from [Sol+20]

communication to exchange content among cars, or the LTE/NR used to communicate with the
upper layers of the network, which has a more centralised view of the traffic status in a city. With
such example, the 5G-CORAL shows that edge and fog coexist in a network deployment, and the
operator does not only have to restrict itself to an architecture in which either the MEC [ETS19c]
or a fog architecture are used, both being independent to each other.

The edge and fog blurs then into the cloud-to-thing continuum envisioned in the document
pointed out by the IIC OpenFog idea, and that was inherent in the design of the 5G-CORAL
architecture, which focused more on robotics and fog-oriented Proof of Concept (PoC) to show the
system capabilities. However, the architecture lacked the use of data sources and metrics monitoring
to enhance the network management with the use of AI/ Machine Learning (ML) techniques. As
a consequence, the 5G-DIVE European project [Sol+20] came as the natural evolution of the
5G-CORAL architecture. The new architecture tackled the cloud-to-thing continuum of the
fog paradigm focusing on industrial automation and industry 4.0 use cases, and extended the
5G-CORAL architecture introducing 5G-DIVE Elastic Edge Platform (DEEP), a building block
offering automation, data analytics and intelligence engines that improve the network management.
Additionally, 5G-DIVE aims to tackle the distributed orchestration that appear in scenarios as UAVs,
flying devices that fall in the spectrum of the fog computing, as they are autonomous devices with
connectivity towards the internet, or even D2D connectivity among them. As UAVs typically have
associated computing capabilities, the 5G-DIVE project considers that NFV-based building blocks,
as the VIM inside their OCS element, may run not only inside the edge devices, but as well on top
of UAVs. As a consequence, the whole infrastructure goes into a distributed fashion that shares
data to the DEEP element in order to perform required analytics to assess tasks as mission control
of the UAV fleet, which may be providing video streaming to a specific geographical location. Note
that this supposes that the 5G-DIVE architecture must be resilient to the previously mentioned
out-of-coverage problem that may come up with the mobility of the UAVs. Such events may be
predicted by the DEEP functional block thanks to the trajectory reporting of UAVs to the 5G-DIVE
architecture. This is where 5G-DIVE enhances the 5G-CORAL architecture, as the DEEP block
allows to autonomously trigger preemptive actions that mitigate the volatility and mobility of the
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fog devices.
This section has presented the fog paradigm, and how the network edge presented in section 1.3

is extended to the IoT and volatile devices that are not wired to the network. The paradigm expands
both the computational and network capabilities, and provides ubiquity with the side-effects of
volatility and mobility that are inherent to fog devices. However, an adequate management and
virtualization of the resources results into a benefit for administrative domains, as they can provide
geographically constrained services, reduce latency, and make use of low-powered devices to tackle
tasks that are perfectly feasible for basic devices as single-board computers and robots. European
projects have proved that the fog paradigm is feasible, and that it is capable to make feasible use
cases related to fog-robotics, and UAVs. The PoCs show that fog is a strong candidate to support
robotics, and IoT devices with the help of a fog-aware network architecture.
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1.5 Network Slicing
With the appearance of the 5G technology, network services are going to be even more diverse than
in the predecessor networks of 4G and 3G. The Internet is no longer restricted only to streaming of
video content, websites, or chatting and email applications. New verticals and use cases appear
and they must be supported by the 5G infrastructures. Smart factories, mission critical services,
vehicular services, or remote surgery are some of the use cases with requirements only met by
5G networks’ capabilities. Typically, all the new services supported by 5G networks fall within
one of these categories: (i) enhanced Mobile Broadband (eMBB); (ii) Ultra-Reliable and Low
Latency Communications (URLLC); and (iii) Massive Machine-Type Communications (mMTC).
The first one relates to those services asking for downlink peak data-rates above 20 Gbit/s in the
downlink, and 10 Gbit/s in the uplink (according to [ITU17]); and services as AR/VR belong to
these category, as the video stream requires high rates so the video corresponding to an user action
is not delayed in time. The second one refers to services asking for E2E latency between 1 ms and
10 ms, and vehicular services are great examples, since the notification of a crash in a platoon of
vehicles must be fast enough to guarantee brakes activation in order to prevent accidents. The third
one serves as a categorical umbrella covering all services that require a connection of a massive
number of devices, and it considers scenarios of IoT communications, or communications among a
vast amount of automatas in the production lane of factories; which typically require low latency to
have high level of synchronization among the factory/IoT devices connected to the 5G network.
Use cases belonging to the latter category demand a high density of connected devices, indeed,
[ITU17] points out that the 5G networks should satisfy the connectivity of up to 1,000,000 devices
per km2. And not only that, but mission critical services would require a wide coverage for those
use cases related for rescuing citizens in far areas.

The presented use cases give an idea of the different services that 5G networks should support.
Being brief, some might say that in order to deploy a 5G network infrastructure, it should be enough
to just install more gNBs, and additional fiber/paths to handle the increasing network demand.
Furthermore, strict latency requirements would be met by using the MEC paradigm (i.e., computing
resources closer to the edge). However, it would be inefficient, for example, to assume that all
users are going to be using enhanced Mobile Broadband (eMBB) services, and therefore, to have a
vast network deployment with uplink data rates of 10 Gbit/s for every user in the network. Rather,
network operators have to make a case study on the expected demand of those services that 5G
offer, to scale and manage accordingly the network resources. Network slicing arises as a paradigm
to assess the management of a network infrastructure in which there is a heterogeneity of service
requirements, as the mentioned eMBB, URLLC, and mMTC. As the paradigm name suggests, the
idea is to slice the network resources, such that each slice is dedicated to satisfy the requirements
of the different services. For example, a sliced 5G network infrastructure would have a slice that
steers and processes the network traffic of vehicular services, and such slice would ensure that the
packets follow paths such that latency is below 1 ms.

In order to implement network slicing in a network operator infrastructure, it is required that
all the available resources are managed in a coordinated manner, namely, the (i) radio network
resources; (ii) computing resources; and (iii) wired network resources. With computing resources
being the servers or devices processing application requests, and wired network resources being
the switches, fiber links, and routing policies of the network. In a network slice, the UE forwards
its traffic to the gNB that it is attached to, and it is up to the 5GC to decide the transmission slots
granted for the UE traffic. For example, traffic of a eMBB slice would have more transmission
slots to satisfy the high peak-rates, whilst traffic of URLLC services would have shorter, but
prioritized transmission slots, or even slots dedicated to transmit redundant packets in order to
achieve reliability. It is up to the network how the spectrum is managed (see [Aya+20]). Once
the RAN spectrum has been managed, the packets are steered across the network to reach the server
where the traffic is finally processed. The traffic steering of the slice must be such that it satisfies
bandwidth, and latency requirements; and even more, the traffic should be queued/prioritized to not
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deteriorate the QoS of existing slices (see [Com+18a]). For example, mission critical traffic should
be prioritized over eMBB traffic, as the former services are more sensitive to delay violations than
the latter, or at least, the QoS violations may have critic consequences in rescue-alike services.
Finally, the traffic steering of the network slice should be such that the correct server is selected to
process the traffic of a specific slice. As an example, a network slice for AR/VR should consider
servers with GPUs to perform video encoding, processing, and rendering tasks.

By reading the previous paragraph, it seems like network slicing is a blurry approach on how
a network operator should “divide” its network. However, the 3GPP details in [3GP20e] the
operations required to perform network slicing in a network infrastructure. The document explains
that a slice passes through different stages during its lifespan, i.e, since the moment it is created, up
until when it terminates. In particular, the 3GPP talks about the (i) preparation; (ii) commissioning;
(iii) operation; and (iv) decommissioning of a network slice. Before explaining each stage, it is
worth mentioning that the 3GPP envisions a network slice as the compound of not only network
and computing resources, but as well the set of NFs that are present within the slice, e.g., a video
encoding NF within a slice dedicated for AR/VR. With such a definition in mind, the first stage of a
network slice lifespan is its preparation, that is, the design of the slice and which NFs are going to
belong to such a network slice. In this first stage, the creator of the network slice will design it so as
to satisfy the requirements the slice should offer, e.g., to use mobility management NFs for vehicular
services. Once the slice is prepared, the network operator has to tackle its commissioning, that is,
the creation of the network slice by doing an adequate allocation and configuration of resources. To
do so, the created network slice must have enough resources allocated to meet requirements such as
low latency, which would imply the usage of servers nearer the edge of the network. The allocation
of resources to meet requirements of services belonging to different network slices, is the matter
of study of the present thesis, and chapter 5 present solutions to allocate resources for a network
slice. Once the network slice is commissioned, it is mandatory to perform a KPI monitoring to
check if the network slice services’ performance meet the requirements, and the Service Level
Agreement (SLA)s. In case there is a violation of a KPI, the network slice should be modified, and
a capacity re-planing would be required to mitigate the KPI violation. For example, if a mobile
robotics service asks for 3 ms of end to end latency, and the service experiences a latency of 5 ms,
then the corresponding mMTC slice should add servers nearer the robots, or increase the RAN
resources to meet the 3 ms of latency. How to assess the mentioned capacity re-planing is out
of scope of [3GP20e], however, chapter 5 present solutions in which the planning of resources
is dynamic depending on the services’ lifespan, and thus, it covers such a gap. Finally, the last
stage in a network slice lifespan would be the decommissioning of resources, and how to free the
network slice resources for future usage of a new lifespan of the same slice, or for the usage of
other network slices.

The aforementioned stages of a network slice do not come out of nowhere, indeed, the lifespan
and definition of a network slice comes as a Network Slice Template (NEST), a set of attributes
and operations that are available within a network slice. The NEST concept is elaborated by
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Figure 1.14: Example of Network Slice as a Service (NSaaS) – taken from [3GP20e]

the Global System for Mobile Communications (GSMA) in [GSM20], where the association
proposes the Generic network Slice Template (GST), which is nothing but a specification on how
a NEST should be like. In the document, the GSMA aligns the template definition with the require-
ments stated by 3GPP in [3GP16b] and [3GP20j] for 5G networks. Consequently, GSMA defines
a GST as a set of attributes specifying how a network slice should work. [GSM20] provides a
detailed set of attributes that fall within one of these categories: (i) character; (ii) scalability; (iii)
performance; (iv) function; and (v) control and management related. Upon a definition of a GST, the
customer must fill all the attributes and later can interact with the resulting network slice instance by
using an API, and the KPI parameters that the network slice may report periodically. A minimalist
example of a URLLC GST would be the specification of a 99.999% availability, the continuity
support for 1 session, and a device velocity of 120 km/h. Such a GST would then be translated
into a 5GC slice profile for the later configuration of the underlying infrastructure, e.g., the RAN
resources, transport network, and computing capabilities of the network operator.

Thanks to the GST definition, a network operator proceeds and performs the commissioning of
the network slice, and according to [3GP20e], it is able to provide support for services asking for
these set of requirements: (i) area traffic capacity; (ii) charging; (iii) coverage area; (iv) degree of
isolation; (v) end-to-end latency; (vi) mobility; (vii) overall user density; (viii) priority; (ix) service
availability; (x) service reliability; and (xi) UE speed. Note that satisfying such requirements lets the
network operator to provide a wide variety of services within a single infrastructure, if its network
slices’ resource provisioning is capable of meeting all the different requirements. Furthermore, the
underlying slicing of the network might be provisioned as a service – which is known as NSaaS – so
third parties can take benefit of the usage of a sliced portion of the infrastructure – see Figure 1.14.
In this latter example, [3GP20e] uses the term Communication Service Provider (CSP) to refer to
the business entity responsible of the maintenance of the network resources. A network operator,
which owns the network resources for the RAN, the access network, switches and fiber links, so
as computational resources for some services such as TV over IP; may be envisioned as a CSP.
And [3GP20e] states it can either provide services or slices, and the consumers of both cases are
known as Communication Service Consumer (CSC). A CSC acquiring a network slice instance
from a CSP does not necessarily have to build services on top for its end-users, but it also may
decide to create a network slice on top of the existing slice, and offer it for either consumption
or management; so as the CSP did with it. Furthermore, a CSC has the chance of using several
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network service instances’ resources – such resources are known as a network slice subnet – to
build another network slice.

Although it may seem like the 3GPP just states a list of conceptual ideas regarding the network
slicing, it is proven that the organization did not pitfall into only scratching the conceptual surface. A
proof of it is that it accounted for the GSMA inputs in its ongoing technical documents. Additionally,
the 3GPP has devoted effort to define in detail which are the parameters and information models
that define a network slice [3GP20c]. Particularly, the 3GPP states that the information model of
a network slice inherits the attributes of a subnet [3GP20m], with the addition of a list of service
profiles it is able to support. Each service profile supported by the network slice is defined by
the 3GPP as another information model object holding the already mentioned information about the
requirements that the network slice should satisfy. Thus, its attributes refer to aspects as coverage,
latency, mobility, maximum packet size, or reliability. It is important to remark that it is natural
that the network slice information model follows a subnet model, as an instantiation of a network
slice will result into the configuration of an associated subnet. In other words, the network slice is
nothing but the definition of a subnet comprising computing and network resources that meet the
requirements of services.

However, the conceptual idea of slicing the network has not only been investigated by standard-
ization bodies as the 3GPP or the GSMA. The research community has also put effort into defining
abstracted network views to offer verticals (or CSC) to deploy NSs without technical expertise in
the resource management. 5G-TRANSFORMER [Oli+18] is an example of an implementation of
the slicing concept. This European research project developed an end-to-end network architecture
that did not only follow the ETSI NFV principles to provide an orchestration solution of NSs;
but it also tackled the network slicing of the managed network. The project made a step further
than the 3GPP for the accomplishment of network slicing, as it assumed that verticals as video
content providers should be able to define their own network slices without that much technical
expertise. To do so, 5G-TRANSFORMER proposed VSBs [Chi+19] that are templates in which a
vertical specifies the behavior of its service. For example, a video content provider specifies inside
a VSB that it wants to deliver live video streaming to a specific geographical area, to one thousand
customers, and streaming quality of 4K. The 5G-TRANSFORMER platform then takes the VSB
and translates it into a NSD that later is either added to an existing network slice, or put into a
completely new network slice. The 5G-TRANSFORMER platform also assesses the orchestration
of resources, and the assignment of VNFs and VLs to the underlying resources, which may be
allocated to a specific network slice.

Network slicing does not only comprise the allocation and assignment of resources, as it
also has to coordinate with the network communications flowing on top of each slice, i.e., the
packet forwarding and traffic policies. This implies a coordination of either the EPC or 5GC
with the existing network slices. 3GPP Release 16 [3GP20h] introduces features on how the
network slices interact with the core of the network to ensure a coordinated behaviour of packet
forwarding, and resource management. Since each UE might belong to several slices at the same
time, e.g., it might receive/send traffic of a eMBB slice and a V2X slice at the same time; it is of
crucial importance the prioritization, signaling, and RAN assignment to the different packets of
each slice. 3GPP Release 16 [3GP20h] introduces the Network Slice-Specific Authentication and
Authorization (NSSAA) to enhance the UE access to a network slice. In the specification, it is
detailed how the AMF, the 5GC NF responsible of the access to the network, interacts with the UE
to validate that it has access to network slice it is using. Thanks to this, it is possible to revoke the
access to slices to some UEs that might have no authorization to use the slice resources. Note the
vital importance of such control in services as remote-surgery operations, as the interference of
non-authorized packets would lead to an arrival delay of packets that remotely control a surgery
robotic arm, and the corresponding consequences. Another addition that [3GP20h] introduced, is
the coordination in between the EPC and the 5GC when a UE moves from the former to the latter.
In case the UE uses a network slice, 3GPP Release 16 specifies how to select a new AMF based on
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the network slice to which the PDU belongs. For example, if a vehicular service UE handovers
from EPC to 5GC, the session traffic will be forwarded to an AMF that minimizes the signaling
delay, so it does not impact the URLLC of the vehicular service.

Once the network slice is commissioned, and the UEs respect the slice access (thanks to the
NSSAA); it is necessary to ensure that KPIs are met in every network slice. This requires a
monitoring of metrics in the network, so the operation stage of the lifespan of a slice, handles the
correspondent dimensioning operations upon KPIs violations. That is, if a metric as the average
delay experienced on a network slice is not meeting the requirements, there must be a way of
noticing such event, and that is possible thanks to the monitoring of metrics inside the 5GC. More
specifically, the NEF of the 5GC is the responsible of monitoring the required information, that is
later used to manage the network slices. However, it is not only the NEF which provides useful
measurements for the network slice management, indeed here there are a couple of metrics that one
can obtain according to [3GP20d]: (i) the Unified Data Management (UDM) provides the number
of registered users; (ii) the gNB tells the packet drop, IP latency, interface delay, etc.; and (iii)
the UPF can give the end-to-end delay for a service. According to [3GP20g], the monitoring of
network slice metrics is accomplished using Network Slice Subnet Instance (NSSI) monitoring jobs.
Remember that previously in this chapter it was explained that a network slice subnet is nothing but
the set of underlying networking resources, computing resources, and NFs that are used to run the
services held by a network slice. Thus, a NSSI monitoring job performs the collection of metrics to
assess the later network slice performance assurance. Given the collected metrics, it is possible to
have cumulative counters for metrics such as the amount of active sessions – see [3GP20g] – that
are later useful to trigger the corresponding actions. For instance, given that the users reported in
the monitoring jog of a network slice exceeds the threshold, it is possible to increase the number
of servers in the network slice subnet to meet the users’ demand. To perform such an action,
[3GP20m] specifies how to assess threshold monitoring, to later perform the corresponding changes
in the slice subnet associated to a Managed Object Instance (MOI) via modification, creation, or
even deletion operations (see [3GP20f]).

The network slicing concept requires a very specific set of definitions and operational support
to achieve network isolation, and flexible management of the different slices. The above paragraphs
have given some insights and pointers of the specification documents stating the required operations
and interactions for network slicing. Unlike the network paradigms discussed in the previous
sections of this chapter, the network slicing idea came afterwards the NFV, MEC, and fog paradigms.
As a consequence, its adaption in the 5G ecosystem requires to elaborate how the mentioned
paradigms should behave to accomplish the network slicing. It comes natural that one or more VIMs
manages the resources of a network slice subnet, or that a MEC app and its constituent VNFs
belong to a specific slice. For example, a MEC app for vehicular services will naturally belong to
the corresponding network slice. The integration of network slicing in MEC and NFV is treated
in detail in [ETS19d], where ETSI details the interactions among both NFV and MEC platforms
to assess the realization of a network slice(s). The document presents as well different set ups
as holding multiple tenants in a single network slice, or how each slice can have dedicated MEC
components running on top of it. The document also reviews how Software Defined Networking
(SDN) controllers should handle the traffic for different slices, bringing in the chance of also solving
the routing and packet forwarding challenges related to network slicing.

To sum up, network slicing brings is the possibility of sharing the network among various
services with different requirements, ensuring all of them meet the QoS without interfering into
the others’ QoS. Standardization bodies have tackled the definition of the corresponding network
slicing operations, and how to actually make it happen in the current and future 5G networks.
However, it is out of the scope of the standardization process how to do the orchestration and
assignment of network resources to each slice, so delay, computing, bandwidth, and reliability
requirements are met in 5G services. To fill such gap, the research community has recently studied
how to assess an adequate assignment and management of slice resources – see section 2.2. This
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thesis contributes to the state of the art in the assignment of slice resources in section 5.1, where
OKpi is presented as an orchestration algorithm that meets KPIs of coexisting slices in a network
infrastructure.
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1.6 Thesis overview
The remainder of this thesis is organized as follows. Chapter 2 provides background on NFV
orchestration algorithms, i.e., algorithms that decide the assignment of network and computing
resources to the NSs to be deployed. In particular, the chapter starts providing an exemplary
problem statement of the Virtual Network Embedding (VNE) problem, and later in section 2.1 and
section 2.2, it goes over the state of the art of NFV orchestration algorithms before and after 5G,
respectively. With the latter algorithms solving the VNE for 5G networks and services.

Since the present thesis proposes NFV orchestration algorithms in Edge and Fog scenarios
(chapter 5), it is necessary to have a representation of the underlying network infrastructure to
evaluate the performance of the proposed solutions. Hence, chapter 3 presents how to generate 5G
infrastructure graphs. Sections 3.1 to 3.4 present a methodology to derive BSs locations, and MEC
PoPs in the network planing stage. And later section 3.5 presents 5GEN, an R package to derive
5G reference infrastructure graphs following the proposed methodology to derive both the BSs
and MEC PoPs locations. To finish chapter 3, section 3.6 presents the generation of multi-domain
graphs, in this case only accounting for the data centers and their topology, as such graphs are later
considered in the NFV orchestration algorithms over federated networks (section 4.2).

After proposing the generation of graphs that represent 5G networks, chapter 4 proposes
solutions to deal with the decisions regarding the deployment of NSs in federated networks.
Section 4.1 motivates the use of network federation for the deployment of NSs, in particular, to
consider the federation of NSs to other administrative domains, i.e., to use another domain resources,
or delegate the NS deployment completely to another domain. Section 4.2 proposes modifications of
well known algorithms that solve the shortest path problem to derive NFV orchestration algorithms
that tackle the VNE problem in networks where multiple domains federate their resources. Later,
and still in the context of network federation, section 4.3 studies when to delegate the deployment
of NSs to a federated domain, given that the federation prices might vary over time. In particular, it
studies the performance of Deep Q-Network (DQN) and Q-learning solutions that decide whether
to delegate or not the deployment of NSs.

Then, in Chapter 5, this thesis goes over two different NFV orchestration algorithms that
tackle the VNE problem in 5G networks, in particular in sliced Edge/Fog networks (section 5.1),
and scenarios with mobile and volatile computing nodes (section 5.2). The former solution,
named OKpi, is based on a multi-constrained shortest path algorithm that meets both latency and
reliability constraints of vehicular and robotic NSs. And the latter solution is based on a randomized
rounding algorithm to solve the optimization formulation of the VNE problem. Such solution takes
into consideration the mobility, coverage, and battery constraints of the mobile fog devices of a
warehousing NSs.

Chapter 6 presents the last problem studied in the present thesis. This is the scaling of V2N
services, as remote driving, based on the changes of vehicular traffic flow. The chapter proposes
a solution to decide the scaling of the number of CPUs required to meet the latency constraints
of V2N services. In particular, it compares state of the art forecasting solutions to predict the
number of vehicles in Torino city, and later decide the number of CPUs using a M/M/c queuing
model. The analysis is carried out using a real dataset of Torino traffic ranging from January to
March of 2020 (including the COVID-19 lock-down period).

Finally, chapter 7 concludes the thesis briefing up the contributions of this thesis in the research
field of NFV orchestration algorithms, and chapter 8 points out future work to further improve the
proposed solutions.





2. Background on NFV orchestration algorithms

As discussed in the previous chapter of this thesis, recent innovations of the networks research com-
munity have lied substantially on the Network Function Virtualization (NFV) paradigm. Network
operators and administrative domains have nowadays a flexible manner of assessing the manage-
ment of its network services. If the European Telecommunications Standards Institute (ETSI)
NFV stack [ETS14] is implemented by the operator, it means that it can handle the deployment of
virtualized services as virtual Content Delivery Network (CDN)s, or other 5G-related services that
fall within the category of slices as Ultra-Reliable and Low Latency Communications (URLLC),
e.g., vehicular services as car platooning. Upon the deployment of a network service, there are
three main decisions that have to be taken: (i) the allocation of resources for Virtual Network
Function (VNF)s in the servers; (ii) the traffic steering of the Virtual Link (VL)s across the network
links; and (iii) the allocation of bandwidth resources on the links that steer the Network Service
(NS)s traffic. These decisions are taken by a NFV orchestration algorithm, i.e., an algorithm that
maps the VLs and VNFs in the underlying physical infrastructure, or even in an abstraction of the
physical infrastructure. Figure 2.1 illustrates how a solution of a NFV algorithm looks like, the
traffic steering of the VLs, so as the mapping of VNFs to servers.

It is important to remark the difference between an orchestrator, which assesses the management
and assignment of services to resources, and a NFV orchestration algorithm, which solves the
Virtual Network Embedding (VNE) problem. That is, to embed a virtualized service in a substrate
network. To this extent, this thesis refers to these algorithms as either NFV orchestration algorithms,
VNE algorithms, or even VNF placement algorithms.

The target of a NFV orchestration algorithm is to deploy the requested NSs in the underlying
network, taking into account the limited resources, so as the traffic steering. In the decision making,
the research community typically refer to two problems that are tackled in the VNE problem,
namely, (i) the resource allocation, i.e., the allocation of computational resources to host the
composing VNFs; and (ii) the traffic steering, i.e., to decide which links are traversed to route
the traffic in between VNFs, or in other words, to decide the traffic steering of the NSs’ VLs.
A NFV orchestration algorithm could decide either to solve both problems at the same time, or first
to solve the resource allocation problem, to later decide the traffic steering among the servers where
the VNFs were allocated. Each approach has its pros and cons. If the VNE problem is solved in
two steps, it is easier to find a solution, that is, the problem complexity is reduced, and algorithms
are more prone to find faster a solution. However, the solution is typically suboptimal and this leads
to an not proper usage of the available resources. In case both problems are tackled at the same
time – i.e., the resource allocation, and traffic steering decisions are taken together or concurrently –
the solution is more likely to be “less suboptimal” than the solution obtained when tackling the
problem in two steps. On top of that, the problem complexity is higher than just solving first the
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Figure 2.1: Solution of a NFV orchestration algorithm

resource allocation, and then the traffic steering (later on this chapter the thesis provides a detailed
explanation about this statement). By saying that solving both problems at once the solution is “less
suboptimal”, we mean that the solutions would result in doing a more efficient use of resources, or
achieving a higher monetary benefit with respect to the solutions obtained in the two-step approach.

Traditionally, it is common practice to formulate the VNE problem as an optimization problem,
which may be either an Integer Linear Programming (ILP), or Mixed Integer Linear Programming
(MILP). Given the optimization formulation, authors propose heuristic solutions to elaborate
their NFV orchestration algorithms, and typically provide statements about their optimality if
possible. If optimality bounds are given, the theoretical behaviour is proved, and any platform
implementing the solution would feel safer about its performance. Hence, it is always preferred to
provide optimality boundaries of the proposed heuristic solutions.

But how do we measure how optimal a solution is? Well, this is done using the objective
function of the stated optimization problem. The objective function expresses what the algorithm
wants to maximize or minimize. For example, one NFV algorithm could be designed so its objective
is to minimize the resource consumption in the network servers, others could decide to maximize
the revenue obtained trying to deploy as much NSs as possible, and others may decide to minimize
link congestion and do the traffic steering accordingly. Thus, given an optimization formulation
with the aforementioned objective functions, the designer of the NFV orchestration algorithm is
capable of measuring how good is the solution by means of the chosen objective function. This
does not mean that other metrics could be measured to check the algorithm behaviour, since given
an embedding solution, one is able to measure other metric as latency, CPU usage, or experienced
jitter. In any case, to provide theoretical statements on any metric, they should be present in the
problem formulation. And it might even be the case that the goal of a NFV orchestration algorithm
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is to maximize/minimize multiple objectives at the same time. For example, it could maximize the
monetary benefit, and minimize the link congestion.

The VNE problem formulations typically impose both (i) resource constraints; and (ii) flow
constraints. Lets give a baseline formulation to provide an example on how a VNE problem looks
like. Lets assume we have a set of servers S and each one has Cs, s ∈ S CPUs available to be used.
Then we consider also that the network has a set of links L with bandwidth capacities Bl, l ∈ L. For
simplicity, the routers would be considered as servers with Cs = 0. Thus, we can say that a network
link will connect two servers/routers, i.e., l = (s1,s2), s1,s2 ∈ S. Now we have to introduce a set of
network services N, each one containing Vn, n ∈ N VNFs. We refer to these VNFs as vi,n, i≤Vn,
and each one asks for ci,n CPUs in whatever server s ∈ S hosts it. Similarly, a network service n
contains V Ln, n ∈ N virtual links, and we refer to them as vli,n, i≤V Ln. Each virtual link will ask
for bi,n, i≤V Ln bandwidth over the link where its traffic is steered. In case a network service n is
successfully deployed in the network infrastructure, it gives a revenue of rn units.

Given the above problem description, the job of the NFV orchestration algorithm is to decide (i)
to which server it assigns each VNF; and (ii) which links are used to steer the traffic of the virtual
links. For the former, we define x(vi,n,s) ∈ {0,1} to denote whether a VNF vi,n is deployed in a
server s. And for the latter, we define x(vli,n, l) ∈ {0,1} to state whether VL vli,n passes through
the link l or not. The x(·) are known as decision variables. The objective of the NFV orchestrator
would then be to maximize the reward obtained after assigning VNFs and VLs to the servers and
network links.

But still there is another thing to be taken into account in problems of this nature, and that
is to express the constraints that every solution must satisfy. In particular there are (i) resource
constrains; and (ii) flow constraints that must be encoded as optimization constraints. The resource
constraints correspond to both the CPU and bandwidth limitations in the discussed example problem.
Specifically, all the VNFs deployed in a server should not exceed its capacity, which is denoted as
∑n∈N,i∈Vn x(vn,i,s) · cn,i ≤Cs. Similarly, the bandwidth of the VLs allocated within a network link
l should not exceed its capacity, in other words, ∑n∈N,i∈V Ln x(vli,n, l) ·bi,n ≤ Bl must be satisfied.
The two constraints we have just mentioned refer to the capacity constraints, and the last one to
encode is the flow constraints. Typically flow constraints refer to “flow conservation”, a rule that
is summarized into this sentence “all traffic coming in, should come out”. Given a switch inside
the network, this means that any VL traffic entering itself should exit as well. In the discussed
problem example such statements are translated into x(vli,n, l) = x(vli,n, l+1), l = (s−1,s0), l+1 =
(s0,s1),Cs0 = 0.

To formulate the optimization problem we just have to put together the decision variables,
objective functions, so as the constraints discussed in the previous paragraph. As a result we have:

max
x(n)

∑
n

x(n)rn (2.1)

s.t. ∑
n∈N,i∈Vn

x(vn,i,s) · cn,i ≤Cs, ∀s ∈ S (2.2)

∑
n∈N,i∈V Ln

x(vli,n, l) ·bi,n ≤ Bl, ∀l ∈ L (2.3)

x(vli,n, l) = x(vli,n, l+1), ∀vli,n, l = (s−1,s0), l+1 = (s0,s1),Cs0 = 0 (2.4)

with

x(n) =

{
1, if ∑i≤Vn,s∈S x(vi,n,s) =Vn ∧ ∑i≤V Ln,l∈L x(vli,n, l) =V Ln

0, otherwise
(2.5)

that is, x(n) = 1 only if all VNFs and VLs are deployed for the NS n ∈ N.
The above example is a simplistic, yet representative formulation of a typical typical optimiza-

tion problem that solves the VNE problem. It conveys the resource constraints with (2.2) and (2.3)
to limit the CPU and bandwidth usage, respectively. So as it also accounts for the widely used
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conservation constraint (2.4) to impose that ingress and egress traffic match. The presented problem
is an ILP that is usually solved via existing optimization solvers.

The nature of the VNE problem makes it being of high complexity. Moreover, the optimization
formulations lie in the category of Non-deterministic polynomial time (NP) problems [AB09].
Basically, if a problem lies in the NP category, that means that there is no algorithm capable of
“deterministically” reaching the optimal solution in polynomial time. In other words, given an
algorithm that solves a NP problem, we cannot ensure it will find the optimal solution in polynomial
time. To express the run-time of an algorithm is common practice to write it down using big-O
notation O , and the number of decision variables. This notation is used in chapter 4 and chapter 5.

Lets give an example on how one expresses the problem size of the above VNE problem
statement. First of all we need to count how many decision variables are in the stated problem,
and that is the number of x(vi,n,s) and x(vli,n, l) variables. For the server assignments we would
have S ·∑n∈N Vn variables, and for the links’ assignments L ·∑n∈N V Ln variables. If we assume that
there are more servers than links S ≥ L, that the number of service requests are larger than the
number of VNFs in all the existing NSs, and the number of NS request is larger than the number
of servers; then S ·∑n∈N Vn ≤ N3. And as the number of servers dominate the number of links, we
can state that the number of decision variables is ≤ 2 ·N3. In big-O notation we then say that the
problem size is O(N3), meaning that the number of variables is ≤ k ·N3 with k ∈ N a constant.
In the computational theory field, the run-time complexity expresses the amount of operations
required to solve a problem. Hence, in our example we would say that the run-time complexity is
going to be proportional to O(N3). If we said that the amount of operations is quadratic in terms of
the problem size, then we have that it is required O

(
(N3)2

)
operations to run the algorithm.

Going back to the aforementioned explanation about NP problems, we say that the presented
optimization problem lies in the NP category if it cannot be guaranteed that the optimal solution
is reached in polynomial time. In other words, if the number of operations – which we express
in terms of the problem size O(N3) – is not proportional to a polynomial function over the
problem size. Remember that a polynomial function is an expression of the form f (x) = ∑i≤M aixi.
Hence, a polynomial over our problem size would take the form f (N2) = ∑i≤M aiN3i and satisfy
f (N2)≤ aMN3M with M ∈ N being a constant. As a result we say that the running time complexity
of our problem is polynomial if the number of operations is O(N3M).

In case our VNE problem is NP complex, the search of optimal solutions becomes harder. To
give an idea, lets assume that in the proposed VNE problem we have came up with a NFV or-
chestration algorithm that should decide the embedding of N = 100 NSs. First of all, the problem
would have O(1003) decision variables, which is quite a large number of variables to decide on.
And second of all, no NFV orchestration algorithm would be able to find the optimal solution
after running O(1003M) operations, no matter the chosen constant M ∈ N. The statement is severe,
and here it is the reason why. Imagine we choose M = 7, then the number of operations to do is
proportional to 10021, and a CPU with the capacity of performing 106 op

sec would take ≥ 31,709,791
years to finish the operations. But, since the problem is NP, such a solution may not be optimal.

The statement is quite tough, and it might seem discouraging. And right now the reader might
be thinking “ok, but is the VNE problem complexity NP?”. Unluckily, the answer is yes. And such
a statement makes the research community keep on searching for new solutions improving the state
of the art of the embedding problem. Note that the implications of the VNE problem being NP
come by means of monetary side-effects. If the VNE embedding problem complexity was not NP,
then a network operator would have the chance to take the best deployment decisions to maximize
it monetary reward, see (2.1). However, there is still an unproved statement of whether P = NP or
not. That is, it is not proven that the complexity of problems that manage to find optimal solutions
in polynomial time, share complexity with those that cannot find it in polynomial time. For the time
being the research community embraces the P ̸= NP conjecture, as the running time of already
designed NFV orchestration algorithms have given evidence to defend such conjecture. However,
in case there was a mathematical prove stating P = NP, then the VNE problem solving community
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would benefit from it, and as a consequence, the telecommunication industry; with an increase and
better usage of its available resources.

The previous paragraphs have stated that the VNE problem formulated in this chapter has
NP complexity. But still no proof was shown to support this statement, neither mathematically, nor
by means of references. As the problem is just an example conveying the main constraints present
in the wide majority of VNE problems, the next paragraphs will try to give a mathematical proof
that follows the same strategy as the ones in the literature.

The strategy to follow is to proof that an instance of the optimization problem relates to another
optimization problem that is proven to have NP complexity. And by an instance of a problem here
we talk about a particularization of the stated optimization problem itself. In the case of this chapter
problem statement, the proof is going to be about mapping it to the knapsack problem [Lew83].
Given a knapsack with capacity C, we want to pack items i ∈ I of weight wi into it, so we maximize
the reward ri obtained by packing them inside the knapsack. Its optimization problem formulation
looks as follows:

max
xi

∑
i∈I

xiri (2.6)

s.t. ∑
i∈I

xi ·wi ≤C, (2.7)

with xi ∈ {0,1} denoting whether the item i is packed inside or not. Having the knapsack problem
in mind, the following paragraph details the complexity proof about our problem statement.

Lemma 2.1: The VNE problem (2.1)-(2.4) is NP-complete.

Proof. Lets take the following instance of our problem. In particular, one in which all network
services n ∈ N only have a single VNF Vn = 1, ∀n ∈ N, hence, no VLs V Ln = 0, ∀n ∈ N. Then,
constraints (2.3) and (2.4) are not required, as there is no flow to link matching in the given instance.
Moreover, the auxiliary variable x(n) which denotes if a NS n is deployed or not, now is expressed
as x(n) = x0,n. Or in other words, if the only VNF v0,n of service n is deployed, that means that
the whole NS is deployed. On top of that, now we will assume that there is only one server s0 ∈ S
present in the network infrastructure, that is, that |S|= 1. As a result, the described instance of the
problem statement looks as follows

max
x(v0,n,s0)

∑
n∈N

x(v0,n,s0)rn (2.8)

s.t. ∑
n∈N

x(v0,n,s0) · c0,n ≤Cs0 , (2.9)

Note that this is the knapsack problem stated with server s0 being a knapsack with capacity Cs0 , the
VNFs being the items with weight equal to their CPU requirements c0,n, and the NS deployment
reward rn corresponding to the item reward.

Since the described instance of problem (2.1)-(2.4) is the knapsack problem, and the knapsack
problem is NP-complete; we conclude that the optimization problem (2.1)-(2.4) is NP-complete.

■

Lemma 2.1 states that the problem complexity is NP-complete. A problem of this nature is a
NP problem one can solve using a brute force algorithm, i.e., trying all the different combinations
of the x(vi,n,s) and x(vli,n, l) decision variables. On top of that, a NP problem has the particularity
of having the chance of simulating another problem with similar solvability, e.g., we could use the
knapsack problem to solve the VNE problem proposed in this chapter. For instance, Lemma 2.1
shows it is possible to use the knapsack to solve the instance of the VNE problem with only
one server, and NSs consisting of only a single VNF. About the brute-force solvability of a NP-
complete problem, note that a brute force approach might be intractable in many cases as the
example provided in previous paragraphs about the problem size. Recall that under the assumption
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of the number of NSs N dominating both the servers S and links L, the problem size is O(N3).
Knowing that the decision variables are binary, this implies that there are O(2N3

) possible solutions.
That is, the number of solutions grows potentially with the number of NSs to embed. Thus, even the
VNE problem set as basis in this chapter is NP-complete, it is unfeasible to try out all the possible
solutions, not to mention the devoted time to check the correctness of every solution visited by a
brute force algorithm.

In the particular VNE problem of this chapter we have proceeded to proof its complexity
using the knapsack problem. However, this is not the only well-known problem used to proof
the complexity of VNE optimization problems. Other examples as the bin packing problem, the
set coverage, or the minimum-cut problem [AB09] have been used in the literature to show the
problems’ complexity.

On top of the common resource and flow constraints, the literature adds other elements to
the VNE problem formulation. And it is not always that the solution aims to maximize monetary
benefits. Instead, some solutions focus on minimizing energy consumption, or other metrics such
as jitter (in case the problem formulation is capable of capturing latency aspects of the served
packets). It is up to the NFV orchestration algorithm designer, to choose what problem it wants
to tackle, and which aspects are going to be treated. Usually, VNE problem formulations and
solutions have shifted towards the same direction of the research community at the moment. When
data centers started to become a reality, and their management and resource utilization started to
become a real problem to account for, NFV orchestration algorithms started to focus on how to
deploy NSs in infrastructures with high and concentrated computational capacities, and tackled
aspects as job distribution and load balancing. Latter on, as the energy consumption started to
become a serious problem in the data center facilities, VNE problem focused on how to distribute
the NSs deployments so as to minimize the energy consumption. In such a way, companies could
label their cloud facilities as “green” and sustainable thanks to the reduction of the carbon footprint
derived from the consumed energy of their facilities. And additionally, they could reduce the bill of
the monthly power supply.

The latter changes in the networking community have required a change in the VNE problems,
and how they are tackled. Recent paradigms discussed in chapter 1 brought in the possibility of
breaking down monolithic NSs entities into their essential components, the VNFs (see section 1.2).
Thanks to that, NFV orchestration algorithms started to take advantage of the split of a service,
and distributed the deployment of a single NS into multiple servers. However, 5G networks and
new networking paradigms also brought in tougher constraints regarding aspects such as latency,
geographical constraints, or even reliability. With them, a shift was mandatory in the design of
new NFV orchestration algorithms, as they started to account for the new constraints to satisfy the
promises of 5G use cases.

In the next sections of the chapter, we provide an overview of existing works in the literature.
Section 2.1 reviews NFV orchestration algorithms that tackled the VNE problem in non-5G
scenarios, i.e., in deployments without constraints that 5G use cases typically have, and without
5G infrastructures. And section 2.2 discusses a set of NFV orchestration algorithms that tackle
the embedding of NSs in 5G-scenarios. Thus, accounting for the strict latency, reliability, and
availability requirements; using the infrastructure that new 5G technologies bring in, so as the
paradigms discussed in chapter 1. The differentiation on both kind of solutions aims to show the
reader what where the aspects that the VNE problem formulations tried to account for before, and
after the 5G technologies.

2.1 NFV orchestration algorithms before 5G
The VNE problem started to fire up even before the 5G network services’ requirements came up in
the standardization community. Early works focused on the deployment of NSs within data center
infrastructures, without accounting for the embedding of traffic flows in the substrate network.
These works focused on energy consumption, minimization of resource waste, or even factors as
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the temperature that servers could achieve. On top of that, the monetary revenue of solutions was
most of the times taken into account int the problem formulations.

Latter on, the research community started to consider the split of NSs into different servers,
each of them running a constituent VNF, as specified in the NFV paradigm (see section 1.2). The
constituent VNFs of the NSs could be spread across the substrate network infrastructure, and the
flexibility of the deployments substantially increased. That came with an obvious growth of the
problem complexity, as the solution space size increased with the split of the NSs. Additionally, the
split of a NS into VNFs spread across different servers, resulted into the traffic steering in between
such VNFs, which in previous years were all co-located in the same server. Hence, the VNE
problem required the NFV orchestration algorithm to deal with both the VNF, and flow embedding.
Not all solutions investigated approaches solving both problems at once, indeed, most of them only
focused on the VNF embedding, and either neglected the flow embedding, or assumed that that was
known on forehand.

The following paragraphs revisit existing solutions that propose different NFV orchestration
algorithms solving the VNE problem that did not account for the latency, nor reliability requirements
of 5G services. Most of the following works neglected such constraints probably because of the
year when the research was done – by that time the 5G constraints were not still under definition
standardisation documents – or because the URLLC and high data rates were still not a big thing
the research community.

[LQ15] gives an overview of what is the VNE problem, and formulates a typical optimization
problem, as the one specified in the current chapter. The NP problem complexity is proofed
by reducing the problem to the set cover problem [PS98]. Solutions of the proposed problem
decide the embedding of the service flows, assuming that the network functions (the paper
does not account for function virtualization) are deployed on forehand. No heuristic solution
is proposed, however authors evaluate the optimal solution in different scenarios.

[GMZ16] uses matrices and eigen-values to discover deployments that minimize the costs. The VNFs
mappings are stored in matrices, and the Service Function Chain (SFC)s are embedded
gradually. The proposed VNF orchestration algorithms solves sub problems to achieve
a general solution, using in dynamic programming. In the SFC embedding, the solution
accounts for cost of mapping of both VNFs and flows. Authors give insights about the
polynomial time complexity, however, they do not give theoretical proofs on the optimality.
The evaluations are carried out to measure the nodes and links’ usage in low/high load
scenarios (so as the provider revenue). As the problem is not formulated using an optimization
problem, there is no comparison in between the proposed solutions and optimal ones.

[HK16] is more SDN oriented, and already accounts for virtualization of the services to be deployed.
The proposed solution “lightchain”, which aims to minimize the hop-count, that is, the
number of links traversed in the virtual links mapped. On top of it, it tries to minimize the
amount of flow rules that are present in the SDN switches that route the traffic among the
deployed VNFs. Their proposed NFV orchestration algorithm is based on a two-step process.
First, the SFCs are broken down into an acyclic graph by randomly deleting the cycles in the
service graph. Second, an ordering of the VNFs is performed to respect the dependencies
among VNFs, and finally perform a VNF embedding based on a shortest path algorithm.
This work does not provide an optimization formulation, hence, does not give insights about
the theoretical optimality of the proposed solution, neither does it compare the experimental
evaluation against an optimal solution. Nevertheless, the experimental validation shows that
in a matter of milliseconds, lightchain finds VNE solutions that impose less flow rules than a
First Come First Placed approach.

[MGZ16] tackles the VNE problem formulating it as a weighted graph mapping problem, rather
than an optimization problem, as stated in the example problem stated in this chapter. It
models as graphs both the SFC, and the substrate network infrastructure. Given that, the
proposed VNE orchestration algorithm takes the bandwidth as weight of both the SFCs
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and infrastructure graphs, neglecting then the delay. Nevertheless, the solution is based
on performing an eigen-decomposition of the SFC and infrastructure adjacency matrices
using a modified version of Umeyama’s approach [Ume88], an spectral solution that uses
the Hungarian algorithm [PS98] to find the minimum distance mapping in between two
graphs. Hence, the matching or VNE is essentially relying on the Hungarian algorithm.
The evaluation does not compare their VNE orchestration algorithm performance against
an optimal solution, since the problem is not formulated as such. However, authors show
that their solution clearly scales adequately to both the NSs and infrastructure sizes. And
the experimental validation an acceptance ratio that reaches the 100% in their proposed
evaluation scenarios.

[CDJ17] provides a NFV orchestration algorithm that uses replication of VNFs to minimize the link
utilization in the network used to deploy the different NSs. Unlike the two previous works
already discussed, [CDJ17] formulates the VNE problem as an optimization problem, and
compares the proposed solutions against the stated ILP problem. The strategy followed by
the authors, is to use a link cost function that exponentially grows after the utilization exceeds
the 60% of the link capacity. Therefore, the obtained solutions rarely exceed such a value in
the link usage. The optimal solution is compared against a genetic algorithm that first solves
the traffic steering problem, and later performs the VNF-to-server embedding accounting for
possible replications that might offload the links’ congestion. Authors’ results show that the
genetic algorithm achieves near optimal results in terms of cost, and link usage.

[Kuo+16] investigates how to solve the VNE problem focusing on the link and server usage ratio.
Authors suggest to reuse already deployed VNFs if there is still enough computational
capacity in the server where the VNF is running. The idea is to assume larger paths if it
allows to reuse residual resources, so as to maximize the resource usage. Otherwise, the
shortest paths towards the VNFs would be congested, and the servers located further in the
infrastructure would remain unused. To have an adequate link and server usage ratio, authors
define a relationship between both parameters, and formulate the corresponding optimization
problem to maximize the demand to be accommodated. The proposed NFV orchestration
algorithm is based on dynamic programming, and is compared against shortest path solutions,
and algorithms that greedily reuse the existing VNFs. Results show that the proposed solution
is capable of maximizing the accommodated demands, as it captures properly the server and
link usage ratio, no matter the NSs and network topologies. Thus, it adapts to a variety of
scenarios, outperforming the greedy and shortest path approaches.

[XF10] aims to solve the VNE problem in a data center infrastructure. Indeed, it only tackles the VNF
embedding into servers, thus, it does not assess the traffic routing. The proposed algorithm
minimizes the waste of resources, power consumption, and peak temperature reached by the
data center servers. The problem is formulated as a multi-objective optimization problem, and
the proposed heuristic solution is based on a genetic algorithm that uses a fuzzy evaluation to
evaluate the goodness of the produced mutations. That is, the genetic algorithm produces
initial combinations of solutions, and it modifies (mutate) them using a weighted function
over the multi-objective function terms, i.e., the resource waste, energy consumption, and
peak temperature. The genetic algorithm outperforms existing bin packing heuristics as the
first fit [PS98] in all the metrics used to evaluate the multi-objective function. However, the
solution does not provide optimality guarantees, nor theoretical boundaries.

[San+17a] formulates a simplified version of the VNE problem in which there is a single NS instance
composed of multiple VNFs that have to process a set of fixed flows in the substrate network.
The problem to be solved is to determine the number of VNF that each server should
hold to process completely, or partially the incoming flow demand. Authors formulate the
corresponding optimization problem, and their objective is to minimize the number of VNFs
deployed in the network. After formulating the corresponding ILP problem, two greedy
heuristics are provided, both with optimality guarantees. The proposed NFV orchestration
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algorithms rely on the idea of choosing those servers that receive a higher number of flows,
or a higher data rate. Such greedy solutions approximate to the optimal solution by a factor1

of (1− o(1)) logm, with m denoting the number of flows to be processed in the substrate
network. Additionally, authors state that given fat-tree [Lei85] topologies of data centers,
there is an algorithm that finds an optimal solution of their problem statement. The proof
on the optimality of such NFV orchestration algorithm is provided, and evaluations in the
experimental phase show that such algorithm, so as the two other generic greedy heuristics,
satisfy the optimality boundaries theoretically stated. A comparison against an optimal
solution is carried out in large network scenarios, and results show the near-optimality
performance of the proposed solutions. However, the stated problem is not quite realistic,
as it does not account for the flow routing, neither for the deployment of more than just a
single NS on top of the substrate network.

[Coh+15a] solves the VNE problem tackling only the VNF to server embedding. It provides solutions
telling how many VNF instances should be deployed at each server to process the clients’
requests. The optimization formulation is an ILP problem that minimizes the distance2 in
between users, and the cost of deploying the VNF instances across servers. The paper does
not account for the flow routing. Authors propose NFV orchestration algorithms based on a
linear relaxation of the ILP problem, and provide different versions which relax or not the
capacity constraint on the number of clients’ request that each VNF instance can process.
The achieved solutions are later rounded up to match the ILP problem formulation, and
authors state theoretical boundaries on the solution optimality. In particular, the proposed
solutions ensure that the objective functions is at maximum 16 times away from the optimal
solutions. The solutions are evaluated and compared against a greedy solution in scenarios
with increasing number of functions, increasing VNF capacity, and number of clients to be
attended. Results show that the solutions outperform substantially greedy algorithm, and
meet the stated optimality boundaries.

All the solutions overviewed in this section focus in the accommodation of incoming demand,
such that resource capacity is not exceeded. Solutions either try to minimize number of flows in
Software Defined Networking (SDN)-based solutions, the link utilization, or energy consumption.
However, they do not consider the Quality of Service (QoS) of the allocated NS. Whether it satisfies
the desired latency, or transmission reliability, both of paramount importance in 5G NSs.

2.2 NFV orchestration algorithms after 5G
The previous section has overviewed a list of NFV orchestration algorithms that solved the
VNE problem for services that did not impose the strict communication constraints of 5G services.
Indeed, some of them even neglected the existence of the edge computing in their analysis.

However, as the first releases of 5G standards started to appear, i.e., Release 15 [3GP19c] and
Release 16 [3GP20h]; conferences and journals started to publish work of researches tackling
the VNE problem in the 5G scenarios that were tackled in the standardization bodies. The published
VNE algorithms accounted for URLLC requirements, enhanced Mobile Broadband (eMBB) use
cases, and even proposed solutions to offer network slicing. On top of that, the networking
community started to take into consideration the network infrastructure benefits of 5G deployments,
such as Multi-access Edge Computing (MEC) facilities, Millimeter Wave (mmWv) New Radio
(NR) technologies, and even fog devices with their respective computational and communication
constrains.

Hence, the section is entitled NFV orchestration algorithms after 5G since the solutions
overviewed in the following paragraphs were designed to solve the VNE problem after 5G require-
ments and infrastructures started to be considered in works published in the literature.
1 f (x) = o(g(x)) is known as little o notation, and it means that function g(x) grows faster than f (x). Formally one

says such a statement if for every ε there exists a constant N such that f (x)≤ εg(x) with x≥ N.
2 by distance here, authors refer to any metric to be chosen.



76 Chapter 2. Background on NFV orchestration algorithms

[ZD18] solves the VNE problem in scenarios in which it is required to deploy process control
functions related to industrial use cases. The work considers the presence of MEC servers
co-located with some Base Station (BS)s taken from a data set in the city of Milano. Authors
propose an ILP problem formulation to assess the embedding of VNFs that perform the
control functions into the MEC servers. Such an embedding is done to ensure that the control
operation would still work under failure scenarios, i.e., the MEC server would still have
running its VNF in case there is a failure. In such a way, the problem solutions are only
feasible in case the reliability of the service is ensured. The proposed NFV orchestration
does a Bender decomposition [Geo72] over the constrain matrix, and iteratively finds two
solutions, one for an upper bound on the cost function, and another to find a lower bound
solution. Both solutions are found on a relaxation of the proposed problem, and authors show
via experimentation and theoretically, the finite convergence time of the found solutions.
Moreover, experimental results via simulations in the city of Milano show that the algorithm
does not suffer from increasing the number of VNFs to be deployed.

[MC19] gives a solution to decide the assignment of VNFs to Virtual Machine (VM)s, and not only
that but the possibility of sharing VNFs. On top of that, authors propose to specify the
priorities among the services that might share a VNF. Following the standard approach, the
paper formulates as an ILP optimization problem which tries to minimize the cost of the
deployment. In particular, it accounts for both the amount of resources used in a VM, and the
cost of having it turned on. The problem statement assumes that there is a limiting service
delay, and authors impose a constraint related to the maximum average delay experienced by a
service. To derive the delay computation, the work assumes a M/M/1 queuing model [Kle75].
Once the problem is formulated, and its complexity is analyzed, the paper presents the
FlexShare NFV orchestration algorithm, which solves their stated problem in four different
steps, namely (i) the creation of a bipartite graph with edges associating the VNFs to VMs; (ii)
the execution of the Hungarian algorithm [Kuh55] to decide the assignment; (iii) taking the
scaling and priorities decision; and (iv) pruning out those solutions that violate the constraints.
The run-time complexity of FlexShare is proven to be polynomial on the number of VMs
and VNFs, and authors show its close-to optimal performance in scenarios that allow to find
the best solution by brute force.

[Aga+19] proposes a slightly different modeling of the VNE problem. The work envisions each VNF
as a queue system, thus, all NSs consist in a chain of queues dispatching requests using
a Processor Sharing (PS) policy [Kle67]. The queuing theory is used to derive the processing
delays of the incoming requests, which do not only pass through a single VNF, but across
a set of VNFs with a given transition probability. Authors even account for the possibility
of traversing a VNF multiple times, and the derived propagation latency that is induced in
the communication in between the servers where the VNFs are embedded. The solutions
then, have to select the servers’ embedding, so as the amount of CPU that is assigned to a
specific VNF. And the objective is to minimize the delay so as to satisfy the QoS constraint
of the considered NSs. Given the problem formulation, which is an ILP problem with NP-
hard complexity, authors propose the maxZ heuristic as a NFV orchestration algorithm to
tackle the VNE problem. maxZ is a multi-step algorithm that overcomes the non-convexity
and binary variables by creating a relaxed version of the problem that is later solved using
a metric Z that authors used to know the goodness of embedding a VNF into a specific
server. In the work, it is shown that maxZ has a cubic/quadratic run-time complexity on the
number of servers and VNFs involved in the problem. Additionally, throughout extensive
experimentation on topologies of increasing complexity, authors show the close-to-optimal
performance of maxZ by means of service time.

[Ma+17] does not explicitly account for 5G requirements, however, it is a solution that could perfectly
serve as a NFV orchestration algorithm for 5G use cases. This is because it considers the
problem of assigning VNFs to middleboxes along traffic flow paths, so as to minimize
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the link cost after the embedding. Authors mention that such a link cost function maps to
algorithms like the extended and well know routing protocol OSPF [Moy28], which use the
link cost to compute shortest paths. Such a cost function could be used to either measure
latency or reliability required in 5G use cases, so as to meet their strict requirements. In
what concerns the article matter of study, authors formulate an associated ILP optimization
problem consisting in selecting which hop along a flow path, i.e., which middlebox; should
hold each of the constituent VNFs of the service to be processed. Analytical discussions
show how the different variations of the problem affect to the complexity. For instance, the
analyzed variations relate to flows whose packet processing depend on the VNF processing
order or not. Some of the problem variations are have a NP-hard complexity (by reducing
some of the problems to the clique [PS98], or the problem of telling whether a graph has a
Hamiltonian cycle), and authors compare their proposed NFV orchestration algorithm against
firs-fit alike heuristics. Their solution is based on a two step algorithm that starts looking
for the path that minimizes the link cost, and later choose which middle-boxes would hold
the VNFs. Experimental evaluation show that under increasing flow demand, authors manage
to outperform other heuristics by means of End-to-End (E2E) delay and packet loss; which
relate to metrics to be considered in URLLC.

[SYC18] gives an even more complete solution for the VNE problem. Rather than only envisioning an
algorithm that tackles where each VNF should be deployed, it also takes into account the
surveillance and monitoring of the NSs Key Performance Indicator (KPI)s to ensure them.
Authors propose to associate the VNFs to affinity groups with similar characteristics. That is,
if a VNF has similar CPU requirements and memory usage as other, both should be in the
same affinity group. Authors mention a gravity center, that is nothing but how the aggregated
requirements and resource usage of the VNFs inside an affinity group vary over time. The
paper proposes z-TORCH a whole solution designed to (i) monitor the VNFs KPIs; (ii) decide
the sampling frequency to assess the monitoring; (iii) decide the affinity group that each VNF
belongs to; and (iv) solve the VNE problem using the affinity groups. Before the last stage
is reached (the one concerning this thesis), authors cluster VNFs using k-means [Mac+67]
to generate the different affinity groups. Once the affinity groups are decided, and the
monitoring sampling frequency is set/updated, z-TORCH proceeds and tackles the VNE
problem formulating an ILP. The formulation tries to maximize the quality of the taken
decision without exceeding the available resources. Rather than tackling the embedding of
the every VNF, z-TORCH uses the gravity center of each affinity group, and finds where to
deploy the VNFs belonging to it. The problem is proven to be NP-hard in the embedding
stage, and authors show via experiments in a real testbed, how z-TORCH is capable of
adjusting the monitoring frequency upon usage peaks, so as to tackle the VNE reaching
optimal quality of decisions. The work is a proof of how NFV orchestration algorithms can
be implemented in concordance with monitoring and virtualized environments to ensure the
5G services’ KPIs.

[Jin+20] focuses on solving the VNE problem not only accounting for edge and cloud servers. The
work considers even the first hop connection in between the user and the BSs to take
such communication delay into consideration. In particular, authors consider a scenario in
which MEC servers are co-located with BSs, thus, being used to minimize communication
latency with the end users of the deployed services. The paper formulates the associated
optimization problem as an ILP problem in which each user has an associated set of BSs that
are accessible. The VNE problem consists then into finding those servers and paths where
the VNFs are embedded, and their traffic is steered, respectively. The problem formulation is
proven to be NP-hard by reducing it to a bin-packing problem instance, and authors propose
a two step NFV orchestration algorithm to solve the problem and minimize the resources’
consumption thanks to the consideration of VNF sharing. The proposed solution first tries to
find the paths that satisfy the bandwidth and latency constraints of a NS, and then it embeds
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the constituent VNF over the servers present in such paths. To find the feasible paths where
each NS steers its traffic, authors use a constrained depth first traversal of the infrastructure
graph using the delay as cost. In such traversal, the delay computation accounts for the BSs
queuing delay using an M/M/1 model. Once the paths are computed, the embedding problem
uses a path based greedy approach to do the embedding. The two step procedure have
optimality upper and lower bounds, and a high running time complexity of O(N!2M), with N
being the number of nodes in the network infrastructure graph, and M the number of VNFs
in a given NS. The results’ section shows that the proposed solution outperforms other
heuristics based on shortest paths computations along with the First Fit strategy [PS98]. The
comparison is performed using delay metrics, and resource consumption. Author’s heuristic
outperform the others except by means of latency in some specific scenarios.

[ZLZ19] shifts the point of view of traditional VNE problems, and proposes a NFV orchestration
algorithm to solve the problem of allocating NSs over a sliced 5G network. In the paper it is
studied how to accommodate the requests incoming to a specific slice. For example, given
the set of requests arriving to a 4K video slice, the problem is to decide where to deploy
the VNFs, either in the edge or the cloud, so as to how to steer the traffic up to the servers
holding the running VNFs. In such a process, authors pay attention to the degradation of
throughput derived from the co-location of several VNFs at the same server. The more VNFs
running on a server, the more likely it is that the throughput of each VNF degrades because
of the resource usage interference among the coexisting VNFs. The proposed algorithm,
called AIA, solves the VNE problem over a network slice to meet delay and throughput
requirements of 5G services, whilst minimizing the mentioned interference. The idea of the
algorithm is to (i) choose first those VNFs producing more throughput and requiring few
computational resources; (ii) then choose those NSs with the higher number of VNFs, hoping
they will be reused; (iii) decide to either deploy in the cloud or edge based on less/more strict
latency constraints; and (iv) in the embedding of an accepted NS, only put different VNFs
in the same server if it is required to meet the latency constraint, otherwise avoid it to not
degrade the throughput interference. The AIA algorithm has a theoretical proof regarding
its optimality, and a running-time complexity that is ∼O(R ·P3); with R being the number
of requests in a slice, and P the maximum number of VNFs among the deployed NSs.
Results show that AIA outperforms other heuristics by means of throughput, thanks to its
“VNF interference-awareness”. On top of it, although it does not achieve as good latency as
the other solutions, the deployed services meet the 5G latency constraints of the analyzed
vehicular and 4K video services.

The above works show that the current literature has shifted towards the latency and increased
bandwidth requirements in the VNE problem. The overviewed solutions consider not only the 5G
services’ constraints, but as well the capabilities of 5G infrastructures, either by considering the
paradigms presented in chapter 1, or by accounting for the promised data rates and transmission
delays of 5G technologies.

With the appearance of 5G, older approaches to solve the VNE are no longer valid, and
the research community is focusing on solutions to handle communication requirements of a
plethora of new services and use cases that arise as the standardization bodies progress in their
definition of the 5G technologies. Although this section gave an overview of some solutions of
NFV orchestration algorithms, still there is work pending to cover the wide diversity of services
held by 5G infrastructures. For example, none of the presented solutions tackled the communication
reliability of the deployed NSs, which is a parameter of paramount importance in the URLLC use
cases. Not to mention the complexity of handling the monitoring and scaling of the multiple NSs in
a substrate network, so as to meet the QoS imposed by the different slices.

The presented solutions of this section are strong candidates to solve VNE problem in 5G
networks, and they clearly set the basis of how NFV orchestration algorithms should look after
the incorporation of 5G technologies. The present thesis will discuss in chapter 5 some proposed
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NFV orchestration algorithms that also tackle the VNE problem in 5G edge and fog scenarios.





3. Generation of 5G infrastructure graphs

5G networks come with the promise of new and enhanced services, through the introduction
of an improved radio interface, plus a network core that allows to dynamically deploy services
closer to the location of the users. 5G networks will need to accommodate on top of the same
physical infrastructure multiple kinds of services with very distinct requirements, spanning from
ultra-low latency to high bandwidth and high reliability. These services are grouped in three main
categories by 3rd Generation Partnership Project (3GPP): enhanced Mobile Broadband (eMBB),
Ultra-Reliable and Low Latency Communications (URLLC), and Massive Internet of Things
(MIoT) [3GP18d].

Among the several use cases that may be supported by 5G are Augmented Reality (AR) and
Virtual Reality (VR), which can be included into glsembb and URLLC categories. In particular,
AR/VR impose a Motion to Photon (MTP) latency that does not exceed 20 ms, requiring a
network Round Trip Time (RTT) below 2 ms [HAS17]. Moreover, a response within 1 ms is
desired in case of visual-haptic interaction [Shi+10]. Although the new 5G radio interface promises
ultra low latency enhancements, to truly fulfill the AR/VR ultra-low latency requirements it is also
necessary to reduce the communication distance by bringing the multimedia applications close to
the end users. This is achieved by Multi-access Edge Computing (MEC) [Hu+15] [GCR17].

As discussed in section 1.3, MEC is a key enabler for 5G technology and its main principle is
to host computation and storage at edge hosts, close to end users. Typically, these edge hosts are
highly distributed in the network, located close to the radio access network nodes (e.g., gNodeBs
in 5G). As a result, MEC enables two types of services: (i) low-latency services, requiring a very
low and bounded delay between the end user device and the server hosting the application; and, (ii)
context-aware services, which need to access end-user contexts, such as the user channel quality
conditions, in order to adapt the delivered service. MEC is being standardized within European
Telecommunications Standards Institute (ETSI), via the MEC ISG group. The main components of
the architecture include: the MEC host, the MEC application and the MEC orchestrator. The MEC
host is the key element. It provides the environment to run MEC applications, while it interacts with
the mobile network entities, via the MEC platform, to provide MEC services and deliver mobile
traffic to MEC applications.

MEC hosts are expected to be deployed by mobile operators in their 5G network infrastructure.
To enable the pervasive service offering of AR/VR multimedia services, it is hence necessary to
study how a MEC deployment should look like to support URLLC. Specifically, it is important to
understand what are the suitable locations of future MEC Point of Presence (PoP)s (see Sec. 3.3)
within the mobile network infrastructure.

This chapter proposes how to generate 5G infrastructure graphs to satisfy the strict service
requirements of 5G use cases. In particular, section 3.1 describes how to generate the locations of
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Base Station (BS)s, section 3.3 specifies where the MEC PoPs should be located, and section 3.4
shows how to generate a 5G network infrastructure in rural, urban, and industrial scenarios. Later
in the chapter, in particular in section 3.5, 5GEN is presented as an R package to generate 5G
infrastructure graphs that leveraging on both the generation of BSs and MEC PoPs. And by the
end of the chapter, section 3.6 describes the generation of multi-domain graphs that are present in
network federation scenarios. Finally, the chapter gives some conclusions on the proposed methods
and generated graphs.

3.1 SoA on BSs’ generation
To create a 5G network infrastructure, the nearest elements to the end user are the BSs. However,
that information is not publicly available. On top, whenever the network infrastructure planing
is done, the operator needs to evaluate where to locate its BSs. Thus, it is required to derive a
methodology to generate the locations of BSs in a network infrastructure. The current subsection
gives an overview of the SoA on the generation of BSs.

Existing work in the literature, such as [SRF15], studies feasible network infrastructure de-
ployments using (Point Process (PP)s) that randomly scatter points on some space (e.g., a line, a
Cartesian plane, etc.). In particular [SRF15] uses Poisson Point Process (PPP), a family of PPs
used to generate the location of base stations (BSs) that are distributed following Poisson counting
processes. PPPs can impose a minimum distance between BSs to increase coverage area and reduce
the interference (see hard-core PPPs in [BeW07]), and control if every region in the space has the
same or different probability to host a BS (see homogeneous and inhomogeneous PPPs, respectively,
in [BeW07]).

Different types of PPPs are used in the State of the Art (SoA). For instance, the authors
of [SMF15a] use Neyman-Scott [NS58] PPPs to generate small base stations (BSs) clustered
around macro BSs with the objective of modeling the coverage and interference in heterogeneous
networks. Similarly, [IEE13] shows that homogeneous PPPs can be used in realistic deployment
scenarios to reduce interference and increase the coverage area by properly configuring the distance
between the BS sites and the intensity parameter.

Works like [SRF15] and [AD18] analyze potential infrastructure deployments with the help of
homogeneous PPPs. The former focuses on studying the cost of a Cloud Radio Access Network
(Cloud-RAN) infrastructure using PPPs, while the latter analyzes the throughput and coverage of
end users, using PPPs to determine hotspot locations in heterogeneous cellular networks.

Regarding future MEC deployments in real scenarios, [SBD18] studies the existing BS de-
ployment in several USA locations (including highways and rural areas). Likewise, [Fra+17b]
characterizes AR/VR deployments in stadium scenarios in the perspective of forthcoming Tokyo
2020 Olympics. The authors conclude that such use case requires a single media room dedicated to
the video processing and proposes two distinct BS deployments: one powerful BS in the stadium
(e.g., on the roof) or multiple small BSs (e.g., located close to the stadium vomitoria1).

Unlike [SBD18], the current section accounts for 5G New Radio (NR) technologies rather
than legacy radio technologies. Section 3.2 shows how to generate feasible locations for gNodeBs,
and derive deployments of MEC PoPs guaranteeing low latency requirements that deployments
in [SBD18] do not ensure. In particular, inhomogeneous Matérn II PPs (see Proposition 3.2 are
used in Sec. 3.2 for more details) to obtain feasible locations for the BSs. The inhomogeneity of
these processes improves the Matérn PPs in the SoA by locating the BSs based on the density of
population. That is, more BSs are generated where the population density2 is higher. In other words,
the inhomogeneity allows to concentrate the BSs where they are really needed and to minimize the
generation in those areas with little traffic demand.

1 A vomitorium is a passage situated below a tier of seats in a stadium.
2 In our scenarios we refer to human population. Nevertheless, inhomogeneous Matérn PPs can be applied to other

types of populations.
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Figure 3.1: Revolution functions of a region with two building areas.

The generated BS locations are used later in section 3.3 to derive the required number of PoPs
and their potential location.

3.2 Macro cells generation
With the model we aim to generate more BSs in regions where the population is higher. Here we
refer to a region R as a subset of a complete separable metric space R, for example a map of Spain.
Hence R can represent a city like Madrid and the model locates BSs in city areas where there are
more people.

To achieve this we consider that every region R contains population circles Ci ⊂ R defined by
a center ci and a revolution function fi(x) (with i ∈ [1,RC]∩N, and RC the number of population
circles defined inside the region R).

The revolution function fi(x) with x ∈Ci determines where it is more likely to have a person in
Ci. This function leads to a surface of revolution defined at Ci that can be expressed as fi(∥x−ci∥d),
and which height expresses the amount of people at a given location x ∈ R. Therefore, the presence
of people at x ∈ R is expressed as:

G(x) := ∑
i

fi(∥x− ci∥d), ∀Ci ⊂ R, ∀d ∈ N (3.1)

where G(x) is referred as gentrification in the following paragraphs.
Figure 3.1 illustrates an example of a region R with two population circles (i.e., C1, C2)

corresponding to two distinct areas. Moreover, the revolution functions fi considered in this
example are Gaussian-like surfaces of revolution that can be multi lobed as the case of f2, and the
gentrification function G(x) is just the dashed line merging both of them.

If an inhomogeneous PPP uses the gentrification function G(x), the process generates BSs in
concordance with the population, but it is still necessary to know how many we have to generate.
Based on [Com+18a] we grid the region R in cells to satisfy the imposed number of BSs per km2 in
future 5G deployments, and we take R as a two dimensional space where the region to be gridded
R⊂R (for example Madrid) is expressed as a rectangle R = [x1,l,x1,r]× [x2,b,x2,t ] divided into
cells Ri ⊂ R of width x1,s and height x2,s. The resulting grid has wi rows and ui columns that are
completely determined by the cell index i (which increases from left to right, and upside down as
shown in Fig. 3.2):

wi :=
⌊

i · x1,s

un

⌋
, ui = i · x1,s mod un (3.2)

un =

⌈
x1,s− x1,l

x1,s

⌉
(3.3)
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with un being the number of columns of the gridded region R. Finally, we set each cell Ri as the
product of two intervals Ri = [xi

1,l,x
i
1,r]× [xi

2,b,x
i
2,t ] whose limits are:

xi
1,l = x1,l + x1,sui (3.4)

xi
1,r = min{x1,r, x1,l +(1+ui)x1,s} (3.5)

xi
2,b = max{x2,b, x2,t − (1+wi)x2,s} (3.6)

xi
2,t = x2,t − x2,swi (3.7)

Fig. 3.2 illustrates on the left-hand side (lhs) the limiting coordinates of a region R that is gridded
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Figure 3.2: Gridded region on the left side, and macro cell generation inside a cell on the right side.
Gray crosses without a cell tower represent BS points that did not survive after the I2 thinning. The
rhs shows how the region cell R2 is gridded when the repulsion radius is chosen as specified in
Eq. (3.25) with N(R2) = 5.

into cells Ri according to the limits above, i.e., (3.4)-(3.7).
In every single cell an inhomogeneous PPP generates a specific average number of BSs using

an intensity function defined as λ (x) = k ·G(x) (where k ∈ N is a constant), so BSs are located
with higher probability where there are more people. But since we want to have the BSs as sparse
as possible, it is necessary to impose a minimum distance between them. This work leverages
the Matérn hard-core processes [Mat86] to model the BSs’ generation. The first process under
consideration for our model is the Matérn I process.

Definition 3.1: Matérn I point process: is the point process obtained after applying a thinning
with index function:

I1(x,X) :=

{
0 if N(B(x,r))> 1

1 if N(B(x,r)) = 1
(3.8)

to a stationary PPP X , where N(B(x,r)) denotes the number of points of the point process X
falling in the ball centered at x with radius r.

In other words, a point x ∈ X is removed if it has a neighbor x′ ∈ X with distance ∥x− x′∥d < r.
This property suits the random generation of the BSs’ locations because only one BS can be in
a neighborhood. However, these point processes are stationary (see [BeW07]), and therefore
homogeneous, before the thinning (see Definition 3.1), but this model uses inhomogeneous PPPs
to generate BSs (based on G(x)) at each cell Ri ⊂ R. Thus we modify the original definition of a
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Matérn I point process to use an inhomogeneous PPP before the thinning. We call these processes
inhomogeneous Matérn I PPs.

After inhomogeneity is introduced, we need to know an expression for the average number of
points E [N(C)] that can appear in a certain set C ⊂R. The reason, as shown in Proposition 3.1,
is that this expression is in terms of the repulsion radius r and the intensity function λ (x), and we
must select these parameters accordingly to generate the desired average number of BSs in a cell Ri.
Since there is no expression in the literature for the average number of points of a “inhomogeneous
Matérn I PPs”, we have obtained it with the help of the Campbell-Mecke formula [SW08].

Lemma 3.1: Given an inhomogeneous PPP X with intensity function λ , and the thinning
function I1, the resulting thinned point process, called inhomogeneous Matérn I PP, has the
following average number of points at C:

E [N(C)] :=
∫

C
e−

∫
B(x,r) λ (u)du

λ (x) dx (3.9)

where r is the thinning radius of I1.

Proof. First we define the auxiliary function g:

g : R×Ω→{0,1} (3.10)

(x,A) ↦→ 1C(x) 1(dist(x,X \ x)> r) (3.11)

where Ω is the space of events (see [BeW07]). We can then rewrite the average number of points at
C as:

E [N(C)] := E ∑
x∈X

g(x,X) (3.12)

Next, we use the Campbell-Mecke formula to obtain:

E ∑
x∈X

g(x,X) :=
∫

R
Ex[g(x,X)]λ (x) dx = (3.13)

=
∫

R

∫
Ω

g(x,X)Px(A) dA λ (x) dx = (3.14)

=
∫

C

∫
Ω

1(dist(x,X \ x)> r)Px(A) dA λ (x) dx = (3.15)

=
∫

C
Px (dist(x,X \ x)> r) λ (x) dx = (3.16)

=
∫

C
P(N (B(x,r)) = 0) λ (x) dx (3.17)

where Px denotes the Palm probability. Finally, we apply the capacity functional (see [BeW07]) of
a PPP to obtain the stated equality. ■

One drawback of these “inhomogeneous Matérn I” processes is their very restrictive dependent
thinning procedure, which might reach the case where all the points are removed in certain
neighborhoods. To overcome such limitation, our model considers a second type of processes,
known as Matérn II point processes, that rely on marked point processes (see [BeW07]). Matérn II
processes assign a mark to every point generated so as to allow the dependent thinning processes
(see [BeW07]) distinguish which point is retained in a neighborhood.

Definition 3.2: Matérn II point process: is the point process obtained after applying a thinning
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with index function:

I2(x,m,X ,MX) :=

⎧⎪⎨⎪⎩
1 if m = minm′∈MX

{
(x′,m′) :

x′ ∈ B(x,r)
}

0 otherwise

(3.18)

to a stationary marked PPP X , where MX denote the marks associated to the point process X .

In other words, among all the points falling in the ball of radius r, only the one with the lowest mark
m survives. These kind of processes present the advantage that even when the intensity function
takes high values, at least one point remains in every neighborhood. In our model this means that in
a certain neighborhood there is no more than one BS.

If rather than using a stationary PPP before applying the dependent thinning I2, we use an
inhomogeneous PPP (something novel in the SoA); then it is possible that the retained BS in
a neighborhood is the one with higher λ (x) by choosing the mark (x,m) as m ∼ 1

λ (x) . But still
is missing how we can control that a correct number of BSs is generated at each region Ri ⊂ R
based on the repulsion radius r and the intensity function λ (x). Thus we proceed as with the
“inhomogeneous Matérn I” PPs to obtain an expression for the average number of points (something
novel in the SoA).

Lemma 3.2: Given an inhomogeneous marked PPP X with intensity function λ , the thinning
function I2, and marks m ∼ 1

λ (x) , the resulting thinned point process, called inhomogeneous
Matérn II PP, has the following average number of points at C:

E [N(C)] :=
∫

C
e−

∫
B(x,r)1(λ (u)>λ (x))λ (u)du

λ (x) dx (3.19)

where r is the thinning radius of I2.

Proof. As in the proof of Proposition 3.1, we proceed defining the function g:

g : R×Ω→{0,1} (3.20)

(x,A) ↦→ 1C(x) 1
(

λ (x) = max
x′∈X∩B(x,r)

{
λ (x′)

})
(3.21)

Then, the average number of points in a subset C can be expressed as in Eq. (3.12). Next, we apply
the Campbell-Mecke formula as in the previous proof and we obtain the average number of points
as:

E ∑
x∈X

g(x,X) :=
∫

C
Px
(

λ (x) = max
x′∈X∩B(x,r)

)
λ (x) dx = (3.22)

=
∫

C
P
(
N
(
B>λ (x)(x,r)

)
= 0
)

λ (x) dx = (3.23)

=
∫

C
e−

∫
B(x,r)1(λ (u)>λ (x))λ (u)du

λ (x) dx (3.24)

where B>λ (x)(x,r) = {u : x ∈ B(x,r)∧λ (u)> λ (x)} . ■

The right-hand side (rhs) of Fig. 3.2 depicts how to obtain BSs’ locations using an inhomo-
geneous Matérn II PP (whose average number of points is derived in Proposition 3.2). First, it
generates the gray crosses using an inhomogeneous PPP with intensity function λ (x) (note that
more points are generated on the upper right corner because of the direction of ∇λ (x)). Then, a I2
thinning is applied using repulsion radius r with marks m∼ 1

λ (x) , so only the gray cross with the
most top-right coordinate falling within a ball of radius r survive. This surviving cross is hence
illustrated as a cell tower in Fig. 3.2.
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As both Propositions 3.1 and 3.2 state, the average number of points of “inhomogeneous
Matérn I and II” PPs depend on the repulsion radius r. Then for a cell Ri ⊂ R, we need to know
which r allows the generation of the required number of BSs. To generate N(Ri) points we set the
cell repulsion radius as:

r :=
2√x1,s · x2,s

⌈
√

N(Ri)⌉
(3.25)

which grids Ri in cells that can contain the repulsion balls B(x,r) of the Matérn PPs. These new
cells are squares of side 2r and area 4r2 > πr2 = |B(x,r)|, and they divide the parent cell Ri in
⌈
√

N(Ri)⌉2 smaller cells that can host a whole macro cell repulsion area.

3.3 MEC PoPs generation
We assign the traffic of every BS generated in Sec. 3.2 to a MEC PoP that is deployed somewhere
within the operators’ network infrastructure, and at a specific geographic location (i.e., to minimize
RTT). The further the distance between the MEC PoP at location m, and a BS at location x, the
higher the propagation delay l(·) of the link connecting them. The other two contributions for the
packet RTT are the radio transmission delay tr between a BS and the final user, and the packet
processing delay p(·):

RT T := 2l (∥x−m∥d)+2p(M)+ tr (3.26)

with p(M) denoting the processing delay introduced by the network hops to be traversed to reach
the network ring M. Hence, our model envisions the operator infrastructure as a hierarchy of
network rings M , in which traffic traverses more hops to reach network rings that are higher in
the hierarchy (see Fig. 3.3). That is, taking ≺ as a relationship expressing which network ring is
higher in the network hierarchy M , if Ma,Mb ∈M and Ma ≺Mb, we can say that a MEC PoP
deployed at Ma is reached in less hops than one at Mb. Thus, p(Ma)< p(Mb), and network ring Ma

aggregates less traffic than Mb.
So if we place a MEC PoP at location m and assign it to network ring M, after fixing the

maximum RTT and radio technology, from Eq. (3.26) we know the maximum distance to those
BSs whose traffic is assigned to the new MEC PoP

∥x−m∥d ≤ l−1
(

RT T −2p(M)− tr
2

)
= mM (3.27)

Algorithm 1 determines the MEC PoPs’ deployment in three stages:
1. Initialization: the first stage (lines 1-4) creates the set of MEC PoPs locations, the set of their

network rings, the set of BSs and one matrix of locations x ∈ R per network ring. Each entry
x in the matrix matrices[M] represents the number of BSs that can be assigned to a MEC PoP
deployed at a given location x and associated to the ring M ∈M

2. Candidates search: this second stage (lines 5-10) determines how many BSs can be assigned to
a MEC PoP depending on its location and associated network ring M ∈M . For every M it loops
through each BS and increases by one those location entries of matrices[M] satisfying that if a
MEC PoP is deployed there, it could satisfy the RTT and hence, the BS could be assigned to that
MEC PoP. If matrices[Ma][x0] = 4 after this stage, it would mean that a MEC PoP associated to
Ma and deployed at x0 would have 4 BSs assigned to itself.

3. MEC PoPs selection: this third and last stage (lines 11-35) is the main loop of Algorithm 1,
and each iteration decides a new MEC PoP location and network ring. It comprises two phases:

(a) MEC PoP location: this phase (lines 15-24) obtains the best location where a MEC PoP
can be located. It iterates through all the possible network rings in M searching for the
location where the maximum amount of BSs can be assigned to a MEC PoP. In case of
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having multiple locations assigning the same amount of BSs at different rings, let’s call
them Ma,Mb, then the algorithm selects the location related to the ring with the minimum
propagation delay, i.e., min{p(Ma), p(Mb)}.

(b) Assignment update: the MEC PoP obtained in the previous step handles the traffic of
up to maximum number of BSs ringMaxBSs(), depending on the network ring where it
is associated. Taking into account that consideration, this phase (lines 28-34) iterates
through every BS assigned to the MEC PoP and updates every matrices[M] to reflect the
assignment by decreasing in one unit the neighborhood of each BS. That is, if the new
MEC PoP has an assigned BS at location x, the neighboring locations of x at every ring,
i.e., matrices[M][B(x,mM)], must be decreased by one. Thus if another MEC PoP is later
located inside B(x,mM), it knows that it will cover one less BS. Finally all the assigned
BSs are removed from the unassigned list.

Hence, Algorithm 1 iterates through every MEC PoP candidate location m, and chooses the one
maximizing the number of BSs falling inside the ball B(m,mM). This process minimizes the number
of MEC PoPs, and is done for every possible network ring M to find the best (m,M) combination.

3.4 An example of macro cells and MEC PoPs generation
This subsection provides an example of how to apply the macro cell, and PoP generation procedures
described in section 3.2 and section 3.3 to derive macro cells and PoPs locations urban, industrial,
and rural scenarios. This subsection first characterizes the network traffic infrastructure to derive
realistic values for the average number of BSs/km2 and network RTT. Second, it characterizes three
deployment areas in Spain, namely Madrid city center (104 km2), Cobo Calleja industrial estate (8
km2), and Hoces del Cabriel valley (2193 km2), And third, it applies the generation of macro cells
and PoPs in these three deployment areas.

3.4.1 Characterization of network traffic and infrastructure
According to the Next Generation Mobile Network Alliance (NGMN) [NGM16], 5G services are

expected to be provided via ad-hoc network slices over the same physical infrastructure. In order
to enable the desired traffic treatment in the network infrastructure, the 3GPP has defined a set
of flows with the corresponding traffic requirements for the eMBB and URLLC slices [3GP18a],
while NGMN in [NGM15] defined the traffic requirements for the MIoT slice. eMBB services are
characterized by high bandwidth and span from classical mobile traffic (e.g., mobile terminals),
to broadcast-like services (e.g., IPTV), high-speed vehicles (e.g., in-vehicle infotainment), indoor
hotspot (e.g., fiber-like access), and dense urban (e.g., crows in a stadium, square). On the contrary,
URLLC services are characterized by low latency and span from discrete automation (i.e., remote-
controlled robots), to intelligent transport systems (e.g., autonomous cars), and tactile interaction
(e.g., augmented reality). Finally, MIoT services are characterized by a high number of intermittent
and low-power communications (e.g., sensors). Table 3.1 reports a selected number of the above
traffic requirements as reported in [3GP18a, NGM15].

Based on the different slices and traffic flows introduced above, the authors in [Com+18a]
first identify three reference deployment scenarios, namely urban, industrial, and rural. Next, they
characterize the average number of BSs/km2 for each scenario. Specifically, they report for the
urban scenario an average number of 72 BS/km2 in case of supporting the indoor hotspot traffic flow,
which is characteristic of business districts and office areas that require 4 BSs per building floor.
In residential/commercial areas instead, the average number of BS/km2 is 12 in urban scenarios.
Similarly, 12 BSs are also required in the industrial scenario to satisfy the traffic demand of 1
km2. Finally, the rural scenario considers a 4-lane road (e.g., highway) supporting the intelligent
transport system flow (e.g., V2X) and requires 1 BS per kilometer of road.

The characterization of the network traffic and infrastructure was carried out by Dr. Luca Cominardi in the collabora-
tion that led to the content of the current chapter 3.
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Algorithm 1: MEC PoPs placement.
Data: BSs, R, RTT
Result: MECPoPLocations, MECPoPRings

1 matrices = array(int.matrix(R), length = |M |);
2 unassigned = Set(BSs);
3 MECPoPLocations = Set();
4 MECPoPRings = Set();
5 foreach x in BSs do
6 foreach M in M do
7 mM = l−1

(
RT T−2p(M)−tr

2

)
;

8 matrices[M][B(x,mM)] += 1;
9 end

10 end
11 while not empty unassigned do
12 covBSs = −1;
13 MECPoP = NULL;
14 ring = NULL;
15 foreach M ∈M do
16 maxCov = maxx′ {matrices[M][x′]};
17 moreBSsCovered = maxCov < covBSs;
18 eQ = (maxCov = covBSs∧ p(M)< p(ring));
19 if moreBSsCovered OR eQ then
20 covBSs = maxCov;
21 MECPoP = x : matrices[M][x] = maxCov;
22 ring = M;
23 end
24 end
25 MECPoPLocations.add(MECPoP);
26 MECPoPRings.add(ring);

27 ringMaxDis = l−1
(

RT T−2p(ring)−tr
2

)
;

28 assignBSs = BSs ∩ B(MECPoP, ringMaxDis);
29 foreach x ∈ assignBSs.subset(ringMaxBSs(ring)) do
30 foreach M ∈M do
31 matrices[M][B(x,mM)] -=1;
32 end
33 unassigned.pop(x);
34 end
35 end
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M1

Base Station

6x Base Stations  
per M1 node

6x M1 nodes 
per access ring

M2

4x access rings 
per M2 node

Access ring Aggregation ring

M3

6x M2 nodes per 
aggregation ring

2x aggregation 
rings per M3 node

M4

CoreAccess Aggregation

Internet
Core ring

Figure 3.3: Reference network infrastructure as illustrated in [Com+18a] and based on [ITU18]

Table 3.1: Exemplary 5G traffic requirements.

SLICE FLOW REQUIREMENTS

Indoor Hotspot Up to 1Gbps/user

eMBB Broadcast services Up to 200 Mbps/TV channel

High-speed vehicle Up to 100 Gbps/Km2

Discrete automation Maximum jitter of 1 µs

URLLC Intelligent transport Reliability of 99.9999%

Tactile interaction Maximum latency of 0.5 ms1

MIoT Sensors data Up to 200 Mbps/Km2

1 Note: end-to-end maximum delay as defined in [3GP18a].

The next step is to characterize the network infrastructure. To that end, we leverage the reference
network infrastructure illustrated in [Com+18a] and based on [ITU18]. The network infrastructure
comprises three segments: (i) access, (ii) aggregation, and (iii) core. The access comprises 6 BSs
for each node M1 connected via a point-to-point link, and 6 nodes M1 connected in a ring topology.
Thus, each access ring hence connects a total of 36 BSs. It is worth highlighting that from a network
topology point of view, there is no difference whether the BSs are macro, micro, pico, and any
variation thereof. For the sake of validating our model, what really matters is the number of BSs
and how they are connected to the transport network.

Next, each aggregation ring comprises 6 M2 nodes, each of which serves 4 access rings. In
turn, each aggregation ring is served by two M3 nodes for redundancy reasons, while each M3
node provides gateway capabilities to 2 aggregation rings. Finally, M4 nodes are connected to the
core ring and serve as gateway to M3 nodes. According to the reference network infrastructure, any
of these BSs and M nodes (e.g., M1, M2, M3, and M4) is a good candidate for placing a MEC PoP.

To better understanding which location is most suitable, we need to characterize the RTT. To
that end, all the network links are assumed to be fiber optic and are characterized by a propagation
delay of 5 µs/km [Cav+17]. We also consider a processing delay of 50 µs on each of the M
nodes [EAN18, EAN16]. Therefore, the Eq. (3.26) becomes:

RT T = 2d ·5 µs
km

+2M ·50µs+UL+DL (3.28)

where d stands for the distance in kilometers between the MEC PoP and the BS, and M is the
number of M nodes (i.e., number of hops) being traversed. For instance, M = 0 in case of collocating
the MEC PoP with the BSs, M = 1 in case of collocating the MEC PoP with M1 nodes, M = 2 in
case of collocating the MEC PoP with M2 nodes, etc. Therefore, the first two terms in the right
hand side of Eq. (3.28) correspond to the propagation delay RTT and the packet processing delay



3.4 An example of macro cells and MEC PoPs generation 91

Table 3.2: NR profiles satisfying the tactile interaction latency

PROFILE DL UL
M1

DISTANCE

M2
DISTANCE

FDD 30 kHz 2s 0.39 ms 0.39 ms 12 km 2 km

FDD 120 kHZ 7s 0.33 ms 0.33 ms 24 km 14 km

TDD 120 kHz 7s 0.39 ms 0.39 ms 12 km 2 km

Note: FDD 30 kHz 2s stands for Frequency Division Duplex scheme with a subcarrier of 30
kHz and 2 symbols.
Note: DL and UL values are the worst case transmission latency presented in [Sac+18].

RTT in the transport network, respectively. The last two terms (i.e., Uplink (UL) and Downlink
(DL)) correspond instead to the uplink and downlink delay over the radio link.

The 3GPP defines multiple profiles for the radio interface (i.e., NR) and each of these profiles
is characterized by distinct UL and DL delay values [Sac+18]. Bound to the most stringent one-
way latency of 0.5 ms for the tactile interaction URLLC traffic flow (see Table 3.1), the BSs
used for the results exposed in Sec.3 are 5G gNodeBs with the suitable radio profiles that satisfy
UL+DL < RT T = 1ms; hence “BS” refers to a 5G gNodeB from now on. Table 3.2 reports the
NR profiles used, which all adopt an uplink semi-persistent scheduling (SPS), and the maximum
distances d from a BS to a MEC PoP.

3.4.2 Characterization of the deployment areas
Based on the identified urban, industrial, and rural scenarios, we select three reference areas in
Spain to apply our model (see Sec. 3.1 and Sec. 3.3) and obtain the MEC PoP locations. Specifically,
we select Madrid city center for the urban scenario, Cobo Calleja area for the industrial scenario,
and Hoces del Cabriel valley for the rural scenario; then we consider the following characterization
aspects.

1. Characterization of G(x): before applying the model we characterize each scenario’s gen-
trification function G(x), revolution function fi, and population circles Ci. Particularly fi is
based on the smooth step function, which is derived from Hermite interpolation polynomi-
als [BF11] and has the following expression:

SN(x) =

⎧⎪⎨⎪⎩
0 x≤ 0
xN+1

∑
N
n=0
(N+n

n

)(2N+1
N−n

)
(−x)n if 0≤ x≤ 1

1 if 1≤ x

(3.29)

more specifically we define fi as:

fi(x) =

⎧⎪⎨⎪⎩
0 i f ∥x− ci∥V > b

2 +a
Pi i f ∥x− ci∥V ≤ b

2

SN
(b

2 +a−∥x− ci∥V
)

i f b
2 < ∥x− ci∥V < b

2 +a

(3.30)

where Pi is the population present in the population circle Ci with center ci. The revolution
function fi takes the value Pi in the circle B

(
x, b

2

)
and transitions from Pi to 0 in the outer

disk, D
(
x, b

2 ,
b
2 +a

)
, where ∥·∥V denotes Vincenty’s distance [Vin75] using the WGS-84

datum [W3C06].
For Madrid city center we consider as population circles the different districts inside the
M-30 ring highway, which administratively identifies the city center and its outskirts. Then,
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for each of these districts we obtain the Pi,a,b values from the city center population census
[Pad18]. For what concerns the Cobo Calleja industrial area, around 100000 people3 work
daily in the area, and one population circle is enough to cover the 8 km2 region. In Madrid
city center and Cobo Calleja, each population circle center ci lies over a LTE tower retrieved
from OpenCellID [18]. Finally, regarding the Hoces del Cabriel rural area, rather than
using the population to determine the BSs’ location, we limit our analysis to the location of
1 BS/km [Com+18a] along the A-3 highway crossing the rural area.

2. Characterization of BSs’ generation: to generate the BSs’ locations, this work uses the
inhomogeneous Matérn II point process described in Proposition 3.2 together with the average
number of BSs described in Sec. 3.4.1. During our experimentation with such process and the
“inhomogeneous Matérn I”, we have realized that the latter has a more restrictive thinning I1
(shown in (3.8)), that did not allow us achieving the desired average number of macro-cells.
The reason is that an increase in the intensity function λ does not correspond to an increase
in the resulting number of points. And this is because an inhomogeneous PPP satisfies that
P(N (A)> 1) ∝ λ , hence the E [N(A)] of equation (3.9) decreases with λ after I1 is applied.
Graphically one can understand this behavior by realizing that the more points we generate
(i.e., the higher λ ), the less probability we have that a point is alone in its neighborhood (i.e.,
the less likely it will survive to I1 thinning).
Unlikely, the described behavior was not experimented with the “inhomogeneous Matérn II”
point process when providing proper values of the repulsion radius r for the thinning I2.
In the case of Madrid city center and Cobo Calleja areas, we require an average of
E(N(Ri)) = 12 BSs/km2 [Com+18a]4, which is obtained by taking x1,s = x2,s = 1 km,
r = 2 · 1km/⌈

√
(12)⌉ (see Eq. (3.25)) and λ (x) = k ·G(x), where k = 16 for Madrid city

center and k = 13 for Cobo Calleja. These values have been obtained using the average
number of points expression that we derive in Proposition 3.2.
The urban scenario necessitates additional considerations on the indoor hotspot traffic flow,
which is not ubiquitous but rather present at few and specific location in Madrid city center.
Following the same approach of [Com+18a], we consider the indoor hotspot traffic flow to
be present only in office buildings5 which require 4 femtocells on each floor, see Table 3.3.
On the other hand for Hoces del Cabriel Valley, as mentioned in section 3.4.1, we locate
1 BS/km along the highway to support the intelligent transport system flow. That is, the
location and number of BSs follows the route of the highway rather than the population.

3. Characterization of MEC PoPs maximum distances: Algorithm 1 uses Eq. (3.27) to
determine the maximum separation between a MEC PoP and a BS. To do so it needs to know
the used distance for the propagation delay between a MEC PoP and a BS (i.e., what is d in
l(∥x−m∥d)), and the used BSs’ NR profile of Table 3.2. Since Sec. 3.4.1 assumes that a BS
is connected to a MEC PoP with a fiber link, which are usually installed along the road lanes,
Algorithm 1 uses the Manhattan distance, so we have l(∥x−m∥d) = l(∥x−m∥1). Regarding
the NR profile, it assumes that all the generated BSs have the same radio technology to have
a fixed value of tr =UL+DL in Eq. (3.27). Hence we need a dedicated execution per NR
profile to know how it affects the MEC PoPs’ deployment.
For sake of clarity, when applying our model to the urban and rural scenarios, it might happen
that some of the generated points are not be physically suitable for hosting a Next Generation
NodeB (gNB) (e.g., they fall in the middle of a road). Nevertheless, given the propagation
delay of 5 µs/km for fiber optics, a slight misplacement of gNodeBs is negligible since it
would only vary the end-to-end delay of few microseconds, which is an order of magnitude
smaller when considering an overall latency of milliseconds.
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Figure 3.4: MEC PoP locations for FDD 120 kHz 7s on the left. Locations for FDD 30 kHz 2s and
TDD 120 kHz 7s on the right. Top maps correspond to the urban scenario (Madrid city), middle to
the industrial scenario (Cobo Calleja), and the bottom to the rural area scenario (Hoces del Cabriel).
The markers shape indicates the network ring a MEC PoP is associated to. For each coordinate,
heat map CA,M1 denotes the number of BSs that can be assigned to a MEC PoP deployed in the
target location and assigned to network ring M1. Similarly, heat map CA,M2 denotes the number of
BSs that can be assigned to a MEC PoP deployed in the target location and assigned to network
ring M2.
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Table 3.3: Madrid city skyscrapers and femtocell requirements

NAME LOCATION FLOORS FEMTOCELLS

Torre espacio (40.479, -3.686) 56 224

Torre Madrid (40.424, -3.714) 37 148

Castellana 81 (40.447, -3.694) 28 112

Torres de Colón (40.425, 40.425) 23 92

Torre titania (40.446, -3.696) 23 92

Torre Mahou (40.448, -3.696) 29 116

Puerta de Europa 1 (40.466, -3.692) 26 104

Puerta de Europa 2 (40.466, -3.690) 26 104

Table 3.4: Number of MEC PoPs necessary per NR profile

R NR M1 MEC POPS1 M2 MEC POPS1

Urban
FDD 120 kHz 7s 0 21

FDD 30 kHz 2s
TDD 120 kHz 7s

3 30

Industrial
FDD 120 kHz 7s 0 1

FDD 30 kHz 2s
TDD 120 kHz 7s

0 3

Rural
FDD 120 kHz 7s 2 1

FDD 30 kHz 2s
TDD 120 kHz 7s

9 0

1 For Urban and Industrial, average number of MEC PoPs across the 100 simulations.

Simulation results
To obtain the MEC PoP locations we run 100 simulations using R and the spatstat
package [BRT15]. Each simulation6 consists of two steps:

(a) Generation of 12 BSs/km2 using “inhomogeneous Matérn II” PPs with the parameters
derived from Sec. 2 (in Madrid city center the indoor hotspot BSs are included as well);

(b) Generation of MEC PoPs using the NR profiles of Table 3.2, and Algorithm 1;
For the rural scenario of Hoces del Cabriel valley, we skip step 3a) and manually generate 1
BS/km along the A-3 highway that crosses the region. Therefore, we only run step 3b) of the
simulation to obtain the MEC PoPs needed for the BSs generated across the highway.
For each scenario only one of the 100 simulations is depicted in Fig. 3.4, where we represent
the geographical locations of the MEC PoPs as squares or rhomboids depending on whether
they are associated to network ring M2 or M1, respectively. Urban, industrial and rural
scenarios are illustrated in Fig. 3.4 top, middle, and bottom, respectively; with left and right

3 Estimation based in the number of employees working in Cobo Calleja companies [Reg18].
4 Here we are not considering the indoor hotspot traffic flow for the urban scenario.
5 In this work we consider office buildings with more than 15 floors [Min18].
6 Code available at: https://github.com/MartinPJorge/mec-generator/tree/

32513cbb7fa2ec3c22567a944d234dc6dd051a36

https://github.com/MartinPJorge/mec-generator/tree/32513cbb7fa2ec3c22567a944d234dc6dd051a36
https://github.com/MartinPJorge/mec-generator/tree/32513cbb7fa2ec3c22567a944d234dc6dd051a36
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Figure 3.5: eCDF of the number of BSs assigned to a MEC PoP in the studied scenarios.

figures representing how MEC PoP locations vary depending on the used radio technology.
A heat map is then used to show the number of BSs CA,M that can be assigned to a MEC PoP
at level M. The darkest area in the rhs of Fig. 3.4(d) means that any MEC PoP associated to
M2 and deployed inside that area has CA,M2=80 BSs whose traffic can be assigned to itself.
The average number of MEC PoPs for each scenario is reported in Table 3.4. Results show
that collocating the MEC PoPs with the BSs doesn’t provide enough advantages in terms
of BSs aggregation and target traffic delay requirement. This is because the network delay
(see Eq. (3.28)) can be satisfactorily fulfilled by aggregating more BSs in fewer MEC PoPs
at higher network rings (e.g., M1, M2, etc.). In fact, Algorithm 1 minimizes the number of
MEC PoPs whilst fulfilling the traffic requirements. Such traffic requirements (e.g., 1 ms
RTT constraint for the URLLC slice) are never satisfied when the MEC PoPs are located
at the M3 and M4 network rings, yielding to empty matrices[M3] and matrices[M4]. The
reason of such behavior is that packet processing delay (see Eq. (3.28)) increases linearly
with the number of network rings to be traversed. As a result, the MEC PoPs have been
always associated to M1 or M2 network rings in all our simulations, as it can be appreciated
in one of the simulation realizations shown in Fig. 3.4.
The lower the packet processing time, the higher the maximum distance between a BS and a
MEC PoP (see Eq. (3.28)). Thus MEC PoPs associated to M1 have more candidate BSs to
be assigned than MEC PoPs associated to M2. But among all the candidate BSs it can only
have 6 BSs assigned, while a MEC PoP associated to M2 can have up to 144 BSs assigned.
For both the urban and industrial scenarios, the results of our 100 simulations (see Table 3.4)
show that most of the MEC PoPs are associated to M2. Since both scenarios have short
distances and propagation delays because of the high density of BSs/km2, the addition of M2
packet processing delay does not exceed the 1 ms RTT of URLLC. Therefore, Algorithm 1
associates the MEC PoPs to the M2 network ring, and assigns them as many BSs as possible
to reduce the number of MEC PoPs. Conversely, looking to Figure 3.4(e)-(f), more MEC
PoPs are associated to M1 in the rural scenario because distances and propagation delay to
BSs are high enough to exceed the 1 ms RTT when MEC PoPs are associated to M2.
Regarding the different NR profiles (see Table 3.2), low UL and DL delays of FDD 120 kHz
7s permit to increase the maximum distance between a BS and a MEC PoP. Therefore, a
MEC PoP can serve a larger number of BSs, as shown in the darker heat maps at the lhs of
Fig. 3.4. As a result, using FDD 120 kHz 7s as NR profile necessitates the deployment of
fewer MEC PoPs compared to all the other NR profiles (see Table 3.4). Indeed, any MEC
PoP location in the urban and industrial scenario can serve any FDD 120 kHz 7s BSs in the
region as shown in Fig. 3.4(a)-(b) and Fig. 3.4(c)-(d). Instead, FDD 30 kHz 2s and TDD 120
kHz 7s impose a higher UL and DL delay, thus requiring a shorter distance between a BS
and a MEC PoP. This results in a larger number of MEC PoPs sparsely located in the region
(see rhs of Fig. 3.4).
Fig. 3.5 illustrates the experimental Cumulative Density Function (eCDF) for the number of
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Figure 3.6: Network topology of the generated infrastructure graphs

BSs assigned to a MEC PoP. Results show that the FDD 120 kHz 7s NR technology increases
the number of BSs associated to a MEC PoP (less than the 33% of them have less than 100
BSs assigned in the industrial and urban scenario), while the other NR technologies lead to a
higher percentage of MEC PoPs with fewer BSs assigned. For example, 68% of the MEC
PoPs of the industrial scenario have less than 70 BSs assigned when TDD 120 kHz 7s or
FDD 30 kHz 2s are used, which is less than half the BSs that can be assigned to a MEC PoP
associated to M2.
Summarizing, there is a trade-off between the performance of the NR profile and the number
of MEC PoPs. Higher performance radio profiles, which can be more expensive, allow to
associate a larger number of BSs to a MEC PoP, resulting in fewer MEC PoPs. On the
contrary, a less performant radio profile, which is cheaper, requires a large number of MEC
PoPs for satisfying URLLC traffic. This trade-off should be taken into consideration by the
network operators to optimize costs when building their network.

3.5 Operator graph generation with 5GEN
Given the macro cells generation described in Sec. 3.2, and MEC PoP generation of Sec. 3.3, it
is still left to generate a graph to represent the network infrastructure of a 5G operator. To that
extent, this section introduces 5GEN, an R package that creates graphs as the one depicted in Fig. 3.6.
The package includes a set of functions that allow the creation of the operator graph following
clustering strategy. Paragraphs below detail the steps and functions invoked for the generation the
operator graph. The idea is to create clusters of 6 BSs that can be derived as described in Sec. 3.2,
and connect each one to a M1 switch. Then, access and aggregation rings are created as groups
of M1 and M2 switches, respectively. Hence, 5GEN package takes care of the assignment of BSs’
traffic to switches, which misses in the previous sections of the present chapter. Since, Sec.3.2-3.4
covered the BS generation, and the assignment of them to PoPs at different rings in the network
infrastructure, but not the linkage of BSs towards the operator switches.

The build5GScenario function (see Algorithm 2) generates 5G infrastructure graphs based on a
set of BSs. First, it creates a dendrogram7 of BSs based on the distances between them (line 5).
Then, line 6 cuts the dendrogram in clusters where BSs have a maximum distance of 10km among
them, and such clusters are split in line 7 into groups of no more than 6 BSs. Every group of 6 BSs
is later connected to the nearest M1n switch based on Vicenty’s distance [TVi75].

To generate the access and aggregation rings, line 14 connects each group of 6 M1/M2 switches
(respectively) in a ring fashion, and creates groups of g = 4 access rings, and g = 2 aggregation
rings in line 16. As last step, line 19 links M2 switches to each of the 4 access rings R inside a
group Gi. Same process is done to link groups of 2 aggregation rings to M3 switches.

7 dendrogram: tree diagram representing a hierarchical grouping of elements.
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Algorithm 2: build5GScenario
Data: BSs
Result: access and aggregation graph

1 levels = [BSs, access, aggregation];
2 distances = [10km, 20km, 40km];
3 foreach (l, d) in (levels, distance) do
4

N =

⎧⎪⎨⎪⎩
BSs, if l = BSs
M1, if l = access
M2, if l = aggregation

5 H = hierarchical_clustering(N);
6 C = cut_dendrogram(H, d);

7 R = ∪C′∈C

{{
C′i+6 j

}min{C′−1−6 j,5}

i=0

}⌊C′/6⌋

j=0
;

8 if l = BSs then
9 for R j ∈ R do

10 M1n = minM1 ∑r∈R j Vicenty(M1,r);
11 connect(r,M1n) , ∀r ∈ R j;
12 end
13 else
14 connect(ri,ri+1 mod 6) , ∀ri ∈ R j, ∀R j ∈ R;
15 g = 4 if l = M1 else 2;

16 G =
{{

Ri+g j
}min{R−1−g j,g−1}

i=0

}⌊R/g⌋

j=0
;

17 for Gi ∈ G do
18 upper=M2 if l =M1 else M3;
19 connect’(R,upper) , ∀R ∈ Gi;
20 end
21 end
22 end

Once Algorithm 2 returns a graph with the access and aggregation rings, the next step is
to attach computing resources to the generated infrastructure invoking 5GEN attachServers, and
attachFogNodes. Note that attachServers would be fed with the MEC PoP generation described in
Sec. 3.3. Our tool allows to specify where to attach resources in the graph (fog nodes are always
attached to the nearest BS), and how many CPU, memory and disk they have. Both attachServers
and attachFogNodes collapse all the information in two R data frames that contain nodes and
edges of the infrastructure graph. One data frame contains the switches, BSs, servers and fog
devices. The other contains edges representing fiber links among switches, links between them and
the generated servers, and the wireless connectivity of BSs and fog devices. 5GEN allows further
customization, thanks to the addNodeProps and addLinkProps functions, which can be used to add
or edit properties of the nodes and edges of the generated graphs.

To sum up, the generation of a infrastructure with 5GEN comprises the invocation of the
following functions8:

1. build5GScenario(BSs);

8 For further details check code snippet examples at: https://github.com/MartinPJorge/mec-generator/
tree/f7e0aa3b7db2b24eb910e623e4ad2d8d9ada9718

https://github.com/MartinPJorge/mec-generator/tree/f7e0aa3b7db2b24eb910e623e4ad2d8d9ada9718
https://github.com/MartinPJorge/mec-generator/tree/f7e0aa3b7db2b24eb910e623e4ad2d8d9ada9718
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2. attachServers(number, properties);
3. attachFogNodes(number, properties); and
4. (addNodeProps or addLinksProps).

After that, the user generates a GML graph file calling igraph::graph_from_data_frame [CN06]
using 5GEN data frames of nodes and edges.

Fig. 3.7 shows an instance of Fig. 3.6 reference 5G graph, generated invoking the functions
above using the BSs generated in Sec. 3.4 for Cobo Calleja, Madrid. Such set of BSs are included
in the cobo dataset of 5GEN R package.

3.6 Multi-domain graphs
Given the arise of Network Function Virtualization (NFV), the management of the network infras-
tructure has became more flexible. The network operator has the chance of deploying a Network
Service (NS) on the fly with the respective Network Service Descriptor (NSD)s, and an adequate
infrastructure supporting the ETSI Management and Orchestration (MANO) [ETS14] architecture.
As a consequence, European projects as 5GEx [Ger+17], 5G-TRANSFORMER [Oli+18], and
5GROWTH [Saa+]; started to raise as solutions to cope with the management and orchestration of
NFV architectures. Furthermore, and what is of interest in the current section, such projects consid-
ered the possibility of assessing the management and orchestration in multi-domain environments,
i.e., on scenarios in which multiple network operators put their administrative domains under a
common orchestration architecture.

When multiple domains are being managed by a central entity, it is natural to consider that it is
capable of delegating NSs deployments across domains. For example, if a network operator wants
to deploy a virtual Content Delivery Network (CDN) NS in an area where it has no administrative
domain, such service could be deployed in such area on other network operator administrative
domain. To do so, it is necessary an agreement in between operators, so they can make use of
others’ pool of resources. The 5GEx architecture assumed that network operators shared and
abstracted information on the pool of resources that they shared with other operators administrative
domains. In particular, such abstracted view of available resources was exchanged relying on top of
the Big Switch with Big Software (BiS-BiS) virtualization concept, i.e., administrative domains
shared among them BiS-BiS nodes [Son+15] with information regarding networking and computing
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Figure 3.8: Illustration of a fat-tree of size k = 4.

capabilities.
When network operators share a pool of resources among them, it is said that they share

a pool of federated resources, i.e., resources that they can access and even manage, to deploy
their own NSs. We refer to scenarios in which operators deploy NSs on others’ administrative
domains, as federation scenarios. If a NFV orchestration algorithm has to solve the Virtual Network
Embedding (VNE) problem in federation scenarios, it will account for multiple domains with their
corresponding resources. To evaluate the performance of such algorithms, the present thesis models
the multiple domains using graphs, which are referred to as the title of the present section, i.e.,
multi-domain graphs.

Each domain is assumed to have a data center with a fat-tree topology [Lei85], see Fig. 3.8.
Every domain shares resources of its own data center, and neighboring domains can access them
using a meshed connection of gateways that steer the inter-domain traffic.

The multi-domain graph consists of a set of nodes that either represent a gateway or a switch,
or a server present in a pod of the fat-trees. Edges represent the links inside the fat-tree, or even the
links connecting the gateways that steer the traffic in between the different domains’ fat-trees. Each
domain has its own graph representing its network resources, so as the resources that other domains
share with itself in the federation. As a result, each domain knows a graph Gd = (Nd ,Ed) with all
the resources it can use. Every node n ∈ Nd has its computational capabilities cn,d ,mn,d ,hn,d , which
correspond to the CPU, memory and hard disk available; respectively. Similarly, every edge e ∈ Ed
representing a link has its associated be,d ,de,d bandwidth and delay, respectively.

The multi-domain graph G = (N,E) is just the graph resulting of all the domain graphs, and the
addition of their respective properties. That is, N = ∪dNd and E = ∪dEd , with9 cn = ∑d:n∈Nd

cn,d
and be = ∑e:e∈Ed

be,d .
In the generation of the multi-domain graph, it is required to split the resources across the

different domains. Steps below specify the followed procedure:
1. First, it is to generate the gateways that interconnect the fat-trees of the different domains.

Then, a wheel graph [Tru13] is generated with every node representing the gateway that
each domain’s fat-tree connects to. The result is a wheel graph WD with D denoting the
number of available domains. Once WD is created, it is possible to select if the gateways
should be connected on a mesh fashion or not. That is controlled with the mesh degree
m ∈ [0,1] parameter, which denotes whether the gateways are all interconnected in a mesh
fashion m = 1, or as a wheel m = 0. Values in between correspond to additional links in
between domains’ gateways. In particular, the number of additional links is computed as
m · (

(D
2

)
−D).

2. Second, it is to generate the fat-trees of every domain d. In particular, (i) to generate the fat-

9 the same properties apply for the memory mn, hard disk hn, and delay de properties of servers and links.
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Figure 3.9: Illustration of a multi-domain graph.

tree of size k = 2n, n∈N [Lei85]; and (ii) validate the correctness of the generated graph. The
first stage consists in generating a graph having as nodes the servers and switches presented
in Fig. 3.8, so as the links connecting servers as links; as nodes and edges of the domain
graph Gd , respectively. The second stage consists in validating the fat-tree topology checking
(i) there are P2 =

k2

2

(k/2
2

)
paths of 2 hops in between servers; (ii) P4 = k[

(k2/4
2

)
− k

2

(k/2
2

)
] paths

of 4 hops; and (iii)
(k3/4

2

)
−P4−P2 paths of 6 hops – see [Lei85].

3. Third, after the fat-trees of every domain are generated, it is necessary to specify how many
resources each of them will share with other. In particular, each domain shares with a
foreign domain the resources of one or several pods of the fat-tree, in addition to the core,
aggregation, and edge switches required to access the pod (links connecting the mentioned
elements are also added to the domain graph Gd). Moreover, to access other domains’ pods,
the domain graph incorporates the required gateways and links to reach its facilities. As a
result, the domain graph has a partial view of the multi-domain graph G, see Fig. 3.9.

4. Fourth, the available bandwidth has to be shared among the different domains that hold
access to a specific link e ∈ E. Each domain will have be · pd Mbps with pd ∈ [0,1] being the
portion of held by each operator, and ∑d pd = 1.

5. Fifth, and similarly to the bandwidth sharing, it is the split of computational resources in
the fat-trees. It is taken as assumption that an administrative domain shares a half of its
resources to the other domains, e.g., domain d = 1 only shares cn,d

2 of the CPU resources
of server nd . Hence, the CPU resources of the pod servers’ shared are computed as cn

2 · pd .
Same applies to the memory, and hard disk shared resources.

Fig. 3.9 illustrates how a each domain graph looks like after steps 1-5 are performed. The
illustration shows how domain d = 1 only has a full view of its own fat-tree data center, and how
it only has a partial view of the fat-tree resources of another domain fat-tree. Thanks to this, any
NFV orchestration algorithm developed for domain 1, will be able of using the resources that
the federated multi-domain environment offers, and it is completely agnostic of the resources’
property, as it is legit to use the federated pool of resources. Section 4.2 evaluates the performance
of different NFV orchestration algorithms for federation scenarios, using the multi-domain graphs
explained in this section.
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3.7 Conclusions
This chapter presents how to derive 5G infrastructures, and it discusses not only the generation of
the associated graphs that represent such infrastructures, but the methods to derive the deployment
and locations of BSs and MEC PoPs to satisfy 5G service requirements.

The chapter proposes the use of PPPs to generate BSs in order to ensure the radio coverage
requirements of 5G. Moreover, the election of the PoPs’ geographical location, is done so as to
satisfy the latency constraints of 5G services. Results show that the BSs’ technology is a key factor
that impacts on the spread of PoPs across the network operator area.

Given the procedures to derive the BSs and MEC PoPs, the chapter presents the 5GEN R package,
which generate graphs that represent 5G operator infrastructures. Additionally, the chapter presents
how to generate multi-domain graphs for federated environments with shared resources.

Future research directions would be to derive optimal network operator deployments using
customers demand. That is, given the geographical location of users over an area, to derive the
location of BSs and PoPs to satisfy current or future service demands. Note that this chapter had to
use the random generation of BSs assuming that the amount of operator subscribers is proportional
to the population of an area. If rather, one knows the location of the subscribers and their mobility
patterns, it is possible to derive an optimal 5G network deployment to meet the requirements for a
real demand.

Another future research direction would be to extend the multi-domain graph generation, so it
accounts not only for fat-tree data center topologies. Additionally, it would be possible to extend
the idea of having multiple graphs, one per domain, for graphs considering the Radio Access
Network (RAN), and traffic steering infrastructure. That is, to generate multiple infrastructure
graphs generated by 5GEN, one per operator, and create graph views of the shared resources among
them; as done in the multi-domain graphs of the present chapter. Such graphs would be useful for
the evaluation of network slicing solutions for federated environments.





4. NFV Orchestration in federated environments

Thanks to the NFV paradigm discussed in section 1.2, the deployment 5G NSs is split all across the
network resources. Each constituent Virtual Network Function (VNF) of the NS has the chance of
running at whatever server in the network infrastructure as long as the service requirements are
satisfied. NFV orchestration algorithms have to find the best allocation of both the VNFs and NSs
in the underlying substrate network. The solutions have to take the advantage of the flexibility of
the NFV paradigm to maximize the utilization of the available infrastructure to increase benefits.
On top of that, it is necessary to account for federated scenarios in which administrative domains
may introduce pricing changes with the peering domains, so as the limited resource capacity offered
in the federation pool of resources.

This chapter focuses on NFV orchestration algorithms to tackle NS deployments in federated
environments. In particular, section 4.1 motivates the study of federation scenarios showing that
the deployment of federated services is fast enough to be introduced in production environments,
thus, worth study as a realistic scenario. Given the short deployment times in federated networks,
section 4.2 presents the analysis of an NFV orchestration algorithm that solves the VNE problem in
federated networks represented by the multi-domain graphs discussed in section 3.6. Following the
study of federated networks, section 4.3 focuses on the delegation of NSs deployment to federated
domains, when federation prices change over time. And section 4.4 closes the chapter summarizing
the contributions, and open future work and challenges in the orchestration of NSs in federated
environments.

4.1 Is federation fast enough?
Network federation gives to administrative domains the possibility of deploying services there
where they do not have facilities, or to deploy services in moments where there are no resources
available under their facilities. The 5GEx [5GE18] European project proposed a multi-domain
infrastructure to handle the federation of services across multiple domains, after they establish
a federation agreement. The project validated the developed infrastructure, showing that it was
capable of deploying services in less than 115 seconds, which demonstrates the feasibility of
integrating network federation in real production environments. In particular, [5GE18] and [Con20]
show how a roaming service is deployed in less than 115 seconds, which is and assumable amount
of time to consider the federation process in the deployment of NSs.

Given the speed of deploying a service in a federated domain, it is worth studying agents to
take decisions on either the embedding of NSs in a pool of federated resources, or to delegate to
another administrative domain the deployment of a NS. This triggered the study of the orchestration
algorithms presented in both section 4.2 and section 4.3. The former tackling the VNE problem
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using resources of other administrative domains that belong to a network federation. And the latter
studying the delegation of NS deployments under dynamic pricing of peering domains in a network
federation.

4.2 Federated multi-domain graphs
Motivated by the fast deployment times of NSs in network federation scenarios, this section
presents some NFV orchestration algorithms that solve the VNE problem in federated multi-domain
graphs. In particular, the presented algorithms solve the embedding of NSs in federated networks
represented with the graphs of section 3.6 of this thesis.

4.2.1 Mapping algorithms
All the algorithms are variations of a greedy approach that tries to minimize the overall delay of
the mapped NS (4.1), and to do so it iterates through the Service Function Chain (SFC)’s VNFs
trying to find the closest server that can host them attending computational constraints (4.4). The
algorithms ensure that delay and bandwidth constraints are satisfied as well for the mapped NS —
equations (4.2) and (4.3), respectively.

minimize ∑
NS∈requests

delaymap(V1,Vl) (4.1)

s.t. delaymap(Vi,Vk)≤ delayreq(Vi,Vk) (4.2)

∑
NS

∑
(VA,VB)∈NS

ul,(VA,VB) ·bw(VA,VB)≤ bw(l),∀l (4.3)

∑
NS

∑
V∈NS

us,V · computV ≤ computs, ∀s (4.4)

In the optimization problem solved with this section algorithms, (4.1) to (4.4), V1 and Vl are
the first and last VNFs in the NS. The variables ul,(VA,VB) and us,V are booleans used to know if
the link l is used to connect VNFs VA and VB, and if V is mapped in server s. To describe the
restrictions parameters are used to express the bandwidth available in a link bw(l) and the required
to connect two VNFs bw(VA,VB); on the other hand computV and computs hold the computational
requirements (CPU, memory and disk) required by a VNF V , and the ones present in a server s.
And last but not less important, delaymap and delayreq are used for the delay between 2 mapped
VNFs, and for the required delay between 2 VNFs in the NS mapping request.

The following subsections present all the algorithms.

Greedy algorithm
The implemented greedy algorithm (Algorithm 3) iterates in order through every VNF in the SFC
of the NS request. It starts looking for the servers that have enough CPU, memory and disk to host
a VNF (line 3). Then it traverses the graph starting from the server where the previous VNF was
mapped until it finds another server capable of hosting the next VNF (line 4). Once the VNF is
mapped, the algorithm extracts the following VNFs directly connected to the one already mapped
— this is what is called the neighbor VNFs — and repeats the process of finding the appropriate
servers to host them, and traversing the graph to find a path between them and the server where the
previous VNF was mapped.

To keep track of the consumed resources in the placement, a resource watchdog is responsible
of allocating the bandwidth used along the paths and the server resources that every VNF requires
(Algorithm 3, line 9). The resource watchdog is not asked to allocate resources in case there are no
capable servers of hosting the VNF, or there is no path with available bandwidth to connect it with
the previous one. In case the algorithm fails, the watchdog frees resources previously allocated,
and it exits with an error.
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Algorithm 3: Greedy search
Data: NsReq
Result: NsMapping

1 foreach VNF in NSreq do
2 foreach nextVNF in neighbors(VNF) do
3 capServs = capableServers(opView, nextVNF);
4 path = findPath(VNFserv, nextVNF, capServs);
5 if no path then
6 watchDog.unwatch();
7 return ERROR;
8 else
9 watchDog.watch(VNFserv, nextVNF, path);

10 NsMapping.setPath(VNF, nextVNF, path);
11 NsMapping.setLnkDelay(VNF, nextVNF,path.delay);
12 end
13 end
14 end

During the mapping process a NsMapping object is created to keep track of the paths found
between the servers selected to host the VNFs of the SFC.

The findPath method
This subsection presents the different implementations of the findPath method. This method is
used to search a server capable of hosting a VNF ensuring that delay and bandwidth requirements
are satisfied. Implementations as the random walk, Dijkstra and Breadth-First Search (BFS) have
already been studied; but not the Depth-First Search (DFS) proposed.
Random walk: this algorithm traverses the Service Provider (SP) available resources graph choos-

ing randomly the links to visit (all the links have same possibilities of being visited). The
implementation includes a hash table of already visited nodes to avoid choosing them twice
in the random walk.

Dijkstra: Dijkstra’s shortest path algorithm is adapted to the studied scenario. The modified
version discards links and paths that don’t satisfy the bandwidth and link restrictions imposed
by the NS. It uses link delay as edge cost to reach the server nodes that can host the VNF to
be mapped.

BFS : another alternative is to search a server that can host a VNF using the BFS algorithm. This
implementation creates a tree having as root the previous VNF and expands the tree in a BFS
manner across the SP graph.

DFS: this implementation traverses the SP graph using a tree but following the DFS strategy. It has
not been tried in the literature yet, but it reaches the servers of the SP graph faster than the
previous implementations. This is because it goes directly to the leaf nodes of the generated
tree.

BFS and DFS run-time complexity
If all nodes and paths in the SP graph are visited to map a VNF, BFS and DFS deal with their worst
case scenario:

O

⎛⎝(k−1)6 ·

[(
k
2

)2

−1+(p−1)

]2
⎞⎠ (4.5)

Equation (4.5) run-time complexity refers to the paths that DFS and BFS do in the worst case. k is
the fat-tree degree, and p is the number of SP gateways in the meshed scenario (in Figure 3.9 there
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Figure 4.1: Cutoffs representation

are p = 5 gateways in the federation graph). Every core, aggregate and edge switch of a fat tree has
k links, and it is needed to walk through three switches (one of each type) to reach the gateways
that connects the initial SP to the others. Each gateway has connection to the

( k
2

)2
core switches

underneath, but it also has links with another p−1 SPs within the federated scenario of this work.
The worst-case run-time (4.5) can be expressed in terms of the number of nodes N (switches,

gateways and servers) of a fat-tree [Lei85].

O
(

N
1
3 N3
)

(4.6)

BFS and DFS cutoffs
Following lines describe the “cutoffs” introduced to improve the worst case run-time complexity
expressed in Equation (4.6):
Forbidden moves: the algorithm can not go from one server to another of the fat-tree if it does

not use the shortest path.
DFS priorities: when DFS is visiting a gateway node, it must visit fat-tree underneath before other

gateway nodes.
Already visited: if the algorithm is in a node that was previously visited through a path that

reached it traversing links with lower delays, the node is not visited.
The first two cutoffs are based in infrastructure knowledge. This is novel in the VNF mapping
algorithms context and it is one of the contributions to the state of the art.

BFS and DFS run-time complexity with cutoffs
With the described cutoffs the search space is reduced considerably. With this improvement, BFS is
close to be a kind of Dijkstra search, because it checks if nodes have already been visited, and if the
new path to reach already visited ones improves the cost of a previous path. But it has the advantage
of the forbidden moves, and that makes the algorithm going forward to server nodes using the
shortest paths that fat-trees were designed for [Lei85]. This means that movements like going
through an intermediate pod to reach a third one where the target server is located, are avoided.
With DFS the speedup is even better, since in 9 comparisons it can reach a server from another SP.
Then it goes straightforward to the servers, and in case it chooses properly the first server to visit,
it goes faster than BFS with the implemented cutoffs. Having the cutoffs implies comparisons in
every node the algorithm visits. In the switches this means having k comparisons to each neighbor,
and these comparisons are O(1) since they rely on math operations or hash tables checks. Then, in
the scenario where every already visited node has always been reached by a better path, BFS and
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DFS will visit each node of the fat tree only once and make k comparisons in all of them. So the
best scenario thanks to the cutoff improvements has a running time complexity of O(N).

Since is very reasonable that all links within a fat-tree have same delay characteristics, this
will be the most common scenario, and the performance improvement is more than two orders of
magnitude of the initial rudimentary solution that we exposed. The explanation is that first time
a node is reached within a fat-tree, it will be in the shortest path that fat-trees have, because the
forbidden moves enforces the algorithm to do so. Then it is not possible to reach in a second chance,
a node in the same fat-tree having less delay in the new path (unless link characteristic are not the
same in the fat-tree).

Tabu search algorithm
It is well known that a greedy strategy leads to suboptimal solutions in the mapping of VNFs, hence
this section tries to improve the solutions using a meta heuristic called tabu search. This algorithm
is based on an initial solution provided by the greedy algorithm of section 4.2.1, using all different
implementations of the findPath method also mentioned in section 4.2.1.

When the tabu search receives an initial solution it repeats the following operations in order:
1. Select the next VNF inside the NS.
2. Mark the server where it is mapped as tabu for t turns.
3. Execute findPath to search a new server to host it that is not marked as tabu.
4. Repeat steps 1)-3) through all the VNFs inside the NS.
5. Check if the new mappings have decreased the NS end-to-end delay. If it is the case, store

the solution.
6. Decrease counter t for all tabu servers and back to 1).
These steps force to find new solutions hoping that the end-to-end delay of the mapped NS will

be reduced. The idea is trying to go out of local minimums.

4.2.2 Stress test
In this section carries out an experiment that consists in issuing NS mapping requests in the federa-
tion graph as the resources are reduced. Several algorithms are tried out to test their performance
not only under circumstances when all resources are available, but when they deal with “stress”,
understanding it as lack of resources to do the mapping.

This section simulations were done using a Dell PowerEdge C6220 with 2 Intel Xeon E5-2670
@ 2.60GHz processors and 96GB of memory. To schedule the simulation jobs in parallel were
managed by GNU parallel [Tan11].

Python was used to implement the algorithms of section 4.2.1, and the networkx software
package [HSS08] to manipulate the graphs. All the code used to obtain the results presented in this
section are published as a public repository1.

Experiment setup
The graphs generated for this experiment are made up of 20 SPs, each one has a k = 4 fat-tree
data center connected to the federation. The gateway nodes are connected as a full mesh. In terms
of resources sharing, every SP has access to the computational resources of other 9 SPs, and the
foreign SP can share up to 4 pods with it. Every server equally shares its resources with the SPs
that can access itself.

The experiment issues 400 NS requests (each of them made up of 6 VNFs), having every VNF
same computational resources requirements, an end-to-end SFC delay of 15 time units, and links
requesting 1 bandwidth unit. Each request is performed by one of the 20 SPs, to decide which
one requests the NS the experiment used a random variable that follows a uniform distribution
SP∼U {1,20}.

For the initial step of the experiment all of the 400 NS requests must have enough resources
to be allocated, that is a 100% acceptance ratio. To achieve that, the experiment starts with the
1 https://github.com/MartinPJorge/vnfs-mapping/commit/c8172327860443ac8abcc9f4a51d66abf5c26e19

https://github.com/MartinPJorge/vnfs-mapping/commit/c8172327860443ac8abcc9f4a51d66abf5c26e19
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Table 4.1: Tabu search best iterations and blockings parameters settings to reach highest
acceptance ratio.

algorithm iterations blockings avg. time acceptance (%)

DFS 6 4 3.24 sec. 61.5 %

BFS 6 2 5.04 sec. 63.5 %

Dijkstra 5 3 4.37 sec. 64%

Table 4.2: Acceptance ratios as resources are reduced

0/10 2/10 4/10 6/10 8/10 10/10

DFS 100% 90.75% 61.25% 27.25% 3% 0%

BFS 100% 89% 59.75% 27% 3% 0%

Dijkstra 100% 89.75% 60.5% 27.75% 2.75% 0%

tabu 100% 89.75% 61.75% 28.25% 3.25% 0%

following conditions: 1 time unit of delay and 2400 bandwidth units in the links used to connect
switches, gateways and servers in the generated infrastructure; and computational resources in each
server (320 present in the multi-domain graph of this experiment) to host up to 1 VNF for every SP
that can access it (remember every requested VNF has same computational requirements in the
stress test).

Tabu search parameters
Before performing the stress test, it is checked which implementation of the findPath must be used
in the initial greedy algorithm that tabu search uses as initial solution to perform modifications.
The tabu search parameters were also tuned to get the best acceptance ratios. The incoming NS
request requirements were modified so the link’s delay and bandwidth, and VNF computational
resources are not always the same. If the VNFs to be mapped require between 1/200 and 1/20 of a
single server disk resources, between 1/200 and 1/50 of the CPU resources, and between 1/200 and
1/12 of the server memory resources; then the generated multi-domain is not able of hosting all the
incoming NS requests.

With this in mind 400 NS requests were performed across the 20 SPs using Dijkstra, DFS,
and BFS (the last two with the cutoffs) as the findPath algorithms to be used in the initial solution
provided to the tabu algorithm. Then, it studied how many iterations the tabu meta heuristic must
perform over the SFC trying to remap every VNF, and for how many iterations the performed
mappings must be blocked (marked as tabu). Table 4.1 shows the best configurations and average
mapping time per NS request among the 400 ones, and the acceptance ratio. According to the table,
Dijkstra achieves the best acceptance ratio, but the DFS gets only a 2.5% lower acceptance ratio
while obtaining the quickest average mapping times.

Resource reduction stress test
For this section’s experiment the first step is to have a 100% acceptance ratio scenario as the
described above, then computational resources are reduced in steps of tenths until every server in
the infrastructure has no more CPU, memory and disk available.

After decreasing the computational resources of all the servers to a tenth, the simulator performs
the 400 NS requests with the aforementioned requirements. It tries with 4 different algorithmic
approaches. Three of them are just greedy search using Dijkstra, BFS and DFS with cutoffs for
the findPath method. The tabu algorithm tested corresponds to that whose parameters retrieved the
best acceptance ratio (the one based in Dijkstra). The random walk implementation of the findPath
method is not included in the experiment because it does not have 100% acceptance ratio even
when there are enough computational and bandwidth resources for the incoming 400 NS requests
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Figure 4.2: Running time of 400 NS mapping requests using different algorithms as server resources
are reduced.

of the experiment setup.
All the tried algorithms yield acceptance ratios that differ from each others in ≤ 2.24% in every

step reducing the resources (see Table 4.2). That is, the experiment reduces a 10% the computational
resources, and in each step all the four algorithms mentioned in the previous paragraph obtain very
similar acceptance ratios in the 400 NS requests they are asked to map.

But although acceptance ratios are almost the same, the running times differ within the four
used algorithms (see Figure 4.2). The highest execution time has been reached in the tabu search,
while the greedy search using DFS to find server nodes is the one that has taken less time to perform
the 400 NS request mappings. The reason why tabu decreases its execution times as resources are
reduced, is because acceptance ratio is diminished, and if the initial greedy search fails, the tabu
algorithm exits.

In the top-right corner of Figure 4.2, a zoom is applied to the graph to display the differences
between the greedy algorithms using DFS, BFS and Dijkstra to reach shortest paths. The greedy
DFS is the quickest performing the mapping of the 400 NS requests in every resource reduction
scenario.

4.3 Delegation of NSs to federated domains
The stress test of the previous section shows how the resource consumption suppose an obvious
decrease of the acceptance ratios of incoming NSs, due to the lack of available resources. Moreover,
this will happen even if there is a pool of federated resources, or a fixed amount of shared resources
among the peering domains in the network federation (this is the case of study of the previous
section). However, precedent section assumed that there is a fixed price to use another domain’s
resources. But administrative domains may rather decide to change over time what do they charge
to other domains in the federation using its resources. For example, upon an increase of demand to
use its resources, it might decide to increase the price.

Given the possible change of prices of the federated domain, it is necessary to decide whether
it is a good idea or not to federate, to prevent future peaks of pricing. This section focuses on
developing an agent that takes such decision, aiming to maximize the revenue of a domain in a
federated network. That is, the proposed agents of this section decide whether to delegate the
deployment of a NS to a federated domain, or locally deploy it, accounting for the changes of
deployment prices over time.

In summary, the contributions of this section are as follows:
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Figure 4.3: Business model

Table 4.3: Notation table

Symbol Definition
σ service

p(t)(σ) price rate [$/hour] to deploy a service σ at time t
f (t)(σ) federation cost [$/hour] at time t for service σ

a(σ) arrival time of service σ

d(σ) departure time of service σ

x(σ) deployment action for service σ

c(σ),m(σ),h(σ) CPU, memory, and disk asked by a service σ

Cl,Ml,Hl local domain CPU, memory, and disk
C f ,M f ,H f federation pool of CPU, memory, and disk

– It analyzes the price dynamics of a public cloud provider, and take it as reference for the
service pricing of a federated domain. By considering the prominent pricing fluctuations it is
possible to explore higher revenues in the federation process.

– It derives a dynamic arrival process, which is impacted by the fluctuations in the service
prices.

– It characterizes a federated multi-domain scenario as an online decision-making problem that
aims at maximizing revenue;

– It design and implement two model-free mechanisms based on reinforcement learning: Q-
table solutions, and a proposed Deep Q-Network (DQN) solution. Both require training
phase to derive a policy for revenue enlargement.

– It performs a thorough data-driven performance evaluation of the proposed solution, and
compared against state-of-the-art solutions. Results show that DQN achieved 90% optimal
performance with no apriori knowledge of the future arrivals. Both Q-table and DQN
solutions outperform a greedy strategy, and are suitable for generic environments.

The rest of the section is organized as follows. The basic business scenario which is formulated
in section 4.3.1. Section 4.3.2, defines the dynamic pricing, and arrival process of incoming services.
Latter, the related optimization problem is formulated in section 4.3.3, and the Markov Decision
Problem in section 4.3.4; which also describes the Q-table algorithms, and the proposed DQN
algorithm used to solve the problem. Following, section 4.3.5, presents the experimental evaluation
of the algorithms.

4.3.1 Business model
First it is to analyze the business model of interest for this section. Inspired by the market of cloud
services, this section considers a system where a SP offers cloud resources or services at a service
price rate p(t) that may vary over time depending on the operator’s pricing model. Correspondingly,
each user wishing to deploy service σ at the offered price, makes the request (arrives to the system)
at time a(σ) and leaves at time d(σ). A federation scenario is considered. Upon each request
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to deploy service σ , the SP can take an action x(σ) := {0,1,2} indicating, respectively, whether
the service is deployed locally, deployed in the federated domain, or rejected. See Table 4.3 for a
summary of the notation.

The pricing model does have an impact on the arrival process of the service requests: intuitively,
lower prices incentivize a higher user arrival rate. The pricing model and the related arrival process
model is later discussed in section 4.3.2. Importantly, however, once there is an agreement between
customer and provider, the customer pays the agreed rate pa(σ) for every time slot t during which
the service is active, i.e., for every t : a(σ)≤ t ≤ d(σ). In contrast, however, should the service σ

be deployed in the federated domain, the service provider has to pay the federated domain agents a
time-varying fee f (t)(σ),∀t : a(σ)≤ t ≤ d(σ). If the service will not be deployed either locally or
in the federated domain, then the service will be rejected and in this case the customer does not need
to pay the service fee and thus there will be no income for the service provider. This business model
allows to exploit opportunistically (uncertain) price fluctuations, which can provide substantial cost
savings, yet provide certainty to the end users, which is essential for vertical sectors.

As a result, at every t, there are two concurrent cash flows:
(Figure 4.3(a)) The service provider uses local resources to grant the request, and therefore the agent’s

income is equal to p
a(σ)

(σ),∀t : a(σ)≤ t ≤ d(σ);
(Figure 4.3(b)) The service provider uses federated resources, and therefore the provider gets p

a(σ)
(σ)−

f (t)(σ),∀t : a(σ)≤ t ≤ d(σ), where f (t)(σ) is the federation cost, which fluctuates over
time.

In this way, it is possible to derive the agent’s income, which represents the instantaneous revenue
of the SP, at time t as follows:

r(t)(Xt) := ∑
σ : x(σ)=0

a(σ)≤t≤d(σ)

pa(σ)(σ)+ ∑
σ : x(σ)=1

a(σ)≤t≤d(σ)

[
pa(σ)(σ)− f (t)(σ)

]
(4.7)

where Xt := {x(σ)}σ :a(σ)≤t .

4.3.2 System Dynamics
There are three sources of uncertainty in the system: (i) the pricing model used in federated domains
f (t), which may be highly volatile; (ii) the cost associated with local deployments (which ultimately
drives the service pricing p(t)); and (iii) the process that characterizes the arrival of customers into
the system, which is certainly associated with the set fees (p(t)) in a way that is unknown a priori.
In the following it is discussed (i) and (ii) first; and later (iii).

Pricing
Dynamic pricing mechanisms have become very popular in cloud computing services because
they have the ability to maximize the cloud provider’s revenue while minimizing the price of the
offered service. The literature presents abundant research on the topic, being [Tok+20] a remarkable
example. However, although the pricing problem has been well studied and, intuitively, prices
shall follow the offer-demand trade-off, it is very hard to model the underlying pricing mechanisms
applied in practice today. For instance, works such as [Bau+19, Geo+19a, Geo+19b] present
spatio-temporal analyses of the pricing method applied by a large cloud provider but have failed to
model it. Others, such as [Lan+19, SLK18], have applied predictive methods to this phenomenon,
but the proposed solutions pitfall on either predicting price peaks, or the tendency of price over
time.

Let us analyze, in the following, the price dynamics of service instances from a major cloud
provider2. To this end, it was collected price data of every service instance offered by the cloud
provider between 29/02/2012 and 31/07/2020 for the “Paris, Europe” region. Figure 4.4 depicts

2 https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-spot-price-history.html
[Accessed 30/11/2020]

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-spot-price-history.html
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Figure 4.4: Service prices of a cloud provider during 2020.

the price evolution of three service instances over a time window of five months trivially chosen.
Specifically, it was selected t3a.small, c5.2xlarge and c5d.4xlarge from AWS EC2 Spot instances
because they are the closest, in term of resource requirements, to the services used in a multi-
domain case study—a similar scenario as the studied in this section–from a main network operator
in Spain [SC20a].

The figure illustrates the fact that, though prices are reasonably stable over medium-long time
periods, there occur a large number of short-time, yet sporadic, fluctuations that may play havoc
with standard price prediction mechanisms. These fluctuations may be due to sudden changes
on the arrival rate of the users but also on unknown external phenomena, such as energy costs or
system failures. This section argues that it is paramount to design a decision-making model that
considers such random dynamic events to explore service federation (with unknown pricing model
f (t)) opportunistically such that it is maximized the agent’s revenue.

Motivated by the above, service price rates are modelled as

p(t)(σ) = (1+P)l(t)(σ) (4.8)

where l(t)(σ) is the local deployment cost (which depends on uncertain phenomena, as explained
above), and P is the marginal profit over the local deployment cost as a choice of the operator.

User arrivals
Let A denote the stochastic process modeling the arrival of users at the system. Intuitively, this
shall be a non-homogeneous price-dependant process, i.e., a lower price p(t) incentivize higher
arrival rate λ (t). In the context of cloud services, this phenomenon has been studied in, for instance,
[XL13], where λ (t) = f (p(t)) and f satisfying the following assumption.
Assumption 4.1: The arrival rate function is a non-negative f (p(t))≥ 0, decreasing f ′(p(t))< 0,
and concave function f ′′(p(t))< 0; with no slope when the price is at its minimum f ′(0) = 0, and
taking zero values when the price is at its maximum f (1) = 0. Additionally the arrival rate function
should drastically drop to zero as the price reaches its maximum f ′(p(t))−−−−→

p(t)→1
−∞

with p(t) ∈ [0,1] being the normalized price.
Then, given Assumption 4.1,

f (p(t)) := k
(

1− (p(t))a
)b

(4.9)

where k, a and b are parameters that depend on the system and hence have to be estimated, e.g.,
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by a learning model. Note that the arrival rate function f (p(t)) is a positive, decreasing, concave
function that is 0 when the dynamic price reaches its maximum.

To obtain the proper arrival rate based on f (p(t)(σ)), the function must be properly defined,
and the service price p(t) normalized accordingly. Thus, in this section f is redefined as follows:

f (p(t)(σ)) :=

⎧⎨⎩k
(

1−
(

p(t)(σ)
K·M

)a)b
, p(t)(σ)≤ K ·M

0, p(t)(σ)> K ·M
(4.10)

where M = maxσ ,t{l(t)(σ)} is the maximum local deployment cost over time across all services σ

(e.g., t3a.small), and K is a normalization constant to control the decay of the arrival rate. Note that
equation (4.10) satisfies Assumption 4.1.

Using this model and the aforementioned service pricing model, Figure 4.5 shows arrival rate
(described in equation (4.10)) associated to the services that are used in this section. As stated
in equation (4.8), the service price (hence the arrival rate) depends on the local deployment cost
l(t)(σ) and margin P. Therefore, the mean arrival rate will decrease with high marginal benefit P or
high local deployment costs (see Figure 4.6).

4.3.3 Optimization problem
Given the above, hereafter this subsection formulates an optimization problem with the goal of
maximizing the revenue of a service provider in a multi-domain federation scenario – see section 3.6
and section 4.2. As introduced earlier, in the studied scenario, a local SP may use a limited set
of resources available locally, or resort to a federated resource provider (at a fee). Specifically,
let (Cl,Ml,Hl) ∈ N denote, respectively, the total number of CPUs, memory, and disk resources
available locally. Similarly, (C f ,M f ,H f ) ∈ N denote the respective resources at federated domain.

A service σ that arrives at time a(σ) is characterized by a set of resource requirements(
c(σ),m(σ),h(σ)

)
∈ N. Upon each request, the local agent makes a decision x(σ), which shall

guarantee that the resource capacity is not exhausted at any time. To this end, these are the
constraints:

Cl ≥ ∑
σ : x(σ)=0

a(σ)≤t
d(σ)>t

c(σ), Ml ≥ ∑
σ : x(σ)=0

a(σ)≤t
d(σ)>t

m(σ), Hl ≥ ∑
σ : x(σ)=0

a(σ)≤t
d(σ)>t

h(σ), ∀t (4.11)

C f ≥ ∑
σ : x(σ)=1

a(σ)≤t
d(σ)>t

c(σ), M f ≥ ∑
σ : x(σ)=1

a(σ)≤t
d(σ)>t

m(σ), H f ≥ ∑
σ : x(σ)=1

a(σ)≤t
d(σ)>t

h(σ), ∀t (4.12)
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Figure 4.6: Impact of local deployment cost l(t) and marginal benefit P in (a) t3a.small; (b)
c5.2xlarge; and (c) c5d.4xlarge arrival rates. Graphs derived using Figure 4.4 prices as l(t) local
deployment cost.

Constraints (4.11) refer to the conservation of local domain resources, and constraints (4.12) to the
conservation of the federated pool of resources.

Our objective is to choose the most appropriate action for every service request such that the
obtained income (according to the business model in section 4.3.1) over the long-run is maximized.
Hence, the optimization problem becomes:
Problem 4.1: Federation deployment problem.

max
XT

lim
T→∞

1
T

T

∑
t

r(t) (Xt) (4.13)

s.t. (4.11), (4.12)

x(σ) ∈ {0,1,2}, ∀x(σ) ∈ XT

with r(t) (Xt) being the instantaneous reward defined in eq. (4.7).
The complexity of Problem 4.1 is analyzed in Lemma 4.2.

Lemma 4.2: Problem 4.1 is NP-complete.

Proof. Problem 4.1 can be cast into the knapsack problem [Lew83], which is well-known to be
NP-complete. To do the mapping, take a problem instance with T = 1, no federation resources
C f = M f = H f = 0, and assume that all services (i) do not leave the system, i.e., d(σ)> T, ∀σ ;
(ii) only ask for CPU resources, i.e., c(σ)> 0 ∧ m(σ) = h(σ) = 0, ∀σ ; (iii) have a service price
equal to the requested CPU pa(σ) = c(σ), ∀σ ; and (iv) arrive at T = 1, that is, a(σ) = 1, ∀σ . The
resulting instance of the problem becomes

max
x(σ)∈XT

∑
σ :x(σ)=0

c(σ) (4.14)

s.t. Cl ≥ ∑
σ :x(σ)=0

c(σ) (4.15)
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which is the knapsack problem with c(σ) being the object weights, and Cl the sack capacity. ■

Apart from being NP-complete, the studied problem is not implementable as it has an overly
large number of decision variables (more so as the time horizon T is increased towards infinity),
and requires knowledge of future arrivals of services requests, and service and federation prices.
For this reason, this section resorts to online decision.

4.3.4 Markov Decision Problem (MDP)
The optimization problem stated in section 4.3.3 is equivalent to a Markov Decision Process
(MDP) [BEL57], which is solved using three different algorithms introduced in this section. Any
MDP is well defined given the tuple

(
S ,A ,PXT ,r

(t)
)
, which describes, respectively, state set,

action set, transition probabilities given XT , and a reward function.
The state space S contains information related to (i) the local and federation cost of all services

{σ}; (ii) the resources required for each arriving service σ ; and (iii) the available resources at
both the local domain, and federation domains. Specifically, the state has information concerning(
{δ (t)

kl
,δ

(t)
k f
}k∈{C,M,H},{σ : a(σ) = t}

)
, where {σ : a(σ) = t} contains the service requests at time

t, and δ
(t)
Cl

and δ
(t)
C f

are the normalized residual resource capacities, e.g.,

δ
(t)
Cl

=
1
Cl

∑
σ :x(σ)=0

a(σ)≤t<d(σ)

c(σ), δ
(t)
C f

=
1

C f
∑

σ :x(σ)=1
a(σ)≤t<d(σ)

c(σ) (4.16)

for the case of CPU resources. Note that the state space is redefined for each algorithm presented
next, for notation convenience.

Conversely, the action space is A = {0,1,2} corresponding to the “accept at local domain”,
“accept at federated domain”, and “reject” actions upon incoming service requests. That is, the
action variable x(σ) of the optimization problem in section 4.3.3, belongs to the action space A of
the MDP.

The transition probabilities are given by the function Px(σt)(s
(t+1)|s(t)) ∈ [0,1], that is, how

likely it is to end up in state s(t+1) after taking action x(σt) in state s(t); with σt being the service
arriving at time t. The transition probabilities function Px(σt) is known given (i) the arrivals of new
services; (ii) if previous services were deployed locally, federated, or rejected; and (iii) the lifetime
d(σ)−a(σ) of each running service σ .

In the MDP, the rewards r(t) correspond to the instantaneous reward already defined in (4.7) for
the optimization problem in section 4.3.3. The goal of the MDP is to derive a policy π : S ↦→A
that in each state s(t) takes an action x(σt) that maximizes the long-term reward. However, the state
transitions s(t+1)|s(t) are not deterministic, indeed they are governed by the aforementioned Px(σt)

probabilities. Moreover, the instantaneous reward (4.7) depends also on the service price p(t)(σ),
and federation cost f (t)(σ), with the latter being a random variable set by the federated agents.

The following three algorithms propose different policies π with the goal of maximizing the
expected long-term reward

Ex(σt)∼π

[
∑

t
γ

tr(t)(π)
]

with γ ∈ [0,1] being the discount factor for future rewards. This long-term reward refers to the
income of the operator in the business scenario (section 4.3.1).

Greedy algorithm
In this subsection introduces a greedy approach, which renders a simple strategy suitable for
comparison. This approach consists of a simple policy where each service request is locally
deployed as long as there is availability of local resources, first, or otherwise federated resources.
If there are no resources in the whole system, the service request is rejected.
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Algorithm 4: Greedy algorithm

1 for t ∈ [0,T ] do
2 if c(σt)

Clδ
(t)
Cl

≤ 1∧ m(σt)

Mlδ
(t)
Ml

≤ 1∧ h(σt)

Hlδ
(t)
Hl

≤ 1 then

3 x(σt) = 0;
4 else
5 if c(σt)

C f δ
(t)
Cf

≤ 1∧ m(σt)

M f δ
(t)
M f

≤ 1∧ h(σt)

H f δ
(t)
Hf

≤ 1 then

6 x(σt) = 1;
7 else
8 x(σt) = 2;
9 end

10 end
11 r(t),s(t+1) = environment.takeAction(x(σt));
12 end

In the context of our MDP (described in section 4.3.4), the state vector used by the greedy
approach is:

s(t) =

(
δ
(t)
Cl

,δ
(t)
Ml
,δ

(t)
Hl
,δ

(t)
C f

,δ
(t)
M f
,δ

(t)
H f
,

c(σt)

Clδ
(t)
Cl

,
m(σt)

Mlδ
(t)
Ml

,
h(σt)

Hlδ
(t)
Hl

)
(4.17)

where the first six elements are the normalized amount of residual resources (available) (cpu,
memory, disk) at time t; and the last three represent the normalized amount of requested resources.
In this way, this greedy policy, presented in pseudocode fashion in Algorithm 4, is described as
follows:

π(0|s(t)) = 1,
c(σt)

Clδ
(t)
Cl

≤ 1∧ m(σt)

Mlδ
(t)
Ml

≤ 1∧ h(σt)

Hlδ
(t)
Hl

≤ 1

π(1|s(t)) = 1,
c(σt)

Clδ
(t)
Cl

> 1∧ m(σt)

Mlδ
(t)
Ml

> 1∧ h(σt)

Hlδ
(t)
Hl

> 1

∧ c(σt)

C f δ
(t)
C f

≤ 1∧ m(σt)

M f δ
(t)
M f

≤ 1∧ h(σt)

H f δ
(t)
H f

≤ 1

π(2|s(t)) = 1, otherwise (4.18)

Q-table algorithm
This subsection adapts3 the solution presented in [Ant+20], which is a Q-table-based reinforcement-
learning solution to the MDP. Q-table is a simple reinforcement learning realization based on a
lookup table to search over the S ×A space. The rows of the table present the state space S
of the MDP, and the columns present the set of actions that can be taken for each state, i.e., the
set A = {0,1,2}. Each state s(t) is represented by normalized values that represent the average
residual resource availability for local and federated resources, the most demanding resource of the
arriving service, the instantaneous reward if the service is deployed locally, r(t)x0 , and its federation

3 the algorithm adaption was programmed by Kiril Antevski
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cost:

s(t) =
(

δ
(t)
Cl

+δ
(t)
Ml

+δ
(t)
Hl

3
,
δ
(t)
C f

+δ
(t)
M f

+δ
(t)
H f

3
,

max

{
c(σt)

Clδ
(t)
Cl

,
m(σt)

Mlδ
(t)
Ml

,
h(σt)

Hlδ
(t)
Hl

}
,r(t)x0 , f (t)(σt)

)
(4.19)

As mentioned earlier, the state transitions are not deterministic. As a result, the Q-table requires
a training period where its cells are populated to converge towards the expected future rewards.
That is, Q(s(t),x(σt)) will be equal to the expected cumulative reward if action x(σt) is taken at
state s(t). To converge towards the expected future rewards, the Q-table values are filled using
the Q-learning recurrence approach during the training stage, which approximates the Bellman
equation [BEL57]:

Q(s(t),x(σt)) =(1−α)Q(s(t),x(σt))+

α

(
r(t)+ γ max

x
Q(s(t+1),x)

)
(4.20)

where r(t) is the instantaneous reward foreseen after taking action x(σt) at state s(t). Note the
instantaneous reward is aggregated with the discounted future reward γ maxx Q(s(t+1),x). The
parameters α—the learning rate, and γ—the discounted factor, are fixed parameters.

In summary, in each time t, a new service request arrives at the operator agent, who takes
action x(σt), and then populates the Q-table for Q(s(t),x(σt)). However, it must be noted that the
instantaneous reward r(t) is not always positive. For example, if the action x(σt) = 0 for local
domain deployment at s(t) exceeds the local domain capacity, the service deployment is rejected
by the local domain and the instantaneous reward is negative. In other words, the operator agent
receives a penalty for taking the wrong action at time t.

At the start of the training (t = 0), all the Q-table values are initialized to zero. The training
procedure consists of repetitive runs of a generated set of arrivals for a timing interval [0,T ]. Each
training repetition is a single episode and the training set of arrivals is consistent for Ep episodes.
In order to train this model so as to learn a policy that maximizes long-term reward, two different
policies are used in the training stage, namely (i) Q-table legacy, and (ii) Q-table exploration.

On the one hand, the Q-table legacy strategy chooses the action as:

x(σt) = max
x

{
Q(s(t),x)+

u
1+ e

}
(4.21)

where e ∈ {1, . . . ,Ep} is the current training episode, and u ∼U {0,2} is drawn from a discrete
uniform distribution. The actions taken in the first episodes (e.g., e = 1) have a larger random
component compared to the last training episodes (e.g., e→ Ep). This exploration strategy is used
in [Ant+20].

On the other hand, the Q-table exploration strategy uses a standard ε-greedy policy [SB18]:

x(σt) =

{
maxx

{
Q(s(t),x)

}
, u≥ ε(e)

u∼U {0,2}, u < ε(e)
(4.22)

where e is the training episode, and u∼U (0,1) is a random number drawn from a uniform
distribution. Moreover, ε(e) = e

Ep
(εmax− εmin)+ εmin is a linear interpolation between εmin and

εmax. In this way ε(e) (which defines random exploration) drops as episodes pass. Algorithm 5
describes both the training procedure of both the legacy and exploration strategies.

Once the training stage has finished, the followed policy is applied:

π(x(σt)|s(t)) = 1x(σt)

[
argmax

x
Q(s(t),x)

]
(4.23)

that is, the action with highest Q-value is selected.
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Algorithm 5: Q-learning training algorithm

1 QT ← 0;
2 for e ∈ Ep do
3 for t ∈ [0,T ] do
4 if legacy strategy then
5 u∼U {0,2} ;
6 x(σt) = maxx

{
Q(s(t),x)+ u

1+e

}
;

7 end
8 if exploration strategy then
9 ε(e) = e

Ep
(εmax− εmin)+ εmin;

10 u∼U {0,1};

11 x(σt) =

{
maxx

{
Q(s(t),x)

}
, u≥ ε(e)

U {0,2}, u < ε(e)
;

12 end
13 r(t),s(t+1) = environment.takeAction(x(σt));
14 QT [s(t),x(σt)] ← (1−α)QT [s(t),x(σt)]+α

(
r(t)+ γ maxa QT [s(t+1),a]

)
;

15 end
16 end

Deep Q Network (DQN)
This subsection presents the Neural Network (NN) approach proposed for this section. Specifically,
the proposed algorithm is based on the DQN solution of [Mni+13]. As stated in section 4.3.4, the
goal is to maximize the expected long-term reward Ex(σt)∼π

[
∑t γ tr(t)(π)

]
. If Q(s(t),x(σt)) denotes

the action-value function, i.e., a function estimating how good action x(σt) ∈ A is, given state
s(t) ∈S . The authors of [Mni+13] presented a NN with weights w⃗ to approximate the action-value
function Q(s(t),x(σt), w⃗). Such a NN is referred as the Q-network (see the NN in Figure 4.7).

The output of the Q-network is a layer of 3 neurons that specify the action-value estimation for
each action, namely the local deployment x(σt) = 0, federation x(σt) = 1, and rejection x(σt) = 2.
The Q-network’s input is the state representation s(t), which in this section correspond to a vector
containing the normalized residual capacity of local and federated resources, the normalized amount
of resources demanded by the arriving instance and the instantaneous reward if it is locally deployed,
as well as its federation cost:

s(t) =
(

δ
(t)
Cl

,δ
(t)
Ml
,δ

(t)
Hl
,δ

(t)
C f

,δ
(t)
M f
,δ

(t)
H f
,

c(σt)

Clδ
(t)
Cl

,
m(σt)

Mlδ
(t)
Ml

,
h(σt)

Hlδ
(t)
Hl

,r(t)x0 , f (t)(σt)

)
(4.24)

The Q-network training must update its weights w⃗ to achieve the best possible estimation of the
action-value function. As in the Q-table solution presented previously, the training procedure is
based on the Bellman equation [BEL57] to converge to the optimal action-value function. That
is Q(s,x, w⃗i)→ Q(s,x, w⃗∗) as i→ ∞ with w⃗i denoting the Q-network weights at iteration i in the
training process, and w⃗∗ denoting the weights with which the Q-network estimates the optimal
action-value function. Rather than directly using the Bellman equation recurrence, the Q-network
updates its action-value estimate by changing the weights w⃗i. In more detail, gradient descend on
the loss function is used4:

Li(w⃗) =
[(

r(i)+ γ max
x

Q(s(i+1),x, w⃗i)
)
−Q(s(i),x(σi), w⃗)

]2
(4.25)

4 s(i),x(σi) denote the state and actions taken at iteration i of the training phase.
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s(t) Random action

∇w⃗L

argmaxx Q(s,x)
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τ
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Figure 4.7: Deep Q-network with one hidden layer, k = 1, and experience replay training. Non-
continuous lines illustrate the training interactions, while continuous lines are used to show the
execution interactions. In the illustration the state s(t) is a vector of only 4 components.

This corresponds to the squared difference between the discounted reward with the current weights
w⃗i, and the action-value estimate given weights w⃗.

An initial approach could be to compute the loss function Li(w⃗) for every iteration i in the
training stage, e.g., perform an update as w⃗i+1 = δ w⃗+ w⃗i with δ w⃗ ∝ ∇Li(w⃗). However, the states
of consequent iterations are very likely to be correlated, as the arrival rate will not drastically change
in the next time instant (see Figure 4.4). To mitigate this phenomenon in the training stage, the Q-
network computes the loss gradient over past state-action-reward-state transitions. These transitions
are stored into an Experience memory D with capacity of up to M past transitions. As Figure 4.7
illustrates, the Environment stores in the Experience the current transition, and the Experience
will make room for it, if necessary, by removing the oldest transition. At iteration i of the training
stage, the Q-network grabs a mini-batch of random past transitions

{
(s(τ),x(στ),r(τ),s(τ+1))

}
τ
, and

computes the loss function (4.25) gradient by using the current weights w⃗i. The random transitions
τ are uniformly selected among the M transitions present in the Experience memory D . Note that
using past experience does not only reduce the weight updates variability5, but it also boosts data
efficiency as each transition is used in many iterations of the training stage. The Q-network, together
with the Experience and the aforementioned training procedure, is referred as DQN. Algorithm 6
details the training steps of the DQN using the RMSprop [Geo12] as gradient descend method.

The state space is represented as in the Q-table algorithm of previously presented, and the
Q-network input correspond to a concatenation of the last k transitions. During the training stage
the Q-network follows an ε-greedy policy, that is later substituted by a greedy policy during the
test stage

π(x(σt)|s(t)) = 1x(σt)

[
argmax

x
Q(s(t),x, w⃗Ep)

]
(4.26)

with w⃗Ep being the weights after the last training episode Ep.

4.3.5 Performance Evaluation
This section presents the experimental evaluation of the algorithms introduced in section 4.3.4. It
also uses an optimal oracle approach, which solves Problem 4.1 optimally for a sufficiently large
time horizon and known future prices. Evidently, such an approach is unfeasible in practice because
future prices are unknown; it is only used as a means to assess the optimality of our algorithms
empirically.
5 The weights’ updates variability comes as a consequence of the correlation between samples.
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Algorithm 6: DQN training algorithm

1 for e ∈ Ep do
2 environment.reset();
3 initialize φ ∈ R11k;
4 for i ∈ [0,T ] do
5 s(i) = env.getState();

6 x(σi) =

{
u∼U {0,2} ,u < ε

argmaxx Q(s(t),x, w⃗i) ,u≥ ε
;

7 r(i),s(i+1) =environment.takeAction(x(σt));
8 D .addExperience((s(i),x(σi),r(i),s(i+1)));
9 {(s(τ),x(στ),r(τ),s(τ+1))}M

τ = D .sample(M);
10 G0 = 0;
11 for τ ∈ [0,M) do
12 Gτ = βGτ−1 +(1−β )L2

τ−1(w⃗);
13 w⃗τ+1 = w⃗τ − α√

Gτ

Lτ−1(w⃗);

14 end
15 w⃗i+1 = w⃗Ml ;
16 end
17 end

Table 4.4: Service requirements (from [SC20a])

t3a.small c5.2xlarge c5d.4xlarge

f
(

p(t)(σ)
)

5 inst.
day 12.5 inst.

day 25 inst.
day

# CPUs 2 8 16
Memory 2 GB 16 GB 32 GB
Storage 100 GB 400 GB 800 GB

Life-time 1
192 L 1

8 L L = [96 h,240 h]
Marginal benefit P = 0.2

The scenario set up for evaluation is based on a mobile network operator (MNO) federation
study case [SC20a] from a large Spanish provider. In addition, it is used the price evolution of
a large cloud provider presented in section 4.3.2 as a reference of federation and local service
fees. Specifically, both the federation cost f (t)(σ), and local deployment cost l(t)(σ) correspond
to the service prices of our reference cloud provider in the eu-west-3a region (see Fig 4.4). Hence,
σ ∈ {t3a.small, c5.2xlarge, c5d.4xlarge}.

Experimental setup & environment
As in the selected reference case study [SC20a], the assessed scenario is prone to encounter
resource scarcity. The goal is to emulate the business scenario explained in section 4.3.1. The MDP
algorithms are employed by the MNO to generate deployment decisions for the incoming arrivals
of service requests. Once a service is deployed, it books the requested resources for the requested
lifetime period. Upon reaching the lifetime period, the deployed service leaves the system. To this
end, two data centers are considered (local and federated) with different capacities. For the local
domain, it is selected a medium-size data center from [SC20a]; for the federated domain, [SC20a]’s
large data center. The details are depicted in Table 4.5; the federation domains’ data center has 6x
the capacity of the local one, whereas the local’s has capacity to host 5x c5d.4xlarge services from
Table 4.4.
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Table 4.5: Data centers’ resource capacities (from [SC20a])

data center CPU memory disk

local 80 2000 GB 160 GB
federation 480 12000 GB 960 GB
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Figure 4.8: Convergence of DQN, QtEx, and Qt after 100 training episodes.

The experiment generates service requests following a Poisson process with arrival rate
f (p(t)(σ)), as described in section 4.3.2, using the price evolution data from a major cloud provider
as mentioned before. In more detail, k from eq. (4.10) is set to fit [SC20a]’s data when the service
price reaches its average value p(t)(σ) (see Table 4.4); and parameters a,b from eq. (4.10) are
set to a = 2,b = 1

2 as in [XL13]. Moreover, the marginal benefit P in eq. (4.8) is set to P = 0.2
unless otherwise stated (the sensitivity of the approach to P later evaluated). Finally, the departure
times are also obtained from [SC20a], i.e., the lifetime of each service is determined by a truncated
normal distribution centered in the intervals 1

192 L, 1
8 L,L specified in Table 4.4.

Training
Among the three algorithms presented in section 4.3.4, both the Q-table and the DQN approaches
required a prior training phase, which let us fine tune the different hyper-parameters empirically to
attain the best performance.

In detail, in the case of the Q-table algorithm, the learning rate and discount factor of the legacy
strategy were selected as in [Ant+20], that is α = 0.95 and γ = 0.9, respectively. For the Q-table
explore strategy (QtEx), it was used the same learning rate as in the Q-table legacy strategy, and the
epsilon values decreased from εmax = 0.9 in episode 1, down to εmin = 0.1 in episode 100. We also
tested a variety of discount factors γ between 0.1 and 0.9.

For our DQN approach, RMSprop was used to implement gradient descend, α = 0.001, and a
moving average parameter β = 0.9. As in the Q-table explore strategy, different discount factors
are tested (in the loss function (4.25)) between 0.1 and 0.9. The RMSprop gradient descend was
computed using mini-batches of size M = 30 taken from the Experience (see line 11 of Algorithm 6).
Figure 4.8 shows that convergence was achieved within 20 episodes for the legacy Q-table solution,
whilst QtEx and DQN reached convergence within 60-70 episodes.

Both the Q-table, and DQN algorithms were trained over Ep = 100 episodes. Each episode
spanned over the service arrivals generated between the 29/02/2020, and the 02/05/2020. Figure 4.9
shows how the discount factor impact the cumulative reward of the DQN and the QtEx approaches
during the training stage. None of the algorithms show a monotonic increasing/decreasing tendency
with respect to the discount factor. Although, in general, DQN achieved higher cumulative reward
for higher values of γ , QtEx obtained the highest cumulative reward given γ = 0.1. This means
that QtEx behaves better by just relying on the instantaneous rewards, whilst DQN did better when
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Figure 4.9: Impact of discount γ parameter on DQN (a) and Q-table with the exploring strategy (b).

taking more into account the future rewards. The non-stationarity of the service arrivals as well as
the transition probabilities make harder to meet a monotonic change in the cumulative reward over
γ . Arrivals are more likely to be bursty, which means there is no rule of thumb on how much to
take into account the future rewards.

Performance
This section shows the performance of the algorithms described in section 4.3.4, and trained as
detailed in §4.3.5. Every algorithm was tested over the service arrivals generated in between
03/05/2020, and 31/07/2020.

1. Cumulative reward and evolution of decisions: Figure 4.10a illustrates the cumulative
reward of each solution over the aforementioned time-span, Figure 4.10b depicts the price
evolution of each service type in the federation domain, and Figs. 4.10c-g detail the decision-
making evolution as a percentage of all service requests received at each time instant, for
each of the algorithms under evaluation. Note that OPT refers to the optimal oracle, which is
used as an ideal benchmark as introduced earlier, and Greedy is a simple policy that only
federates when local resources are exhausted, and only rejects services when resources across
all domains are exhausted.
Figure 4.10a shows that OPT achieves a cumulative reward of $3117.1, while DQN obtained
$2798.88, that is the DQN algorithm was 90% as good as an optimal oracle that knows
future service arrivals and prices a priori. On the other hand, Qt and QtEx only attained
a cumulative reward of $1793.82 and $1892.7, respectively. However, both resulted in a
higher benefit than the baseline greedy approach, which barely obtained a cumulative reward
equal to $1418.22. The cumulative reward of each solution starts to diverge noticeably right
after the federation cost for c5d.4xlarge reaches its peak, between 28/05 and 11/06 (see
Figure 4.10b). This service is the most demanding in terms of resources, and accordingly the
one with highest associated federation cost.
Figure 4.10c depicts the evolution of the decisions made by our greedy baseline. The
plot shows that a very small portion of service requests are rejected, as the system is
properly dimensioned. It is also evident that this policy is not affected by price fluctuations
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Figure 4.10: (a) cumulative reward of each solution during the May to July dataset; (b) the
normalized federation cost f (t) over time; and the percentage of instances rejected, federated, or
locally deployed by (c) greedy, (d) OPT, (e) DQN, (f) QtEx, and (g) Qt solution.
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Figure 4.11: Resources consumption by DQN γ = 0.9.

(Figure 4.10d), which yields very poor performance in terms of revenue (Figure 4.10b). An
optimal oracle (Figure 4.10c) is actually more conservative when granting service requests,
with a much larger service rejection rate. This is specially true for the largest service
(c5d.4xlarge). The reason is that is that this type of service incur into much larger net price
fluctuations and, as a consequence, a better policy is to handle this type of service requests
conservatively.
Lets explore now the evolution of the decisions made by the DQN, QtEX, and Qt methods
under assessment (Figure 4.10e-g). The DQN algorithm follows a policy πDQN that federates
almost every service, except upon the prospect of price bumps when this policy rejects
requests even if resources are indeed available. This allows this approach to preserve local
resources available during periods when federated resources are expensive, and so this
approach can also keep low number of rejections. One can observe that, after c5d.4xlarge
federation cost reaches its peak, it increases the percentage of rejections, which helps
preventing future losses. This is key to deal with the uncertainty a practical approach such as
this one have to deal with (in contrast to OPT) without being penalized in terms of reward.
Conversely, QtEx and Qt increase or at least keep the same ratio of c5d.4xlarge services being
deployed at the federated domain, as shown in Figure 4.10f and Figure 4.10g, respectively.
As a consequence, both Q-table based algorithms achieve a lower cumulative reward because
of the high fees these methods have to pay during sudden price increases.

2. Resource dynamics:
Figure 4.11 plots the evolution of the resource consumption over time for our DQN approach
between 03/05 and 31/07. This plot also shows, with different colors, whether the resource is
consumed by a service deployed locally or federated, or whether the resource was requested
by a service that was rejected. These results show that disk is the bottleneck resource in this
case; note how this resource around 100% of usage at almost any time, both for the local
domain and the federated domain. Even though, resources are dimensioned according to the
case study of a large operator [SC20a], these results suggest that both the CPU and memory
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Figure 4.12: Run-time comparison.

resources should be shrunk by 50% without compromising reward, attaining substantial
capital cost savings with no impact on revenue.

Computing complexity
Figure 4.12 presents the actual time it takes by each algorithm to expedite decisions over the 3-
month period (over 3500 requests). This provides empirical evidence of their computing complexity.
Unsurprisingly, OPT takes an order of magnitude longer time to run, as it has to explore a vast
action space in a combinatorial problem (note the logarithmic scale of the y-axis). More importantly,
both the DQN, QtEx and Qt approaches perform similarly, reaching well within 4 minutes with a
slight increase in computing time for our DQN.

Resource dimensioning
Results above are based upon a specific deployment choice proposed by a large operator in
Spain [SC20a]. Now it is evaluated the impact of our algorithms onto different deployments.
Importantly, the learning approaches are not re-trained on the new setups, experiments simply use
the same models trained on [SC20a]’s scenario. This should give us an insight on the portability of
these approaches to generic environments.

To this end, two different deployments are set up: In Deployment A, [SC20a] is taken as a
baseline and local resources are varied proportionally from 60% to 100%; In Deployment B, again
[SC20a] is taken as a baseline and the federated domains’ resources are varied from 0% to 600%
(that is, 6x the resources available in our baseline’s federated domain). The details of these two
deployments can be found in Table 4.6 and 4.7, respectively. Figs. 4.13(a) and 4.13(b) depict the
cumulative reward attained by each of our algorithms over the same 3-month time period used
before, for Deployment A and B.

On the one hand, in Deployment A, DQN presents a substantial performance gain over the other

Table 4.6: Resource capacities for deployment A

data center # CPUs memory disk

local [48,..., 80] [1200,..., 2000] GB [96,..., 160] GB
federation 480 12000 GB 960 GB

Table 4.7: Resource capacities for deployment B

data center # CPUs memory disk

local 80 2000 GB 160 GB
federation [0,..., 480] [0,..., 12000] GB [0,..., 960] GB
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Figure 4.13: Cumulative reward vs. available resources
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Figure 4.14: Impact of the marginal benefit P in the commutative reward achieved by each solution.

approaches, no matter the size of the local domain. And apart from the QtEx, which outperforms
the greedy approach by roughly $400, every other solution’s gain has a similar, and monotonic
growth with respect to the available local resources. On the other hand, in Deployment B, the gain
achieved by our DQN approach grows much faster with the dimension of the federated domain than
all other approaches, e.g., reaching an 80% revenue increase with 6x resources than [SC20a]’s. This
is because the DQN federates more services than the greedy and Q-table solutions (see Figure 4.10),
and a growth in the federation pool allows it to accommodate more services than the other solutions.
Additionally, DQN takes advantage of the federation cost fluctuations to federate even more services
when the federation cost is low, thus, increasing the benefits.

Marginal Profit:
Finally, a sensitivity analysis is performed on the marginal profit associated with the price of the
services, P in eq. (4.8). Intuitively, P has an impact on reward via two phenomena: (i) higher P
increases the net revenue associated with each incoming service, but (ii) higher P reduces incentives
for customers to make requests into the system.

To this end, it is deployed the baseline scenario (Table 4.5), and all the algorithms are tested
during the same 3-month period previously used for a variety of marginal profits between 0 (the
service price equals that of the local deployment cost) and 3 (the service price is 4 times that of the
local deployment cost). The results are depicted in Figure 4.14.

It is worth noting that, when P ≥ 1, the greedy approach outperforms both Q-table based
solutions. This is due to the fact that one gets a lower rate of service requests as P increases (see
Figure 4.6), which allows the πg policy to accommodate all incoming services locally. Conversely,
the DQN algorithm reaches its maximum cumulative reward with P = 0.8, yielding a drastic drop
in reward with P > 0.8. This is due to the fact that there is a drop in service requests of type
c5d.4xlarge (see Figure 4.6(c) for P≥ 1). With P > 1, DQN obtains a profit mostly from c5.2xlarge
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and t3a.small services, and reaches its peak at P = 1.8. From that point on, all service requests
decay prominently and so does the cumulative reward.

4.4 Conclusions
This chapter shows that the automated deployment of service in network federations is feasible by
means of deployment time. Motivated by the experimentation carried out in the 5GEx European
project, the chapter proposes heuristic algorithms to assess the embedding of NSs in a federation
of multiple administrative domains. The performed stress tests showed the solutions performance
under scarce of resources in the federation, and how the proposed set of cutoffs improved the
running-times of the algorithms without impacting the acceptance ratios. Moreover, the proposed
solutions have polynomial run-time complexity.

This chapter also studies the delegation of NS deployments in a network federation in which
each administrative domain offers a time-changing price for using its resources. The proposed
solution is built around a MDP formulation, and it is based on a DQN to take the decisions of
whether to federate or locally deploy the services. Experiments show that the proposed solution
achieves near optimal solutions by means of monetary reward. Moreover, the validity of the solution
is strength out as it was tested using a real cloud provider pricing dynamics.

The work in this chapter shows that network federation is a powerful solution to increase the
possibility of instantiating incoming NSs upon scarce of resources in an administrative domain.
There is still future work in to be done regarding the solutions overviewed in this chapter. In
particular, the orchestration algorithms studied in section 4.2 should be compared against the
optimal solution to derive the optimality gap. Furthermore, the study has to be extended to consider
richer federated network infrastructures not only consisting of interconnected data centers. By, for
example, running them on the network operator graphs discussed in the beginning of chapter 3,
accounting for a federation of resources, i.e., a blend of graphs generated by section 3.5 and
section 3.6.

Another future direction in the contributions of the present chapter, would be the extension of
the study on delegation of NSs. In particular, by considering more than two administrative domains
in the federation environment. Furthermore, other techniques related to time-series to anticipate
to future price peaks, will enhance the performance of not only the proposed DQN agent, but any
other agent using price forecasting as input.





5. NFV orchestration for 5G networks

This chapter studies the Virtual Network Embedding (VNE) problem in 5G networks, and proposes
solutions to assess the embedding of Network Service (NS)s in the substrate networks. Thanks to
the Network Function Virtualization (NFV) paradigm, it is possible to break down the functionality
of each 5G service in Virtual Network Function (VNF)s, which brings a deployment flexibility that
eases meeting the service requirements of the various 5G use-cases, either by means of latency,
bandwidth, or reliability requirements. In particular, the network slicing paradigm presented in
section 1.5 proposes the allocation of network resources so as to isolate the network usage by the
wide variety of NSs coexisting in 5G networks. As a result, the NFV orchestration algorithms must
account for an adequate allocation of the network slices’ resources so the services running on top
of them satisfy 5G Key Performance Indicator (KPI)s as the aforementioned reliability or latency
requirements.

In the following sections, this chapter studies solutions to allocate network resources for 5G NSs.
Section 5.1 proposes a heuristic solution for the VNE problem considering network slicing so as to
satisfy delay and reliability requirements. And section 5.2 focuses on volatile and mobile devices
running 5G services as robotic warehousing, in which the resource allocation has to account for
devices running out of battery, or even leaving coverage areas that provide the required wireless
connectivity. The proposed NFV orchestration algorithm is evaluated in a haven warehousing
scenario. Finally, section 5.3 concludes the chapter summarizing the contributions of the discussed
solutions, and pointing out possible future directions for the NFV orchestration algorithms.

5.1 Sliced Edge/Fog networks
The Network slicing paradigm – see section 1.5 – brings the opportunity of meeting the requirements
of a wide variety of heterogeneous services, in particular service availability (in both space and
time) and service reliability, requirements, exemplified in Figure 5.1. The allocation and isolation
of resources among network slices allows the coexistence of enhanced Mobile Broadband (eMBB)
and Ultra-Reliable and Low Latency Communications (URLLC) traffic in the same substrate
network. On the one hand, high speed and reliable links can be dedicated to the URLLC traffic;
even computing resources closer to the edge may be assigned to run URLLC services. On the
other hand, network links and Base Station (BS)s with high bit-rates would be assigned to eMBB
services. It is important to do an adequate assignment of resources to meet the communication
constraints of each network slice.

This section proposes a novel methodology to model the system, as well as the main features of
network slicing. Exploiting such methodology, OKpi is developed as an efficient solution that can
create high-quality, end-to-end network slices. Specifically, the main contributions of this section
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Access

Internet

...
Figure 5.1: As per geographical availability requirements, a mobile robot, smart factory service
must be provided within the yellow areas, with high reliability and low latency. This can be
obtained by deploying: (a) service instances at the robots (fog resources), at lower cost but also
lower reliability, hence, needing redundancy to meet reliability constraints (orange option); (b)
three instances at the points of access (PoA), e.g., Access Point (AP)s, covering the target areas
(edge resources, blue option); (c) deploying only one instance in the cloud, but with larger delay
(green option).

are as follows:
(i) it develops a system model that captures the main aspects of NFV-based networks and can

represent the availability of resources at different layers of the network topology, namely,
cloud, edge, and fog, as well as the fact that existing VNF instances can be reused for
newly-requested services1;

(ii) it formulates an optimization problem that minimizes the resource cost, while meeting all target
KPIs. This section proves that the problem is NP-hard, and proposes the OKpi solution,
which has instead polynomial complexity. Leveraging a graph-based representation of the
available resources, the possible decisions, and their impact on the KPIs, our scheme can
make joint decisions on VNF placement and traffic routing that minimize the resources cost,
by applying a shortest path algorithm over a multi-dimensional graph. Importantly, such
a graph can be built with different levels of detail and size, which results into a tunable
trade-off between computational complexity and decision quality;

(iii) it analyzes the properties of the proposed solution and, through numerical results derived under
real-world automotive and robot scenarios, this section shows that OKpi closely matches
the optimal performance. Furthermore, it show OKpi functionality by implementing it in a
testbed supporting a mobile robot, smart factory service.

The rest of the section is organized as follows. Section 5.1.1 introduces the system model,
and the problem is formulated in section 5.1.2. The OKpi solution and algorithm are described
in section 5.1.3, where several properties of OKpi are proved, so as its computational complexity.
Section 5.1.4 shows the performance of our solution through simulations in both small- and large-
scale scenarios referring to 5G use-cases, while section 5.1.5 presents some field tests obtained
through a real-world testbed.

1 This is feasible if services share a common subset of VNFs and no service isolation constraints exist.
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5.1.1 System model

Table 5.1: Notation table
Symbol Type Meaning
T = {t} Set Set of time intervals
S = {s} Set Set of vertical services
V = {v} Set Set of VNFs
A = {α} Set Set of locations
E = {ψ} Set Set of endpoints
C = {c} Set Set of network nodes
K = {κ} Set Set of resources
I = {i} Set Set of radio interfaces
L = {(i, j)} Set Set of physical links
W = {w} Set Set of strings/paths
k(κ,c) Parameter Quantity of κ resources at node c
rκ (v) Parameter Quantity of κ resources required by VNF v to process a unit of traffic
Ri(c) Parameter Whether node c is equipped with radio interface i
Di, j Parameter Delay of link (i, j)
Ci, j Parameter Traffic capacity of link (i, j)
η(c, t),η(i, j, t) Parameter Reliability of node c and link (i, j) at time interval t
l(ψ,v1,v2) Parameter Traffic originated at π , processed last at v1, before being processed at v2

χ(v1,v2,v3) Parameter
Fraction of traffic processed at v1, currently processed at v2,
later processed at v3

ρ(v,c) Variable Whether node c hosts VNF v
ac(ψ,v,κ) Variable Quantity of κ resources assigned to VNF v at node c to process traffic from ψ

f̂c(ψ,v1,v2) Variable Fraction of flow l(ψ,v1,v2) processed at VNF v in node c

pi, j(ψ,v1,v2) Variable
Traffic from ψ , traversing link (i, j), processed at v1, later processed
by v2 at node j

ti, j(ψ,v1,v2) Variable
Traffic originated at ψ , last processed at v1, just transiting link (i, j),
and to be processed by v2

pi, j(ψ,v1,v2,w) Variable Processing traffic pi, j(ψ,v1,v2) traversing string w
ti, j(ψ,v1,v2,w) Variable Transiting traffic ti, j(ψ,v1,v2) traversing string w
f (ψ,v1,v2,w) Variable Fraction of service flow l(ψ,v1,v2) traversing string w
λc(ψ,v) Auxiliary Variable Quantity of traffic originated at ψ and processed by v at node c

τi, j(ψ,v1,v2) Auxiliary variable
Traffic originated at ψ , traversing link (i, j), last processed at v1,
and to be processed by v2

τi, j(ψ,v1,v2,w) Auxiliary variable Traversing traffic τi, j(ψ,v1,v2) traveling over string w

The model concisely describes the two main components of mobile, slicing-based networks:
the services they support, and the computing and network resources they include. Each of them is
modeled through a graph – the service graph and the physical graph, respectively. This section later
describes how such graphs can be combined. Further, it is considered that a monitoring platform
is in place, with the aim to periodically monitor both the service performance and the status of
the system resources. Throughout this section, t denotes the generic time interval over which the
system metrics are periodically monitored, and T the set of such intervals.

Services
A vertical service s ∈S is described through a service graph where vertices are VNFs, v ∈ V , and
edges specify in which order the VNFs should process the related data traffic (i.e., how data shall
be routed from a VNF instance running on a network node to the next). Note that VNFs can also
represent database-related functionalities [KYM19], requiring storage resources: like other VNFs,
they must be placed on a node and consume resources therein. An example of service graph for a
mobile robot, smart factory use case2 is depicted in Figure 5.2(left).

A service s is associated with one or more KPIs, namely,
– the required bandwidth, or expected traffic load l to be transferred and handled by the VNFs

composing the service;
– the maximum allowed delay D(s);
– the minimum level of reliability H(s);
– the required geographical availability at a subset of locations, A(s) ⊆ A , where A =
{α} represents the set of all possible locations in the considered region. As an example, A(s)

2 http://wiki.ros.org
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Figure 5.2: Service (left) and physical (right) graphs corresponding to the example in 5.1. In
the mobile robot, smart factory graph, each robot transmits its sensors data to the LADAR and
the the Robot OS (ROS) brain. The former provides a probabilistic localization of the robots,
the latter leverages such a localization and the sensors data to control the robots. Messages are
transferred through the Mobile Communication Transport (MCT), e.g., virtual AP. In the service
graph, vertices are endpoints (yellow) or VNFs (purple), edges are directed and correspond to flows
l. In the physical graph, vertices are endpoints in E or nodes in C , and edges correspond to links
in L ; colors correspond to those in 5.1 and refer to the different resource locations: fog (orange),
edge (blue), cloud (green).

can represent the urban intersections where an automotive vertical wants to provide a safety
service, or the areas where robots should move within a warehouse (5.1). We refer to the
combination of a service and a location as an endpoint ψ = (α,s) ∈ E ⊆A ×S ;

– the lifetime (or temporal availability) ϕ(ψ) ⊆ T , corresponding to a subset of all time
intervals T during which the service must be available at endpoint ψ .

As foreseen by standards, services may be associated with one or more of these requirements, i.e.,
not all KPIs have to be specified for all services. Also, without loss of generality, it is considered
that the traffic associated with a service is generated at endpoint ψ and has to be processed by the
VNFs in the service graph; in Figure 5.2(left), this would correspond to uplink data transfers. Note
however that, as discussed later, our model is general and can also capture downlink as well as
bidirectional traffic patterns.

The quantity of traffic originated at endpoint ψ ∈ E , that has been processed last at VNF v1,
and will be next processed at VNF v2 is denoted by l(ψ,v1,v2) (with l(ψ,v,v) being the traffic that
will be processed for the first time at v). After a traffic flow is processed at a VNF, the outgoing
traffic can increase, decrease, or be split among several other VNFs, according to the service graph.
Parameters χ(v1,v2,v3) express the fraction of the traffic that was last processed (or originated) at
v1 ∈ V ∪E , that is currently processed at v2, and that will next be processed at v3. For instance, if
v2 is a deep packet inspector, χ(v1,v2,v3) = 1; but if v2 is a firewall, then χ(v1,v2,v3)≤ 1.

Radio coverage and Fog/Edge/Cloud resources
Network nodes, with switching or computing capabilities, are denoted by c ∈ C , while endpoints,
which are origins or destinations of service traffic, are denoted by ψ ∈ E . Nodes may be equipped
with different resources, e.g., CPU or memory; the set of resources is identified by K = {κ}.
The quantity of resource type κ available at node c is specified through parameters k(κ,c), hence,
k(κ,c) = 0 ∀κ for pure network equipment like traditional, non-software, switches. Also, binary
parameters Ri(c) express whether node c is equipped with radio interface i ∈I or not. A radio
interface available at node c determines which locations, hence endpoints, node c covers – an
important feature of fog and edge nodes.

Radio coverage, fog, edge, and cloud resources can then be represented through a physical
graph whose vertices are the network nodes and the endpoints, and the edges (i, j)∈L ⊆ (C ∪E )2

represent the physical links connecting them, as per the network topology and the coverage provided
by the radio interfaces. Each edge (i, j) is associated with delay Di, j and traffic capacity Ci, j. Also,
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η(c, t) and η(i, j, t) denote the reliability level of any node c and link (i, j) monitored over a time
interval t ∈ T , respectively. Specifically, these quantities express the probability that a specific
node or link works as intended by averaging their behavior over t ∈ T , thus accounting for the
time-varying quality of communication links involving fog nodes, e.g., robots or cars. It is worth
mentioning that, in general, all the parameters introduced above may differ across fog, edge, and
cloud resources.

Service support over the physical graph
To express whether a node c in the physical graph hosts VNF v, this section introduces a binary
variable, ρ(v,c) ∈ {0,1}. Variables ac(ψ,v,κ), instead, express the quantity of resources of type κ

assigned to that VNF v at node c and used to process traffic generated at endpoint ψ .
It is also introduced variables τi, j(ψ,v1,v2) representing the flows over the physical graph, or,

more specifically, the traffic originated at ψ ∈ E , traversing (i, j) ∈L , last processed at v1, and
to be next processed at v2. Such traffic can be either processed at j, or just transiting through j;
these two options are described by the two real variables pi, j(ψ,v1,v2) and ti, j(ψ,v1,v2), and by
imposing: τi,c(ψ,v1,v2) = pi,c(ψ,v1,v2)+ ti,c(ψ,v1,v2).

Further, to handle the service KPIs more easily, a string is defined, w ∈W , over the physical
graph as a sequence of physical links traversed by a flow, with the first component of the string
being an endpoint. Similarly to [Qaz+], the possible strings can be pre-computed and stored for
later usage. Since a service flow can be split across different strings, f (ψ,v1,v2,w) is defined as
the fraction of service flow l(ψ,v1,v2) traversing string w. Clearly, such fractions must sum to 1.

The string-wise equivalents to τi, j(ψ,v1,v2), ti, j(ψ,v1,v2), and pi, j(ψ,v1,v2) are then
ti, j(ψ,v1,v2,w) and pi, j(ψ,v1,v2,w), respectively. Specifically, τi, j(ψ,v1,v2,w) represents the
traffic of service flow l(ψ,v1,v2) traversing link (i, j) on its journey through string w ∈W , and
then it is imposed τi, j(ψ,v1,v2) = ∑w∈W τi, j(ψ,v1,v2,w). Similar definitions and conditions hold
for ti, j(ψ,v1,v2,w) and pi, j(ψ,v1,v2,w).

Furthermore, the fraction of service flow over a certain string w must match the physical
traffic on the corresponding links, i.e., for all endpoints, VNFs v1 and v2, links, and strings:
f (ψ,v1,v2,w)l(ψ,v1,v2) = τi, j(ψ,v1,v2)1w(i, j), where 1w(i, j) denotes that link (i, j) ∈L belongs
to w.

Now that string-related variables are defined, the following provides an expression for the
latency and reliability KPIs of a service as set forth below.

The service latency comprises of network delay, due to traffic traversing links and switches,
and processing times at the nodes hosting VNF instances. Given endpoint ψ , the average network
delay can be computed as the weighted sum of the delays associated with the individual strings
taken by the traffic originated at ψ:

dnet(ψ) = ∑
w∈W

∑
v1,v2∈V

f (ψ,v1,v2,w) ∑
(i, j)∈w

Di, j. (5.1)

As for the processing time, let f̂c(ψ,v1,v2) be the fraction of the service traffic flow l(ψ,v1,v2)
processed at the instance of VNF v2 located at node c. Then the quantity of traffic λc(ψ,v2)
originating at ψ and processed at the instance of v2 in c is:

λc(ψ,v2) = ∑
v1∈V

f̂c(ψ,v1,v2)l(ψ,v1,v2).

Note that such traffic may come from different physical links.
Next, VNF instances are modelled as M/M/1-PS queues (see, e.g., [Coh+15b, JPP16, Olj+17]);

the choice of the processor sharing (PS) policy closely emulates the behavior of a multi-threaded
application running on a virtual machine. The total processing time at the instance of v2 deployed
at node c can thus be written as: 1/(ac(ψ,v2,cpu)−rcpu(v2)λc(ψ,v2)), with rcpu(v2) denoting the
amount of CPU needed by VNF v2 to process one unit of traffic. Summing over all flows, the total
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processing delay incurred by traffic originating at ψ is given by:

dproc(ψ)= ∑
v1,v2∈V ,c∈C

f̂c(ψ,v1,v2)
1

ac(ψ,v2,cpu)− rcpu(v2)λc(ψ,v2)
. (5.2)

Finally, notice that the reliability of a string can be computed as the product between the
reliability values of all links and nodes belonging to it.

5.1.2 Problem formulation
This section, formalizes the problem of creating end-to-end network slices that meet all the required
KPI targets (5.1.2) while minimizing the total cost (5.1.2). First, it introduces the system constraints
related to service processing, data routing, and KPI fulfillment. The problem complexity is later
discussed.

Flow conservation on the service graph
First, as remarked by the example on the χ(·) values, note that there is no flow conservation on the
service graph. Instead, the following generalized flow conservation law holds:

l(ψ,v2,v3) = ∑
v1:v1 ̸=v2

l(ψ,v1,v2)χ(v1,v2,v3)

+ l(ψ,v2,v2)χ(ψ,v2,v3), ∀v2,v3 ∈ V : v2 ̸= v3 . (5.3)

The intuitive meaning of 5.3 is that either traffic traveling from VNF v2 to VNF v3 must come from
another VNF v1 and then it is transformed in v2 according to the χ-coefficients (first term of the
second member), or it has just originated at ψ and is processed for the first time at v2 (second term).

Flow conservation and link capacity on the physical graph
The traffic going out of node c must be equal to the sum of that transiting through c and that just
processed at c, i.e.,

∑
(c,h)∈L

τc,h(ψ,v2,v3)= ∑
(i,c)∈L

[
ti,c(ψ,v2,v3)+ pi,c(ψ,v2,v2)·

χ(ψ,v2,v3)+ ∑
v1∈V

pi,c(ψ,v1,v2)χ(v1,v2,v3)
]
. (5.4)

Finally, each physical link (i, j) cannot carry more traffic than its capacity, i.e., ∑e ∑v1,v2 τi, j(ψ,v1,v2)≤Ci, j.

Deploying VNFs and assigning resources
Given a set of VNFs, each consuming an amount of resources ac(ψ,v,κ) of type κ at node c, it is im-
pose that the node capabilities are never exceeded, i.e., for any c and κ , ∑ψ∈E ∑v∈V ac(ψ,v,κ)≤ k(κ,c).

Importantly, for any κ ∈K , the quantity of traffic processed by v at node c cannot exceed the
ratio between the quantity ac(ψ,v,κ) of resource type κ assigned to the VNF, and the quantity rκ(v)
of resource type k needed by VNF v to process one unit of traffic, i.e.,

∑
(i,c)∈L

∑
ψ∈E

∑
v1∈V

pi,c(ψ,v1,v2)≤
ac(ψ,v2,κ)

rκ(v2)
∀κ ∈K . (5.5)

Also, node c’s resources can be assigned to a VNF v only if the latter is deployed therein:
ac(ψ,v,κ) ≤ ρ(v,c)k(κ,c), for any c, κ , and v. These conditions imply that no traffic is pro-
cessed at a node where no instance of a VNF is deployed.

Last, it is ensured that VNFs are placed only at nodes where all the needed radio interface(s) are
available, e.g., a MCT may work only at nodes equipped with specific radio interfaces. Thus, for
any node c, interface i, and VNF v, it must be satisfied: ρ(v,c)ri(v)≤ Ri(c), where ri(v) ∈ {0,1}
are parameters specifying whether interface i is needed by VNF v, and Ri(c) specifies whether such
an interface is available at c.
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Matching service and physical flows
Since the system model includes two graphs, a service graph and a physical graph, it must ensure
that service flows l and physical flows τ match. To this end, the flow entering the first VNF of a
service graph must correspond to one or more traffic flows on the physical graph:

l(ψ,v,v) = ∑
(ψ,c)∈L

τe,c(ψ,v,v),∀ψ ∈ E ,v ∈ V . (5.6)

Once 5.6 is met, then 5.3 and 5.4 ensure that the traffic on subsequent links is processed as specified
by the χ-parameters.

Meeting service KPIs
1. Service latency: the latency experienced by a service s is given by the sum of the network

delay (as in 5.1) and the processing time (as in 5.2). Recalling that D(s) is the maximum
target delay for service s, the service latency constraint for its endpoints can be stated as:

dnet(ψ)+dproc(ψ)≤ D(s), ∀ψ ∈ E . (5.7)

Note that the relationship between assigned CPU and processing time in the expression of
dproc(ψ) also means that the CPU has a different role from the other types of resources.
Indeed, for resources other than CPU, one can assign to each VNF instance exactly the
amount needed to honor 5.5, as a greater amount would yield no benefit. With CPU, instead,
there is an additional degree of freedom one can play with: assigning more CPU results in
shorter processing times, but higher costs.

2. Service geographical availability: by service availability requirements, all locations
in A(s)⊆A must be covered by service s. In other words, for all endpoints ψ = (α,s) : α ∈
A(s), there must be a link (ψ,c) on the physical graph to a node c that is equipped with a
radio interface covering α and that runs (or it is connected to another node running) the first
VNF of the service graph.

3. Service reliability and temporal availability: the solution ensures that at every monitoring
slot the reliability H(s) required for service s is honored by considering a weighted sum of
the per-string reliability values. In symbols, ∀ψ ∈ E , t ∈ ϕ(ψ),

∏
v1,v2∈V

∑
w∈W

f (ψ,v1,v2,w) ∏
(i, j)∈w

η( j, t)η(i, j, t)≥ H(s) . (5.8)

Note that imposing the above constraint for every monitoring slot during the service lifetime
also ensures that the service target temporal availability is met.

Objective
Cost is one of the main concerns related to service virtualization and network slicing. Such cost
mainly comes from using network and computation resources. To model this issue, it is defined:

– a fixed cost cc(v), due to the creation at node c of a VNF instance v; this cost is null if an
existing VNF instance can be reused;

– a cost cc(κ), incurred when using a unit resource κ at node c;
– a cost ci, j, incurred when one unit traffic traverses link (i, j).
Then, upon receiving a request to deploy a service instance s, the following cost-minimization

problem is formulated as follows:

min∑
c

∑
v

[
cc(v)+∑

e
∑
κ

cc(κ)ac(ψ,v,κ)
]

+ ∑
(i, j)

∑
e

∑
v1,v2

ci, jτi, j(ψ,v1,v2) (5.9)

subject to the constraints reported in Secs. 5.1.2–5.1.2.
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Figure 5.3: The main steps of the OKpi solution concept.

We recall that the endpoints ψ to consider depend on the service and on its geographic
availability requirements, while the VNFs are those specified by the service graph. Furthermore, a
solution to the above problem will always opt for reusing an existing instance of a VNF, whenever
possible, as this would nullify the instantiation cost cc(v).

Nature and complexity of the problem
The problem of jointly making VNF placement and data routing decisions is notoriously hard,
even when only one KPI is considered [Coh+15b, Fen+17, San+17b]. Te following theorem
proves through a reduction from bin-packing the complexity of the problem described in sec-
tion 5.1.1, showing that directly solving such a problem is impractical for all but very small
instances.

Theorem 5.1: The VNF-placement and data routing problem described in 5.1.1 is NP-hard.

Proof. To prove the thesis, it is necessary reduce an NP-hard problem to VNF-placement in
polynomial time. Les consider bin-packing, which is known to be NP hard [PS98]: given a set of
items weighting ωi each, they are placed throughout a set of bins, each having size σb, using as few
bins as possible. A bin-packing instance is transformed into a corresponding VNF placement, by
considering:

– one single VNF v and one single location;
– infinite-capacity, zero-cost, zero-delay, unitary-reliability links;
– as many nodes as there are bins, also with unitary reliability;
– the CPU available at each node is the same as the size of the corresponding bin;
– one single location and as many services (hence, endpoints) as there are items;
– all services include only one VNF, i.e., VNF v;
– the traffic l(ψ,v,v) and the target delay D(s) of each service are such that it requires ωi CPU

units to process the service traffic in time, i.e., 1
ωi−l(ψ,v,v)rcpu(v)

= D(s);
– all costs are set to zero, except for the VNF creation costs cc(v), which can be set to any

positive value.
In this case, VNF placement and bin-packing decisions are equivalent: the former places VNFs
in nodes, the latter places items in bins. The size of bins corresponds to the capacity needed by
the VNF instances, and minimizing the cost is tantamount to minimizing the number of bins. The
translation from bin-packing to the above simple VNF placement (with only one VNF, single-VNF
services, and uniformly-priced nodes) takes polynomial (indeed, linear) time, hence, the VNF
placement is (at least) as hard as bin-packing, i.e., NP-hard. Additionally, due to the infinite-
capacity, zero-cost, zero-delay, unitary-reliability links, any data routing solution would be optimal.
This suggests that, in practice, solving to optimality the problem described in section 5.1.1 would
be substantially harder than bin-packing. ■

It also possible to observe that the problem can be seen as a more complex version of a Multi
Constrained Path (MCP) problem, where the cost (hence, the weight of the edges in the MCP
graph) changes at every hop. Although known solutions to the MCP problem, e.g., [Xue+07], are
not applicable, such a similarity motivates us to propose an effective and efficient heuristic, called
OKpi, that:

– provides high-quality VNF placement and data routing decisions, with guaranteed feasibility;
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– such decisions are made in polynomial time;
– under mild homogeneity assumptions, decisions are optimal;
– in the general case, decisions can be arbitrarily close to the optimum.

5.1.3 The OKpi solution
The solution includes four main steps, as summarized in section 5.3. First, the physical graph, the
service graph, and KPI targets are blended into a decision graph G̃ = (Ñ, Ẽ), summarizing the
service deployment decisions that can be made and their effect on the KPIs. Then this graph is
translated into an expanded graph, to later use it to identify a set of feasible decisions as well as to
select, among them, the lowest-cost one.

For clarity, OKpi is presented in the case where the service graph is a chain with uplink traffic
starting from an endpoint ψ , and including N VNFs v1 . . .vN , each requiring only one instance. As
later discussed in this subsection, all such limitations can be dropped: OKpi works with arbitrary
service graphs requiring any number of instances for each VNF.

The decision graph
Given the physical graph modeling the service endpoints and the fog, edge, and cloud resources,
the decision graph G̃ is built with the aim to represent the possible service deployment decisions
and their effects on the service KPIs.

As a preliminary step, the computation-capable nodes are considered in the physical graph
(hence, a subset of C ), and (|V |−1) replicas are created for each of them. Consistently, auxiliary
edges are created (i) connecting each node c and its replicas in a chain fashion, and assign
them zero delay, infinite capacity, and reliability 1, and (ii) connecting any replica of c with any
computing node d, for which a link (c,d) ∈L exists. Crucially, introducing node replicas enables
to account for the possibility to deploy multiple VNFs at the same computation-capable node
without introducing self-loops in the decision graph. Indeed, as it will be more clear later, given
that a VNF is placed in c, each replica thereof represents the possibility to deploy the next VNF
again in c.

Let then G̃ = (Ñ, Ẽ) be the decision graph where:
– Ñ includes the endpoints in E , and the computation-capable nodes in the physical graph as

well as their replicas;
– Ẽ is the set of (i) the aforementioned auxiliary links, and (ii) the virtual links (i.e., single

physical links or sequences thereof) connecting the vertices in Ñ.
Every edge (ñ1, ñ2) in Ẽ representing a virtual link has the following properties:

– its capacity C̃ñ1,ñ2 is set to the minimum of the individual capacities of the physical links
composing the virtual link;

– its delay D̃ñ1,ñ2 is set to the sum of the individual delays of the physical links composing the
virtual link;

– its reliability η̃ñ1,ñ2 is set to the product of the reliability values of physical links and nodes
(both computation and pure-routing capable) included in the virtual link.

Lets now consider the additive KPIs and, for simplicity, let us focus on two of them, e.g., delay
and reliability. Every edge (ñ1, ñ2) in the decision graph, has associated a multi-dimensional weight
w̃(ñ1, ñ2), defined as:

w̃(ñ1, ñ2) =

(
D̃ñ1,ñ2

D(s)
,
log η̃ñ1,ñ2

logH(s)

)
. (5.10)

The intuition behind 5.10 is that the weight of edge (ñ1, ñ2) corresponds to the fraction of the target
delay and reliability that will be “consumed” by taking that edge, i.e., by deploying a VNF at ñ1
and the subsequent one at ñ2. Using logarithms in the second term of the weight allows to translate
a multiplicative performance index (namely, reliability) into an additive one3.

3 It is easy to see that η̃ñ1,ñ2 η̃ñ2,ñ3 ≥ H(s) translates into
log η̃ñ1 ,ñ2
logH(s) +

log η̃ñ2 ,ñ3
logH(s) ≤ 1.
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Figure 5.4: Decision graph (top) and expanded graph (bottom) when only delay is considered as a
KPI and γ = 3. In the decision graph, edges (ñ1, ñ2) and (ñ2, ñ3) have delay of 1 ms, while (ñ1, ñ3)
has delay of 2 ms (vertices representing replica nodes are omitted for simplicity); the target delay is
3 ms.

It is worth mentioning that, when some services are already active in the network, the decision
graph is built considering the residual capabilities of physical links and nodes, i.e., those not
assigned to already-running services. Similarly, in case of virtual links sharing the same physical
links, their capacity is updated as traffic is allocated to the physical links.

The expanded graph: finding decisions honoring availability and additive KPIs
Given the decision graph G̃, the first purpose is to identify a set of feasible service deployment
decisions that are consistent with the target KPIs. To this end, as a preliminary step, the service
geographical and temporal availability requirements are met by pruning from G̃ the vertices and
edges that do not satisfy such constraints.

Next, the proposed solution follows an approach inspired by [Xue+07] and build a multi-
dimensional, expanded graph, with as many dimensions as the number of additive KPIs. Specifically,
given a positive integer value of resolution γ:

1. for each vertex ñ in the decision graph, one creates as many corresponding vertices as (γ+1)2,
where the exponent 2 corresponds to the number of additive KPIs. Such vertices are denoted
by ñd where d is a vector with as many integer elements as the number of additive KPIs and
the value of such elements ranges between 0 and γ , i.e., ñd = ñ0,0, ñ0,1 . . . , ñ0,γ . . . , ñγ,γ ;

2. for every edge (ñ1, ñ2) ∈ Ẽ with capacity C̃ñ1,ñ2 greater or equal to the amount of traffic to
process, create directed edges from each vertex ñi, j

1 to vertex ñi+⌈γw(ñ1,ñ2)[0]⌉, j+⌈γw(ñ1,ñ2)[1]⌉
2 (if

such a vertex exists), where the two superscripts refer to delay and reliability, respectively.
For example, with γ = 1, if edge (ñ1, ñ2) has weight w̃(ñ1, ñ2) = (0.1,1.5) and enough traffic
capacity, there will be a directed edge from ñ0,0

1 to ñ1,2
2 , but not from ñ0,0

1 to ñ0,1
2 .

The expanded graph has no weights on its edges: the delay and reliability information that is
expressed by weights in the decision graph is now represented by the topology of the expanded
graph. A one-dimensional (i.e., one-KPI) example of decision graph and corresponding expanded
graph is depicted in Figure 5.4.

Finally, a set of possible service deployments are identified, i.e., VNF-to-compute node as-
signments and the corresponding data routing. That is done by looking for the shortest paths in
the expanded graph that (a) begin at endpoints, and (b) contain as many edges as there are VNFs
to place. The latter is trivially required by the need to deploy all VNFs on the service graph, and
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by the fact that placing more VNFs at a physical node is allowed thanks to the replica nodes and
auxiliary edges.

In the following, several fundamental remarks are made about the expanded graph and on the
paths, hence, the deployment decisions they correspond to. Given KPI, the depth of a vertex in
the expanded graph is defined as the value of the element in the superscript corresponding to the
KPI. Note that, by construction (see point 1 above), the maximum value of depth is γ . Also, let the
steepness of an edge be the difference in depth between its target and source vertices. Considering
the one-KPI example in Figure 5.4(bottom), vertex ñ0

1 has depth 0, vertex ñ2
3 has depth 2, and the

edge between the two has steepness 2−0 = 2, i.e., equal to ⌈γw(ñ1, ñ3)⌉.
By construction, for a given KPI, the ratio between the steepness of an edge and γ is greater or

equal to the weight component on the corresponding edge of the decision graph, which in turn is
the fraction of the KPI target values consumed by making that decision (see equation 5.10). As an
example, considering edge (ñ0

1, ñ
2
3) in 5.4(bottom), one has:

steepness
γ

=
2
3
≥ w(ñ0

1, ñ
2
3) =

Dñ1,ñ3

D(s)
=

2
3
. (5.11)

The observations above allows to state a very relevant property of the decisions corresponding to
the paths on the expanded graph.

Lemma 5.2: The decisions corresponding to any path on the expanded graph honor all additive
KPIs.

Proof. By definition, the depth of a vertex corresponds to the total steepness of the path required to
reach it from endpoint ψ . Given that the maximum depth in the expanded graph is γ , there is no
path with total steepness4 greater than γ . Thanks to the relation between weight and KPI targets
(exemplified in equation 5.11), this implies that, given a path on the expanded graph, the sum of the
weights of the corresponding edges in the decision graph cannot exceed 1, i.e., the corresponding
decisions honor additive KPIs (including, thanks to the logarithmic weights, reliability). ■

Importantly, the smaller the resolution γ , the fewer the possible values of depth and steepness
in the expanded graph, the fewer the levels of consumption of the KPI target values one is able
to distinguish, which corresponds to introducing an error, akin to quantization. Indeed, γ +1 can
be seen as the number of quantization levels5 admitted: in the extreme case of γ = 1, all edges
would have a steepness of 1, which also corresponds to exhausting the whole KPI target in one hop.
Such a quantization error may lead to discarding some feasible solutions, and thus, in the most
general case, may jeopardize the optimality of OKpi. However, two important facts stand out: (i)
even enumerating all feasible paths in the decision graph is NP-hard, as proven in [Xue+07], hence,
quantization is necessary; (ii) by increasing γ , OKpi can get arbitrarily close to the optimum (at the
price of higher complexity).

Last, it is remarked that all paths on the expanded graph honor additive KPIs constraints, with
the possible exception of delay. Indeed, unlike other KPIs, whether or not the delay target is violated
depends not only on the network latency, hence, the VNF placement, but also on the processing
time, i.e., the quantity ac(ψ,v,cpu) of CPU assigned to each VNF, which in turn impacts the
deployment cost. It is possible to account for this important aspect thanks to the M/M/1-PS model
used for the processing delay formula – see equation 5.2. In particular, below it is shown how to
determine, given a possible deployment, whether there is a CPU assignment consistent with the
target delay, and the cost thereof.

4 The steepness of a path should be not confused with the length of a path.
5 Using logarithms for reliability values, which are all typically very close to 1, is akin to performing adaptive

quantization.
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Minimizing the cost
Now it is necessary (i) for every path found, to identify the minimum-cost CPU assignment, i.e., the
optimal values of the ac(ψ,v,cpu) variables – if such an assignment exists –; and (ii) to determine
the path that minimizes the overall cost.

To this end, for each path, hence, for a fixed ψ and for VNFs v1 . . .vN to be deployed at
computing nodes ñ1 . . . ñN , respectively, the following problem is solved:

min∑
ñ,v

añ(ψ,v,cpu)cñ(cpu) s.t. (5.12)

∑
ñ1,ñ2

(
Dñ1,ñ2+

1
añ2(ψ,v2,cpu)−rcpu(v2)λñ2(ψ,v2)

)
≤D(s),

as well as to constraints concerning link capacity, node capability, and flow conservation, equivalent
to those presented in section 5.1.2. If the problem above is infeasible for a given path, then that
path (and the corresponding decisions) is incompatible with the target KPIs and must be discarded.

Once the problem in 5.12 is solved for all paths identified in the expanded graph, it is computed
the total cost associated with each path (including all components defined in section 5.1.2) and
select and enact the lowest-cost deployment, thus fulfilling OKpi’s purpose. Importantly, the
problem is convex, hence, it can be efficiently solved in polynomial time [BV04]. The proof simply
follows from observing that (i) the objective in equation (5.12), as well as the flow conservation
and capability constraints, are linear, and (ii) the second derivatives of the delay constraint, are
positive in the decision variables, hence, the constraint itself is convex.

General scenarios
Now it is shown how OKpi tackles arbitrary scenarios.

– Arbitrary service graphs: if the service graph is more complex than a chain, it is possible
to proceed by decomposing the graph into a set of chains (e.g., in Figure 5.2(left), one in
uplink, from the MCT to the DB, and one in downlink, from the detector back to the MCT).
OKpi is then applied subsequently to each chain, and the deployment decisions are cascaded.
The case where multiple endpoints have to be covered, as in Figure 5.2(left), is handled in
the same way.

– Multiple VNF instances: If the problem is infeasible for all possible paths found, a reason
could be the need to split the processing burden across multiple instances of the same VNF.
This case is handled by first identifying the bottleneck VNF, i.e., taking the longest to process
the service traffic, and then increasing by one the number of instances of that VNF in the
service graph. OKpi is then re-run on the modified service graph.

OKpi analysis
This subsection proves several properties about OKpi. We start with the most essential aspect
related to its effectiveness, i.e., its ability to meet all service KPIs:
Property 5.3: OKpi’s decisions honor all KPI targets.

Proof. By 5.2, all decisions honor the additive KPIs. Concerning delay, it is guaranteed that such a
KPI target is met, thanks to the delay constraint imposed while performing the CPU assignment.
As noted in “Minimizing the cost”, decisions resulting in an infeasible problem are discarded,
hence, the selected decision honors the delay target. Finally, the availability constraints are satisfied
through the initial selection of the vertices of the decision graph. ■

The following addresses the computational complexity of OKpi:
Property 5.4: The worst-case computational complexity of OKpi (including the graph generation
and the solution of the problem stated in (5.12)) is polynomial.

Proof. To prove the property, it is shown that each of the steps described in section 5.1.3 has a
polynomial run-time. Specifically,



5.1 Sliced Edge/Fog networks 141

(i) creating the decision/expanded graph requires creating at most γ2(|V ||C |+ |E |) nodes and
at most γ2|V ||L | edges, where |V | is the number of VNFs specifying the service and, given
the service, is a constant.

(ii) Finding the possible decisions implies computing the shortest paths between any endpoint
(i.e., vertex meeting the availability constraints) and any other node in the expanded graph,
which, in the worst case, has complexity [Sei95] o(n2.3) with n being the number of nodes in
the expanded graph.

(iii) Computing the optimal CPU assignments requires solving a convex optimization problem,
which has cubic complexity [BV04] in the problem size; indeed, convex problems are
routinely solved in embedded computing scenarios.

Thus, the overall time complexity of the OKpi approach is polynomial. ■

Also, in the case where the physical graph is homogeneous, is possible to prove that OKpi can
return the optimal solution:
Property 5.5: If all links and nodes have the same capabilities and cost, then the output of OKpi is
optimal.

Proof. There is only one point in the procedure described where, in general scenarios, it may be
the case that optimal solutions are overlooked. Finite γ values may cause a quantization-like error:
solutions with different KPI consumption and/or cost can be associated with the same path over the
extended graph; therefore, the extended graph may not consider all possible ways to move from
one node of the decision graph to another. In the special case of homogeneous links and nodes,
however, no such different possibilities exist: taking a finite value of γ is enough to consider all
possible choices the system offers and, hence, to make an optimal decision. Note that restricting our
attention to shortest paths on the expanded graph does not harm optimality, as adding hops implies
consuming a higher (or equal at best) fraction of KPI targets and cannot decrease the cost. ■

Finally, the next property considers the expanded graph and show that it can be built in
polynomial time:
Property 5.6: The worst-case computational complexity of building the expanded graph is
O
(
(γ +1)4 · |Ñ|2 ·K

)
.

Proof. Given that two additive KPIs, the expanded graph has (γ + 1)2 nodes for each node in
the decision graph, (with the number of nodes in the decision graph being |Ñ|). Therefore, the

total number of pairs in the expanded graph is O
([

(γ +1)2|Ñ|
]2
)

, and it is necessary to evaluate

whether or not an edge shall be created for each of these pairs. Doing so requires checking each
KPI, for a total of O

(
(γ +1)4|Ñ|2K

)
checks, where K is the number of KPIs. It follows that the

global, worst-case complexity of building the expanded graph is quadratic in the network topology
and polynomial in γ . ■

5.1.4 Numerical results
This subsection first focuses on a small-scale scenario and an inter-robot communication service,
and compare the performance of OKpi against the optimum obtained via brute force. Then it moves
to a large-scale scenario and real-world automotive service, and characterizes how the quantity of
traffic to serve and the maximum delay impact the decisions made by OKpi. Finally, this subsection
considers a mobile robot, smart factory service and investigate the impact of the number of robots
on the decisions made by OKpi and the resulting performance.
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robot
master

MCT
robot
slaveψ

Figure 5.5: Service graph specifying the inter-robot communication service. Yellow and purple
vertices denote endpoints and VNFs, respectively.

Table 5.2: Algorithm run times for the small-scale scenario, when the target reliability is 0.999,
the maximum delay is 50 ms, and the traffic multiplier is 1

γ Run time [s]
2 2.1
4 2.4
6 2.7
8 3.1

10 3.8
optimal 284.8

Small-scale scenario: comparison against the optimum
6The inter-robot communication service [Mou+18] is considered, whose graph is depicted in
Figure 5.5. A room (hence, an endpoint) contains three robots, with different levels of reliability:
η(robo1) = 0.999999, η(robo2) = 0.99999, and η(robo3) = 0.9999. Two of these three robots
must be used to perform an operation, hence, run the robo-master and robo-slave VNFs. The
communication between the two selected robots can take place through three types of PoAs, with
different levels of reliability (micro-cell: 0.999999, pico-cell: 0.99999, femto-cell: 0.9994), and
costs as reported in [NJ14b]. The offered traffic is 1 Mb/s per robot, as specified in [Mou+18].

Figure 5.6 depicts the results when OKpi’s resolution is set to γ = 10. The first aspect of
interest is the relationship between the target KPIs and cost: as appreciated in Figure 5.6(a) and
Figure 5.6(b), a longer allowable delay results in a lower cost; conversely, a higher traffic load or a
higher target reliability both result in higher costs. Intuitively, this is due to the fact that cheaper
resources (e.g., robot 3) tend to have lower reliability and/or capacity, hence, it is impossible to use
them when the KPI targets become very strict.

Interestingly, in both Figure 5.6(a) and Figure 5.6(b), OKpi matches the optimum in all cases.
Indeed, as previously discussed, OKpi always matches the optimum if the resolution γ is high
enough; in the small-scale scenario considered for Figure 5.6, γ = 10 is sufficient to this end.

Figure 5.6(c) shows the effect of setting a lower resolution, namely, γ = 3. As appreciated by
comparing the left and center bars, a lower value of γ results in suboptimal, higher-cost decisions.
Specifically, the difference is due to the fact that, when γ = 3, a higher-cost PoA is selected, namely,
the pico-cell in lieu of the femto-cell. This happens because, for γ = 3, the edges corresponding
to the femto-cell in the expanded graph have steepness

⌈
γ

log0.9994
log0.999

⌉
= 2. Considering that (i) all

other edges have steepness 1 and (ii) OKpi seeks for paths composed of three edges (same as the
number of VNFs to place) with a total steepness not exceeding γ = 3, the edges corresponding to
the femto-cell will never be selected, hence, the corresponding decision is never considered. In
summary, as discussed in the previous sections, using a too-low γ made us overlook a feasible –
and, in this case, optimal – solution.

In the same settings as for Figure 5.6(right), Table 5.2 shows the time taken by the OKpi
algorithm for different values of γ , as well as the time it takes to find the optimal solution. OKpi
is implemented in Python, and all tests are run on a server with 40-core Intel Xeon E5-2690 v2
3.00GHz CPU and 64 GB of memory. One can observe that, as expect, OKpi run times are very
short, much shorter than the time it takes to find the optimal solution. Even more interestingly,

6 Numerical simulations of the small-scale scenario where developed by the author of the present thesis, and later
corrected by Dr. Francesco Malandrino.
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(a) (b)

(c)

Figure 5.6: Small-scale scenario (inter-robot communication service): cost as a function of the
maximum delay (a) and of the traffic load (b), for different values of target reliability; cost
breakdown (c) when the target reliability is 0.999, the maximum delay is 50 ms, the traffic
multiplier is 1, and γ varies.

larger values of γ do result in longer run times, but the increase is substantially slower than the
worst-case complexity derived in 5.6.

Large-scale scenario: impact of traffic and delay

Table 5.3: Large-scale scenario: points of access and computing nodes characteristics
Item Reliability Latency Cost

Points of access
macro-cell 0.99999999 6 ms 1.02 USD/Gbit
micro-cell 0.9999999 3 ms 2.31 USD/Gbit
pico-cell 0.999999 2 ms 3.80 USD/Gbit

Computing nodes
cloud ring (Azure DataBox) 0.99999999 8 ms 2.23 USD/Gbit
aggregation ring (PowerEdge) 0.9999999 3 ms 5.23 USD/Gbit
local ring (small data center) 0.999999 1 ms 10.47 USD/Gbit

7Now OKpi is tested on a large-scale scenario to validate its performance in presence of more
complex service graphs and under a larger, and more diverse, network infrastructure. Specifically,
on an urban environment where a safety service, namely, vehicle collision avoidance [Avi+19,
Mal+20], has to be provided at specific intersections. The service graph is depicted in Figure 5.7:
messages sent by vehicles are collected through the MCT, e.g., virtual Evolved Node B (eNB)
plus vEvolved Packet Core (EPC), then stored in a database and used for detecting vehicles on
a collision course. The latter are warned by sending them an alert. Based on a real-world road
topology (see Figure 5.8), a total of 9 intersections (hence, endpoints) are covered by a combination
of PoAs, namely, macro-, micro- and pico-cells, whose coverage is shown in Figure 5.8.

7 Numerical simulations of the large-scale scenario where developed by the author of the present thesis, and later
corrected by Dr. Francesco Malandrino.
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Figure 5.7: Service graph of the safety automotive service (vehicle collision avoidance). Yellow
and purple vertices denote endpoints and VNFs, respectively.

Figure 5.8: Road topology used in the large-scale scenario. The nine crossings correspond to
endpoints; red, green, and blue circles represent the coverage areas of macro-, micro- and pico-cells,
respectively.

Different PoAs have different reliability, latency, and cost values, as reported in Table 5.3. The
front- and back-haul network topology is based on [Mar+19c] and ITU standard [ITU18], and
includes core nodes, aggregation nodes, and local (i.e., close to the PoAs) nodes, with features as
summarized in Table 5.3 [Car19]. The total service traffic is 1.5 Mb/s, and γ is set to 40 (higher
values do not improve the performance). The generation of these graphs was done using the 5GEN
package mentioned in section 3.5.

Figure 5.9(a) shows that, as one might expect, a shorter target delay results in higher costs. It is
also interesting to observe the behavior of the intermediate curve, corresponding to H(s) = 0.9999:
when the target delay is very short, its associated cost is almost the same as for H(s) = 0.999999
case; as the target delay increases, its cost drops to the same level as the H(s) = 0.999 case. This
bespeaks the complexity of the decisions OKpi has to make, and their sometimes counter-intuitive
effects.

In Figure 5.9(b), the traffic load is multiplied by a factor ranging between 0.5 and 3. Again one
can observe that to a higher traffic corresponds a higher cost, even though the growth is less than
linear, owing to the fixed costs described in the objective function of the associated optimization
problem. Also notice how the yellow curve in Figure 5.9(b), corresponding to the highest reliability
level, stops at a multiplier of 2: for higher traffic demands, the network capacity is insufficient to
provide the service with the required reliability.

Figure 5.9(c) shows which PoAs and computing nodes are selected for the minimum and
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Figure 5.9: Large-scale scenario (automotive safety service): cost as a function of the maximum
delay (left) and of the traffic load (center), for different values of target reliability; fraction of traffic
(right) traversing different PoAs and computing nodes when the target reliability is 0.999, the traffic
multiplier is 1, and the target delay varies.

maximum target delay values. Interestingly, in the presence of tight delay constraints, different
PoAs and resources are all used (left bars). On the contrary, for the largest target delay, the cheapest
options – cloud and macro-cells – are preferred.

Smart factory scenario: impact of the number of robots
8To demonstrate the scalability of OKpi, the following analyzes the scenario depicted in Figure 5.1
and the mobile robot, smart factory service in Figure 5.2(left), including a set of N robots. This
scenario is an enriched version of the small-case robotic service, as resource provisioning has to
account for more robots, compared to the small-scale scenario, and the smart factory service graph
now includes additional VNFs that can be placed on servers rather than on robots. The available
computing nodes and PoAs are the same as in Table 5.3, and the goal is to study how the number
of users (robots, in this case) impacts the decisions made by OKpi and the resulting performance.
Figure 5.10(a) shows that, as one might expect, a larger number of robots always results in a higher
cost; interestingly, computing nodes and PoAs account for comparable shares of the overall cost.

Figure 5.10(b) and Figure 5.10(c) summarize how much traffic is handled by different PoAs
and computing nodes as the number of robots grows. Figure 5.10(b) is fairly straightforward: the
cheapest options are always preferred; only after their capacity is exhausted, more expensive PoAs
are exploited. Figure 5.10(c), concerning computing nodes, shows instead a different situation. The
intermediate solution, namely, aggregation rings, is preferred in most scenarios; edge servers are
used for a limited amount of traffic, thanks to their low latency that allows using cheaper (albeit
slower) PoAs. Cloud servers, thanks to their low cost and high capacity, are the preferred option
when the number of robots grows, provided the target latency can be met.

Figure 5.10(d) depicts the amount of computing resources consumed in the different sections of

8 Numerical simulations of the smart-factory scenario where conducted by Dr. Francesco Malandrino.
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(a) (b)

(c) (d)

Figure 5.10: Smart factory service with a varying number of robots: cost breakdown (a), choice
of PoAs (b) and computing nodes (c), usage of computing resources at different location in the
network infrastructure (d).

the network infrastructure. Interestingly, Virtual Machine (VM)s closer to users (e.g., at the edge)
are consistently used more than further-away ones (e.g., in the cloud). This is due to two reasons:
first, more expensive computing nodes can be an optimal choice only if it is possible to fully utilize
the VMs therein; second, faster processing times (hence, as specified in (5.2), more spare capacity)
are required at farther-away nodes to make up for longer network delays.

5.1.5 Testbed and validation
9In the following it is presented the implementation of OKpi in an experimental testbed where the
mobile robot, smart factory service (depicted in Figure 5.2(left)) is deployed in an indoor scenario.

The testbed consists of: (i) 5 ASUS WL500G Premium v1 APs running OpenWrt 18.06.2 [Fai08];
(ii) 2 MiniPC, with 4 vCPUs and 8GB of RAM each, one used as an AP and the latter as a local
server (i.e., located close to the APs); (iii) 1 PowerEdge C6220 server with 94GB of RAM and
16 vCPUS, acting as edge server; and (iv) 1 PowerEdge R840 Rack Server7 with 94GB of RAM
and 16 vCPUs, acting as cloud server. The six APs and the local server are deployed along two
corridors of the Universidad Carlos III de Madrid building (see Figure 5.11), while the edge and
cloud server are located in different buildings. To emulate different levels of link congestion, the
experiments leveraged on NetEm [Hem+05] to artificially introduce some latency on the connection
between the APs and the servers, as reported in Table 5.4. Note instead that the latency on the
AP-robot link never exceeds 6 ms. The cost associated with the APs and servers match those
presented in Table 5.3, considering the pico-cell value for the APs. Additionally, the experiments
used ROS-compatible Kobuki Turtlebot S2 robot equipped with a laptop with 8-GB RAM and 2
vCPUs, and a RPLIDAR A2 lidar for 360-degree omnidirectional laser range scanning.

The laptop hosts the robot VNF, which, as mentioned in section 5.1.1, (a) probes the robot
sensors (e.g., odometry, LIDAR), (b) transmits the sensors data to the ROS brain, and (c) executes

9 In the testbed, Milan Groshev was encharged of the operation of the Kobuki robot, so as the software development
related to RoS, the LADAR, and brain VNFs. The author of this thesis was responsible of the setup of the Asus
OpenWrt routers with 802.11r, and the interaction of OKpi with the robot.
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Figure 5.11: Illustration of the mobile robot, smart factory testbed: the robot starts at the bottom
end of the corridor and comes back once it has reached the other end at the top left. Dashed circles
highlight possible VNF deployments.

Table 5.4: AP-server latency
cloud edge local

AP1, AP2 9 ms 4 ms 3 ms
AP3, AP4 18 ms 8 ms 9 ms
AP5, AP6 27 ms 12 ms 9 ms

the navigation instructions received from the ROS brain. The LADAR and ROS brain VNFs can be
hosted at any of the available servers

The target of the experiment is to ensure that the one-way, End-to-End (E2E) latency of the
service remains within 15 ms [3GP18b] during the robot’s trip. The experiment starts with the
robot positioned at the bottom end of the corridor and connected with AP1 (see Figure 5.11). Also,
the initial decision by OKpi is to deploy the ROS brain and LADAR VNFs in the cloud server. The
ROS brain then navigates the robot along the trajectory shown in Figure 5.11 and, as the robot
moves, OKpi determines which AP the robot should connect to10 and which server (cloud, edge,
local) should host the ROS brain and LADAR VNFs. Both the AP and server selection change
depending on the robot position and latency of the AP, respectively. In particular, depending on
which AP the robot is attached to, OKpi decides which server should host the ROS brain and
LADAR VNFs by accounting for the latency values reported in Table 5.4, in such a way that the
overall service latency remains below 15 ms. During the experiments, OKpi recomputed the AP
selection, ROS brain, and LADAR VNFs embedding, in less than 1 s. The robot position is reported
to OKpi through MQTT messages transmitted by the robot itself, while the APs coverage, which
may vary over time, is acquired through 802.11r measurements.

Figure 5.12 compares the temporal behavior of the E2E latency obtained in the following cases:

– SoA, i.e., when the solution based on [Mal09] and [Keh+15] is used. In this case, the
LADAR and ROS brain VNFs are always placed in the cloud and the robot connects to the

10 As the robot moves, it roams to the selected AP using 802.11r Fast Transitioning [08].
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Figure 5.12: Service latency experienced during the robot’s trip. Different background colors refer
to time intervals in which the robot is connected to different APs.

Table 5.5: OKpi and SoA service latency
Solution Average Std. deviation E2e violations
OKpie 13.63 ms 15.21 ms 7%
SoA 29.61 ms 26.18 ms. 74%

AP from which it receives the strongest signal (the latter information is acquired by the robot
by performing Wi-Fi active scans every 20 s).

– OKpit, i.e., when OKpi makes decisions in a simulated environment that mimics the testbed,
using the theoretical delays that each AP offers;

– OKpie, i.e., when OKpi operates in an experiment carried out through the developed testbed,
using the robot’s real time location and triggering 802.11r roam instructions when it leaves
an AP’s coverage area (note this prevents the robot from doing periodic scanning).

Figure 5.12 compares the service time measured during a single run execution of the SoA,
OKpie, and OKpit solutions.

At the beginning of the experiment, neither the SoA nor the OKpie violate the target E2E latency
of 15 ms, except for the peaks due to the robot Wi-Fi scans. While under SoA the robot performs a
scan every 20 s, under OKpie it does so only when it has to connect to a new AP, as per the OKpi
decision. Under SoA, 50 s later the robot connects to AP3, and the latency jumps above 20 ms
because the LADAR and ROS brain VNFs are still running in the cloud server. In the case of OKpie,
instead, when the robot connects to AP3 at 89 s., the LADAR and ROS brain VNFs are moved to
the edge server, so that the E2E latency remains below 15 ms. The same behavior is observed at
time 102 s, when the robot connects to AP5 in the case of SoA and the E2E latency increases up to
29 ms. On the contrary, OKpie still meets the target e2e latency upon making the robot connecting
with AP5 (at time 156 s), since it now places the VNFs in the local server. In the rest of the time
elapse, one can observe similar performance, as the robot returns to its initial position.

As a final remark, Figure 5.12 highlights that the performance of OKpie is always close to the
E2E latency exhibited by OKpit. Furthermore, the target E2E service latency (15 ms) was only
violated the 7% of the times during the experiment by OKpie (see Table 5.5), while it was violated
the 74% of the times under SoA.
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Figure 5.13: Deployment of a cloud robotics warehousing NS.

5.2 Mobile and volatile Fog networks
The previous section paid attention on meeting KPIs of the plethora of network services present
in 5G networks. It put special emphasis on the traffic steering, and path selection to satisfy the
related delay and reliability constraints. And although it tackles the coverage constraints of fog
devices and end users, the approach is rather simple, as the system model does nothing but stating a
binary variable to determine whether the end device lies within the coverage area or not. Moreover,
mobility and battery constraints of fog devices where not considered.

This section studies how to solve the VNE problem for NSs that require from volatile fog
devices. That is, devices that may belong or not to the infrastructure depending on whether they
have battery. In particular, it focuses in a mobile robotics warehousing use case in Valencia city
haven, where robots with wireless connectivity and computing capacity move the containers along
the haven. Thus, the proposed solution and system model are designed for mobile devices within
the fog, as robots or drones acting as an extension of the cloud and edge infrastructure.

The research contribution is threefold. First, the VNF placement problem is formulated as a
cost-minimizing optimization problem. The section extends formulations in the state of the art
imposing the radio coverage of mobile fog devices, and preventing that VNF deployments use fog
devices that may run out of battery. Second, the optimization problem is solved by a novel heuristic
algorithm that, to the best of the authors’ knowledge, is the first one getting close to optimal
results while tackling both radio coverage, and battery restrictions of fog environments. Finally, the
proposed algorithms are evaluated via extensive simulations on a real-world scenario. The results
confirm the beneficial properties of the heuristic and system model in terms of scalability, cost, and
run-time.

The rest of the section is organized as follows. Section 5.2.1 introduces the warehousing
use case motivating this section work. Section 5.2.2 is devoted to the detailed description of
the associated model and optimization problem. Section 5.2.3 describes the proposed heuristic
algorithm. And section 5.2.4 presents the algorithms’ evaluation from different aspects based on
extensive simulations.

5.2.1 Use Case: mobile robotics
This section tackles the mobile robotics use case [3GP18b, Table 5.3.1.1-1], as a warehousing
solution for future factories [Mou+18, section 3.1.2]. In particular, it deals with the transport of
goods from boats to specific locations of Valencia city haven.

The use case considers a cluster of robots, that move in a master-slave fashion to deliver goods
arriving to the haven. Each of the robots carries containers from a pick up point (S in Figure 5.13)
to a drop off point (D1 and D2). In particular, the master robot is followed by the other slave
robots (represented in Figure 5.13) of the cluster along its way towards the drop off point. Robots
communicate among themselves to report position status, or other context information useful for
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the master-slave coordination. Thus, robots have device-to-device communication between them,
and computational capabilities so they can execute lightweight VNFs [Nog+18] as the driving and
follow VNFs represented in Figure 5.13. The driving VNF runs in the master robot to drive it
towards the drop off point, and the follow VNFs run in the slave robots to follow the master robot
movements until it reaches a drop off point. The driving VNF receives driving instructions from the
remote ctrl VNF running in the edge server in Figure 5.13, and reports sensor data like the speed to
the Database (DB) VNF running in the cloud.

To enhance the robots’ remote driving, the communication between the remote ctrl VNF and
the driving VNF is crucial, indeed, resources proximity is needed as Mobile robotics demand
communications with cycle times between 1ms and 100ms (for machine control, and video operated
remote control cases) [3GP18b]. Thus, the placement of both driving and remote ctrl VNFs should
satisfy latencies below 100ms.

While moving, robots may run out of battery or switch between Radio Unit (RU)s coverage
area (see Figure 5.13). Whenever the master robot enters a new coverage area, it attaches to a new
RU to keep the connectivity with the servers running the remote driving VNF, and DB VNF (edge,
and cloud servers in Figure 5.13). Therefore, it is important to take into account that a robot is not
selected for goods delivery if (i) it may run out of battery; or (ii) it may loose RU connectivity as it
moves towards the drop off point.

To increase the RUs coverage and improve the E2E delay, the use case presented in this section
considers that the haven is covered by Long Term Evolution (LTE) RUs managed by a network
operator, and New Radio (NR) RUs belonging to its Non Public Network (NPN). This is called an
NPN deployment in a public network [5GA19].

That is, Valencia city haven only owns the NR RUs, and its management (subscription, gateways,
control plane) is done by the public network, i.e., a network operator.

For the public network infrastructure, a 5G transport network is assumed based on [ITU18]
and [Com+18b]. As later specified in section 5.2.4, the considered infrastructures are generated as
indicated in chapter 3, in particular, using the 5GEN package – see section 3.5. All the RUs present
in the use case transmit their traffic up to an access ring composed of several switches connected
in a ring fashion. The traffic of the access rings is later gathered by the aggregation rings which
forward traffic up to the core of the public infrastructure. The presented use case, assumes that
cloud servers are in the core of the public network, edge servers are co-located next to the access
ring and the aggregation ring switches. Regarding computational resources (i.e., CPU, memory and
disk), edge servers in access rings are less powerful than edge servers in aggregation rings, and
cloud servers are more powerful than edge servers.

It is worth highlighting that the problem formulation presented in this section will hold for
public and private deployments, being the only consideration the cost of connection, that may vary
depending on the type of management. Both deployments are mentioned for a better understanding
on the real situation in the city haven.

5.2.2 Problem formulation
This section presents the formulation of the use case to tackle the VNF allocation as an optimization
problem. The problem is solved using an integer program solver to gain optimality and scalability
insights.

System model
The network infrastructure is represented by a graph GI , where the nodes V (GI) contain NR
and LTE RUs, generally referred to as APs VAP(GI), server nodes (representing edge or cloud
servers) VS(GI), and mobile nodes VM(GI). Hence, the vertex set of the graph is built up as
V (GI) = VAP(GI)∪VS(GI)∪VM(GI). Host nodes Ni with computation capacities CNi are stored
in VH(GI) =VS(GI)∪VM(GI), and their corresponding unitary price is represented by pNi . As a
realistic generalization to the mobile robotics use case, the concurrent management of multiple robot
clusters is assumed. The subsets of VM(GI) define the clusters of robots VRCq(GI)⊆VM(GI),1≤
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Table 5.6: Definition of variables and parameters
Notation Definition

Parameters
GI Network infrastructure graph

GI

V (GI) All infrastructure nodes

V∗(GI)
Nodes of type ∗ in the infrastructure

∗ ∈ {AP, S, M, H, RCq}
E(GI) Edges of the infrastructure

GS Network service graph

GS

V (GS) All VNFs of the network service
P(GS) All paths of the service graph

Gs Graph of Service Function Chain (SFC) Gs

V (Gs) VNFs of SFC Gs

E(Gs) Edges of SFC path Gs

∆Gs Delay requirement of SFC Gs

ths
bat Battery threshold for SFC Gs

CSFC Set of all SFCs
VNF v Virtual Network Function v

VNF v
Cv Capacity demand of VNF v
L Locality matrix V (GS)×V (GI)

Ni

CNi Total resource capacity of node Ni

pNi Cost per resource unit used of node Ni

DAP,S(Ni,N j) Delay between Ni and N j ∈VAP(GI)∪VS(GI)
DMq(Ni,N j) Delay between Ni and N j ∈VRCq(GI)

Pbat(Ni,CNi)
Probability of having battery for the whole

time interval using CNi resources

APk

dAPk Delay for the coverage area of APk

PAPq
k
(tu)

Probability of cluster q to be in the coverage
area of APk in time subinterval tu

pAPk Cost of usage of APk
κq Coverage probability threshold for cluster q

Variables
dGs(tu) Delay of SFC Gs in time tu

d(Ni,N j, tu) Delay between nodes Ni and N j in time tu
x(v,Ni) Placement of VNF v in node Ni

CNi Resource usage in node Ni

APq
k (tu) Usage of APk by cluster q time tu

µ : V (GS) ↦→VH(GI) VNF to host node mapping structure
α : {tu}×{q} ↦→VAP(GI) AP selection structure for all clusters

q ≤ Q, where Q refers to the number of clusters. Moreover, graph edges E(GI) represent the
connections between the infrastructure nodes, which are annotated by their transmission delays.
Due to the mobile clusters’ mobility, their connections to the static part of the infrastructure are not
represented by edges in GI .

The mobile nodes VM(GI) are connected to access points VAP(GI) in order to communicate
with other nodes of the infrastructure. However, the nodes are moving and may encounter areas
with overlapping access point coverage or areas where handover between different access points is
needed to guarantee the connection to the servers deeper in the infrastructure. Thus, this section
assumes that each AP has an associated coverage area APk, and the mobility pattern of robot cluster
q is modeled by the probability distribution of being in the AP coverage areas PAPq

k
(t), referred as

coverage probability throughout the paper. Notice that a cluster can be in an area where several
access points have coverage, with a different probability for each of them. Each value models the
probability of a robot cluster q to fall inside the coverage area of each AP in each moment t. This
model is able to compute the placement of NSs with guarantees of communication between the
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mobile and fixed parts of the infrastructure, while considering any model of coverage areas, such
as [SMF15b] or a linear model, by using precomputed values of the coverage. The parameter t is a
time instant within an interval (t0, t1) in which the network service will be running. For the sake
of simplicity in the model, the time interval is discretized in subintervals, thus continuous time
t ∈ (t0, t1) becomes discrete time tu ∈ {t0, ta, tb . . . , t1} with t0 ≤ ta ≤ tb ≤ . . .≤ t1. Subintervals help
to identify the moments when handovers may occur during the service time. The time division
guarantees the communication between robots and APs selected in each subinterval. Note that VNFs
are deployed on the same servers during all the service time, thus, they must have communication
with the APs selected in each subinterval.

The cost of using an AP for a single subinterval tu by any single cluster is pAPk . The energy
consumption of the mobile nodes is modeled by the distribution Pbat(Ni,CNi) depending on the
allocated load to node Ni, which represents the probability of having a not depleted battery for
the whole interval (t0, t1). Both PAPq

k
(t) and Pbat(Ni,CNi), are used in the optimization problem to

ensure robots’ radio coverage, and battery needs are met during the interval (t0, t1).
The requested Network Services are represented with a NS graph GS, with the nodes being

VNFs v ∈V (GS) and their capacity requirements Cv. Each SFC is a subgraph Gs ⊆GS with its own
set of VNFs and path, as the one depicted in the NS graph of Fig. 5.13, and expressed in Eq. (5.13).

CSFC =
{
(Gs,∆Gs) | V (Gs)⊆V (GS), (5.13)

E(Gs) ∈P(GS),∆Gs ∈ R+
}

where CSFC represents the set of SFCs in Network Service GS, and P(GS) represents the paths of
the NS graph GS. Each SFC has a corresponding delay requirement ∆Gs which defines an upper
bound of the total delay of the SFC path E(Gs).

For a better understanding of the model, all the notations used for the mathematical formulation
of the optimization problem are gathered in Table 5.6.

Optimization problem

d(Ni,N j, tu) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
APk∈VAP(GI)

APq
k (tu)[DMq(Ni,N(rq))+dAPk +DAP,S(APk,N j)], if Ni ∈VRCq(GI)∧N j ∈VS(GI);

d(N j,Ni, tu), if N j ∈VRCq(GI)∧Ni ∈VS(GI);
DAP,S(Ni,N j), if Ni,N j ∈VS(GI)∪VAP(GI);
DMq(Ni,N j), if Ni,N j ∈VRCq(GI);

∑
APk1 ,APk2
∈VAP(GI)

APqi
k1
(tu)APq j

k2
(tu)

(
DAP,S(APk1 ,APk2)+dAPk1

+dAPk2
+ ∑

n∈{i, j}
DMqn

(Nn,N(rqn))

)
, if Ni ∈VRCqi

(GI)∧ N j ∈VRCq j
(GI)

(5.26)

Formulation 1 summarizes the associated optimization problem, and details are described
below. The optimization must decide which infrastructure node Ni ∈V (GI) should host which VNF
v ∈ V (GS), this is represented by the binary decision variable x(v,Ni) and constraints Eq. (5.14)
and Eq. (5.15). The resource capacities CNi must be respected by the load allocation on each node
Ni. This requirement is gathered in Eq. (5.16), where CNi stands for the allocated resources in
infrastructure node Ni as presented in Eq. (5.17).

Furthermore, there may be a necessity of applying placement policies and VNF functional types.
In order to include those policies in the model, the matrix L(v,Ni) expresses locality constraints
between the VNFs v ∈V (GS) and infrastructure node Ni ∈V (GI). Each element of the matrix is a
binary constant, identifying whether the VNF can be located in an infrastructure node, as expressed
in Eq. (5.18). In the use case presented in section 5.2.1, L(v,Ni) enforces the deployment of the
driving and follow VNFs in the robots (i.e., mobile nodes). This requirement may be useful for
other use cases, such as Unmaned Aerial Vehicle (UAV)s running virtual access points that forward
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Formulation 1 Optimization problem

x(v,Ni) ∈ {0,1} ∀v ∈V (GS),∀Ni ∈V (GI) (5.14)

∑
Ni∈V (GI)

x(v,Ni) = 1 ∀v ∈V (GS) (5.15)

CNi ≤CNi , ∀Ni ∈V (GI) (5.16)

CNi = ∑
v∈VS(GI)

x(v,Ni)Cv, ∀Ni ∈V (GI) (5.17)

x(v,Ni)≤ L(v,Ni), ∀v ∈V (GS),∀Ni ∈V (GI) (5.18)

∑
APk∈VAP(GI)

APq
k (tu) = 1, ∀1≤ q≤ Q,∀tu ∈ (t0, t1) (5.19)

∑
APk∈VAP(GI)

APq
k (tu) ·PAPq

k
(tu)≥ κq,

∀1≤q≤Q
tu∈(t0,t1) (5.20)

delay equation is presented in Eq. (5.26)

dGs(tu) = ∑
(vi,v j)∈E(Gs)
Ni,N j∈V (GI)

x(vi,Ni)x(v j,N j)d(Ni,N j, tu) (5.21)

dGs(tu)≤ ∆Gs , ∀(Gs,∆Gs) ∈ CSFC,∀tu ∈ (t0, t1) (5.22)

Pbat(Ni,CNi) = Pbat(Ni,0)−

−CNi

CNi

(
Pbat(Ni,0)−Pbat(Ni,CNi)

)
,∀Ni ∈VM(GI)

(5.23)

Pbat(Ni,CNi)≥ ths
bat , ∀Ni ∈VM(GI), ∀Gs ∈ CSFC (5.24)

min ∑
Ni∈V (GI)

CNi · pNi + ∑
tu,q,k

APq
k (tu) · pAPk (5.25)

traffic to the cloud (see [Nog+18, San+20]). Under such scenarios, L(v,Ni) can be used to enforce
virtual access points to run on top of UAVs.

1. Radio coverage constraints: The deployment must also decide at each time interval to
which access point each cluster of robots is attached to, that is, APq

k (tu) = 1 in case robot
cluster RCq is connected to access point APk at time tu. (5.19) reflects the assumption that
each cluster can only be attached to one AP at each interval. The deployment decision must
also ensure that the coverage probability is above the imposed threshold κq for mobile cluster
q, representing the requirements each cluster needs to guarantee connectivity during the time
interval, as stated in (5.20). Notice that Optimization problem 1 only needs to know whether
cluster q has radio coverage of APk at time tu. Hence, Optimization problem 1 is agnostic
about how PAPq

k
(tu) is obtained, and the values could be derived from any radio access model.

For instance, Sec. 5.2.4 obtains PAPq
k
(tu) with a linear function directly proportional to the

distance between q and APk.
2. Delay constraints:11 in order to measure the distances between infrastructure nodes, the

metric used is the delay, which in the case of the static nodes is given in a matrix containing
the precomputed and the time-independent delays, DAP,S(Ni,Ni) ∀Ni,N j ∈VS(GI)∪VAP(GI).
Similarly, the distances inside each mobile cluster are time invariant, precalculated and stored

11 The delay constraints, in particular (5.26), were proposed by Nuria Molner.
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in matrix DMq(Mi,M j) ∀Mi,M j ∈VRCq(GI),1≤ q≤ Q.
Each access point APk ∈VAP(GI) provides a time- and distance-independent delay to its whole
coverage area, its value is denoted by dAPk , while delay between APs is given with the value,
DAP,S(APk1 ,APk2). The delay value between a mobile cluster and the static part of the infras-
tructure And between mobile nodes belonging to two different clusters Might vary according
to the assigned APs during the time interval (t0, t1). A mobile cluster q has an appointed relay
node N(rq) (in our case the master robot), which is connected to the APs, and all the traffic
of other mobile nodes of the same cluster towards the fixed part of the infrastructure goes
through the corresponding relay mobile node. Thus, the orchestration system can execute
the handover of the cluster by only connecting the relay node to a different AP. This way
the delay of device-to-device communication is accounted in a different variable than the
AP delays. Hence, the general delay function which covers any pair of infrastructure node
types is expressed in (5.26). (5.26) is a piece-wise function that depends on the type of
node hosting the different VNFs of the NS. The delay between two mobile nodes of the same
cluster is accounted in DMq(Ni,N j). Delay between two nodes of the fixed infrastructure is
DAP,S(Ni,N j), while delay between a node of the fixed infrastructure and a mobile cluster
depends on the AP that the cluster uses in that moment, which is gathered in

∑
APk∈VAP(GI)

APq
k (tu)[DMq(Ni,N(rq))+dAPk +DAP,S(APk,N j)]. Thus, the delay of a service is com-

posed by the different delays between the nodes that host the different VNFs and the order in
which they must be performed.
The overall delay of a SFC Gs ∈ CSFC in time tu is formulated in (5.21), where the delays
between the hosts of each SFC edge are summed. The upper bound of the SFCs’ total
permitted delay ∆Gs for the whole optimization interval is expressed in constraint (5.22).

3. Battery constraints: In order to place VNFs in mobile nodes it is necessary to ensure the
mobile node will not run out of battery during the time interval (t0, t1). This is introduced in
the problem formulation, in (5.23), as the probability of having battery for the whole time
interval considered, based on the resources used in the node. CNi is the consumed capacity
of mobile node Ni, and Pbat(Ni,CNi) is the probability of having battery on Ni by the end of
time interval (t0, t1) when using CNi resources as allocated capacity. Note that Optimization
problem 1 is agnostic of the used battery consumption model, as Pbat(Ni,CNi) values could
be derived by any battery consumption model. For example, Sec. 5.2.4 derives Pbat(Ni,CNi)
as a linear function between the empty CNi = 0 and the fully loaded states CNi = CNi . To
ensure the proper performance of the mobile nodes, the battery life is guaranteed in (5.24)
by a threshold ths

bat given per SFC Gs, for all nodes hosting VNFs. This threshold takes into
account the battery of all the mobile nodes hosting the VNFs of the service and guarantees
each of the nodes hosting a VNF of the service will have battery during the whole time
interval with a probability higher than the threshold, for example a ths

bat = 0.9.
4. Cost minimization: finally, the problem minimizes the total cost of allocating the whole

service GS demanded and AP usages by all of the mobile clusters. Hence, the objective
function is shown in (5.25). The VNF mapping µ and AP selection structures α are defined
by the variables x(v,Ni) and APq

k (tu) of a solution to the optimization problem. This model is
not linear in some equations as the one representing the delay in (5.21), but each product of
two variables can be easily linearized due to the fact that all the variables involved are binary
variables. Thus, the linearization is performed by substituting each product of two binary
variables by one extra binary variable, as expressed in Property 5.7.
Property 5.7: Linearization of the product of two binary variables. Let z = x · y, where z, x
and y are binary, then the product can be linearized as follows:

llz≤ x,

z≤ y,

z≥ x+ y−1
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Formulation 2 Bin Packing with Usage Cost [Cam+13]
Input: VNFs V (GS) as items with weight, host nodes VH(GI) as bins with capacity
Output: VNF placement respecting only capacity constraints

ll ∑
Ni∈VH(GI)

x(v,Ni) = 1 ∀v ∈V (GS) (5.27)

∑
v∈V (GS)

x(v,Ni)Cv ≤CNi ∀Ni ∈VH(GI) (5.28)

x(v,Ni) ∈ {0,1} ∀v ∈V (GS),Ni ∈VH(GI) (5.29)

min ∑
Ni∈VH(GI)

CNi ·pNi (5.30)

5.2.3 Heuristic
This section details12 the design of the heuristic which exploits the peculiarities of the system model
to design an efficient and practical algorithm.

Proposed heuristic
The core idea of our heuristic algorithm is to use the fractional optimal solution of a bin packing
problem of the VNFs and host nodes, which is deterministically rounded to an invalid integer
solution. Next, the algorithm iteratively resolves the capacity, delay, battery and coverage constraint
violations by changing the mapping location of VNFs in the initial invalid integer solution until a
feasible mapping is found.

First of all, lets introduce the bin packing problem variation with variable bin and item sizes
supporting linear usage costs [Cam+13] in Formulation 2. Lemma 5.8 (taken from [Cam+13]
and pasted down for readability) states how to construct a fractional optimal solution for this bin
packing variant, relaxing the integrality constraint. The proof of Lemma 5.8 can be found in the
original source [Cam+13].

Lemma 5.8: Fractional optimal solution of Formulation 2 [Cam+13]. Let {ai} be a permutation
of all host infrastructure nodes Ni ∈VH(GI) in ascending order by their unit costs of computation
capacity pa1 ≤ pa2 ≤ ·· · ≤ pa|VH (GI )|

. Let WC = ∑v∈V (GS)Cv be the sum of all VNF capacities.
Let b be the minimum number of host nodes in order {ai} where ∑

b
i=1CNai

≥WC.
The fractional optimal solution (discarding the integrality constraint (5.29)) of Formulation 2

is

x̃(v,Nai) =

⎧⎪⎪⎨⎪⎪⎩
CNai
WC

if i < b,
WC−∑

b−1
i=1 CNai

WC
if i = b,

0 if i > b;

∀v ∈V (GS).

The proposed heuristic’s core pseudo-code is shown in Algorithm 7. Intuitively, the heuristic
reallocates VNFs that violate any constraint, and measures the goodness of the reallocation with
the improvement score (see Algorithm 9). The higher the improvement score, the better the VNF
reallocation. Initially, the fractional optimal solution is retrieved and rounded to initial constraint-
violating VNF placement, obeying only the locality constraints (5.18) as shown in lines 1-5.
The cost increasing order {ai} of mobile and server nodes are used from Lemma 5.8 to involve

12 The design of the algorithm proposed in this section was done by Dr. Balázs Németh
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additional hosts to the VNF placement pool, starting only from the first b cheapest hosts. In each
iteration a set of violating items, respecting all constraints is calculated based on the temporary
decisions stored in the current VNF placement function µ . Next, the iteration in lines 11-19 collects
improvement scores for moving a VNF which is involved in any constraint violation to any currently
considered host node (i.e. until index b′). Line 14 heuristically filters only the VNF relocations
whose improvement score is higher than a configured improvement score limit ϒ. The improvement
cost is calculated by the cost difference of VNF v on the current host µ(v) and the possible new
host Nai . If any allowed VNF replacement is found, update actions are taken and a current AP
selection α is retrieved as shown in lines 21-23. Otherwise, the algorithm exits the improvement
operations, and the next cheapest mobile or server node is included in the search by increasing b′. If
a feasible solution is found after any inner iteration (see line 30), the procedure returns the current
VNF placement function µ and AP selection structure α . The presented algorithm could be easily
extended to continue searching for better quality solutions at the price of increased running time.

All subsequently presented subroutines take the input of Algorithm 7, but these are omitted
from the pseudo-codes for readability. VIOLATINGVNFMAPPINGS takes as input the current
VNF placement function µ and returns a set of violating VNFs V and an information storage of
the actual constraint violations R. Based on the current VNF placement µ , the feasibility of AP
selection for each robot cluster q ∈ {1 . . .Q} is checked using the subroutine CHOOSEAPS. If the
AP selection is not possible, all VNFs of the causing SFC Gs are added to V and the violation
information is stored in constraint violation record R.

Algorithm 8 shows the details of how the AP selection and its feasibility based on the placement
function µ are derived for a given robot cluster q ∈ {1 . . .Q} for all temporal subintervals. Line 2
chooses the affected SFCs Gs, which have any VNF mapped to the mobile nodes of the robot
cluster q. Given the current VNF placement µ , the total delay used by the path of the whole SFC
E(Gs) can be calculated using the delay expression (5.26). Access points are chosen by discarding
the ones which do not meet the coverage requirement κq and finding the one with minimal delay
among the remaining ones:

APl = argminAPk∈VAP(GI)∩{APφ :PAPq
φ

(tu)≥κq}(dAPk) (5.31)

These operations are done by the function DELAYDISTWITHCOVERAGEANDAPSELECTION,
which also ensures that the same AP is chosen for a given input robot cluster q ∈ {1 . . .Q} in
subinterval tu, no matter which input SFC it gets. The algorithm discards the impractical option of
placing the VNFs of a single SFC to distinct mobile clusters. This simplification is only applied
for the delay bounded VNFs, not to the other VNFs of the network service GS. If an access point
APl is found for subinterval tu with the given requirements, the selection is saved in AP selection
function α , otherwise the structure is invalidated and the reason is saved in RAP, as shown by the
logical structure starting at line 4. In case the computation capacities of a robot cluster are not
used by any VNFs of any SFC, an access point still needs to be selected for the cluster, which is
done by minimizing the cost instead of the unbounded delay and similarly filtering to the coverage
probability (see line 10).

Finally, the improvement score calculation is shown in Algorithm 9, which takes the current
VNF placement µ and a possible relocation of VNF v to Nai as input, and outputs an integer whose
higher value represents a more significant improvement. The IMPROVESCORE procedure uses the
previously presented VIOLATINGVNFMAPPINGS function to evaluate how the mapping would
change by the VNF mapping modification. The mapping structure µ with less violating constraints
is considered better, as shown in lines modifying the improvement score y. In case of capacity
constraints, total improvement score y would decrease, keep unchanged or increase if the number
of hosts with more than their max capacity allocated would increase, stay or decrease by the VNF
movement, respectively (see line 3). A similar score modification is done for each SFC, using
the change in the number of temporal subintervals tu where the coverage or delay constraints are
violated as shown by the iteration starting at line 4. In the case of the battery constraints, the number
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Algorithm 7: PlaceVNFsSelectAPs(GS,GI,ϒ)
Data: service graph GS, infrastructure GI , improvement score limit ϒ, and all constraints

from Sec. 5.2.2
Result: VNF placement µ : V (GS) ↦→VH(GI) and AP selection

α : {tu}×{1 . . .Q} ↦→VAP(GI) satisfying all constraints
1 x̃(v,Ni),b,{ai}← fractional solution based on Lemma 5.8 for host nodes VH(GI) and

VNFs V (GS);
2 foreach v ∈V (GS); // Round initial solution
3 do
4 µ(v)← argmaxNi∈VH(GI)x̃(v,Ni) which obeys

locality constraints (5.18)
;

5 end
6 foreach b′ ∈ {b . . . |VH(GI)|} ; // In order of {ai}
7 do
8 V ,R← VIOLATINGVNFMAPPINS(µ);
9 while V ̸= /0 do

10 I ← /0 ; // Allowed improving VNF moves
11 foreach v ∈ V , i ∈ {1 . . .b′} do
12 if µ(v) ̸= Nai and µ(v) = Nai obeys
13 locality constraints (5.18) then
14 if ϒ≤ IMPROVESCORE(µ , v, Nai) then
15 impr_cost←Cv(pNai

− pµ(v));
16 I ←I ∪{(v,Nai , impr_cost)};
17 end
18 end
19 end
20 if I ̸= /0 then
21 µ(v)←Nai | (v,Nai , impr_cost)∈I and

impr_cost is minimal
;

22 V ,R← VIOLATINGVNFMAPPINS(µ);
23 α ← retrieve AP selection from violation

record R
;

24 else
25 break;
26 end
27 end
28 if AP selection α is valid and
29 VNF placement µ is valid then
30 return µ , α // Solution found
31 end
32 end
33 return /0, /0 // Solution not found

of VNFs mapped to mobile nodes with violated battery thresholds are used.

Complexity analysis
A brief analysis on the heuristic’s complexity and its termination is presented in Theorem 5.9 and
its corresponding proof.



158 Chapter 5. NFV orchestration for 5G networks

Algorithm 8: chooseAPs(µ,α,q)
Data: Current VNF placemnet µ , current (possibly incomplete or invalid) AP selection α ,

robot cluster index q
Result: Extended and/or ivalidated AP selection α , AP selection violation record RAP

1 foreach tu ∈ (t0, t1) do
2 if ∃Gs ∈ CSFC,∃v ∈V (Gs), where µ(v) ∈VRCq(GI) then
3 dGs ,APl ← DELAYDISTWITHCOVERAGEANDAPSELECTION(E(Gs),µ, tu,q,κq);
4 if dGs ≤ ∆Gs and ∃APl then
5 Let α(tu,q) = APl // Same AP for all SFCs
6 else
7 Let α(tu,q) = ⌈;
8 Add result dGs and SFC Gs to RAP;
9 end

10 Let α(tu,q) = APl , where APl ∈VAP(GI) and obeys coverage constraint (5.20) and
pAPl is minimal;

11 end
12 end
13 return α , RAP;

Algorithm 9: improveScore(µ , v, Nai)
Data: Current VNF placement µ , movement of VNF v to host Nai

Result: Integer in interval [−|CSFC|−2, |CSFC|+2], the improvement score of the VNF
movement

1 y← 0 // Init. improvement score of moving v to Nai

V ,R←VIOLATINGVNFMAPPINGS(µ);
2 V ′,R ′←VIOLATINGVNFMAPPINGS(µ | µ(v) = Nai);
3 y← y−1/+0/+1 if number of hosts Ni with violated constraint (5.16)

increases/stays/decreases in R ′ compared to R;
4 foreach Gs ∈ CSFC do
5 y← y−1/+0/+1 if number of subintervals tu with any invalid mappings (i.e. where

∃tu,q : α(tu,q) = ⌈ ) increases/stays/decreases in R ′ compared to R;
6 end
7 y← y−1/+0/+1 if number of VNFs v which are mapped to any mobile node VM(GI)

with violated battery constraint (5.24) increases/stays/decreases in V ′ compared to V ;
8 return y;

Theorem 5.9: Complexity of heuristic. The overall complexity of the heuristic with positive
improvement score limit ϒ > 0 is:

O
(
|V (GS)|4|V (GI)|3|CS FC |QT

)
(5.32)

where Q and T are the number of clusters and the number of subintervals tu in the optimization
time frame (t0, t1), respectively.

Proof. Looking at Algorithm 7, the fractional solution construction and its rounding are dominated
by the iteration starting at line 7, which is executed at most |V (GI)| times. Assuming a positive
improvement score limit ϒ, the violating VNFs set V = O(|V (GS)|) decreases at least by one ele-
ment in each iteration of the while cycle. At most every iteration runs VIOLATINGVNFMAPPINGS.
Filtering for the allowed VNF movements in line 13 is done at most O(|V (GS)||V (GI)|) times,
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Figure 5.14: A service graph generated with a series-parallel graph. This instance contains x8
VNFs bounded to mobile nodes, and is used in the battery experiment, see Fig. 5.16

and in worst case for each of them we execute a IMPROVESCORE subroutine call. These obser-
vations make Algorithm 7’s complexity to be O

(
|V (GS)||V (GI)|

{
|V (GS)||V (GI)|IMPROVSCORE

+ VIOLATINGVNFMAPPINGS
})

. The VIOLATINGVNFMAPPINGS’s complexity is dominated
by QO(CHOOSEAPS), because the other constraints can be checked in O(|V (GI)||V (GS)|) time.
Access point filtering for sufficient coverage in a longest SFC can be done in O(|V (GI)||V (GS)|)
time, which is done for all SFCs |CSFC|, all SFC edges O(|V (GS)|) for all time subintervals
T . Which gives O(VIOLATINGVNFMAPPINGS) = O(QT |V (GS)

2||V (GI)||CSFC|). Similarly, IM-
PROVSCORE is dominated by VIOLATINGVNFMAPPINGS’s complexity. Finally, a Floyd-Warshall
algorithm is used to pre-calculate the all the delay matrices DAP,S and DMq with complexity
O(|V (GI)|3), which is dominated by the previous operations. Substituting and ordering the O(·)
notations, the statement follows. ■

5.2.4 Evaluation and results
13This section compares the performance of Sec. 5.2.3 heuristic, with the optimal solution of
Sec. 5.2.2 formulation from various aspects. As integer programs are generally impractical due
to the hardness of the problem, the proposed heuristic is extensively evaluated to demonstrate its
applicability. The heuristic solutions are compared to the optimal solution obtained with Gurobi
which finds a solution within a gap optimality of 3%. Such comparison is done for the mobile
robotics use case of Sec. 5.2.1, where scalability is a critical issue due to the size of the infrastructure
and service graphs.

Additionally, this section compares Sec. 5.2.3 heuristic against “Follow Me Chain” (FMC) [CL19],
a heuristic that tackles mobility by triggering VNF migrations upon AP handovers, but does not
consider battery constraints. The implementation of FMC:

1. replaces [CL19, Algorithm 1] VNF-based Breadth-First Search (BFS) with a virtual-link-
based BFS, so as to ensure the mapping of every virtual link;

2. uses a k-shortest paths in [CL19, Algorithm 2: line 1] to avoid getting stucked in the search
of all paths between two nodes14;

3. considers mobile compute nodes as well as edge servers; and
4. can map service graphs with unconnected components.

13 Dr. Balázs Németh did the experiment implementation and design of the experiments, so as the scripts to automate
the interaction with AMPL. The AMPL model encoding was done by Dr. Balázs Németh, Nuria Molner, and the
author of this thesis. The generation of the network infrastructure graphs, so as the implementation and integration of
the FMC, was done by the author of this thesis.

14 FMC builds a full-mesh servers’ graph, and even the proposed range-based Depth-Fist Search (DFS) incurs into a
O(|V (Gi)|!) search space
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Experiment setup
The presented evaluation scenario scales up the mobile robotics use case of Valencia city haven. A
realistic 5G network infrastructure topology is considered with multiple types of wireless access
points, while the service graph instances are random graphs. In particular, the infrastructure
topology is generated using the 5GEN package presented in section 3.5, and following the 5G
network infrastructures discussed in chapter 3. Many parameters of the experiment setting are
examined during the presented simulations, varying the size of the input, SFC delay requirements,
coverage probabilities and battery thresholds.

In order to generalize the service graphs and gain confidence in our simulations, series-parallel
graphs are used to generate the network service topology GS. Fig. 5.14 shows an example of such
graph. This graph class covers the structure of many data streaming applications, such as map-
reduce topologies, and have been used in other realistic, industrial case studies for fog application
allocation [Sut+19]. The round-trip time experienced by every robot running a VNF must stay
below the delay restriction, therefore, SFCs correspond to loops starting and ending in mobile node
VNFs, and every SFC must satisfy the delay restriction. Among all the VNFs of the SFC, some
of them are forced to run on top of the mobile robots’ hardware VM(GI) (denoted as Mobile node
VNF in Fig. 5.14), and the rest can run on top of any server VS(GI) or robot VM(GI). It is up to the
heuristic and the optimization formulation, to decide where to deploy them.

Every experiment uses the 5G infrastructure characterization of [Com+18b] and [ITU18],
which considers Ultra Reliable Low Latency Communications. Table 5.7 shows every infrastructure
element considered in the experiments, and Fig. 5.13 illustrates the interconnection of the network
infrastructure. Each M1 switch is located in the access ring of the network, and it gathers the
traffic of up to x6 LTE or NR RUs. Access rings have x6 M1 switches and x1 M2 switch, all
of them interconnected in a ring fashion. Every M2 switch belongs to x4 access rings, and it
steers the traffic up to the aggregation ring, where it is connected in a ring fashion with another x5
M2 switches. Experiments consider that edge and cloud servers are reachable using M1 and M2
switches, respectively.

Each point in the operation area of the robot cluster is covered at least by one LTE RU and at
least by one NR RU. The coverage probabilities for each time instance are derived by a function
which maps the distance of the RU and the cluster to the coverage probability. The probability
slightly decreases until the end of the RU coverage area, and steeply drops to 0 at 120% of the RU
reach. If a NR RU and the mobile cluster are not in LoS, the coverage probability is 0, independent
of their distance. To achieve e2e delays demanded by the mobile robotics use case (between
1ms and 100ms), the experiment infrastructure assumes that aggregation and access ring switches
introduce packet processing delays between 1ms and 10ms, under the same characterisation as
performed in [Com+18b].

As previously stated, to derive this section’s results a network infrastructure with just one cluster
of robots has been generated with the 5GEN package presented in section 3.5. Then, a Python script
generates series-parallel NS graphs GS from which loop SFCs are selected. Robot cluster paths
are encoded by coordinates which are used to calculate RUs coverage probabilities as robots move
along the path. Next, the Python script runs section 5.2.3 heuristic to decide each VNF mapping on
top of the infrastructure graph. Section 5.2.2 formulation is encoded in AMPL [FGK93], and the
Python script invokes Gurobi 8.1 solver [Gur15] through the amplpy Application Programming
Interface (API) to obtain the optimal mapping. All the experiments have been executed on two
identical VMs with x4 vCPUs, 32GB of memory, and 132GB of disk.

Simulation results
This section presents the results of the extensive simulations performed with Algorithm 9, AMPL
solver, and the state of the art FMC solution; denoted as impr-ϒ, AMPL, and FMC; respectively.
The details of the simulation parameters are shown in Table 5.8 for each of the experiments. The
cluster paths in the Valencia haven are represented by their source and target locations.

All evaluation figures present boxplots, where the middle line shows the median (a.k.a. second
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Table 5.7: Infrastructure used for experimentation
# Element Characteristics

x2 LTE RU [3GP16a] 8km radio coverage, 5ms one
way delay [Stu12], 5.5 cost units
OPEX [NJ14a]

x36 NR RU [Pat+18] 700m LoS coverage [Hal+18], 1ms
one way delay, 11 cost units OPEX

x10 robots x2 CPUs, 15.27 cost unit-
s/CPU [Car19]

x6 edge server x12 CPUs, 5.83 cost unit-
s/CPU [Car19]

x2 cloud rack 200 CPUs, 2.46 cost unit-
s/CPU [Car19]

x8 M1 switch x8 dedicated CPUs
x6 M2 switch x238 dedicated CPUs
x2 access rings fiber ring connection, ≤6 M1

switches
x1 aggregation ring fiber ring connection, x6 M2

switches

Table 5.8: Experiment parameters
Parameter name/explanation Value/range

Experiment name Scalability Coverage Delay Battery
Robot cluster path, see Fig. 5.13 S→ D1 S→ D2 S→ D2 S→ D1

Path total distance [meters] 678 488 488 678
Time interval count tu ∈ (t0, t1) 24 24 24 24

Unloaded battery probability Pbat(Ni,0),∀Ni ∈VM(GI) 99% 99% 99% 99%
Full loaded battery probability Pbat(Ni,CNi),∀Ni ∈VM(GI) 50% 80% 80% 50%

Battery probability threshold ths
bat 40% 70% 70% 72% & 75%

Infrastructure delay sample count 1 4 4 1
SFC delay [ms] ∆Gs 1000 5 Varies 1000

Randomized VNF vCPU requirement Cv∀v ∈V (GS) 0.5 x {0, . . . 4} 0.5 x {0, . . . 4} 0.5 x {0, . . . 4} 0.25 x {0, . . . 4}
VNF count |V (GS)| Varies 10 10 26

VNF count bound to robots 6 4 1 Varies
Coverage probability threshold κq 94% Varies 94% 70%

Scenario repetition with different randomization seed 14 24 20 14

quartile) of the dataset, while the body of the boxplots show the first and third quartiles (a.k.a. the
medians of the first half and the second half of the dataset separated by its median). The whiskers
of the boxplots represent the datum which deviates from the boxplot body at most by 1.5 times
the inter-quartile range, while outliers are individually plotted by circles which fall beyond the
whiskers.

An input VNF placement problem with all previously presented constraints is deemed feasible, if
the AMPL implementation finds a valid solution that respects all constraints in 30 minutes (measured
in wall-clock time). In case of the heuristic, the timeout is reduced to 20 minutes. All experiments
were executed with 3% optimality gap for AMPL, various improvement score limit values for the
heuristic, and k = 10 for FMC.

First of all, the scalability of the algorithms are compared depending on the number of VNFs to
be placed; results in terms of cost and run-time are shown in Figure 5.15(a) and Figure 5.15(b),
respectively. The time-bound feasibility is shown on top of the figures for each randomized scenario
repetition corresponding to the dependant value on the horizontal axis. The scalability experiment is
repeated multiple times for each input size, varying the distribution of VNF capacity requirements,
the service graph’s concrete topology, and the selection of the VNFs bound to the mobile cluster
(see Table 5.8). The scenario parameters allow a solution to be found in any randomized generation,
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(d) Coverage threshold variation test: run-times
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Figure 5.15: Results of scalability, coverage probability and SFC delay experiments
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Figure 5.16: Impact of battery probability threshold on cost and feasibility

due to loose SFC delay, coverage and battery probability thresholds; though the 30mins time limit
may not be enough in all cases. Figure 5.15(a) shows the time-bound feasibility ratio calculated on
the randomized repetitions. A steep drop of feasibility of the AMPL implementation occurs at the
VNF count of 60, which is due to reaching the computation timeout in each case. The reason behind
the timeouts is the exponential run-time of the AMPL solution, which is shown by Figure 5.15(b) in
logarithmic time scale. On the contrary, both heuristics find feasible solutions in every possible
setup. In terms of cost, our heuristic with ϒ = 1 outperforms FMC, with the former staying between
15% and 30% away of the optimal costs, and the latter increasing the cost gap with respect to our
solution as the number of NFs bound to mobile nodes grows. Furthermore, our heuristic always
find solutions below 100ms for all tests, whilst FMC takes around 10s.

Second, the effect of the coverage probability threshold κq is studied. Figure 5.15(c) shows
how the cost varies by increasing the threshold, i.e. making the AP selection more strict. As the
coverage probability requirement increases, deployment costs become more expensive, because
the solutions impose the selection of the closer and more expensive NR antennae, rather than the
cheap LTE antennae. Figure 5.15(c) depicts as well the feasibility, and shows that for κq = 0.99
all scenarios are infeasible, because there exists at least one subinterval in which the cluster is not
covered by any antennae with such high probability. Regarding the impact of the improvement
score ϒ, Figure 5.15(c) and Figure 5.15(d) show that ϒ = 2 (impr-2 time series) finds cheaper
solutions faster. This is due to the heuristic design, which goes faster by shrinking the solution
space and considering only VNF relocations with higher improvement score. The heuristic finds
cheaper deployments faster, because they require less steps to make the rounded fractional solution
feasible. Additionally, Figure 5.15(c) shows that FMC cannot find feasible solutions with the
studied coverage thresholds κq ≥ 0.9, since one or more migrations failed during the experienced
handovers.

Next, the results of simulations varying the SFC delay are shown in Figure 5.15(e) and Fig-
ure 5.15(f). FMC cannot find feasible solutions for 3ms scenarios, as it is designed to try to map
one VNF per compute node, and therefore, its mappings have to traverse more network links. The
heuristic impr-1 struggles with finding feasible solutions in the allocated time for the 3ms scenarios,
while AMPL manages to prove the existence of valid solutions as shown by the feasibility percentages
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of Figure 5.15(e). This could be easily addressed by introducing a search space pruning step in
addition to the locality constraints. In the 3ms scenarios the usage of the cheap and high capacity
cloud nodes is not an option because their RTTs from all APs are above this value. Excluding
these compute nodes from the allocation options for the VNFs contained in the strict SFCs would
dramatically decrease the running time and thus increase the time-bound feasibility of the heuristic.
Although, additional pruning steps decrease solution quality in the cases of more permissive delay
requirements. On the other hand, the heuristic greatly outperforms the optimal solution search in
the 10-15ms scenarios, where the AMPL algorithm fails to find any feasible solution before the 30
minutes timeout. This is due to the growth of the search space as the delay restriction is relaxed.
Additionally, impr-1 finds cheaper deployments than FMC, since the latter tries to use one compute
node per VNF, and does not account for cloud nodes by design. Note that cloud nodes are cheap
and strong candidates used by impr-1 when the delay requirement relaxes (see the SFC delay
case of 1000ms). Another interesting aspect of the solutions is the number of required handovers
needed for the whole optimization time interval. A lower handover count requires less management
operations and results in a more stable service. Handover comparison between the cost-optimal
and the heuristic solutions are shown in Figure 5.15(f). The heuristic outperforms the optimal
solution, which is especially relevant when the scenario could be solved by a few handovers as
shown by the 10ms experiment scenarios with 100% heuristic feasibility. The AMPL algorithm could
be modified to minimize the number of handovers, but it would further worsen its scalability, while
the heuristic performs well by design. Furthermore, impr-1 required less handovers than FMC in
all the simulated scenarios.

Last, the results of the conducted experiments to examine the battery threshold parameter’s
effects are shown in Figure 5.16. The figure depicts cost values for both algorithms in cases of 72%
and 75% battery alive probability requirements, as the number of VNFs to be placed on the mobile
cluster increases. Note that FMC is agnostic of battery constraints and it reports the same solution,
no matter the imposed battery alive probability. However, the feasibility of the FMC solution is
depicted for battery alive cases. These scenarios challenge constraint (5.24), discovering the critical
battery threshold to be around 72%-75%. In the 72% case the scenarios are vastly feasible with a
slight decrease as the VNF bound to mobile nodes increase. The heuristic finds close to optimal
allocations in almost all scenarios, except in the extreme case of much freedom. In the more strict
case of 75%, besides the no location-bound VNF experiment which is essentially the same as the
72% case, the heuristic always finds all optimal solutions where it exists. Last of all, Figure 5.16
shows that FMC only finds solutions in the 7% of the simulations with more than 8 VNFs bound to
mobile nodes. Indeed, it reports same feasibility ratios for both 72%,75% battery thresholds, as it
could only find deployments with Pbat(Ni,CNi)≥ 0.75. As in previous results, FMC reports higher
deployment costs because it tries to map each VNF to a different compute node.

The implementation of the algorithms, the simulation framework and all presented scenarios
with raw data are available for further usage or result reproduction15.

5.3 Conclusions
This chapter proposes different NFV orchestration algorithms to solve the VNE problem in 5G net-
works. In particular, it covers (i) the VNE problem accounting for 5G network slices’ requirements;
and (ii) the VNE problem for fog-oriented use cases, in particular, on a warehousing use case.

All the analyzed scenarios have been formulated as optimization problems to compare the
optimality of the proposed embedding algorithms. The proposed solutions achieve near-optimal, if
not optimal solutions with polynomial time guarantees. Additionally, they (i) meet KPIs of network
slices; and (ii) deal with mobility-, coverage-, and volatility-related challenges of fog devices.
Additionally, OKpi, has been validated not only via simulation, but on a real cloud robotic testbed.

15 https://github.com/MartinPJorge/placement
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Overall, the chapter proposes embedding algorithms for sliced, and edge/fog networks. Re-
garding OKpi, it is still left to study how the resolution parameter γ impacts the run-time of the
algorithm. With that it would be possible to derive a run-time vs. optimality trade-off to reach
adequate solutions under time-constrained computational times. About the proposed heuristic for
the mobile robots warehousing solution, a first extension of the study would be to plug battery,
radio coverage, and mobility models into the system model constraints, and check the complexity
side-effects.

Additionally, both the two NFV orchestration algorithms presented in this chapter could be
extended to account for the Radio Access Network (RAN) resource allocation, and pools of
federated resources as discussed in the previous chapter 4.





6. Scaling of V2N services: a study case

The two previous chapters study and propose solutions to solve the Virtual Network Embedding
(VNE) problem in 5G networks. In particular both solve the problem statically, i.e., only take
once the decisions on which resources should be allocated to accommodate the traffic demand
and requirements. For example, upon the orchestration of a Vehicle-to-Network (V2N) Network
Service (NS), OKpi (see section 5.1) decides which network links are traversed by the V2N service
packets, and the server resources to be allocated to process the traffic. Such allocation is performed
throughout the whole NS lifetime, denoted with φ(ψ), but it assumes a static demand of traffic
l(ψ,v1,v2) that remains during the service lifetime. However, this is not usually the case, specially
in the V2N NSs that are matter of study in the present chapter. In particular, the traffic demand of
V2N services depend on the vehicles’ flow across the roads. That is, a hazard warning or collision
avoidance service will not only have to accommodate more link resources for the increase of cars’
packets, but as well more computational resources to, for example, compute the distances among
the increasing number of cars. Hence, it is necessary to scale the network resources assigned to
offer an adequate V2N service as the traffic flow increases along the roads.

This chapter studies the scaling of V2N by means of computational resources, so as to satisfy the
low latency requirements of these services. Section 6.1 provides some background and requirements
of V2N NSs, before section 6.2 introduces the vehicular dataset used in this chapter to propose a
tentative solution to scale V2N services. In particular, the solution is based on the forecasting of
traffic flow in a specific road using different time-series techniques that are presented in section 6.4,
and later used in section 6.5 to increase/decrease the number of CPUs accordingly.

6.1 V2N services’ requirements
Connected Automated Vehicles (CAV)s represent one of the most significant transformations
of the automobile industry, providing an opportunity to enhance monitoring of transportation
network conditions, in order to improve safety and reduce pollution, energy consumption, and
travel delays. 5G systems are gaining traction as a viable technological solution, due to the ubiquity
of the cellular infrastructure. Moreover, by ensuring ultra-low latency and ultra-high reliability
communications under high-density and high-mobility conditions, 5G systems will enable Cerllular
Vehicle-to-Everything (C-V2X) communications.

The C-V2X technology has been designed by the Third Generation Partnership Project
(3GPP) to allow vehicles to communicate with other vehicles (Vehicle-to-Vehicle (V2V)), road
users (Vehicle-to-Pedestrian (V2P)), roadside infrastructure (Vehicle-to-Infrastructure (V2I)), and
cloud/edge servers (V2N) [3GP19a]. The 3GPP specifies the Enhancement of 3GPP support for
Vehicle-to-Everything (V2X) services (eV2X) in the following four areas: (i) Vehicles Platooning;
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(ii) Advanced Driving; (iii) Extended Sensors; and (iv) Remote Driving [3GP19b]. The European
Telecommunication Standard Institute (ETSI) Multi-Access Edge Computing (MEC) group has
also collected the corresponding requirements for MEC, by analyzing the relevant V2X use cases
[ETS18d] pertaining to safety, convenience, advanced driving assistance and vulnerable road users.

All aforementioned cases require process-intensive and low-latency, reliable computing and
communication services. For example, remote driving applications require values of 99.999%
reliability and 5ms End-to-End (E2E) latency with a rate of 25Mbps and 1Mbps for the Uplink
(UL) and Downlink (DL) respectively.

Such characteristics prohibit cloud-based solutions, due to the long delays to reach the cloud.
An effective approach to address such requirements is to leverage the edge computing paradigm
[Shi+16]. Edge Computing provides a low-latency alternative to the cloud, moving computational
resources to the edge, closer to where the data is being generated, processed, and most likely
consumed. However, edge computing devices have limited processing resources. Therefore,
careful resource scaling or (re)allocation is needed to meet both the computational and the latency
requirements of vehicular applications. Indicatively, in [Pre+18], the efficient placement of edge
computing devices is addressed for vehicular applications in an urban scenario, by mapping the
average number of vehicles in each cell to Central Processing Unit (CPU) demand. However, to
tackle such resource allocation problem optimally over time or to scale resources cost-effectively,
the evolution of the network traffic demand is needed per cell.

This chapter compares different forecasting techniques to predict road traffic evolution over
time. The per-cell granularity is granted thanks to per-road forecasts that use a Torino road
traffic dataset (see section 6.2). Traffic forecasts are later used to dynamically scale-out the
network slice computational resources (at the edge), supporting the requirements for three different
Cerllular Vehicle-to-Network (C-V2N) use cases, drawn from the ETSI [ETS18d][ETS18c] and
3GPP[3GP19b] use case portfolio:

– Remote Driving to enable the remote operation of a vehicle by a remote driver or a cloud-
based application. Different use case scenarios can benefit of such approach, ranging from
the operation of vehicles that are located in dangerous environments, assistance of passengers
that cannot drive by themselves, or support of autonomous vehicles that are in unexpected
situations. Usually, the information exchanged between the V2X application in the vehicle
and the V2X application server includes live video streams of on-board cameras and driving
commands. These use cases can benefit from computational resources at the edge to locally
process vehicle’s information and compute the driving commands. Such applications require
E2E latency below 5ms [3GP19b].

– Cooperative awareness to improve traffic efficiency. This also encompasses multiple use
cases, with the goal of improving overall traffic efficiency by sharing specific pieces of
information and/or coordinating actions of several vehicles. Examples of these applications
are lane change assistance, co-operative glare reduction, co-operative merging assistance,
traffic light optimal speed advisory, etc. [ETS09]. These use cases benefit from computational
resources at the edge, to collect, process and decide what information/command to distribute
and to which vehicles. These applications typically require latency between 100ms and
500ms.

– Hazard warning to share and distribute pieces of information for avoiding a risk (e.g., danger
on a lane, intersection warning, collision avoidance) or minimizing the consequences of it
(e.g., pre-configuration of seat-belts in preparation of an imminent accident). Computing
resources at the edge can be used to extend the connected car cloud into the highly distributed
mobile network environment. As described in [ETS18c], applications can be deployed on
the edge to provide the roadside functionality: (i) receiving local messages directly from the
applications in the vehicles and the roadside sensors; (ii) analyzing them; and (iii) propagating
(with extremely low latency) hazard warnings and other latency-sensitive messages to other
cars in the area. If provided within very low and strict latency constraints, vehicles in the
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Figure 6.1: Impact of COVID-19 in Torino traffic flow. The figure plots the sum of all road probes’
traffic flows.

local vicinity of a dangerous situation receive data in a matter of milliseconds, allowing the
driver to immediately adopt preventive actions (e.g. switch lanes, slow down or change his
route). Depending on the type of event, the speed of the road and the traffic density, these
applications require latency between 10 and 50ms [ETS09].

6.2 Torino road traffic dataset
This section presents the real road traffic dataset used in this chapter. The dataset contains informa-
tion of Torino city traffic flows, with measurements from more than 100 road probes reporting their
location, traffic flow, and vehicles speed.

The data is gathered by using S.I.MO.NE protocol [CFA09], and exposed via an API1. Thus,
probes’ measurements are fetched every 5 minutes, and gathered in a common eXtensible Markup
Language (XML) file. Each entry in the XML file represents the measurements that a probe
aggregates every 5 minutes, containing fields [Arn+14, Table 8] such as: (i) probes’ latitude and
longitude; (ii) their identification codes, (iii) their offsets along the road; (iv) the road names; (v)
average speed of vehicles; (vi) vehicles flow, i.e., vehicles per hour; (vii) measurements accuracy;
and (viii) timestamp. In this work, all entries of the gathered XML files have been collapsed in a
Comma-Separated Values (CSV) dataset with samples from 28/01/2020 to 25/03/2020.

Not every road probe reports data with the same frequency. Indeed, some of them suddenly
stop reporting measurements during the night, or even worse, in the middle of rush hours. Such
behavior might be caused by errors in the probes’ hardware, or just by decisions of Torino city
Mobility Central. Thus, the collapsed CSV dataset required of some filtering to remove spurious
probes, i.e., probes reporting less than an 80% of the measurements they should have reported (one
every 5 minutes). Among the 116 road probes present in the dataset, 24 of them did not satisfied
such requirement and were removed from the CSV dataset.

Even after pruning spurious road probes, the dataset still had probes that spent up to a 20% of
the time without reporting data. Thus, the dataset was sanitized to fill those missing values with the
last reported probe measurement. However, this first sanitation sweep was not sufficient, because
there were still missing timestamps. The first sweep just considered as timestamps those reported
by any road probe of the dataset, hoping that every time instant would be present in the reported
information. But, it happened that for some instants of time (e.g., at 2020-02-15 at 04:25) no road
probe reported data (this might be because the company managing road probes might turn them off

1 http://opendata.5t.torino.it/get_fdt

http://opendata.5t.torino.it/get_fdt
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Table 6.1: Forecasting features
Feature Name Values Description
φ1 flow integer vehicles/hour
φ2 accuracy {0, . . . ,100} percentual accuracy of the re-

ported measurement
φ3 speed float average vehicles’ speed

(km/hour)
φ4 distance to orbassano [0,35] distance to Corso Orbassano

road probe (km)
φ5 day_of_week {1, . . . ,7} day of the week
φ6 month {1, . . . ,12} month of the measurement
φ7 day {1, . . . ,31} day of the measurement
φ8 year integer year of the measurement
φ9 hour_min [0,24) hour+minute/60

in the wee hours of the morning). Thus, the first sanitation sweep missed such values. To fix the
issue, a second sanitation sweep looked for those missing timestamps all over the dataset, which
are filled with the most recent information.

By the time the dataset was collected, the COVID-19 pandemic struck northern Italy, and,
consequently, there was a significant drop of the flow of vehicles in the city of Torino. More
precisely, on February 23rd the region of Piemonte (where Torino is) applied a Health Ministry
order [SC20b] that temporarily suspended teaching activities in the region. And under the pandemic
expansion, the 4th of March a new decree [Giu20b] extended the restrictions until the 15th of March.
But it is not until the 8th of March when the vehicles per day show a significant drop in Torino
city (see Figure 6.1). That day the government imposed a lockdown [Giu20c] in other northern
regions of Italy that did not affect Torino, which did not experienced lockdown until the 11th of
March [Giu20a]. But, even though Torino was not in lockdown by the 8th of March, the traffic
decrease after then was more significant than the decrease experienced after the 23rd of February.
Figure 6.1 shows a traffic decrease of a 9.82% from the 27th of February to the 8th of March, whilst
after the 8th of March the decrease dropped down to 57.53%.

COVID-19 impact on the traffic of Torino is a relevant factor to consider for the forecasting
techniques presented in section 6.3, as it allowed to assess how each technique is able to adapt
to changing patterns. Thus, and based in the average traffic decrease, the remaining of this paper
considers the 8th of March as the date splitting the dataset into non-COVID-19 (before), and
COVID-19 (after) periods.

6.3 Forecasting techniques
This section presents the features of section 6.2 dataset, and how they are arranged in a matrix
that is later fed as input to forecasting techniques. It describes the selected forecasting technique
analyzed in the remainder of this chapter. Sections 6.3.1-6.3.2 describe DES, and TES time-series
techniques; and section 6.3.3 explains the HTM solution. Finally, sections 6.3.4-6.3.7 detail the
analyzed NN forecasting techniques, namely, LSTM, GRU, TCN, and TCNLSTM.

Each forecasting technique is used to forecast the vehicles/hour traffic flow ft seen at Corso
Orbassano road probe2. The set of features φi at their disposal are those reported by all road
probes s j (s1, . . . ,s92) of the dataset. The numerical value of a feature reported by a probe at instant
t is denoted as xφi,s j

t . Table 6.1 enumerates the features φi, i = {1, . . . ,9} used by the selected
techniques. These consist in a subset of all the features inside the XML files used to build the CSV
dataset (see section 6.2). The dataset granularity is of 5 min., and throughout this section t + 1
represents the instant t +5 min.

2 This is the road probe with highest number of reported measurements in Torino city.
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Among all analyzed techniques, some of them can incorporate all features of past events to
forecast the future flow of Corso Orbassano road. Thus, they take as input a matrix containing
every feature reported by a road probe during the last h timestamps. The forecasting techniques
described in the following sub-sections use matrix Xt,h to denote the input.

Xt,h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xφ1,s1
t−1 . . . xφ9,s1

t−1
...

. . .
...

xφ1,s92
t−1 . . . xφ9,s92

t−1

...
...

...

xφ1,s1
t−h . . . xφ9,s1

t−h
...

. . .
...

xφ1,s92
t−h . . . xφ9,s92

t−h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.1)

The dataset has been split in two portions: the training dataset and the test dataset. Every
forecasting technique is trained with the training dataset. During the training, it calculates the
parameters used to perform the forecasting in the test dataset. In case the forecasting technique
updates its parameters as it performs forecasting, the technique uses an online training approach.
In case the forecasting technique does not update its parameters during the forecasting, they follow
an offline training approach. Each of the presented techniques explains how they implement both
the offline and online training.

Note that only techniques described in sections 6.3.4-6.3.6 use the feature matrix Xt,h. For the
techniques present in sections 6.3.1-6.3.3, only the traffic flow records ft are used as input for their
predictions.

6.3.1 Double Exponential Smoothing (DES)
3DES is a forecasting technique based on time series analysis. DES uses a smoothing St time
scale with a smoothing factor α ∈ [0,1], and trend Tt with a trend factor β ∈ [0,1] as described in
Eqs. (6.2) and (6.3). The smoothing time scale is obtained based on the previous experienced time
interval value of smoothing St−1 and trend Tt−1. Note that in Eq. (6.2), the current value of time
series (i.e., ft) is used to derive the smoothing value St :

St = α · ft +(1−α) · (St−1 +Tt−1) (6.2)

Tt = β · (St −St−1)+(1−β ) ·Tt−1. (6.3)

Eq. (6.4) is used to obtain k timestamps ahead (namely lead time) forecast ft+k in DES:

f̂t+k = St + k ·Tt . (6.4)

In DES, the offline training is determined by calculating the smooth (St) and the trend (Tt) as
in the Eq. (6.2) and Eq. (6.3) using the training set. Then, Eq. (6.4) is applied to forecast the
flow values based on the k timestamps ahead. Whereas in online training, the St and Tt values are
updated at each time t even during the testing phase.

3 The implementation of DES in the work presented in this chapter was done by Dr. Koteswararao Kondepu
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6.3.2 Triple Exponential Smoothing (TES)
4TES is another time series analysis technique. As shown in Eqs. (6.5)-(6.7), TES exploits three
different forecasting factors such as smooth, trend, and seasonality. Here, f̂t+k represents the
forecast at time t + k with k timestamps ahead, and the seasonality constant m (i.e., the number of
observations per season). TES can be performed in two ways, namely additive and multiplicative
techniques, depending on the seasonality effect. Note that the following equations are defined based
on the additive technique:

St = α · ( ft − It−m)+(1−α) · (St−1 +Tt−1) (6.5)

Tt = β · (St − It−1)+(1−β ) ·Tt−1 (6.6)

It = γ · ( ft −St)+(1− γ) · It−m (6.7)

f̂t+k = St + k ·Tt + It+k−m, (6.8)

where m is the length of the seasonal cycle, for α ∈ [0,1], β ∈ [0,1], and γ ∈ [0,1].
In TES, the offline training is performed by calculating St , Tt , and It with train set. After that,

the f̂t+k is used to forecast the k timestamps ahead forecasted values. Whereas in online training,
the St , Tt , and It are updated at each time t even during the testing phase.

6.3.3 Hierarchical Temporal Memory (HTM)
5 The core component of the HTM forecaster [Ahm+17] is a temporal memory mt consisting of a
two-dimensional array of cells that can either be switched on or off and that evolves as the timestamp
t increases (t = 0,1,2, . . .). Cells can influence each other via synapses ω and update rules H and
G. For a detailed description of the update rules H and G we refer to [Ahm+17], but in essence
they embody how neurons influence each other. At time t during the training the temporal memory
mt is presented with a sparse bit string st as input that has the same dimensions as the number of
columns in the temporal memory. For each sparse input bit string st in the sequence, the temporal
memory produces an output sparse bit string ŝt,1 = H(st ,mt ,ω) (of the same length), where the
second subscript denotes that the prediction pertains to one slot in the future and it updates the state
of its memory as mt+1 = G(st ,mt ,ω) . The output sparse bit string ŝt,1 serves as a forecast for the
next sparse bit string st+1. The temporal memory can forecast not only the next sparse bit string,
but also the following ones by building upon consecutive forecasts, e.g., the forecast k > 1 time
slots in future is obtained via ŝt,k = H(ŝt,k−1,mt+k−1,ω) and mt+k = G(ŝt,k−1,mt+k−1,ω). Learning
involves adjusting the synapses ω in such a way that the output bit strings ŝt,k (k ≤ 1) resemble the
actual input bit strings st+k (k ≤ 1) as much as possible. In that way the temporal memory learns to
forecast the next sparse bit strings based on the patterns in the sequence of input bit string it saw.

When being presented with a sequence of floating point values ft the HTM forecaster first
translates these floating point values in sparse bit strings via an encoder st = E( ft). Once the values
of the sequence are encoded in bit strings by this encoder, the temporal memory learns to forecast
the sparse bit strings as described before.

Finally, the predicted bit strings ŝt,k need to be translated to floating point variables again,
which is the job of a classifier (a process that also referred to as decoding). The classifier chooses
as forecast f̂t,k, k timestamps in future, a representative value of all values that encode into the
predicted bit string ŝt,k.

Untrained the HTM forecaster sets ŝt,k = st , which is equivalent to a sample-and-hold strategy
that we use as benchmark in Figure 6.3. After training, the forecasts are more accurate.

In HTM, we run through the training set once (and checked that running through it more did not
have a beneficial effect) and then either stop the learning process before running through the test
set (offline training), or continue training while running through the test set to obtain the (online
training) results.
4 The implementation of TES in the work presented in this chapter was done by Dr. Koteswararao Kondepu
5 The implementation of HTM in the work presented in this chapter was done by Dr. Danny de Vleeschauwer
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6.3.4 Long Short-Term Memory (LSTM)
LSTM is a special form of Recurrent Neural Network (RNN) that can learn long-term dependencies
based on the information remembered in previous steps of the learning process. It consists of a set
of recurrent blocks (i.e., memory blocks), each of the block contains one or more memory cells,
and multiplicative units such as input, output and forget gate.

LSTM is one of most successful models for forecasting long-term time series, which can be
characterized by different hyper-parameters, specifically the number of hidden layers, the number of
neurons, and the batch size. Details of LSTM parameters and their impact on forecasting accuracy
can be found in [HS97]. However, the process of finding optimal hyper-parameters which minimize
the forecasting error could be time and resource consuming.

In the approach considered in this chapter, the LSTM inputs corresponds to h previous times-
tamps with the features described in Table 6.1 (i.e., Xt,h) and the output vector corresponds to
k timestamps ahead. A stacked LSTM model is exploited with a single-step (i.e., k = 1) and a
multi-step (i.e., k > 1) forecasting.

In LSTM single-step forecasting, a single timestamp is forecasted based on the history, as
follows:

f̂t = LST M(Xt,h) (6.9)

where f̂t is the forecast of the single time-stamp at t, and Xt,h corresponds to the station features
during the last h timestamps.

In LSTM* multi-step forecasting, LSTM* forecasts k future timestamps by considering h
previous timestamps.

f̂t+k−1, f̂t+k−2, . . . , f̂t = LST M∗(Xt,h) (6.10)

where k > 1.
For the offline training approach, LSTM and LSTM* learn their neurons’ weights running

the back-propagation-through-time [CR13], over a training dataset T = {(Xt,h, ft)}N
t=0 Then, both

techniques use the learned weights to forecast f̂t>N . If LSTM and LSTM* use online training, the
weights are updated following procedure illustrated in Figure 6.2. That is, upon each traffic flow
forecast, LSTM and LSTM* update their parameters using an online training window, which is
nothing but a sliding window that incorporates the most recent road probes’ reports. Following the
notation, the online training window T O

t of size W is updated as follows:

T O
t+1 = {(Xt−i,h, ft−i) : ∀0≤ i <W −1} (6.11)

i.e., the online window incorporates the latest observed features-flow, and discards the oldest
features-flow pair.

6.3.5 Gated Recurrent Unit (GRU)
Gated Recurrent Units (GRUs) [Chu+14] are neurons used in RNNs, and as LSTMs cells, they
store a hidden state that is recurrently fed into the neuron upon each invocation. The neuron uses
two gates, namely, (i) the update gate, and (ii) the reset gate. The former gate is an interpolator
between the previous hidden state, and the candidate new hidden state; whilst the latter gate decides
what to forget for the new candidate hidden state.

GRUs were originally proposed at [Cho+14], and compared against the LSTMs. They intend
to avoid ignoring features in the past during the training stage (i.e., the vanishing gradient prob-
lem [BSF94]). In other words, they keep track of as much information as possible of past events.
Thus, their use in time-series forecasting is becoming popular in current state-of-the-art.

In a similar way to the LSTM approach, the implemented GRU solution uses the stations’
features over the last h timestamps (i.e. Xt,h) to forecast the traffic flow in the next k timestamps, or to
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Figure 6.2: Online training & forecasting for NN techniques.

just forecast the traffic flow for the next time-stamp. Thus, both multi-step forecasting GRU∗(Xt,h),
and single-step forecasting GRU(Xt,h) are implemented. But unlike the LSTM solution, the output
of a GRU layer is not fed into a consequent GRU layer, but directly into the output layer that is
densely connected with the neurons in the GRU layer. Regarding the offline and online training,
GRU and GRU* implement the same solution as the LSTM.

6.3.6 Temporal Convolutional Networks (TCNs)
The usage of TCNs in this work relates to the results reported in [Aqi+17], where authors claimed
that they implemented a traffic jam forecasting methodology using a deep learning infrastructure
with 2 hidden layers, and convolutional neural networks. For the sake of comparison, their approach
was included in our analysis.

The implemented version consists of a neural network with two hidden layers, namely, a TCNh
hidden layer, and another layer R to reduce TCNh output dimension down to a k-vector. Thus the
implemented single-step, and multi-step neural is written as

f̂t = TCN(Xt,h) = R◦TCNh(Xt,h)

f̂t+k−1, . . . , f̂t = TCN∗(Xt,h) = R∗ ◦TCNh(Xt,h)
(6.12)

Note that the second layer R∗ is the one responsible of expanding the output of the TCN to a
multi-step forecast. Moreover, the convolution operation [BKK18] performed by TCN1 uses a h/4
convolution window operating in the time-domain of the input matrix Xt,h.

For the online and offline training, TCN and TCN∗ follow the same approach as the described
for LST M and LST M∗ in section 6.3.4

6.3.7 Convolutional LSTM
In the convolutional LSTM, both TCN and LSTM models are combined into a single unified
framework and trained together as described in [Sai+15]. The input features are feed to TCN layers,
and the LSTM is taking as input the output of the TCN layers. Then, the output of the LSTM is fed
into a dense layer. This model is considered to observe the advantage for mapping input features
extraction with TCN and interpreting the features with LSTM model. In [Pas+14], it is shown
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that the LSTM performance can be improved by providing better features. Indeed, TCN helps by
reducing the frequency variations in the input features. Here, the convolutional 1D structure with
64 filters is considered, and all other parameters are summarized in Table 6.2. The convolutional
LSTM is referred to as TCNLSTM hereafter.

6.4 Road traffic flow forecasting
The techniques described in section 6.3 are applied to forecast the number of vehicles of Corso
Orbassano road in Torino. We use the Root Mean Square Error (RMSE) metric to measure the
accuracy of the forecasted road traffic flow, with respect to its real counterpart.

Table 6.2: Evaluation Parameters
Parameter Forecasting techniques Value
Level factor (α) DES, TES 0.5, 0.5
Trend factor (β ) DES, TES 0.001, 0.001
Seasonality factor (γ) TES 0.001 (3 days)
Hidden layers TCN, LSTM, GRU, TCNL-

STM
2,2, 1, 4

Neurons in hidden layer TCN, LSTM, GRU, TCNL-
STM

100

Epochs TCN, LSTM, GRU, TCNL-
STM

100

history Window size (h) TCN, LSTM, TCNLSTM 60 min.
GRU 120 min.

Batch size TCN, LSTM, GRU 5
Temporal memory HTM 32x2048
Encoder representation 1024 bit str

DES and TES were implemented in Python, HTM was tested using a proprietary solution, and
neural network techniques were implemented by using Google’s TensorFlow library, accessed
through the Keras high-level front-end. Table 6.2 reports the hyperparameters that allowed to get
the lowest RMSE for each forecasting technique. In HTM, we use a temporal memory of 2048
columns of 32 cells each and the encoder maps floating point values in bit strings of 1020 bits of
which only 21 where non-zero.

The forecasting techniques have been evaluated in two different scenarios with a 80% of training
data, and a 20% of testing data, namely

– non-COVID-19 scenario
– training: 28thJanuary - 28thFebruary
– testing: 29thFebruary - 07thMarch

– COVID-19 scenario
– training: 06thFebruary - 07thMarch
– testing: 8thMarch - 15thMarch

6.4.1 Look-ahead time impact
Throughout this section the k timestamps ahead parameter will be referred as the look-ahead time.
That is, the future time for which the data need to be forecasted. Since the forecasted traffic flow
will be later used to scale the different vehicular services, the look-ahead time will depend on
multiple factors such as the time required to (de)allocate the necessary resources, the type of service,
or the applied virtualization technology.

Results of Figure 6.3 illustrate how increasing the look-ahead time forecast leads to an increasing
RMSE in every possible training and dataset combinations (online/offline, COVID-19/non-COVID-
19), as it becomes more difficult to forecast the traffic further in the future.
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(b) Offline training and COVID-19 scenario
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(c) Online training and non-COVID-19 scenario
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Figure 6.3: Accuracy of section 6.3 look-ahead forecasts.

Figures 6.3(a) and 6.3(b) show that the HTM technique did not manage to beat the sample-and-
hold benchmark (i.e., f̂t+1 = ft). Moreover, in the online training scenarios, it yielded the worst
performance among all analyzed techniques. For the rest of the techniques, the neural networks
(NNs) solutions achieved the best performance for offline training. In the offline training, DES is
not capable of capturing the trend, and the TES pitfalls in the COVID-19 scenario. Unlike DES and
TES, the NN solutions can capture the evolving traffic trend thanks to the update of their hidden
states (except the TCN). This explains why the NNs achieve lower RMSE when using offline
forecasting (see Figure 6.3(a) and Figure 6.3(b)). Figure 6.3(a) and Figure 6.3(b) show the RMSE
values of offline training in non-COVID-19 and COVID-19 scenarios. The results presented in
Figure 6.3(a) show that DES technique has highest RMSE values, because the smooth (St) and
the trend (Tt) values initially calculated during the training, are not updated in the testing phase.
The other time-series technique (i.e., TES) mitigates such problem since its seasonality factor can
capture better the trend.

Figure 6.3(b) shows the RMSE values of the considered techniques in offline training with
COVID-19 traffic. The considered scenario does not show any seasonality during 8th Mar - 15th

Mar due to the COVID-19 lockdown mentioned in section 6.2. Thus, the obtained TES results
exhibit the highest RMSE value compared to all other techniques. The detailed description about
this behavior is discussed later in this section.

Figure 6.3(c) and Figure 6.3(d) show the RMSE values of online training in non-COVID-19 and
COVID-19 scenarios. The TES outperforms all considered NN solutions even when the look-ahead
time increases. In addition, the results show that TES does not increase the RMSE as much as the
NN techniques. This is due to the fact that it captures faster the new trends of traffic over the time.
Thus, the long look-ahead time forecasts are better as smoothing (St), trend (Tt), and seasonality (It)
are updated for every data point in the test set. Even though the traditional time series techniques
(DES/TES) are limited to uni-variate time series, the online update of their parameters achieve a
better performance than the NN solutions that account for all features reported in Table 6.1.

Finally, Figure 6.4 shows the real and the forecasted traffic flow as a function of time. Here,
the look-ahead time is set to 5 min., and offline training is used to forecast the traffic flow during
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Figure 6.4: TES, TCN forecasts vs. real flow values. 5 min. look-ahead in COVID-19 scenario
using offline training.

0 2 4 6 8 10 12
Distance to
Corso Orbassano
(km)

q1 = 3.01 km

q2 = 4.76 km

q3 = 6.70 km
W2 = 11.04 km

road probe
distance

Figure 6.5: Distances of dataset probes towards Corso Orbassano road probe. Boxplot above
illustrates the quantiles for the distances’ distribution, along with W2, i.e., the last road probe’s
distance that is below 1.5(q3−q1)+q3.

the COVID-19 scenario (i.e., same conditions as in Figure 6.3(b)). It is possible to observe that the
real traffic flow exhibits a seasonality pattern till 12thMar. However, later on traffic flow gradually
decreases due to COVID-19 lockdown. This explains why TES exhibits the highest RMSE values in
Figure 6.3(b). Both HTM and NN forecasts adapt to the traffic decrease, and among all them, TCN
was selected to show that it forecasts traffic flow better than TES. Because every technique uses
offline training, TES keeps using the seasonality learned during the training phase, and it forecasts
high traffic flows even after the decrease.

6.4.2 Using neighboring road probes
Results of Figure 6.6 show whether incorporating the information of neighboring road probes
benefits Corso Orbassano traffic flow forecast.

Figures 6.6(a) and Figure 6.6(b) show the impact of the neighborhood size to the RMSE using
online training in the non-COVID-19 scenario. The experiment considered 5 min. and 60 min.
look-ahead time values, and quantiles in Figure 6.5 as neighborhood distances.

The increase of the neighborhood leads to a growth of the training data, due to the additional
information of the neighboring road probes. As shown in Figures 6.6(a)-6.6(d), no technique
is capable of reducing the RMSE by having additional neighboring information. Among all of
them, DES, TES and GRU do not decrease significantly their performance. But TCN does, since
it convolves every feature present in the input matrix Xt,h, including also the distance to Corso
Orbassano feature. By convolving such feature over the time domain, the NN cannot distinguish
whether the input corresponds to a Corso Orbassano measurement or not. This phenomenon
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(b) 60 min. look-ahead & non-COVID-19
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(c) 5 min. look-ahead & COVID-19
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Figure 6.6: Accuracy of 5 min. and 60 min. look-ahead forecasting from section 6.3, using online
training and varying the neighboring stations.

prevents the TCN connections from giving less relevance to non-correlated measurements of
irrelevant neighboring road probes. Note that HTM and LSTM results are not included, as HTM
proprietary implementation could not receive multiple probes’ flows as input, and both LSTM
and GRU are achieving close performance results as shown in Figure 6.3. Most of the techniques
discussed in this chapter should be able to achieve the same RSME value when they take the values
of more stations into account than just the Orbassano station. Each technique can set the weights
associated to the stations other than Orbassano to 0, washing out the influence of those additional
stations completely. The fact that the training does not reach this situation (where all weights
associated to stations other than Orbassano are set to 0) means that the training algorithm converges
to local minimum rather than the global minimum, thus improvement of the training algorithm is
possible.

6.5 V2N scaling with forecasting
To relate number of required resources with the quality of service, a queuing model is utilized. The
cars represent the clients while the available automotive service instances represent the servers. A
similarity between the handover process and service request is considered. It is assumed that when
cars enter in the crossing area, they are requesting the service, as if mobile users handover into
another cell.

For modeling the arrival process, it is necessary to select the arrival process of the cars into
the service area. Previous studies have been conducted that provide careful models for automotive
traffic [GFC14]. Similarly, the service time can be modeled as the residence time in a cell of a
mobile user. Previous studies provided some models as reported, for example, in [KT02].

However, as this preliminary study focuses on assessing how forecasting can be beneficial for
resource scaling, a simplified model for the arrival process and the service time is considered. The
model is based on the M/M/c queue, that is at the basis of circuit switching in communications
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Algorithm 10: n-min. horizontal scaling
Data: n,µ,T0

1 for t ∈ {i ·n/5min. : i > 0} do
2 f̂t+n−1, . . . , f̂t+1 = forecast(Xt,h);

3 F̂ = max
{

f̂t+k

}n−1

k=1
;

4 c = 1;
5 ρ = F̂/cµ;
6 while 1

µ
+

PQ

cµ−F̂
> T0 do

7 c = c+1;
8 end
9 scale(c);

10 end

networks [BGH92].
Thus, cars are assumed to enter in the coverage area of the service with a Poisson process

with arrival rate λ and their residence time in the cell is exponentially distributed with average 1
µ

.
Consequently, the average time for which each vehicle spends in the system (i.e., waiting to receive
the service and in the service) can be written as:

T =
1
µ
+

PQ

cµ−λ
, (6.13)

where c is the number of available servers and PQ is the probability that an arrival finds all the
services busy. The expression of PQ is provided by the Erlang C formula:

PQ =
p0(cρ)c

c!(1−ρ)
, (6.14)

where ρ = λ

cµ
and the probability p0 of having zero clients in the system is:

p0 =

[
c−1

∑
n=0

(cρ)n

n!
+

(cρ)c

c!(1−ρ)

]−1

. (6.15)

Given the flow rate of vehicles λ = ft , and the latency specification T0 of the V2N services
explained in the beginning of this section (hazard warning, cooperative awareness, and remote
driving), it is possible to derive the required number of virtualized service instances c to satisfy
the average E2E latency (T0 = 5 ms in the case of remote driving). More specifically, given the
tuple (λ ,µ), c is increased until the average delay formula reports a value of T ≤ T0. This is the
approach used in Algorithm 10 to derive the required number of servers c in the horizontal scaling
strategy presented in the next section.

Given the queuing theory framework, in this section it is presented how horizontal scaling is
assessed for each of the three considered V2N services. The following paragraphs describe the
procedure that uses the traffic forecasting results of section 6.4, to increase/decrease the number
of servers c that will be needed to meet latency requirements. In particular, the proposed scaling
solution leverages in the best forecasting techniques for each time-ahead and scenario – see
Table 6.3.

5G-TRANSFORMER deliverable D5.4 [5GT19] reports the results of what is called an En-
hanced Vehicular Service (EVS), that is a service that deploys sensing and video streaming and
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Table 6.3: Best traffic flow forecasting solutions
Forecasting task Best solution

Step-ahead Scenario Technique Online

5 min non-COVID-19 LSTM ✓
COVID-19 TES ✓

15 min non-COVID-19 TES ✓
COVID-19 TES ✓

30 min non-COVID-19 TES ✓
COVID-19 TES ✓

45 min non-COVID-19 TES ✓
COVID-19 TES ✓

60 min non-COVID-19 TES ✓
COVID-19 TCNLSTM ✓

processing facilities in the edge. It reports not only the required physical resources to deploy an EVS
service, but as well the flow of cars used to perform their evaluations. The document details that an
EVS instance, i.e. c = 1 in our notation, offers a service rate of µEV S = 208.37 vehicles/second.
These values are taken as reference for the analysis of the three V2N services.

The whole purpose of the traffic flow forecasting of section 6.4 is to know whether a deployed
V2N has enough resources to meet the E2E delay in an interval of up to 1 hour in the future. Thus, a
V2N service can scale accordingly if the 5G network infrastructure receives as input the forecasting
information. Three different scaling strategies are considered:

– over-provisioning/max.scaling: this strategy assumes that the V2N service is deployed with c
instances capable of meeting the average E2E delay during peak hours of traffic;

– avg. scaling: the network dimensions the V2N service so that the c instances meet latency
restrictions considering an average flow of vehicles; and

– n-min. scaling: based on the n-minutes ahead forecasting of section 6.4 techniques, the
service is scaled to satisfy the peak of traffic forecasted for the next n minutes (see Algo-
rithm 10).
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(c) Hazard warning scaling savings
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Figure 6.7: Cost savings and delay violations due to scaling. TES with online training was used for
n-min. strategies (i.e., Algorithm 10).

Figure 6.7 compares the performance of over-provisioning-scaling, avg. scaling, and n-min scal-
ing in the remote driving (see Figures 6.7 (a) and (d)), cooperative awareness (see Figures 6.7 (b)
and (e)), and hazard warning (see Figures 6.7 (c) and (f)) V2N services. The three scaling strategies
were tested under simulation in the non-COVID-19 scenario, as the traffic flow was significantly
higher than in the COVID-19 scenario (see Figure 6.1). In every simulation n was set to 30, 45, and
60 minutes for the n-min scaling strategy, assuming scaling operations take less than 30 minutes.
Figures 6.7 (a)-(c) compare the cost of avg. scaling and n-min scaling against over-provisioning
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Figure 6.8: Impact of remote driving scaling on (a) delay violations, and (b) difference of fore-
casted cF̂ and required cF servers. TES with online training was used for 45-min. scaling (i.e.,
Algorithm 10).

scaling; and Figures 6.7 (d)-(f) report the ratio of E2E violations.
For the remote driving simulations in Figures 6.7(a) and (d), the service rate, and target latency

were set to (µ = µEV S,T0 = 5ms). Results show that n-min. reduces the costs with respect to both an
over-provisioning strategy, and the avg. scaling. These savings are attained during the night, when
the vehicular traffic on the streets drop and it is no longer necessary to have that many computing
servers c to process the traffic. Figure 6.8(a) and Figure 6.8(b) depict the service e2e delay a excess
of servers using the different scaling strategies. The night saving are appreciated in the wee hours
of the morning of March-03 (see Figure 6.8(b)), when the 45 min. scaling decreases by one the
number of servers given the drop of traffic, whilst the avg. scaling keeps the same number of
active servers, which results in a resource over provisioning leading to higher costs. Moreover,
even though the 45 min. scaling decreased the number of servers in the first hours of March-03,
Figure 6.8(a) shows that still the service e2e delay remained below the 5 ms latency constraint.
Although the reader might think that the n-min. scaling strategies might substantially increase the
percentage of e2e delay violations, Figure 6.7(d) shows that at most, there is only an increase of
≤ 0.4% of e2e delay violations over the simulated period. Additionally, such delay violations are
assumable noticing the scaling savings, which go up to a 5% according to Figure 6.7(a).
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In the cooperative awareness simulations’ of Figure 6.7(b) and (e), the service rate and target
latency were set to (µ = µEV S/20,T0 = 100ms). Given the target latency T0 = 100ms, throughout
the experiments it was enough to deploy only c = 1 instances of the service almost every time. Thus,
both the average scaling, and over-provisioning scaling strategies cost the same (ratio equal to 1 in
Figure 6.7(b)). In the case of the n-min. scaling strategy, setting up n to 30 and 45 minutes result
into higher costs than the over-provisioning scaling (ratio above 1 on the left axis in Figure 6.7(b)),
as both setups over-estimate the required resources. Consequently, n-min. scaling leads to less e2e
delay violations than avg. scaling (above 4 times less, 21.3108 %

4.9045 % = 4.34 to be specific).
For the last V2N service, the hazard warning, every simulation used a service rate and target

latency of (µ = µEV S/2,T0 = 10ms). Figure 6.7(f) show that n-min. scaling with n = 30 and
n = 45 achieve around 12 times ( 27.5608 %

2.2569 % = 12.21) less e2e delay violations than the avg. scaling
strategy. The reduction of violations only incur in, at maximum, less than a 15 % ( 0.77

0.67 = 14.92 %
of additional investment over the avg. scaling strategy. However, n-min. scaling underestimates the
required resources when n = 60, and it incurs into more e2e delay violations than avg. scaling.

6.6 Conclusions
This chapter provides an analysis of state-of-the-art solutions to forecast the road traffic of Torino
city, either leveraging on time-series analysis or neural networks. The performed analysis compares
each forecasting technique’s RMSE considering (i) forecasting intervals from 5 to 60 minutes, (ii)
offline/online training; (iii) COVID-19 lockdown; and (iv) neighboring road probes. Results show
that under offline training, neural network solutions outperform traditional time-series methods,
especially during the COVID-19 lockdown, as they adapted to the Torino traffic drop. Whilst with
online training, time-series techniques achieve results better or as good as the analyzed neural
networks. However, none of the analyzed methods could benefit from information of neighboring
stations. Experimental results confirm the benefits of using scaling based on traffic forecasting.
Savings of up to a 5% only incur in an increase of ≤ 0,4% of latency violations in the remote
driving use case. For the cooperative awareness an extra 31% of investment achieved a 4-fold
latency reduction, whilst for the hazard warning less than a 15% investment increase already
resulted in a 12-fold latency reduction.

A first direction to extend this work is to find techniques that can incorporate neighboring road
probes’ information, such as spatial analysis techniques. Furthermore, the applicability of the
presented techniques to different scenarios is also envisioned as a next step of this work. The use
of different datasets, including operator records with respect to the base stations used by mobile
phones to access the Internet, is going to be taken into consideration. In such scenario, forecasting
the user density distribution along time would enable better decisions regarding the edge server
placement and service migrations.

Similarly, to the adopted scaling strategy of this work, enhancing orchestration algorithms – see
chapter 4 and chapter 5 – with forecasting information would contribute to a smarter orchestration
and resource control. Resulting decisions would be impacted in terms of improved quality, accuracy,
and optimality. Optimized deployment, enhanced management and control of elastic network slices
that support dynamic demands and their respective Service Level Agreement (SLA)s, improved
resource arbitration and allocation and maximized service request admission are some examples
where forecasting information can impact the decisions.

The aforementioned mechanisms are going to be developed and leveraged in selected use cases
in the scope of the 5Growth project, which comprises Industry 4.0, transportation and energy
scenarios, targeting full support of automation and SLA control for vertical services life-cycle
management. Hence, it would be worth-studying the probability of forecasting less demand than
what is required by each use case, i.e., P(F̂ < F); so as to perform preemptive actions under high
probabilities of forecasting error. Such a calculus deserves a detailed analysis on how to compute
max-statistics for correlated random variables (e.g. speed and traffic flow) [MP14].
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This thesis aims to contribute to the state of the art of Network Function Virtualization (NFV)
orchestration algorithms proposing candidate solutions to assess the resource allocation for 5G Net-
work Service (NS)s. In particular, it describes methods to generate 5G infrastructure graphs that
are useful to evaluate the theoretical performance of NFV orchestration algorithms. The proposed
graphs model 5G networks, and range from the generation of Base Station (BS)s, up to the ag-
gregation and core rings of network operators. Additionally, this thesis also considers graphs of
federated networks where each administrative domain has a partial view of the whole infrastructure,
depending on the resources that peering domains’ share in the pool of federated resources.

Leveraging on the proposed network graphs, this thesis proposes an enhanced version of Depth-
First Search (DFS) and Breadth-First Search (BFS) NFV orchestration algorithms to solve the
Virtual Network Embedding (VNE) problem in federated networks with multiple peering domains
sharing resources. The polynomial run-time complexity of these algorithms meet high acceptance
ratios, and are tested in stress situations with scarce of resources. Motivated by the federation
problem, this thesis also studies the problem of delegating NSs to federated domains upon price
changes of the peering domains, and presents a Deep Q-Network (DQN) agent that achieves near
optimal decisions to decide whether to federate or locally deploy the NSs. Experiments show that
the agent learned how to prevent the local domain from loses upon price peaks, thus, maximizing
the local domain revenue.

Later, the thesis presents OKpi, a NFV orchestration algorithm with polynomial run-time
complexity that achieves near optimal solutions for the VNE problem. OKpi does the allocation of
both network, and computational resources to meet the service latency, and reliability requirements
of 5G NSs belonging to different network slices. To do so, it accounts for edge and fog resources,
and leverages on a expanded graph construction that seeks a path to steer traffic, and allocate
computing resources. The accuracy of the solution search is tuned by a granularity parameter γ

that allows to approximate to the optimal solution. OKpi was tested in both smart-factory robotic,
and automotive scenarios; on small and large scale settings. Additionally, it was validated and
integrated in a real testbed of a cloud-robotic NS. Following the VNE problem study, this thesis
also studies more fog-oriented use cases in which the volatility and mobility of fog nodes is
considered. In particular it proposes an optimization model that accounts for battery consumption
of fog devices as robots, so as their mobility and radio coverage requirements. The thesis presents a
heuristic algorithm based on a randomized-rounding solution of a variable-size variation of the bin
packing problem, and compares its performance against optimal solutions, and a state of the art
NFV orchestration algorithm designed for fog scenarios. Experiments show that with the proposed
system model, the proposed heuristic achieves near optimal solutions that satisfy volatility, mobility,
and radio coverage constrains in a simulated warehousing use case with cloud-robotics.
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Finally, the thesis shifts its focus to the study of how to scale Vehicle-to-Network (V2N) services,
so the allocated network resources meet the strict End-to-End (E2E) latency constraints upon peaks
of traffic. To do so, this thesis studies and compare the accuracy of time-series techniques to
forecast the vehicular traffic using a real dataset of Torino city, which includes data of the COVID-
19 pandemic. The best traffic forecasting technique is later used to feed a M/M/c-based queuing
model to assess the scaling of computing resources, and anticipate to increases/decreases of traffic
flows. Results show that the proposed solution achieves either monetary savings or reduce the E2E
latency violations in the analyzed V2N network services, with their respective latency requirements,
namely, in the hazard warning, remote driving, and cooperative awareness V2N services.



8. Future work

The following paragraphs point out future research directions for the solutions proposed in this
thesis.

Chapter 3 proposes a methodology to generate graphs that represent 5G reference infrastructures,
and multi-domain networks. However, it misses creating graphs conveying both. That is, it is
still left to generate 5G infrastructure graphs in which the data centers of various domains are
considered. Such graphs would be beneficial for the evaluation of Network Function Virtualization
(NFV) orchestration algorithms in federated 5G networks, as they could be tested on more realistic
scenarios not only accounting for data centers, but also the network infrastructure that interconnects
them with the users.

Regarding the multi-domain NFV orchestration algorithms presented in section 4.2.1, a future
research work would be the analysis of their optimality gap, so as their evaluation in graphs
accounting for the end to end 5G network infrastructure (as stated in the previous paragraph).

On the Network Service (NS) deployment delegation algorithms proposed in 4.3, the problem
statement has to be modified to account for more than only an additional federated domain, so
the federation agent (e.g., the Deep Q-Network (DQN) agent) faces a more realistic scenario.
Additionally, the Q-table and DQN agents could be enhanced with time-series techniques to
anticipate to pricing fluctuations. For example, the DQN agent could have an LSTM layer to
record in memory cells temporal characteristics of the prices time-series. In such a way, the Neural
Network (NN) will benefit to take more optimal decisions on whether to delegate or locally deploy
the NSs.

About the OKpi heuristic proposed in section 5.1, future work can study the impact of the
resolution parameter γ in the algorithm run-time. The optimality analysis showed that a higher
value of γ led to solutions closer to optimality. However, OKpi run-time increases with γ , and large
running times are unfeasible if the NS deployment decision must be taken in a short time-span.
Thus, future work on OKpi should focus on studying the γ and run-time trade-off.

The NFV orchestration algorithm presented in section 5.2 was successfully evaluated using
reference infrastructure graphs. But the coverage, and battery consumption functions were simpli-
fied. In particular, to determine whether the robot had coverage, the formulation only checked if
the distance of the robot towards an antenna was lower than a threshold. But in a real scenario the
coverage is impacted by interference, signal strength, and path loss. Therefore, a future direction
would be to improve the coverage constraint considering analytical coverage models. Similarly, the
battery consumption of a robot was simplified using a linear function decreasing with the number of
hosted Virtual Network Function (VNF)s. Future versions of section 5.2 should consider analytical
models on battery consumption on the battery level constraints.

Also, the two NFV orchestration algorithms of chapter 5 may be extended to account the
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allocation of Radio Access Network (RAN) resources. That way, the NSs embedding solutions
will be more reliable, as they will also consider the impact of latency and reliability in the user
to RAN communication, something both solutions miss in their analysis (or simplify by having a
fixed parameter of latency and reliability in the user to RAN communication).

Last of all, the Vehicle-to-Network (V2N) forecasting and scaling procedure of chapter 6 can
be extended by checking other prediction algorithms as Spatio-Temporal Graph Convolutional
Networks (STGCN)s [YYZ18], or Facebook prophet [TL18]. Moreover, the M/M/c-based scaling
mechanism may be further improved, as it is designed to meet on average the latency constraints.
But this may not be enough to meet 99.9999% reliability imposed by some V2N services. Thus,
future work should base the scaling decision using the probability distribution function of the
service time in M/M/c systems, so the 99.9999% of V2N users experience the required latency.
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