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Improving deep learning performance with missing values via deletion
and compensation

Adrián Sánchez-Morales1 • José-Luis Sancho-Gómez1 • Juan-Antonio Martı́nez-Garcı́a1 •

Anı́bal R. Figueiras-Vidal2

Abstract
Missing values in a dataset is one of the most common difficulties in real applications. Many different techniques based on

machine learning have been proposed in the literature to face this problem. In this work, the great representation capability

of the stacked denoising auto-encoders is used to obtain a new method of imputating missing values based on two ideas:

deletion and compensation. This method improves imputation performance by artificially deleting values in the input

features and using them as targets in the training process. Nevertheless, although the deletion of samples is demonstrated to

be really efficient, it may cause an imbalance between the distributions of the training and the test sets. In order to solve this

issue, a compensation mechanism is proposed based on a slight modification of the error function to be optimized.

Experiments over several datasets show that the deletion and compensation not only involve improvements in imputation

but also in classification in comparison with other classical techniques.

Keywords Missing values � Imputation � Classification � Deep learning

1 Introduction

In recent years, data processing is being an extensively

exploited field. Great efforts are being carried out in order

to develop mechanisms to obtain useful information from

data, a task which is getting harder due to the amount of

information which is daily produced. Through literature,

researchers have shown the wide range of drawbacks which

can appear when handling real datasets. One of the most

studied is the presence of missing values that arise in

almost every real-world application [1–3].

Different effects of incomplete datasets in classification

performance appear in accordance with the way of dealing

with missing values. A first approach is to train classifiers

only with complete samples. In this case, useful informa-

tion is discarded and the classification of new incomplete

instances is not possible. There are also embedded proce-

dures which can directly deal with unknown input values

without imputation, such as decision trees [4] and fuzzy

neural networks [5, 6]. However, the more extended pro-

cedures are those that impute the missing values. This is

because most decision-making tools cannot be directly

used for incomplete data classification. Besides, imputation

also extracts additional information (imputed values)

which can be used to enhance the classification

performance.

The most popular imputation procedures are based on

statistical models for the class distributions, such as the

well-known Gaussian mixture model (GMM) with an

expectation–maximization (EM) formulation for
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Furthermore, the advantages obtained through these pro-

cedures in the imputation technique are used to introduce a

new method of improving classification with a deep

network.

This paper is organized as follows. The next section

presents the proposed method, making a distinction

between the use of deep networks to impute and to classify

inputs with missing values. Deletion and compensation

concepts are presented and applied in both cases. In the

Experiments section, these techniques are used to solve

several problems, reviewing the pre-imputation techniques

that are used in this work. Finally, the paper is closed with

the conclusions and possible future research directions.

2 Proposed method

According to previous studies in imputation techniques,

most of them are based on the use of complete patterns

from the input dataset to obtain missing values of incom-

plete samples. However, these techniques do not take into

account any known values from incomplete samples, a fact

that can be relevant in the learning process in order to

impute more accurately.

In this section, a procedure which exploits all available

information from the input data will be presented and its

great capacity for classifying incomplete samples will be

discussed. The method exploits the high representation

capabilities of deep learning machines, and it is based on

three concepts: pre-imputation, deletion and compensation.

More specifically, stacked denoising auto-encoders

(SDAEs) are used in this paper for the following reason.

When a neural network is trained with an input dataset

which presents unknown values in some samples, it is very

common to impute with numeric values. In fact, this is

usually an attempt to get values as similar to the real ones

as possible in order to avoid somehow the distortion of the

input distribution. In this work, the initial imputation will

be considered as a pre-imputation phase, and the values

obtained will be treated as a noisy version of the real ones.

This idea leads us to think about SDAEs as an appropriate

option to construct an efficient imputation method.

2.1 SDAE in imputation

An auto-encoder (AE) is a neural network whose archi-

tecture is similar to that of an MLP with one hidden layer.

It is trained to replicate at its output the same pattern

presented to its input. In this way, hidden weights act as

encoders of the input patterns, whereas output weights

serve as decoders between the hidden and the output layers.

Thus, an alternative representation of the input set is

achieved by the hidden layer. This representation may be

maximum-likelihood (ML) estimation of both the mixture

parameters and the missing values [7–9]. Other reasonable
imputation schemes take into account the proximity or
similarity of the incomplete instances to other complete

examples, such as the K-nearest neighbors (KNN) [10–12]
and the self-organizing maps (SOMs) [13–15] imputation

methods. Auxiliary learning machines, such as multilayer

perceptrons (MLPs) [16, 17] or support vector machines

(SVMs) [18], can also be used to estimate missing values.
Nevertheless, although all these approaches effectively use
the available information, they do not directly consider
that, in many cases, the final objective is just to obtain a
good classification performance. In this context, some

works like [10, 19] propose methods for imputation

focused on the improvement of the classification.
In 2006, deep neural networks (DNN) gained popularity

due to works like [20, 21]. They show that the difficulty of
training a simple DNN (for example, an MLP with several
hidden layers) could be overcome by training these net-
works layer by layer in an unsupervised manner, followed
by a supervised learning and possibly a final tuning of the
stacked network. By learning multiple levels of represen-
tations that depict different levels of abstraction of the data,
deep learning algorithms learn a hierarchy of concepts
[22, 23]. There are different types of deep learning archi-
tectures such as convolutional neural networks (CNN),
convolutional deep belief networks (CDBN), deep neural
networks (DNN), deep belief networks (DBN), stacked
(denoising) auto-encoders (SAE/SDAE) and deep/stacked
restricted Boltzmann machines (DBM).

There is not in the literature a large variety of imputation

techniques based on deep learning. In [24], an imputation

method based on AEs is presented. There, the missing and
observed values are leveraged by optimizing a modified

version of cross-entropy. Moreover, [25] presents a mul-

tiple imputation technique based on sparse SDAEs which is
able to exploit data with different distributions and missing

rates. Simultaneously, in [26] an imputation method with
artificial values deletion is presented.

In this work, two new procedures are introduced during
the training phase of an imputation technique which is
based on SDAE. These are called deletion and compen-

sation, and we will demonstrate how they improve the final
performance. This paper is an extension of work [26]
where the concept of deletion was introduced. Here, this
concept is further developed and the efficiency of the
compensation between the imbalanced training and test
sets is studied. Although it is possible to use deletion
without compensation [26], compensation supposes a clear
improvement element as we prove now for the very first
time. Therefore, the pair ‘‘deletion–compensation’’ is the
novelty and the compensation has proven to be a key to
improve the final performance of the imputation results.



compressive—if the hidden dimension is lower than

input—or sparse—otherwise.

On the other hand, a denoising auto-encoder (DAE) is a

variation in which the input is corrupted by artificially

inserting some noise [27]. The concept of denoising con-

sists in cleaning partially corrupted (or in short noisy)

inputs, i.e., teaching the network to clean a noisy version ~x

of the input x. The main goal is to increase the robustness

of the AE to face noisy inputs as well as to permit

expensive hidden layers without leading to identity trans-

formation. The type of noise used for training the network

depends on the application.

A deep extension of the above mentioned DAE is the

Stacked DAE (SDAE) [28]. Together with DBN [21],

SDAEs are part of the widely known representation

learning, a set of techniques characterized by the ability to

automatically discover hierarchical representations of the

input features. Basically, an SDAE is a deep network

sequentially constructed by training and stacking several

DAEs. It has been widely used due to its high representa-

tion capability as well as its robustness when noisy input

datasets are dealt with.

In this work, the design and training of deep networks

have been carried out according to [29]. In order to build

each hidden layer of the deep architecture, every DAE will

be trained as an expansive network. After being verified the

performance over several datasets, an increment of 75% of

the size of the previous layer has been established.

Therefore, a DAE is firstly trained by using stochastic

gradient and its hidden weights (with size h1 ¼ 1:75� D,

where D is the dimension of input data) are used to set the

first layer of the deep network. Then, this process is

repeated twice obtaining hidden coders with sizes h2 ¼
1:75� h1 and h3 ¼ 1:75� h2. For every individual train-

ing of each DAE, input data are corrupted with noise to

increase the deep network robustness (Fig. 1).

In practice, one of the most commonly used techniques

to train DAEs is stochastic gradient descent (SGD), where

the optimal solution of the error function is reached

through a stochastic approach. In order to exploit all

available information from data during the training stage, a

modified version of SGD has recently been proposed [26].

Thus, if we consider a set of data fxngNn¼1 with xn as the

nth-sample, another set of vectors with the same dimension

is defined as fmngNn¼1 in order to determine the presence or

absence of missing values. Thus

mnd ¼
1; if xnd is a known value
0; if xnd ismissing

�
ð1Þ

where d, 1� d�D, denotes components. Furthermore,

each stacked DAE in the final deep network is trained to

minimize the sum squared error (SSE) function with the

form:

E ¼
XN
n¼1

k ðzn � xnÞ �mn k2 ð2Þ

where zn is the output of the SDAE and � represents the

Hadamard product. Thanks to this formulation, all avail-

able data are used to train the network. These are all the

values from complete samples and all the observed values

from incomplete samples (samples with missing values).

During the training of a DAE, for each input sample xn,

all hidden weights are updated. However, to train the

output weights, the values of mn must be taken into

account, updating the weights corresponding to the values

of mn equal to 1.

As it has been mentioned above, the proposed imputa-

tion method with SDAEs is based upon three concepts we

will explain in next sections: pre-imputation, deletion and

compensation.

Fig. 1 SDAE for imputation. The process of how a SDAE imputes

missing values from a pre-imputed version of the incomplete input

dataset is shown. Black represents missing values in the original

dataset. Without loss of generality and for the sake of clarity, missing

is considered only in feature d. In the pre-imputation stage, it is

included the pre-imputation values provided by the pre-imputation

method (dark gray color); note that the partially corrupted (noisy)

samples required by the SDAE are also included in this phase

(dotted). Finally, samples are reconstructed, including original

missing which is represented by light gray color



samples are crossed out. After pre-imputation and before

the deep learning process, the darker gray samples mean

that their real values are actually known and, hence, they

can be used as targets during training. All these values are

reconstructed at the output, that is, not only missing but

also deleted values.

Although this idea of deleting values to improve the

imputation performance was previously presented in [26],

the goal of this work is to go deeper into this concept,

completing and improving the method with the compen-

sation procedure which is introduced below.

2.1.3 Compensation

Despite the advantages that deletion can involve for

imputation, there exists a main drawback due to the fact

that both training and test sets get imbalanced during the

process, because the rate of unavailable values is different.

Fig. 2 Deletion process. Missing values in feature d are shown in

black, and deletion is represented with a cross. Light and dark gray

colors in the pre-imputation stage are used to show pre-imputed

values for missing and deleted samples, respectively. The known

values of deleted samples will be used as targets during training.

Finally, the lightest gray samples represent reconstructed values by

the deep network

2.1.1 Pre-imputation

Replacing missing values by numeric values using a
specific procedure will be called pre-imputation in this
work. Samples with pre-imputed values can be considered
as noisy samples. Under this idea, the use of an SDAE is
justified to obtain an efficient imputation procedure.

Therefore, the first step of the method will be the pre-
imputation, where unknown values are filled in. Then, the
pre-imputed set will be used as training data for an impu-

tation SDAE, with the objective of getting imputed values
obtained by the deep network closer to the real data than
the pre-imputed ones.

There are a lot of techniques in the literature that can be
applied in the pre-imputation phase [30, 31]. One of the
most simple methods consists in filling in missing values
with zeros. However, if the pre-imputation method is able
to achieve better results in the first step, it seems reasonable
to expect better results with the whole process. In this
work, in order to evaluate the performance of the proposed
technique, several pre-imputation techniques will be

applied with different levels of complexity. More specifi-
cally, three methods will be used: auxiliary MLPs, singular
value decomposition and MICE.

2.1.2 Deletion

Once the pre-imputation phase has been carried out, the
pre-imputed and the observed values are used during the
training of the first DAE as inputs. Nevertheless, only the
known values are used as targets, according to (2). Obvi-
ously, if we used pre-imputed values to train the network,
this would reach sub-optimal solutions due to the fact that
the training would try to reproduce them.

Deletion is connected with the possibility of explicitly
helping the network to learn the reconstruction of missing

values. This is possible by artificially forcing some other
missing values. Let us assume that a dataset has missing

values in the feature d with a percentage expressed as a
decimal l (0 � l � 1). This missing percentage can be 
artificially increased in a value e with 0 � e � 1 � l, in such 
a way that ðl þ eÞN will be the effective missing rate over 
the total number of samples N. The network is hence
trained with N input samples with ðl þ eÞN incomplete 
samples in feature d, and N target samples with lN 
unknown values in the same feature. While l is a constraint 
of the problem to solve, e will be a design parameter which 
can be set by cross-validation. In this way, it is hoped this
inserted missing values, whose real values are used as
targets, help the neural network to learn how to reconstruct
feature d more accurately.

The deletion process is shown in Fig. 2. Here, the lN 
missing values are represented in black and eN deleted



Thus, by means of deletion, initial missing rate l and

complete rate 1� l are turned into lþ e missing and 1�
ðlþ eÞ complete rates. However, the test set remains with

the same missing rate l and the complete rate 1� l. In this
scenario, if the value of e is small, the imbalancing between

sets is usually of little significance, but otherwise, it may

appear a performance degradation that can be handled with

a suitable compensation.

Next, the exact compensation is analyzed and an

effective and practical compensation procedure is

proposed.

Before introducing the deletion process, the error func-

tion SSE can be expressed as

E1 ¼ EC þ EI ð3Þ

where EC and EI are the SSE of complete and incomplete

samples, respectively. This expression can be written in

terms of the missing rates as

E1 ¼ ð1� lÞNEC þ lNEI ð4Þ

where EC and EI are the mean squared error (MSE) of the

complete and incomplete samples, respectively. The first

term represents the squared error contribution of the ð1�
lÞN complete samples, and the second term represents the

corresponding contribution of the lN samples with missing

values.

After the deletion process, the distribution of training

data changes, while that of the test data does not. At the

same time, the terms of the SSE will change because the

missing rate has been modified. Therefore,

E2 ¼ E0
C þ E0

I ð5Þ

where the two terms of E incorporate the additional eN
missing values according to the following expression

E2 ¼ ð1� ðlþ eÞÞNE0
C þ ðlþ eÞNE0

I ð6Þ

where E0
C and E0

I are MSE of the complete and incomplete

samples after deletion, respectively.

With the aim of treating both training and test sets

equally, compensating the difference introduced in theirs

distributions, a mechanism to balance them is proposed. In

order to obtain an exact balance after deletion, training

should be performed with an effective rate of 1� l com-

plete samples and l incomplete samples, i.e., as in (4).

According to our experiments, the exact re-balance of

datasets is not always the best option, so a range of values

for the weighting process must be explored. Thus, given l
and e, the next convex function is proposed to be optimized

E ¼ aE0
C þ ð1� aÞE0

I ð7Þ

where a is the balancing parameter between a ¼ 0 (only

errors of complete samples are optimized) and a ¼ 1 (only

errors of incomplete samples). Note that for a ¼ 0:5 both

errors are equally balanced, that is, (7) is equivalent to (5).

The optimal value for a is obtained via cross-validation

according to the accuracy of the network on a validation set

without deletion. The objective is to find the optimal

weighting that produces the best performance on a vali-

dation set similar to the test set (with the missing rate of the

original problem).

After the deletion process, the number of samples with

missing values increases and the number of complete

samples decreases. To compensate this change, it is

expected to obtain optimal values of a greater than 0.5 to

pay more attention to errors of complete samples (which

have decreased) than to those of the incomplete samples

(which have increased). As it will be seen, the experimental

results in Sect. 3 support this assumption.

2.2 Classification of incomplete patterns

The method presented so far has been focused on impu-

tation. However, the SDAEs are frequently used to solve

classification and regression problems. It has been

demonstrated in the literature that the potential of an SDAE

relies on the unsupervised pre-training of individual

stacked DAEs used to create the deep network. This pre-

training is used to initialize the hidden weights, helping to

solve the optimization problem. Moreover, making noisy

inputs helps the model to avoid the identity solution and,

thus, to be more robust to distortions.

Training an SDAE consists of two main phases. First,

several DAEs are designed and trained in an unsupervised

way as it has been shown in Sect. 2.1. Secondly, a classifier

above the output of the stacked network (output hidden

layer of the last AE) is trained to solve the problem. This

training can be carried out in two different ways: on the one

hand, the hidden weights obtained in the first step are fixed

and those related to the classifier are updated. In this case, a

global fine tuning is necessary. On the other hand, after the

unsupervised pre-training, both the classifier and the hid-

den weights can be trained together.

In this paper, the performance of SDAEs that are used

for imputation is analyzed when they face classification

problems with missing values in some features, in order to

show how the classification performance is improved when

SDAEs are trained using deletion and compensation.

3 Experiments

In this section, the impact of deletion and compensation

will be analyzed when SDAEs face imputation and clas-

sification tasks. Firstly, the effects of these two techniques

on the imputation will be analyzed. To do this, several



classical imputations techniques are compared to the

SDAE with deletion and compensation. Thus, missing

values are pre-imputed through one of the classical impu-

tation methods already mentioned. This allows us to verify

the improvement achieved by the technique proposed here.

Secondly, the performance of this kind of SDAE is ana-

lyzed when it classifies unseen incomplete patterns.

Six datasets have been selected in this study: Magic

Gamma Telescope, Pima Indians Diabetes, Sensorless

Drive Diagnosis, Gas Sensor Array Drift, Activity Recog-

nition system based on Multisensor data fusion (AReM) and

Twonorm. The first five datasets can be found in the UCI

repository [32], whereas Twonorm is available in [33]. The

specific details of each set are shown in Table 1. Only

complete datasets have been selected in order to artificially

insert missing values and thus verify the correct behavior

of the proposed algorithms. Incomplete values will be

inserted in a randomly selected feature for every dataset

except for AReM. To expand the scope of the study, four

features have been randomly selected in that case. As it has

been mentioned in the previous sections, there are several

missing categories that can affect the efficiency of the

selected imputation technique. In this work, the strictest

missing type will be taken into account, that is, missing

completely at random (MCAR), where missing values are

produced completely at random and they have no rela-

tionship with observed values.

During training, each dataset is split into training (80%)

and test (20%) sets. As it has been mentioned in Sect. 2.1,

all deep networks are designed to have 3 hidden expansive

layers with an incremental expansion of 75% of the size of

the previous layer. Both to find the optimum value of the

weights and the hyper-parameters in a particular range of

possible values, a fivefold CV is performed for each value.

It consists of dividing the training set into 5 subsets of the

same size, using 4 of them for training and one for vali-

dation. For each one of the 5 possible scenarios (different

validation datasets), the network is trained 50 times aver-

aging the 50 validation errors. After completing the pro-

cess, a global average error of validation is obtained, which

is used to select the optimum value of the hyper-parameter.

Then, using this value, the network is trained using the

whole training set and, finally, its performance is evaluated

with the test set.

In addition, different scenarios have been simulated to

test the performance of each technique, dealing with sev-

eral missing l and deleted samples e percentages. In par-

ticular, all possible combinations have been tested with

l ¼ f0:1; 0:2; 0:3g and e ¼ f0:25; 0:5; 0:75g.

3.1 Imputation results

There exist a lot of imputation techniques that have been

studied in the literature. Among them, three representative

methods with different complexity and capabilities have

been selected. These procedures are implemented to pre-

impute missing values of the data which will be used to

train the SDAE. We will refer to them from now on as pre-

imputation methods. These methods are:

• Multilayer Perceptron imputation (MLP) The MLP

imputation mechanism is a prediction model, that is, a

predictive model which estimates values that will

replace the missing data. It is considered as a regression

imputation since the missing components are filled in

by the predicted values from a regression analysis. As it

is shown in [16], an MLP is trained only using the

complete cases and considering the characteristics with

missing values as targets. Once trained, incomplete

patterns are processed and MLP outputs are used to

impute unknown values. When several attributes are

missing, some MLP schemes have to be designed. In

this work, a fivefold CV process has been used to set the

number of hidden nodes in these MLP architectures.

• Singular value decomposition (SVD) This method,

based on the work [12], approximates missing data

through patterns obtained by a set of linearly combined

expressions. These patterns, identical to the principal

components, can be cleverly selected so that most of the

variance data is preserved. It is demonstrated that only

several significant patterns are sufficient to do it. It is

important to note that SVD is only for complete arrays,

that is, first missing values have to be substituted by the

mean of the feature.

• Multiple imputation by chained equations (MICE)

MICE imputation has emerged in the last years as one

of the most effective methods in imputation. In general,

multiple imputation techniques have a number of

advantages over single imputation ones. These methods

involve filling in unknown values several times so that

uncertainty in the imputations is taken into account and

the error variances are reduced. These multiple impu-

tations are implemented by a simple technique such as

attributing average values, and a regression model is

Table 1 Datasets (main features)

Samples

Total Classes Features

MAGIC Gamma telescope (M) 19,020 2 11

Pima Indians diabetes (P) 768 2 8

Twonorm (T) 7400 2 20

Sensorless drive diagnosis (S) 58,509 11 48

Gas sensor array drift (G) 13,910 6 128

AReM (A) 42,240 7 6



implemented in order to iteratively improve the results.

However, although multiple imputations will generally

produce better results than a simple imputation, in many

cases they are not the best option, becoming time-

intensive when applied to large datasets [34]. More

details about the MICE technique implemented in this

work can be obtained in [35].

In Table 2, the imputation results for each algorithm and

dataset are shown. Errors between imputed and real values

are presented according to (2) and (7) for methods without

and with compensation, respectively. Results achieved by

the SDAEs that are designed and trained with pre-imputed

data as well as results for selected pre-imputation methods

directly applied over the missing data are presented. Three

cases are distinguished for results based on deep networks:

SDAE without deletion nor compensation, SDAE with

only deletion, and SDAE with deletion and compensation.

The optimal values for e and a are presented inside

parentheses, the best results for the pre-imputation group

are shown in italics and the global best result for missing

percentage is in bold. Two results are considered statisti-

cally different if /1 � /2 � r1þr2
2

, where / represents the

mean and r the standard deviation of the result.

3.2 Classification results

In Table 3, classification results are presented. For each

algorithm and dataset, results are shown in terms of mean

and standard deviation of classification accuracy. All of

them are obtained with 50 independent runs. It is important

to note that both presentation and comparison of results are

done in the same way as in the previous section as well as

that results for pre-imputation are obtained through an

MLP trained with cross-validation.

For each experiment, deep networks are designed using

a linear classifier as output of the SDAE. A linear classifier

has been chosen because, in this case, it offers similar

results to other more complex networks like an MLP. This

means to accept that SDAEs successfully disentangles the

classes [36], thus allowing the use of a simple classifier in

the output. Once initialized the hidden weights through the

first phase of the algorithm, the global network is jointly

trained, that is, the linear output classifier is trained and the

hidden weights are fine tuned.

3.3 Discussion

Analyzing the imputation results, it can be concluded:

• The pre-imputation results are always improved by a

solution based on a SDAE regardless of what pre-

imputation is implemented.

• The better pre-imputation the better final imputation

accuracy with the SDAE.

• SDAE networks with deletion always improve the

performance of SDAEs without deletion.

• SDAE networks with deletion and compensation

improve the performance of SDAEs only with deletion

in the majority of the cases. This is a clear evidence of

the usefulness of compensation.

• According to the optimal values of e, it can be

concluded that a high deletion rate provides better

results. This permits to conclude that deletion is useful

to learn a better reconstruction of missing values.

• Most of the optimal values of a are slightly above 0.5,

so that we can conclude that giving more importance to

complete samples implies an improvement of the

imputation process.

• Great results are achieved in the case of AReM dataset,

when missing is inserted in several random features.

This means the method generalizes well in different

types of scenarios and situations of missing values,

which is not a very surprising result due to the high

representation capability of auto-encoders together with

the compensation mechanisms introduced.

Analyzing the classification results, it can be concluded

that:

• Deletion (with or without compensation) gets better

results in most cases, that is, not only improves

imputation results but also helps to get better perfor-

mance of the SDAE classifier.

• In Table 4, the effect of compensation is presented

showing the number of times it improves, degrades or

equals the results with deletion. As it can be seen,

results are worse only 1 time (2% of total scenarios), are

better 24 times (45%) and considered statistically equal

the other 29 times (53%).

• As we have already seen, although compensation

always produces an improvement of the imputation

results, in some cases it does not obtain a significant

improvement in the classification performance. This

means that, even though the obtained output values are

closer to the desired ones, this improvement is not

enough for allowing to differentiate the classes.

• It is very interesting to observe the results obtained

when the multiple imputation MICE algorithm is

applied. In this case, while the improvement obtained

by our method is very moderate in imputation tasks, the

improvement in classification is really significant. Thus,

it can be concluded that the great representation

capability of SDAEs is key to solve classification tasks,

if a good pre-imputation is applied.

• Finally, it can be seen that classification results are

improved with deletion and compensation even in



Table 2 Imputation results for each experiment carried out

Procedure l

0.1 0.2 0.3

M-MLP 0.5 ± 0.05 0.4 ± 0.05 0.4 ± 0.09

M-MLP-SDAE 0.2 ± 0.06 0.4 ± 0.02 0.2 ± 0.06

M-MLP-SDAE ðeÞ 0.1 ± 0.02 (0.75) 0.2 ± 0.06 (0.75) 0.1 ± 0.02 (0.5)

M-MLP-SDAE ðe; aÞ 0.05 ± 0.01 (0.75, 0.6) 0.1 ± 0.07 (0.75, 0.3) 0.08 ± 0.006 (0.75, 0.7)

M-SVD 0.7 ± 0.05 0.6 ± 0.05 0.7 ± 0.04

M-SVD-SDAE 0.3 ± 0.03 0.5 ± 0.06 0.3 ± 0.02

M-SVD-SDAE ðeÞ 0.15 ± 0.01 (0.5) 0.1 ± 0.01 (0.5) 0.25 ± 0.03 (0.75)

M-SVD-SDAE ðe; aÞ 0.06 ± 0.01 (0.75, 0.2) 0.08 ± 0.01 (0.5, 0.7) 0.11 ± 0.01 (0.75, 0.5)

M-MICE 0.04 ± 0.004 0.08 ± 0.005 0.1 ± 0.01

M-MICE-SDAE 0.05 ± 0.008 0.15 ± 0.01 0.1 ± 0.02

M-MICE-SDAE ðeÞ 0.04 ± 0.005 (0.5) 0.1 ± 0.005 (0.5) 0.08 ± 0.03 (0.75)

M-MICE-SDAE ðe; aÞ 0.05 ± 0.005 (0.75, 0.2) 0.09 ± 0.01 (0.5, 0.7) 0.1 ± 0.01 (0.75, 0.5)

P-MLP 0.5 ± 0.02 0.5 ± 0.01 0.6 ± 0.02

P-MLP-SDAE 0.2 ± 0.05 0.7 ± 0.02 0.6 ± 0.08

P-MLP-SDAE ðeÞ 0.1 ± 0.01 (0.5) 0.2 ± 0.02 (0.5) 0.09 ± 0.002 (0.5)

P-MLP-SDAE ðe; aÞ 0.03 ± 0.005 (0.75, 0.7) 0.08 ± 0.01 (0.75, 0.6) 0.05 ± 0.006 (0.5, 0.8)

P-SVD 0.65 ± 0.02 0.7 ± 0.008 0.7 ± 0.02

P-SVD-SDAE 0.4 ± 0.04 0.35 ± 0.04 0.4 ± 0.004

P-SVD-SDAE ðeÞ 0.2 ± 0.01 (0.75) 0.15 ± 0.02 (0.5) 0.25 ± 0.01 (0.75)

P-SVD-SDAE ðe; aÞ 0.05 ± 0.008 (0.75, 0.3) 0.07 ± 0.01 (0.75, 0.7) 0.06 ± 0.004 (0.75, 0.5)

P-MICE 0.02 ± 0.008 0.07 ± 0.004 0.05 ± 0.008

P-MICE-SDAE 0.04 ± 0.005 0.07 ± 0.005 0.08 ± 0.01

P-MICE-SDAE ðeÞ 0.02 ± 0.005 (0.75) 0.05 ± 0. (0.5) 0.06 ± 0.004 (0.75)

P-MICE-SDAE ðe; aÞ 0.02 ± 0.004 (0.75, 0.7) 0.06 ± 0.004 (0.5, 0.4) 0.05 ± 0.005 (0.75, 0.7)

T-MLP 0.9 ± 0.01 0.9 ± 0.05 0.8 ± 0.03

T-MLP-SDAE 0.6 ± 0.09 0.8 ± 0.1 0.5 ± 0.05

T-MLP-SDAE ðeÞ 0.08 ± 0.01 (0.5) 0.1 ± 0.002 (0.5) 0.08 ± 0.01 (0.75)

T-MLP-SDAE ðe; aÞ 0.05 ± 0.006 (0.75, 0.6) 0.04 ± 0.004 (0.75, 0.7) 0.05 ± 0.008 (0.75, 0.7)

T-SVD 0.75 ± 0.03 0.8 ± 0.05 0.8 ± 0.05

T-SVD-SDAE 0.5 ± 0.02 0.2 ± 0.04 0.4 ± 0.05

T-SVD-SDAE ðeÞ 0.14 ± 0.02 (0.5) 0.2 ± 0.03 (0.75) 0.2 ± 0.02 (0.75)

T-SVD-SDAE ðe; aÞ 0.12 ± 0.01 (0.5, 0.2) 0.05 ± 0.01 (0.75, 0.5) 0.12 ± 0.01 (0.75, 0.4)

T-MICE 0.04 ± 0.01 0.04 ± 0.001 0.07 ± 0.005

T-MICE-SDAE 0.07 ± 0.006 0.07 ± 0.003 0.08 ± 0.004

T-MICE-SDAE ðeÞ 0.07 ± 0.002 (0.5) 0.05 ± 0.005 (0.5) 0.05 ± 0.003 (0.5)

T-MICE-SDAE ðe; aÞ 0.05 ± 0.003 (0.5, 0.8) 0.04 ± 0.002 (0.5, 0.7) 0.05 ± 0.01 (0.75, 0.6)

S-MLP 2.65 ± 0.08 2.82 ± 0.1 2.89 ± 0.07

S-MLP-SDAE 2.36 ± 0.12 2.53 ± 0. 07 2.45 ± 0.08

S-MLP-SDAE ðeÞ 1.73 ± 0.07 (0.75) 1.9 ± 0.08 (0.5) 1.85 ± 0.02 (0.5)

S-MLP-SDAE ðe; aÞ 1.24 ± 0.08 (0.5, 0.4) 1.71 ± 0.05 (0.75, 0.6) 1.56 ± 0.04 (0.5, 0.6)

S-SVD 2.45 ± 0.08 2.57 ± 0.05 2.6 ± 0.05

S-SVD-SDAE 2.23 ± 0.1 2.34 ± 0.08 2.4 ± 0.05

S-SVD-SDAE ðeÞ 1.84 ± 0.06 (0.5) 1.88 ± 0.02 (0.5) 2.12 ± 0.02 (0.75)

S-SVD-SDAE ðe; aÞ 1.57 ± 0.05 (0.75, 0.6) 1.94 ± 0.1 (0.5, 0.8) 1.93 ± 0.07 (0.75, 0.7)

S-MICE 0.82 ± 0.04 0.81 ± 0.05 0.92 ± 0.03

S-MICE-SDAE 1.47 ± 0.1 1.24 ± 0.02 1.36 ± 0.05

S-MICE-SDAE ðeÞ 1.2 ± 0.06 (0.5) 0.97 ± 0.1 (0.5) 1.15 ± 0.06 (0.75)



AReM, a dataset with missing completely at random in

several features.

4 Conclusions

The presence of missing values in a dataset is one of the

most common difficulties when we face real applications.

This work has been motivated by the idea of taking

advantage of the great representation capability of SDAEs

in imputating missing values as well as in classification

tasks.

We have introduced a technique capable of improving

imputation of missing samples by artificially deleting input

values. Although this technique has been demonstrated to

be efficient, it may cause an imbalance between

distributions of training and test sets. In order to solve this,

a compensation mechanism is proposed. It is based on a

slight modification of the error function to be optimized. It

is important to emphasize that, although some input values

are deleted in this procedure, their corresponding known

values are used as output targets during training, what

produces an improvement in imputation.

Deletion and compensation are also useful mechanisms

to improve classification performance. It has been shown

that an SDAE followed by a linear classifier produces

better results when deletion is considered in the training

phase. Nevertheless, while the best option in imputation

includes compensation (along with deletion), it does not

always get a better performance in classification tasks.

From the results obtained on different datasets, it is

observed that improvements only occur in approximately

45% of the cases. In the rest, although the proposed method

Table 2 (continued)

Procedure l

0.1 0.2 0.3

S-MICE-SDAE ðe; aÞ 0.91 ± 0.08 (0.75, 0.7) 0.85 ± 0.08 (0.75, 0.6) 0.87 ± 0.04 (0.5, 0.6)

G-MLP 2.65 ± 0.05 2.85 ± 0.04 3.12 ± 0.03

G-MLP-SDAE 2.34 ± 0.07 2.54 ± 0.06 2.74 ± 0.06

G-MLP-SDAE ðeÞ 1.78 ± 0.05 (0.5) 1.74 ± 0.07 (0.75) 2.54 ± 0.04 (0.75)

G-MLP-SDAE ðe; aÞ 1.56 ± 0.08 (0.75, 0.7) 1.82 ± 0.08 (0.75, 0.6) 2.37 ± 0.03 (0.75, 0.6)

G-SVD 2.3 ± 0.04 2.64 ± 0.02 2.57 ± 0.03

G-SVD-SDAE 2.45 ± 0.05 2.51 ± 0.05 2.72 ± 0.1

G-SVD-SDAE ðeÞ 2.06 ± 0.03 (0.5) 2.32 ± 0.05 (0.5) 2.35 ± 0.06 (0.5)

G-SVD-SDAE ðe; aÞ 1.83 ± 0.06 (0.5, 0.7) 2.25 ± 0.04 (0.75, 0.6) 2.32 ± 0.05 (0.75, 0.6)

G-MICE 1.12 ± 0.02 1.1 ± 0.02 0.92 ± 0.04

G-MICE-SDAE 1.46 ± 0.04 1.34 ± 0.05 1.54 ± 0.06

G-MICE-SDAE ðeÞ 1.23 ± 0.06 (0.5) 1.19 ± 0.04 (0.5) 1.17 ± 0.08 (0.75)

G-MICE-SDAE ðe; aÞ 1.2 ± 0.04 (0.5, 0.5) 0.92 ± 0.07 (0.75, 0.6) 0.95 ± 0.05 (0.75, 0.6)

A-MLP 0.018 ± 0.002 0.021 ± 0.002 0.021 ± 0.002

A-MLP-SDAE 0.017 ± 0.001 0.019 ± 0.002 0.020 ± 0.002

A-MLP-SDAE ðeÞ 0.015 ± 0.001 (0.5) 0.019 ± 0.001 (0.25) 0.017 ± 0.001 (0.5)

A-MLP-SDAE ðe; aÞ 0.012 ± 0.001 (0.5, 0.6) 0.018 ± 0.002 (0.5, 0.7) 0.017 ± 0.002 (0.5, 0.8)

A-SVD 0.07 ± 0.001 0.05 ± 0.002 0.1 ± 0.002

A-SVD-SDAE 0.04 ± 0.001 0.03 ± 0.001 0.05 ± 0.002

A-SVD-SDAE ðeÞ 0.016 ± 0.001 (0.5) 0.018 ± 0.001 (0.75) 0.02 ± 0.002 (0.5)

A-SVD-SDAE ðe; aÞ 0.015 ± 0.002 (0.75, 0.7) 0.019 ± 0.001 (0.75, 0.6) 0.02 ± 0.001 (0.75, 0.6)

A-MICE 0.016 ± 0.002 0.019 ± 0.001 0.018 ± 0.001

A-MICE-SDAE 0.016 ± 0.001 0.019 ± 0.002 0.017 ± 0.002

A-MICE-SDAE ðeÞ 0.013 ± 0.002 (0.75) 0.016 ± 0.001 (0.5) 0.015 ± 0.001 (0.5)

A-MICE-SDAE ðe; aÞ 0.012 ± 0.001 (0.75, 0.7) 0.016 ± 0.001 (0.5, 0.7) 0.016 ± 0.001 (0.5, 0.6)

SSE described in (2) and (7) for methods without and with compensation, respectively, is presented. Different percentages of missing values l in

the input dataset are shown in columns. Several procedures are presented in rows according to the following nomenclature: first initial of the

dataset—pre-imputation method—deep procedure (deletion rate, compensation rate). For each dataset, the best result of a family of pre-

imputation methods is shown in italics and the global minimum for a missing percentage in bold. Results without statistically difference are

considered equal



Table 3 Classification accuracy for every experiment carried out

Procedure l

0.1 0.2 0.3

M-MLP 89.3 ± 1.6 87.3 ± 0.7 88.6 ± 0.4

M-MLP-SDAE 89.8 ± 0.7 89.7 ± 0.2 87.4 ± 0.2

M-MLP-SDAE ðeÞ 92 ± 0.2 (0.75) 91.6 ± 0.3 (0.5) 90.9 ± 0.5 (0.75)

M-MLP-SDAE ðe; aÞ 92.3 ± 0.2 (0.5, 0.6) 91.3 ± 0.2 (0.75, 0.6) 90.8 ± 0.4 (0.75, 0.7)

M-SVD 88.5 ± 0.4 87.1 ± 0.2 88.2 ± 0.2

M-SVD-SDAE 90.1 ± 0.6 89.4 ± 0.5 87.5 ± 0.6

M-SVD-SDAE ðeÞ 91.2 ± 0.3 (0.5) 91.3 ± 0.2 (0.5) 88.4 ± 0.4 (0.75)

M-SVD-SDAE ðe; aÞ 91.9 ± 0.2 (0.5, 0.5) 91.5 ± 0.4 (0.5, 0.7) 91.3 ± 0.1 (0.75, 0.4)

M-MICE 89.7 ± 0.6 90.3 ± 0.2 89.4 ± 0.2

M-MICE-SDAE 89.6 ± 0.8 90.8 ± 0.4 89.3 ± 0.5

M-MICE-SDAE ðeÞ 91.2 ± 0.4 (0.5) 90.4 ± 0.5 (0.75) 90.2 ± 0.3 (0.75)

M-MICE-SDAE ðe; aÞ 92.3 ± 0.6 (0.75, 0.7) 91.2 ± 0.4 (0.75, 0.5) 91.4 ± 0.5 (0.75, 0.6)

P-MLP 72.4 ± 1.7 70.3 ± 0.8 74.6 ± 1.3

P-MLP-SDAE 77.3 ± 2.8 72.8 ± 3.4 75 ± 1.2

P-MLP-SDAE ðeÞ 76.7 ± 1.6 (0.5) 78 ± 1.3 (0.5) 79.8 ± 2.0 (0.5)

P-MLP-SDAE ðe; aÞ 80.8 ± 1.2 (0.75, 0.7) 79.4 ± 1.5 (0.75, 0.3) 80.5 ± 1.1 (0.5, 0.7)

P-SVD 74.6 ± 0.4 74.3 ± 0.8 73.2 ± 0.4

P-SVD-SDAE 75.3 ± 0.6 76.2 ± 0.5 75.3 ± 0.7

P-SVD-SDAE ðeÞ 78.6 ± 0.4 (0.25) 79.5 ± 0.4 (0.75) 78.1 ± 0.2 (0.75)

P-SVD-SDAE ðe; aÞ 79.5 ± 0.7 (0.5, 0.5) 78.3 ± 0.2 (0.75, 0.6) 79.2 ± 0.5 (0.75, 0.7)

P-MICE 77.4 ± 0.7 77.8 ± 0.3 77.5 ± 0.4

P-MICE-SDAE 78.3 ± 0.2 78.1 ± 0.4 78.1 ± 0.5

P-MICE-SDAE ðeÞ 79.5 ± 0.3 (0.5) 79.4 ± 0.4 (0.25) 78.7 ± 0.1 (0.75)

P-MICE-SDAE ðe; aÞ 80.7 ± 0.4 (0.5, 0.3) 79.5 ± 0.2 (0.5, 0.7) 79.3 ± 0.3 (0.75, 0.6)

T-MLP 91.8 ± 1.3 91.2 ± 0.6 90 ± 1.4

T-MLP-SDAE 92.2 ± 0.2 95.5 ± 0.2 94.7 ± 1.4

T-MLP-SDAE ðeÞ 98.3 ± 0.6 (0.5) 97.6 ± 0.8 (0.5) 97.6 ± 0.4 (0.75)

T-MLP-SDAE ðe; aÞ 97.8 ± 0.5 (0.75, 0.6) 97.1 ± 0.2 (0.75, 0.6) 98.1 ± 0.2 (0.75, 0.6)

T-SVD 90.3 ± 0.4 90.4 ± 0.2 89.4 ± 0.5

T-SVD-SDAE 93.5 ± 0.5 92.7 ± 0.4 91.2 ± 0.4

T-SVD-SDAE ðeÞ 97.1 ± 0.3 (0.5) 96.3 ± 0.3 (0.75) 96.5 ± 0.7 (0.75)

T-SVD-SDAE ðe; aÞ 97.9 ± 0.4 (0.5, 0.2) 97.4 ± 0.6 (0.75, 0.7) 97.8 ± 0.4 (0.75, 0.8)

T-MICE 96.3 ± 0.2 95.8 ± 0.3 95.4 ± 0.2

T-MICE-SDAE 97.5 ± 0.4 96.2 ± 0.4 96.4 ± 0.5

T-MICE-SDAE ðeÞ 98.2 ± 0.3 (0.5) 97.2 ± 0.2 (0.75) 97.3 ± 0.2 (0.75)

T-MICE-SDAE ðe; aÞ 97.9 ± 0.3 (0.5, 0.5) 97.7 ± 0.3 (0.75, 0.6) 98.3 ± 0.3 (0.75, 0.7)

S-MLP 94.5 ± 0.3 93.2 ± 0.3 94.3 ± 0.5

S-MLP-SDAE 95.6 ± 0.6 94.5 ± 0.3 95.2 ± 0.3

S-MLP-SDAE ðeÞ 97.3 ± 0.3 (0.75) 97.7 ± 0.6 (0.75) 97.4 ± 0.2 (0.75)

S-MLP-SDAE ðe; aÞ 98.7 ± 0.4 (0.5, 0.8) 97.3 ± 0.4 (0.75, 0.7) 98.2 ± 0.6 (0.75, 0.6)

S-SVD 95.3 ± 0.4 95.3 ± 0.4 94.8 ± 0.4

S-SVD-SDAE 95.7 ± 0.6 94.6 ± 0.5 96.3 ± 0.5

S-SVD-SDAE ðeÞ 97.7 ± 0.4 (0.75) 97.5 ± 0.4 (0.75) 97.4 ± 0.3 (0.75)

S-SVD-SDAE ðe; aÞ 97.9 ± 0.4 (0.75, 0.6) 98.4 ± 0.6 (0.75, 0.7) 98.4 ± 0.2 (0.5, 0.6)

S-MICE 97.8 ± 0.1 97.6 ± 0.2 97.7 ± 0.4

S-MICE-SDAE 98.2 ± 0.2 98.4 ± 0.4 98.2 ± 0.1

S-MICE-SDAE ðeÞ 99.1 ± 0.3 (0.5) 99.1 ± 0.2 (0.75) 98.7 ± 0.3 (0.75)



makes more precise imputations when it includes com-

pensation, this is not translated into a better classification

with the exception of using powerful pre-imputation

techniques, such as MICE. It seems that the improvement

is not enough for the network to select the correct class.

To improve the obtained results, the possibility of sep-

arately weighting the errors for complete, deleted and

incomplete samples is a clear alternative, as well as con-

sidering the classification targets in the imputation process.

Extending this work to regression tasks is also an inter-

esting research avenue. Finally, the procedure we propose

could also be used to deal with sample manipulations in

adversarial learning [37, 38], after adapting it to the dif-

ferent situations that appear in this context.
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Table 3 (continued)

Procedure l

0.1 0.2 0.3

S-MICE-SDAE ðe; aÞ 99.2 ± 0.2 (0.5, 0.6) 98.6 ± 0.4 (0.75, 0.6) 98.9 ± 0.2 (0.75, 0.6)

G-MLP 96.4 ± 0.4 95.7 ± 0.4 95.0 ± 0.4

G-MLP-SDAE 97.6 ± 0.4 97.1 ± 0.2 96.8 ± 0.4

G-MLP-SDAE ðeÞ 98.6 ± 0.5 (0.75) 97.7 ± 0.3 (0.75) 98.1 ± 0.2 (0.75)

G-MLP-SDAE ðe; aÞ 98.8 ± 0.4 (0.75, 0.5) 98.4 ± 0.2 (0.5, 0.4) 98.8 ± 0.4 (0.75, 0.4)

G-SVD 97.1 ± 0.2 97.3 ± 0.4 96.8 ± 0.3

G-SVD-SDAE 97.5 ± 0.2 98.1 ± 0.2 96.6 ± 0.6

G-SVD-SDAE ðeÞ 98.2 ± 0.2 (0.5) 98.7 ± 0.2 (0.75) 97.6 ± 0.2 (0.75)

G-SVD-SDAE ðe; aÞ 98.6 ± 0.1 (0.5, 0.4) 98.6 ± 0.3 (0.75, 0.6) 98.7 ± 0.4 (0.75, 0.6)

G-MICE 98.2 ± 0.2 97.8 ± 0.3 98.0 ± 0.2

G-MICE-SDAE 98.5 ± 0.1 98.2 ± 0.4 98.6 ± 0.2

G-MICE-SDAE ðeÞ 99.1 ± 0.2 (0.5) 98.6 ± 0.2 (0.75) 99.2 ± 0.1 (0.75)

G-MICE-SDAE ðe; aÞ 99.4 ± 0.2 (0.5, 0.6) 99.1 ± 0.1 (0.75, 0.8) 99.1 ± 0.1 (0.75, 0.6)

A-MLP 86.7 ± 0.4 84.7 ± 0.2 86.8 ± 0.1

A-MLP-SDAE 87.1 ± 0.2 85.2 ± 0.2 87.3 ± 0.3

A-MLP-SDAE ðeÞ 87.5 ± 0.2 (0.25) 87.4 ± 0.3 (0.5) 88.7 ± 0.1 (0.5)

A-MLP-SDAE ðe; aÞ 89.2 ± 0.1 (0.75, 0.6) 87.6 ± 0.1 (0.25, 0.5) 89.2 ± 0.2 (0.75, 0.6)

A-SVD 88.3 ± 0.1 87.3 ± 0.2 87.1 ± 0.2

A-SVD-SDAE 88.6 ± 0.2 88.1 ± 0.2 87.6 ± 0.2

A-SVD-SDAE ðeÞ 88.1 ± 0.2 (0.5) 89.5 ± 0.1 (0.5) 88.7 ± 0.2 (0.5)

A-SVD-SDAE ðe; aÞ 91.1 ± 0.2 (0.75, 0.7) 89.4 ± 0.3 (0.5, 0.7) 88.9 ± 0.3 (0.75, 0.6)

A-MICE 89.2 ± 0.3 88.4 ± 0.1 88.8 ± 0.3

A-MICE-SDAE 90.1 ± 0.3 88.5 ± 0.3 89.9 ± 0.2

A-MICE-SDAE ðeÞ 90.7 ± 0.4 (0.75) 90.1 ± 0.2 (0.5) 90.3 ± 0.1 (0.5)

A-MICE-SDAE ðe; aÞ 91.3 ± 0.2 (0.75, 0.7) 90.4 ± 0.3 (0.75, 0.4) 90.1 ± 0. 3(0.5, 0.7)

Different percentages of missing values in the input dataset are shown in columns. Several procedures are presented in rows according to the

following nomenclature: first initial of the dataset—pre-imputation method—deep procedure (deletion rate, compensation rate). For each

dataset, the best result of a family of pre-imputations is shown in italic and the global minimum for a missing percentage in bold. Results without

statistically difference are considered ties

Table 4 Effects of compensation on deletion in classification tasks

Dataset Worse Equal Better

MAGIC Gamma telescope (M) 0 5 4

Pima Indians diabetes (P) 1 3 5

Two norms (T) 0 6 3

Sensorless drive diagnosis (S) 0 4 5

Gas sensor array drift (G) 0 5 4

AReM (A) 0 6 3

Numbers show how many times results with both deletion and

compensation are worse, equal or better than those obtained when

only deletion is applied. As it can be seen, worse results are achieved

only 1 time (2%), improved in 24 cases (45%) and considered sta-

tistically equal in 29 cases (53%)
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