Universidad

ucdm | CarloslIl -Archivo
de Madrid

This is a postprint version of the following published document:

Reyes-Anastacio, H. G., Gonzalez-Compean, J., Sosa-
Sosa, V. J., Carretero, J. & Garcia-Blas, J. (2020).
Kulla, a container-centric construction model for
building infrastructure-agnostic distributed and parallel

applications. Journal of Systems and Software, 168,
110665.

DOI: 10.1016/}.5s5.2020.110665

© 2020 Published by Elsevier Inc.

©l0ClO

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jss.2020.110665

Kulla: A construction model based on virtual
containers for parallel and distributed agnostic
application composition

Hugo G. Reyes-Anastacio, Jose L. Gonzalez-Compean, Victor J. Sosa-Sosa,
Jesus Carretero, Senior Member, IEEE and Javier Garcia-Blas, Member, IEEE

Abstract—This paper presents the design, development, and im-
plementation of Kulla, a construction model that takes advance of
lightweight and immutability features of virtual containers (VCs) in the
composition of parallel and distributed agnostic applications. In this
model, the applications as well as dependencies and environment
settings are encapsulated, with in-memory data storage mechanisms
and /O network/file call management systems into interoperable con-
struction units called Kulla-Blocks. These units can be chained in the
form of graphs and parallel patterns called Kulla-Bricks, which can be
created without altering/modifying the code of applications. Agnostic
applications can be built, on-the-fly and on-demand, by using recursive
combinations of Kulla instances by grouping them in deployment struc-
tures called Kulla-Boxes, which are encapsulated into VCs. Agnostic
distributed applications can be built in the form of Brick of Kulla-Boxes
by using deployment strategies to improve the resource profitability. To
show the feasibility and flexibility of this model, parallel patterns such
as Divide-and-Containerize (data parallelism), Pipe&Blocks (streaming)
and Manager/Blocks (task parallelism) were developed by using Kulla in-
stances. Different parallel and/or distributed Kulla solutions were created
for processing satellite and medical imagery by combining real-world
applications resulting in different case studies. The experimental evalu-
ation performed in different IT infrastructures revealed the efficiency of
Kulla model in comparison with serial and parallel applications created
by using IntelTBB.

1 INTRODUCTION

Troubleshooting IT issues, interoperability of applications,
as well as the profitability of compute resources are chal-
lenging tasks that arise when organizations deploy software
solutions on IT infrastructures (any of cloud, clusters or
servers).

Troubleshooting IT issues are quite common in organiza-
tional environments where the applications are commonly
migrated /installed to/in different departments over differ-
ent types of installed IT infrastructures. A troubleshooting
process is required when the immutability and portability of
applications is not granted by developers and issues related

Hugo G. Reyes-Anastacio, Jose L. Gonzalez-Compean are with CINVESTAV-
Tamaulipas (Mexico).

Victor J. Sosa-Sosa is with CINVESTAV-Tamaulipas (Mexico) and University
Carlos III of Madrid (Spain).

Jesus Carretero, Javier Garcia-Blas are with the University Carlos III of
Madrid (Spain).

Contact Email: jgonzalez@tamps.cinvestav.mx

to failed installations, missed dependencies or misplaced
environment settings must be solved by IT staff. In this
type of situation, IT staff commonly considers debugging
procedures that, depending on the codification of a given
application, could take valuable time causing either down-
time or disturbing business continuity [1], [2]. To overcome
those problems, virtual containers (VC) have become a
popular solution for organizations to deploy applications
on different infrastructures in an immutable manner [3] 1.
Moreover, studies [6] have shown that VCs are lightweight
in comparison with the virtual machines.

Nevertheless, this virtualization technology does not
solve application interoperability issues that arise when
multiple applications must be integrated into a single sys-
tem/solution. In this type of solution, several preprocessing
tasks are concatenated to create solutions of chained applica-
tions [7], [8], [9], [10], [11]. The outputs of some applications
represent the inputs of others; as a result, construction
models and frameworks are required by developers to build
these solutions [9], [10], [12]. Data management strategies
are also required for delivering data among the applications
[13] [14] when are grouped into a single solution. For in-
stance, organizations focused on the management of health
[15], [16] and satellite [17], [18] data commonly process large
volumes of images (datasets) to add properties to contents
that are sent to data centers and/or cloud services. Different
properties are desirable to be added to those datasets be-
fore sending them to public/private cloud storage services.
For instance, the contents are preprocessed to reduce data
volume [18] to save storage space and to reduce costs,
which adds frugality property to contents. In other cases,
the contents are encrypted to ensure privacy, signed to en-
sure authenticity and commonly processed to ensure access
control as well as fault-tolerance for adding confidentiality
and reliability to them even when organizations store them
in private clusters/servers.

In practice however, the organizations end up deal-

1. Market studies predicting that “By the year 2020, more than 50%
of companies will use container technology, up from less than 20% in
201" [4], 63% have more than 100 instances deployed, and 82% expect
to have more than 100 deployed within the next two years, according
to “Containers: Real Adoption and Use Cases in 2017,” [5]

ing with systems integrating several applications and IT
commonly struggle to solve interoperability issues as this
integration should be performed in dynamic and flexible
manners.

In addition, the efficiency of aforementioned processes is
key for organizations such as hospitals [15], [16] and space
agencies [17] because of the rate of the content produc-
tion of these organizations is massive. In this context, the
profitability of IT resources becomes crucial because of the
service experience of end-users is important for decision-
making processes in these scenarios. By profitability of
resources we refer to the way in which a solution inte-
grating different applications can be deployed on a given
infrastructure by using as many resources as possible for
processing each content (e.g. using the servers available as
well as number cores and memory per server).

An example of solutions created to reduce service times
and to improve the resource profitability are the parallelism
patterns [19], [20].

Nevertheless, the implementation of applications for
processing data in parallel is not a trivial task as parts of
the application (routines or cycles) must be identified to be
executed in parallel and not all IT staffers are familar with
this type of process. Moreover, this type of processing is
performed by using a given framework [21], [22], [23] where
some issues related to dependencies, environment vari-
ables, libraries, and infrastructure could arise. This avoids
developers to grant application immutability/portability,
reducing interoperability and/or requiring for end-users to
perform troubleshooting IT issues.

In this context, there is a need for solutions not only
enabling organizations to add value to their contents but
also including features required in real-world scenarios such
as feasibility, flexibility and efficiency. Feastbility is re-
quired for avoiding/reducing the need for troubleshooting
IT procedures. Flexibility is required for creating solu-
tions including as many applications as value properties
to be added to the contents, which should be created by
solving the interoperability among the applications without
making major and complex adjustments in the solutions.
Ef ficiency is required for processing contents by profit-
ing as many resources as available in IT infrastructure for
avoiding the side effects of these preprocessing tasks in the
service experience of the end-users, which also should be
performed without affecting the feasibility and flexibility of
the solutions/systems.

This paper presents the design, development, and imple-
mentation of Kulla, a construction model that takes advance
of lightweight and immutability features of virtual contain-
ers (VCs) in the composition of parallel and distributed
agnostic applications.

In this model, the applications as well as dependen-
cies and environment settings are encapsulated, with in-
memory data storage mechanisms and I/O network/file
call management systems into interoperable construction
units called Kulla-Blocks. These units can be chained in the
form of graphs and parallel patterns called Kulla-Bricks,
which can be created without altering/modifying the code
of applications.

To show the feasibility and flexibility of this model,
parallel patterns such as Divide-and-Containerize (data par-

2

allelism), Pipe&Blocks (streaming) and Manager/Blocks (task
parallelism) were developed by using Kulla instances.

Agnostic applications can be built, on-the-fly and on-
demand, by using recursive combinations of Kulla instances
by grouping them in deployment structures called Kulla-
Boxes. The Kulla-Boxes are encapsulated into virtual con-
tainers and presented to end-users as a single system. This
avoids organizations to perform troubleshooting processes
when having container platform installed.

In kulla model all the software instances are self-
similar to the smallest construction unit (Kulla-Block); as
a result, the Kulla-Boxes also can be grouped in the
form of Bricks (Bricks of Kulla-Boxes), which enables end-
users/developers to create agnostic distributed and/or par-
allel applications.

In order to take advantage of the self-similarity property
in the application composition process, we defined a set of
Kulla-Box deployment strategies such as Scale-In and Scale-
Out (or both).

These strategies were designed to improve the profitabil-
ity of computing resources in infrastructures where Kulla-
Boxes are deployed on and for enabling end-users and
developers to create agnostic distributed and/or parallel
applications.

Scale-In deployment strategy enables organizations to
improve the utilization of computers with large number
of cores, whereas Scale-Out is suitable to deploy solutions
on a cluster of computers/virtual machines. Scale-Out/In
solutions take advantage of both types of resources (cluster
of nodes and cores in the nodes).

Different parallel and/or distributed Kulla solutions
were created for processing satellite and medical imagery
by combining real-world applications, which resulting in
different case studies.

The experimental evaluation, where different scenarios
were tested by performing comparison of Kulla-Boxes with
serial and parallel (TBB) applications, showed the efficacy
of self-similarity property to achieve interoprability to build
agnostic solutions on different infrastructures in flexible and
dynamic manners. In terms of performance, the evaluation
showed the efficiency of Kulla model in comparison to
traditional schemes.

The main contributions of this paper are:

e A container-based construction model for the compo-
sition of agnostic distributed and/or parallel appli-
cations. This model solves the interoprability issues
and avoids to perform troubleshooting processes
when deploying solutions on a given infrastructure.

e A scheme to build parallel patterns. The self-
similarity property of the kulla software instances
enables end-users/developers to create different pat-
terns and combination of them to solve efficiency is-
sues. Patterns methods were created to show the ben-
efits of this property such as Divide-and-Containerize
for data parallelism, Pipe&Blocks for streaming and
Manager/Blocks for task parallelism as well as combi-
nations of these patterns.

e A strategy for deploying Kulla solutions on differ-
ent type of computing resources in a flexible and
dynamic manner, which adds agnostic property to
solutions and improves the profitability of resources.

The rest of the paper is organized as follows. In Section
2 the related work is described. Design principles of Kulla
are described in Section 3. Section 4 presents the patterns
developed by composition using Kulla bricks. The evalu-
ation methodology and experimental results from experi-
ments and case studies are described in Section 5, where
performance results are described. Finally, conclusions and
future research lines are described in Section 6.

2 RELATED WORK

The encapsulation of applications into virtual containers has
been explored in recent years [24] in areas such as bioinfor-
matics [25], archaeology [26], software and web engineering
[27], storage systems [28], [29], etc. This type of solutions are
only focused on the improvement of the application deploy-
ment for avoiding the troubleshooting issues in real-world
scenarios. However, in scientific environments, workflows
are also required to interconnect different applications for
processing models about environment, climate [11], etc.

In previous works, we proposed a software architecture,
named Sacbe, based on building blocks (BB) to manage
multiple applications as black boxes [13]. A prototype of
an architecture based on BBs implemented in Java was
developed for building end-to-end applications that ensures
and stores data in the cloud. Nevertheless, this model is
only suitable for Java Virtual Machines and parallel patterns
were not studied or solved, as only pipelines were defined.
Moreover, this was a specific purpose model designed for
end-to-end cloud storage solutions, whereas Kulla is fo-
cused on black boxes and parallelism patterns to exploit
the shared memory management, which was not available
in Sacbe model. Moreover, Kulla model can be used in a
comprehensive manner for different types of applications,
not only in storage systems.

In satellite or health image processing scenarios, the size
of raw satellite images is around GB’s, whereas the size of
images corrected reaches hundreds of MB’s. Thus, images
are preprocessed to be ensured in terms of confidential-
ity (encryption/decryption) and reliability (fault tolerance
based on error correcting). These images, in both domains,
are also processed to achieve information to identify objects
and producing information about these images. It is also
expected that those images will be stored for large periods
of time as are considered either heritage (in the case of
satellite image) or extremely sensitive content (in the case
of medical images). Archival produces then an informa-
tion accumulation effect [30]. The development of solutions
including preprocessing and processing stages [31], [32],
[33] are examples of workflows. The combination of these
solutions is required for fixing the application interoperabil-
ity. Moreover, in practice, these workflows must be built
in an interoperable manner. Nevertheless, the workflow
frameworks are focused on the application interconnections
and the resource profitability is not considered in this type
of frameworks.

The former examples represent an important issue due
to the volume of data to be processed and the response time
experimented by end-users. Software processing pipelines
were proposed to reduce those response times [18], while
the use of data parallel mechanisms have been studied [34]

3

for Big Data scenarios (Map-Reduce) [35]. The divide and
containerize proposed in Kulla represents an alternative to
pipelines for processing large files (as is the case of satellite
or medical images) as Map-Reduce is commonly focused on
data analytic/preprocessing [35].

The MapReduce processing model [35] is based on the
model Single Program Multiple Data (SPMD) [36]. In these
solutions, a given application is replicated to create workers,
which execute the application in concurrent manner. For
instance, data parallelism schemes used in Big Data scenar-
ios (e.g. Map-Reduce [35] and design of pattern) enables
organizations to improve the performance of their solutions
by deploying applications in the form of workers on virtual
spaces executed in physical resources. The SPMD model
allows to split the input data into multiples blocks and to
execute multiple copies of the same program simultane-
ously, so that each program processes its own block of data.
Each copy of the program runs as an independent process
and typically each process runs on its own processor [37].
Instead, in the divided and containerized proposal, each
program is encapsulated within a Building Block (BB). All
the BBs are encapsulated in a different container image,
including its software dependencies such as: libraries, envi-
ronment variables, etc.. The execution of different container
images generates multiple virtual containers and those con-
tainers are interconnected between themselves creating a
pipeline, where the segmentation and integration process
can be added to create a SPMD solution. The combination
of this proposal and the Kulla construction model enables
organizations to deploy SPMD models on computers in an
immutable manner, whereas the black box model enables
developers to apply SPMD models to different types of
applications.

Parallelism patterns templates has been proposed for
developers to avoid dealing with complexity of parallelism
frameworks such as MPI, OpenMP and TBB. A survey of the
different parallel programming models and tools available
today, with special consideration to their suitability for
high-performance computing, was presented in [38]. More
sophisticated patterns has been proposed in [39]. However,
all those patterns must be added to the application code
and the templates must be used in those code sections
where parallelism is feasible [40], [41]. Kulla is not focused
on routine parallelism, but also focused on data and tasks
parallelism patterns, which enable developers to create
parallel patterns without analyzing nor altering routines
of application code. This is a quite interesting feature for
scientific community that requires to deploy solutions, but
either is not familiar with the analysis of application codes to
identify sections suitable for being improved by parallelism,
or they simply have no time to do this task.

3 DESIGN PRINCIPLES OF KULLA CONSTRUCTION
MODEL

In this section, we describe the design principles of Kulla
construction model, which are based on three types of struc-
tures. The first one are the construction units called Kulla-
Blocks for developers to manage applications as building
blocks (See Kulla-Blocks representation in Figure 1). The sec-
ond one are pattern constructive units called Kulla-Bricks,

which have been designed for building parallel patterns
by chaining Kulla-Blocks (See Kulla-Block representation in
Figure 7). The last one are deployment structures called
Kulla-Box, which were designed for deploying Kulla in-
stances (either Blocks or Bricks) on different types of infras-
tructures such as cloud, cluster and server. (See Kulla-Blocks
representation in Figure 7). These structures will be deeply
described in next sections.

3.1 Kulla-Block: Building block structures

In Kulla model, a Building Block is a logical construction
structure that integrates applications with dependencies and
environment settings in a software instance called Kulla-
Block. This instance also includes an abstraction called
Filter, which represents a controller of native Kulla li-
braries for managing I/O calls (memory, network and file
system) in a transparent manner and to launch applications
in automatic and on-the-fly manners. In a Kulla-Block,
each application is controlled by a filter; as a result, a
Kulla-Block can be represented by the following notation:
App_i = {F_Appl, F_App2, F_AppN} € Kulla — Block_j
where Apps from 1 to N represents the libraries, classes and
dependencies required by App_i to be successfully executed
in a given infrastructure. This means all components of a
given application are encapsulated into Kulla — Block_j.

Kulla Block

y. J

Input Output

<> Data

Access Layer
Data Sink
Source,

Filter;

P

=3

ocessing Layer

_______ Recei
B Network Interface 7777 7-3 SV
; ; Read
|:| File system interface Wite
|:| Shared memory Interface Read
Write

[]

Fig. 1. A Kulla-Block conceptual representation.

Examples of shared memory segments

Figure 1 shows the design of a Kulla-Block. As it can be
seen, a Kulla-Block considers access and processing layers.
The access layer includes Input and Output interfaces for
filters to manage the incoming and outgoing data produced
by their applications (Kulla — Block_j[in] = Input and
Kulla — Block_j[out] = Output)

The processing layer is an area for the deployment
of Filters where a data exchange area based on shared
memory called K — Storage is built by using shared re-
source pattern. K-Storage can be accessed through pointers
that enables Filters to manage temporal storage to sharing
information with either other filters, which avoids the usage
of expensive I/O interfaces (i.e network and file system).

OO,
@«—» K Storage <—>®
C‘/ .@
Fig. 2. Shared results allocated in a common space called KStorage

A Kulla-Block instance (Node) follows the traditional
ETL process (Extract, Transform and Load), which means
a Kulla-Block receives data from a Data Source (e.g. any
of HD partition, cloud location, or another Kulla-Block)
through the input interface (either network or file sys-
tem). The filter(s) stores the data (d_z) retrieved from a
edge DataSource_d — Kulla — Block_j(in) — k —
Storage_Loc(in). The d_x are retrieved by the applica-
tion (App_i) launched in the Kulla-Block by using k —
Storage_Loc(in) and are processed to produce results
r_x = k — Storage_Loc(out), which are sent to either
a Data Sink or another Kulla instance through another
edge (Kulla — Block_j(out) — Kulla — Block_jlout] —
DataSink_s). This procedure is depicted in Figure 1.

3.2 Kulla-Bricks: Structures to build parallel patterns

At this point, a Kulla-Block has converted an application
into an independent, interoperable and reusable piece of
software. This means a Kulla-Block can be interconnected
to other Kulla-Blocks through the I/O interfaces creating
structures of directed graphs called Kulla-Bricks.

The chaining of Kulla instances in Kulla-Bricks (patterns)
is managed in the form of directed graphs by using the
notation defined for Kulla-Blocks structures as it is assumed
that all nodes in a pattern are Kulla-Blocks.

In this model, we considered three basis patterns pro-
ducing streaming/dataflow, task parallelism and data par-
allelism. The dataflow patterns are created by chaining ap-
plications in adjacent manner. These patterns are useful, for
instance, to add value properties to contents. Task parallel
patterns are built by chaining Kulla instances in parallel
to improve the performance of a given application, which
is quite useful when processing sets of contents. The Data
parallel patterns are similar to the task parallel patterns but
the tasks are focused on segments of data of a single content,
which are processed in concurrent manner. This pattern is
quite useful to process large length contents.

We designed and developed methods to create above
patterns by using Kulla instances: Pipe&Blocks (stream-
ing/dataflow), Divide-and-Containerize (data parallelism),
and Manager/Blocks (task parallelism). These patterns are
described in the folowing sections.

3.2.1 Pipe&Blocks: A Kulla-Brick producing pipelines

The grouping of Kulla-Blocks in adjacent fashion creates a
Pipe&Filter patterns 2 for producing flows of data through

2. Pipes and Filter patterns are a sequence of f processing filters
connected adjacently through communication interfaces (pipes) from
a data source (DSr) to a data sink (DSk)

the applications encapusulated into the Kulla-Blocks con-
sidered in a Kulla-Brick. This type of pattern creates a
continuous delivery of processed data to the filters (f) in
the pipeline, where f > 1 is required [42], [43].

See this pattern build as a directed graph:

CORORCRO®

Fig. 3. Pipe & Filter pattern represented as directed graph

As it can be seen, in Pipe&Filters pattern the filter
represents a processing unit that receives an input data
from a data source, applies a process (application), modifies
the input data according to the performed process, and
forwards either the modified data or a result to a data sink
or another filter through a pipe (edge), which represents a
transport/communication interface.

In this pattern, each filter is independent and an au-
tonomous piece of software. This means that filters can be
added, modified, replaced or removed from one software
pipeline without modifying other filters.

We defined a Pipe& Blocks method to create traditional
Pipe&Filters by using Kulla instances. In this method, the
Input and Output interfaces of Kulla-Blocks represent Pipes,
whereas the Filters represent applications encapsulated into
Kulla-Blocks. We developed a reserved Kulla instances such
as orchestrator and launcher, which were included in
the Pipe&Block method to manage software pipelines. The
orchestrator filter is in charge of creating a big picture of
the software pipeline solution in the form of a configuration
files per each Kulla-Block included in this Brick by using the
notation of a directed graph. This file includes information
required to identify and deploy each Kulla-Block considered
in the brick and the labels indicating the place of each Kulla-
Block in the pipeline (any of initiator, intermediary or
ending). The orchestrator delivers the configuration files
to the launcher filter, which is in charge of deploying
each Kulla-Block on the infrastructure and performing the
chaining of these Kulla-Blocks in the form of a pipeline.
The procedure performed by the launcher is described in
Algorithm 22

The Input interface of Kulla-Block labeled as beginning
is linked to the Data Source and the Output to the Input
of the first intermediary. The Input and Output interfaces
of intermediary Kulla-Blocks are linked to the interfaces of
previous and next Kulla-Blocks to retrieve data and deliver
the processed results respectively. The Output interface of
Kulla-Block labeled as ending is linked to the path for
delivering the final results to a the Data Sink.

A reserved kulla instance called Manager has been
developed to establish controls over the exchange of data
through the pipeline and the notifications of the ending of
a processing task per each Kulla-Block as well as to inject
workload to the beginning Kulla-Block in the pipeline.

3.2.2 Divide-and-Containerize

We developed a method called DivideandContainerize® to
create data parallel patterns by using Kulla-Blocks.

3. Inspired by traditional divide&conquer algorithm [44]

Algorithm 1 Pipe And Blocks Pattern.

Require: N BinBrickV Brick — BlockIDMaps[]V Paths]]
Source < Paths|0]
Sink < Paths[1]
Initiator < BlockIDM aps|0]
Kulla — Brick|0] <+ Launch(Initiator)
Previous < Initiator
NextBlock < BlockIDM aps]i]
Kulla — Brick[i] + Launch(NextBlock)
Kulla — Brick[0] < Map(Initiator.InPar, Input =
Source, Output = NextBlock.Input)
Input = Previous.OQutput
while NextBlock[i] # Ending do
Previous + NextBlock]i]
1+ +
NextBlock < BlockIDMaps]i]
Kulla — Brick[i] = Launch(NextBlock)

Kulla—Brickli] < Map(Previous.InPar, Input, Qutput =

NeatBlock[i]. Input
end while
if NextBlock[i] == Ending then

Kulla—Brick[i] < Map(Previous.InPar, Input, Output =

Sink
EXIT
else
ERROR(EndingPipeline)
end if

This Divide — and — Containerize method considers a
Kulla-Brick encapsulating a Pipe&Block pattern deploying
three types of Blocks: Divide, Containerize, Worker and
Conquer, whereas reuses the Orcherstator, Manager and
Launcher for the building of the Kulla-Brick.

The orchestrator filter creates a big picture of the Brick
in the form of a configuration files per each Kulla-Block in
this Brick by using the notation of a directed graph. This
pattern can be represented by the following pattern:

Fig. 4. Divide and Containerize pattern represented as directed graph

o

The configuration file includes information required
to identify and deploy each Kulla-Block considered
in a directed graph. In this configuration file, the
Orchestrator identifies the Kulla-Block that will repre-
sent the Worker in this pattern, which one will represent
Divide, Containerize, and Conguer. The configuration file
includes the information of the I/O interfaces that will be
used to perform the chaining of all this components in a pat-
tern and delivers this file to the Launcher filter, which create
as many clones of the worker Kulla-Block as established the
configuration file and launches the Divide, Containerize,
and Congquer software instances. The Containerize in-

stance performs the chaining of the Kulla instances with
the worker Kulla-Boxes by following the directed graph
notation included in the configuration file.

When the pattern has been deployed on a given infras-
tructure, Divide (D) first retrieves data content-by-content
from its data source (DSr) through the Input interface by
using the I/O interface defined in configuration file to do
that (either network or file system I/O functions) and write
the content in the K — Storage. The second step performed
by Divide D is virtually to split each content stored in
K-Storage into s segments for creating a list of K-Storage
pointers (beginning and ending of each memory segment),
which are sent to the Worker Kulla-Blocks.

The segmentation process is described in Algorithm 2.

Algorithm 2 Segmentation Process (Divide).

Require: Content name C),4me,Data Content |C|, number
of segments s, output list outs = {outy, outs, ..., outs}
1: currentSegment = 1, segmentsSent = (
2: while currentSegment < s do

3. CreateThread()

4. residue = |C| mod s

5 if (residue == 0) then

6: segmentSize = |C|/s

7. else

8 if (currentSegment < residue) then

9: segmentSize = |C|/s + 1

10: else

11: segmentSize = |C|/s

12: end if

13: end if

14: if (currentSegment > 1) then

15: initial Position = segmentSize %
(currentSegment — 1)

16: else

17: initial Position = 0

18: end if

@%Z@

Fig. 5. Manager/Block (M/B) example

The integration process used by Conquer is described in
Algorithm 3.

Algorithm 3 Integration process (Containerize).

Require: Content Id Eyy, File Size | Fsizel,
number of segments s, input list input =
{inputy, inputs, ..., input,}, output path out

1: =0, j =0, recoveredSegments = [s]

2: while 7 < s do

3: CreateThread()

4. recoveredSegments[i] = RecoverSegment(i, Fiq)
5. KillThread()

6: 1+=1

7: end while

8: recoveredData = ReserveMemory(Fs;..)

9: while 7 < s do
10: recoveredData = IntegrateContent(recoveredData,

recoveredSegments(j), j)

11: end while
12: sendContent(recoveredData, F;q, out)

As it can be seen, the results produced by a Divide —
and — Containerize Kulla-Brick are the very results pro-
duced by the application executed by a worker. Of course,
the performance of Divide — and — Containerize Kulla-
Brick is better that the original application as it exploits data

19: segmentContent = ReadSegment(|C|,initial Positionpsaghelissivehich is achieved without altering the code of
20: if (SendSegment(segmenContent, out cyrrentSegment)) its routines and without changing the way in which the

then
21: sendedSegments+ =1
22 end if

23: KillThread()

24: end while

25: if (segmentsSent == s) then

26: return GenerateContentId(Crame)
27: else

28: return —1

29: end if

As depicted in Algorithm 2, the workers uses the K-
Storage pointers for applications encapsulated into the
Kulla-Blocks to process the segments and puts the data in
the K-Storage for C'onquer instance to consolidate results.

The Conquer receives from workers the K — Storage
pointers, which are used to get the results and to consolidate
the results into one single output (depending on the action
suggested in each case). it also could deliver the results to
any of a data sink (DSk), other filter, or another Kulla-
Block/Brick depending on the configuration established in
the construction of Divide — Containerize Kulla-Brick.

application is invoked for execution.

The Divide, Containerize, Conquer and Worker Kulla
instances are in charge of invoking the functions and con-
trolling the synchronization of access to K — Storage in
a transparent procedure; as a result, the end-users are only
required for encapsulating the application into a Kulla-Block
to be executed as worker in this pattern. It is assumed that
the application does not produce dependencies and that
the data segmentation is suitable for processing data when
using this pattern.

3.2.3 Manager/Block: M/B Kulla-Brick

Manager/Block (M/B) method creates manager/worker
patterns inside of a Kulla-Brick depicted in the following
directed graph:

As it can be seen, the M/B method includes a M anager
instance that reuses Orchestrator and Launcher instances.

The pattern also includes a Worker instance, which
follows the very model ETL (Extract, Transform and Load)
described in previous method: the worker receives a task
(a content to be processed) as input parameter, executes a
given application, which transforms that content and loads

the output results (transformed version of that content) to
the K-Storage where other filter, Kulla-Block, or Brick can
retrieve them to start another processing procedure.

The Manager performs the following steps: i) Launches
w clones of the worker instance by reusing Launcher soft-
ware instance. ii) Creates collections of tasks to process the
contents stored in a Data source and creates maps that
include the path of a given content in the data source, an
identifier of the task to be processed, the parameters for
the application invoked by the workers, and the path of
either the data sink or another Kulla instance, which will be
used by the worker to deliver the results. iii) Reads contents
from data source by using the information registered in
the tasks and puts these contents in the K — Sotrage
iv) Distributes the maps to the workers by using a load
balancing algorithm ([45]). This algorithm assigns maps
to the workers through an I/O interface and enables the
manager to locate the results produced by the workers. vi)
Recovers the messages returned by workers when finishing
a given task, assigns new tasks to the workers and keeps
control over the execution of the collection tasks.

Algorithm ?? describes the construction and the data-
flow produced by this pattern.

Again, the Manager and Worker Kulla instances are in
charge of invoking/managing the functions for data ex-
change, synchronization, and for the access to K — Storage,
data source and data Sink in a transparent manner.

3.2.4 Recursive utilization of kulla instances and combined
patterns

In kulla construction model, patterns based on complex
graph systems can be built by using recursively patterns
and/or by combining different types/numbers of Kulla-
Bricks and to present these solutions to the endu-users as
a single solution.

The following directed graph depicts a combined pattern
including a Pipe&Block pattern, which includes in the first
filter a Manager (M) of a M/B pattern. In This pattern, each
worker (wy, wg, wy) launches a divide-and-Containerize
pattern (D/Cy, D/Cs, D/C),).

SO
XSS F

Fig. 6. A directed graph that exemplified recursive utilization of kulla
instances and combined patterns

In a similar way to this directed graph, solutions can be
built in a recursive manner. For instance, each worker of the
M/B pattern can launch another M/B pattern and so on.

These Brick structures enable developers to add ei-
ther parallelism or concurrent processing to their applica-
tions to improve the efficiency of solutions without alter-
ing/modifying routines in the codification of the applica-
tions. Examples of the development of this type of solutions

7

based on directed graphs are described in the experimental
evaluation section.

4 KULLA-BOXES: DEPLOYMENT STRUCTURES
FOR THE COMPOSITION OF AGNOSTIC APPLICA-
TIONS

The basic development structure in Kulla model is a soft-
ware piece called Kulla-Box, which includes software in-
stances to implement Kulla-Blocks and/or Kulla-Bricks.
This software piece is encapsulated into a virtual container
for deploying kulla solutions on a given infrastructure,
which is presented to the end-users as a single application.

Kulla-Boxes were designed for end-users to avoid side-
effects from data and infrastructure dependencies that arise
in deployment time, which significantly reduces the time
required by IT troubleshooting.

Therefore, a Kulla-Box converts applications into agnos-
tic solutions, that are already to be executed and deployed
by the end-users on a given infrastructure with container
platform previously installed.

It is important to note that, all the solutions created
in Kulla model reuse both the I/O interfaces and control
software instances, which adds self-similarity to the Kulla-
instances. For instance, a Kulla-Box and a Kulla-Brick are
auto-similar to the smallest part (a Kulla-Block) as all the
instances encapsulated into the virtual container of a Kulla-
Box (any of filters, Kulla-Blocks or Kulla-Bricks) can get
access to the very three I/O interfaces included in the Kulla-
Blocks. This means a Kulla-Box ends up following the very
ETL model used by Kulla-Blocks to process contents. For
instance, a Kulla-Box could only to encapsulate one Kulla-
Block, which cloud include a filer or a brick of filters (See
a Kulla-Box encapsulating a Kulla-Block, which including
patterns of filters in Figure 7). It also could includes a Kulla-
Brick or a combination pf bricks, which also could includes
a set of Kulla-Blocks (See a Kulla-Box encapsulating a Kulla-
Brick in Figure 7) and so on.

4.1 Building agnostic distributed applications by using
Bricks of Kulla-Boxes

Kulla-Box structures also can be converted into reusable and
interopreable software pieces because of, as we already said,
a Kulla — Boz follows the ETL model defined for all Kulla
instances. This means that each Kulla-Box also retrieves
contents from data source that are processed by an kulla
solution that is executed in the virtual container as a single
application, and delivers results to a Data Sink.

This self-similarity property adds interoprability to the
Kulla-Boxes, which enables end-users/developers to chain
Kulla-Boxes to another Kulla-Boxes to create a Bricks of
Kulla-Boxes (See graph c in Figure 7).

This type of structures also can be represented in the
form of a directed graph by using the very model cre-
ated for Kulla-Blocks and Kulla-Bricks that have been pre-
viously described in this paper. This also enables end-
users/Developers to create a distributed agnostic applica-
tion when Bricks of Kulla-Boxes are deployed on a given
distributed infrastructure (clusters, clouds, etc).

S I O‘ I SRR B S I 0 S
(0] Ny - u n n y . u |

n
U _ — t " p t 1p o t N
Nt ARLEEr ST { 1K
Cl It , e J N t @ !

t t t

E

“1p1/0 Net I/O FileSystem I/0 Memory @ Kulla-Block @ Kulla-Brick ‘E Kulla-Block |

Fig. 7. Representation of Kulla-Boxes abstraction

4.1.1
gies

Deployment scheme and resource profitability strate-

In order end-users/developers to create agnostic distributed
applications in felxible and dynamic manners, we devel-
oped and implemented a deployment scheme for Kulla-
Boxes based on strategies including preparation and launch-
ing phases.

In the preparation phase, configuration files for the
Kulla-Boxes are created by following the notation of a
directed graph. These files includes information such as
list of all kulla-Box images considered in a Brick of Kulla-
Boxes, the type of patterns considered in each Brick, the
input parameters for each Brick (e.g. the number of workers
in a manager/worker pattern). The role of each Kulla-Box
in each pattern is also included in this file. For instance,
in a Manager/Block pattern, a Kulla-Box image should
represent a manager and another one a worker. This means,
the graph will indicate which Kulla-Box image will be used
to launch a Kulla-Box Manager and which image will be
used to launch a Kulla-Box worker as well as the number of
clones of this image should be launched and deployed on a
infrastructure.

In order to implement the launching phase of the de-
ployment scheme, we reused control kulla instances such
as Orchestrator and Launcher, which were previously
defined when describing the management of patterns Kulla-
Bricks.

The Orchestrator of Kulla-Boxes is a software instance
placed in the first Kulla-Box of a Brick of Kulla-Boxes and
it is in charge of creating “solution layouts” for each Brick
of Kulla-Boxes by following a directed graph configuration
file created in the preparation phase.

Based on this “solution layout” the Orchestrator creates a
configuration files for each Kulla-Image where is indicating
information such as the ports (an IP when it required) of
Input and Output interfaces of the Kulla-Boxes, the paths
of the volumes that will be used as Data Sources and Data
Sinks for each case, the resources assigned per each Kulla-
Box (number of cores, RAM). In the case of this information
has not been provided by the developer of the distributed
application, the Orchestrator can get it from a virtual con-
tainers manager (e.g. either Kubernetes or Docker Swarm
that was the one used by our Orchestrator).

The Launcher is included in each kulla-Box image con-
sidered in the solution layout.

This enables the Orchestrator to invoke the launchers
to deploy the Kulla images considered by the distributed

application (Brick of Kulla-Boxes) in the form of instances
of virtual containers on a given distributed infrastructure
(e.g. Cluster or a Cloud). This also means that the scheme
will clone the Kulla-Box worker images w times to launch w
Kulla-Box instances.

The launchers add to the Kulla-Boxes a deployment con-
figuration file sent by the Orchestrator for each Kulla-Box
deploys its kulla instances required by that Kulla-Box (e.g.
managers, filters, workers, divide, conquers, containerize,
etc). In this phase, the scheme assumes the images of Kulla-
Boxes considered in a directed graph have already created
and are available to be launched in a given infrastructure.

The deployment of a solution layout is finished when the
automatic chaining of all the Kulla-Boxes has been fished
in the launching phase. At this point, a single agnostic
solution is available to be deployed on different types of
infrastructures by using a resource profitability strategy
such as scale-in, scale-out and both (mixing scale-in and
scale-out).

Scale-In is a strategy that enables the developers to com-
pose applications by deploying Kulla-Bricks into a single
Kulla-Box. In this strategy, all the Kulla-Blocks/Bricks are
launched trying to use all the cores in that server to create
agnostic parallel applications. This is feasible because devel-
opers can bind a given Kulla-Block with a given core. This
deployment strategy considers the creation of K — Storage
in memory, which is used as a communication channel for
the data exchange among the Filters, Blocks, and Bricks
considered in a given Kulla-Box.This strategy is suitable
to deploy parallel agnostic applications on any of virtual
machines, servers or computers including several cores.

Scale-Out: This strategy enables the developers to com-
pose applications by deploying Bricks of Kulla-Boxes on
clusters of either computers or cloud virtual machines. In
this strategy, a K-Storage is created per Kulla-Box in the
Brick and the data exchange is performed through the
network interfaces (Sockets for clusters and Curl for Cloud).
This strategy is suitable to deploy agnostic distributed ap-
plications.

Scale-Out/In: This greedy strategy enables developers
to create workflows of agnostic distributed and parallel
applications by mixing the aforementioned policies. In this
strategy, Bricks of Kulla-Boxes are deployed on different
types of infrastructures and each Kulla-Box deploys paral-
lel patterns (Kulla-Bricks), which also deploys Kulla-Boxes
trying to use as many resources (i.e. cores) as available in a
infrastructure.

4.2

In this section, we describe implementation details about the
development of construction, processing and deployment
structures and schemes considered in the design section.
We first establish that all the Kulla instances were devel-
oped by using virtual container images created with Docker
platform. The control kulla filters such as Divide, Container-
ize, Conquer, Manager, Launcher, Orchestrator, Worker, etc.
were written in C programming language. Versions of some
of these components (e.g. Manager and Workers) were avail-
able in Java, Python and C++.

All the software instances and Kulla-Boxes were stored
in a service we called Kull-Silo.

Implementation of solutions based on Kulla model

4.2.1 Kulla-Silo: Repository of Kulla-Boxes, I/O libraries
and control instance software

In order to simplify the implementation of solutions based
on Kulla model, we develop a repository service to man-
age I/0O libraries, software instance (versions of the li-
braries in the form of services), control kulla instances
(reserved) and Kulla-Boxes images already created by end-
users/developers.

In the Kulla — Stlo repository, the Kulla instances are
classified as user-defined and reserved. Kulla-Boxes created
by end-users or developers are examples of user-defined
Kulla instances, whereas filters such as Managers, Or-
chestrators, Launchers, Divide, Containerize, Conquer and
Workers as well as the implementation of I/O libraries such
as K-Storage, Input and Output interfaces are considered as
reserved. These instances are available in virtual container
images that can be used to build Kulla-Box instances.

The Kulla-Silo service includes functions to Put, Get,
Update, List and Delete Kulla-Boxes images as well as
functions to ADD, REMOV E, CHANGE reserved kulla
software instances to/from a given Kulla-Box image. This
means the end-users can choose from existent and available
Kulla-Blocks and/or Kulla-Bricks in the Silo by using above
functions to create user-defined Kulla-Boxes. The end-users
also can create Bricks of Kull-boxes by choosing the Kulla-
Boxes from the Silo and by configuring the type of pattern
to be created and the roles the Kulla-Boxes in that patterns
(Brick).

The input parameters for Kulla-Silo service are locations
maps, which include information such as image identifier
(Id-Block), type of image (Id-Type), owner identifier (Id-
Owner) and the “father” of the image (to identify bricks and
boxes), inventory of reserved Kulla instances to be included
into a Kulla-Box image.

Kulla-Silo service was implemented as a pair of contain-
ers: one including a PostgreSQL database for the indexing of
Kulla images and another including an instance of a cloud
storage service called SkyCDS [46] for storing the images
indexed in the Silo.

In the case of end-users being also developers, Kulla-Silo
includes templates based on functions to get 1/0O libraries
and control structure functions for programming code in
the form of filters and organize them as Kulla-Blocks and /or
Kulla-Bricks.

The following libraries are available in templates consid-
ered in this repository:

9

e The management library includes functions for Kulla
instances to create, launch, list and delete filters at
the processing layer, which were developed in C
programming. It also includes the control software
instances as a library (e.g. manager or worker).

e The shared memory management library enables
Kulla-Blocks to implement a K-Storage. This library
includes functions calls for filters to PUT/GET data
to/from K-Storage and to keep monitoring the K-
Storage as well as the management of the retrievals
and deliveries requested by applications. This library
was developed in C++ IPC [47]. Functions written in
Python, C, and C++ for applications to access to K-
Storage were also included in this library.

e The I/0 library has been developed for filters to ac-
cess Input and Output interfaces of the Kulla-Blocks.
This library includes sockets and curl I/O functions
for Kulla-Blocks to establish communication with
other Kulla instances through the Network and/or
File System. This library enables Kulla-Blocks to re-
ceive/deliver data to/from either a data sink/source.

4.3 Prototyping

We developed filters for the management of a set of appli-
cations to create Kulla-Blocks, which were developed a set
of Kulla-Boxes based on Kulla-Bricks such as Divide-and-
Containerize, Pipe&Filters and Manager/Blocks methods
as well as Bricks of Kulla-Boxes by combining Kulla-Boxes
including different types of patterns (Kulla-Bricks).

The Kulla-Boxes were indexed in he Kulla-Silo, which
was installed in a cluster of computers by using the Docker
platform (Compose). The kulla-Boxes images designed for
the evaluation defined in this paper, which including either
Bricks or Blocks. These images were added and indexed in
the Kulla-Silo using Docker Swarm for creating distributed
clusters of virtual containers (for the deployment of Bricks
of Kulla-Boxes).

The Kulla-Boxes were extracted from the Kulla-Siilo and
were deployed on the infrastructure described in Table 1
by following a given resource profitability and deployment
strategy (scale In and Scale Out/In).

5 EXPERIMENTAL EVALUATION AND RESULTS

The assessment and evaluation of kulla model was con-
ducted through an experimental evaluation in the form of
study cases based on real-world application composition
based on Kulla instances. A methodology of two phases was
defined to perform this experimental evaluation. In the first
one the solutions were deployed by using Scale-In strategy,
whereas in the last one Scale-In/Out was used.

We developed a Kulla-Block called Client that includes a
workload producer bot in a filter for sending requests to the
Kulla instances. These instances assume that the workload
generated by the bot is valid, as far as valid credentials
of real end-users are provided. This Client Kulla-Block
includes a filter for capturing the metrics used in the ex-
perimental evaluation.

In the experimental evaluation of the case studies we
used the following metrics:

e Service Time (ST): This metric represents the time
elapsed in which a content is processed by the ap-
plication(s) encapsulated in a Kulla-Box.

e Response Time (RT): This metric represents the time
spent by a Kulla-Box solution to successfully dis-
patch requests sent by the client bot. This metric
represents the sum of the ST produced by each Kulla
instance considered in a solution.

e Percentage of performance gain: Represents the
resultant percentage of gain when comparing

response times produced by different solu-
tions/configurations.
TABLE 1

Infrastructure used in experimental evaluation scenarios.
Name PCs | Cores | RAM | Space Scenario

PC 1 4 6GB | 240GB Scale-In
Server 1 16 64GB 2TB Scale-In

ClusterSwarm 4 12 64GB | 500GB | Scale-Out/In

Table 1 shows the features of the infrastructure for each
deployment scenario evaluated. The configurations, the ex-
periments and the results captured by the defined metrics
are described in each case study.

5.1 Scenario Scale-In: Experiments and Results

In this phase of evaluation, the Kulla-Boxes including Kulla-
Bricks such as Divide-and-Containerize, Pipe&Blocks and
Manager/Blocks were created by using real-world applica-
tions. These Kulla-Boxes were deployed on a PC and a single
server by using the Scale-In strategy. The infrastructure used
on each case is described in the case study.

In this scenario, we specifically created three Kulla-
Boxes.

The first Kulla-Box only including a Divide-and-
Containerize Kulla-Brick adding reliability value property
to the contents before sending them to the cloud or sharing
them with other users/partners.

The second Kulla-Box included a two stage Pipe&Block
Kulla-Brick where in the first stage is a Kulla-Block adding
frugality property to the contents (a compression appli-
cation was encapsulated into this Kulla-Block), whereas
the Divide-and-Containerize Kulla-Brick used in the first
solution was placed in in the second stage of the pattern
encapsulated into this kulla-Box.

In the last Kulla-Box, a Manager/Block Kull-Brick was
added to the bricks created in the second solution. In this
Brick, each worker executed a Pipe&Block of two stages: in
the first one, a compression application was executed and a
Divide-and-Containerize Brick was executed in the second
stage.

5.2 Divide-and-Containerize Kulla-Box

The Divide, Containerize and Conquer software instances
of the Divide-and-Containerize method were encapsulated
each into a Kulla-Block. The Containerize Kulla-Block was
configured to launch worker Kulla-Blocks in an incremental
manner (one-by-one from 1 to 5).

Qze

Fig. 8. First evaluated Kulla Solution represented as directed graph

Fig. 9. Second evaluated Kulla Solution represented as directed graph

@zg

Fig. 10. Third evaluated Kulla Solution represented as directed graph

The worker Kulla-Block image included the implemen-
tation of a dispersal information algorithm (IDA) [?], [48]
based on a serial/sequential implementation of the IDA
algorithm [48] available in the literature [?], [49], [50], [51].

The IDA algorithm provides contents with reliability
features to withstand failures of data (data missing, data bit
errors, unavailability of data, etc). This algorithm considers
a fault-tolerant technique that splits each content |C| of
length L into n pieces called dispersal files (dfs) each of
length Lgrs = Lc/m. Where m represents the number
of dfs sufficient for reconstructing |C|; as a result, this
algorithm can withstand the unavailability of (n — m) df s.
The capacity used by this algorithm is n * (Lc/m), which
means the overhead is Ov = (n * Lgss) — Lc.

In order to understand the benefits and limitations of
the implementation of this algorithm in straightforward
manner, let us to consider a content of length Lo = 1MB
processed by an IDA configuration n = 5 and m = 3. In
such a configuration, IDA splits that content |C| into five
segments df s of length Lgrs = (Lc = 1M B/m = 3)=.33MB

where three of them (m = 3) sufficient to reconstruct
|C|. In this example, the capacity overhead is Ov = ((n =
5% Lqps = .33M B)—L¢c = IM B) = .667M B, which results
in 66% of extra capacity (less than one replica of the source
data) for the system to withstand the failure/unavailability
of two (n—m) missing df s. As it can be seen, in practice, the

implementation of this algorithm represents a suitable cost-
effective solution for the preservation of sensitive/heritage
contents such as satellite and medical images because of the
trade-off between failure tolerance and storage consumption
achieved by this method. However, the expensive comput-
ing costs associated to the processing segments (df s) to add
redundancy reduces its utilization in real-world scenarios.
This implementation becomes a good candidate to use par-
allelism patterns in the processing its stages.

5.2.1 Configurations and evaluated solutions

The following configurations of Kulla-Brick and related
solutions were evaluated in the experimental evaluation:

o Serial IDA (IDA — S): This configuration executes
a serial implementation of IDA (implemented in C)
[50].

o Parallel IDA (I'BB — IDA): This configuration rep-
resents a parallel version of IDA algorithm [46] de-
veloped by using Intel TBB framework [21], where
the matrix multiplication routine performed by IDA
algorithm was identified to be processed in parallel.
The default configuration of this solution considers
using all the available cores in a computer (having
previously installed and configured the TBB platform
and CURL libraries).

e Kulla — IDA: In this configuration, the Divide-and-
Containerize method was developed to execute IDA
serial without modifying the routines of the IDA
code. Different configurations of this solution were
defined by varying the number of workers launched
by the Divide module of this solution (from 1 to 5).

5.2.2 Divide-and-Containerize Kulla-Box result analysis

In this section, we present the results of the experiments
performed with the configurations and solutions tested in
this case study.

1000

K-D&C(1)-IDA
K-D&C(2)-IDA
K-D&C(3)-IDA ——
100 L K-D&C(4)-IDA —a—
K-D&C(5)-IDA
5 TBB-IDA(8) —*—
Q
23
° 10
S
=
3
5 1
Q
4
o
0.1 5
/
0.01
1 10 100 1000
File Size (MB)

Fig. 11. Encoding response time of studied configurations

Figure 11 shows the response time produced by the
solutions evaluated in the controlled experimentation for
different file sizes.

As expected, the parallel implementation of the IDA
algorithm by using Intel TBB called T BB — I D A produced
better response times than the serial implementation of

K-D&C(2)-IDA ——
K-D&C(3)—IDA s
K-D&C(4)-IDA mmmmm

K-D&C(5)-IDA m==m
TBB-IDA(8)

70
65

60
55

50
45

% of gain

40
35 .

30

1 10 100
File Size (MB)

1000

Fig. 12. Gain performance percentage of studied configurations in com-
parison with Serial solution.

the original algorithm (IDA-S). As it can be seen, the per-
formance improvement produced by TBB-IDA solution is
reduced in proportion to the file size (the larger the file size,
the lower the performance improvement).

Figure 11 also shows the Divide-and-Containerize
method encapsulated into a Kulla-Brick launched with dif-
ferent configurations depending on the number of work-
ers (from 1 to 5 workers) invoked by Containerize block
(Kulla-IDA2-5). Kulla-IDA?2 configuration is not competitive
in comparison with TBB-IDA configuration for small files,
which is an expected behavior considering that Kulla-IDA
(based on Divide&Containerize method) configurations are
focused on data parallelism. As it expected, Kulla-IDA con-
figuration is not quite efficient with few workers and small
tasks. This premise is evident when Kulla-IDA2 becoming
competitive for large files in comparison with TBB-IDA
configuration. It is also evident when increasing the number
of the worker instances in the Kulla-Brick (Kulla-IDA34,5).

Two causes produce the improvement effect observed in
the response time produced by Kulla-IDA configurations:
the first one is the size of the tasks (Task Size=FileSize/Number
of workers) managed by each worker, which results in that
the more the workers, the less the size to be processed by
the applications of the workers. The second one is the in-
memory exchange of information only produces two 1/0O
operations sent to the file system (Read from the data source
and write to the Data Sink), which also reduces the service
times produced by the solution.

The impact of the evaluated solutions on the perfor-
mance of the algorithm is showed in Figure 12 where the
percentage of gain obtained by the solutions evaluated pro-
duced for different file sizes is presented. The improvement
of TBB-IDA decreases form 54% (for 1MB files) to 33% in
comparison with the serial version (IDA-S), whereas Kulla-
IDA-5 produces an improvement from 68% to 60%, More-
over, Kulla-IDA-5 produces a performance improvement,
depending on the file size to be processed, between 14%
and 27% in comparison with TBB-IDA.

In order to understand the effects, not only of the data
parallelism, but also of the in-memory management on
the performance for the evaluated solutions, we added in-
memory management to the TBB-IDA solution.

100

=
—

1 10 100
File Size (MB)

Response Time (Sec)

1000

Fig. 13. Response time obtained for the three configurations with all their
versions.

K-D&C(2)-IDA ==
K-D&C(3)—IDA mmmmm
K-D&GC(4)—IDA mmmmm
K-D&C(5)-IDA ==

TBB-IDA(S) m—

% of gain

1 10 100
File Size (MB)

1000

Fig. 14. Gain obtained by the K-D&C-IDA and TBB-IDA to IDA Pipeline.

Figure 13 shows the response time obtained by the
Kulla-Box configurations (Kulla-IDA2-5) and TBB-IDA in
the decoding process for contents of different sizes. Figure
14) shows the percentage of gain for all configurations in
relation to the serial version (IDA-S). As it can be seen,
in-Memory TBB-IDA solution improved its performance
in mean 40% for small files and 12% for large files in
comparison with Kulla-Boxes.

The behavior showed in Figure 13 is produced by two
causes: the first (and the obvious one) is the in-memory
management of the I/O calls added to TBB-IDA solution,
which reduces the calls performed by this solution to the
file system, which enables this solution to process data
faster than in the original version. The second one is the
reduction of the data processed in the decoding procedure
(only three df s are processed, whereas five df s are processed
in encoding procedure). For instance, when processing an
file of 1GB, in a encoding procedure are managed 1,66 GB
because of the 66% of redundancy produced by the IDA
algorithm, whereas in the decoding process only 1GB is
processed; as a result, the workers receives less data to
process in a decoding process than in encoding procedure.
As already we said, the data parallelism is more suitable for
processing large files, which explains the improvement of
Kulla solutions for large file sizes in comparison with TBB-
IDA.

12

The results of this scenario revealed that, when the
developers have enough experience to identify the routines
suitable to be executed in parallel and to develop shared
memory functions for these routines, they can create solu-
tions producing a better performance than the performance
produced by Kulla scheme based on patterns deployed on
virtual containers and in-memory processing/storing.

However, when this is not the case, Kulla represents
a good deal for developers requiring dynamic, rapid and
efficient solutions, as the management of data parallelism
processing and in-memory storage is performed by Kulla
transparently. Moreover, the construction of the solutions is
almost immediate as the parallel pattern is built in advance
and the developer/user only requires to incorporate an
application to a worker and choosing the number of workers
to be launched for obtaining a parallel solution delivering a
competitive performance.

A third option is encapsulating a parallel application
into Kulla-Box to add, in a rapid manner, in-memory pro-
cessing/storing feature to this application (We performed
this in TBB-IDA configuration showed in Figure 13). In
this case, the in-memory processing is transparent for
developers/end-users as this process is managed inside of
the Kulla-Box.

5.3 Pipe&Block Kulla-Box processing satellite imagery

As aforementioned, Pipe&Block Kulla-Box is a solution
based on a two stage Pipe&Filter Brick: In the first stage,
we encapsulated the LZ4 Lossless compression algorithm (124)
% into a Kulla-Block, which reads a given file as input and
produces, as output, a compressed/decompressed version
of original file, which is sent forward to the next stage
in the pipeline. The second stage of this pattern is the
very Divide-and-Containerize Brick evaluated in previous
section. This Kulla-Box is represented by the Kulla-Lz4+IDA
configuration. We reused the parallel configuration (TBB-
IDA) and a software pipeline (LZ4-IDA) created by using
the serial configuration previously evaluated (Serial-IDA)

This kulla-Box allowed us to show an interesting feature
of Kulla construction model, which enables developers to
create complex solutions by chaining different types of Kulla
instances. This feature is quite useful in real-world scenarios
where the combination of different quality features should
be required to be added to the contents.

In this context, we conducted a case study based on
the processing of satellite imagery repository by using that
Kulla-Box. This repository includes the catalogs per each
sensor (LandSat, Terra and AQUA) captured by an antenna
placed at Chetumal, Mexico. The number of images in these
catalogs grows in a constant manner, are large (between
252MB to 1,6GB for images with one processing level) and
must be preserved as heritage for large periods of time as
these images are used in the creation of earth observation
products. Each image is processed 31 times by the studied
solutions and the median of the metrics is captured for
corresponding evaluation.

4. Implemented by using the libraries described in [52]

5.3.1 Pipe&Block Kulla-Box experimental results

The Kulla-Box (Kulla-Lz4+IDA) adds frugality and reliability
properties to the satellite images in a combined manner. The
aim of this type of properties combination is to improve the
storage utilization, is a quite interesting feature, for instance,
for missions of earth observation. For instance, Kulla-IDA
configuration produces 66% (667MB) of redundancy over-
head when processing a satellite image of 1GB size to
withstand 2 failure of servers/virtual machines, whereas
Kulla-Lz4+IDA only produces in average 6% (39,9MB) when
performing the same operation; as a result, the cost of
adding reliability to the products is almost for free in the
case of Kulla-Lz4+IDA.

The improvement of the storage utilization produced
by Kulla-Lz4+IDA also improves the service time of the
Kulla-Box because the contents are first compressed before
to be sent to the Divide&Containerize Brick of IDA. This
means the workers of IDA pattern receives less data to
the encoding/decoding procedures, which also reduces the
response time of the Kulla-Lz4+IDA.

Figure 15 depicts this effect when showing, in left ver-
tical axis (left), the capacity produced when applying the
IDA fault-tolerant technique to the satelltie images with
(See Capacity LZ4-IDA bars) and without (See Capacity IDA
bars) compression produced by Kulla-IDA when coding
satellite images of different size (horizontal axis). The costs
of the redundancy can be easily observed by comparing
the capacity produced by both configurations. As it can
be seen, the reliability costs can be significantly reduced
when combining encoding with compression depending on
the compression degree achieved by the first stage of this
pattern. For instance, the encoding and decoding response
times for last image where the compression only could
reduce the size of the file in 15% producing, which also
affecting the next stage producing a increasing of redun-
dancy overhead of 18%, whereas the 40% of reduction was
obtained for the rest of images, which even reducing the
costs of reliability to zero.

Figure 15 also shows, in right vertical axis, the response
time produced by Kulla configurations when processing
satellite images by using six workers in the Kulla-Brick D/C
(see lines of K-Lz4-D/C(6w) and K-D/C(6w)).

As it can be seen, it is evident that the combination of
compression with encoding/decoding not only reduces the
the capacity to be processed but also the response time is
reduced in such a process. Although an increment in the
response times is expected by adding compression to the
original solution devoted to encode/decode satellite images,
the combination of features produced in Kulla-Lz4+IDA not
only avoids this increment but also produces a reduction in
the times (20%).

Insights from the Kulla-Lz4+IDA comparison with Kulla-
IDA(6 cores) showing the efficacy of combining solutions to
reduce not only the storage utilization but also the process-
ing performance, encouraged us to perform a comparison
between the performance of Kulla-Lz4+IDA and TBB-IDA
(in-memory version offering the best performance in pre-
vious experiments). The idea was to establish how much
a combination of features enables Kulla-Bricks be close to
reach the performance of a routine paralleled solution and
in-memory solution (TBB-IDA-Mem).

Capacity IDA

Capacity LZ4—-IDA
D/C-Code(6s) —=—
D/C-LZ4-Code(6s) ——

5 700 —
g / 114
& 600 g 112
2] 5
5 500 110 &
= A Y
8 18 £
2. 400 / 1 £
= (7]
g i &
g < I
©
£ 200 15
(7]
Q
T 100 0

0 50 100 150 200 250 300 350 400 450

Original Content Size (MB)

Fig. 15. Resultant capacity space produced by evaluated solutions.

Figure 16 shows, in vertical axis, the response times
produced by Kulla-Lz4+IDA and TBB-IDA when encod-
ing/decoding satellite images by using the studied con-
figurations. As it can be seen, the more the workers, the
less the size of data processed by the workers of Kulla
configurations, which yields the higher improvement of
the response times of these configurations. When Kulla-
Lz4+IDA processing large satellite images, it is possible for
this configuration to reach the performance of TBB-IDA.

100

[-u/ %
L
—
LZ4-IDA
— K-LZ4-D&C(2)-IDA
K-LZ4-D&C(3)-IDA ——
K-LZ4-D&C(4)-IDA —a—
K-LZ4-D&C(5)-IDA
K-LZ4-D&C(6)-IDA ——
TBB-IDA(E) —+—

100 150 200 250 300 350 400 450
File Size (MB)

Response Time (Sec)
)
1Y

VI
\

Fig. 16. Response time when increasing the number of workers Kulla-
Blocks in the codification process.

5.4 Combining all patterns in a Kulla-Box for process-
ing medical images

At this point, we have showed how a serial applications can
be competitive in comparison with routine-based parallel
applications by using parallel patterns built by using Kulla
model. Furthermore, the evaluation also showed how the
self-similar and modular properties of this model enabled us
to combine patterns to improve the value added to the con-
tents for reducing storage utilization and even improving
the performance until to be competitive with routine-based
parallel solutions.

In this context, we add a new pattern to the previous
Kulla solution by converting the LZ4 Kulla-Block into a
Kulla-Brick implementing a Manger/Block pattern (M/B).

We encapsulated this solution into a Kulla-Box. See this
Kulla-Box in Figure 17. The master of M/B Kulla-Brick
reads files from the data source and sends one file to one
worker, which launches a D&C pattern. This pattern splits
the received file into 5 segments that are sent to five workers,
which perform IDA encoding process on each segment.

As it can be seen, the basic idea is to reduce the await-
ing time of D/C-IDA Kulla-Brick. The performance of this
Kulla-Box was comapred with the performance of TBB-IDA.

Processing
Blocks

Worker

i
Divide ~ Conianerize |
|

Worker

| i

Block
I

i Manager Block

Block

= Divide

|
Containerize |
Block i

Fig. 17. Kulla-Box combining Manager/Block and Divide-and-
Containerize patterns.

We conducted a case study based on computed tomog-
raphy (CT) imaging repository where both solutions pro-
cessed 55 images with quality (512x512), of 512MB each, of
a crocodile produced by a tomograph. The medical imagery,
with a volume of 27,5GB, was processed by the evaluated
solutions.

In the case of the Kulla-Box, the experiments were per-
formed by varying the number of workers launched by
the first Kulla-Brick (M/B) as well as varying the number
of workers launched by the second Kulla-Brick (D&C). In
the case of TBB-IDA, the number of cores used by this
configuration was increased from 1 to 16.

54.1
ages
Figure 18 shows, in vertical axis, the response time produced
by all the configurations of Kulla-Boxes (k-M/B(x)-D&C(x)
and TBB-IDA (horizontal axis) when processing sets of med-
ical images. To make a fair comparison, the configurations in
this experiment to take advantage of all the available cores
of the server used in the experimation.

As it can be seen, all configurations of K — Box(w)
produce better response time than TBB-IDA when using
all available cores in the server. We observed that the more
workers in the M/B pattern, the less workload is delivered
to the workers of the next pattern (D&C') and the less time
required by this pattern to process contents; as a result,
the improvement of the kulla solutions in comparison with

Experimental results when processing medical im-

R -
>
£
E
£
E o9
Q
2 08
o .
>
o 0.7
o
0.6 [[
Vi
%, % T4 v
R, N N, N, N
S & & & &
/’ +\ +\ +\ +\
o Ny, e T,
% AT s,
) 7%) %,

Configuration

Fig. 18. Response time produced by TBB-IDA and different Kulla-Box
configurations when using 16 physical cores

20 —8— 2Cores
15 —&— ACores
10 BCores
5 —a— 16Cores
o
DD S B D SRR
&D\» B P PP &cp $2 g8 P
S ST T TS
G A
+ + A

Fig. 19. % of performance gain

TBB-IDA is exponentially increased from 6,88% when using
two workers in the M/B pattern to 45,99% when using 16
workers in M/B per only one D&C' pattern. Three are the
causes of this effect of improvement in the performance
observed in these experiments when processing medical
images: i) the first stage (compression by LZ4) is performed
in parallel, which reduces the awaiting time in the next
stage (IDA). ii) LZ4 reduces the size of the data delivered
to IDA stage, which reduces the service time of required by
IDA in this stage to process the images. iii) Although the
increment of D/C patterns increases the data parallelism,
it also increases the I/O operations required to store the
processed data, which also reduces the effectiveness of data
parallelism.

In order to quantify the performance differences between
both models, the client bot also captured the percentage of
performance gain achieved by each Kulla-Box configura-
tions. Figure 19 shows the percentage of performance gain of
Kulla Boxes in comparison with TBB-IDA. As it can be seen,
the performance of best K — Box configurations (varying the
number of workers of M/B pattern, which only launching a
D&C pattern per worker) grows from 38,45% to be stable in
45% (e.g. 45,99 for W/B(8) and 45,69% for W/B(16)).

As showed in previous experiments, besides of per-
formance improvement, Kulla — Box configurations also
reduce the costs of withstanding failures of services. In
these solutions the combination of patterns encapsulated on
kulla-Boxes not only reduces the storage utilization but also

improves the performance of the processing procedures,
which was achieved without analyzing the code of the
applications to find routines to be executed in parallel.

5.5 Scale Out/In Scenario: deploying agnostic dis-
tributed applications

In order to show the flexibility of Kulla model to provide
applications with agnostic property in distributed envi-
ronments, we deployed the kulla-Box combining patterns
described in previous experiments in Figure 17 but now
by using four servers and changing the scale-in deploy-
ment method by Scale-out/in. This deployment builds a
distributed agnostic application that we called Brick-Of-
Kulla-Boxes. In this type of deployment, a M/W pattern
implementing a Pipe&Blocks encapsulated into a Kulla-Box
is deployed on one server. The first stage of this Kulla-
Brick included LZ4 and a launcher of three D&C patterns,
which were encapsulated into another Kulla Box, which was
cloned three times by the manager of the Brick of Kulla-
Boxes. The Kulla-Boxes were deployed on one different
server. Each D&C pattern included 1 master and as many
workers as cores available in the servers.

The exchange of data between M/W and D&C Kulla-
Boxes was performed through the network I/O interface
(sockets chosen as all servers are placed at the same site). As
a result of this deployment, the BrickOf-Kulla-Boxes solution
used a M/B(3w),D&C(12w) configuration. Nevertheless, the
end-user can design a different solution configuration by
setting up the parameters of both patterns in the manager
of the Brick of Kulla-Boxes.

TBB-IDA was configured for encoding the medical im-
ages in a server by using all the cores in one server and then
sending the encoding segments to the rest of servers.

Table XXX shows the features of the servers, which were
installed in the form of a clusters of virtual containers.

We performed the very experiment described in pre-
vious section but now the 55 medical images were pro-
cessed by BrickOf-Kulla-Boxes and TBB-IDA configurations.
We compared the response time produced by both solutions
to perform a performance assessment.

5.5.1
Boxes

BrickOf-Kulla-Boxes processed the image repository (28,5GB)
in 6,1 minutes for a throughput of 75,90 GB/sec, whereas
TBB-IDA spent 26.5 minutes to perform the same task.
Moreover, TBB-IDA produced 18,34GB of extra capacity
that is the cause of the delays observed by this type of
solution, whereas the fault tolerance provided by BrickOf-
Kulla-Boxes was achieved for free as the comrpessin degree
in this type of digital products was high (in a range of 30-
40%) to withstand the same number of failures of traditional
algorithm.

Experimental results when deploying Brick of Kulla-

6 CONCLUSIONS AND FUTURE WORK

This paper presented the design, development and imple-
mentation of Kulla, a construction model that takes advance
of lightweight and immutability features of virtual contain-
ers (VCs) in the composition of agnostic distributed /parallel
applications.

15

In Kulla model, the applications, including dependencies
and environment settings, are encapsulated into construc-
tion units called Kulla-Blocks. These logical construction
structures also include input/output interfaces (network,
file system and memory) and in-memory data management
schemes, which provides Kulla-Blocks with interoperability
functionality for coupling/chaining several Kulla-Blocks in
the form of processing structures called Kulla-Bricks. These
structures enable developers/end-users to build parallel
patterns without altering/modifying the applications code
to improve the efficiency of these applications.

Kulla-Bricks including parallel patterns such as Divide-
and-Containerize (producing data parallelism), Pipe&Blocks
(producing pipelines) and Manager/Blocks (producing task
parallelism) were developed to show the feasibility and
flexibility of applying this model to real-world real-world
applications for processing data.

In this model, deployment structures called Kulla-Boxes
encapsulate Kulla-Blocks and Kulla-Bricks into virtual con-
tainers to provide applications with immutability and ag-
nostic properties, which reduces the need for organizations
to perform IT troubleshooting procedures. Bricks of Kulla-
Boxes can be built to create distributed/parallel agnostic
applications by chaining Kulla-Boxes and by using de-
ployment strategies described in this paper (Scale In, Out,
Out/In).

In this model, all the kulla instances reuse the I/0O
interfaces as are self-similar to the smallest construction unit
(Kulla-Block) and are presented to the end-users as a Kulla-
Box (a single application); as a result, the management of
resources such as Network, cores, RAM, storage locations,
parallelism, intercommunication is performed inside of the
Kulla-Boxes by the control software instances designed for
this construction model.

Case studies based on satellite and medical imagery
were conducted by using Kulla instances deployed on a
cluster of virtual containers. The experimental evaluation
revealed, in a comparison of Kulla-Boxes with serial and
parallel (created by using intel TBB) applications, the effi-
ciency and flexibility of Kulla model in the different evalu-
ated scenarios. It also shows the agnostic and interoperable
properties of this model as multiple solutions could be built
by reusing applications and as these applications could be
deployed on different types of IT infrastructures.

Now we are working on models for the building of
processing fabrics, operation management models for im-
proving the profitability of resources in automatic manner.
By now the scripts and templates used in the solutions
evaluated in this paper were created by Kilo service in
automatic manner, which also creates the configurations for
all the kulla instances (Blocks, Bricks, Boxes and Bricks of
Kulla-Boxes). Nevertheless, a programming model also is
under construction for developers can build Kulla solutions
by using programmable scripts instead a GUI or the Kilo-
Service.

ACKNOWLEDGMENTS

This work has been partially supported by the “Span-
ish Ministerio de Economia y Competitividad” under the
project grant TIN2016-79637-P “Towards Unification of HPC
and Big Data paradigms”.

REFERENCES

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]
[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

[20]

M. Hayden and R. Carbone, “Securing linux Containers,” GIAC
(GCUX) Gold Certification, Creative Commons Attribution-ShareAlike
4.0 International License, vol. 19, 2015.

M. Souppaya, J. Morello, and K. Scarfone, “Application Container
Security Guide,” NIST Special Publication, vol. 800, p. 190, 2017.

A. Karmel, R. Chadromouli, and M. Iorga, “NIST Definition of
Microservices, Application Containers and System Virtual Ma-
chines,” Natl Inst. of Standards and Technology (NIST) Special Pub-
lication, pp. 800-180, 2016.

Gartner, Inc. and/or its affiliates, “6 Best Practices
for Creating a Container Platform Strategy,” 2017,
https:/ /www.gartner.com/smarterwithgartner/6-best-practices-
for-creating-a-container-platform-strategy/, Last accessed on
2018-11-15.

I. A Forrester Consulting Thought
Commissioned By Dell EMC and R. Hat, “Con-
tainers: Real Adoption And Use Cases In 2017
https:/ /www.gartner.com/smarterwithgartner/6-best-practices-
for-creating-a-container-platform-strategy/, Last accessed on
2018-11-15.

P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay, “Containers and
Virtual Machines at Scale: A Comparative Study,” in Proceedings of
the 17th International Middleware Conference. ACM, 2016, p. 1.

R. Montella, A. Brizius, D. Di Luccio, C. Porter, J. Elliot, R. Mad-
duri, D. Kelly, A. Riccio, and I. Foster, “Using the FACE-IT portal
and workflow engine for operational food quality prediction and
assessment: An application to mussel farms monitoring in the Bay
of Napoli, Italy,” Future Generation Computer Systems, 2018.

J. F. Smart, Jenkins: The Definitive Guide. O’Reilly Media, Inc., 2011.
I. Taylor, M. Shields, I. Wang, and A. Harrison, “The triana
workflow environment: Architecture and applications,” Workflows
for e-Science, pp. 320-339, 2007.

R. Montella, D. Kelly, W. Xiong, A. Brizius, J. Elliott, R. Madduri,
K. Maheshwari, C. Porter, P. Vilter, M. Wilde et al., “FACE-IT:
A science gateway for food security research,” Concurrency and
Computation: Practice and Experience, vol. 27, no. 16, pp. 4423-4436,
2015.

T. J. Skluzacek, K. Chard, and I. Foster, “Klimatic: a virtual data
lake for harvesting and distribution of geospatial data,” in Parallel
Data Storage and data Intensive Scalable Computing Systems (PDSW-
DISCS), 2016 1st Joint International Workshop on. 1EEE, 2016, pp.
31-36.

M. Wilde, M. Hategan,]J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,”
Parallel Computing, vol. 37, no. 9, pp. 633-652, 2011.

J. Gonzalez-Compean, V. Sosa-Sosa, A. Diaz-Perez,]J. Carretero,
and J. Yanez-Sierra, “Sacbe: A building block approach for con-
structing efficient and flexible end-to-end cloud storage,” Journal
of Systems and Software, vol. 135, pp. 143156, 2018.

G. A. Vazquez-Martinez, J. Gonzalez-Compean, V.]. Sosa-Sosa,
M. Morales-Sandoval, and J. C. Perez, “CloudChain: A novel
distribution model for digital products based on supply chain
principles,” International Journal of Information Management, vol. 39,
pp- 90-103, 2018.

K. Abushab, M. Suleiman, Y. Alajerami, S. Alagha, M. ALna-
hal, A. Najim, and M. Naser, “Evaluation of advanced medical
imaging services at governmental hospitals-gaza governorates,
palestine,” Journal of Radiation Research and Applied Sciences, vol. 11,
no. 1, pp. 4348, 2018.

R. Marcelin-Jiménez and S. Rajsbaum, “Cyclic strategies for bal-
anced and fault-tolerant distributed storage,” in Latin-American
Symposium on Dependable Computing. Springer, 2003, pp. 214-233.
C. G. Riso Andrea M., “NASA Cloud Computing Platform: Neb-
ula.” 2010.

J. Gonzalez-Compean, V. J. Sosa-Sosa, A. Diaz-Perez,]. Carretero,
and R. Marcelin-Jimenez, “FedIDS: a federated cloud storage
architecture and satellite image delivery service for building
dependable geospatial platforms,” International Journal of Digital
Earth, pp. 1-22, 2017.

D. del Rio Astorga, M. E. Dolz, J. Ferndndez, and J. D. Garcia,
“Paving the way towards high-level parallel pattern interfaces
for data stream processing,” Future Generation Computer Systems,
vol. 87, pp. 228-241, 2018.

R. M. Badia, J. Conejero, C. Diaz,]J. Ejarque, D. Lezzi, F. Lordan,
C. Ramon-Cortes, and R. Sirvent, “Comp superscalar, an inter-

Leadership Paper

[21]
[22]
[23]

[24]

(25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

16

operable programming framework,” SoftwareX, vol. 3, pp. 32-36,
2015.

J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. O’Reilly Media, Inc., 2007.

W. Gropp, R. Thakur, and E. Lusk, Using MPI-2: Advanced features
of the message passing interface. MIT press, 1999.

T. White, Hadoop: The definitive guide. 7 O’Reilly Media, Inc.”,
2012.

C. Boettiger, “An introduction to Docker for reproducible re-
search,” ACM SIGOPS Operating Systems Review, vol. 49, no. 1,
pp- 71-79, 2015.

P. Belmann, J. Droge, A. Bremges, A. C. McHardy, A. Sczyrba, and
M. D. Barton, “Bioboxes: standardised containers for interchange-
able bioinformatics software,” Gigascience, vol. 4, no. 1, p. 47, 2015.
B. Marwick, “Computational reproducibility in archaeological re-
search: basic principles and a case study of their implementation,”
Journal of Archaeological Method and Theory, vol. 24, no. 2, pp. 424—
450, 2017.

J. Cito, V. Ferme, and H. C. Gall, “Using Docker containers to im-
prove reproducibility in software and web engineering research,”
in International Conference on Web Engineering. Springer, 2016, pp.
609-612.

P. Morales-Ferreira, M. Santiago-Duran, C. Gaytan-Diaz,
J. Gonzalez-Compean, V. J. Sosa-Sosa, and I. Lopez-Arevalo,
“A Data Distribution Service for Cloud and Containerized
Storage Based on Information Dispersal,” in Service-Oriented
System Engineering (SOSE), 2018 IEEE Symposium on. 1EEE, 2018,
pp- 86-95.

H. G. Reyes-Anastacio,]. Gonzalez-Compean, M. Morales-
Sandoval, and]. Carretero, “A data integrity verification service
for cloud storage based on building blocks,” in 2018 8th Inter-
national Conference on Computer Science and Information Technology
(CSIT). IEEE, 2018, pp. 201-206.

J. Gantz and D. Reinsel, “The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east,” IDC
iView: IDC Analyze the future, vol. 2007, pp. 1-16, 2012.

R. Montella, S. Kosta, and I. Foster, “DYNAMO: Distributed
leisure Yacht-carried sensor-Network for Atmosphere and Marine
data crOwdsourcing applications,” in Cloud Engineering (IC2E),
2018 IEEE International Conference on. IEEE, 2018, pp. 333-339.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.]. Maech-
ling, R. Mayani, W. Chen, R. F. da Silva, M. Livny et al., “Pegasus,
a workflow management system for science automation,” Future
Generation Computer Systems, vol. 46, pp. 17-35, 2015.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey of
data-intensive scientific workflow management,” Journal of Grid
Computing, vol. 13, no. 4, pp. 457-493, 2015.

B. Barney et al.,, “Introduction to parallel computing,” Lawrence
Livermore National Laboratory, vol. 6, no. 13, p. 10, 2010.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107-113, 2008.

F. Darema, “The spmd model: Past, present and future,” in Euro-
pean Parallel Virtual Machine/Message Passing Interface Users Group
Meeting. Springer, 2001, pp. 1-1.

V. Pieterse and P. E. Black, “”single program multiple data”,”
in Dictionary of Algorithms and Data Structures [online],
Vreda Pieterse and Paul E. Black eds., dec 2004, available
from: https://xlinux.nist.gov/dads/HTML/singleprogrm.html
(accessed 14 March 2018).

J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel
programming models and tools in the multi and many-core era,”
IEEE Transactions on parallel and distributed systems, vol. 23, no. 8,
pp- 1369-1386, 2012.

D. del Rio Astorga, M. E. Dolz, J. Fernandez, and]J. D. Garcia,
“Supporting advanced patterns in g r ppi, a generic parallel
pattern interface,” in European Conference on Parallel Processing.
Springer, 2017, pp. 55-67.

J. G. Blas and]. D. Garcia, “A c++ generic parallel pattern interface
for stream processing,” in Algorithms and Architectures for Parallel
Processing: 16th International Conference, ICA3PP 2016, Granada,
Spain, December 14-16, 2016, Proceedings, vol. 10048. Springer, 2016,
p- 74.

R. Sotomayor, L. M. Sanchez, J. G. Blas,]. Fernandez, and J. D. Gar-
cia, “Automatic cpu/gpu generation of multi-versioned opencl
kernels for c++ scientific applications,” International Journal of
Parallel Programming, vol. 45, no. 2, pp. 262-282, 2017.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

M. Grawinkel, M. Mardaus, T. Siif}, and A. Brinkmann, “Eval-
uation of a hash-compress-encrypt pipeline for storage system
applications,” in Networking, Architecture and Storage (NAS), 2015
IEEE International Conference on. 1EEE, 2015, pp. 355-356.

F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-oriented
software architecture, on patterns and pattern languages. John wiley
& sons, 2007, vol. 5.

E. A. Posner, K. E. Spier, and A. Vermeule, “Divide and conquer,”
Journal of Legal Analysis, vol. 2, no. 2, pp. 417-471, 2010.

P. Morales-Ferreira, M. Santiago-Duran, C. Gaytan-Diaz,
J. Gonzalez-Compean, V. J. Sosa-Sosa, and I. Lopez-Arevalo,
“A Data Distribution Service for Cloud and Containerized
Storage Based on Information Dispersal,” in Service-Oriented
System Engineering (SOSE), 2018 IEEE Symposium on. 1EEE, 2018,
pp- 86-95.

J. L. Gonzalez, J. C. Perez, V. J. Sosa-Sosa, L. M. Sanchez, and
B. Bergua, “Skycds: A resilient content delivery service based on
diversified cloud storage,” Simulation Modelling Practice and Theory,
vol. 54, pp. 64-85, 2015.

J. M. G. (auth.), Performance Modeling of Operating Systems Using
Object-Oriented Simulation: A Practical Introduction, 1st ed., ser.
Series in Computer Science. Springer US, 2002.

M. O. Rabin, “Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance,”] ACM,
vol. 36, no. 2, pp. 335-348, Apr. 1989. [Online]. Available:
http://doi.acm.org/10.1145/62044.62050

R. Marcelin-Jimenez, S. Rajsbaum, and B. Stevens, “Cyclic storage
for fault-tolerant distributed executions,” IEEE Transactions on
Parallel and Distributed Systems, vol. 17, no. 9, pp. 1028-1036, 2006.
M. Quezada Naquid, R. Marcelin Jiménez, and M. Lépez Guerrero,
“Fault-tolerance and load-balance tradeoff in a distributed storage
system,” Computacion y Sistemas, vol. 14, no. 2, pp. 151-163, 2010.
J. L. Gonzalez and R. Marcelin-Jiménez, “Phoenix: A fault-tolerant
distributed Web storage based on URLs,” in 2011 IEEE 9th In-
ternational Symposium on Parallel and Distributed Processing with
Applications (ISPA). TEEE, 2011, pp. 282-287.

Y. Collet, “LZ4 - Extremely fast compression,”
https:/ /github.com/1z4/1z4, 2017.

