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ABSTRACT 

Maintenance is essential to prevent catastrophic failures in rotating machinery. A crack can cause a 
failure with costly processes of reparation, especially in a rotating shaft. 

In this study, the Wavelet Packets transform energy combined with Artificial Neural Networks 
with Radial Basis Function architecture (RBF-ANN) are applied to vibration signals to detect cracks in a 
rotating shaft. Data were obtained from a rig where the shaft rotates under its own weight, at steady 
state at different crack conditions. Nine defect conditions were induced in the shaft (with depths from 
4% 
to 50% of the shaft diameter). The parameters for Wavelet Packets transform and RBF-ANN are 
selected to optimize its success rates results. Moreover, 'Probability of Detection' curves were 
calculated showing probabilities of detection close to 100% of the cases tested from the smallest crack 
size with a 1.77% of  false alarms. Artificial Neural Networks 

1. Introduction

The main objective of condition monitoring of rotating 
machinery is to detect faults before a catastrophic failure occurs. 
Besides, detection must arrive early enough to have time for 
programming a stop at the most convenient moment. This kind of 
maintenance has a lot of advantages, such as the avoidance of 
stopping and dismount the elements of the machine to check its 
status, and the increasing of probability of fault detection. Condi­
tion monitoring improves safety and costs of processes, reason 
why it has focused a lot of attention in lasts decades. 

In an industrial process, when a defect is detected, three main 
stages are passed trough; the first one is detection, the second one 
is diagnosis and the third one is intervention to correct undesired 
effects. Condition monitoring is usually based on the control of 
certain parameter that is considered fault indicator, and when its 
value exceed certain limits it is considered that a fault exists. 
Nowadays, vibration analysis is the most extended technique for 
condition monitoring [1 ]. 

A vibration signal obtained from a rotating machine has a 
complex structure and comprises a high number of data. The key 
of the process is the feature extraction. Feature extraction consist 
on finding the proper processing for a vibration signal to get 
parameters easier to handle, and also representative of the real 
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status of the machine. Features must content reliable information 
about the fault. 

After the features extraction, a classification system is needed 
to automate the diagnosis process. The classification system 
automatically decides the output of the system avoiding human 
factors. The process of this type of methods is schemed in Fig. 1 

Many fault diagnosis algorithms have been proposed both for 
features extraction and for classification. 

Regarding feature extraction, several approaches have been 
used for signal analysis. Fourier theory (FT) and techniques derived 
from it, as Fast Fourier transform (FFT) and Hilbert transform (HT), 
have traditionally been used to observe changes in the response 
when a fault appears [2,3]. However, FT and most techniques 
derived from it are inappropriate to treat non stationary signals, 
that are commonly obtained from rotating machinery, due to the 
absence of temporary information. The short time Fourier trans­
form (STFT) is suitable to treat nonstationary signals, however its 
main disadvantage is that the frequency resolution obtained is 
constant for the whole signal, since the window applied is the 
same. Therefore, new techniques working both in time and in 
frequency domain have appeared, such as Hilbert-Huang Trans­
form (HHT) [4] and Wavelet Transform (WT) [5]. 

Specifically, WT is a especially effective tool in treating non­
stationary signals and has become one of the most widely used 
techniques for signal processing. Currently, applications of the WT 
are increasing, and they are now used for speech recognition [6,7]; 
denoising [8]; electrocardiographs [9]; and diagnosis of cracked 
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rotating elements (10] as bearings (11 ], gears (12], and beams 
(13,14]. 

Regarding classification systems, these include artificial neural 
networks (ANN), fuzzy logic (FL), genetic algorithms (GA), bayesian 
classifier (BC) and support vector machines (SVM), among others. 
Specifically ANNs have been widely used for different applications, 
such as residual life estimation of mechanical elements [15], 
degradation prediction [16], diagnose accident scenarios as in [17] 
or [18], diagnosis of cracked shafts detection (19,20]. 

The main advantage of ANNs is their flexibility and capability of 
learning complex nonlinear relationships between input and 
output. The critical stage for ANNs is to choose the training 
parameters used to learn the structure of the problem (21 ]. On the 
other hand, the main drawback of the use of ANNs is the need of a 
large amount of historical data, not only extracted from healthy 
condition, but also from faulty condition, to facilitate the proper 
training of the system [22]. 

Fault detection is specially critical for shafts, due to the high 
loads they support. The dynamical behavior of a cracked rotor has 
focused a lot of interest among researchers [23-26]. A crack in a 
shaft can cause a failure with costly processes of reparation. 
Cracked shaft detection has used combination of WT and ANN for 
signals coming from models in cases such as [27,28]. 

The present work details an integrated system for maintenance 
based on the combination of energy features and a trained ANN. 
The feature extraction is calculated from a vibration signal by 
means of the Wavelet Packets Transform (WPT). The technique is 
applied to experimental signals, showing that the reliability of the 
technique is high. 

Input � Signal processing 
(Vibration signal)___.,,,..- (feature extraction) 

Classification 
system 

� Output 
___.,,,..- (Diagnosis) 

Fig. 1. Scheme of current processes of condition monitoring.
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Fig. 2. DWT decomposition of a signal (S) in approximation information (A) and

detail information (DJ using filters. 

Fig. 3. WPT decomposition process until decomposition level 3.

2. Wavelet packets transform

The WT is especially efficient at performing local analysis of 
non-stationary signals. The discrete wavelet transform (DWT) is 
more commonly used than the continuous form of the WT 
because signals usually comprise discrete data and the computa­
tional cost is lower. Following Mallat definitions (29], the DWT can 
be implemented using filters. The signal is decomposed being 
passed through a low-pass filter g to obtain the wavelet approx­
imation (A), and a high pass filter h to obtain the wavelet detail (D), 

as in Fig. 2. DWT decomposition halves the frequency band of the 
input; thus, following the Nyquist rule, it is justified to down­
sample by two [30]. 

Several types of analysis are performed by the recursive 
application of the DWT, such as Multiresolution Analysis (MRA) 
and Wavelet Packets Transform (WPT). The wavelet packets 
transform (WPT) was used to prevent problems associated to MRA, 
where the downsampling process can only be performed for the A
information. WPT allows A and D information to be decomposed 
recursively until the desired resolution, as shown in Fig. 3. 

W(k,j) represents coefficients of the signal in each packet, k

represents the decomposition level, and j represents the position 
of the packet within the decomposition level. Each correlation 
vector W(k,j) has the structure: 

W(k,J) = (W1 (k,j), ... , WN(k,J)) = (Wi(k,J)} (1) 

The calculus of energy using WPT is similar to the used in 
the FFT [5]. The energy of a certain packet j within the 

Hidden layer 
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0 

0 
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0 
0 

Fig. 4. ANN basic structure.

Fig. 5. Rig used for experimental setup. 
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decomposition level k can be obtained as the sum of the squares 
of its coefficients, 

Ekj = L{Wj(k,J))2 

i 

3. ANN classification systems

(2) 

Currently, ANNs focus great interest both at academic and
industrial level [31 ]. ANNs are an example of learning and auto­
matic processing inspired in the way that the human nervous 
system works. It comprises an interconnecting system of neurons 
that collaborate to produce an output. ANNs are widely used as an 
effective, cost-effective and efficient automated indicator of health 
of modern engineering systems [32]. 

There are two main phases in the use of an ANN; the phase of 
learning or training, and the phase of validation and use. For the 
most common case of supervised learning, the stage of training 
consists on the presentation of a set of input patterns, which 
output is known. The network adjusts the connections in an 
iterative process of error minimization, until it gets the admissible 
level of error. However, the accuracy of ANNs depends upon the 
features selected, ANN architecture, training parameters and 
training set size. 

The radial basis function (RBF) architecture constitutes one of 
the more widely used ANN in the diagnosis of defects area [33]. It 

Table 1 

Crack depths a used for the experimental setup, expressed in relative terms with 

respect to the diameter of the shaft D. 

Defect level 0 2 3 4 5 6 7 8 9 

Value (a=d/D) 0 0.04 0.08 0.12 0.17 0.22 0.28 0.33 0.42 0.5 

Table 2 

Rotational speeds used for the tests. 

Speed 

Speed 1 

Speed 2 

Speed 3 

Value (Hz) 

20 

40 

60 

(-'\ 
�------L,_D,___�\r--u----f-) --1.......J[J:::J 

\..__/ 

was created with the main purpose of working on real time 
applications. The name of radial basis function derives from the 
fact that the function is symmetric; the output is the same for 
inputs that are at the same distance of the center. 

RBF networks are constituted by at least three layers of neu­
rons; one at the input, one hidden and one at the output, as shown 
in Fig. 4. These layers are characterized by having local character, 
each neuron activates in a different region of the space of the input 
patterns. 

The use of RBF architecture offers a lot of advantages such as a 
fast training, and easy optimization due to the low number of 
design parameters [34]. The design parameters of an ANN-RBF are 
the activation function and the stopping criteria for the training. 
The most common used activation function is the Gaussian, thus 
the spread of the function must be selected. The most common 
stopping criteria is a goal sum-squared error (SSE) between the 
desired output and the real output. The ANN creates one neuron in 
the hidden layer at each iteration. When SSE falls beneath the goal 
error or a maximum number of neurons (to be selected) has been 
reached the training stops. 

4. Experimental setup

The experimental measurements are obtained from a machine
simulation fault created by SpectraQuest

® that can be observed 
in Fig. 5. 

The rig comprises a motor Marathon
®

. with maximum speed of 
10,000 r.p.m. and a power of 0.75 kW, that drives the shaft by 
means of an elastic coupling. The shaft rotates with the load of its 
own weight. The speed of the motor is set using a regulator S1 
Delta

® S1, and controlled using an optical tachometer Banner
®

. The 
shaft is supported by two ball bearings ER10 Rexnord

®

.

The tested element is the shaft, under different crack condi­
tions. A first test is made at healthy state, and then nine different 
crack levels (a) were induced by saw cuts. All the cracks were 
induced without dismounting the shaft from the machine, because 
usually cracks appear and grow while the machine rotates and the 
assembly effects are constant. The values of a in Table 1 are 
expressed as the ratio between the crack depth d and shaft dia­
meter D, where D= 16 mm. 

Test are carried out at steady state at three different rotational 
speeds, shown in Table 2. Thus, 30 different conditions are tested; 
10 different crack conditions and 3 rotation speeds. 

For all cases, the cracks are located in the middle section, as 
shown in Fig. 6. 

b 

� - -- -�
-----===-

-
--

,-�· · 
'-� 

Fig. 6. Shaft and position of crack induced (a) and detail of an induced crack level 2. 
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Shaft properties were determined experimentally and are 
shown in Table 3. 

The accelerometer used is 4374 B&K. The measurement direc­
tion is vertical and is mounted on the housing bearing. The 
accelerometer is connected to a signal conditioner B&K NEXUS, 
and to an acquisition card Keithley KUSB-100. The acquisition card 
is connected to a computer with the software called Btool, that 
was specifically designed for this purpose in Matlab

® 
[35). The

measurement chain can be observed in Fig. 7. 
The characteristics of the signals measured and number of 

signals are shown in Table 4. 

5. Results and discussion

First, the features extraction stage is carried out by means of 
WPT energy. Later, several ANNs are trained trying to optimize 
their parameters to maximize success rates and minimize 
computational cost. 

5.1. Feature extraction and selection using WPT 

The energy calculated using WPT is selected for feature 
extraction due to its proven effectiveness to process non­
stationary signals for diagnosis purpose [36,34). The WPT is not 
a straightforward issue since some parameters must be selected. 

The first one is the wavelet function. In this study, the 'Dau­
bechies 6' wavelet function was applied due to the goodness of the 
results in this area [27). The other parameter to be selected is the 
decomposition level, which determines the frequency resolution 
offered by each packet (same for all packets). Using a decom­
position level of k, the number of packets obtained is P = 2k. By 
considering the global frequency of the signals as half of the 
sampling frequency f 

5/2 according to the Nyquist theorem, the 
frequency resolution fr of each packet is [34): 

f _fs/2
(3) r- 2k 

In this study, the selection of the decomposition level is per­
formed according to the method proposed in [28). The method 
determines the optimal the decomposition level that maximizes 
the success rates of an ANN. WPT energies from 2 (P=4packets; 

f
r
= 1500 Hz) to 9 (P=512 packets; f

r
= 5.86 Hz) are evaluated in 

the present work. Features considered are single level. 
After preliminary studies, it was concluded that using all the 

packets of a single level for decomposition levels from 6 to 9 the 
computational cost is high. Therefore, for decomposition levels 

Table 3 

Shaft mechanical properties. 

Mass (M) (kg) 0.378 
Damping coefficient (c) (kg/s) 4.58 
Stiffness (kl (KN/m) 1544.3 
Rho (p) (m) 2e-5 
Effective length (m) 0.26 
Diameter (m) 0.0207 

-

from 6 to 9, the packets that experiment higher changes of energy 
when a crack appears are selected. Mean values of the 1500 signals 
measured by each condition are obtained. For each case of speed, 
the mean value of the healthy condition is subtracted to the mean 
value of each crack condition. The 10 packets that show higher 
differences in absolute value for each crack size are selected, 
according to Fig. 8. 

Since 9 crack levels are tested, a number of packets between 10 
and 90 could be selected for each speed, depending on the number 
of packets that are coincident for different crack sizes. 

An analysis of the frequencies that present higher changes of 
energy with the crack is performed in [37), and they seem to be 
related to structural frequencies of the shaft. 

Thus, input packets for the ANNs training are selected accord­
ing to Table 5. 

5.2. ANNs trained 

Once the features are extracted and selected, the ANNs training 
is designed. Each energy of the packets selected represents one 
neuron in the input layer, thus the number of input neurons 
depends on the decomposition level. 

The design parameters are selected according to preliminary 
studies. The number of neurons at the output layer is the number 
of possible answers of the ANN. In this case, ANNs did not offer 
good results when trying to determine the crack size, and the best 
results were obtained when 2 outputs are used: healthy or 
cracked. 

When designing ANN, after the training stage a testing must 
come. Testing must use data not used for the training, so the 
number of data used for each stage must be selected. The values at 
the input and at the output must be normalized to increase sta­
bility of training and testing process [38). 

The spread value of the Gaussian function will be selected to 
optimize the success rate of the ANN, thus an interval is proposed. 
Regarding the stopping criteria, a maximum value of SSE is pro­
posed. If that value is not reached in a certain number of iterations 
or neurons in the hidden layer, that must also be selected, the 
training stops. 

Table 6, show the common parameters selected for ANNs 
training, according to the inputs described in the previous section. 

All parameters are selected to maximize the success rate 
number. To carry this, a total number of 456 ANNs were trained. 
From them, 24 optimal ANNs are selected, one by each decom­
position level and speed. 

Table 4 

Parameters of signals measured. 

Parameter Value 

Sampling frequency f, 6kHz 
Number of samples/signal 21• 
Number of signals/condition 1500 

-:-- �
h 

• o. •• � �;,� '. 
� :::: 2 '.1 IOV/•,. 

.- 3 I VI•" 

• · � n·1

-

Fig. 7. Measurement chain. 
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Fig. 8. Methodology for selecting significant packets for decomposition levels from 6 to 9. 
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5.3. Results 

Results of the ANNs training are shown. For each speed, 8 opti­

mal ANNs are selected, one for each decomposition level tested. 

Table 5 

Features selected for each decomposition level. 

Decomposition level Features selected 

All packets single level Low: from 2 to 5 

High: from 6 to 9 10 maximum energy increments for each crack size 

Table 6 

Design parameters for ANN-RBF. 

Normalization of input values 

Type of learning 

Number of neurons in output 

Normalization of output values 

Input data distribution 

Stopping criteria 

Spread 

a 

� 
95 

u, 

en 90 

Between [ -1 ;1) 

Supervised 

2 

[-1,1] 

Training 

Test 

SSE 

75% 

25% 

0.1-0.2 

Number of neurons at hidden layer 700 

0.2-2 

Speed 20 Hz 

85 �-�--�--�--�--�-�-

3 4 5 6 7 8 

Decomposition level 

9 

Fig. 9 presents success rates and number of neurons in the 

hidden layer of the 8 ANNs selected at 20 Hz, versus the decom­

position level. It can be concluded that decomposition level 

2 offers worst results than the rest, offering lower success rates 

and higher number of neurons. The results at other decomposition 

levels are similar. 

Figs. 10 and 11 show results for 40 and 60 Hz respectively. For 

both cases, decomposition level number 5 seems to be the optimal 

one, and the speed of 60 Hz offers slightly better results. 

ANNs training at decomposition level 2 always stops due to the 

maximum number of neurons in hidden layer neurons. Thus, the 

computational cost is higher and the success rate is lower than in 

other cases. For the rest of decomposition levels, the results are 

very similar at low and high decomposition levels at 20 Hz. On the 

other hand, at 40 and 60 Hz results at low decomposition levels (3, 

4 and 5) show better results than at high decomposition levels (6, 

7, 8 and 9). 

5.4. POD calculation 

The global success rate of an ANN gives important information 

about the diagnosis, however it is not accurate. There is a need to 

test the success of the ANN depending on the crack condition. 

There is a large difference if all the fails in the diagnosis of the ANN 

are accumulated in false alarms or in the crack level 1. that is not a 

critical crack. 

Speed 20 Hz 
700 

600 

!ii 
>, 

500 

C: 
Q) 400 " 
" 

.!;; 
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C: 

300 

Q) 

200 

100 

3 4 
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Fig. 9. Results of ANNs for each decomposition level at 20 Hz representing (a) success rates and (b) number of neurons in the hidden layer. 
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Fig. 10. Results of ANNs for each decomposition level at 40 Hz representing (a) success rates and (b) number of neurons in the hidden layer. 

Please cite this article as: Gomez MJ, et al. Automatic condition monitoring system for crack detection in rotating machinery. Reliability 
Engineering and System Safety (2016), http://dx.doi.org/10.1016/j.ress.2016.03.013 



MJ. Gomez et al./ Reliability Engineering and System Safety 

a Speed 60 Hz 

�
95 

en 90 

3 4 5 6 7 8 9 

Decomposition level 

b 

600 

i 
500 

C: 
i 400 
:g 
.!: 

"' 300 C: 
:, 

., 

Z 200 

100 

3 4 

Speed 60 Hz 

5 6 7 8 9 

Decomposition level 

Fig. 11. Results of ANNs for each decomposition level at 60 Hz representing (a) success rates and (b) number of neurons in the hidden layer. 
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Fig. 12. POD curves obtained from ANNs at 60 Hz at low decomposition levels: (a) level 2, (b) level 3, (c) level 4, (d) level 5. 

7 

Thus, Probability of Detection (POD) curves are calculated using 

the results of success rates with the data kept for validation stage, 

for the three cases of speed. For all cases, decomposition level 5, 

using all the energy packets obtained at that level, offers the best 

diagnosis results. Regarding the speed, the case of 60 Hz is the 

optimal one. 
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Fig. 13. POD cmves obtained from ANNs at 60 Hz at high decomposition levels: (a) level 6, (b) level 7, (c) level 8, (d) level 9. 
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Fig. 14. POD at decomposition level 5 and goal 0.1 at 60 Hz. 

POD curves at 60 Hz are shown in Figs. 12 and 13. The optimal 

decomposition level is number 5. High decomposition levels pre­

sent a high number of false alarms. 

Once the decomposition level 5-60 Hz is selected, a new ANN 

is trained using all the packets at this level with a SSE=0.1. Fig. 14 

shows the POD curve calculated this case. the ANN offers the best 

diagnosis results available with these data, with a number of false 

alarms of 1.77% and a low computational cost with only 45 

neurons. 

5.5. Discussion

The main contribution of the present work is the development 

of an expert system that is able to diagnose with reliability a crack 

in a rotating shaft using experimental vibration signals. The value 

of the work lies on the fact that most of the studies of the dyna-

mical behavior of cracked rotors, specifically in shafts, do not 

involve the inverse process of crack detection and do not use 

experimental results [39]. 

Tests were carried out at different speeds that show that 

diagnosis results are improved with the speed. This can be 

assigned to the fact that when the speed increases, as the tests 

were performed at the same conditions, the signal-to-noise ratio is 

higher. Then, crack effects are more clearly distinguished when the 

speed increases. 
The aim of the system proposed is to detect a crack when it 

appears and grows in a shaft, while it is rotating and thus, 

assembly influence is constant. The constant assembly influence 

has been reproduced in the present work tests, as the cracks are 

artificially induced in the shaft without dismounting it from the 

machine. Therefore, differences in signals measured are only 
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caused by crack effects and not by the assembly or other defects. In 
order to check if a mistuned assembly or other defects could hide 
the crack effects, and decrease the success rates obtained in this 
work. it would be necessary to make this specific tests, proposed 
as future work. 

It would be interesting also to test if multi-level selection of 
WPT energies could improve the results in terms of success rates 
and computational cost. In this work the ANNs parameters and the 
decomposition level of the WPT are evaluated to optimize the 
success rates of the ANNs. However, all the energies selected are 
from the same level of decomposition (single-level). 

6. Conclusions

For the present work, experimental vibration signals are taken 
from a rig at steady state at three different speeds and 10 different 
crack conditions (healthy and 9 crack levels from 4% of the shaft 
diameter to 50%). The signals are processed by means of WPT 
energy using 'Daubechies 6' as wavelet function. The single-level 
energies obtained are used to train several RBF-ANNs. The ANNs 
parameters and the decomposition level of the WPT are evaluated 
to optimize the success rates of the ANNs. Results seem to improve 
with the speed. Features extracted at decomposition level number 
5 from signals obtained at the higher speed (60 Hz) offer the best 
results in terms of success rates and computational cost. Success 
rates are used to calculate POD curves and the number of false 
alarms is of 1.77% and crack levels above 1 can be detected with 
high reliability. Results show that the methodology proposed 
could be successfully integrated in industrial equipment for con­
dition monitoring. 
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