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S ince free performance lunch of processors is over, parallelism has become the new trend in hardware
and architecture design. However, parallel resources deployed in data centers are underused in many
cases, given that sequential programming is still deeply rooted in current software development. To face
this problem, new methodologies and techniques for parallel programming have been progressively de-
veloped. For instance, parallel frameworks offering programming patterns, allow expressing concurrency
in applications in order to better exploit parallel hardware. Nevertheless, it remains a large portion of
production software, coming from a broad range of scientific and industrial areas, that is still developed
in sequential. Taking into account that these software modules contain thousands, or even millions, of
lines of code, the effort needed to identify parallel regions is extremely high. To pave the way in this
area, this paper presents Parallel Pattern Analyzer Tool (PPAT), a software component that aids discover-
ing and annotating parallel patterns in source codes. This tool simplifies the transformation of sequential
source code to parallel. Specifically, we provide support for identifying the map, farm and pipeline parallel

patterns and evaluate the quality of the detection on a set of different C++ applications.
1

1 Introduction

Although most of the current computing hardware, such as multi-/many-core processors, GPUs or co-processors,
has been envisioned for parallel computing, much of the prevailing production software is still sequential [20]. In
other words, a large portion of the computing resources provided by modern architectures is basically underused.
In order to exploit these resources, it becomes necessary to refactor sequential software into parallel. To
tackle this issue, several solutions in the area, such as parallel programming frameworks, have been developed to
efficiently exploit parallel computing architectures [18]. Indeed, there can be found multiple parallel programming
frameworks that benefit from shared memory multi-core architectures, such as OpenMP, Cilk or Intel TBB;
distributed platforms, such as MPI or Hadoop; and some others especially tailored for accelerators, as e.g., OpenCL
and CUDA. Nevertheless, only a small portion of production software is using these frameworks.

I This is a post-print of an article published in The International Journal of High Performance Computing Applications. The final authenticated
version is available online at: https://doi.org/10.1177/1094342017695639
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Practical use cases in this sense are sequential data-intensive applications, broadly encountered in production
scientific and industrial areas. Just a simple analysis of their codes would reveal that a vast majority of algorithms
and methods could be refactored into parallel patterns [10]. A solution to parallelize these codes is to manually
translate into parallel code, however this task results, in most cases, cumbersome and very complex for large
applications. Another solution is to use refactoring tools, applications that advice developers or even semi-
automatically transform sequential code into parallel [3]. Although source codes transformed using these
techniques do not often get the best performance, they aid in reducing necessary refactoring time [11].

Unfortunately, refactoring tools found are still premature, not yet being fully adopted by development centers.
In fact, many of them are human-supervised, being the developer the only responsible for providing specific sections
of the code to be refactored. Although these tools relieve the burden of the source-to-source transformation, this
process still remains semi-automatic. Key components for turning this process from semi- to full-automatic are
parallel pattern detection tools. This fact motivates the goal of our paper: we present a tool capable of analyzing
sequential C+ + code statically in order to detect and annotate parallel patterns. This detection is performed
using the compiler infrastructure and avoids costs related to profiling techniques. In general, this paper extends
the work presented in [5] and makes the following contributions:

* We develop a Parallel Pattern Analyzer Tool (PPAT) to analyze, detect and annotate parallel patterns in
C++ source codes.

* We implement a set of parallel pattern detection modules: Pipeline, Farm and Map.

* We perform an experimental evaluation of PPAT using a set of well-known sequential benchmark suites and
a real video processing use-case.

* We demonstrate that, due to the modularity of PPAT, the tool can be easily extended to support other kind
of parallel patterns.

This paper is structured as follows: Section 2 reviews the state-of-the-art about existing parallel refactoring
and parallel pattern detection tools. Section 3 describes the parallel patterns supported in the detection process.
Section 4 explains in detail the parallel pattern analyzer tool along with the Pipeline, Farm and Map detection
modules. Section 5 addresses the experimental analysis and evaluation of the tool. Finally, Section 6 enumerates
some concluding remarks and future works.

2 Related work

We find several research works in the state-of-the-art that address the detection of potential parallel codes and
refactoring processes. However, the detection task is not simple and the tools developed to identify parallel
patterns in sequential codes are strongly tied to the programming language requiring profiling techniques. For
example, the approach developed by Sean Rul et al. [17] leverages LLVM to instrument loops in the sequential
code and performs an LLVM-IR profiling analysis to decide whether a loop is a pipeline or not. After that, it
transforms the code to produce a parallel source code. However, this tool presents some shortcomings: it needs to
execute the target application several times and profile it. Also, it is tied to the C programming language. Our
approach addresses these limitations by means of performing a static analysis without requiring any previous
execution or profiling techniques, and supports both C/C+ + programming languages.

Other contributions, such as the work by Molitorisz et al. [12], detect statically potential parallel patterns,
nevertheless they do not check for dependencies, so the correctness of the resulting parallel application cannot
be guaranteed. Instead, they need a subsequent execution to discover potential data races and dependencies.
Our work addresses these issues by checking memory accesses at compile-time. Likewise, PoCC [13], a flexible
source-to-source compiler using polyhedral compilation, is able to detect and parallelize loops, however it does
not take into account high-level parallel patterns. On the other hand, we also find tools that detect parallel
patterns using only profiling techniques. For example, DiscoPoP leverages dependency graphs in order to detect
parallel patterns [8]. Nevertheless, this tool has an important drawback: the profiling techniques have a non-
negligible execution time and memory usage. A similar approach, presented by Tournavitis et al. [21], detects
and transforms sequential code into parallel introducing parallel pipeline patterns. Alternatively, FreshBreeze [7],
a dataflow-based execution and programming model, leverages static loop detection techniques that analyze
dependencies and transform parallelizable loops using a task tree-structured memory model. It is important
to remark that, approaches based on static analysis are not very extended in the area, since analyzing data
dependencies becomes much more complex at compile time.

Orthogonally, some works take advantage of functional languages. For instance, Istvan Bozo et al. [2] develop
a tool that detects parallel patterns in applications written in Erlang. Compared to other languages, Erlang
features make the detection process much simpler. Nonetheless, the tool requires profiling techniques in order to
decide which pattern suits best for a concrete problem.
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3 Parallel patterns

This section provides a brief overview about the parallel patterns supported by the PPAT tool, i.e., Pipeline, Farm
and Map patterns [9].

3.1 Pipeline parallel pattern

The Pipeline stream parallel pattern consists of a chain of processing entities arranged in the way that the
output of each entity is the input of the next one. Considering a pipeline of n stages, the i-th stage computes the
function f; : @ — B. Then, for each item z appearing in the input stream, the functions of the pipeline stages
(f1,---, fn) are applied consecutively to produce elements in the output stream, i.e., f(fn 1(--- fi(z)...)). The
main requirement of this pattern is that the functions fi, ..., f, related to the stages must be pure. That is, i) the
function must always generate the same result given the same input argument, and ii) the function result must
not depend on any hidden information or global state that may change during the execution. The parallelization
approach of the pipeline pattern can be performed at stage-level. Assuming that the items of the input stream
are...,Tiji1,%i,T; 1,..., the computation of the stage f; over the partial result of z;, happens in parallel with
the computation of f; over the partial result of z; . Furthermore, in order to remove possible bottlenecks in
certain pipeline stages, it is possible to parallelize a stage by introducing a Farm pattern.

3.2 Farm parallel pattern

The Farm stream parallel pattern computes in parallel the same function f : @ — S over all the items appearing
in the input stream. Thus, for each item z; in the stream, an item f(z;) will be delivered onto the output stream.
Computations relative to different stream items are completely independent and can be processed in parallel
without side effects, i.e., the function f must be pure. The parallel implementation of the farm pattern uses
a set of entities {W;, Ws, ..., Wy} namely workers that compute the function f in parallel on different input
tasks. However, computation of f(z;) can only start when z; is available in the input stream. Therefore, assuming
items appear in the input stream with an interarrival time T, and the computation of f takes T, then at most

? computations will take place in parallel, at any time. This amount of computations potentially happening in

parallel may be limited by the parallelism degree of the pattern.

3.3 Map parallel pattern

The Map data parallel pattern computes the function f : @ — 3 over all the data items of the input data collection,
where the input and output elements have type a and 3, respectively. The output result is a collection of data
items y1,¥2, ..., yny where y; = f(z;) foreach:=1,2,..., N, and z; is the corresponding element of the input
collection. The only requirement of the Map pattern is that the function f must be a pure function. Since each data
item in the input collection is independent from the other items, all the elements can be computed in parallel.
However, the maximum number of data items that can be computed in parallel depends on the parallelism degree
of the pattern itself. Although both Farm and Map pattern seem to be similar, the difference lies in the fact that the
Farm patterns works on a stream input data, while the Map patterns receives a data collection of a fixed number
of items that are partitioned among the available computing resources. However, the parallelization approach of
the Map pattern is quite similar to that for the Farm pattern implementation.

4 Parallel pattern detection

In the following sections, we describe the main contribution of this paper, a tool that is able to detect and annotate
parallel patterns in sequential C/C+ + source codes.

4.1 REPHRASE attributes for parallel patterns

In order to annotate parallel patterns using custom C++11 attributes [6], we have extended the set of attributes
defined for the projects RErARA [15] and REPHRASE [16]. Table 1 describes the attributes used for annotating the
Pipeline, Farm and Map parallel patterns.

Thanks to these attributes, a refactorization tool would have enough information to transform annotated code
regions into parallel. Also, they allow to split the detection and transformation processes, so different tools can be
used in these stages. Note that this work only covers the detection phase, but leaves the refactorization as part of
the future work.
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Table 1: REPHRASE attributes.

REPHRASE Attribute Description

rph::pipeline It identifies a pipeline pattern.

rph::stream This attribute identifies the data streams used across stages of a rph: :pipeline.
rph::stage It identifies a code section as a pipeline stage.

rph::plid It is associated to rph: : stage and includes the pipeline ID.

rph::farm This attribute specifies the farm pattern.

rph: :map It determines the map pattern.

rph::in This attribute references the input variables of a pattern.

rph::out It references the pattern output variables.

4.2 Parallel Pattern Analyzer Tool

In this section, we describe the Parallel Pattern Analyzer Tool (PPAT). This tool takes advantage of the Clang library
to generate the Abstract Syntax Tree (AST). Then, it walks through it in order to collect relevant information
about the source code and identify parallel patterns.
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Figure 1: Workflow diagram of PPAT.

Figure 1 depicts the general workflow diagram of PPAT. First, the tool receives the sequential source code files
that should be analyzed. Next, the following steps are executed:

1. Loop detection. This step detects potential loops that can be transformed into parallel patterns. Basically,
it iterates the AST, extracts loop-related subtrees and gathers information of different AST nodes (e.g.
variables, function calls, conditional statements). On the other hand, it collects information about the
functions implemented in the source code.

2. Feature extraction. This step leverages the structures collected in the previous step in order to extract specific
features about variable declarations, references, function calls, inner loops, memory accesses, operations,
etc. Next, for each statement encountered, it stores information about location on the original code, variable
and functions name, reference kind (Write or Read) and global storage references.

3. Check arguments reference kind. The last step checks whether the kinds of variable references passed as
arguments in functions can be determined or not. In some cases, it is not possible to know statically if
the kind of arguments passed by reference are read or written. When this occurs, the tool performs the
following actions:

(a) If the function code is available or the function is implemented in the user code, it is possible to check
the set of arguments and assign the right variable kind (Write or Read). If an argument is not modified,
it is considered as Read. In contrast, if there exist write accesses to the variable, Write is assigned as
the variable kind. Alternatively, if there is a read-after-write (RAW) dependency on a variable, the kind
is set to Write/Read, since the argument can generate potential feedbacks among iterations.

(b) On the contrary, if the function cannot be accessed, it is not possible to check the actual variable kind.
Thus, the tool takes a conservative decision: it sets the arguments kinds always to Write/Read. Despite
of this, it inserts the function name and parameter kinds into a dictionary file in order to improve the
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detection process in future analyses. Afterwards, the user can eventually modify this dictionary to set
the right parameter kinds for these specific functions.

Next, marked loops are passed to the different pattern analyzer modules. Finally, the parallel patterns found
are forwarded to the annotation module responsible for inserting the above-described REPHRASE attributes in the
corresponding loops. In the the following sections we describe the parallel pattern analyzer modules that are
currently supported by the PPAT.

4.3 Pipeline detection module

In this section we detail the internal workings of the Pipeline detection module. As defined in previous section,
this pattern defines a code that can be split into stages and run in parallel by different threads, so that the output
of a stage is the input of the next one. The requirements for a Pipeline to be detected are the following:

* No global variables can be modified. In other words, there should not exist instructions that write on global
variables.

* No feedback. This requirement controls that no feedback exists among iterations of the loop. To do so, it
checks if there are no variables written before they are read, i.e., there are no RAW dependencies.

* Multiple stages. The last requirement checks whether the potential pipeline can be split in, at least, two
stages. Otherwise, the loop cannot be treated as a parallel pipeline and PPAT discards it right away.
The current strategy to split a loop into stages is to create a new stage each time a function call or an inner
loop is found in the main loop. Afterwards, for each stage encountered, PPAT checks whether the stage is
fed with, at least, a previous stage output. If this is not the case, the complete stage is merged with the
previous one until all stages comply with the requirement. Note that this strategy assumes that each stage
has a substantial amount of work, however if function calls or nested loops inside a stage have negligible
workloads, the tool may identify a Pipeline with unbalanced stages. In the future, we plan to improve
this strategy by adopting more advanced techniques capable of assessing the computational load of the
Pipeline stages. Finally, PPAT checks for the presence of other parallel pattern in the stages codes. If so,
the corresponding stages are annotated as well.

4.4 Farm detection module

This pattern defines a loop that can be run in parallel by different threads over a data stream. In this case, the
code analyzed should be equivalent to a pure function, i.e., there should not exist data dependencies producing
potential side effects. This requirement is controlled using the following constraints:

* No RAW dependencies. There should not exist RAW dependencies of variables used within iterations of the
loop.

* No global variables are modified. There should not exist instructions that modify global variables in the loop.

* No break statements. There should not exist break statements (i.e., continue, break or return) in the loop, as
they cannot be parallelized. However, they may be placed in inner scopes of the main loop.

4.5 Map detection module

This section describes the implementation of the Map detection module within PPAT. Basically, the Map pattern
represents a parallel code executing a pure function that is responsible for generating the output elements. Note
that in this case the total number of input elements is known in advance. To ensure these requirements, the Map
pattern adds the following two constrains over the requirements of the Farm pattern:

* Known number of input elements: The input data must be declared and allocated before the definition of the
analyzed loop.

* At least one output: According to the previous Map definition, the pure function of the Map pattern processes
an input to produce an output. So, the set of outputs for a given loop should not be empty.

5 Evaluation

In this section, we perform an experimental evaluation of PPAT using a series of sequential scientific benchmarks
in order to analyze how many loops can be transformed into Pipeline, Farm or Map parallel patterns. To do so,
we use the following hardware and software components:

Page 5 of 9



Finding Parallel Patterns through Static Analysis in
C++ Applications

Table 2: Results for the benchmark suites. P, F and M stand for the number of Pipeline, Farm and Map patterns
detected, respectively.

PPAT Manual PPAT Manual

Test Loops | P F M P F M Test Loops | P F M P F M
b+tree 80 3 7 7 2 7 7 IS 16 1 8 8 0 9 9
particlefilter 44 1 8 8 1 10 10 LU 187 1 37 37 1 81 81
bfs 7 0 1 1 0 2 1 FT 41 0 7 7 3 20 20

nw 12 0 6 6 0 6 6 EP 8 1 2 2 0 3 3
cfd 78 16 12 12 15 13 13 MG 80 1 26 26 1 44 44
lavaMD 10 0 1 1 0 2 2 UA 321 3 116 | 116 2 171 | 170
heartwall 54 1 4 2 0 4 3 DC 30 2 5 5 1 7 7
nn 2 0 0 0 0 0 0 SP 250 1 51 51 1 103 | 103
backprop 28 0 2 2 0 5 5 BT 181 1 46 46 1 78 78

(a) Rodinia benchmark. (b) NAS benchmark.

* Target platform. The evaluation has been carried out on a server platform comprised of 2x Intel Xeon Ivy
Bridge E5-2695 v2 with a total of 24 cores running at 2.40 GHz, 30 MB of L3 cache and 128 GB of DDR3
RAM. The OS is a Linux Ubuntu 14.04.2 LTS with the kernel 3.13.0-57.

* Software. The PPAT tool has been compiled using the Clang compiler from the LLVM compiler infrastructure
v3.7.0 and the proposed attributes. For refactoring the codes, we leveraged the OpenMP and TBB [14]
parallel programming frameworks.

* Benchmarks. To evaluate PPAT, we used the sequential versions of the two scientific benchmark suites:
Rodinia [19] and NAS Parallel Benchmarks (NPB) [1]. We also leverage a processing video application
taken from the FastFlow framework [4] as a real use case.

Our evaluation methodology is based on a comparison between a manual inspection and an automatic one,
using PPAT, of the loops appearing in the benchmark codes. To conduct a double-blind study, the manual inspection
is performed before the automatic one, so that the manual results are not biased by those from PPAT. For each
benchmark, we collect the number of loops and parallel patterns detected. Then, we discuss the results collected
during the manual inspection with those obtained by PPAT in order to demonstrate the quality of the pattern
detection process.

Moreover, we transform the sequential code of the Rodinia benchmark tests using the PPAT annotations, and
then, compare the performance of the PPAT parallel versions with respect to the parallel ones provided by the
benchmarks suites. Finally, we test PPAT on a real use case in order to evaluate the quality of the pattern detection.
The results obtained for this test are contrasted with the FastFlow parallel version.

5.1 Results for the benchmarks suites

As mentioned, the two benchmark suites used to evaluate PPAT are Rodinia and NAS. Note that we only employ
the sequential versions of these benchmarks to detect potential parallel patterns. Table 2 presents the results
obtained by PPAT and manual inspection for both Rodinia and NAS benchmarks. As can be seen, the number of
patterns detected manually and through PPAT are perfectly matching. Therefore, we observe that the pattern
detection quality of PPAT is close to that performed by a human expert.

Focusing on the differences between manual and automatic detection, as can be seen in Table 2, the human
expert is able to detect more Farm patterns than the tool for some of the tests. These differences mainly occur
when the tool is not able to guarantee the parallel correctness of the pattern when shared variables are used.
Listing 1 shows an example of this situation in a non-annotated Farm-like pattern. In this case, PPAT detects
that the variable new_dx and iterators j and k are shared and, therefore, the tool cannot ensure that the code
corresponds with a parallel pattern. However, PPAT lets the user know that, if these variables had been declared
as local, the code would have corresponded with a parallel pattern. Listing 2 shows a version of the code in
which we have used shared variables on purpose to demonstrate how the Farm and Map patterns would have been
introduced. We observed in the annotated loops that this situation happens in many cases for the NAS benchmark
tests, as the loop iterators are declared right before the loop sentences.

In order to analyze the benefits of PPAT on the patterns detected, we have implemented parallel versions of the
Rodinia tests following parallelization suggestions given by PPAT. Both Farm and Map patterns were implemented
using OpenMP, while the Pipeline pattern was introduced using the corresponding Intel TBB construction using
“serial in-order” stages. Note that we have transformed all parallel loops suggested by PPAT, even the nested
ones. Figure 2 shows performance results of the sequential, PPAT parallel and OpenMP versions for the Rodinia
benchmark suite. In all cases, the tests were executed with the default input parameters, using 24 threads to fully
populate the multi-core machine. For brevity, we only highlight some interesting cases. For the 1avaMD test, we
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Listing 1: Non-annotated backprop snippet. Listing 2: Annotated backprop snippet.

[[rph::map, rph::farm,
rph::in(nly,delta,ly,oldw,w), rph::out(w,oldw)]]

365 for (j = 1; j <= ndelta; j++) for (int j = 1; j <= ndeltaj; j++)

369

370
371
372

[[rph::map, rph::farm,
rph::in(delta,ly,oldw,w,j), rph::out(w,oldw)]]

for (k = 0; k <= nly; k++) { for (int k = 0; k <= nly; k++) {

new_dw = ((ETA * deltal[j] * 1y[k]) + (MOMENTUM * float new_dw = ((ETA * deltalj]l * 1ly[k]) + (MOMENTUM *
oldw[kI[j1)); oldw [kI[j1));

wlk][j] += new_dw; wlkl[j] += new_dw;

}OldW[k] [j] = new_dw; }oldw[k] [j1 = new_dw;

note that PPAT is not able to annotate the main application hotspot (or loop) as a parallel pattern. This is mainly
because some of its instructions, operating on sparse datasets, rely on indirect memory accesses in the form of
A[B[il]. In these cases, PPAT is not yet able to detect, at compile time, such potential data dependencies among
loop iterations. Regarding the heartwall test, the PPAT version detects more parallel loops, or patterns, than
those parallelized originally in the OpenMP version.

After this study, we make the following observations: i) PPAT obtains close performance figures with respect
to the OpenMP implementations, as the PPAT annotations correspond with the OpenMP original pragmas in most
cases; and ii) PPAT annotated versions may add slight overheads, as they contain initialization loops that were
annotated to run in parallel, while in the original versions were vectorized by the compiler optimizations.

4
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Figure 2: Execution time of sequential, transformed PPAT code and OpenMP versions of Rodinia benchmark.

5.2 Results of the Fastflow use case

Finally, we test PPAT using a video processing use case taken from the FastFlow framework. Basically, this
application processes a stream of video frames captured by a camera and applies to each of them two different
image processing filters: Gaussian blur and Sobel filters. Listing 3 shows the results of the analysis performed by
PPAT. As can be seen, the tool is able to detect a Pipeline comprised of 4 stages that operate in the following
way. The first stage detected captures the input video frames and forwards them to the next stage. The second
and third stages are responsible for applying, in series, the two image processing filters Gaussian blur and Sobel,
respectively. The last stage takes care of delivering the frames processed to the user. Another observation is that
PPAT is able to determine as well that the filtering stages can be parallelized using Farm patterns individually.
Therefore, multiple threads can execute the filters over the frames concurrently without side effects, as these
operations have been determined to be pure functions.

In this particular case, we note that the parallel patterns detected are exactly the same as those used in the
implementation of the original parallel version. Therefore, we believe that PPAT will be able to minimize the
development costs of parallel C/C++ applications by means of detecting regions that can be represented as
parallel patterns.

6 Conclusions and future works

In this work, we have presented the Parallel Pattern Analyzer Tool (PPAT), a tool that allows analyzing, detecting
and annotating parallel patterns on sequential C/C++ codes using static analysis techniques. The experimental
evaluation demonstrates that PPAT is able to obtain similar performance results as the “handmade” parallel
versions of the benchmark suites tested. Therefore, reducing the human effort in transforming sequential codes
into parallel.
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Listing 3: Example of annotated loop from the video use case.

1 [[rph::pipeline (0) , rph::stream(cap,frames,frame,framel)]]
2 {

3 class cv::Mat framel, frame;
4 [[rph::stage(0), rgh::plid(o), rph::in(cap), rph::out(framel,frame,cap)]ll{

s if(cap.read(frame
}

== false) break;

7 [[rph::stage(1l), rph::plid(0), rph::farm, rph::in(frames,filterl,frame,framel),
8 rph::out (frames ,framel ,frame)]]{

9 frames++;

10 if (filter1l) {

11 cv::GaussianBlur (frame, framel, cv::Size(0, 0), 3);

12 cv::addWeighted (frame, 1.5, framel, -0.5, 0, frame);
}

15 [[rph::stage(2), rph::plid(0), rph::farm, rph::in(filter2,frame), rph::out(frame)ll{

16 if (filter2) Sobel(frame,frame,-1,1,0,3);
}

18 [[rph::stage(3), rph::plid(0), rph::in(outvideo,frame)]]{
19 if (outvideo) { imshow("edges", frame); if(waitKey(30) >= 0) break;}

As we have seen, this tool differs from others in three main aspects: i) PPAT is completely independent of the
refactoring tool used, since it identifies parallel patterns; ii) PPAT performs a static analysis of the code, avoiding
the use of profiling techniques and becoming much faster than other approaches; and iii) PPAT guarantees that
parallel patterns detected comply with a series of requirements that ensure the correctness of the parallelization.

As part of the future work, we plan to extend PPAT and include more modules that support other parallel
patterns, e.g., divide and conquer, reduce and stencil. Furthermore, we intend to endow PPAT with a decision
system that selects the most suitable parallel pattern for a given code, from the performance point of view.
Similarly, in case of nested patterns, the decision system should also be able to decide which of them are candidate
to be introduced. Finally, we aim to develop a source-to-source refactoring tool such that, receiving as an input
the annotated source code from PPAT will be able to translate the code into different parallel programming
frameworks, e.g., TBB, FastFlow and the future parallel STL from C++17.
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