
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Peña-Fernandez, M., Lindoso, A., Entrena, L., Garcia-
Valderas, M., Philippe, S., Morilla, Y. & Martin-
Holgado, P. (2018). PTM-based hybrid error-detection
architecture for ARM microprocessors. Microelectronics
Reliability, vol. 88-90, pp. 925–930.

DOI: 10.1016/j.microrel.2018.07.074

© 2018 Elsevier Ltd.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.microrel.2018.07.074

PTM-based hybrid error-detection architecture for ARM
microprocessors

M. Peña-Fernandeza, A. Lindosob,*, L. Entrenab, M. Garcia-Valderasb,
S. Philippec, Y. Morillad, P. Martin-Holgadod

 a Arquimea Ingenieria SLU., Leganes, Madrid, Spain
 b University Carlos III de Madrid, Avda Universidad 30, Leganes 28911, Madrid, Spain
 c INP Toulouse, 6 allée Emile Monso, Toulouse, France

d CNA, University of Sevilla, CSIC, JA,Avda Tomas Alba Edison 7, Sevilla, Spain

Abstract

 This work presents a hybrid error detection architecture that uses ARM PTM trace interface to observe ARM
microprocessor behaviour. The proposed approach is suitable for COTS microprocessors because it does not
modify the microprocessor architecture and is able to detect errors thanks to the reuse of its trace subsystem.
Validation has been performed by proton irradiation and fault injection campaigns on a Zynq AP SoC including a
Cortex-A9 ARM microprocessor and an implementation of the proposed hardware monitor in programmable logic.
Experimental results demonstrate that a high error detection rate can be achieved on a commercial microprocessor.

1. Introduction

Microprocessors are commonly used in a wide
variety of applications, including safety-critical and
high availability missions. In these applications,
meeting the reliability requirements in an effective
manner is a challenge. Among the multiple factors
that may affect reliability, radiation-induced soft
errors have the potential to cause the highest failure
rate of all other reliability mechanisms combined [1].
Therefore, they are a primary concern in applications
working in extreme environments, such as space, and
a growing concern also at the ground level.

Although there are radiation-hardened
microprocessors specifically developed for these type
of environments, they are generally expensive and
have high power consumption. Moreover, their
performance generally lags behind commercial
processors. As a consequence, there is a growing
interest in the use of COTS (Commercial Off-The-
Shelf) microprocessors even for space applications
[2]. In this case, error detection or mitigation must be
provided taking into account that the hardware cannot
be modified.

Software fault-tolerance techniques [3] introduce

redundancy in the code in order to detect or correct
errors. These techniques have been widely studied and
are the basic solution for COTS microprocessors.
However, they are limited because processors contain
many sensitive resources that cannot be directly
accessed through software. In addition, they introduce
significant performance penalties. These limitations
are particularly relevant in the case of control-flow
error mitigation [4].

To overcome these limitations, the use of
hardware monitoring has been proposed [5].
Hardware monitoring uses an additional piece of
hardware that can observe the execution flow of the
processor through a suitable interface. Debug
resources, which are commonly available in most
microprocessors to facilitate system development and
software debugging, can be reused for this purpose.
These resources are useless during normal operation,
so they can be reused for on-line monitoring in an
inexpensive way. On the other hand, they can provide
internal access to the microprocessor without
disturbing it. In particular, the use of program trace
interfaces has been proposed and demonstrated for
soft cores [5], [6], [7]. In a soft core, it is possible to
use a low-level or custom trace interface that provides

great flexibility and performance. However, in the
case of commercial cores, trace interfaces are usually
complex and require trace information to be decoded
and synchronized for the application.

In this work we propose and evaluate a hybrid
error-detection architecture for ARM processors.
ARM is currently one of the most popular choices for
embedded systems and supports debug and trace
functions through the CoreSightTM subsystem [8].
Coresight is actually a family of IP (Intellectual
Property) modules. In this paper, we focus on the
Program Trace Macrocell (PTM), a CoreSight
component that provides program-flow trace
information. The PTM is the basic program flow trace
macrocell for the ARM Cortex-A9 architecture [9].

In the proposed hybrid approach, the code is
hardened for data errors, using duplication, while
control-flow errors are detected by a hardware
monitor attached to the PTM through the trace port.
The hardware monitor continuously receives and
decodes trace packets along the execution of the
application program, extracts the control-flow
information and checks it on-line.

Validation of the proposed hybrid architecture
has been performed with fault injection and proton
irradiation campaigns. Fault injection is a widely used
approach to evaluate the effects of faults in an
inexpensive way, but it is limited to user accessible
components. Additionally, a proton irradiation
campaign has been performed to test the proposed
hybrid architecture in a more realistic way. Both tests
provided very similar results. We show how the
combination of data duplication and hardware
monitoring provides a good error detection capability.
We also evaluate the contribution of each part of the
system to the error detection rate.

The remaining of this paper is as follows. Section
two summarizes related work and introduces some
concepts about hybrid architectures based on the trace
interface. Section three describes the proposed hybrid
architecture. Section four shows the experimental
results. Finally, section five presents the conclusions
of this work.

2. Related work

Microprocessor hardening techniques are usually
divided into software, hardware, and hybrid
techniques [3]. The type of detected errors by all these
techniques is commonly divided into errors affecting
control-flow and errors affecting data. Control-flow

errors modify the execution flow causing the
microcontroller to execute a different instruction than
the one that had to be executed. Data errors affect
exclusively to program data.

Software techniques modify the application
software to detect or correct errors. The main
advantages of software techniques are flexibility and
ease of implementation. Generally, software
techniques require larger execution time and increase
memory usage (due to the software modifications and
required additional storage for comparison
information). Software techniques can be also divided
into data and control-flow techniques.

Data techniques are commonly based in
duplication. Data duplication consists in duplicating
all variables used in a program. Original data and
duplicated data must perform the same operations.
During program execution, duplicated and original
data must be checked. Errors are detected when a
difference in both data sets is found. In [10] a set of
rules are defined to modify the software for this
purpose. This work achieves a very good error
coverage but with a high impact in area and execution
time. In order to solve these limitations, duplication
can be applied at different levels, looking for a trade-
off between error coverage and performance penalty.
Duplication can be performed at instruction, function
or even program level. Other possibilities that are
present in the literature to decrease the performance
and size penalties are based in reducing the number of
data checkpoints or limiting the duplicated data. In
[11] instead of duplicating all data, specific variable
sets are duplicated. Ref. [12] evaluates the relevance
of variables and applies a set of rules for selective
duplication in order to reduce the impact of
duplication.

The most common software control-flow
techniques are based on assertions or signatures.
Signature-based techniques commonly divide the
program code into basic blocks. A basic block is a set
of instructions with no branches except for possibly
the last one. At compilation time a signature is
assigned to every basic block. At execution time, the
signatures are computed and checked at the end of
every basic block. It must be noted that compilation
time signatures require additional storage that may
introduce a significant memory size penalty.
Examples of these techniques are CEDA [13], ECCA
[14] and YACCA [15]. Assertion-based techniques
modify the code by inserting special statements
(assertions) that check the data-flow correctness. In
this case, error coverage can be affected by the

assertion location and also by the information
included in it, so that they are application-dependent.
An example of the use of assertions can be found in
[16].

Hardware techniques modify the circuit
architecture to harden it. A well-known example of
these techniques is TMR (Triple Modular
Redundancy). In the case of COTS microprocessors,
the architecture is not commonly available. In
addition, a new device has to be manufactured to
include the hardware modifications. These drawbacks
make the application of this kind of techniques
unfeasible for COTS in most cases.

Alternatively, error detection in microprocessors
can be accomplished by connecting additional
external hardware modules to observe the system
behaviour. The error coverage usually depends on the
capacity of observation through the feasible
connections. Several works have used this approach,
proposing hardware modules [17], [18], [19] that
range from simple circuits to very complex ones that
could be considered similar in complexity to the
observed microprocessor. These hardware modules
are commonly named watchdog processors.
Watchdog processors can also be classified into active
and passive. Passive watchdog processors can be used
to check signatures or assertions inserted in the
software executed by the microprocessor. They
commonly require additional memory to store the
values for comparison. Active watchdog processors
decrease the memory needs but increase the
complexity and the required area. These processors
are able to execute a simplified version of the program
executed by the microprocessor. Examples of these
processors are proposed in [17] and [18].

Hybrid techniques combine both software and
hardware techniques taking advantage of their
individual benefits. The most common approach is to
apply software techniques for data-flow hardening, as
data is more complex to observe externally, and use
the hardware monitor to detect control-flow errors.
For instance, in [20] a hardware module is used to
monitor the control flow while software fault
tolerance techniques are used to detect errors in the
data-flow.

Microprocessors are commonly observed through
memory buses or through the trace interface. A trace
subsystem is commonly included in most
microprocessors to support software debugging.
When the debugging process is finished, this part of
the circuit is not used. In [5], an extensive overview
of the use of the trace interface for microprocessor

observation is presented. The use of the trace
subsystem for on-line monitoring was first proposed
in [21] to observe a LEON3 microprocessor. In this
work, several microprocessors were executing the
same software at different times. During execution,
signatures were generated from the available trace
information. The coverage can vary depending on the
selected information that is used to obtain the
signatures. An extended approach was proposed in
[22], where critical tasks are replicated (in the same
microprocessor or in different microprocessors) and
the information provided by the trace interface is
compared for both executions. The comparison is
accomplished by an external hardware module that
computes a signature based on trace information.
Other approaches have been proposed that make a
more elaborated use of the trace information. In [23],
a hybrid technique is proposed using the trace
interface to harden the execution flow while data
errors are handled with SWIFT-R technique. A new
technique was proposed in [6] that compares the
program flow information retrieved from two
different points: the trace interface and the memory
bus. This technique was able to detect all control-flow
errors in a LEON3 microprocessor.

3. Hybrid architecture

3.1 Hardware monitor

In this paper we present a hardware monitor that
observes the execution of an ARM Cortex-A9 core
through its trace interface. The hardware monitor is
capable of decoding and checking program trace
information. It has been developed as an IP core that
can be configured as a system peripheral. A Xilinx
Zynq-7010 [25] All Programmable System-on-Chip
(AP SoC) device, including a dual-core ARM Cortex-
A9 processing system, has been chosen as the test
platform for the proposed system. An overview of the
complete system is shown in Fig. 1.

The trace interface provided by the ARM
Cortex-A9 is based on the CoreSight™ technology.
CoreSight [8] is a family of IP modules intended to
support the needs for debug access, instruction
tracing, cross-triggering and time-stamping. Some of
the most common Coresight components are
represented on the left side of Fig.1 as the
Instrumentation Trace Macrocell (ITM), the Fabric
Trace Monitor (FTM), the Funnel, or the Trace Port
Interface Unit (TPIU). In this work, we focus on one

specific CoreSight component, called Program Trace
Macrocell (PTM). The PTM is a real-time module that
provides instruction tracing of a processor. It is a
CoreSight component of the trace source class based
on the ARM Program Flow Trace (PFT) architecture
specification [9]. Two PTM units are provided in the
Zynq-7010 AP SoC, called PTM0 and PTM1, one for
each core.

The PTM produces useful information to
understand the operation of the processor in a format
designed to optimize bandwidth. This is achieved by
generating compressed data, which contains just the
minimum information required to reconstruct the
processor execution flow. To enable correct
interpretation of core execution, ARM PFT
architecture also provides full information about
exceptions, the instruction set state, security state and
current Context ID of the processor. The information
is formatted in packets. Each packet is composed of a
variable, but bounded, number of 8-bit words. To
distinguish between different packet types, the first
word of each packet, called the header, must be
checked and decoded. The ARM PFT architecture
specification ensures a unique header for each packet
type to guarantee the correct interpretation of the
enclosed information. With respect to this protocol, it
is important to note that all packets must be correctly
identified and delimited to prevent the monitor from
getting lost, regardless of their relevance for the
checking process.

A hardware monitor has been developed based
on the ARM PFT architecture specification to decode
and extract the trace packets generated by the PTM.

This monitor has been implemented in the
programmable logic of a ZYNQ-7010 and connected
to the ARM Processing System through the CoreSight
Trace Port Interface Unit (TPIU) using Zynq EMIO
(Extended Multiplexed I/O) interface. Trace
information is produced by the PTM and driven
through the Funnel to the TPIU, so the corresponding
Funnel input must be enabled. All involved CoreSight
components are configured and enabled by software
during the microprocessor initialization.

During operation, the hardware monitor receives
and decodes trace packets. In the ARM PFT protocol,
the amount of words in each packet is variable and
only by identifying the last word in one packet it is
possible to identify the header of the next packet.
Also, data contained in each word may be relevant to
interpret the next ones. For these reasons, a pipelined
architecture has been implemented to reliably extract
trace information irrespective of the length of the
received packets or their order. This way, each packet
can be correctly identified and delimited, making the
hardware monitor continuously aware of the type of
packet which is currently being decoded.

Once the hardware monitor is able to identify
and delimit all packet types, any further functionality
can be implemented using information available in the
received packets. In our application, the available
information is used to obtain and monitor the Program
Counter (PC) of the ARM processor. The PC value is
obtained using information from three main types of
packets: I-sync packet, Branch Address packet and
Waypoint Update packet. With this method, the PC
value can be updated periodically, in every waypoint.

Fig. 1. Proposed system overview.

ARM PFT architecture specification defines a
waypoint as a point where an instruction might
involve a change in the program flow. The described
functionality is called a PC follower and provides
updated PC value information that can then be used to
determine the processor behaviour during execution
and detect if it is correct or not.

To detect control-flow errors, a range checking
method has been implemented. The hardware monitor
has been designed to allocate up to eight configurable
PC ranges, each of which can be configured through
the AXI peripheral interface. These ranges have been
named confidence ranges, and they determine
allowed PC values during execution. In practice, a
user must configure confidence range values with the
addresses where the user application functions are
stored. Any time the hardware monitor detects that
actual PC value is not within any of the valid
confidence ranges, an error signal is asserted.

3.2 Data error detection

The error detection capabilities provided by the
hardware monitor are complemented by conventional
software techniques based on data duplication.
Basically, all variables are duplicated and all
operations are also duplicated on the variable copies.
Data consistency checks are also included in the
software. They are performed just after variable
modification to minimize error detection latency. As
mentioned in section 2, variable duplication can be
optimized to reduce the overheads. However, in the
implementation used in this work all variables were
duplicated for the sake of completeness.

4. Experimental results

The proposed approach has been tested with
proton irradiation and fault injection campaigns. A
common experimental setup was used for both
experiments in order to make the results as coherent
as possible. The experimental setup is described in
section 4.1. Then, sections 4.2 and 4.3 describe the
performed experiments and the results obtained in
each case.

4.1 Experimental setup

For the experiments we used commercial boards,
namely Zybo boards. Zybo contains a XC7Z010
device from Zynq-7000 AP SoC family of Xilinx,
which includes a dual core ARM Cortex™-A9
processor. One single core of the device was used,
running at the nominal 650 MHz clock frequency. The
device also includes a Programmable Logic (PL) part
which was used to implement the proposed hardware
monitor.

Fig. 2 shows a picture of the experimental setup.
The Device Under Test (DUT) is included in the Zybo
board. The control of the experiment is performed by
an external control board that collects and records all
the information about the errors that occur during the
experiment. The control board can also restart and
reset the DUT when non-recoverable errors are
observed.

All the necessary configuration data, including
the boot program, the PL configuration bitstream and
the application software program are stored in an SD
card that is copied to OCM (On Chip Memory) when
the device is turned on. As our proposed hardware
monitor is located in the programmable logic of the
device, it can also be affected by errors. To mitigate

Fig. 2. Experimental setup overview.

these errors, the Xilinx Soft Error Mitigation (SEM)
Controller IP was used. Xilinx SEM IP can detect,
correct and classify SEUs in the configuration
memory of the PL. During the experiments, the SEM
is connected to the control board to send all the
information about SEU detection, correction and
classification. Errors in programmable logic that
cannot be corrected by the SEM trigger a
reprogramming of the device by the external control
board.

We have used a matrix multiplication application
software benchmark for the experiments. Following
the proposed hybrid solution, the software benchmark
was modified to implement data duplication, as
described in section 3.2. The benchmark was
compiled with Xilinx SDK environment and
minimum optimization effort (-O0) in order to prevent
the compiler from eliminating duplicated variables.
The benchmark is running an infinite loop computing
the matrix multiplication of 32x32 elements arrays.
The complete software size is approximately 111 kB.

Errors were classified according to the following
categories:

 Hang error: Microprocessor cannot continue
normal execution and requires the system to be
restarted and reconfigured. This category takes
into account Hang errors that are detected only
by the external control board.

 Detected Hang error (Det Hang): Hang errors
that are detected by the proposed hardware
monitor and the external control board.

 Detected data error (Det. SW): Software data
duplication has detected a discrepancy in
duplicated data. These data errors are detected
by the software checks and reported to the
external control board.

 Communication error (Comm):
Communication between the FPGA and the
external control board is experiencing a
malfunctioning.

4.2 Proton irradiation

In order to test the proposed approach we have
performed a proton irradiation experiment that took
place in March of 2018 at CNA (Centro Nacional de
Aceleradores), Spain. The experiments were
performed using the external beam line installed in the
18/9 IBA compact cyclotron. The DUT was irradiated
in open air with 15 MeV protons. The energy of
incident protons in the silicon active area is in the

order of 10 MeV, which is enough to produce events
for the used technology of 28 nm without the need for
thinning the devices [24]. The total fluence was
1.6·1012 p/cm2.

Table 1 shows the number of observed errors and
their percentage with respect to the total number of
errors for each error category.

Table 1
Experimental results of proton irradiation

Error type

#Errors

%Errors

Hang

7

2.30%

Comm 3 0.98%

Det. SW 236 77.38%

Det Hang 59 19.34%

Total 305 100.00%

Experimental results show that the proposed

approach presents a high capacity of error detection
and is able to detect 96.72% of the observed errors.
Considering the errors that can be observed by the
external hardware monitor, it can detect 89.39 % of
the observed Hang errors.

The total cross section is 1.91·10-10 cm2 with a
95% confidence interval between 1.69·10-10 cm2 and
2.12·10-10 cm2. When only undetected errors are
considered (categories Comm and Hang from
Table 1), the cross-section reduces to 6.25·10-12 cm2
(3.0·10-12 cm2 - 1.15·10-11 cm2), which is more than
30 times smaller.

4.3 Fault injection

Complementarily to the proton irradiation
experiment, we tested our proposed approach with
fault injection. We injected faults in the registers in
the microprocessor to evaluate the microprocessor
behaviour in a more detailed way. For the injection we
have used the very same experimental setup that was
utilized in the radiation experiments.

The implemented fault injection approach is
based on the Code Emulation Upset technique [26].
This approach is summarized as follows. A timer is
configured to trigger an interrupt at a random instant.
Upon interruption, the full set of registers of the ARM
microprocessor is saved on the stack, so that they are
available for fault injection. Then, a bit-flip is injected

in a randomly selected bit of one of the registers.
When the processor returns from the interrupt, the
registers are restored from the stack and the single bit
injected fault becomes effective. The execution is
resumed and is let running for several iterations of the
tested application software.

A preliminary run of the application software is
used to measure its execution time, which is used as
the maximum range for random generation of
injection instants. The injected register and bit are also
randomly selected. Random seeds are generated
externally and provided to the device when it is
restarted in order to ensure that random values are
generated without bias.

The ARM processor contains a large set of
registers. In particular, it uses banked copies of some
registers, with the current register selected by the
execution mode. In addition, the Single-Instruction
Multiple Data (SIMD) and floating-point
coprocessors have their own set of registers, which
can also be saved in the stack. Faults can be injected
in any register using our approach. However, fault
injection was performed only on the ARM core
registers at the application level view to avoid
unnecessarily injecting faults in registers which were
not used. Some registers need to be treated in a
specific way considering their behaviour. Especially,
fault injection in the Program Counter (PC) was
actually implemented through the Link Register (LR),
because the PC takes the contents of the LR upon
return from interrupt.

The results of the fault injection campaign are
summarized in Table 2. We injected a total of 53,488
faults, of which 12,040 (23.46%) produced
observable errors. The proposed approach detected
95.94% of the errors with a 95% confidence interval
of ±1.71%. The external monitor detected 89.65% of
the Hang errors, with a 95% confidence interval of
±2.65%. These results are in line with those obtained
in the proton irradiation experiment, which are within
the calculated 95% confidence intervals. The only
significant difference is that Hang errors occurred
more frequently under fault injection, which is due to
the narrower focus of the fault injection experiment.
However, the hardware monitor was able to detect a
similar amount of errors in both experiments.

Fig. 3 shows a comparison of errors on a register
basis. Fault injection was performed in the complete
register file, but only a subset of registers was really
used due to the compilation options. For clarity, only
the registers that produce at least one error are
reported. The frame pointer (FP) and the program

counter (PC) are the most critical registers and
provoke an error for almost every bit-flip injected in
them. For the rest of the registers, error sensitivity
may vary depending on their usage.

Table 2
Experimental results of fault injection

Error type

#Errors

%Errors

Hang 509 4.06%

Comm 0 0.00%

Det. SW 7,631 60.81%

Det Hang 4,409 35.13%

Total 12,549 100.00%

5. Conclusions and future work

This work presents a hybrid architecture that can
monitor ARM microprocessor execution thanks to the
observation of the program flow trace provided by
PTM trace module. This solution presents a feasible
and non-intrusive way of detecting errors in ARM-
based COTS with reduced impact in area.
Experimental results demonstrate the high error
detection capabilities of the proposed approach.

The proposed approach has been tested with
proton irradiation and fault injection. Notably, the
results of both tests were very similar, although fault
injection was limited to the ARM core registers.
Future work is oriented to enhance the error detection
capabilities based on the trace information.

Fig. 3. Errors by register.

2,72%
8,25%

14,60%
19,16%

28,79%

0,06%

26,43%

0%
5%

10%
15%
20%
25%
30%
35%

r0 r1 r2 r3 FP r12 PC

Er
ro

rs
/t

ot
al

 e
rr

or
s

Register

Acknowledgements

This work was supported in part by the Spanish
Ministry of Economy and Competitiveness under
project ESP2015-68245-C4-1-P and by the
Community of Madrid under grant IND2017/TIC-
7776.

References

[1] R. C. Baumann, Radiation-induced soft errors in

advanced semiconductor technologies, IEEE Trans. on
Device and Materials Rel., vol. 5, no. 3 (2005), pp. 305-
316.

[2] L. Entrena, M. Portela, A. Lindoso, M. García-Valderas,
L. Mengíbar, L. Parra, J. A. Pulido, A. Latorre, Flexible
approaches to fault-tolerant microprocessors for space
aplications, Proc. Data Systems In Aerospace (DASIA),
ESA Special Publication SP-732, May 2015.

[3] M. Nicolaidis, Soft errors in modern electronic systems,
(Ed.), Springer, 2011.

[4] J. R. Azambuja, S. Pagliarini, L. Rosa, and F. L.
Kastensmidt, Exploring the limitations of software-only
techniques in SEE detection coverage, Journal of
Electronic Testing, no. 27, (2011), pp. 541–550.

[5] L. Entrena, A. Lindoso, M. Portela-García, L. Parra, B.
Du, M. Sonza Reorda, L. Sterpone, Fault-tolerance
techniques for soft-core processors using the Trace
Interface, In “FPGAs and Parallel Architectures for
Aerospace Applications. Soft Errors and Fault-Tolerant
Design”, Springer, 2015.

[6] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B.
Du, M. Sonza Reorda, L. Sterpone, A New Hybrid
Nonintrusive Error-Detection Technique Using Dual
Control-Flow Monitoring, IEEE Transactions on
Nuclear Science, vol. 61, no. 6 (2014), pp. 3236-3243.

[7] B. Du, E. Sanchez, M. S. Reorda, J. P. Acle, A. Tsertov.
FPGA-controlled PCBA power-on self-test using
processor's debug features, IEEE Int. Symp. on Design
and Diagnostics of Electronic Circuits & Systems
(DDECS), 2016.

[8] ARM Inc., CoreSight Components – Technical
Reference Manual, 2009.

[9] ARM Inc., CoreSight Program Flow Trace Architecture
Specification, 2011.

[10] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo,
M. Sonza Reorda, M. Violante, Experimentally
evaluating an automatic approach for generating safety-
critical software with respect to transient errors, IEEE
Transactions on Nuclear Science, vol. 47, no. 6 (2000),
pp. 2231–2236.

[11] A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, A
C/C++ source-to-source compiler for dependable
applications, IEEE International Conference on
Dependable Systems and Networks, 2000, pp. 71-78.

[12] B. Nicolescu, R. Velazco, Detecting soft errors by a
purely software approach: method, tools and
experimental results, Design, Automation and Test in
Europe Conference, 2003, pp. 57 – 62.

[13] R. Vemu, J.A. Abraham, CEDA: Control-Flow Error
Detection through Assertions, Proc. 12th IEEE
International On-Line Testing Symposium (IOLTS),
2006, pp. 151-158.

[14] V.S.S. Nair, H. Kim, N. Krishnamurthy, J.A. Abraham,
Design and Evaluation of Automated High-Level
Checks for Signal Processing Applications, Proc. SPIE
Advanced Algorithms and Architectures for Signal
Processing Conf., Ago. 1996.

[15] O. Goloubeva, M. Rebaudengo, M. S. Reorda, M.
Violante, Soft-error detection using control flow
assertions, 18th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, 2003, pp.
581–588.

[16] M. Hiller, Executable assertions for detecting data
errors in embedded control systems, Proceedings of the
IEEE international conference on dependable systems
and networks, 2000, pp 24–33.

[17] T. Michel, R. Leveugle, G. Saucier, A New Approach
to Control Flow Checking Without Program
Modification, Proc. 21th International Symposium on
Fault-Tolerant Computing (FTCS-21), 1991, pp. 334-
341.

[18] S. Bergaoui, R. Leveugle, ISDM: An Improved Control
Flow Checking Approach with Disjoint Signature
Monitoring, Proc. 24th Conference on Design of
Circuits and Integrated Systems (DCIS), 2009.

[19] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, A
Watchdog Processor to Detect Data and Control Flow
Errors, 9th IEEE International On-Line Testing
Symposium, 2003, pp. 144-148.

[20] J. R. Azambuja, M. Altieri, J. Becker, F. L.
Kastensmidt, HETA: Hybrid Error-Detection
Technique Using Assertions, IEEE Transactions on
Nuclear Science, vol. 60, no. 4 (2013), pp. 2805-2812.

[21] M. Grosso, M. Sonza Reorda, M. Portela-Garcia, M.
Garcia-Valderas,C. Lopez-Ongil, L. Entrena, An on-
line fault detection technique based on embedded debug
features, Proc.16th IEEE On-LineTesting Symposium,
2010, pp. 167-172.

[22] M. Portela-Garcia,M.Grosso, M. Gallardo-Campos,M.
Sonza Reorda, L. Entrena, M. Garcia-Valderas, C.
Lopez-Ongil, On the use of embedded debug features
for permanent and transient fault resilience in
microprocessors, Microprocessors Microsystems, vol.
36, no. 5. (2012), pp. 334–343.

[23] L. Parra, A. Lindoso, M. Portela, L. Entrena, F.
Restrepo-Calle, S. Cuenca-Asensi, A. Martínez-
Álvarez, Efficient Mitigation of Data and Control Flow
Errors in Microprocessors, IEEE Transactions on
Nuclear Science (TNS), vol. 61, no.4 (2014), pp. 1590-
1596.

[24] A. Lindoso, M. García-Valderas, L. Entrena, Y.

Morilla and P. Martín-Holgado, Evaluation of the
suitability of NEON SIMD microprocessor extensions
under proton irradiation, IEEE Transactions on Nuclear
Science, 2018 (in press).

[25] Xilinx Inc., Zynq-7000 All Programmable SoC:
Technical Reference Manual, UG585, 2016.

[26] R. Velazco, S. Rezgui and R. Ecoffet, Predicting error
rate for microprocessor-based digital architectures
through C.E.U. (Code Emulating Upsets) injection,
IEEE Transactions on Nuclear Science, vol. 47, no. 6
(2000) pp. 2405-2411.

