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Abstract 
 
        This work presents a hybrid error detection architecture that uses ARM PTM trace interface to observe ARM 
microprocessor behaviour. The proposed approach is suitable for COTS microprocessors because it does not 
modify the microprocessor architecture and is able to detect errors thanks to the reuse of its trace subsystem. 
Validation has been performed by proton irradiation and fault injection campaigns on a Zynq AP SoC including a 
Cortex-A9 ARM microprocessor and an implementation of the proposed hardware monitor in programmable logic. 
Experimental results demonstrate that a high error detection rate can be achieved on a commercial microprocessor. 

 
  
 
  
  
1. Introduction 
 

Microprocessors are commonly used in a wide 
variety of applications, including safety-critical and 
high availability missions. In these applications, 
meeting the reliability requirements in an effective 
manner is a challenge. Among the multiple factors 
that may affect reliability, radiation-induced soft 
errors have the potential to cause the highest failure 
rate of all other reliability mechanisms combined [1]. 
Therefore, they are a primary concern in applications 
working in extreme environments, such as space, and 
a growing concern also at the ground level. 

Although there are radiation-hardened 
microprocessors specifically developed for these type 
of environments, they are generally expensive and 
have high power consumption. Moreover, their 
performance generally lags behind commercial 
processors. As a consequence, there is a growing 
interest in the use of COTS (Commercial Off-The-
Shelf) microprocessors even for space applications 
[2]. In this case, error detection or mitigation must be 
provided taking into account that the hardware cannot 
be modified. 

Software fault-tolerance techniques [3] introduce 

redundancy in the code in order to detect or correct 
errors. These techniques have been widely studied and 
are the basic solution for COTS microprocessors. 
However, they are limited because processors contain 
many sensitive resources that cannot be directly 
accessed through software. In addition, they introduce 
significant performance penalties. These limitations 
are particularly relevant in the case of control-flow 
error mitigation [4].  

To overcome these limitations, the use of 
hardware monitoring has been proposed [5]. 
Hardware monitoring uses an additional piece of 
hardware that can observe the execution flow of the 
processor through a suitable interface. Debug 
resources, which are commonly available in most 
microprocessors to facilitate system development and 
software debugging, can be reused for this purpose. 
These resources are useless during normal operation, 
so they can be reused for on-line monitoring in an 
inexpensive way. On the other hand, they can provide 
internal access to the microprocessor without 
disturbing it. In particular, the use of program trace 
interfaces has been proposed and demonstrated for 
soft cores [5], [6], [7]. In a soft core, it is possible to 
use a low-level or custom trace interface that provides 



 

great flexibility and performance. However, in the 
case of commercial cores, trace interfaces are usually 
complex and require trace information to be decoded 
and synchronized for the application.  

In this work we propose and evaluate a hybrid 
error-detection architecture for ARM processors. 
ARM is currently one of the most popular choices for 
embedded systems and supports debug and trace 
functions through the CoreSightTM subsystem [8]. 
Coresight is actually a family of IP (Intellectual 
Property) modules. In this paper, we focus on the 
Program Trace Macrocell (PTM), a CoreSight 
component that provides program-flow trace 
information. The PTM is the basic program flow trace 
macrocell for the ARM Cortex-A9 architecture [9]. 

In the proposed hybrid approach, the code is 
hardened for data errors, using duplication, while 
control-flow errors are detected by a hardware 
monitor attached to the PTM through the trace port. 
The hardware monitor continuously receives and 
decodes trace packets along the execution of the 
application program, extracts the control-flow 
information and checks it on-line. 

Validation of the proposed hybrid architecture 
has been performed with fault injection and proton 
irradiation campaigns. Fault injection is a widely used 
approach to evaluate the effects of faults in an 
inexpensive way, but it is limited to user accessible 
components. Additionally, a proton irradiation 
campaign has been performed to test the proposed 
hybrid architecture in a more realistic way. Both tests 
provided very similar results. We show how the 
combination of data duplication and hardware 
monitoring provides a good error detection capability. 
We also evaluate the contribution of each part of the 
system to the error detection rate.  

The remaining of this paper is as follows. Section 
two summarizes related work and introduces some 
concepts about hybrid architectures based on the trace 
interface. Section three describes the proposed hybrid 
architecture. Section four shows the experimental 
results. Finally, section five presents the conclusions 
of this work. 

 
 

2. Related work 
 

Microprocessor hardening techniques are usually 
divided into software, hardware, and hybrid 
techniques [3]. The type of detected errors by all these 
techniques is commonly divided into errors affecting 
control-flow and errors affecting data. Control-flow 

errors modify the execution flow causing the 
microcontroller to execute a different instruction than 
the one that had to be executed. Data errors affect 
exclusively to program data. 

Software techniques modify the application 
software to detect or correct errors. The main 
advantages of software techniques are flexibility and 
ease of implementation. Generally, software 
techniques require larger execution time and increase 
memory usage (due to the software modifications and 
required additional storage for comparison 
information). Software techniques can be also divided 
into data and control-flow techniques.  

Data techniques are commonly based in 
duplication. Data duplication consists in duplicating 
all variables used in a program. Original data and 
duplicated data must perform the same operations. 
During program execution, duplicated and original 
data must be checked. Errors are detected when a 
difference in both data sets is found. In [10] a set of 
rules are defined to modify the software for this 
purpose. This work achieves a very good error 
coverage but with a high impact in area and execution 
time. In order to solve these limitations, duplication 
can be applied at different levels, looking for a trade-
off between error coverage and performance penalty. 
Duplication can be performed at instruction, function 
or even program level. Other possibilities that are 
present in the literature to decrease the performance 
and size penalties are based in reducing the number of 
data checkpoints or limiting the duplicated data. In 
[11] instead of duplicating all data, specific variable 
sets are duplicated. Ref. [12] evaluates the relevance 
of variables and applies a set of rules for selective 
duplication in order to reduce the impact of 
duplication.  

The most common software control-flow 
techniques are based on assertions or signatures. 
Signature-based techniques commonly divide the 
program code into basic blocks. A basic block is a set 
of instructions with no branches except for possibly 
the last one. At compilation time a signature is 
assigned to every basic block. At execution time, the 
signatures are computed and checked at the end of 
every basic block. It must be noted that compilation 
time signatures require additional storage that may 
introduce a significant memory size penalty. 
Examples of these techniques are CEDA [13], ECCA 
[14] and YACCA [15]. Assertion-based techniques 
modify the code by inserting special statements 
(assertions) that check the data-flow correctness. In 
this case, error coverage can be affected by the 



 

assertion location and also by the information 
included in it, so that they are application-dependent. 
An example of the use of assertions can be found in 
[16]. 

Hardware techniques modify the circuit 
architecture to harden it. A well-known example of 
these techniques is TMR (Triple Modular 
Redundancy). In the case of COTS microprocessors, 
the architecture is not commonly available. In 
addition, a new device has to be manufactured to 
include the hardware modifications. These drawbacks 
make the application of this kind of techniques 
unfeasible for COTS in most cases. 

Alternatively, error detection in microprocessors 
can be accomplished by connecting additional 
external hardware modules to observe the system 
behaviour. The error coverage usually depends on the 
capacity of observation through the feasible 
connections. Several works have used this approach, 
proposing hardware modules [17], [18], [19] that 
range from simple circuits to very complex ones that 
could be considered similar in complexity to the 
observed microprocessor. These hardware modules 
are commonly named watchdog processors. 
Watchdog processors can also be classified into active 
and passive. Passive watchdog processors can be used 
to check signatures or assertions inserted in the 
software executed by the microprocessor. They 
commonly require additional memory to store the 
values for comparison. Active watchdog processors 
decrease the memory needs but increase the 
complexity and the required area. These processors 
are able to execute a simplified version of the program 
executed by the microprocessor. Examples of these 
processors are proposed in [17] and [18]. 

Hybrid techniques combine both software and 
hardware techniques taking advantage of their 
individual benefits. The most common approach is to 
apply software techniques for data-flow hardening, as 
data is more complex to observe externally, and use 
the hardware monitor to detect control-flow errors. 
For instance, in [20] a hardware module is used to 
monitor the control flow while software fault 
tolerance techniques are used to detect errors in the 
data-flow. 

Microprocessors are commonly observed through 
memory buses or through the trace interface. A trace 
subsystem is commonly included in most 
microprocessors to support software debugging. 
When the debugging process is finished, this part of 
the circuit is not used. In [5], an extensive overview 
of the use of the trace interface for microprocessor 

observation is presented. The use of the trace 
subsystem for on-line monitoring was first proposed 
in [21] to observe a LEON3 microprocessor. In this 
work, several microprocessors were executing the 
same software at different times. During execution, 
signatures were generated from the available trace 
information. The coverage can vary depending on the 
selected information that is used to obtain the 
signatures. An extended approach was proposed in 
[22], where critical tasks are replicated (in the same 
microprocessor or in different microprocessors) and 
the information provided by the trace interface is 
compared for both executions. The comparison is 
accomplished by an external hardware module that 
computes a signature based on trace information. 
Other approaches have been proposed that make a 
more elaborated use of the trace information. In [23], 
a hybrid technique is proposed using the trace 
interface to harden the execution flow while data 
errors are handled with SWIFT-R technique. A new 
technique was proposed in [6] that compares the 
program flow information retrieved from two 
different points: the trace interface and the memory 
bus. This technique was able to detect all control-flow 
errors in a LEON3 microprocessor. 

 
 

3. Hybrid architecture 
 

3.1 Hardware monitor 
 

In this paper we present a hardware monitor that 
observes the execution of an ARM Cortex-A9 core 
through its trace interface. The hardware monitor is 
capable of decoding and checking program trace 
information. It has been developed as an IP core that 
can be configured as a system peripheral. A Xilinx 
Zynq-7010 [25] All Programmable System-on-Chip 
(AP SoC) device, including a dual-core ARM Cortex-
A9 processing system, has been chosen as the test 
platform for the proposed system. An overview of the 
complete system is shown in Fig. 1. 

The trace interface provided by the ARM 
Cortex-A9 is based on the CoreSight™ technology. 
CoreSight [8] is a family of IP modules intended to 
support the needs for debug access, instruction 
tracing, cross-triggering and time-stamping. Some of 
the most common Coresight components are 
represented on the left side of Fig.1 as the 
Instrumentation Trace Macrocell (ITM), the Fabric 
Trace Monitor (FTM), the Funnel, or the Trace Port 
Interface Unit (TPIU). In this work, we focus on one 



 

specific CoreSight component, called Program Trace 
Macrocell (PTM). The PTM is a real-time module that 
provides instruction tracing of a processor. It is a 
CoreSight component of the trace source class based 
on the ARM Program Flow Trace (PFT) architecture 
specification [9]. Two PTM units are provided in the 
Zynq-7010 AP SoC, called PTM0 and PTM1, one for 
each core. 

The PTM produces useful information to 
understand the operation of the processor in a format 
designed to optimize bandwidth. This is achieved by 
generating compressed data, which contains just the 
minimum information required to reconstruct the 
processor execution flow. To enable correct 
interpretation of core execution, ARM PFT 
architecture also provides full information about 
exceptions, the instruction set state, security state and 
current Context ID of the processor. The information 
is formatted in packets. Each packet is composed of a 
variable, but bounded, number of 8-bit words. To 
distinguish between different packet types, the first 
word of each packet, called the header, must be 
checked and decoded. The ARM PFT architecture 
specification ensures a unique header for each packet 
type to guarantee the correct interpretation of the 
enclosed information. With respect to this protocol, it 
is important to note that all packets must be correctly 
identified and delimited to prevent the monitor from 
getting lost, regardless of their relevance for the 
checking process. 

A hardware monitor has been developed based 
on the ARM PFT architecture specification to decode 
and extract the trace packets generated by the PTM. 

This monitor has been implemented in the 
programmable logic of a ZYNQ-7010 and connected 
to the ARM Processing System through the CoreSight 
Trace Port Interface Unit (TPIU) using Zynq EMIO 
(Extended Multiplexed I/O) interface. Trace 
information is produced by the PTM and driven 
through the Funnel to the TPIU, so the corresponding 
Funnel input must be enabled. All involved CoreSight 
components are configured and enabled by software 
during the microprocessor initialization. 

During operation, the hardware monitor receives 
and decodes trace packets. In the ARM PFT protocol, 
the amount of words in each packet is variable and 
only by identifying the last word in one packet it is 
possible to identify the header of the next packet. 
Also, data contained in each word may be relevant to 
interpret the next ones. For these reasons, a pipelined 
architecture has been implemented to reliably extract 
trace information irrespective of the length of the 
received packets or their order. This way, each packet 
can be correctly identified and delimited, making the 
hardware monitor continuously aware of the type of 
packet which is currently being decoded.  

Once the hardware monitor is able to identify 
and delimit all packet types, any further functionality 
can be implemented using information available in the 
received packets. In our application, the available 
information is used to obtain and monitor the Program 
Counter (PC) of the ARM processor. The PC value is 
obtained using information from three main types of 
packets: I-sync packet, Branch Address packet and 
Waypoint Update packet. With this method, the PC 
value can be updated periodically, in every waypoint. 

 
Fig. 1.  Proposed system overview. 



 

ARM PFT architecture specification defines a 
waypoint as a point where an instruction might 
involve a change in the program flow. The described 
functionality is called a PC follower and provides 
updated PC value information that can then be used to 
determine the processor behaviour during execution 
and detect if it is correct or not. 

To detect control-flow errors, a range checking 
method has been implemented. The hardware monitor 
has been designed to allocate up to eight configurable 
PC ranges, each of which can be configured through 
the AXI peripheral interface. These ranges have been 
named confidence ranges, and they determine 
allowed PC values during execution. In practice, a 
user must configure confidence range values with the 
addresses where the user application functions are 
stored. Any time the hardware monitor detects that 
actual PC value is not within any of the valid 
confidence ranges, an error signal is asserted.  

 
3.2 Data error detection 
 

The error detection capabilities provided by the 
hardware monitor are complemented by conventional 
software techniques based on data duplication. 
Basically, all variables are duplicated and all 
operations are also duplicated on the variable copies. 
Data consistency checks are also included in the 
software. They are performed just after variable 
modification to minimize error detection latency. As 
mentioned in section 2, variable duplication can be 
optimized to reduce the overheads. However, in the 
implementation used in this work all variables were 
duplicated for the sake of completeness. 
 
 
 

4. Experimental results 
 

The proposed approach has been tested with 
proton irradiation and fault injection campaigns. A 
common experimental setup was used for both 
experiments in order to make the results as coherent 
as possible. The experimental setup is described in 
section 4.1. Then, sections 4.2 and 4.3 describe the 
performed experiments and the results obtained in 
each case. 
 
4.1 Experimental setup 
 

For the experiments we used commercial boards, 
namely Zybo boards. Zybo contains a XC7Z010 
device from Zynq-7000 AP SoC family of Xilinx, 
which includes a dual core ARM Cortex™-A9 
processor. One single core of the device was used, 
running at the nominal 650 MHz clock frequency. The 
device also includes a Programmable Logic (PL) part 
which was used to implement the proposed hardware 
monitor.  

Fig. 2 shows a picture of the experimental setup. 
The Device Under Test (DUT) is included in the Zybo 
board. The control of the experiment is performed by 
an external control board that collects and records all 
the information about the errors that occur during the 
experiment. The control board can also restart and 
reset the DUT when non-recoverable errors are 
observed.  

All the necessary configuration data, including 
the boot program, the PL configuration bitstream and 
the application software program are stored in an SD 
card that is copied to OCM (On Chip Memory) when 
the device is turned on. As our proposed hardware 
monitor is located in the programmable logic of the 
device, it can also be affected by errors. To mitigate 

 
Fig. 2.  Experimental setup overview. 



 

these errors, the Xilinx Soft Error Mitigation (SEM) 
Controller IP was used. Xilinx SEM IP can detect, 
correct and classify SEUs in the configuration 
memory of the PL. During the experiments, the SEM 
is connected to the control board to send all the 
information about SEU detection, correction and 
classification. Errors in programmable logic that 
cannot be corrected by the SEM trigger a 
reprogramming of the device by the external control 
board. 

We have used a matrix multiplication application 
software benchmark for the experiments. Following 
the proposed hybrid solution, the software benchmark 
was modified to implement data duplication, as 
described in section 3.2. The benchmark was 
compiled with Xilinx SDK environment and 
minimum optimization effort (-O0) in order to prevent 
the compiler from eliminating duplicated variables. 
The benchmark is running an infinite loop computing 
the matrix multiplication of 32x32 elements arrays. 
The complete software size is approximately 111 kB. 

Errors were classified according to the following 
categories: 

 Hang error: Microprocessor cannot continue 
normal execution and requires the system to be 
restarted and reconfigured. This category takes 
into account Hang errors that are detected only 
by the external control board. 

 Detected Hang error (Det Hang): Hang errors 
that are detected by the proposed hardware 
monitor and the external control board. 

 Detected data error (Det. SW): Software data 
duplication has detected a discrepancy in 
duplicated data. These data errors are detected 
by the software checks and reported to the 
external control board. 

 Communication error (Comm): 
Communication between the FPGA and the 
external control board is experiencing a 
malfunctioning.  

 
4.2 Proton irradiation 
 

In order to test the proposed approach we have 
performed a proton irradiation experiment that took 
place in March of 2018 at CNA (Centro Nacional de 
Aceleradores), Spain. The experiments were 
performed using the external beam line installed in the 
18/9 IBA compact cyclotron. The DUT was irradiated 
in open air with 15 MeV protons. The energy of 
incident protons in the silicon active area is in the 

order of 10 MeV, which is enough to produce events 
for the used technology of 28 nm without the need for 
thinning the devices [24]. The total fluence was 
1.6·1012 p/cm2. 

Table 1 shows the number of observed errors and 
their percentage with respect to the total number of 
errors for each error category. 

 
Table 1 
Experimental results of proton irradiation 
 

 
Error type 

 
#Errors 

 
%Errors 

Hang 
 

7 
 

2.30% 

Comm 3 0.98% 

Det. SW 236 77.38% 

Det Hang 59 19.34% 

Total 305 100.00% 

 
Experimental results show that the proposed 

approach presents a high capacity of error detection 
and is able to detect 96.72% of the observed errors. 
Considering the errors that can be observed by the 
external hardware monitor, it can detect 89.39 % of 
the observed Hang errors. 

The total cross section is 1.91·10-10 cm2 with a 
95% confidence interval between 1.69·10-10 cm2 and 
2.12·10-10 cm2. When only undetected errors are 
considered (categories Comm and Hang from       
Table 1), the cross-section reduces to 6.25·10-12 cm2   
(3.0·10-12 cm2 - 1.15·10-11 cm2), which is more than 
30 times smaller. 

 
4.3 Fault injection 
 

Complementarily to the proton irradiation 
experiment, we tested our proposed approach with 
fault injection. We injected faults in the registers in 
the microprocessor to evaluate the microprocessor 
behaviour in a more detailed way. For the injection we 
have used the very same experimental setup that was 
utilized in the radiation experiments. 

The implemented fault injection approach is 
based on the Code Emulation Upset technique [26]. 
This approach is summarized as follows. A timer is 
configured to trigger an interrupt at a random instant. 
Upon interruption, the full set of registers of the ARM 
microprocessor is saved on the stack, so that they are 
available for fault injection. Then, a bit-flip is injected 



 

in a randomly selected bit of one of the registers. 
When the processor returns from the interrupt, the 
registers are restored from the stack and the single bit 
injected fault becomes effective. The execution is 
resumed and is let running for several iterations of the 
tested application software. 

A preliminary run of the application software is 
used to measure its execution time, which is used as 
the maximum range for random generation of 
injection instants. The injected register and bit are also 
randomly selected. Random seeds are generated 
externally and provided to the device when it is 
restarted in order to ensure that random values are 
generated without bias.  

The ARM processor contains a large set of 
registers. In particular, it uses banked copies of some 
registers, with the current register selected by the 
execution mode. In addition, the Single-Instruction 
Multiple Data (SIMD) and floating-point 
coprocessors have their own set of registers, which 
can also be saved in the stack. Faults can be injected 
in any register using our approach. However, fault 
injection was performed only on the ARM core 
registers at the application level view to avoid 
unnecessarily injecting faults in registers which were 
not used. Some registers need to be treated in a 
specific way considering their behaviour. Especially, 
fault injection in the Program Counter (PC) was 
actually implemented through the Link Register (LR), 
because the PC takes the contents of the LR upon 
return from interrupt. 

The results of the fault injection campaign are 
summarized in Table 2. We injected a total of 53,488 
faults, of which 12,040 (23.46%) produced 
observable errors. The proposed approach detected 
95.94% of the errors with a 95% confidence interval 
of ±1.71%. The external monitor detected 89.65% of 
the Hang errors, with a 95% confidence interval of 
±2.65%. These results are in line with those obtained 
in the proton irradiation experiment, which are within 
the calculated 95% confidence intervals. The only 
significant difference is that Hang errors occurred 
more frequently under fault injection, which is due to 
the narrower focus of the fault injection experiment. 
However, the hardware monitor was able to detect a 
similar amount of errors in both experiments.  

Fig. 3 shows a comparison of errors on a register 
basis. Fault injection was performed in the complete 
register file, but only a subset of registers was really 
used due to the compilation options. For clarity, only 
the registers that produce at least one error are 
reported. The frame pointer (FP) and the program 

counter (PC) are the most critical registers and 
provoke an error for almost every bit-flip injected in 
them. For the rest of the registers, error sensitivity 
may vary depending on their usage. 

 
Table 2 
Experimental results of fault injection 
 

 
Error type 

 
#Errors 

 
%Errors 

Hang 509 4.06% 

Comm 0 0.00% 

Det. SW 7,631 60.81% 

Det Hang 4,409 35.13% 

Total 12,549 100.00% 

 

 
 
 
5. Conclusions and future work 
 

This work presents a hybrid architecture that can 
monitor ARM microprocessor execution thanks to the 
observation of the program flow trace provided by 
PTM trace module. This solution presents a feasible 
and non-intrusive way of detecting errors in ARM-
based COTS with reduced impact in area. 
Experimental results demonstrate the high error 
detection capabilities of the proposed approach. 

The proposed approach has been tested with 
proton irradiation and fault injection. Notably, the 
results of both tests were very similar, although fault 
injection was limited to the ARM core registers. 
Future work is oriented to enhance the error detection 
capabilities based on the trace information. 
 
 
 

 
Fig. 3.  Errors by register. 
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