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Abstract10 

The effect of different bed materials was included a as new input into an artificial neural network 11 

model to predict the gas composition (CO2, CO, CH4 and H2) and gas yield of a biomass 12 

gasification process in a bubbling fluidized bed. Feed and cascade forward back propagation13 

networks with one and two hidden layers and with Levenberg-Marquardt and Bayesian14 

Regulation learning algorithms were employed for training of networks. A high number of15 

network topologies were simulated to determine the best configuration. It was observed that the 16 

developed models are able to predict the CO2, CO, CH4, H2 and gas yield with good accuracy 17 

(R2 > 0.94 and MSE < 1.7×10-3). The results obtained indicate that this approach is a powerful 18 

tool to help in the efficient design, operation and control of bubbling fluidized bed gasifiers19 

working with different operating conditions, including the effect of the bed material. 20 
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1. Introduction22 

Biomass gasification is a highly efficient thermochemical conversion process that converts23 

different biomass feedstocks into a raw gas mainly composed by H2, CO, CO2, CH4 and light 24 

http://ees.elsevier.com/jfue/viewRCResults.aspx?pdf=1&docID=60962&rev=1&fileID=1383978&msid={E556C939-41D9-46D9-99DD-C21F747C4D8E}


hydrocarbons which can be used in further applications such as fuel or for producing chemicals 25 

(Puig-Arnavat et al., 2013). This thermochemical process is a good option to transform different 26 

types of residues into valuable products to produce energy. Thereby, energy is produced in a 27 

renewable way and the problem of residues disposal is reduced. Among the different 28 

techniques used to study this process, modelling is a valuable tool to design and obtain a first 29 

approximation to the expected results, reducing the experimental and human cost. Different 30 

kinds of models, including thermodynamic equilibrium, kinetic rate, computational fluid dynamic 31 

(CFD) and artificial neural network (ANN) have been improved for studying and modelling the 32 

gasification processes (Ahmed et al., 2012; Baruah and Baruah, 2014; Puig-Arnavat et al., 33 

2010). 34 

Equilibrium models are based on the concept of chemical reaction equilibrium based on the 35 

second law of thermodynamics, considering also the transfer phenomena between phases and 36 

the reaction kinetics of the primary reactions (Karmakar and Datta, 2011; Mahishi and 37 

Goswami, 2007). In CFD models, a set of equations for mass, momentum and energy 38 

conservation are solved simultaneously along the gasifier to predict the distribution of different 39 

parameters such as temperature or species concentration (Baruah and Baruah, 2014).  40 

The design of new products and processes is a challenge to researchers who face to high cost 41 

and time-consuming experiments to obtain reliable information for different operating conditions. 42 

The advances in soft computing and computer science enhance the interest in the development 43 

of prediction models for time consuming and costly experiments (Ayodele and Cheng, 2015). To 44 

overcome these concerns, artificial intelligence systems such as ANNs are a reliable tool for the 45 

prediction of nonlinear system data due to its accuracy, precision and low cost and time 46 

consuming. 47 



ANN analysis is a recent approach for the prediction of the gasification outputs in which a neural 48 

network learns by itself from different sets of experimental data simulating the human brain in 49 

terms of mathematical functions. The theory of the ANN is based in the analogy with the human 50 

brain, which is composed by numerous elements called neurons organized in different layers. 51 

These neurons are interconnected and exchange information between them. When different 52 

stimulus or inputs are received by the neurons, they modify their state and transfer the 53 

information to the next neuron. This way the information travels across the different layers of 54 

neurons until a final response for the initial inputs is obtained. In order to obtain the final 55 

response, the neural network needs to learn and recognize the relationships between inputs 56 

and outputs, in the same way humans do. Thus, an ANN is formed by an input layer, a number 57 

of hidden layers and an output layer, being the number of neurons per layer a parameter that 58 

can be modified. As a modern approach, ANNs are particularly useful to obtain the solution of 59 

an extensive variety of problems in science and engineering, being the prediction performance 60 

and generalization closely related with the training of the network. This tool have an excellent 61 

learning ability and a high capability for recognizing and modeling complex non-linear relations 62 

between the input and the output variables of a process (Mikulandrić et al., 2014). These 63 

characteristics make ANNs very interesting and useful, motivating their use in the modeling of 64 

biomass gasification processes. Therefore, biomass gasification, which is a complex 65 

thermochemical process, can be conveniently simulated using the appropriately designed ANN. 66 

The application of ANN in biomass pyrolysis and gasification processes have also been 67 

reported by (Karaci et al., 2016; Souza et al., 2012; Sreejith et al., 2013; Sunphorka et al., 2017; 68 

Xiao et al., 2009). ANN based models were developed for predicting the product yield and gas 69 

composition in an atmospheric steam blow biomass fluidized bed gasifier (Guo et al., 2001). It 70 

was concluded that the feed forward neural network model had better predictive accuracy over 71 

traditional regression models. Chavan et al. used two types of ANN based data-driven models 72 



for the prediction of the gas heating value and production in coal gasifiers (Chavan et al., 2012). 73 

Mikulandrić et al. simulated a fixed bed gasifier using an ANN from experimental data, showing 74 

the capability of this tool to predict the results of a gasification process with acceptable accuracy 75 

and speed (Mikulandrić et al., 2014). Puig-Arnavat et al. obtained similar conclusions for the 76 

prediction of the gas composition in circulating and bubbling fluidized beds using ANN (Puig-77 

Arnavat et al., 2013). Baruah et al. also developed a ANN-based model for the prediction of the 78 

gas composition in a down-draft fixed bed gasifier, suing C, H, O, ash and moisture contents for 79 

the biomass and reduction zone temperature as inputs (Baruah et al., 2017). Pandey et al. 80 

predicted the performance of municipal solid waste gasification in terms of lower heating value 81 

of the gas and products, and gas yield (Pandey et al., 2016a). Recently, Shahbaz et al. also 82 

used the ANN approach for the studying the steam gasification of palm oil waste using bottom 83 

ash and CaO, obtaining a good prediction compared to experimental data (Shahbaz et al., 84 

2019). 85 

All the mentioned studies, used similar input data for the models based on the biomass 86 

properties (C, H, O, moisture and ash content) and operating conditions (temperature, 87 

equivalence ratio and steam/biomass ratio). However, a lot of work has been done using 88 

different bed materials in the fluidized bed in order to improve the product gas quality (Arena 89 

and Di Gregorio, 2014; Baratieri et al., 2010; Gómez-Barea et al., 2005). Although ANN based 90 

modeling have been used in biomass gasification, to the authors’ knowledge, no study has 91 

focused in the prediction, using ANN and different bed materials, of a bubbling fluidized bed 92 

gasifier. This is parameter has an important influence in the products from the gasifier and is 93 

usually skipped from this type of approaches. Hence, the objective of the present work is to 94 

develop ANN models for the prediction of the producer gas composition and gas yield for 95 

several operating conditions in bubbling fluidized bed gasifiers using different bed materials. 96 

The addition of this new input data to the previous models is studied in order to get a more 97 



complete model for future predictions or, if, on the contrary, it results in a very complicated 98 

model that cannot obtain a relation between the input and output data. 99 

2. Material and methods100 

2.1. Artificial neural network (ANN) design 101 

In this study, the Neural Network Toolbox from MATLAB software R2018b was used to design 102 

and train the ANN, validating the obtained results. Figure 1 shows the topology of developed 103 

neural network with the input and output variables. Nine input parameters were selected for this 104 

work: carbon (C), hydrogen (H), oxygen (O), moisture (MC) and ash (Ash) contents for the 105 

biomass, equivalence ratio (ER), reaction temperature (T), steam/biomass mass ratio (S/B), and 106 

bed material. The first eight inputs are the usually employed in this type of studies as the give 107 

important information about the type of biomass and the most important operating conditions. 108 

The ninth input variable is added in this work as it also has an important relation with the final 109 

composition of the product gas and it is usually avoided in gasification ANN models. This 110 

variable has been accounted as a discrete variable ranging from 1 to 4, corresponding each 111 

value to one different bed material. This way, the network can be able to distinguish between 112 

bed materials. In the case of the outputs, five variables have been considered separately (i.e.: 113 

one ANN per output): H2, CO, CO2, CH4 and gas yield (GY). The experimental data needed for 114 

the ANN have been collected from previous biomass gasification experiments of the authors 115 

(Serrano et al., 2017, 2016) and completed with more experimental data collected from 116 

literature, using all of them a fluidized bed gasifier (Arena et al., 2010; Arena and Di Gregorio, 117 

2014; Baratieri et al., 2010; Campoy Naranjo, 2009; Christodoulou et al., 2014; De Andrés et al., 118 

2011a, 2011b; Gómez-Barea et al., 2005; Huynh and Kong, 2013; Kaewluan and 119 

Pipatmanomai, 2011b, 2011a; Lahijani and Zainal, 2011; Lan et al., 2019; Loha et al., 2013; Lv 120 

et al., 2004; Mansaray et al., 1999; Miccio et al., 2009; Narváez et al., 1996; Pandey et al., 121 



2016b; Roche et al., 2014). Table 1 shows the boundaries and levels for the nine inputs and five 122 

outputs used in this study. The range of this variables in addition to the type of gasifier (fluidized 123 

bed) and gasifying agent (air), defines the range of validity of the present model. 124 

125 

Figure 1. Proposed ANN architecture to predict the five main producer gas components in a 126 

bubbling fluidized bed gasifier. 127 

A multi-layer feed forward and a cascade forward neural network based on back propagation 128 

(BP) learning rule with different numbers of hidden layers (one and two) were simulated using 129 

the experimental data to obtain the best prediction for the outputs during bubbling fluidized bed 130 

gasification with different bed materials. Optimal number of hidden neurons in each hidden layer 131 

has been determined for one and two hidden layers under 9–x–1 and 9–x–y–1 architectures, 132 

respectively, where x and y represents the number of neurons in the first and second hidden 133 

layer, respectively. 134 

Table 1. Characteristics of input and output variables in the ANN based model. 135 



Input variables Range Output variables Range 

C [%wt db] 27.30-85.17 GY [Nm3/kg daf] 0.23-6.26 

H [%wt db] 1.61-14.04 CH4 [%vol N2 free] 2.31-28.97 

O [%wt db] 0-59.42 CO2 [%vol N2 free] 2.27-58.06 

Moisture [%wt ar] 0.20-27 H2 [%vol dry] 2.60-56.88 

Ash [%wt db] 0.33-44 CO [%vol N2 free] 6.80-47.29 

ER [-] 0.15-0.49   

T [ºC] 650-1050   

Bed material 1-4   

S/B [-] 0-4.04   

For bed material: 1: Silica sand; 2: Ofite; 3: Olivine; 4: Alumina 136 
db, dry basis; ar, as received 137 

During the BP training, the weights and biases of the different neurons are updated iteratively in 138 

order to reproduce the expected results. This algorithm uses the supervised training procedure 139 

where the network weights and biases are initialized randomly at the beginning of the training 140 

phase. The process for the error minimization is obtained using a gradient descent rule by 141 

changing the weights via an activation function for improving the performance of the network. 142 

The network minimizes the error by adjusting weights and biases until the minimum error is 143 

obtained. 144 

The input data is repeatedly presented to the ANN and the error is computed for each repetition 145 

by comparing the output of the neural network with the desired output. Cascade forward back 146 

propagation (CFBP) operation by the use of the BP algorithm for weights updating is similar to 147 

the feed forward back propagation (FFBP) network, although the major characteristic of the 148 

network configuration is that each layer of neurons is connected to all neurons of previous 149 

layers. Levenberg-Marquardt (LM) training algorithm was applied to update the network weights. 150 

The selection of the number of hidden layers and the number of neurons in each layer is a very 151 

crucial part in the development of neural network as it improves the capacity and ability of 152 

network. 153 



An optimum neural network architecture is proposed by varying the number of hidden layers 154 

(from 1 to 2), transfer functions and number of neurons in each hidden layer (up to 30 neurons). 155 

This selection is made considering previous works using ANNs (Pandey et al., 2016a; Puig-156 

Arnavat et al., 2013). Different transfer functions including linear (purelin), hyperbolic tangent 157 

sigmoid (tansig) and logarithmic sigmoid (logsig) transfer functions, given in the following 158 

equations, have been utilized to reach the optimum network structure (Chayjan et al. 2014): 159 

    (purelin) (1) 160 

  
 

        
   (tansig) (2) 161 

  
 

     
 (logsig) (3) 162 

where Ai is computed as follows: 163 

          
    (4) 164 

and where Xi is the input value for the ith input neuron, Wi is the weight between the ith input and 165 

the hidden layer, b is the bias for the corresponding neuron of the layer, and m is the number of 166 

input neurons. The number of transfer functions for each ANN depends on the number of 167 

hidden and output layers. Each hidden layer needs its transfer function and the same for the 168 

output layer. 169 

In order to check the robustness, validation and prediction ability of the models, 203 data 170 

patterns obtained from different experimental conditions of experiments were randomly selected 171 

in 162 for training (80 %) and 41 for validation (20 %). These percentages are in agreement with 172 

the ones used by (Shahbaz et al., 2019). Additionally, another 10 new data patterns were used 173 

for testing (Table 3). This classification was maintained for all configurations, being the same 174 

training, validation and test data patterns in all networks. The details of ANN model parameters 175 



are presented in Table 2. Combining these parameters (network type, number of hidden layers, 176 

number of neurons and number of transfer functions), a total of 49140 ANN configurations were 177 

simulated for each output variable. The selected data for testing was presented to the trained 178 

and validated networks in order to compare the prediction performance over the same data 179 

sets. 180 

Table 2. Details of the ANN models 181 

No Particulars Specifications 

1 Network type Feed Forward Backpropagation (FFBP) 

Cascade Forward Backpropagation (CFBP) 

2 Training function or Training algorithm Levenberg-Marquardt (LM) backpropagation 
(TRAINLM) 

3 Adaption learning function Gradient Descent with Momentum Weight and 
Bias (LEARNGDM) 

4 Performance function Mean Square Error (MSE) 

5 Transfer functions Hyperbolic Tangent Sigmoid (TANSIG) 

Logarithmic sigmoid (LOGSIG) 

Linear (PURELIN) 

6 Data division Random (Dividerand) 

7 Number of input layer unit 9 

8 Number of output layer unit 1 

9 Number of hidden layers 1 and 2 

10 Number of neurons in the hidden layer From 1 to 30 

11 Number of epoch (Learning cycle) 2000 iterations 

182 

2.2. Data normalization and error evaluation 183 



As a first step in ANN modelling to predict the outputs, all datasets (input and output) should be 184 

normalized as it increases the ability of model and the performance of the network for 185 

diagnosing relation among inputs and outputs, guaranteeing the convergence and the stability 186 

of the process (Hasanipanah et al. 2015). Data normalization has been carried out using the 187 

following equation 188 

      
        

         
 (5) 189 

where Zr and Znorm, represent the measured and normalized values, respectively, Zmin, Zmax are 190 

the minimum and maximum values of the measured parameters, respectively. 191 

The mean square error (MSE) and the coefficient of determination (R2) have been used to 192 

compare the performance of the different ANN models. These parameters have been 193 

calculated by using the following equations for the experimental and ANN predictions so the 194 

best network performance is statistically obtained by the MSE and the R2 (Chayjan et al.2014; 195 

Golpour et al. 2015): 196 
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 (7) 198 

where Sk is the network output for kth dataset, Tk is the target output for kth dataset and n is the 199 

number of datasets. A low value for MSE indicates a small error between the targets and the 200 

outputs, and values or R2 close to 1 indicates how well the model reproduces the desired 201 

outputs. 202 

Table 3. Test data. 203 



Test 
ID 

C 

[%wt db] 

H 

[%wt db] 

O 

[%wt db] 

Moisture 

[%wt] 

Ash 

[%wt db] 

ER 

[-] T [ºC] 

Bed 

material S/B 

1 50.54 7.08 41.11 8.00 0.55 0.22 800 sand 2.70 

2 49.00 6.10 44.40 7.00 0.40 0.25 750 alumina 0 

3 50.00 6.20 36.30 7.60 6.30 0.31 820 ofite 0 

4 49.30 5.90 44.37 8.40 0.33 0.17 780 olivine 0.65 

5 32.31 5.37 14.38 8.70 41.70 0.30 800 sand 1 

6 27.30 4.80 18.9 7.00 44.00 0.40 850 sand 0 

7 85.17 13.83 0.00 0.20 1.00 0.31 825 olivine 0 

8 37.60 5.42 33.20 9.08 23.40 0.35 670 alumina 0 

9 49.47 5.79 41.94 6.28 0.71 0.23 752 ofite 0.18 

10 42.68 3.30 31.72 9.95 21.68 0.35 850 sand 0.8 

204 

In addition, the mean average percentage error (MAPE) was also calculated to measure the 205 

performance of the models with the test data. This value accounts for the absolute value of the 206 

average magnitude of errors in predicting each variable (Sreejith et al., 2013). This parameter, 207 

being a percentual value, is simpler to quantify and understand the error produced by the model 208 

for new data as it gives information how far the predictions are from the target values. This way, 209 

the accuracy of the prediction of new data can be better addressed. 210 

     (8) 211 

3. Results and discussion212 

3.1. ANN using silica sand as bed material 213 



Before analyzing the results of the different ANN using different bed materials, only datasets 214 

with silica sand as bed material (135 datasets) were used to obtain the best ANN configuration 215 

for each output. As in this case the bed material is the same for all experimental datasets, the 216 

number of inputs is reduced, having the ANN topology 8 inputs for both one and two hidden 217 

layers (8-x-1 and 8-x-y-1). Table 4 shows the results of this analysis for the different 218 

configurations in each ANN developed. The results have been selected to show the best 219 

topology and threshold functions for FFCP and CFBP, respectively. As it can be observed, 220 

configurations with one hidden layer, either FFBP or CFBP, always produced worst results than 221 

configuration with two hidden layers for all the outputs.  222 

In the case of CO2, the best result was obtained with a FFBP network with two hidden layers (21 223 

and 4 neurons, respectively) and tansig-tansig-logsig as transfer functions (for the two hidden 224 

layers and the output layer). This structure generated a MSE and R2 of 1.26·10-3 and 0.9737, 225 

respectively. A FFBP network with two hidden layers (24 and 7 neurons, respectively) and 226 

tansig-tansig-logsig as transfer functions was the best configuration for CO prediction. The 227 

performance outputs for this architecture resulted in a MSE = 1.13·10-3 and a R2 = 0.9713. The 228 

most promising results for CH4 prediction were obtained with a FFBP network with two hidden 229 

layers (3 and 22 neurons, respectively) and tansig-logsig-purelin as threshold functions. This 230 

composition produced a MSE = 7.50·10-4 and a R2 = 0.9553. In the case of H2, a FFBP network 231 

with two hidden layers (23 and 19 neurons, respectively) was the best topology. The logsig 232 

transfer function was the same for all layers (hidden and output), with a MSE and R2 values 233 

equal to 3.19·10-3 and 0.8979, respectively. The gasification performance is measured in terms 234 

of the GY. A FFBP network with two hidden layers (19 in both first and second hidden layers) 235 

and purelin-logsig-purelin as threshold functions performed the best. In this structure, the MSE 236 

and R2 values were 4.44·10-4 and 0.9762, respectively. 237 



Table 4. Best-selected topologies including different layers and neurons for FFBP and CFBP 238 

configurations using silica sand as bed material. 239 

Element Network Threshold 

function 

Topology R2 MSE 

CO2 FFBP logsig-tansig 8-8-1 0.9052 4.55·10-3 

 FFBP tansig-tansig-logsig 8-21-4-1 0.9737 1.26·10-3 

 CFBP logsig-tansig 8-5-1 0.7554 1.17·10-2 

 CFBP logsig-logsig-logsig 8-3-11-1 0.9627 1.79·10-3 

CO FFBP logsig-purelin 8-23-1 0.8348 6.51·10-3 

 FFBP tansig-tansig-logsig 8-24-7-1 0.9713 1.13·10-3 

 CFBP logsig-logsig 8-5-1 0.8847 4.54·10-3 

 CFBP purelin-tansig-purelin 8-18-27-1 0.9698 1.19·10-3 

CH4 FFBP logsig-purelin 8-28-1 0.7586 4.05·10-3 

 FFBP tansig-logsig-purelin 8-3-22-1 0.9553 7.50·10-4 

 CFBP logsig-logsig 8-16-1 0.7871 3.57·10-3 

 CFBP tansig-tansig-purelin 8-28-13-1 0.8264 2.91·10-3 

H2 FFBP logsig-logsig 8-5-1 0.7576 7.58·10-2 

 FFBP logsig-logsig-logsig 8-23-19-1 0.8979 3.19·10-3 

 CFBP logsig-tansig 8-11-1 0.6419 1.12·10-2 

 CFBP tansig-logsig-logsig 8-14-8-1 0.8869 3.54·10-3 

GY FFBP logsig-purelin 8-26-1 0.6469 6.59·10-3 

 FFBP purelin-logsig-purelin 8-19-19-1 0.9762 4.44·10-4 

 CFBP logsig-logsig 8-2-1 0.8983 1.90·10-3 

 CFBP logsig-tansig-purelin 8-3-15-1 0.9716 5.30·10-4 

 240 

Once the best ANN topology for each element has been selected, the test data (Table 3) were 241 

introduced in the network to assess the accuracy of the ANN estimations. In this case, only 4 242 

test data were used, the ones using silica sand as bed material. Figure 2a-e shows the 243 



experimental versus the predicted values, using the different ANN selected for each output. 244 

These figures also include de regression coefficient for the linear fitting. In general, all the ANN 245 

models reproduced rather good results for the testing points. In the case of H2, the model did 246 

not estimate the testing point 6 with a good accuracy, obtaining a relative error of 90% with 247 

respect the experimental value. This leads to a very poor regression coefficient for this element. 248 

However, the rest of the points, including this one for CO2, CO, CH4 and GY, were near enough 249 

to the experimental ones. The MAPE for the test data is shown in Table 6, with values around 250 

10% for CO2, CO and CH4, around 25% for H2 and 2% for GY. These results can be acceptable 251 

for ANN prediction models, as also obtained in previous works (Pandey et al., 2016a; Sreejith et 252 

al., 2013). 253 

3.2. ANN using silica sand, ofite, olivine and alumina as bed material 254 

In this section, the effect of the bed material in the fluidized bed reactor was introduced in the 255 

model, using all datasets obtained from the literature (see supplementary information). 256 

According to the information in Table 2, 49140 ANNs have been simulated for each output 257 

variable. Table 5 shows the results in terms of MSE and R2 for the different configurations in 258 

each ANN developed. In this case, configurations with one hidden layer, either FFBP or CFBP, 259 

also produced worst results as in the ANN using only sand as bed material. 260 

Table 5. Best-selected topologies including different layers and neurons for FFBP and CFBP 261 

configurations using different bed materials. 262 

Element Network Threshold 

function 

Topology R2 MSE 

CO2 FFBP logsig-logsig 9-2-1 0.6092 1.31·10-2 

 FFBP tansig-tansig-logsig 9-16-15-1 0.9734 8.91·10-4 

 CFBP logsig-tansig 9-17-1 0.6745 1.09·10-2 



 CFBP tansig-tansig-logsig 9-15-24-1 0.9659 1.14·10-3 

CO FFBP logsig-logsig 9-21-1 0.9544 1.67·10-3 

 FFBP tansig-tansig-purelin 9-21-19-1 0.9712 1.05·10-3 

 CFBP logsig-logsig 9-9-1 0.8340 6.07·10-3 

 CFBP tansig-logsig-logsig 9-2-17-1 0.9694 1.12·10-3 

CH4 FFBP logsig-tansig 9-12-1 0.7353 6.16·10-3 

 FFBP tansig-tansig-logsig 9-26-15-1 0.9328 1.56·10-3 

 CFBP logsig-logsig 9-16-1 0.9068 2.17·10-3 

 CFBP tansig-tansig-logsig 9-7-27-1 0.9462 1.25·10-3 

H2 FFBP logsig-logsig 9-22-1 0.4856 1.43·10-2 

 FFBP tansig-tansig-logsig 9-5-30-1 0.9394 1.69·10-3 

 CFBP logsig-purelin 9-30-1 0.4810 1.44·10-2 

 CFBP purelin-logsig-logsig 9-24-21-1 0.9231 2.14·10-3 

GY FFBP logsig-purelin 9-3-1 0.7676 5.28·10-3 

 FFBP tansig-tansig-logsig 9-18-19-1 0.9872 2.90·10-4 

 CFBP tansig-purelin 9-2-1 0.7699 5.23·10-3 

 CFBP logsig-logsig-logsig 9-8-10-1 0.9843 5.56·10-4 

 263 

The best result for CO2 was obtained with a FFBP network with two hidden layers with 16 and 264 

15 neurons, respectively. The threshold function for this network was tansig-tansig-logsig. This 265 

structure generated a MSE = 8.91·10-4 and R2 = 0.9734. According to the results (not presented 266 

here), another FF network configuration produced rather similar results with a R2 higher than 267 

0.97, with different transfer functions and neurons configuration. In the case of CO, a FFBP 268 

network with two hidden layers (21 and 19 neurons) and tansig-tansig-purelin as threshold 269 

functions was the best configuration. The performance outputs for this architecture resulted in a 270 

MSE = 1.05·10-3 and R2 = 0.9712. In this case, the FFBP configuration with one hidden layer 271 

also produced rather good results (R2 higher than 0.95). The most promising results for CH4 272 

were obtained with a CFBP network, two hidden layers with 7 and 27 neurons, respectively, and 273 



tansig-tansig-logsig threshold functions. This composition produced a MSE = 1.25·10-3 and R2 = 274 

0.9462. The best configuration for H2 was a FFBP network with two hidden layers (5 and 30 275 

neurons, respectively) and tansig-tansig-logsig threshold functions, with a MSE and R2 values 276 

equal to 1.69·10-3 and 0.9394, respectively. Up to 12 network FF topologies also resulted in R2 277 

values higher than 0.93. In the case of GY, the best configuration was a FFBP network with two 278 

hidden layers (18 and 19 neurons, respectively) and tansig-tansig-logsig as threshold functions. 279 

In this structure, the MSE and R2 values were 2.90·10-4 and 0.9872, respectively. 280 

Figure 2f-j shows the results when the test data (Table 3) was introduced in the different 281 

models. In this case, the regression coefficients were a bit worse than in the previous case 282 

using silica sand as bed material, influenced by the higher number of test data and the higher 283 

complexity of the ANNs as they have to differentiate between different bed materials. Then, the 284 

test data produced rather good correlation between experimental and predicted data, been most 285 

of the test points below a relative error of 10%. It can be observed that for each output the test 286 

data points with higher error are not always the same. Although test number 4 (olivine as bed 287 

material) is always quite far from the experimental target. Attending to the MAPE, this parameter 288 

resulted in higher values than in the previous scenario with silica sand as bed material. Due to 289 

the higher complexity of the models and the heterogeneity of the data, these results could be 290 

satisfactory.  291 

Table 6. MAPE for the test data in the different ANN models. 292 

 CO2 CO CH4 H2 GY 

Silica sand as bed material 

 8.78 12.54 12.21 24.89 2.25 

Silica sand, ofite, olivine and alumina as bed materials 

 28.21 27.30 38.91 15.64 8.18 

 293 



 294 

Figure 2. Testing results for the selected ANNs: (a)-(e) using silica sand as bed material; (f)-(j) 295 

using all bed materials. Each shadowed region corresponds with a relative error of 10%. 296 

The R values shows a good fitting during training and validation, while for testing process that 297 

indicator is a bit worse due to the big error introduced with test data set 4. It is clearly apparent 298 

that the accuracy of the network during the training process is better than testing or validation. 299 

During the training process, the network modifies the values of its input and output weights to 300 

get the best fitness whereas in the testing or validation process the output shows the actual 301 

predictive performance of the trained model on new data without adjusting the weights. 302 

Therefore, the observed R2 and MSE values show a good indication of well-trained ANN model. 303 

The performance of the model is an indication of the appropriate selection of the input variables. 304 

The obtained networks are highly accurate and consume a short time to obtain the results. 305 

These findings are in agreement with the reported results in the literature (Souza et al., 2012). It 306 

can be stated that ANN are powerful tools for gasification modeling in different conditions. 307 



4. Conclusions308 

The FFBP models with two hidden layers show an improved performance over the CFBP 309 

models and those with only one hidden layer to predict product gas composition in terms of 310 

CO2, CO, CH4, H2 and GY, producing a higher coefficient of determination (R2). The results311 

show that the degree of agreement between experimental and predicted values justifies the 312 

accuracy of the proposed ANN models. Therefore, for a given bubbling fluidized bed gasifier, 313 

the developed models are capable of simulate the producer gas composition for selected 314 

biomasses at specified operating conditions, including the effect of the bed material in the 315 

reactor.  316 

Supplementary information 317 

E-supplementary data associated with this work can be found in online version of the paper.318 

Abbreviations 319 

ANN artificial neural network 320 

BP back propagation 321 

CFBP cascade forward back propagation 322 

CFD computational fluid dynamics 323 

ER equivalence ratio 324 

FFBP feed forward back propagation 325 

GY gas yield 326 

LM Levenberg-Marquardt 327 



MAPE  mean average percentage error 328 

MC  moisture content 329 

MSE  mean square error 330 

R2  determination coefficient 331 
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