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Abstract 15 

The pyrolysis process of thermally small biomass particles was modeled 16 

combining the Lumped Capacitance Method (LCM) to describe the transient heat 17 

transfer and the Distributed Activation Energy Model (DAEM) to account for the 18 

chemical kinetics. The inverse exponential temperature increase predicted by the 19 

LCM was considered in the mathematical derivation of the DAEM, resulting in an 20 

Arrhenius equation valid to describe the evolution of the pyrolysis process under 21 

inverse exponential temperature profiles. The Arrhenius equation on which the 22 

simple LCM-DAEM model proposed is based was derived for a wide range of 23 

pyrolysis reactor temperatures, considering the chemical kinetics data of four 24 
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lignocellulosic biomass species: pine wood, olive kernel, thistle flower, and 25 

corncob. The LCM-DAEM model proposed was validated by comparison to the 26 

experimental results of the pyrolysis conversion evolution of biomass samples 27 

subjected to various inverse exponential temperature increases in a TGA. To 28 

extend the validation, additional biomass samples of Chlorella Vulgaris and 29 

sewage sludge were selected due to the different composition of microalgae and 30 

sludge compared to lignocellulosic biomass. The deviations obtained between 31 

the experimental measurements in TGA and the LCM-DAEM predictions for the 32 

evolution of the pyrolysis conversion, regarding the root mean square error of 33 

temperature, are below 5 ºC in all cases. Therefore, the simple LCM-DAEM 34 

model proposed can describe accurately the pyrolysis process of a thermally 35 

small biomass particle, accounting for both the transient heat transfer and the 36 

chemical kinetics by solving a simple Arrhenius equation.  37 

Keywords: Biomass pyrolysis; Chlorella Vulgaris; Distributed Activation Energy 38 

Model (DAEM); Inverse exponential temperature increase; Lumped Capacitance 39 

Method (LCM); Sewage sludge. 40 

Nomenclature 41 

A  Pre-exponential factor [s-1]. 42 

As   Surface of the solid particle [m2]. 43 

  Pyrolysis conversion [%]. 44 

Bi   Biot number [-]. 45 

  Heating rate [ºC min-1]. 46 

c   Heating parameter [min-1]. 47 

cs   Specific heat of the solid particle [J kg-1 K-1]. 48 
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d   Particle diameter [mm]. 49 

E   Activation energy [kJ mol-1]. 50 

E0  Mean value of gaussian distribution of activation energy [kJ mol-1]. 51 

Ea  Value of activation energy for which the step function changes [kJ mol-1]. 52 

ie  Value of the -function for which the step function changes [-]. 53 

h   Convection coefficient [W m-2 K-1]. 54 

k   Rate coefficient of a first-order reaction [s-1]. 55 

ks   Thermal conductivity of the solid particle [W m-1 K-1]. 56 

Lc   Characteristic length [m]. 57 

s   Density of the solid particle [kg m-3]. 58 

R   Universal gas constant [J mol-1 K-1]. 59 

  Standard deviation of gaussian distribution of activation energy [kJ mol-1]. 60 

t   Time [min]. 61 

T   Temperature [ºC]. 62 

T0   Ambient temperature [ºC]. 63 

T   Reactor temperature [ºC]. 64 

Vs   Volume of the solid particle [m3]. 65 

Abbreviations: 66 

CV  Chlorella Vulgaris. 67 

CFD  Computational Fluid Dynamics. 68 

DAEM  Distributed Activation Energy Model. 69 

HHV  High Heating Value. 70 

LCM  Lumped Capacitance Method. 71 

RMSE  Root Mean Square Error. 72 

SS  Sewage Sludge. 73 
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TG  Thermogravimetric. 74 

TGA  Thermogravimetric Analysis. 75 

1. Introduction 76 

Biomass is considered a promising substitute for fossil fuels due to its renewable 77 

character, worldwide availability, and globally neutral net CO2 emissions, based 78 

on the carbon cycle. Biomass can be converted principally via biological or 79 

thermochemical processes (McKendry 2002). The biological conversion uses 80 

bacteria or enzymes to break the complex molecules of biomass into smaller 81 

molecules. However, this process is much slower than thermochemical 82 

conversion (Anca-Couce 2016). Thermochemical processing of biomass includes 83 

pyrolysis, combustion, gasification, hydrothermal liquefaction, and hydrothermal 84 

carbonization (Basu 2010). Among them, biomass pyrolysis, consisting in the 85 

thermal degradation of the solid fuel at a temperature ranging from 300 to 600 ºC 86 

in the absence of oxygen, has some beneficial characteristics. Biomass pyrolysis 87 

is characterized by a low level of pollutant emissions derived from the conversion 88 

process, obtaining a liquid bio-oil as the primary product, which can be readily 89 

stored and transported, allowing its decentralized usage as a renewable fuel 90 

(Czernik and Bridgwater, 2004). 91 

The design and optimization of biomass pyrolysis reactors are currently based on 92 

either Computational Fluid Dynamics (CFD) simulations or phenomenological 93 

models (Sharma et al., 2015), which require in both cases a detailed knowledge 94 

of the chemical kinetics of the thermal degradation reaction. In this sense, several 95 

mathematical kinetic models are available in the literature, which can be classified 96 

into kinetic-fitting and kinetic-free models (Bach and Chen, 2017). The former 97 
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involve the assumption for a functional form of the kinetic parameters, i.e., the 98 

activation energy and the pre-exponential factor. These fitting models include the 99 

single step model (Coats and Redfern, 1964), the sectional approach model (Lin 100 

et al., 2013), and the three pseudo-components model (Li et al., 2008). In 101 

contrast, kinetic-free models are based on experimental TGA measurements to 102 

calculate the activation energy and pre-exponential factor of the solid fuel 103 

pyrolysis reaction. The kinetic-free models comprise isoconversional models 104 

(Vyazovkin and Lesnicovich, 1992) and the simplified Distributed Activation 105 

Energy Model (DAEM) (Miura and Maki, 1998). 106 

DAEM was developed initially by Vand (1943). The model was further simplified 107 

later by Miura (1995) and Miura and Maki (1998), resulting in a kinetic-free model 108 

known as simplified DAEM. Since then, this simplified DAEM has been widely 109 

used in the specific literature to describe the pyrolysis kinetics of a broad variety 110 

of solid fuels, including coal (Günes and Günes, 2008), charcoal (Várghegyi et 111 

al., 2002), polymers (Wanjun et al., 2005), lignocellulosic biomass (Sonobe and 112 

Worasuwannarak, 2008), microalgae (Ceylan and Kazan, 2015), sewage sludge 113 

(Soria-Verdugo et al., 2013), oil shale (Wang et al., 2009), and medical waste 114 

(Yan et al., 2009). The simplified DAEM has been proven to derive accurate 115 

results for the kinetic parameters of biomass pyrolysis from TGA measurements. 116 

However, its applicability estimating the evolution of the pyrolysis conversion with 117 

temperature is limited by the fact that simplified DAEM is valid exclusively for 118 

constant heating rates of the solid particles, i.e., linear increases of temperature 119 

with time. Nevertheless, the temperature increase of solid particles in pyrolysis 120 

reactors is typically non-linear and, therefore, the direct application of the 121 

simplified DAEM in these reactors is not possible.  122 
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This paper deals with the limitation of the simplified DAEM to constant heating 123 

rates and is devoted to overcoming this limit. A simple model is proposed to 124 

describe the pyrolysis of thermally small particles, combining the Lumped 125 

Capacitance Method (LCM), to estimate the transient heat transfer of the solid 126 

particles, and the simplified Distributed Activation Energy Model (DAEM), to 127 

account for the chemical kinetics of the thermal degradation. The proposed LCM-128 

DAEM model is based on an Arrhenius equation obtained following the 129 

mathematical procedure proposed by Miura (1995) and Miura and Maki (1998) 130 

for the simplified DAEM, but considering the inverse exponential temperature 131 

increase to which thermally small particles are subjected according to the LCM. 132 

The new Arrhenius equation for the LCM-DAEM was derived as a function of the 133 

reactor temperature, considering the pyrolysis kinetic data of several 134 

lignocellulosic biomass species. Finally, the validity of the Arrhenius equations 135 

derived was validated comparing the estimation of the pyrolysis conversion 136 

evolution predicted by the proposed LCM-DAEM model to experimental pyrolysis 137 

measurements of microalgae and sewage sludge, conducted in a 138 

thermogravimetric analyzer (TGA) under various inverse exponential 139 

temperature increases. 140 

2. Theoretical Model 141 

Pyrolysis of solid fuels is a complex process which involves both heat transfer 142 

and chemical reactions. In this regard, a simplified model is proposed to describe 143 

the pyrolysis reactions of small biomass particles. The model proposed is based 144 

on combining the Lumped Capacitance Method to consider heat transfer between 145 
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the environment and the solid particle with the simplified Distributed Activation 146 

Energy Model to account for the chemical kinetics of the pyrolysis reactions. 147 

2.1. Lumped Capacitance Method (LCM) 148 

When a biomass particle is fed to a reactor at a high temperature T, transient 149 

conduction occurs inside the particle, whose temperature increases with time. If 150 

the temperature inside the particle can be considered spatially uniform, a single 151 

temperature T can be employed to describe the time evolution of heat transfer 152 

between the reactor and the particle. This assumption is the base of the widely 153 

known Lumped Capacitance Method, for which the temperature of the particle 154 

can be determined by formulating a global energy balance on the particle, relating 155 

the convection heat transfer rate at the particle surface with the rate of change of 156 

internal energy of the particle: 157 

( )
d ,
ds s s s
Th A T T V c
t

  − =    (1) 158 

where h is the convection coefficient, T is the reactor temperature, T is the 159 

temperature inside the particle, t is time, and As, Vs, s, and cs are the solid particle 160 

surface, volume, density, and specific heat, respectively.  161 

Integrating Eq. (1), considering the initial temperature of the solid particle T0 when 162 

the particle is fed to the reactor, i.e., at the initial time t = 0, the time evolution of 163 

the particle temperature is obtained as an inverse exponential approximation to 164 

the reactor temperature T: 165 

( )0 exp .s

s s s

h AT T T T t
V c

 

 
= − −  − 

  
 (2) 166 



8 
 

The time-coefficient in the exponential function in Eq. (2) can be defined as the 167 

heating parameter: 168 

,s

s s s

h Ac
V c


=

 
 (3) 169 

which is constant for a specific biomass type, i.e., fixed values of As, Vs, s, and 170 

cs, and reactor operating conditions, i.e., uniform value for h. 171 

The essence of the LCM is the assumption of uniform spatial temperature 172 

distribution inside the solid particle during the transient heating process. 173 

Therefore, the validity of the LCM and, thus, of Eq. (2) to describe the temperature 174 

evolution of biomass particles, should be discussed in the light of that hypothesis. 175 

In that sense, the Biot number Bi is defined for transient conduction problems as 176 

the ratio of the thermal resistance by conduction inside the solid particle and the 177 

thermal resistance by convection at the particle surface, obtaining: 178 

,c

s

h LBi
k


=  (4) 179 

where h is the convection coefficient, ks is the thermal conductivity of the solid 180 

particle, and Lc is the characteristic length, defined as the ratio between the solid 181 

particle volume Vs and its surface As. 182 

Therefore, if Bi << 1, the thermal resistance by conduction inside the solid particle 183 

is negligible compared to the thermal resistance by convection at its surface. 184 

Thus, the assumption of spatially uniform temperature is reasonable for cases 185 

with Bi << 1. In practice, the validity criterion for the central assumption of the 186 

LCM is Bi  0.1, and a low error associated to the LCM can be expected when 187 
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this validity criterion is satisfied (Incropera et al., 2007). The particles for which 188 

this criterion is met are called thermally small particles. 189 

Assuming a spherical shape for the solid particles, the characteristic length can 190 

be related to the particle diameter d as Lc = d/6. In the case of biomass particles 191 

heated up in a reactor, typical values for the convection coefficient are h  20 192 

W/m2K, and thermal conductivity is approximately ks  0.1 W/m·K, and therefore 193 

the validity criterion for the LCM is satisfied provided that the particle diameter is 194 

d  3 mm. In conclusion, the LCM can be used to estimate the particle 195 

temperature increase for small size biomass particles, such as short straws or 196 

olive stones, which are typically obtained fragmented as a residue of the olive oil 197 

industry (Pattara et al., 2010). In contrast, for those cases in which Bi > 0.1, 198 

appreciable temperature differences within these bigger solid particles exist. 199 

Then, spatial effects should be considered, and the heat equation must be solved 200 

to determine the temperature distribution inside these bigger particles. 201 

2.2. Distributed Activation Energy Model (DAEM) 202 

The simplified Distributed Activation Energy Model is widely used to describe the 203 

chemical kinetics of solid fuels pyrolysis. DAEM considers the solid fuel as a 204 

complex mixture of components, which decompose as a result of a large number 205 

of independent irreversible first-order reactions, with different associated 206 

activation energies, occurring either simultaneously or consecutively. The 207 

conversion  during the pyrolysis reaction can be determined as follows: 208 

( ) ( )/

0 0
1 exp e d d ,

t E RTA t f E E


− = −    (5) 209 
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where  is the pyrolysis conversion at time t, A is the pre-exponential factor, E is 210 

the activation energy, R is the universal gas constant, T is the temperature, and 211 

f(E) is the probability density function of the activation energy. The exponential 212 

term in Eq. (5) is the so-called  function: 213 

( )/

0
exp e d .

t E RTA t −= −   (6) 214 

Considering a constant heating rate , i.e., a linear temperature increase T = ·t, 215 

the time integral in the  function is converted to a temperature integral, which 216 

can be simplified using the approximation of Coats and Redfern (1964) as follows: 217 

2
/ /

0
exp e d exp e .

T E RT E RTA ARTT
E


 

− −  
= −  −  

   
  (7) 218 

This expression for the  function can be approximated as a step function at a 219 

value of the activation energy of E = Ea, obtaining the following expression for the 220 

pyrolysis conversion , taking into account the normalization criterion for the 221 

probability density function of activation energies f(E): 222 

( ) ( )
0

1 d d .a

a

E

E
f E E f E E



= −  =    (8) 223 

The value of the  function for which the step function changes, i.e., the value of 224 

 for E = Ea, should be established. Miura (1995) proposed a value of (Ea) = 225 

0.58, which was found to be valid for a broad variety of biomass samples. 226 

Therefore, using this value for the  function, and taking the logarithm to Eq. (7), 227 

the Arrhenius equation for the simplified DAEM is obtained: 228 

2

1ln ln 0.6075 .AR E
T E R T
   

= + −   
   

 (9) 229 
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Considering this Arrhenius equation, Miura and Maki (1998) proposed a 230 

procedure to determine the activation energy E and the pre-exponential factor A 231 

of the pyrolysis reaction based on thermogravimetric pyrolysis measurements 232 

conducted for various heating rates .  233 

However, the main limitation of this widely used simplified DAEM is its restriction 234 

to constant heating rates, i.e., linear increases of temperature with time. To avoid 235 

this limitation, the mathematical procedure of simplified DAEM was modified by 236 

Soria-Verdugo et al. (2016) to derive Arrhenius equations for parabolic and 237 

positive exponential temperature increases. Nevertheless, no Arrhenius equation 238 

available in the literature can describe the pyrolysis kinetics under inverse 239 

exponential temperature increases, such as those predicted by the LCM, Eq. (2). 240 

In this regard, the following subsection presents the mathematical derivation of 241 

an Arrhenius equation, based on the simplified DAEM, valid for inverse 242 

exponential temperature increases of the solid particles, as modeled by the LCM. 243 

2.3. Combined LCM and simplified DAEM (LCM-DAEM) 244 

The pyrolysis of thermally small particles, i.e., Bi < 0.1, can be modeled by 245 

combining the LCM to characterize the transient heat transfer and the simplified 246 

DAEM to describe the chemical kinetics. Deriving the inverse exponential 247 

temperature increase predicted by the LCM, Eq. (2), the time variation can be 248 

related to the temperature variation as follows: 249 

( )
dd .Tt

c T T

=
−

 (10) 250 
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Therefore, the time integral in the  function, Eq. (6), can be converted to a 251 

temperature integral, considering an inverse exponential temperature increase, 252 

using Eq. (10): 253 

/

0

eexp d .
E RTTA T

c T T


−



 
= − 

− 
  (11) 254 

The temperature integral in Eq. (11) can be rewritten, using a substitution method, 255 

in terms of a new pair of variables, z = E/(RT) and z = E/(RT): 256 

( )

/

0

z ee d d .
z

zE RTT

z
T z

T T z z

−−




 

=
− −   (12) 257 

The solution to this integral is: 258 

( )
( ) ( )zz e d e Ei z Ei ,

z

z

z
z z z

z z


−


−




= − −
−  (13) 259 

where Ei(z) is the exponential integral, which can be approximated to (Bleistein 260 

and Handelsman, 1987): 261 

( )
( )0

e !Ei ,
z

n
n

nz
z z

− 

=

=
−

  (14) 262 

and therefore: 263 

( )
( )

( )0

e !Ei ,
z z

n
n

nz z
z z z z

− − 



= 

− =
− − +

  (15) 264 

Thus, considering these approximations for the exponential integrals, Eq. (13) 265 

can be expressed as follows: 266 
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( )
( ) ( ) ( )

1z

1

z e d e 1 1 ! z ,
z

z
n n n

z
n

z n z z
z z

−  − −− −


=

 = − − − −
 −

  (16) 267 

which, in terms of the original variables, provides an approximation to the 268 

temperature integral in Eq. (11) that reads: 269 

( ) ( )
/

1E/RT

0
1

e d e 1 1 ! .
nnE RTT n n

n

T TRT n T
T T E T T

− 
−− 

= 

   
 = − − −  

− −     
  (17) 270 

Considering typical values of the activation energy of biomass pyrolysis of E  271 

200 kJ/mol, biomass pyrolysis temperature of T  300 ºC, and the universal gas 272 

constant R = 8.314 J/mol, a low error would be committed by approximating the 273 

temperature integral to the first term (n = 1) in Eq. (17), provided that the reactor 274 

temperature is around 250 ºC above the characteristic temperature of biomass 275 

pyrolysis, i.e., T - T > 250 ºC. Considering this approximation for the temperature 276 

integral, the  function, Eq. (11), yields: 277 

( )

2

exp .ART
cE T T




 
 −  − 

 (18) 278 

Following the same mathematical procedure as for the original simplified DAEM, 279 

valid only for linear temperature increases, the exponential expression of the  280 

function obtained for inverse exponential temperature increases, Eq. (18), is 281 

approximated to a step function changing at an activation energy E = Ea. Then, 282 

according to Eq. (5), the pyrolysis conversion  can be written as follows: 283 

( ) ( ) ( )
0 0

1 d 1 d d .a

a

E

E
f E E f E E f E E 

 

= −   = −  =     (19) 284 
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Thus, the value of the activation energy for which the step function changes, E = 285 

Ea, can be determined satisfying the second equality in Eq. (19), that is: 286 

( ) ( )
0

d d ,
aE

f E E f E E
 

  =    (20) 287 

and, once this activation energy Ea is obtained, the value of the  function (Ea) 288 

= ie is determined substituting in Eq. (11). To determine the activation energy Ea 289 

from Eq. (20), a statistical distribution needs to be assumed for f(E), with the 290 

Gaussian distribution being the most typical assumption (Cai and Liu, 2008; Cai 291 

et al., 2014): 292 

( )
( )

2
0

2

1 exp ,
22

E E
f E

 

 −
= − 

 
 

 (21) 293 

where E0 is the mean and  the standard deviation of the activation energy 294 

probability distribution. 295 

The procedure to determine Ea from the fulfilment of Eq. (20) was followed by 296 

Miura (1995), using various biomass samples, to determine the proper value of 297 

the  function for linear temperature increases, obtaining a value of (Ea) = 0.58. 298 

This procedure was also followed in a previous work by Soria-Verdugo et al. 299 

(2016) to determine the values of (Ea) for both parabolic and positive exponential 300 

temperature increases. In this previous work, the pyrolysis chemical kinetic data 301 

of four lignocellulosic biomasses were employed to calculate the proper values 302 

of (Ea), obtaining reliable values. Therefore, the calculation of the  function 303 

value for inverse exponential temperature increases (Ea) = ie will also be based 304 

on the same kinetic data of pine wood, olive kernel, thistle flower, and corncob 305 
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as in Soria-Verdugo et al. (2016). This kinetic data, included in Table 1, were 306 

obtained for the distributions of activation energy and pre-exponential factor as a 307 

function of the pyrolysis conversion reported in Soria-Verdugo et al. (2015). 308 

Table 1. Pyrolysis kinetic data of various lignocellulosic biomass species. 309 
 310 

Sample E0 [kJ/mol]  [kJ/mol] A [s-1] 

Pine wood 165.0 2.6 1.57·1012 

Olive kernel 162.2 3.2 4.11·1012 

Thistle flower 154.5 1.6 2.80·1011 

Corncob 183.5 5.0 2.31·1014 
 311 

Using the mean E0 and standard deviation  of the activation energy, the 312 

probability distribution f(E) can be built using Eq. (21), and the value of the 313 

activation energy Ea for which the  function changes can be obtained from 314 

satisfying Eq. (20). Once the value of Ea is obtained, the value of (Ea) = ie can 315 

be calculated from Eq. (18). However, for inverse exponential temperature 316 

increases as those predicted by the LCM, since the  function obtained, Eq. (18), 317 

depends on the reactor temperature T, the value of (Ea) = ie is also expected 318 

to be a function of this reactor temperature. Therefore, the process proposed by 319 

Miura (1995) to determine (Ea) will be followed for various reactor temperatures, 320 

to determine the dependence of ie on T.  321 

As an example, the process to determine ie is shown graphically in Figure 1 for 322 

pine wood at T = 550 ºC and T = 650 ºC. First, using the kinetic data included 323 

in Table 1, the probability density function of the activation energy f(E) is built 324 

employing Eq. (21). Secondly, the approximation of the  function, Eq. (18), is 325 

used to determine the curve ·f(E). Then, the value of Ea is determined as the 326 
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activation energy for which Eq. (20) is satisfied, i.e., the area under the curve of 327 

f(E) from this activation energy Ea to infinity equals the whole area under the 328 

curve ·f(E). Finally, using the simplification of the  function, Eq. (18), the value 329 

of the  function for this activation energy is obtained (Ea) = ie. Figure 1 shows 330 

that, as expected, the value of ie is a function of T, due to the dependence of 331 

the  function on the reactor temperature. For a reactor temperature of T = 550 332 

ºC, the value obtained for the  function is ie = 0.482, whereas for a temperature 333 

of T = 650 ºC this value is ie = 0.550. Similar results to those shown in Figure 1 334 

for pine wood were obtained for the other three lignocellulosic biomass species 335 

considered (olive kernel, thistle flower, and corncob) resulting in similar values of 336 

ie, thus, these results are not shown graphically to avoid repetition. In the plots 337 

of the  function included in Figure 1, a sharp variation of  can be observed in 338 

the typical range of activation energies for biomass pyrolysis, from 100 to 250 339 

kJ/mol, which justifies the simplification of considering the  function as a step 340 

function. 341 
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 342 

Figure 1. Process to determine ie. 343 

To determine the dependence of ie on T, the procedure described in Figure 1 344 

was repeated for each lignocellulosic sample included in Table 1, varying the 345 

reactor temperature T from 450 to 750 ºC in intervals of 10 ºC. Similar values of 346 

ie were obtained for the different samples for each reactor temperature. 347 

Therefore, the values of ie determined for each biomass specie were averaged 348 

to obtain the dependence of ie on T. The averaged values of ie are depicted in 349 

Figure 2 as a function of the reactor temperature T, together with a parabolic 350 

fitting of the values obtained. The parabolic fitting of ie with T, shown in Figure 351 

2, follows the equation: 352 

6 2 31.533 10 2.577 10 0.4745,ie T T − −

 = −   +   −  (22) 353 
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with T in ºC. This parabolic relation describes accurately the dependence of ie 354 

on T, obtaining a determination coefficient R2 for the fitting higher than 0.99. 355 

 356 

Figure 2. Values obtained for ie as a function of the reactor temperature T 357 

(black +) and parabolic fitting (red dashed line).  358 

The value of ie can be used in the simplification of the  function, Eq. (18), to 359 

derive the Arrhenius equation for inverse exponential temperature increases. By 360 

taking the logarithm twice and rearranging terms, the following expression is 361 

obtained: 362 

( )
( )( )2

1ln ln ln ln ie

c T T AR E
T E R T

 −   
= − − −   

  

 (23) 363 

Therefore, using Eq. (22) to calculate the value of ie as a function of the reactor 364 

temperature T, an Arrhenius equation can be derived for a specific reactor 365 

temperature. For instance, for thermally small biomass particles in reactors at 366 

temperatures of 550 ºC and 650 ºC, the Arrhenius equations that describe the 367 

pyrolysis process read: 368 

( )
2

1ln ln 0.3070 ,     for  550 º C
c T T AR E T

T E R T




−   
= + − =   

  

 (24) 369 
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( )
2

1ln ln 0.5233 ,     for  650 º C
c T T AR E T

T E R T




−   
= + − =   

  

 (25) 370 

These simple Arrhenius equations describe the whole pyrolysis process of 371 

thermally small biomass particles when they are fed to a reactor at a higher 372 

temperature T. Thus, provided that the pyrolysis kinetic parameters, i.e., E and 373 

A, of the biomass employed are known as a function of the pyrolysis conversion 374 

, and that the heating parameter c, Eq. (3), is estimated, the calculation of the 375 

temperature for which each conversion occurs can be carried out by solving the 376 

transcendental Arrhenius equation for specific values of the pyrolysis conversion. 377 

Therefore, an estimation of the mass released during the pyrolysis of thermally 378 

small biomass particles as a function of temperature or time, considering Eq. (2), 379 

can be made by solving the Arrhenius equation corresponding to the reactor 380 

temperature employed (see Eq. (24) or Eq. (25)). The calculations were done 381 

with units of K and s for temperature and time, respectively, to be in agreement 382 

with the international system of units. However, to increase the readability of the 383 

paper, temperature values were reported in °C and time in min, and 384 

consequently, the heating rates and heating parameters were reported in K/min 385 

and min-1, respectively. 386 

Since the proposed LCM-DAEM model combines the LCM to describe the 387 

transient heat transfer problem and simplified DAEM to account for the chemical 388 

kinetics of the biomass pyrolysis process, it is subjected to the limitations of both 389 

methods. Therefore, the maximum size of the particles for which the proposed 390 

model is valid is limited, and must satisfy the condition of Bi  0.1, and the 391 

pyrolysis reactions are assumed to follow all first-order kinetics, which is a general 392 

hypothesis of DAEM. In addition, the heating parameter c was considered to be 393 
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constant during the derivation of the LCM-DAEM model. However, the variables 394 

affecting the heating parameter c, Eq. (3), might be subjected to changes during the 395 

biomass pyrolysis, although the range of variation of these variables would be restricted 396 

by the limited size of the particles imposed by the LCM. Thus, considering a constant 397 

value of c for the derivation of the model is a reasonable assumption. Nevertheless, if 398 

information about the variation of the heating parameter c, or its affecting parameters, is 399 

available, the LCM-DAEM model could be modified to account also for variations of c. 400 

3. Materials and Methods 401 

3.1. Thermogravimetric Analyzer 402 

The pyrolysis measurements were conducted in a thermogravimetric analyzer 403 

TGA Q500 from TA Instruments. The inert atmosphere required for pyrolysis 404 

conditions was guaranteed by supplying a flow rate of 60 ml/min of nitrogen 3.0 405 

to the furnace. A small mass of the sample of 10.00.5 mg, composed of particles 406 

under 100 m, was employed for the tests to limit heat and mass transfer effects 407 

inside the sample. Thus, using this small sample size, the temperature of the 408 

sample is assumed to be that imposed by the TGA furnace, which in this case 409 

will be inverse exponential temperature increases as those predicted by the LCM. 410 

Considering the sensitivity of the TGA mass measurement of 0.1 g and the 411 

weighing precision of 0.01%, the sample mass used provides a high signal-to-412 

noise ratio. 413 

To check the validity of the proposed LCM-DAEM model using TGA pyrolysis 414 

measurements, inverse exponential temperature increases as those predicted by 415 

the LCM, Eq. (2), should be programmed to the TGA. However, the TGA permits 416 

only constant heating rates, i.e., linear increases in temperature with time. 417 
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Therefore, the inverse exponential temperature profiles required were built from 418 

a series of 25 constant heating rates, as described in Soria-Verdugo et al. (2016) 419 

for parabolic and positive exponential temperature increases. Two different 420 

inverse exponential temperature increases, corresponding to heating parameters 421 

of c = 0.06 min-1 and c = 0.18 min-1, were built to heat the samples in the TGA 422 

furnace up to two different temperatures of T = 550 ºC and T = 650 ºC. The 423 

heating parameters tested were selected to limit the values of the 25 constant 424 

heating rates composing the inverse exponential temperature profiles to 425 

operative values for the TGA employed. For the two heating parameters and 426 

reactor temperatures selected, the constant heating rates required to build the 427 

temperature profiles range between 0.03 ºC/min and 100 ºC/min, values that can 428 

be handled in the TGA Q500 used. In fact, heating rates up to 200 ºC/min can be 429 

programmed in this equipment (Soria-Verdugo et al., 2014). A blank experiment 430 

was also conducted for each heating parameter and reactor temperature to 431 

subtract buoyancy effects, and the repeatability of the pyrolysis tests was 432 

checked by repeating each run three times, obtaining relative discrepancies lower 433 

than 0.5%. 434 

3.2. Biomass Characterization 435 

The derivation of the Arrhenius equation for the LCM-DAEM model proposed was 436 

based on the ie values obtained from the pyrolysis kinetics data of four 437 

lignocellulosic biomass species, typically composed of hemicellulose, cellulose, 438 

lignin, and low amounts of inorganic matter. Therefore, the validation of the model 439 

was performed by comparing TGA pyrolysis measurements of non-lignocellulosic 440 

biomass samples to the predictions of the model, to prove the validity of the 441 

proposed equations for a broad range of biomass types. In this regard, biomass 442 
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samples of microalgae, which are composed of carbohydrates, proteins, lipids, 443 

and other minor components, and sewage sludge (SS), which comprises organic 444 

and inorganic matter, were analyzed. Among the different microalgae species, 445 

Chlorella Vulgaris (CV) was selected since it is widely grown and used (Figueira 446 

et al., 2015). 447 

The basic characterization of the microalgae and sewage sludge tested are 448 

shown in Table 2.  The characterization consists in a proximate analysis, 449 

performed in the TGA Q500 from TA Instruments, an ultimate analysis, carried 450 

out in a LECO TruSpec CHN Macro and TruSpec S analyzer, and a heating value 451 

test, conducted in a Parr 6300 isoperibolic calorimeter. The results for the 452 

Chlorella Vulgaris sample were reported in Soria-Verdugo et al. (2018), whereas 453 

the sewage sludge results were taken from Soria-Verdugo et al. (2017a). 454 

However, in the case of the sewage sludge, the sulfur content was measured in 455 

the LECO TruSpec S analyzer to include the complete data in Table 2.  456 

Table 2. Results of the basic characterization of Chlorella Vulgaris and sewage 457 

sludge (PA: Proximate Analysis, UA: Ultimate Analysis, VM: Volatile Matter, A: 458 

Ash, C: Carbon, H: Hydrogen, N: Nitrogen, S: Sulfur, O: Oxygen, HHV: High 459 

Heating Value, db: dry basis, daf: dried ash free basis, * calculated by 460 

difference). 461 

 462 
 PA [%db] UA [%daf] HHV [db] 

VM A C H N S O* [MJ/kg] 

Chlorella 
Vulgaris 76.26 13.11 59.06 8.81 11.39 0.66 20.08 21.57 

Sewage 
Sludge 57.11 34.66 56.46 7.91 8.42 2.83 24.38 15.73 

 463 
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A detailed comparison of the results obtained from the basic characterization of 464 

Chlorella Vulgaris and sewage sludge was carried out in a previous work (Soria-465 

Verdugo et al., 2017b), where these results were found to be similar to those 466 

reported in the literature by several authors.  467 

4. Results and Discussion 468 

4.1. TGA measurements 469 

The capability of the TGA to reproduce inverse exponential temperature 470 

increases as a combination of a series of 25 linear temperature increases was 471 

checked. Figure 3 shows the time evolution of temperature measured by the TGA 472 

for the two final reactor temperatures of T = 550 ºC and T = 650 ºC and the two 473 

inverse exponential temperature profiles, with heating parameters c = 0.06 min-1 474 

and c = 0.18 min-1, tested. Despite the fact that the curves are composed of 25 475 

constant heating rates, the inverse exponential form of the temperature profiles 476 

measured by the TGA is smooth. The measured temperature increases are 477 

depicted in Figure 3, and the fitting of these data to inverse exponential increases 478 

in the form of Eq. (2) resulted in determination coefficients R2 > 0.999 in all cases. 479 

Therefore, the series of linear heating steps programmed to the TGA accurately 480 

describes the inverse exponential temperature increases required to validate the 481 

proposed LCM-DAEM model.  482 
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 483 

Figure 3. Temperature profiles measured in the TGA for different reactor 484 

temperatures and heating parameters. 485 

The TGA inverse exponential temperature profiles shown in Figure 3 were 486 

employed to conduct pyrolysis tests using Chlorella Vulgaris and sewage sludge 487 

samples. The TG curves obtained, depicting the time evolution of the pyrolysis 488 

conversion , are represented in Figure 4 for both samples. Clear differences are 489 

observed for the pyrolysis tests conducted for different inverse exponential 490 

heating parameters. A faster pyrolysis process occurs for the tests at c = 0.18 491 

min-1 which last around 10 min, in contrast to the approximately 50 min required 492 

by the pyrolysis experiments at c = 0.06 min-1. There are also differences between 493 

the TG curves corresponding to the same heating parameter and different reactor 494 

temperatures due to the faster heating process required to attain a higher 495 

temperature following the same inverse exponential temperature curve. Similar 496 

TG curves were obtained for Chlorella Vulgaris and sewage sludge, 497 

characterized in both cases by steep increases of the pyrolysis conversion with 498 

time, as a consequence of the vigorous release of volatile matter, especially for 499 

the faster heating, c = 0.18 min-1. However, Figure 4 shows also differences for 500 

the TG curves of Chlorella Vulgaris and sewage sludge for the lower heating 501 

parameter of c = 0.06 min-1 tested. In these cases, the solid residue generated 502 
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after the release of highly volatile matter contained in sewage sludge, during 503 

around 20 min, seems to react as time progresses, resulting in a slight increase 504 

of the conversion with time during the final part of the pyrolysis test, t > 20 min. 505 

In contrast, this effect was less pronounced for the Chlorella Vulgaris sample. 506 

 507 

Figure 4. Pyrolysis conversion curves for Chlorella Vulgaris and sewage sludge. 508 

4.2. Validation of the LCM-DAEM model proposed 509 

The validation of the proposed LCM-DAEM model was based on the comparison 510 

of the pyrolysis conversion measured in TGA with the predictions of the model 511 

for both Chlorella Vulgaris and sewage sludge pyrolysis. This comparison was 512 

carried out for reactor temperatures of T = 550 ºC and T = 650 ºC and for the 513 

two inverse exponential temperature profiles tested, corresponding to heating 514 

parameters of c = 0.06 min-1 and c = 0.18 min-1. The prediction of the LCM-DAEM 515 

model is obtained by solving the corresponding Arrhenius equation, i.e., Eq. (24) 516 

for T = 550 ºC and Eq. (25) for T = 650 ºC, to determine the temperature of the 517 

sample T for specific values of the pyrolysis conversion . To that end, the 518 

evolution of the pre-exponential factor A and the activation energy E of the 519 

biomass sample with the pyrolysis conversion  should be known. The evolution 520 

of A and E of Chlorella Vulgaris and sewage sludge with the pyrolysis conversion 521 
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, for a range between 5% and 95% with intervals of 1%, was reported in Soria-522 

Verdugo et al. (2017b), and they can also be observed in the supplementary 523 

material of this paper. These evolutions of the pre-exponential factor A and 524 

activation energy E with the pyrolysis conversion  were obtained by applying the 525 

simplified DAEM to TGA pyrolysis measurements conducted using nine different 526 

constant heating rates. 527 

The kinetic parameters of the pyrolysis reactions A and E reported in Soria-528 

Verdugo et al. (2017b) were introduced in the transcendental Arrhenius 529 

equations, Eq. (24) for T = 550 ºC and Eq. (25) for T = 650 ºC. These Arrhenius 530 

equations have no analytical solution; thus, they should be solved using some 531 

simple numerical method such as the Newton-Raphson technique. The Arrhenius 532 

equations were numerically solved for values of the pyrolysis conversion  533 

between 5% and 95% varying with intervals of 1%. The estimation of the 534 

temperature T in the whole range of pyrolysis conversion  was determined, for 535 

both Chlorella Vulgaris and sewage sludge, for pyrolysis reactor temperatures of 536 

T = 550 ºC and T = 650 ºC, using the two inverse exponential temperature 537 

profiles measured experimentally in TGA (heating parameters of c = 0.06 min-1 538 

and c = 0.18 min-1) in the Arrhenius equations. Therefore, the complex combined 539 

heat transfer and chemical kinetics problem of biomass pyrolysis is simplified with 540 

the proposed LCM-DAEM model to solve a simple Arrhenius equation. 541 

The predictions obtained from the proposed LCM-DAEM model for the evolution 542 

of pyrolysis conversion  with temperature T were compared with the 543 

experimental measurements performed in TGA. As an example, Figure 5 544 

represents the  - T curves measured in TGA together with the LDM-DAEM 545 
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model estimations for the pyrolysis of both Chlorella Vulgaris and sewage sludge 546 

for the case of the lower reactor temperature and heating parameter, T = 550 ºC 547 

and c = 0.06 min-1. The experimental curves of  versus T are obtained directly 548 

from the pyrolysis conversion curves shown in Figure 4, considering the 549 

temperature profile imposed by the TGA to convert time into temperature. The 550 

numerical results obtained from the LCM-DAEM model for the evolution of the 551 

pyrolysis conversion  with temperature T, obtained solving the corresponding 552 

Arrhenius equation and depicted in Figure 5 for a pyrolysis conversion range 553 

between 5% and 95% in intervals of 1%, are in good agreement with the 554 

experimental measurements carried out in TGA for both Chlorella Vulgaris and 555 

sewage sludge, even though these two biomass samples have a totally different 556 

composition compared to lignocellulosic biomass. 557 

 558 

Figure 5. Comparison of the pyrolysis conversion of Chlorella Vulgaris and 559 

sewage sludge as a function of temperature experimentally measured in TGA 560 

and estimated by LCM-DAEM model for T = 550 ºC and c = 0.06 min-1. 561 

The results of the comparison between LCM-DAEM model predictions and TGA 562 

measurements for the rest of cases, i.e., different reactor temperatures and 563 

heating parameters, are similar to those shown in Figure 5. The Root Mean 564 
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Square Error (RMSE) was calculated for each case to quantify the deviation 565 

between the LCM-DAEM estimations and the TGA experimental measurements 566 

of temperature for each value of the pyrolysis conversion. These deviations of the 567 

proposed LCM-DAEM model from the experimental measurements, regarding 568 

the RMSE of temperature, are reported in Table 3 for the pyrolysis of both 569 

Chlorella Vulgaris and sewage sludge under the different reactor temperatures 570 

and heating parameters analyzed. The values obtained for the RMSE of 571 

temperature are lower than 5 ºC in all cases, therefore, the proposed LCM-DAEM 572 

model was proven to accurately describe the pyrolysis of biomass under inverse 573 

exponential temperature increases, as those to which thermally small particles 574 

are subjected. 575 

Table 3. Root Mean Square Error (RMSE) [ºC] between temperature measured 576 

by TGA and estimated by the LCM-DAEM model for each value of the 577 

conversion between 5% and 95%. 578 

 c = 0.06 min-1 c = 0.18 min-1 

T = 550 ºC T = 650 ºC T = 550 ºC T = 650 ºC 

Chlorella 
Vulgaris 1.6 2.6 2.9 4.2 

Sewage 
Sludge 1.5 3.8 2.3 4.7 

 579 

The estimations of the proposed LCM-DAEM and the experimental pyrolysis 580 

measurements conducted in TGA were also compared in terms of the average 581 

relative error of temperature for each value of the pyrolysis conversion between 582 

5% and 95%. This relative error was defined as the temperature deviation 583 

between the model prediction and the experimental measurement divided by the 584 



29 
 

experimental temperature. The values of the average relative error obtained in 585 

each case for both Chlorella Vulgaris and sewage sludge can be found in Table 586 

4. An average relative error of temperature below 1% is obtained in all cases, 587 

confirming the accuracy of the proposed LCM-DAEM model.  588 

Table 4. Average relative error [%] between temperatures measured by TGA 589 

and estimated by the LCM-DAEM model for each value of the conversion 590 

between 5% and 95%. 591 

 c = 0.06 min-1 c = 0.18 min-1 

T = 550 ºC T = 650 ºC T = 550 ºC T = 650 ºC 

Chlorella 
Vulgaris 0.24 0.36 0.46 0.64 

Sewage 
Sludge 0.23 0.42 0.30 0.71 

 592 

5. Conclusions 593 

A simple model combining the LCM and the simplified DAEM was proposed to 594 

describe the pyrolysis process of thermally small biomass particles. The model is 595 

based on an Arrhenius equation accounting for both the inverse exponential 596 

temperature increase predicted by the LCM and the chemical kinetics described 597 

by the simplified DAEM. The Arrhenius equation on which the model is based 598 

was derived, for a variable reactor temperature, considering the pyrolysis 599 

chemical kinetics data of several lignocellulosic biomass samples. Solving this 600 

simple Arrhenius equation, the evolution of the pyrolysis conversion of thermally 601 

small biomass particles subjected to a higher reactor temperature can be directly 602 

estimated. 603 
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The validation of the model was based on TGA measurements of the pyrolysis of 604 

Chlorella Vulgaris and sewage sludge under inverse exponential temperature 605 

profiles. The deviation between the LCM-DAEM model predictions and the TGA 606 

measurements for the relation between pyrolysis conversion and temperature, 607 

regarding the RMSE of temperature, is lower than 5 ºC for all the cases tested. 608 

Concerning the average relative error between the temperatures estimated by 609 

the model and measured by the TGA, deviations below 1 % were obtained in all 610 

cases. Therefore, the proposed LCM-DAEM model was proven to accurately 611 

describe the evolution of the pyrolysis conversion with temperature for thermally 612 

small biomass particles. Furthermore, the difference in composition between the 613 

lignocellulosic samples, used to derive the Arrhenius equations, and the 614 

microalgae and sewage sludge, employed for the experimental measurements, 615 

guarantees the validity of the simple LCM-DAEM model proposed for a broad 616 

range of solid fuels, provided that the particle size is sufficiently small. Once the 617 

model was validated with TGA experimental measurements, it could be extended 618 

to consider also the dynamics of industrial pyrolysis reactors.  619 
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