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We consider imaging the reflectivity of scatterers from intensity-only data recorded by a single moving transducer that both emits
and receives signals, forming a synthetic aperture. By exploiting frequency illumination diversity we obtain multiple measurements
for each location from which we determine missing phase information using an appropriate illumination strategy and the polarization
identity. The phase cross-correlations obtained this way from intensities do not, however, provide all the missing information. The
main result of this paper is an algorithm with which we can recover all the missing phases up to a single unknown global phase.
We can therefore image coherently over all frequencies and measurement locations as if full phase information was recorded.

I. INTRODUCTION

Synthetic aperture imaging when only intensities of signals
are recorded is a challenge because imaging algorithms rely
in an essential way on the missing phase information. There is
considerable recent interest in methods that attempt to recover
the missing phase information (see [9] and references therein)
driven by a variety of applications. This is mainly because
there is a need for more compact, inexpensive, and robust
imaging systems. One important application is in security
screening systems where both cost and time for data acquisi-
tion are reduced when intensity only detectors are employed.
Robustness with intensity-only imaging systems is likely to be
enhanced because probe position errors due to positioning and
misalignment can be reduced.
One frequently used method to recover the missing phase

information is to collect intensity data at two parallel surfaces,
and propagate the fields iteratively from one surface to another
to find the missing phases with Fienup’s Hybrid-Input-Output
algorithm [8], [7]. It works well on well-separated planes, but
if the separation is small convergence to local minima may
occur. Convergence may be achieved, however, by using global
optimization methods which are time consuming [17].
Several non-iterative or direct methods have also been de-

veloped to avoid convergence issues. These are interferometric
approaches that rely on recovering phase field differences
from intensity data. In [12], the authors use the responses to
two probe antennas recorded at three intensity-only or power
detectors to obtain antenna phase patterns. In [6], a similar ap-
proach is used along with a minimization procedure that finds
the missing phases. Despite the nonlinearity of the problem,
the authors report an accurate and fast convergence of their
method, without stagnation problems. A holographic technique
that combines a known reference signal with the received
signals is also used in [11] for characterization of complex
antenna patterns. However, it cannot be used in a monostatic
setup because it requires a transformation from the spatial to
the spectral domain that is only possible if measurements can
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be recorded simultaneously at several locations. Recently, a
modified holography technique for monostatic multifrequency
scanning antennas has been proposed in [9], [10]. In this
case, a transformation from the time domain to the frequency
domain is used.
In this paper, we present a new approach to accurately

reconstruct the reflectivity of scatterers with synthetic aperture,
intensity-only data. The method has two stages. First, we
obtain for each receiver location phase cross-correlations from
the recorded intensities. This is done using a special sequence
of illuminations and the polarization identity as in [16], [14].
From these cross-correlations we recover the missing phases
up to a phase that depends on the receiver location. In the
second stage we introduce a new algorithm that recovers
these location dependent phases, and this is the main result
of this paper. With this approach, we show that imaging with
intensity-only data can be as good as imaging with full data.
The paper is organized as follows. In Section II, we explain

the proposed method to obtain coherent cross-correlations
when only one element that measures only intensities is used
for both receiving and transmitting purposes. In Section III,
we discuss two imaging methods usually used with full phase
and amplitude data that can be used with the recovered
cross-correlations. In Section IV, we show the results of our
numerical experiments. Section V contains our conclusions.

II. MULTI-FREQUENCY INTERFEROMETRIC SYNTHETIC
APERTURE IMAGING

In the next two subsections we present in detail the two
stages of the proposed approach for recovering the missing
phases from intensity only synthetic aperture data.

A. Multi-frequency cross-corellations
Let |P (xj ,!l)| be the amplitude of the signal received at

location xj when a signal of unit amplitude and zero phase
is emitted from the same location at frequency !l. The goal
is to determine the reflectivity ⇢ within a region of interest,
called the image window IW, from multiple measurements at
different locations xj , j = 1, . . . , N , and frequencies !l, l =
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1, . . . , S (see Figure 1), with a total number of D = N ·
S data. For imaging purposes, the IW is discretized using a
uniform grid of K points yk, k = 1, . . . ,K. The unknown is
the reflectivity vector ⇢ = [⇢1, . . . , ⇢K ]t 2 CK , whose entries
are the values of the reflectivity ⇢k = ⇢(yk) on the grid points
yk, k = 1, . . . ,K. We assume that K > D, and often we have
K � D.

yk

xj

IW

Fig. 1. General setup of a synthetic aperture imaging problem. The transducer
at xj emits a probing signal and the reflected intensities are recorded at the
same location for all illuminations. The scatterers are located inside the image
window IW which is discretized with the grid points yk , k = 1, . . . ,K.

We pursue here the idea of [16], [14], [15], where it is
shown that cross-correlations can be obtained from intensity-
only measurements by using an appropriate protocol of il-
luminations and the polarization identity. However, because
in synthetic aperture imaging a single transmitter/receiver
element is used, there is an inherent loss of flexibility in the
illumination strategy compared to array imaging applications
in which all the elements of the array are used to emit and
receive signals. This lack of flexibility in illuminations might
suggest that the collected data cannot be used coherently to
form images in synthetic aperture imaging if only intensities
are measured.
To explain this further, we introduce the following row

vector Pj 2 CS with components P (xj ,!l) corresponding
to the signal recorded at xj , including phases, when a unit
amplitude and zero phase signal is send from the same location

Pj = [P (xj ,!1) P (xj ,!2) . . . P (xj ,!S)] . (1)

The first step of the proposed methodology consists in recov-
ering, at every fixed location xj , the cross-correlation matrix

[M j ]ll0 ⌘ mj
ll0 = P (xj ,!l)P (xj ,!l0), l, l0 = 1, . . . , S .

(2)
To do so we use diversity over frequencies of illuminations
and the polarization identities

Re(mj
ll0) =

1

2

�
|Pj · el+l0 |2 � |Pj · el|2 � |Pj · el0 |2

�
(3)

Im(mj
ll0) =

1

2

�
|Pj · el�ıl0 |2 � |Pj · el|2 � |Pjel0 |2

�
. (4)

Here el 2 CS is the vector with a 1 in the l-th coordinate
and 0’s elsewhere. It represents a signal of unit amplitude
and phase zero at frequency !l. In (3)-(4), ı =

p
�1,

el+l0 = el + el0 , and el�ıl0 = el � ıel0 . Note that the vector
el+l0 = el+el0 refers to sending simultaneously signals of unit
amplitude and phase zero at two frequencies, !l and !l0 , while
the vector �ıel0 denotes a ⇡ rad frequency domain shifting of
the signal corresponding to frequency !l0 . Since all entries
on the right-hand side in these equations involve quadratic
quantities, we can recover all the entries in M j even when
phases are not recorded. We propose in Appendix A an il-
lumination strategy that requires measurements corresponding
to 3S�2 illuminations so as to recover all the entries in M j .
This illumination strategy can be used when either intensities
are recorded or total power is the only measured quantity.
Typically the total power is much easier to obtain.
Note, however, that M j is recovered up to an unknown

global phase that depends on each receiver location xj . These
phases, which are independent of frequency, are needed in or-
der to superpose images coherently over the antenna locations.
This is the main difficulty in synthetic aperture imaging when
the phases are not measured. We explain how to overcome this
problem next.

B. Missing location-dependent phase recovery

As described previously, we can recover, up to a global
phase that depends on the receiver location xj , cross-
correlations of the form (2) using frequency diversity in
the illuminations and the polarization identities. Note that
|P (xj ,!l)| is also known for l = 1, . . . , S at every location
xj , since intensities are recorded. Therefore given the corre-
lation matrix elements mj

ll0 , l, l
0 = 1, . . . , S, as in (2), we can

compute up to a global phase

mj
ll0

|P (xj ,!l)|
= P (xj ,!l0)

P (xj ,!l)

|P (xj ,!l)|
, l0 = 1, . . . , S,

which means that the typical data can be recovered at each
measurement location xj up to a global phase ✓j which is
unknown,

P (xj ,!l)e
ı✓j , for l = 1, . . . , S. (5)

To image coherently, we are going to refer all these unknown
phases to a single location.
By linearizing the scattering problem, and assuming a

homogeneous background with velocity c, the data is given
by

P (xj ,!l) =
QX

q=1

⇢̃qe
ı2

!l
c rjq , (6)

where ⇢̃q is the integral of the reflectivity on the sphere of
radius rjq centered at xj ; see Figure 2. It follows from (6) that
the data P (xj ,!l) is the Fourier coefficient of the reflectivity
⇢̃ corresponding to wavenumber l = 2!l

c ,

b⇢(l) =
QX

q=1

⇢̃qe
ılr

j
q .

Therefore at each source-detector position we have to solve a
phase retrieval problem for one dimensional Fourier data. The
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xj

IW

⇢̃q

rjq

Fig. 2. The data (with phases) P (xj ,!l) recorded at transducer xj when a
unit amplitude signal with phase zero at frequency !l is emitted from the same
location is given by the model (6) where ⇢̃q is the integral of the unknown
reflectivity on the sphere centered at xj of radius rjq .

unknown vector ⇢̃ = [⇢̃1, ⇢̃2, . . . , ⇢̃Q] can be determined by
solving a linear system

Aj⇢̃j = bj , (7)

with sensing matrix

Aj =

2

66664

eı2
!1
c rj1 eı2

!1
c rj2 · · · eı2

!1
c rjQ

eı2
!2
c rj1 eı2

!2
c rj2 · · · eı2

!2
c rjQ

...
...

eı2
!S
c rj1 eı2

!S
c rj2 · · · eı2

!S
c rjQ

3

77775
. (8)

The superscript j is used to stress that (7) uses data recovered
at location xj , which according to (5) has components

bjl = P (xj ,!l)e
ı✓j , l = 1, . . . , S. (9)

If the reflectivity vector ⇢̃j is sparse and the data are noiseless,
the exact solution to (7) can be found by using `1-optimization
algorithms under some conditions on the matrix Aj [3], [2],
[4], [1].
The matrix Aj defined in (8) depends on the radii rji , i =

1, . . . , Q which are computed in the following way. Given an
IW of interest containing the discretization points yk, k =
1, . . . ,K we compute the distances from all points yk to the
receiver location xj ,

Rj
k = |yk � xj |. (10)

These form the components of a vector in RK . We then sort
the components of this vector in ascending order and keep
only these entries that appear with multiplicity larger than one.
More precisely, in practice we only keep the entries that differ
from each other by at least a level ✏. The value of ✏ should be
small enough so that we do not disregard many components
since that would affect the accuracy of the reconstruction but
✏ cannot be zero because we do not want the columns of Aj

to be parallel. Assuming the Rj
k are ordered then this can be

done as follows,

set i = 1 and rji = Rj
i

for k=2 to K
if |Rj

k �Rj
k�1| > ✏

set i = i+ 1 and rji = Rj
k

end
end

(11)

This process generates the radii rji , i = 1, . . . , Q with Q 
K which depend on the receiver location j = 1, . . . , N .

Once the solution vector ⇢̃j has been found, we compute the
total reflectivity within the IW, which is obtained by summing
all the components of the vector ⇢̃j , i.e.,

QX

q=1

⇢̃jq ⇡ eı✓j
1

hc

Z

IW
⇢0d~y, (12)

with hc a constant that depends on the discretization. The key
point here is that for all receiver positions we can compute
an approximation to the total reflectivity up to unknown phase
factors eı✓j , j = 1, . . . , N . Thus, we can refer all the recovered
quantities (9) to a same global phase with no meaning for
imaging purposes. Indeed, let us define the quantities

cj =

PQ
q=1 ⇢̃

j
q

PQ
q=1 ⇢̃

1
q

(12)
= eı(✓j�✓1), j = 1, . . . , N, (13)

by dividing the total reflectivities associated to every locations
xj by the total reflectivity obtained from the measurements
recorded at x1. The choice of j = 1 in the denominator in
(13) is, of course, arbitrary. With this choice, c1 = 1. Then,
by multiplying the recovered data (9) by cj we get

cjb
j
l = P (xj ,!l)e

ı✓1 , 8 j = 2, . . . , N and l = 1, . . . , S,
(14)

which define the holographic data

Ph(x1,!l) = b1l , 8 l = 1, . . . , S.
Ph(xj ,!l) = cjb

j
l , 8 j = 2, . . . , N and l = 1, . . . , S.

(15)
The phases in (15) are now coherent over different receiver
positions and frequencies! Thus, the unknown reflectivity ⇢
can be reconstructed as if data with phases were recorded.
We want to emphasize that the proposed methodology al-

lows one to produce holographic data from intensity measure-
ments. This is of considerable importance since: i) Intensity
data are much easier to obtain and can be performed with less
expensive equipement (sensors) than holographic measure-
ments. ii) Holographic data contain coherent phase information
and allow us to obtain depth resolved reconstructions, iii)The
proposed methodology does not need any prior information
about the sought reflectivity. We compare next the performance
of different imaging methods using (15) as data.

III. FULL PHASE SYNTHETIC APERTURE IMAGING
METHODS

Once the holographic data Ph are obtained, the unknown
reflectivity can be reconstructed with any imaging method as
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if the data with phases were recorded with a synthetic array
aperture. Here we show results obtained with the frequently
used Kirchhoff migration (KM) imaging method and the `1-
optimization approach.
KM is a direct imaging method which can be written as

⇢KM (yk) =
NX

j=1

SX

l=1

e�ı2
!l
c |xj�yk|Ph(xj ,!l), (16)

where |xj � yk| is the distance between the measurement
location xj to the search point yk in the imaging window
IW. The image ⇢KM = [⇢KM (y1), ⇢

KM (y2) . . . , ⇢
KM (yK)]

is an approximation to the unknown reflectivity vector ⇢.
We also find the reflectivity by promoting a sparse solution

to the system
A⇢ = b , (17)

where ⇢ 2 CK is the sought reflectivity vector,

A =

2

666666666664

eı2
!1
c |x1�y1| eı2

!1
c |x1�y2| · · · eı2

!1
c |x1�yK |

eı2
!1
c |x2�y1| eı2

!1
c |x2�y2| · · · eı2

!1
c |x2�yK |

...
...

...
eı2

!1
c |xN�y1| eı2

!1
c |xN�y2| · · · eı2

!1
c |xN�yK |

eı2
!2
c |x1�y1| eı2

!2
c |x1�y2| · · · eı2

!2
c |x1�yK |

...
...

...
eı2

!S
c |xN�y1| eı2

!S
c |xN�y2| · · · eı2

!S
c |xN�yK |

3

777777777775

(18)
is the model matrix, and b 2 CN ·S is the recovered data vector
whose components are

bi = b(l�1)N+j = Ph(xj ,!l), j = 1, . . . , N, l = 1, . . . , S.
(19)

We note that the KM solution (16) can also be written as
⇢KM = A⇤b, where A⇤ is the complex conjugate transpose
of A.
To find the sparsest solution to the system (17), we solve

the `1 optimization problem

min k⇢k`1 subject to A⇢ = b (20)

using the algorithm GelMa described in Algorithm 1. This
algorithm involves matrix-vector multiplications followed by
a shrinkage-thresholding step defined by the operator

⌘⌧ (yi) = sign(yi)max{0, |yi|� ⌧}.

In the noiseless case, it converges to the exact solution
independently of the value of the regularization parameter ⌧
[13]. It is a semi-implicit version of the primal-dual method
[5].

Algorithm 1 GelMa for solving (20)
Require: Set y = 0, z = 0. Pick the step size �, and a
regularization parameter ⌧ .
repeat
Compute the residual r = b�Ay
y ( ⌘⌧�(y + �A⇤(z + r))
z ( z + �r

until Convergence

IV. NUMERICAL SIMULATIONS

We consider a high frequency microwave scanning regime
with central frequency f0 = 50GHz which corresponds to
�0 = 6mm. We make measurements for S = 41 equispaced
frequencies covering a total bandwidth of 10GHz using a sin-
gle transmitter/receiver that is moving along a linear trajectory.
The synthetic aperture is a = 20cm, and the distance from its
center to the center of the IW is L = 1m; see Figure 3. We
assume that the medium between the synthetic array and the
IW is homogeneous. The size of the IW is 48cm⇥ 48cm, and
the pixel size is 6mm⇥6mm. The measurements are gathered
at N = 41 equispaced locations. These parameters are typical
in microwave scanning technology [10].
We assume that the total power can be measured for a set

of pulses of the form cos(!lt) exp(�t2/(2�t)2), where !l is
one of the targeted measurement frequencies and �t is the
pulsewidth that is inversely proportional to the available band-
width, B. As discussed in Appendix A to retrieve the phases
for S frequencies !l, l = 1, . . . , S we need to measure the total
power for 3S�2 illuminations. Since we measure total power,
a simple strategy would be to use a sufficient delay between
successive illuminations so that the corresponding echoes are
non-overlapping. Given an illumination at time 0 an estimate
for the starting time for the scattered signal is 2L

c while its
duration is of the order 2 IW size

c . Thus as estimate of the ac-
quisition time per location is (3S � 2)

�
1
2B + 2 IW size

c + 2L
c

�
.

For the specific parameters used in the simulations this is
(3S � 2)10ns = 1.2µs.
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Fig. 3. The setup used in the numerical simulations. A single transmit/receive
element is moving on a linear trajectory (green stars) and measures the
intensity reflected from the scatterers (red disks). The blue area is the imaging
window IW.

We add to the data mean zero uncorrelated noise corre-
sponding to SNR = 10dB. Then we assume that only the
amplitude of the reflected field can be measured and following
the methodology described in Section II we recover from
these phaseless data, the holographic data Ph (see (15)) which
have phases that are coherent over frequency and measurement
locations. In our numerical examples we used ✏ = 0.001µm
in (11). Note that ✏ has units of length and is small with
respect to the wavelength and the pixel size so that neglecting
distances that differ less than ✏ does not affect the accuracy
of the recovered phases. The recovered data Ph are then used
for imaging the unknown reflectivity and the results are shown
in Figure 4. The top row of Figure 4 shows the distribution
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of targets we seek to find. The bottom left panel is the KM
image, and the right panel is the image obtained with `1-
optimization. As expected, KM shows resolution �0L/a in the
cross-range direction and c/B in the range direction, which
for our imaging setup corresponds to a resolution of 5�0 in
both directions. On the other hand, the image obtained with
`1-optimization is almost exact.
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Fig. 4. Single transmitter/receiver multifrequency data recovered from inten-
sity measurements with SNR = 10dB. Imaging with KM as defined in (16)
(left) and ⇢`1 computed using GelMa to solve (20) (right). On the top row the
true reflectivity is plotted. In all images we plot the amplitude of the complex
valued reflectivity |⇢|.

To show the effectiveness of the method proposed here when
phases are not recorded, we consider next the same imaging
configuration but assume that the scatterers are displaced with
respect to the grid points of the IW. Note that an error in the
grid will affect the phase recovery as well as the actual image
reconstruction. This is because the distance to the grid points
Rj

k (see (10)) is used in the definition of the radii rji in (8)
and in the model matrix A (see (18)).

In Figure 5 we show results for scatterers that are displaced
by �/8 = 0.75mm (top row) and by �/2 = 3mm (bottom
row) with respect to the grid points in range and cross-
range directions. The reconstructions do deteriorate as the
displacement with respect to the grid increases but remain
very satisfactory even for the largest possible displacement
value of half the grid size (see bottom row plots in Figure 5).
Last we also add to the data corresponding to the displacement
�/2 = 3mm mean zero uncorrelated noise corresponding to
SNR = 0dB. The results shown in Figure 6 are of very
high quality and illustrate the robustness of the proposed
methodology both to additive measurement type of noise as
well as off-grid displacement errors.

V. SUMMARY AND CONCLUSIONS

We have introduced an approach to synthetic aperture
imaging with intensity-only measurements by exploiting illu-
mination diversity. The images have the same quality as when
there is full phase information available. There are two stages
in our approach. First we recover signal crosscorrelations over
pairs of frequencies at each measurement location xj using
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Fig. 5. Single transmitter/receiver multifrequency data recovered from inten-
sity measurements. No additive noise is added to the data. Imaging with KM as
defined in (16) (left) and ⇢`1 computed using GelMa to solve (20) (right). The
scatterers are displaced by �/8 = 0.75mm (top row) and by �/2 = 3mm
with respect to the grid points in range and cross-range directions. In all
images we plot the amplitude of the complex valued reflectivity |⇢|.
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Fig. 6. Single transmitter/receiver multifrequency data recovered from inten-
sity measurements with SNR = 0dB. Imaging with KM as defined in (16)
(left) and ⇢`1 computed using GelMa to solve (20) (right). The scatterers
are displaced by �/2 = 3mm with respect to the grid points in range and
cross-range directions. In all images we plot the amplitude of the complex
valued reflectivity |⇢|.

intensity only measurements and the polarization identity. This
way phases are recovered up to a location dependent factor
eı✓j . In the second stage, which is the main contribution of
this paper, we introduce an algorithm (see Section II-B) that
recovers the missing phases up to a single global factor eı✓1 .
We can then image with any method that uses full phase data.
We explore this approach with broadband SAR in the 50GHz
regime in an imaging setup that is used in security scanning
equipment.

APPENDIX A
ILLUMINATION STRATEGIES

We discuss here an illumination strategy for recovering
the phase cross-correlations from intensity measurements at
different frequencies using a single transmit/receive element.
The same illumination protocol can be used whether the
intensities or the total power is measured. In this protocol at
each transmit/receive location we need to record measurements
corresponding to 3S � 2 illuminations. We explain next the
proposed protocol.
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We want to recover the cross-correlation matrix

[M j ]ll0 ⌘ mj
ll0 = P (xj ,!l)P (xj ,!l0), l, l0 = 1, . . . , S ,

(21)
using diversity of illuminations and the polarization identities

Re(mj
ll0) =

1

2

�
|Pj · el+l0 |2 � |Pj · el|2 � |Pj · el0 |2

�
(22)

Im(mj
ll0) =

1

2

�
|Pj · el�ıl0 |2 � |Pj · el|2 � |Pjel0 |2

�
. (23)

When intensities are recorded then this means that all the
quantities | · |2 in the right hand side of (22) and (23) can
be measured. When the total power is recorded, given an
illumination f 2 CS the corresponding measurement is

|P j · f |2 = |
SX

l=1

P (xj ,!l)fl|2

=
SX

l,l0=1

flP (xj ,!l)P (xj ,!l0)fl0

=
SX

l,l0=1

flm
j
ll0fl0 = f⇤M jf .

Therefore, again we can measure all the quantities in the right
hand side of the polarization identities. Remarking that

mj
ll0 =

mj
l1m

j
1l0

mj
11

,

we deduce that we only need to compute the phase cross-
correlations mj

l1m
j
1l0 which can be obtained from the polariza-

tion identities (22)-(23) provided 3S�2 measurements. Indeed
we can determine mj

l1, for l = 2, . . . , S using illuminations
el, el+1 and el�ı1 and we also need to measure mj

11.
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