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Abstract 

The paper explores N-hop FSO communications assisted by amplify-and-forward relays 

(AFRs) over N-gamma-gamma (N-gg) turbulence induced (TI) fading channels.  We model 

TI fading signal as the product of independent but not necessarily identically distributed 

(i.n.i.d) N number of gg random processes (RPs) in order to address N-hop AFR FSO 

communications in moderate to strong TI fading conditions. The closed form statistical 

measures such as: probability density function (PDF), cumulative distribution function 

(CDF), average level crossing rate (LCR) and average fade duration (AFD) approximated by 

general Laplace integration formula (LIF) and exponential LIF are derived. The CDF and 

AFD derived expressions are in terms of finite sums and valid only for an integer value of the 

parameter related to small-scale atmospheric cells in the first link of N-hop AFR FSO system. 

The numerical examples for moderate to strong TI fading conditions as well as for various 

number of hops for the proposed N-hop AFR FSO systems are presented and discussed. 

Moreover, LIF approximate numerical results are compared with numerical results evaluated 

from exact integral expressions for the observed system model parameters. 

Keywords: FSO, Gamma-gamma, Laplace approximation, multi-hop relaying, second order 

statistics. 

 
 



 

1. Introduction 

Free space optical (FSO) communications re-present promising solution for integration in future 

5G and beyond 5G (B5G) communication systems  [1]-[4]. The FSO links are mainly applied to 

increase data rate and provide wider bandwidth in comparison to existing radio-frequency (RF) 

communications. An FSO link is spectrum license free. Moreover, FSO links can provide cost 

effective solutions and annulate the impact of channel interference. The main cause of FSO system 

performance deterioration is turbulence induced (TI) fading due to the existence of small- and large-

scales atmospheric cells. Moreover, atmospheric conditions (such as fog, rain and etc.) as well as 

pointing errors (misalignment) of the system’s transmitter-receiver apparatus can induce additional 

deterioration in FSO performances [5]-[6]. 

The relay assisted communications are usually recognized as  practical solutions  to 

increase data-rate, decrease energy consumption, extend coverage and provide security [7]-[9]. 

The unmanned-aerial-vehicles (UAVs) can be even used as relays to assist the FSO 

communication systems [10]-[11]. Indeed, amplify-and forward relay (AFR) technique has 

an important role in cascaded FSO, RF-FSO and mmWave-FSO relay systems [12]-[14] and 

it is usually the case that multi-hop fading signals can be modeled as the product of two or 

more random processes (RPs) [15]-[21]. In particular, gamma-gamma (gg) RP can precisely 

address FSO links subjected to moderate to strong turbulence induced (TI) fading [22]-

[24]. The analytical results for PDF of gg RP that fit well with simulations are provided in 

[23]. Moreover, [24] shows that for moderate to strong TI fading conditions, the gg 

distribution provides a good fit to the experiments for TI fluctuations collected by determined 

dimension of apertures related to coherence radius. Further, survey on gg RP and its 

application to various wireless communication systems (WCSs) as well as relay WCSs, 

including FSO AFR communications is presented in [25]. The paper [26] considers dual-

hop AFR FSO systems over gg TI fading channels and provide closed form first order 

statistical results expressed mainly in terms of Fox’s H and Meijer’s G functions. Moreover, 

the first-order outage statistics such as outage probability and average bit error rate (BER) 

of multi-hop ASR FSO communications over gg TI fading are considered in [27]. The 

experimental verification of obtained results for BER of multi-hop FSO links over gg TI 

fading for up to 3-hop AFR FSO links are presented in [28]-[29]. In paper [30], gg TI fading 

model is applied for FSO link of SIM-FSO communication system.  

In addition to the first order outage statistics (outage probability, bit error rate, channel 



 

capacity and others), higher order statistics (level crossing rate - LCR and average fade 

duration - AFD) can reveal additional insights of time-variant fading channels. Moreover, one 

of the 5G requirements is ultra-reliable low-latency communications (URLLC) which is 

dependent on evaluation of system’s outage in respect to time. In particular, the LCR indeed 

addresses time variant fading channels, by determining time rate of change of the output signal, 

while AFD is characterized as the average time for which the SNR is below a specified 

threshold. Thus, second order statistics can be useful for delay estimation of reliable 

communication links over fading channels [31]-[32]. The theoretical results for AFD and 

LCR of gamma-gamma RP are provided in [33]. The identical second order measures with 

application to FSO, verified by experiments for moderate to strong TI fading conditions are 

considered in [34]. Moreover, [34] has showed that analytical results are accurate with 

experimental results for TI fluctuations only collected by determined dimension of apertures 

related to coherence radius. The higher order statistics of an FSO optical link in so called 

Malaga TI fading conditions is then investigated in [35]. The paper [36] gives some 

experimental and simulation results for LCR and AFD of FSO communications. The paper 

[37] addresses burst error rate of time-variant FSO link over gg TI fading model, while [38] 

investigates security issues of FSO links over time-variant gg TI fading channels. However, 

the above mention references as well as the references within do not consider the second order 

statistics of N-hop AFR FSO systems over moderate to strong TI fading conditions. The 

closed form analytical expressions for second order statistics derived by Laplace integration 

formula (LIF) of mixed triple-hop RF-FSO-RF over gg TI fading model for FSO link are 

given in [16]. Moreover, the LIF can be often useful for application in the performance 

analysis of wireless communication systems [16]-[21], [39]. The LIF and exponential LIF are 

characterized by its generality and simplicity of application and can be used to provide closed 

form precise approximations that can significantly decrease computational time of complex, 

many-folded integral expressions [40]-[42].  

To summarize, the gg is one of the most used FSO channel models for moderate to strong 

TI fading conditions [25]-[30], [36]-[38] that has been verified by experimental and 

simulation results [23]-[24], [34]. Since N-gg channel model can address N-hop AFR FSO 

communications in moderate to strong TI fading conditions [27], we rely on N-gg channel 

model for the second order performance analysis of N-hop AFR FSO communications. Other 

FSO channel models that are available in literature are: log-normal TI fading model (mainly 



 

used under weak TI fading conditions) [15], double generalized gamma TI fading model 

(applicable for weak to strong TI conditions but there aren’t available experimental 

validations for TI fading conditions) [43], general Malaga TI channel model (applicable for 

weak to strong TI fading conditions but there aren’t available experimental validations for TI 

fading conditions, especially regarding the second order statistics) [35] and exponential-

generalized gamma TI fading model (applicable for underwater optical wireless 

communications) [44].  

Motivation of this work is to investigate the impact of the number of relays under moderate and 

strong TI fading conditions in relation to second the order statistics of N-hop AFR FSO system. In 

particular, significance of this paper is mathematical framework development for derivation of 

closed form expressions such as i.)  PDF, ii.)  CDF, iii.)  LCR and iv.) AFD expressions of the 

products of i.n.i.d N gg RPs by direct application of LIF and exponential LIF. The obtained results 

are then related to the system performance of N-hop AFR FSO communications over gg TI 

fading. Moreover, the impact of moderate and strong TI fading conditions as well as the number 

of hops on the second order statistics of the proposed model are well investigated, numerically 

evaluated and presented.  

To the best of author’s knowledge there is no paper on the second order statistics of   N-gg RP 

approximated by LIF and exponential LIF that are directly related to the N-hop AFR FSO system over 

moderate to strong TI fading conditions. 

 

2. Gamma-gamma channel model  
 

The gg model is based on the assumption that the fluctuations of the received optical signals, which 

were formed during the transmission through the turbulent FSO channel, can be modeled as a product of 

𝑥𝑔𝑔,1 and 𝑥𝑔𝑔,2 RPs, where these two processes originate from eddies of large and small dimensions, 

respectively. It is assumed that 𝑥𝑔𝑔,1 and 𝑥𝑔𝑔,2 are statistically independent RPs. Thus, we can express the 

gg RP as: 

  

𝑧𝑔𝑔 = 𝑥𝑔𝑔,1𝑥𝑔𝑔,2 

 

(1) 

 

The large-scale and small-scale TI fluctuations are described by gamma PDFs [23, eq. (10)] and [23, eq. 

(11)], respectively: 



 

  

𝑝𝑋𝑔𝑔,1(𝑥𝑔𝑔,1) =
𝛼𝛼

𝛤(𝛼)
(𝑥𝑔𝑔,1)

𝛼−1𝑒−𝛼𝑥𝑔𝑔,1 , 𝑥𝑔𝑔,1 > 0, 𝛼 > 0; 

 

(2) 

  

𝑝𝑋𝑔𝑔,2(𝑥𝑔𝑔,2) =
𝛽𝛽

𝛤(𝛽)
(𝑥𝑔𝑔,2)

𝛽−1𝑒−𝛽𝑥𝑔𝑔,2 , 𝑥𝑔𝑔,2 > 0, 𝛽 > 0; 

 

(3) 

where 𝛼 and 𝛽 are large-scale and small-scale cells related to atmospheric TI fading conditions [22]-[24], 

respectively. The PDF of gg RP, as already given in [23, eq. (13)], is:  

 
𝑝𝑧𝑔𝑔(𝑧𝑔𝑔) =

2(𝛼𝛽)
𝛼+𝛽
2

𝛤(𝛼)𝛤(𝛽)
(𝑧𝑔𝑔)

𝛼+𝛽
2

−1𝐾𝛼−𝛽[2(𝛼𝛽𝑧𝑔𝑔)
1/2] 

 

(4) 

The PDF of double Nakagami-m squared (dNs) can be written as:  

  

𝑧𝑑𝑁𝑠 = 𝑥𝑛,1
2𝑥𝑛,2

2 

 

(5) 

 

where PDFs of Nakagami-m are given as [48, eq. (2.52)]: 

 
𝑝𝑥𝑛,𝑖(𝑥𝑛,𝑖) =

2(𝑚𝑖/Ω𝒊)
𝒎𝒊

𝛤(𝑚𝑖)
(𝑥𝑛,𝑖)

2𝑚𝑖−1𝑒
−
𝑚𝑖
Ω𝑖
(𝑥𝑛,𝑖)

2

, 𝑖 = 1, 2; 
 

(6) 

 

The PDF of dNs can be expressed as: 

 
𝑝𝑍𝑑𝑁𝑠(𝑧𝑑𝑁𝑠) = ∫ |

𝑑𝑥𝑛,1
𝑑𝑧𝑑𝑁𝑠

|
∞

0

𝑝𝑋𝑛,1 (
𝑧𝑑𝑁𝑠

1/2

𝑥𝑛,2
)𝑝𝑋𝑛,2(𝑥𝑛,2)𝑑𝑥𝑛,2 

 

(7) 

 

where |𝑑𝑥𝑛,1
𝑑𝑧𝑑𝑁𝑠

| =
1

2

𝑧𝑑𝑁𝑠
1/2

𝑥𝑛,2
. After substitution (6) in (7) and after some mathematical transformations, the 

𝑝𝑍𝑑𝑁𝑠(𝑧𝑑𝑁𝑠), can be written as: 

 

𝑝𝑍𝑑𝑁𝑠(𝑧𝑑𝑁𝑠) =
2 (
𝑚1𝑚2
Ω1Ω2

)

𝑚1+𝑚2
2

𝛤(𝑚1)𝛤(𝑚2)
(𝑧𝑑𝑁𝑠)

𝑚1+𝑚2
2

−1𝐾𝑚1−𝑚2
[2(
𝑚1𝑚2

Ω1Ω2
𝑧𝑑𝑁𝑠)

1/2] 

 

(8) 

Since the gamma RPs can be expressed as Nakagami-m squared RPs (𝑥𝑔𝑔,1 = 𝑥𝑛,12 and 𝑥𝑔𝑔,2 = 𝑥𝑛,22) [48, 

eq. (2.55)] and where for the set of parameters: 𝑚1 = 𝛼, 𝑚2 = 𝛽 and Ω1 = Ω2 = 1, 𝑝𝑍𝑑𝑁𝑠(𝑧𝑑𝑁𝑠) given by (8) 

reduces to 𝑝zgg(zgg) given by (4), it is obvious that manipulation with gg PDF or dNs PDF for determined set 

of parameters should lead to the same results. Manipulation with the same RP can be more tractable but also 

useful in some AFR scenarios, especially in mixed RF-FSO, where for example RF propagation environment 



 

can be modeled with Nakagami-m and FSO propagation environment can be modeled with the product of two 

Nakagami-m squared RPs [16]. 

 

 

3. N-gamma-gamma channel model for N-hop relaying 
 

The most often applied relaying protocols for FSO or mixed RF-FSO relaying schemes are 

amplify-and-forward relays (AFRs) as well as decode-and-forward relays (DFRs) [12]-[13], [45]. The 

DFR systems can usually provide better results than AFR systems in terms of performance metrics 

but due to relatively lower complexity AFR systems are often proposed for application in practice 

[12]-[13], [28]-[29], [39], [46]. In [46], the authors compare AFR and DFR systems and propose 

hybrid system in order to improve the system performance, consisting of both AFRs and DFRs. 

The cascaded fading channels can be modeled as the product of RPs [15]-[19], [27], [47]. It has 

been shown by [19, eq. (39)] that the total fading signal amplitude without AWGN at destination node 

of AFR channel can be modeled as the product of N Rayleigh RPs, where for the case of semi-blind, 

fixed gain AFRs, the gain is given by [19, eq. (52)]. In [47], the part of the system that includes dual-

hop AFR channel is modeled as the product of double Gaussian RPs and the channel gain [47, eq. 

(2)], where the channel gain is given as a constant scaling factor equal to one in numerical results. 

Moreover, the FSO multi-hop transmissions by considering TI fading channels under weak TI fading 

conditions are given entirely as a product of log-normal RPs [15, eq. (13)]. The first order statistics 

of FSO multi-hop AFR system over gg RPs is presented in [27], where the overall TI fading gain is 

given by [27, eq. (26)].  

The TI fading signal of a FSO link in moderate to strong fading conditions can be modeled using 

gamma-gamma (gg) random process (RP) [22]-[24]. The N-hop AFR communication system over gg 

TI fading channels is presented in Fig. 1.  

We model TI fading signal at the output of N-hop FSO amplify-and-forward relaying AFR 

from source (S) laser to destination (D) reception apparatus through N-1 number of relays 

(R1, R2…RN-1) as the product of N i.n.i.d gg RPs multiplied by channel gain 𝐺𝑖 for each 

hop.  

 
 
 
 

𝑧𝑔𝑔,𝐴𝐹𝑅(𝑡) =∏𝐺𝑖𝑧𝑔𝑔,𝑖

𝑁

𝑖=1

(𝑡), 𝑖 = 1, 𝑁; 
 
(9) 



 

According to [48, eq. (2.55)], the gamma RP can be expressed as squared Nakagami-m RP. Thus, we express 

the gg RP as the product of two independent but not necessarily identically distributed (i.n.i.d) Nakagami-m 

squared RPs for each of N number of hops:  

 
 
 
 

𝑧𝑔𝑔,𝑜𝑢𝑡 =∏𝑧𝑔𝑔,𝑖

𝑁

𝑖=1

=∏𝑥𝑛,𝑖1
2𝑥𝑛,𝑖2

2

𝑁

𝑖=1

 
 
(10) 

where the total output TI fading signal is denoted as 𝑧𝑔𝑔,𝑜𝑢𝑡. The TI fading signal at the output of i-th hop is 

denoted as 𝑧𝑔𝑔,𝑖 𝑖 = 1, 𝑁 and 𝑥𝑛,𝑖12𝑥𝑛,𝑖22, 𝑖 = 1, 𝑁 is the product of two squared Nakagami-m RPs of i-th 

hop. 

Similarly, as in [27], under the assumption that the TI fading amplitude of the product of N gg 

RPs can be estimated at reception without necessity for being estimated at the output of each hop, the 

instantaneous end-to-end SNR at the destination node can be considered as the cascaded one and can 

be modeled as the product of N i.n.i.d squared gg RPs. Accordingly, the instantaneous end-to-end 

SNR at destination node of FSO N-hop AFR system denoted as γ𝐴𝐹𝑅 is presented as in [27, eq. (27)]: 

 
 
 
 

𝛾𝐴𝐹𝑅 =
𝐸𝑠𝑦𝑚
𝑁𝑂

∏𝐺𝑖 − 1
2𝑧𝑔𝑔,𝑖

2

𝑁

𝑖=1

, 𝑖 = 1, 𝑁; 
 
(11) 

where 𝐸𝑠𝑦𝑚 presents the mean energy of the transmitted symbols and 𝑁𝑂 presents the overall noise power 

at the destination node. The G0
2 = 1 and Gi

2 𝑖 = 1, 𝑁 − 1 for the fixed gain FSO AFR links over gg TI 

fading channels are already calculated and given by [27, eq. (30)].  The PDF of Nakagami-m is given as 

[48, eq. (2.52)]: 

 
𝑝𝑥𝑛,𝑖𝑗(𝑥𝑛,𝑖𝑗) =

2(𝑚𝑖𝑗/Ω𝒊𝒋)
𝒎𝒊𝒋

𝛤(𝑚𝑖𝑗)
(𝑥𝑛,𝑖𝑗)

2𝑚𝑖𝑗−1𝑒
−
𝑚𝑖𝑗

Ω𝑖𝑗
(𝑥𝑛,𝑖𝑗)

2

, 𝑖 = 1, 𝑁; 𝑗 = 1,2; 
 

(12) 

The gg RPs for FSO transmission over strong to moderate TI fading conditions are observed for normalized 

average powers, Ω𝑖𝑗 = 1, 𝑖 = 1,𝑁; 𝑗 = 1, 2;  [22]-[24]. The large-scale cells (denoted as 𝛼𝑖) and small-

scale cells (denoted as 𝛽𝑖) related to atmospheric TI fading conditions of i-th link are [22]-[24], respectively, 

 
𝛼𝑖 = 𝑚𝑖1 = [𝑒𝑥𝑝(

0.49𝛿𝑖
2

(1 + 0.18𝑑𝑖
2 + 0.56𝛿𝑖

12/5)
7/6
) − 1]−1 

 

(13) 

 
𝛽𝑖 = 𝑚𝑖2 = [𝑒𝑥𝑝(

0.51𝛿𝑖
2(1 + 0.69𝛿𝑖

12/5)−5/6

(1 + 0.9𝑑𝑖
2 + 0.62𝑑𝑖

2𝛿𝑖
12/5)

5/6
) − 1]−1, 

 

(14) 



 

where, 𝛿𝑖
2 = 0.5𝐶𝑛𝑖

2 𝑘𝑖
7/6𝐿𝑖

11/6 is the Rytov variance and 𝑑𝑖 = √𝑘𝑖𝐷𝑖2/4𝐿𝑖 is the optical wave number of 

i-th link. Further, 𝐶𝑛𝑖
2is Refractive index, 𝑘𝑖 = 2𝜋/𝜆𝑖 is wave-number (𝜆𝑖-wavelength), 𝐷𝑖 is receiver 

aperture diameter and 𝐿𝑖 is propagation distance of i-th link. The FSO AFR system model parameters used 

throughout text are summarized in Table I. 

TABLE I.  FSO SYSTEM MODEL PARAMETERS 

System parameters Definition 

𝛼𝑖 = 𝑚𝑖1 large-scale cells related to atmospheric conditions of i-th link 

𝛽𝑖 = 𝑚𝑖2 small-scale cells related to atmospheric conditions of i-th link 

𝛿𝑖
2 Rytov variance of i-th link 

𝐶𝑛𝑖
2 Refractive index of i-th link  

(range: 10−17𝑚−2/3 to 10−13 𝑚−2/3) 
𝑘𝑖 wave-number of i-th link 

𝜆𝑖 wavelength of i-th link 

𝐷𝑖 receiver aperture diemeter of i-th link 

𝐿𝑖 optical distance of i-th link 

𝜎𝑔𝑔,𝑖
2 Gamma-gamma irradiance variance of i-th link 

𝑣0,𝑖 quasi frequency of i-th link 

𝑢𝑡𝑖 average wind speed of i-th link 
 

The FSO AFR system abbreviations used throughout the text are summarized in Table II. 

TABLE II.  FSO AFR SYSTEM ABBREVIATIONS 

Abbreviations Definition 

AFD Average fade duration 

AFR Amplify and forward relay 

AWGN Additive white Gaussian noise 

B5G Beyond 5th generation 

BER Bit error rate 

CDF Cumulative distribution function 

DFR Decode and forward relay 

FSO Free space optics 

𝑔𝑔 Gamma-gamma 

i.n.i.d independent but not necessarily identically 
distributed 

LCR Level crossing rate 



 

Abbreviations Definition 

LIF Laplace integration formula 

PDF Probability density function 

RP Random Process 

RF Radio frequency 

SIM Subcarrier intensity modulation 

SNR Signal to noise ratio 

TI  Turbulence induced  

UAV Unmanned aerial vehicle 

URLLC Ultra-reliable low-latency communications 

G Gaussian 

WCS Wireless communication systems 

5G 5th Generation 

 

 

4. PDF and CDF of N-gamma-gamma channel model 

The PDF of 𝑧𝑔𝑔,𝑜𝑢𝑡 can be obtained by solving (2N-1)-folded integral according to [48]-

[50]: 

 
𝑝𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡) = ∫ 𝑑𝑥𝑛,12

∞

0

∫ 𝑑𝑥𝑛,21

∞

0

…∫ 𝑑𝑥𝑛,𝑁1

∞

0

∫ |
𝑑𝑥𝑛,11
𝑑𝑧𝑔𝑔,𝑜𝑢𝑡

| 𝑝𝑥𝑛,11 (
𝑧𝑔𝑔,𝑜𝑢𝑡

1
2

𝑥𝑛,12𝑥𝑛,21…𝑥𝑛,𝑁1𝑥𝑛,𝑁2
)

∞

0

 

· 𝑝𝑥𝑛,12(𝑥𝑛,12)𝑝𝑥𝑛,21(𝑥𝑛,21)𝑝𝑥𝑛,22(𝑥𝑛,22)…𝑝𝑥𝑛,𝑁1(𝑥𝑛,𝑁1)𝑝𝑥𝑛,𝑁2(𝑥𝑛,𝑁2)𝑑𝑥𝑛,𝑁2 

 

 

 

(15) 

where | 𝑑𝑥𝑛,11
𝑑𝑧𝑔𝑔,𝑜𝑢𝑡

| =
1

2
𝑧𝑔𝑔,𝑜𝑢𝑡

−
1
2

𝑥𝑛,12𝑥𝑛,21𝑥𝑛,22…𝑥𝑛,𝑁1𝑥𝑛,𝑁2
. After substitutions (13) and (14) in (12), and (12) 

in (15), respectively, PDF of 𝑧𝑔𝑔,𝑜𝑢𝑡 becomes: 

 
𝑝𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡) =

22𝑁−1𝛼1
𝑎1𝛽1

𝑏1

 𝛤(𝑎1)𝛤(𝑏1)

𝛼2
𝑎2𝛽2

𝑏2

 𝛤(𝑎2)𝛤(𝑏2)
…

𝛼𝑁
𝑎𝑁𝛽𝑁

𝑏𝑁

 𝛤(𝑎𝑁)𝛤(𝑏𝑁)
𝑧𝑔𝑔,𝑜𝑢𝑡

𝛼1−1𝐼1 
 

(16) 

   where, 𝐼1 is (2N-1)-folded integral expression given as: 

 
𝐼1 = ∫ 𝑑𝑥𝑛,12

∞

0

∫ 𝑑𝑥𝑛,21

∞

0

∫ 𝑑𝑥𝑛,22

∞

0

…∫ 𝑑𝑥𝑛,𝑁1

∞

0

∫ 𝑥𝑛,12
2𝛽1−2𝛼1−1

∞

0

𝑥𝑛,21
2𝛼2−2𝛼1−1…𝑥𝑛,𝑁2

2𝛽𝑁−2𝛼1−1 

· 𝑒
−𝛼1

𝑧𝑔𝑔,𝑜𝑢𝑡
𝑥𝑛,12

2𝑥𝑛,21
2𝑥𝑛,22

2…𝑥𝑛,𝑁1
2𝑥𝑛,𝑁2

2−𝛽1𝑥𝑛,12
2−𝛼2𝑥𝑛,21

2…−𝛼𝑁𝑥𝑛,𝑁1
2−𝛽𝑁𝑥𝑛,𝑁2

2

𝑑𝑥𝑛,𝑁2 

 

 

 

(17) 



 

The evaluation of 𝐼1 by exponential LIF is provided in Appendix. The CDF of 𝑧𝑔𝑔,𝑜𝑢𝑡 is 

expressed using [48, eq. (1.41)], [51, eq. (3.381.1)], [51, eq. (8.352.1)] and [51, eq. (3.471.9)], 

respectively for the case where 𝛼1 is integer: 

 
𝐹𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡) = ∫ 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡(𝑟)𝑑𝑟

𝑧𝑔𝑔,𝑜𝑢𝑡

0

 

=
22𝑁−1𝛽1

𝑏1𝛼2
𝑎2𝛽2

𝑏2

 𝛤(𝑎1)𝛤(𝑏1)𝛤(𝑎2)𝛤(𝑏2)
…
𝛽𝑁

𝑏𝑁

 𝛤(𝑏𝑁)
(𝛼1 − 1)!(

  𝛤(𝑏1)𝛤(𝑎2)…𝛤(𝑏𝑁)

22𝑁−1𝛽1
𝑏1𝛼2

𝑎2 …𝛽𝑁
𝑏𝑁
− ∑

(𝑎1𝑧𝑔𝑔,𝑜𝑢𝑡)
𝑘

𝑘!

𝑎1−1

𝑘=0

𝐼2) 

 

 

 

(18) 

where, 𝐼2 is (2N-1)-folded integral given as: 

 
𝐼2 = ∫ 𝑑𝑥𝑛,12

∞

0

∫ 𝑑𝑥𝑛,21

∞

0

…∫ 𝑑𝑥𝑛,𝑁1

∞

0

∫ 𝑥𝑛,12
2𝛽1−2𝑘−1

∞

0

𝑥𝑛,21
2𝛼2−2𝑘−1…𝑥𝑛,𝑁2

2𝛽𝑁−2𝑘−1 

· 𝑒
−𝛼1

𝑧𝑔𝑔,𝑜𝑢𝑡
𝑥𝑛,12

2𝑥𝑛,21
2𝑥𝑛,22

2…𝑥𝑛,𝑁1
2𝑥𝑛,𝑁2

2−𝛽1𝑥𝑛,12
2−𝛼2𝑥𝑛,21

2…−𝛼𝑁𝑥𝑛,𝑁1
2−𝛽𝑁𝑥𝑛,𝑁2

2

𝑑𝑥𝑛,𝑁2 

 

 

(19) 

 

The closed form CDF of 𝑧𝑔𝑔,𝑜𝑢𝑡 can be obtained by evaluation of 𝐼2 using exponential LIF whose derivation 

is given in Appendix. 

  

5. LCR and AFD of N-gamma-gamma channel model 

The LCR for a given TI fading signal threshold 𝑧𝑡ℎ,𝑔𝑔,𝑜𝑢𝑡 can be expressed as an integral of the 

product of the first derivative of 𝑧𝑔𝑔,𝑜𝑢𝑡 denoted as 𝑧̇𝑔𝑔,𝑜𝑢𝑡 and the joint PDF of 𝑧𝑔𝑔,𝑜𝑢𝑡 and 𝑧̇𝑔𝑔,𝑜𝑢𝑡 

[48, eq. (12.25)]:  

 
𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑡ℎ,𝑔𝑔,𝑜𝑢𝑡) = ∫ 𝑧̇𝑔𝑔,𝑜𝑢𝑡

∞

0

𝑝𝑧𝑔𝑔,𝑜𝑢𝑡𝑍̇𝑔𝑔,𝑜𝑢𝑡(𝑧𝑡ℎ,𝑔𝑔,𝑜𝑢𝑡 , 𝑧̇𝑔𝑔,𝑜𝑢𝑡)𝑑𝑧̇𝑔𝑔.𝑜𝑢𝑡 
 

(20) 

where, 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡𝑍̇𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡 , 𝑧̇𝑔𝑔,𝑜𝑢𝑡) can be obtained by averaging joint PDF of i.n.i.d RPs, 

𝑧𝑔𝑔,𝑜𝑢𝑡, 𝑧̇𝑔𝑔,𝑜𝑢𝑡, 𝑥𝑛,12  … , 𝑥𝑛,𝑁1 and  𝑥𝑛,𝑁2 [19, eq. (12)]: 

 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡𝑍̇𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡 , 𝑧̇𝑔𝑔,𝑜𝑢𝑡) 

= ∫ 𝑑𝑥𝑛,12

∞

0

∫ 𝑑𝑥𝑛,21

∞

0

…∫ 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡 𝑧̇𝑔𝑔,𝑜𝑢𝑡 𝑥𝑛,12…  𝑥𝑛,𝑁2(𝑧𝑔𝑔,𝑜𝑢𝑡 𝑧̇𝑔𝑔,𝑜𝑢𝑡 𝑥𝑛,12  … 𝑥𝑛,𝑁2)
∞

0

𝑑𝑥𝑛,𝑁2 

 

(21) 

where, 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡 𝑧̇𝑔𝑔,𝑜𝑢𝑡 𝑥𝑛,12…  𝑥𝑛,𝑁2(𝑧𝑔𝑔,𝑜𝑢𝑡 𝑧̇𝑔𝑔,𝑜𝑢𝑡 𝑥𝑛,12  … 𝑥𝑛,𝑁2) can be obtained by well-

established mathematical framework based on joint and conditional PDFs [19, eq. (13)]: 

 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡 𝑧̇𝑔𝑔,𝑜𝑢𝑡 𝑥𝑛,12…  𝑥𝑛,𝑁2(𝑧𝑔𝑔,𝑜𝑢𝑡 𝑧̇𝑔𝑔,𝑜𝑢𝑡 𝑥𝑛,12  … 𝑥𝑛,𝑁2) = 𝑝𝑧̇𝑔𝑔,𝑜𝑢𝑡|𝑧𝑔𝑔,𝑜𝑢𝑡𝑥𝑛,12…  𝑥𝑛,𝑁2(𝑧̇𝑔𝑔,𝑜𝑢𝑡|𝑧𝑔𝑔,𝑜𝑢𝑡𝑥𝑛,12… 𝑥𝑛,𝑁2) 
 



 

· 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡|𝑥𝑛,12𝑥𝑛,21…  𝑥𝑛,𝑁2(𝑧𝑔𝑔,𝑜𝑢𝑡|𝑥𝑛,12𝑥𝑛,21…𝑥𝑛,𝑁2)𝑝𝑥𝑛,12(𝑥𝑛,12)𝑝𝑥𝑛,21(𝑥𝑛,21)…𝑝𝑥𝑛,𝑁2(𝑥𝑛,𝑁2) 

 

(22) 

where after simple transformations, 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡|𝑥𝑛,12𝑥𝑛,21… 𝑥𝑛,𝑁1 𝑥𝑛,𝑁2(𝑧𝑔𝑔,𝑜𝑢𝑡|𝑥𝑛,12𝑥𝑛,21…𝑥𝑛,𝑁2) is: 

 
𝑝𝑧𝑔𝑔,𝑜𝑢𝑡|𝑥𝑛,12𝑥𝑛,21… 𝑥𝑛,𝑁2(𝑧𝑔𝑔,𝑜𝑢𝑡|𝑥𝑛,12𝑥𝑛,21…𝑥𝑛,𝑁2) = |

𝑥𝑛,11
𝑑𝑧𝑔𝑔,𝑜𝑢𝑡

| 𝑝𝑥𝑛,11 (
𝑧𝑔𝑔,𝑜𝑢𝑡

1
2

𝑥𝑛,12𝑥𝑛,21𝑥𝑛,22…𝑥𝑛,𝑁2
) 

 

(23) 

After substitutions, (23) in (22), (22) in (21) and (21) in (20), respectively, the  

𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑡ℎ,𝑔𝑔,𝑜𝑢𝑡) becomes: 

 
𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑡ℎ,𝑔𝑔,𝑜𝑢𝑡) = ∫ 𝑑𝑥𝑛,12

∞

0

∫ 𝑑𝑥𝑛,21

∞

0

…∫ 𝑑𝑥𝑛,𝑁1

∞

0

∫ 𝑑𝑥𝑛,𝑁2

∞

0

|
𝑥𝑛,11

𝑑𝑧𝑔𝑔,𝑜𝑢𝑡
| 𝑝𝑥𝑛,11 (

𝑧𝑡ℎ,𝑔𝑔,𝑜𝑢𝑡
1
2

𝑥𝑛,12𝑥𝑛,21𝑥𝑛,22…𝑥𝑛,𝑁1𝑥𝑛,𝑁2
) 

· 𝑝𝑥𝑛,12(𝑥𝑛,12)𝑝𝑥𝑛,21(𝑥𝑛,21)…𝑝𝑥𝑛,𝑁2(𝑥𝑛,𝑁2)∫ 𝑧̇𝑔𝑔,𝑜𝑢𝑡

∞

0

𝑝𝑧̇𝑔𝑔,𝑜𝑢𝑡|𝑧𝑡ℎ,𝑔𝑔,𝑜𝑢𝑡𝑥𝑛,12… 𝑥𝑛,𝑁2(𝑧̇𝑔𝑔,𝑜𝑢𝑡|𝑧𝑔𝑔,𝑜𝑢𝑡𝑥𝑛,12… 𝑥𝑛,𝑁2)𝑑𝑧̇𝑔𝑔.𝑜𝑢𝑡 

 

 

 

(24) 

The integral of the product of 𝑧̇𝑔𝑔,𝑜𝑢𝑡 and conditional pdf of  𝑧̇𝑔𝑔,𝑜𝑢𝑡 is: 

 
∫ 𝑧̇𝑔𝑔,𝑜𝑢𝑡

∞

0

𝑝𝑧̇𝑔𝑔,𝑜𝑢𝑡|𝑧𝑔𝑔,𝑜𝑢𝑡𝑥𝑛,12… 𝑥𝑛,𝑁1 𝑥𝑛,𝑁2(𝑧̇𝑔𝑔,𝑜𝑢𝑡|𝑧𝑔𝑔,𝑜𝑢𝑡𝑥𝑛,12… 𝑥𝑛,𝑁2)𝑑𝑧̇𝑔𝑔,𝑜𝑢𝑡 =
1

√2𝜋
𝜎𝑧̇𝑔𝑔,𝑜𝑢𝑡 

 

(25) 

where the 𝜎𝑧̇𝑔𝑔,𝑜𝑢𝑡
2  is the variance of  𝑧̇𝑔𝑔,𝑜𝑢𝑡. Since the first derivative of zero mean Gaussian (G) RP is G RP 

and the linear transformation of the G RPs is zero mean G RP, the 𝑧̇𝑔𝑔,𝑜𝑢𝑡 is thus zero mean G RP and can be 

expressed as: 

 𝑧̇𝑔𝑔,𝑜𝑢𝑡 = 𝑧̇𝑔𝑔,1 𝑓𝑜𝑟 𝑁 = 1 

𝑧̇𝑔𝑔,𝑜𝑢𝑡 = 𝑧𝑔𝑔,2𝑧𝑔𝑔,3…𝑧𝑔𝑔,𝑁𝑧̇𝑔𝑔,1 + 𝑧𝑔𝑔,1𝑧𝑔𝑔,3…𝑧𝑔𝑔,𝑁𝑧̇𝑔𝑔,2…+ 𝑧𝑔𝑔,1𝑧𝑔𝑔,2…𝑧𝑔𝑔,𝑁−1𝑧̇𝑔𝑔,𝑁 , 𝑓𝑜𝑟 𝑁 > 1  

 

(26) 

After mathematical transformation of 𝑧𝑔𝑔,𝑖 = 𝑥𝑛,𝑖12𝑥𝑛,𝑖22, 𝑖 = 1, 𝑁, the 𝜎𝑧̇𝑔𝑔,𝑜𝑢𝑡
2  as a zero mean G RP can be 

expressed through the variances of 𝑧𝑔𝑔,1, 𝑧𝑔𝑔,2… 𝑧𝑔𝑔,𝑁, denoted as 𝜎𝑧̇𝑔𝑔,1
2 , 𝜎𝑧̇𝑔𝑔,2

2 …𝜎𝑧̇𝑔𝑔,N
2 , respectively, 

 

 𝜎𝑧̇𝑔𝑔,𝑜𝑢𝑡
2 = 𝜎𝑧̇𝑔𝑔,1

2 , 𝑓𝑜𝑟 𝑁 = 1 

𝜎𝑧̇𝑔𝑔,𝑜𝑢𝑡
2 = 𝜎𝑧̇𝑔𝑔,1

2 𝑥𝑛,21
4𝑥𝑛,22

4…𝑥𝑛,𝑁2
4 (1 +

𝑧𝑔𝑔,𝑜𝑢𝑡
2𝜎𝑍̇𝑔𝑔,2

2 /𝜎𝑍̇𝑔𝑔,1
2

𝑥𝑛,21
8𝑥𝑛,22

8𝑥𝑛,31
4𝑥𝑛,32

4…𝑥𝑛,𝑁1
4𝑥𝑛,𝑁2

4

+
𝑧𝑔𝑔,𝑜𝑢𝑡

2𝜎𝑍̇𝑔𝑔,3
2 /𝜎𝑍̇𝑔𝑔,1

2

𝑥𝑛,21
4𝑥𝑛,22

4𝑥𝑛,31
8𝑥𝑛,32

8…𝑥𝑛,𝑁1
4𝑥𝑛,𝑁2

4
…

+
𝑧𝑔𝑔,𝑜𝑢𝑡

2𝜎𝑍̇𝑔𝑔,𝑁
2 /𝜎𝑍̇𝑔𝑔,1

2

𝑥𝑛,21
4𝑥𝑛,22

4𝑥𝑛,31
4𝑥𝑛,32

4…𝑥𝑛,𝑁1
8𝑥𝑛,𝑁2

8
) , 𝑓𝑜𝑟  𝑁 > 1 

 

 

 

 

(27) 



 

Finally, by substituting (27) in (25) and then (12) and (25) in (24), we obtained (2N-1)-folded integral 

expression for LCR for a given threshold 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 over N-gg RP, given as: 

 
𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) =

22𝑁−1𝛼1
𝑎1𝛽1

𝑏1

√2𝜋 𝛤(𝑎1)𝛤(𝑏1)

𝛼2
𝑎2𝛽2

𝑏2

 𝛤(𝑎2)𝛤(𝑏2)
…

𝛼𝑁
𝑎𝑁𝛽𝑁

𝑏𝑁

 𝛤(𝑎𝑁)𝛤(𝑏𝑁)
𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡

𝛼1−1𝐼3 
 

(28) 

where, 𝐼3 is (2N-1)-folded integral expressed as: 

 
𝐼3 = ∫ 𝑑𝑥𝑛,12

∞

0

∫ 𝑑𝑥𝑛,21

∞

0

…∫ 𝑑𝑥𝑛,𝑁1

∞

0

∫ 𝜎𝑧̇𝑔𝑔,𝑜𝑢𝑡

∞

0

 

· 𝑥𝑛,12
2𝛽1−2𝛼1−1𝑥𝑛,21

2𝛼2−2𝛼1−1…𝑥𝑛,𝑁2
2𝛽𝑁−2𝛼1−1𝑒

−𝛼1
𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡

𝑥𝑛,122𝑥𝑛,212𝑥𝑛,222…𝑥𝑛,𝑁22
−𝛽1𝑥𝑛,12

2−𝛼2𝑥𝑛,21
2…−𝛼𝑁𝑥𝑛,𝑁1

2−𝛽𝑁𝑥𝑛,𝑁2
2

𝑑𝑥𝑛,𝑁2 

 

(29) 

The closed form derivation by LIF for 𝑁𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) is presented in the Appendix. We close this 

section with derivation of average fade duration (AFD) for a given TI fading threshold 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 of N-gg RP 

as: 

 

𝐴𝐹𝐷(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) =
𝐹𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡)

𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡)
=

√2𝜋(𝛼1 − 1)! (
  𝛤(𝑏1)𝛤(𝑎2)…𝛤(𝑏𝑁)

22𝑁−1𝛽1
𝑏1𝛼2

𝑎2 …𝛽𝑁
𝑏𝑁
− ∑

(𝑎1𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡)
𝑘

𝑘!
𝑎1−1
𝑘=0 𝐼2)

𝛼1
𝑎1𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡

𝛼1−1𝐼3
 

 

(30) 

where 𝐼2 and 𝐼3 are integral expressions in terms of 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡, already obtained in (19) and (29), respectively. 

Closed form mathematical development for AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) is also presented in Appendix. 

 

6. Numerical Results 

In this section we present some numerical results for second order statistics of N-hop FSO AFR 

system over gg TI fading channels.  

The N-hop FSO AFR end-to-end link is modeled with N-gg distribution, where numerical 

results are computed for various optical fading severity parameters (𝛼𝑖, 𝛽𝑖 , 𝑖 = 1,𝑁) and 

various gg irradiance variances (𝜎𝑔𝑔,𝑖2 =
1

𝛼𝑖
+

1

𝛽𝑖
+

1

𝛼𝑖𝛽𝑖
) [22]-[24]. The 𝜎𝑍̇𝑔𝑔,𝑖

2 , 𝑖 = 1,𝑁 in (27) 

are zero mean Gaussian (G) RPs assumed to take the same value, 𝜎𝑍̇𝑔𝑔
2 = 𝜎𝑍̇𝑔𝑔,𝑖

2 =

𝑣0,𝑖
2𝜋2𝜎𝑔𝑔,𝑖

2〈𝑍𝑖〉, as given in [35, eq. (13)], where we take the normalized 〈𝑍𝑖〉 = 1 for gg 

RP. Moreover, the 𝑣0,𝑖 is so called quasi frequency of the i-th link specified as the frequency 

of fades when output signal is equal to received signal light [34]-[35] and can be further 

expressed as 𝑣0,𝑖 =
1

𝜋𝜏0,𝑖√2
 [35, eq. (15)]. Furthermore, 𝜏0,𝑖 =

√𝜆𝑖𝐿𝑖

𝑢𝑡𝑖
 is turbulence correlation 

time of i-th link, where 𝜆𝑖 is optical window, 𝐿𝑖 is optical distance and 𝑢𝑡𝑖 is average wind 



 

speed of i-th FSO link [35]. 

The paper [15] provides the impact of the number of hops on second order statistics for 

weak TI fading conditions of multi-hop FSO system. In order to explore moderate and strong 

TI fading conditions we consider that all links of N-hop FSO AFR system are exposed to 

moderate (𝛼 = 𝛼𝑖 = 5.42, 𝛽 = 𝛽𝑖 = 3.8) or strong (𝛼 = 𝛼𝑖 = 4,   𝛽 = 𝛽𝑖 = 1.71) fading 

conditions. The TI fading parameters are summarized in Table III. 

TABLE III.  TI FADING PARAMETERS FOR MODERATE AND STRONG TI FADING CONDITIONS 

Turbulence 𝛼 = 𝛼𝑖 𝛽 = 𝛽𝑖 𝐶𝑛
2 = 𝐶𝑛𝑖

2 

Moderate Turbulence 5.42 3.8 3 ∙ 10−14𝑚−2/3 

Strong Turbulence 4 1.71 1 ∙ 10−13𝑚−2/3 

 

Without loss of generality, we assume the system setting parameters of each i-th link of 

N-hop FSO AFR end-to-end system (𝜆 = 𝜆𝑖 = 1550𝑛𝑚, 𝑢𝑡 =  𝑢𝑡𝑖 =
10𝑚

𝑠
, 𝐿 = 𝐿𝑖 =

1000𝑚) are as in [35].  

Fig. 2 reports the behavior of 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) in moderate and strong TI fading 

conditions for various numbers of links at the output of N-hop AFR FSO end-to-end 

communications. Comparison between LIF approximate results and results derived from 

exact analytical integral expression shows that the matching for observed system parameters 

is well achieved, especially for higher output threshold dB values. The one-hop FSO 

communications over gg RP, especially for moderate TI fading conditions provides the lowest  

𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) values for the whole range of 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡. It can be seen that by shifting 

from strong to moderate TI fading conditions, 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) decreases, as expected.  

Moreover, we observe the impact of different number of hops (for example N=1, N=2 and 

N=4) on 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡). It can be concluded that increase in number of hops leads to 

increase in 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) for the same TI fading conditions and is expected to increase 

further for higher number of hops. It is also evident that the impact of TI fading severities on 

𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) are more dominant in lower 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 dB regime while the number of 

hops are more dominant in higher 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 dB regime on 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) for the 

proposed model and for the observed system model parameters. It can be seen that in lower 

𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 dB regime, the 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) has lower values due to the increased 



 

probability of signal envelope being below 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡. It can be further noticed that at the 

value around 0~1 dB of 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡, 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) has higher values due to increased 

probability of signal envelope shifting from below to above 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 level and vice versa.  

At this point, 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) is mainly independent of TI fading conditions and the 

number or relays. Moreover, in higher 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 dB regime the 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) has again 

lower values due to the increased probability of signal envelope being above 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡.   

The behavior of AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) is shown in Fig. 3. Shifting from strong to moderate TI 

fading conditions leads to AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) decrease for lower 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 dB values while 

AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) increase for higher 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 dB values. Fig. 3 is presented from -10 dB to 

20 dB since in that range behavior of AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡)  in relation to system model parameters 

can be well observed and fitting between exact and approximative AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) can be 

determined. Below this range approximation for AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) fails to follow the behavior 

of exact AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡). One need to have in mind that moderate TI fading is assumed to be  

(𝛼 = 5, 𝛽 = 3.8) since 𝛼 must be integer in (18). Similar trend is noticeable with the increase 

of the number of hops. Namely, with increase in the number of hops, AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) 

increases for lower 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 while decreases for higher 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 values.  

It can be noticed that at the value around 0~1 dB of 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡, 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) and 

AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡)  are independent of TI fading conditions and the number of relays. 

Fig. 4 provides 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) behavior of dissimilar TI fading conditions of N-hop 

FSO AFR system. It can be seen that in the case of higher number of links, moderate TI fading 

conditions and lower N can cause 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) to decrease. 𝐴𝐹𝐷(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) in 

dissimilar TI fading conditions of N-hop FSO AFR system is presented in Fig 5. 

The 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡 versus N (number of hops) under different TI fading conditions and for 

different 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 is presented in Fig. 6. It can be noticed that increasing of observed 

𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 can decrease not only 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡 but also the impact between moderate and strong TI 

fading conditions. Moreover, the observed numerical results suggest that selection of 

adequate 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 can diminish the impact between moderate and strong TI fading 

conditions for the observed number of hops.  Fig. 7 provides the 𝐴𝐹𝐷 versus N (number of 

hops) under moderate and strong TI fading conditions and for different 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡. It can be 



 

concluded that increasing number of hops for N-hop AFR FSO communications can diminish 

the impact between moderate and strong TI fading conditions for the observed 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡.   

By comparing obtained results for 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) and 𝐴𝐹𝐷(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) with 

available results in the literature [15]-[16], [19], [31]-[35] similar behavior in relation to the 

number of hops and fading severity parameters can be noticed. Moreover, the obtained results 

in [28]-[29] indicate that higher number of hops can improve performances in terms of BER 

and Ergodic Capacity. On the other hand, the [15] shows that increase in number of hops for 

multi-hop FSO communications can provide AFD to increase for observed parameters, as has 

been shown for lower 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 values in Figure 3.  

TABLE IV.  SYSTEM PERFORMANCES EXECUTION TIME 

System Performance 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) 
Number of Relays N=1 N=2 N=4 N=1 N=2 N=4 

Execution Time in sec. (Exact) 0.328125 114.906 1180.95 0.453125 771.203 4584.36 
Execution Time in sec. (App.) 0.015625 0.018625 0.03125 0.0625 0.046875 0.28125 

 

Table IV presents execution time of exact and approximative  𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) and 

AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡)  expressions in Wolfram MATHEMATICA for the range from -20dB to 

20dB.  It can be observed, that execution time of exact expressions takes much more time than 

execution time of closed form approximative expressions. 

 

7. Conclusion 

In this paper, the second-order statistics of the N-hop FSO AFR link over gg TI fading channels 

are considered. A LIF and exponential LIF based mathematical approach have been applied for 

derivation of approximate closed-form expressions for i.) PDF, ii.) CDF, iii.) LCR and iv.) AFD. 

The CDF and AFD expressions are valid only for an integer value of α1, since those expressions 

are dependent on the finite sum expression that goes from zero to α1 − 1. Moreover, comparisons 

of exact, integral-form analytical expressions and LIF based approximated, fast-computing, closed-

form expressions of 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) and  AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) for moderate and strong TI fading 

conditions and for different number of hops are provided. The system performance improvement 

is evident by shifting from strong to moderate TI fading conditions, especially for the lower 

𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 dB values. The increasing number of relays leads to increase in 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) for 

all 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 values under the same TI fading conditions and increase in AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) for 



 

lower 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡 values under the same TI fading conditions. Thus, the number of relays can indeed 

impact the system performances in time-variant TI fading channels. One can conclude that multi-

hop FSO link design needs to take into account the number of hops on second-order statistics in 

order to achieve the best performances. Our future works are envisioned to include experimental 

and simulation verification of the results on the second order statistics on N-hop AFR FSO systems 

over gg TI fading channels. Moreover, the pointing errors and DFRs are also envisioned to be 

included in the future results. 

 

Appendix 

The system is modeled with the product of 2N random variables ∏ 𝑥𝑛,𝑖1
2𝑥𝑛,𝑖2

2, 𝑖 = 1,𝑁;𝑁
𝑖=1  

resulting in (2N-1)-folded analytical integral expressions for 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡), 𝐹𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡), 

𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) and AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡), already presented in (16), (18), (28) and (30), 

respectively. The (2N-1)-folded integrals can be solved by direct application of general LIF [19, 

eq. (I.3)], given as:  

 
∫ 𝑑𝑥𝑛,12

∞

0

∫ 𝑑𝑥𝑛,21

∞

0

…∫ 𝑑𝑥𝑛,𝑁1

∞

0

∫ 𝑓
1
(𝑥𝑛,12, 𝑥𝑛,21, … 𝑥𝑛,𝑁1, 𝑥𝑛,𝑁2)

∞

0
𝑒− 𝛾𝑓2(𝑥𝑛,12,𝑥𝑛,21,,…𝑥𝑛,𝑁1,𝑥𝑛,𝑁2)𝑑𝑥𝑛,𝑁2 

≈ (
2𝜋

𝛾
)

2𝑁−1
2 𝑓

1
(𝑥𝑛,12(0), 𝑥𝑛,21(0)… , 𝑥𝑛,𝑁2(0))

√𝑑𝑒𝑡ℎ
𝑒
−𝛾𝑓2(𝑥𝑛,12(0),𝑥𝑛,21(0),…,𝑥𝑛,𝑁2(0)) 

 

 

(31) 

where 𝑥𝑛,12(0), 𝑥𝑛,21(0)… , 𝑥𝑛,𝑁2(0) are obtain from the set of differential equations, respectively,  

 
𝜕𝑓

2
(𝑥𝑛,12(0), 𝑥𝑛,21(0)… , 𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,12(0)
= 0

𝜕𝑓
2
(𝑥𝑛,12(0), 𝑥𝑛,21(0)… , 𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,21(0)
= 0

⋮

𝜕𝑓
2
(𝑥𝑛,12(0), 𝑥𝑛,21(0)… , 𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,𝑁2(0)
= 0

}
 
 
 
 

 
 
 
 

 

 

 

 

(32) 

whereas, ℎ is Hessian matrix given as: 

 

ℎ =

|

|

|

𝜕2𝑓
2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,12(0)
2

𝜕2𝑓
2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,12(0)𝜕𝑥𝑛,21(0)
⋯

𝜕2𝑓
2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,12(0)𝜕𝑥𝑛,𝑁2(0)

𝜕2𝑓
2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,21(0)𝜕𝑥𝑛,12(0)

𝜕2𝑓
2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,21(0)
2 ⋯

𝜕2𝑓
2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,21(0)𝜕𝑥𝑛,𝑁2(0)

⋮
𝜕2𝑓

2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,𝑁2(0)𝜕𝑥𝑛,12(0)

⋮
𝜕2𝑓

2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,𝑁2(0)𝜕𝑥𝑛,21(0)
⋯

⋮
𝜕2𝑓

2
(𝑥𝑛,12(0)…𝑥𝑛,𝑁2(0))

𝜕𝑥𝑛,𝑁2(0)
2

|

|

|

 

 

 

 

(33) 



 

The complexity of LIF based mathematical approach for derivation of closed form 

analytical approximate expressions increase with the number of RPs (for instance by 

modelling N-hop AFR over gg TI fading channels as a product of 2N-Nakagami-m squared 

RPs, we need to solve (2N-1)-folded integrals for 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡), 𝐹𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡), 

𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) and AFD(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡). This can be done by using software package 

Mathematica and by applying appropriate algorithm that can be efficiently used in practice. 

Moreover, LIF based mathematical method can significantly decrease computational time if 

compared to integral form analytical expressions. 

 

Appendix A 

Closed form PDF derivation 

 

Approximate closed form 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡) is obtained from (16) by solving 𝐼1 in (17), 

using exponential LIF for the following set of functions: 

 𝛾 = 1 

𝑓1 (𝑥𝑛,12(0), 𝑥𝑛,21(0)…𝑥𝑛,𝑁2(0)) = 1 

𝑓2 (𝑥𝑛,12(0),𝑥𝑛,21(0)…𝑥𝑛,𝑁2(0)) =
𝛼1𝑧𝑔𝑔,𝑜𝑢𝑡

𝑥𝑛,12(0)2𝑥𝑛,21(0)2…𝑥𝑛,𝑁2(0)2
+ 𝛽1𝑥𝑛,12(0)

2 + 𝛼2𝑥𝑛,21(0)
2…+ 𝛽𝑁𝑥𝑛,𝑁2(0)

2 

−(2𝛽1 − 2𝛼1 − 1) 𝑙𝑛 (𝑥𝑛,12(0)) − (2𝛼2 − 2𝛼1 − 1) 𝑙𝑛 (𝑥𝑛,21(0))…− (2𝛽𝑁 − 2𝛼1 − 1) 𝑙𝑛 (𝑥𝑛,𝑁2(0)) 

 

 

 

(34) 

where 𝐼1 in (17) is expressed as a fully exponential function by applying simple 

transformation: 

 𝑥𝑛,12
2𝛽1−2𝛼1−1𝑥𝑛,21

2𝛼2−2𝛼1−1…𝑥𝑛,𝑁2
2𝛽𝑁−2𝛼1−1 = 𝑒(2𝛽1−2𝛼1−1) 𝑙𝑛(𝑥𝑛,12)+(2𝛼2−2𝛼1−1) 𝑙𝑛(𝑥𝑛,21)…+(2𝛽𝑁−2𝛼1−1) 𝑙𝑛(𝑥𝑛,𝑁2)   

(35) 

After solving (32) for the particular f2 (𝑥𝑛,12(0), 𝑥𝑛,21(0)…𝑥𝑛,𝑁2(0)) from (34) and after 

substitutions of (33) and (34) in (31), the  𝐼1 in (17) can be obtained and substituted in (16) 

for derivation of closed form expression for 𝑝𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡). 

 

Appendix B 

Closed form CDF derivation 

 



 

Similarly, approximate closed form expression for 𝐹𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡) is obtained from 

solving integral 𝐼2 in (18) and substituting in (19), using exponential LIF for the following 

arguments: 

 𝛾 = 1 

𝑓1 (𝑥𝑛,12(0), 𝑥𝑛,21(0)…𝑥𝑛,𝑁2(0)) = 1 

𝑓2 (𝑥𝑛,12(0), 𝑥𝑛,21(0)…𝑥𝑛,𝑁2(0)) =
𝛼1𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡

𝑥𝑛,12(0)
2𝑥𝑛,21(0)

2…𝑥𝑛,𝑁2(0)
2
+ 𝛽1𝑥𝑛,12(0)

2 + 𝛼2𝑥𝑛,21(0)
2…+ 𝛽𝑁𝑥𝑛,𝑁2(0)

2 

−(2𝛽1 − 2𝑘 − 1) 𝑙𝑛 (𝑥𝑛,12(0)) − (2𝛼2 − 2𝑘 − 1) 𝑙𝑛 (𝑥𝑛,21(0))…− (2𝛽𝑁 − 2𝑘 − 1) 𝑙𝑛 (𝑥𝑛,𝑁2(0)) 

 

 

 

(36) 

where we used simple transformation in (19):  

 𝑥𝑛,12
2𝛽1−2𝑘−1𝑥𝑛,21

2𝛼2−2𝑘−1…𝑥𝑛,𝑁2
2𝛽𝑁−2𝑘−1 = 𝑒(2𝛽1−2𝑘−1) 𝑙𝑛(𝑥𝑛,12)+(2𝛼2−2𝑘−1) 𝑙𝑛(𝑥𝑛,21)…+(2𝛽𝑁−2𝑘−1) 𝑙𝑛(𝑥𝑛,𝑁2)   

(37) 

After calculating (32) for f2 (𝑥𝑛,12(0), 𝑥𝑛,21(0)…𝑥𝑛,𝑁2(0)) from (36) and after some 

mathematical derivations and substitutions of (33) and (36) in (31), 𝐼2 in (19) is solved and 

substituted in (18) for derivation of closed form expression for 𝐹𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡). 

 

Appendix C 

Closed form second order statistics derivation 

 

The approximate 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) of N-gg RP is solved form (28) by applying LIF in (29) for 

the functions:  

𝛾 = 1 

𝑓1 (𝑥𝑛,12(0), 𝑥𝑛,21(0)… , 𝑥𝑛,𝑁2(0)) = 1, 𝑁 = 1 

𝑓1 (𝑥𝑛,12(0), 𝑥𝑛,21(0)… , 𝑥𝑛,𝑁2(0)) 

= (1 +
𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡

2𝜎𝑍̇𝑛,2
2 /𝜎𝑍̇𝑛,1

2

𝑥𝑛,21
8𝑥𝑛,22

8𝑥𝑛,31
4𝑥𝑛,32

4…𝑥𝑛,𝑁1
4𝑥𝑛,𝑁2

4
+

𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡
2𝜎𝑍̇𝑛,3

2 /𝜎𝑍̇𝑛,1
2

𝑥𝑛,21
4𝑥𝑛,22

4𝑥𝑛,31
8𝑥𝑛,32

8…𝑥𝑛,𝑁1
4𝑥𝑛,𝑁2

4
…

+
𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡

2𝜎𝑍̇𝑛,𝑁
2 /𝜎𝑍̇𝑛,1

2

𝑥𝑛,21
4𝑥𝑛,22

4𝑥𝑛,31
4𝑥𝑛,32

4…𝑥𝑛,𝑁1
8𝑥𝑛,𝑁2

8
)

1/2

, 𝑁 > 1 

𝑓2 (𝑥𝑛,12(0), 𝑥𝑛,21(0)…𝑥𝑛,𝑁2(0)) =
𝛼1𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡

𝑥𝑛,12(0)
2𝑥𝑛,21(0)

2…𝑥𝑛,𝑁2(0)
2
+ 𝛽1𝑥𝑛,12(0)

2 + 𝛼2𝑥𝑛,21(0)
2…+ 𝛽𝑁𝑥𝑛,𝑁2(0)

2 

−(2𝛽1 − 2𝛼1 − 1) 𝑙𝑛 (𝑥𝑛,12(0)) − (2𝛼2 − 2𝛼1 + 1) 𝑙𝑛 (𝑥𝑛,21(0))…− (2𝛽𝑁 − 2𝛼1 + 1) 𝑙𝑛 (𝑥𝑛,𝑁2(0)) 

 

 

 

 

 

 

 

(38) 



 

   where we use similar transformation in (29):  

 𝑥𝑛,12
2𝛽1−2𝛼1−1𝑥𝑛,21

2𝛼2−2𝛼1+1…𝑥𝑛,𝑁2
2𝛽𝑁−2𝛼1+1 = 𝑒(2𝛽1−2𝛼1−1) 𝑙𝑛(𝑥𝑛,12)+(2𝛼2−2𝛼1+1) 𝑙𝑛(𝑥𝑛,21)…+(2𝛽𝑁−2𝛼1+1) 𝑙𝑛(𝑥𝑛,𝑁2)  (39) 

The approximate closed form 𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) is derived from (28) by evaluating 𝐼3 in 

(29), where after calculating (32) for this particular case and after appropriate substitutions of 

(33) and (38) in (31). Finally, 𝐴𝐹𝐷(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡) is derived as approximate closed form 

expression as the ratio of approximate closed form expressions for 𝐹𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑔𝑔,𝑜𝑢𝑡) and 

𝑁𝑧𝑔𝑔,𝑜𝑢𝑡(𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡).  
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Fig. 1. Simplified model of N-hop amplify-and-forward relay (AFR) communication system over gg TI fading channels.  
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Fig. 2. LCR (s-1) versus 𝒛𝑻𝑯,𝒈𝒈,𝒐𝒖𝒕 under different TI fading conditions and for various number of hops.  
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Fig. 3. AFD (s) versus 𝒛𝑻𝑯,𝒈𝒈,𝒐𝒖𝒕 under different TI fading conditions and for various number of hops.  
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Fig. 4. LCR (s-1) versus 𝒛𝑻𝑯,𝒈𝒈,𝒐𝒖𝒕 under dissimilar TI fading conditions and for different number of hops.  
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Fig. 5. AFD (s) versus 𝒛𝑻𝑯,𝒈𝒈,𝒐𝒖𝒕 under dissimilar TI fading conditions.  
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Fig. 6. LCR (s-1) versus N under different TI fading conditions and for different 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡. 
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Fig. 7. AFD (s) versus N under different TI fading conditions and for different 𝑧𝑇𝐻,𝑔𝑔,𝑜𝑢𝑡. 

 




