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To those who sacrificed their precious time doing laundry.
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A B S T R A C T

Garments are a key element of people’s daily lives, as many
domestic tasks -such as laundry-, revolve around them. Per-
forming such tasks, generally dull and repetitive, implies de-
voting many hours of unpaid labor to them, that could be freed
through automation. But automation of such tasks has been tra-
ditionally hard due to the deformable nature of garments, that
creates additional challenges to the already existing when per-
forming object perception and manipulation. This thesis presents
a Robotic System for Garment Perception and Manipulation
that intends to address these challenges.

The laundry pipeline as defined in this work is composed
by four independent -but sequential- tasks: hanging, unfolding,
ironing and folding. The aim of this work is the automation of
this pipeline through a robotic system able to work on domestic
environments as a robot household companion.

Laundry starts by washing the garments, that then need to
be dried, frequently by hanging them. As hanging is a complex
task requiring bimanipulation skills and dexterity, a simplified
approach is followed in this work as a starting point, by using
a deep convolutional neural network and a custom synthetic
dataset to study if a robot can predict whether a garment will
hang or not when dropped over a hanger, as a first step towards
a more complex controller.

After the garment is dry, it has to be unfolded to ease recog-
nition of its garment category for the next steps. The presented
model-less unfolding method uses only color and depth infor-
mation from the garment to determine the grasp and release
points of an unfolding action, that is repeated iteratively until
the garment is fully spread.

Before storage, wrinkles have to be removed from the gar-
ment. For that purpose, a novel ironing method is proposed,
that uses a custom wrinkle descriptor to locate the most promi-
nent wrinkles and generate a suitable ironing plan. The method
does not require a precise control of the light conditions of
the scene, and is able to iron using unmodified ironing tools
through a force-feedback-based controller.

Finally, the last step is to fold the garment to store it. One
key aspect when folding is to perform the folding operation



in a precise manner, as errors will accumulate when several
folds are required. A neural folding controller is proposed that
uses visual feedback of the current garment shape, extracted
through a deep neural network trained with synthetic data, to
accurately perform a fold.

All the methods presented to solve each of the laundry pipeline
tasks have been validated experimentally on different robotic
platforms, including a full-body humanoid robot.



R E S U M E N

La ropa es un elemento clave en la vida diaria de las personas,
no sólo a la hora de vestir, sino debido también a que muchas
de las tareas domésticas que una persona debe realizar diaria-
mente, como hacer la colada, requieren interactuar con ellas.
Estas tareas, a menudo tediosas y repetitivas, obligan a inver-
tir una gran cantidad de horas de trabajo no remunerado en
su realización, las cuales podrían reducirse a través de su au-
tomatización. Sin embargo, automatizar dichas tareas ha sido
tradicionalmente un reto, debido a la naturaleza deformable de
las prendas, que supone una dificultad añadida a las ya exis-
tentes al llevar a cabo percepción y manipulación de objetos a
través de robots. Esta tesis presenta un sistema robótico orien-
tado a la percepción y manipulación de prendas, que pretende
resolver dichos retos.

La colada es una tarea doméstica compuesta de varias subta-
reas que se llevan a cabo de manera secuencial. En este trabajo,
se definen dichas subtareas como: tender, desdoblar, planchar
y doblar. El objetivo de este trabajo es automatizar estas tareas
a través de un sistema robótico capaz de trabajar en entornos
domésticos, convirtiéndose en un asistente robótico doméstico.

La colada comienza lavando las prendas, las cuales han de
ser posteriormente secadas, generalmente tendiéndolas al aire
libre, para poder realizar el resto de subtareas con ellas. Tender
la ropa es una tarea compleja, que requiere de bimanipulación
y una gran destreza al manipular la prenda. Por ello, en este
trabajo se ha optado por abordar una versión simplicada de
la tarea de tendido, como punto de partida para llevar a cabo
investigaciones más avanzadas en el futuro. A través de una red
neuronal convolucional profunda y un conjunto de datos de
entrenamiento sintéticos, se ha llevado a cabo un estudio sobre
la capacidad de predecir el resultado de dejar caer una prenda
sobre un tendedero por parte de un robot. Este estudio, que
sirve como primer paso hacia un controlador más avanzado,
ha resultado en un modelo capaz de predecir si la prenda se
quedará tendida o no a partir de una imagen de profundidad
de la misma en la posición en la que se dejará caer.

Una vez las prendas están secas, y para facilitar su recono-
cimiento por parte del robot de cara a realizar las siguientes



tareas, la prenda debe ser desdoblada. El método propuesto en
este trabajo para realizar el desdoble no requiere de un modelo
previo de la prenda, y utiliza únicamente información de pro-
fundidad y color, obtenida mediante un sensor RGB-D, para
calcular los puntos de agarre y soltado de una acción de desdo-
ble. Este proceso es iterativo, y se repite hasta que la prenda se
encuentra totalmente desdoblada.

Antes de almacenar la prenda, se deben eliminar las posibles
arrugas que hayan surgido en el proceso de lavado y secado.
Para ello, se propone un nuevo algoritmo de planchado, que
utiliza un descriptor de arrugas desarrollado en este trabajo pa-
ra localizar las arrugas más prominentes y generar un plan de
planchado acorde a las condiciones de la prenda. A diferencia
de otros métodos existentes, este método puede aplicarse en un
entorno doméstico, ya que no requiere de un contol preciso de
las condiciones de iluminación. Además, es capaz de usar las
mismas herramientas de planchado que usaría una persona sin
necesidad de realizar modificaciones a las mismas, a través de
un controlador que usa realimentación de fuerza para aplicar
una presión constante durante el planchado.

El último paso al hacer la colada es doblar la prenda para
almacenarla. Un aspecto importante al doblar prendas es ejecu-
tar cada uno de los dobleces necesarios con precisión, ya que
cada error o desfase cometido en un doblez se acumula cuan-
do la secuencia de doblado está formada por varios dobleces
consecutivos. Para llevar a cabo estos dobleces con la precisión
requerida, se propone un controlador basado en una red neuro-
nal, que utiliza realimentación visual de la forma de la prenda
durante cada operación de doblado. Esta realimentación es ob-
tenida a través de una red neuronal profunda entrenada con
un conjunto de entrenamiento sintético, que permite estimar
la forma en 3D de la parte a doblar a través de una imagen
monocular de la misma.

Todos los métodos descritos en esta tesis han sido validados
experimentalmente con éxito en diversas plataformas robóticas,
incluyendo un robot humanoide.
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I N T R O D U C T I O N





1
I N T R O D U C T I O N

This thesis presents a novel robotic system for garment percep-
tion and manipulation, including the study, development and
implementation of diverse methods for solving the different
tasks of a laundry pipeline. The first chapter serves as a nec-
essary introduction to the motivation behind this work and the
main challenges and objectives that this work will undertake.
At the same time, it will establish some important definitions
of key concepts, such as the different tasks that compose our
laundry pipeline.

1.1 motivation

People have been coexisting with daily tasks even before the ap-
pearance of the written word. Some of the tasks were directly
related with survival, such as hunting or gathering food, while
others were related to maintenance, such as cleaning or assem-
bling different kinds of tools.

As people became more and more organized, they moved
from performing most of the tasks by themselves to focusing
and specializing in a single task, causing some of these activ-
ities to become paid jobs. The continuous advance of science
and technology has allowed the progressive automation of a
number of tasks and jobs while, at the same time, has created
different kinds of new tasks and jobs.

The ultimate goal of automation has always been to reduce or
eliminate the human factor in all these required tasks, resulting
in a greater amount of free time available for people to per-
form either more useful or enjoyable tasks. Although any task
is susceptible of being automated, the main priority has been
automating tasks that meet the criteria of being dull, repetitive,
dangerous, or any combination of the three, as people tend to
avoid doing them due to boredom or safety concerns.

While a large proportion of the daily tasks available are re-
munerated (i.e. jobs), there are tasks people need to perform on
a daily basis without being paid for doing them. Paid versions
of these tasks do exist, but only when hiring other people to
eliminate the need to do them. We can find some examples of



4 introduction

unpaid maintenance tasks in domestic tasks such as cooking,
doing laundry, cleaning the house, or taking care of people. De-
spite some of them being enjoyable for some, such as cooking,
most of them lay in the category of dull and repetitive tasks
that are prone for automation. This category includes laundry
tasks, the focus of this thesis.

A vast amount of time is invested weekly on these dull and
repetitive domestic tasks but, contrary to what might be ex-
pected, most of the focus of the developments in automation
has been placed on industrial automation. The main reason be-
hind this fact is that it is much more simple to automate indus-
trial tasks than domestic tasks, as they are typically performed
in a more controlled environment with very specific conditions.
In addition, industrial tasks can usually be performed by a de-
vice independently, without collaboration with a human being,
and therefore safety is less of a concern on these systems, as
there is little to no physical interaction between human and
machine.

As quality of life and life expectancy increase, populations
are aging, and the amount of elder people is increasing accord-
ingly. This is another significant factor behind the demand for
automated solutions for this kind of tasks. In this scenario, au-
tomation not only reduces the labor costs of having to recruit
other people to do their domestic tasks, but it also allows elder
people to be and feel more independent. This is an important
factor too for younger people that, for any reason, may have
limited mobility and therefore require the assistance of other
home care workers.

Finally, and despite this work focusing on domestic applica-
tions, there is a significant portion of the industry and busi-
nesses that work with garments, textiles and other deformable
objects, so there is also a demand for automated solutions in
such scope. Although the throughput of such a system would
probably be lower, the main advantage of installing a robotic
system versus a traditional automated system is the increased
adaptability to different garments and tasks.

1.2 challenges

As mentioned in the previous section, even though there is a
clear demand for automated systems that work with garments
and other deformable objects in domestic settings, many chal-
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lenges have to be overcome to deploy such systems in a real-
world domestic environment.

The first challenge is related to the working environment in
which the robot has to be deployed. As opposed to industrial
environments, that can be controlled and set up beforehand to
fit the robot performing the objective task, domestic environ-
ments lack such predictability. In fact, domestic environments
are highly dynamic, as people inhabiting them are constantly
changing the location of many objects that serve as potential ob-
stacles from the robot perspective, and unstructured, as there is
no standard house design, so no comprehensive a priori model
of the environment can be constructed before deployment.

Domestic environments are adapted to the humans living in
them and their morphology which, in some cases, poses a chal-
lenge to some types of robots. For instance, stairways can limit
the range of motion of wheeled robots, as they cannot climb
them. Figure 1.1 shows some examples of domestic environ-
ments that are challenging for robots from a locomotion per-
spective. Not only the environment is adapted to humans, but
also the tools they use, which are typically not suited for the
most common robot types, as they lack the dexterity to hold
and handle them.

Figure 1.1: Some examples of domestic environment that present a
challenge for robot locomotion: a cluttered room (left) and
a steep stairway (right). Images by Hans Braxmeier from Pix-
abay and nikitabuida from Freepik, reproduced with permission.

The few robots currently commercially available for domes-
tic tasks suffer from all the aforementioned limitations, and are
mainly relegated to function as automated vacuum cleaners. To
address all these challenges, the author proposes the use of hu-
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manoid robots, as their human-like morphology prevents them
from suffering from these issues.

Perception of deformable objects poses another important
challenge. Computer vision techniques have improved signifi-
cantly over the last years, mainly due to advances in machine
learning techniques such as Deep Learning. Still, most tech-
niques are limited to rigid objects, and can be easily fooled
by factors related to real-world operation, such as the presence
of noise or varying light conditions. Such factors often cause
them to not be reliable enough for robotic systems requiring
continuous unsupervised operation in real-world settings.

In addition to all the well-known limitations of state of the art
computer vision algorithms applied to rigid objects, garments
are deformable, which affects their perception creating a whole
new set of challenges.

For rigid objects, their apparent shape on an image depends
only on the viewpoint or perspective from which the image is
obtained. For instance, a soda can seen from the top is observed
as a circle, but when seen from the side it is perceived as a
rectangle. In the case of garments, the apparent or perceived
shape does not only depend on the viewpoint, but also on the
configuration or state of the garment that can easily change due
to its deformability (Figure 1.2).

Figure 1.2: Garment deformability poses a challenge for its percep-
tion: although the garments on the left and right are the
same, their visual appearance is not, being much easier to
be recognized in their unfolded state (right).

On the other hand, for a given deformable object hundreds of
thousands of different states are possible. While some of them
only bring subtle changes to the object’s appearance, others can
dramatically change the observed shape of the object, hinder-



1.2 challenges 7

ing its recognition even for humans. In addition, deformability
creates the possibility of self occlusions, as not only external
objects or other clothing articles can occlude the garment, but
parts of same garment can prevent the camera to obtain a view
of certain parts of itself.

Garment deformability not only poses a challenge for its per-
ception, but it also deeply affects garment manipulation. As
garments are composed of thin layers of fabric, they require
actuators with high dexterity to be grasped correctly.

Typical operations with garments involve separating them
from other clothes or moving specific parts of the garment, such
as overlapping folds. Without a fine control of the amount of
fabric grasped, a manipulation operation can result in the move-
ment of the whole garment or even several garments instead of
the desired part. Therefore, successful garment manipulation
ideally requires either robotic hands equipped with sensors
and fine manipulation skills, or specialized tools specifically
designed to handle them correctly.

Additionally, garment deformability is also the reason gar-
ments are highly dynamic objects, causing a distinctive chaotic
behavior that results extremely difficult to predict (Figure 1.3).
In consequence, when manipulating deformable objects, it be-
comes critical to continuously track the current garment config-
uration and adapt or recompute the manipulation trajectories
in real time based on the current garment state. Precomputed
trajectories are not sufficient in the majority of the cases, as it
is highly unlikely that the simulated (or estimated) behaviors
will match completely the actual real behavior of the garment.

Figure 1.3: Garment deformability poses a challenge for its manipu-
lation, as the shape and behavior of the garment changes
dynamically as it is being manipulated.
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To place a rigid object in a certain desired pose, knowing the
target pose and interpolating between the current and target
poses is enough to compute the movement required to reach
that pose. On the other hand, the large garment configuration
space vastly increases the difficulty of matching a garment pose
with a target pose automatically, without providing a sequence
of operations to achieve that goal.

Finally, the high variability of garment configurations and
different operations that can be applied to them results in a
scarcity of quality garment datasets that can be used in a wide
range of garment-related tasks. Adding into consideration all
the aforementioned challenges related to garments increases
even more the already high costs of building a new garment
dataset with real-world data. To reduce the incurred costs -in
terms of time, labor and money- researchers typically resort to
simulation to obtain garment datasets or training data, encoun-
tering other challenges such as bridging the simulation-reality
gap.

1.3 the laundry pipeline

Throughout the literature several definitions of a laundry pipe-
line, featuring different tasks, can be found, depending on the
author. Since there is not an agreement on a standard laun-
dry pipeline, it is therefore important to define which are the
tasks that compose the laundry pipeline to be used along this
thesis before it can be further discussed. This section will de-
scribe each of the tasks composing the author’s laundry pipe-
line: hanging, unfolding, ironing, and folding, which are de-
fined as follows:

1. Hanging. The hanging task is typically performed right
after garments have been washed. Clothes need to be dry
before storage, as mold and odors may appear if clothes
are stored wet. The task is defined as taking a wet clothing
article and placing it on a rope or similar arrangement so
that it hangs and dries more easily due to the increased
surface area exposed to air and sunlight. Depending on
the initial conditions of the task, the hanging task might
require to collect the wet clothes from the washing ma-
chine, or grasp them from a pile of already-extracted gar-
ments.



1.4 objectives 9

2. Unfolding. After garments are dry, they will be either
ironed, or folded to be stored. As an intermediate step,
unfolding of the garment is performed to ease recogni-
tion of the garment category from a spread state rather
than from a randomly folded or crumbled pose, resulting
in a better performance of both later tasks.

3. Ironing. In most cases, wrinkles will appear in garments
due to internal stresses created in the garment fibers dur-
ing the washing or drying process. To remove them be-
fore storage, the garment is typically ironed, that is, heat
and pressure are applied to the spread garment with a
device called “iron” to permanently remove the existing
wrinkles.

4. Folding. Finally, the garment is folded for storage. Fold-
ing, putting the garment in a compact state, allows it to be
stored reducing the space required and the risk of perma-
nent wrinkles appearing in the garment. To facilitate the
folding process, typically a predefined folding sequence,
dependent on the garment category, is applied.

Figure 1.4 illustrates the author’s laundry pipeline. Other
tasks, such as washing the clothes, are not considered as part
of the pipeline in this thesis, as other home devices such as
washing machines already perform the task in an almost au-
tomated way. Nevertheless, this is a design decision, an other
definitions of a laundry pipeline may exist according to other
authors’ criteria.

1.4 objectives

With the challenges described in Section 1.2 in mind, this thesis
aims to address the following objectives:

• The main objective of this thesis is to advance the state of
the art in garment perception and manipulation through
methods that have a direct application on concrete tasks
belonging to the laundry pipeline introduced in Section 1.3,
such as hanging, unfolding, ironing, and folding.

• The thesis will focus on developing methods that can be
implemented in environments as close as possible to real-
world domestic environments, with few to none modifica-
tions.
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hanging unfolding ironing folding

washing

storage

laundry pipeline

Figure 1.4: The proposed laundry pipeline is composed of four tasks
that have to be performed between washing the clothes
and storing them: hanging, unfolding, ironing and fold-
ing.

• The proposed methods and techniques developed will be
subjected to experimental validation and critical review of
the results obtained to evaluate the degree of success.

Each of the tasks in the laundry pipeline, due to its dissimi-
larities with respect to the other tasks, has been associated with
its own objectives, that will be discussed in further detail in
their corresponding chapters. Still, a brief per-task overview of
these objectives is offered in the following paragraphs.

For hanging, the main objective is to achieve a first approxi-
mation to the hanging task, through a novel formulation of the
task. To achieve this objective, a synthetic dataset will be cre-
ated to study how a robotic system can predict the hangability
of a given garment when dropped over a hanger.

For unfolding, the main objective is to develop a method to
grant a robot the ability to unfold any given garment, indepen-
dently from its category or shape. For this purpose, a model-
less approach will be proposed to locate overlapping regions
from garment RGB-D data, and then determine the location of
the fold axis to remove the fold.

For ironing, the main objective is to obtain a method that al-
lows a robot to remove permanent wrinkles from a garment in
a domestic environment. To achieve this objective, a distinction
between different types of wrinkle is proposed, that serves to
define a human-inspired ironing algorithm applicable to a real-
world domestic environment. On the one hand, the algorithm
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has to be able to perform the ironing task without a precise con-
trol of the illumination or special tools. Additionally, the robot
should be able to iron the garment by exerting a precise amount
of pressure while following the computed ironing trajectory.

For folding, the main objective is to achieve a perception sys-
tem able to estimate the state of the garment during the fold-
ing task. For this purpose, and through a research stay at CTU
Prague, a knowledge transfer between both research groups
will take place. A theoretical study of existing methods, includ-
ing the destination lab’s methods will be performed. Finally, a
new method, based on an experimental simulation framework,
will be developed in collaboration with the destination lab.

In addition, this thesis will serve as a posteriori analysis of the
author’s previous publications on this line of work, including a
critical review in retrospective of strong points and weaknesses
of past individual works from a global perspective, offering
guidance and future lines of work for future research on this
topic.

Finally, an important objective of every scientific work is repli-
cability. Allowing other researchers to replicate the proposed
algorithms and methods presented in this work ensures the sci-
entific rigor of the results, fosters the study and improvement
of the proposed methods by other research groups, and enables
the comparison or benchmarking of the different methods that
can be used to solve a given task.

For this purpose, the author of the thesis has released the
code for all the published methods, which is available as a pub-
lic repository1. Complementary to the code, and as will be in-
troduced in the section explaining the methodology behind it, a
dataset [18] for training and validating the hanging model has
been released and is available online2.

1.5 document structure

This thesis is structured in a sequential manner, with an initial
introductory part followed by a description of the methods pre-
sented, and concluding with an analysis of the experimental
validation of such methods.

Although it is designed to be read sequentially, a single sec-
tion of the thesis, such a the state of the art or a specific laundry
task might be of special interest for the reader. In that case, this

1 https://github.com/roboticslab-uc3m/textiles
2 https://doi.org/10.5281/zenodo.3932102

https://github.com/roboticslab-uc3m/textiles
https://doi.org/10.5281/zenodo.3932102
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section details the structure of the document and the contents
of each of the chapters, intending to serve as a guide for the in-
terested reader to guide him/her to find the parts most relevant
to his/her particular interests.

Chapter 2 describes the state of the art in garment perception
and manipulation, describing existing techniques and methods
for working with garments while performing different tasks.

Chapter 3 includes an study of the hanging task, the first task
on the laundry pipeline, from the point of view of predicting
the behavior of a garment that is dropped over a hanger by a
robot with the purpose of hanging it.

Chapter 4 introduces a method for unfolding garments, in-
cluding the three stages that compose the method: the Garment
Segmentation Stage, the Garment Clustering Stage and the Gar-
ment Pick and Place Stage.

Chapter 5 presents a method for ironing garments in a real-
world environment with a humanoid robot, using RGB-D data
as input and force/torque feedback to perform the ironing op-
eration.

Chapter 6 proposes a garment state estimation method ap-
plied to folding garments, through the use of a neural folding
controller developed in collaboration with the Czech Technical
University of Prague.

The last part of the thesis is devoted to the experimental
validation of the work presented. Chapter 7 serves as an de-
scription of the experiments performed for each of the tasks
addressed on this thesis, as well as the results obtained.

A critical analysis of the results obtained is offered in Chap-
ter 8, along with some future lines of work based on the con-
clusions of the analysis.
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B A C K G R O U N D

The aim of this chapter is to frame the work presented in this
thesis in its context, by offering an extensive review of the sci-
entific literature on garment perception and manipulation for
different garment-related tasks. In general, the vast majority
of the literature is focused on laundry-related tasks, although
some works exist on other tasks such as bed-making [76] or
dressing assistance [104][32][17].

In addition to the tasks composing the laundry pipeline de-
fined in Section 1.3: hanging, unfolding, ironing and folding,
other additional tasks have been included in this review. As
other laundry-related tasks share certain challenges with the
tasks in our pipeline, the author believes that it is therefore use-
ful to include them in this section, as they have indirectly influ-
enced this work. The additional tasks not included in our pipe-
line that are reviewed in this chapter are: isolation (included
as part of the hanging task review in Section 2.1), as it can be
considered a prerequisite of the hanging task; and state esti-
mation (Section 2.4) and classification (Section 2.5), as both are
indirectly required for other tasks of the pipeline such as the
folding task.

Due to the task-oriented nature of this thesis, the different
techniques used to tackle the tasks that compose our laundry
pipeline have been developed sequentially over a span of sev-
eral years. For that reason, some works from other labs have
been published after the development of some of the methods
presented in this thesis, while the author was working on a
different task of the pipeline.

Even though those publications are chronologically posterior
to the work presented in this thesis, the author believes that it
is relevant to include them in the literature review of this chap-
ter, as they offer additional context to analyze what garment-
related tasks are currently being developed in other labs, and
how the work presented on this thesis affected the development
of later work published by other authors.
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2.1 hanging

After garments have been washed, the first step in the laundry
pipeline is hanging, a necessary step for drying the garments
before performing other tasks. Before the actual hanging can
take place, it is necessary to retrieve a single garment from its
initial location that, depending on the initial conditions, can be
either a washing machine, or a pile of garments. The task of
separating one clothing item from the rest of them is known as
isolation, and is depicted in Figure 2.1.

Figure 2.1: The isolation task is defined as selecting one clothing arti-
cle from a pile of garments.

When working with garments in a laundry context, it is fre-
quent to find different garments mixed and tangled together
as they are stored before washing, or after they have been ex-
tracted from the washing machine or dryer. Since they are yet
to be ironed and folded no ordered storage is required, as wrin-
kling is not an issue at this stage. But for the robotic system to
be able to work with them in an ordered way, a single clothing
article has to be isolated from the rest of the garments. Hama-
jima et al. [23] is one of the first works in the literature to note
the need for robotic systems with the ability to work with non-
rigid objects such as garments to assist people with their daily
tasks, and to propose a solution for the isolation task. The pro-
posed method uses color information to isolate garments from
a washed mass prior to unfolding.

This work is extended in a later publication [34], where in
addition to the isolation task, they offer the first approaches
to garment state modeling and unfolding. The isolation task is
solved by applying an algorithm based on simple color cluster-
ing of an input RGB image. For the unfolding task, an exten-
sive analysis of the garment dynamics and a deformation state
space taxonomy and classification is performed, resulting in a
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set of hand-crafted features and a series of steps to be applied
to the input image to successfully unfold the garment.

Although isolation is typically performed to a washed mass
of garments, it can also be applied to a pile of dry garments,
either before washing or after hanging or an electric drier has
been used to dry the garments. In this case, classification of
the garment is typically performed at the same time, as in [95],
where Willimon et al. propose a method to isolate a garment
from a pile of garments and then classify it according to its
garment category based on its appearance. Their method uses
graph-based segmentation to distinguish between the different
garments in the pile and, once a garment has been picked up,
low level image features such as silhouettes or edges to find it
in a database of known items.

Sun et al. [87] present an approach for isolating and recogniz-
ing the category of a clothing article from 2.5D features while
being robust to deformable shapes. The approach is composed
of three phases: a local feature extraction with global coding,
a global feature extraction and the actual classification. Local
feature extraction is performed by obtaining the B-Spline Patch
(BSP) and using a Locality-constrained Linear Coding (LLC) to
learn a codebook representation. Global features are a combi-
nation of Shape Index (SI) histograms, Local Binary Patterns
(LBP) histograms and Topology Spatial Distances (TSD). For
the classification, a Support Vector Machine (SVM) with Radial
Basis Function (RBF) kernels and a One-Versus-All strategy for
multiclass classification are used. The approach is evaluated on
a real robot, that is able to autonomously recognize a clothing
item from an unconstrained pile of garments. Figure 2.2 shows
the proposed three-phase system.

Isolation can be applied not only to piles of clothes, but also
to already folded garments. For instance, in [10] the task is to
pick up the topmost towel of a pile of towels, by decomposing
the task into different procedures to solve, including grasping
position detection using YOLO [72], as well as Q-learning for
learning a grasping motion and subsequent manipulation of
the garment.

Once the garment has been isolated, the hanging task can be
performed. To the best of the author’s knowledge, very few
works exist in the garment-related literature focused on the
hanging task itself. Matas et al. [59] propose an end-to-end solu-
tion based on state-of-the-art Deep Reinforcement Learning al-
gorithms such as Deep Deterministic Policy Gradient (DDPG)
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Figure 2.2: Three-phase system for isolation and recognition of gar-
ments proposed in [87]. On the top left, the different local
features used are shown. The features are input to the clas-
sification block, depicted on the right, where they are com-
bined with the global features, on the bottom left, to ob-
tain the final estimation. The figure was originally published
as Figure 2 of “Single-shot clothing category recognition in free-
configurations with application to autonomous clothes sorting.”
by Sun et al., Proc. IEEE IROS 2017 © IEEE, 2017.

and Deep Deterministic Policy Gradient from Demonstration
(DDPGfD). The control policy is learned in simulation, and
then transferred to the real world to perform simple folding
and hanging tasks with a small towel.

A related task, inserting a commercial clothes hanger, typ-
ically used to hang garments in a wardrobe, into a t-shirt is
solved by Koishihara et al. through a method based on changes
in wrinkle features and overlapping relationships between the
garment and the hanger [44].

2.2 unfolding

Garment unfolding, the second task in the laundry pipeline,
serves as an intermediate task that allows the robot to extend
the now dry clothing article to a fully-spread state to recognize
its garment category. By knowing the garment category, the
robotic system is able to later perform other tasks, such as iron-
ing or folding the garment properly for storage, in a simpler
manner.
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Osawa et al. [64] presents one of the first works in garment
unfolding, where they introduce a method to unfold and recog-
nize the garment category of a clothing article before proceed-
ing to fold it using two robot manipulators and visual feedback.
The clothing item is unfolded by applying an iterative process
of repeatedly grasping the hanging garment at the lowest point,
to increase the distance from the grasping point to the lowest
point of the next hung pose. Once the distance is maximized,
the process is completed by fully spreading the garment over a
flat surface.

Kobori et al. [42] postulate that clothes handling skills, such
as unfolding, can be described as a combination of two differ-
ent elements: clothes basic information and motion primitives.
Clothes basic information defines features or locations of the
garment, such as center, bottom, crease, etc, which are obtained
using color and depth information so that they are robust to the
variability in colors and shapes of garments. Motion primitives
are basic actions described in terms of clothes basic information,
such as grasp, slip, slide-on or drag. By defining the unfolding
task as the combination of a "pick up in the air" action, an "un-
fold in the air" action and a "spread on a table" action they are
able to successfully unfold different types of garments.

A two-stage method for estimating the current state of a gar-
ment is introduced by Kita et al. [39]. In the first stage, a set
of candidate 3D shapes are obtained via deformable object sim-
ulation of a certain garment category being held by different
points of the garment outline, and recorded. Then, in a second
stage, an observation of the garment obtained by a trinocular
stereo camera system is compared with the recorded shapes,
which are further deformed to try to match the observation.
The shape with the closest match represents the observed gar-
ment’s current state.

Based on the previous deformable model, they developed a
three-stage strategy to grasp the garment from a desired point
while holding it with the other hand using a dual-arm hu-
manoid robot [38]. First, the previous model is used to deter-
mine the garment state. Then, based on the estimated state, the
optimal position and orientation of the robot gripper is com-
puted through the use of a set of heuristics. Finally, due to the
limited motion range of the dual arms, a correction stage is per-
formed to modify the position and orientation of the gripper to
be in the working range of the robot.



18 background

Another work published by the same authors [40] proposes a
method to aid visual recognition of the garment category by ac-
tively handling clothing articles so that the current observable
shape of the article is more informative of the garment category.
Actions, including rotating and spreading the clothing item are
automatically planned based on the current observed shape us-
ing geometrical methods, and performed by a dual-arm manip-
ulator robot in mid-air.

The aforementioned methods are later integrated into a pro-
cedure to recognize the garment category and shape by means
of strategic observation of the garment while being actively
manipulated to enhance recognition [41]. Figure 2.3 shows an
overview of the system. The previous work is extented in a re-
cent work by integrating 3D data from multiple views of the
hanging garment, to solve problems arising from self-occlusion
when using a single-view [37].

Figure 2.3: Model-driven strategy of clothes recognition for automatic
handling introduced in [41]. A basic grasping action is
performed, and the garment reconstruction obtained is
matched with different candidate shapes generated from a
simulated deformable model. The figure was originally pub-
lished as Figure 3a of “Clothes handling based on recognition
by strategic observation” by Kita et al., Proc. IEEE Humanoids
2011 © IEEE, 2011.

Willimon et al. [96] propose an algorithm to unfold a piece
of cloth of simple geometry (e.g. a towel) using interactive per-
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ception, by pulling the garment in different directions from dif-
ferent points until the cloth is fully spread. Their algorithm is
performed in two phases: first, wrinkles and folds are initially
removed without depth information, by pulling individual cor-
ners of the cloth counter-clockwise in 45 degrees increments. In
the second phase, depth information is used to locate folds and
to find candidate grasp points and directions to remove them.

Yamakazi [101] presents a method to find the most suitable
grasping points on the hem of the garment that allow a dual-
arm robot to directly extend it from an initial random crumpled
state to a fully-spread state, based on depth data obtained from
a fixed camera. In a later work [102] the same result is achieved,
but using a Convolutional Neural Network to extract a feature
vector that is employed both for classification and to obtain the
most suitable grasping points as image coordinates.

Li et al. [51] introduces a method to perform garment un-
folding and classification from an initial unknown state by per-
forming iterative regrasping of the garment. Simulated thin
shell models are used to create a database of different garment
poses, that is later utilized to determine the current garment
pose from a 3D reconstruction of the real garment. To find the
regrasping point, a two-stage energy-based deformable object
registration algorithm that aims to minimize energy differences
between the source (simulated) and target mesh models is used.
This process is repeated iteratively until there is an agreement
between the predicted thin shell model and the mesh recon-
structed from the garment observations.

Unfolding was one on the main tasks address by the Euro-
pean FP7 research project CloPeMA (Clothes Perception and
Manipulation). As part of the CloPeMa project, Doumanoglou
et al. [13] introduced Active Random Forests, a method that
uses Random Forests to aid the selection of actions that allow
the robot to obtain new views of an object to disambiguate its
state, and apply it to the problem of garment category classi-
fication, key point detection and pose estimation for 4 types
of garments. Figure 2.4 graphically depicts the Active Random
Forest inference procedure.

This work is later extended to unfold garments in mid-air in
[14], where they propose a method for both clothes unfolding
and classification using a dual-arm robot based on industrial
manipulators and a dual DSLR stereo system. Garment unfold-
ing is performed in mid-air, starting from a random grasping
point, and using Hough Forest for estimating the grap point
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Figure 2.4: Active Random Forests (ARF) Inference procedure pre-
sented in [13]. From an arbitrary initial viewpoint
Vcurrent the ARF can determine either the gament state
and category or the next action needed to disamibiguate
its state. The figure was originally published as Figure 5 of

“Active Random Forests: An Application to Autonomous Un-
folding of Clothes” by Doumanoglou et al., Proc. ECCV 2014
© Doumanoglou et al., 2014.

locations. Garment classification is based on a data-driven Ran-
dom Decision Forest built from depth images. Both methods
are implemented into a Partially-Observable Markov Decision
Process (POMDP) framework that allows the robot to interact
with the garments in an optimal way, by taking into account the
uncertainties of the recognition and point estimation processes.

Another method developed in the context of the CloPeMa
project is presented by Triantafyllou et al. [90], proposing an
approach to unfold garments in mid-air with a dual-arm in-
dustrial manipulator robot, based on the observation that most
garments can be brought to an unfolded configuration when
held from two points belonging to the garment outline. To per-
form this gravity-based unfolding, they propose a geometric
approach based on an analysis of the different types of edges
detected in the hanging garment from RGB-D images.

Later work from the same authors [89] focuses on upper layer
extraction of a garment after it has been laid in a planar half-
folded state over a working surface, as part of a garment unfold-
ing pipeline. The upper layer is detected from a depth image,
through a depth first algorithm and a simple perceptron ap-
plied on a simplified action space based on the edges detected
on the garment input image. The algorithm does not require
a previous model or template of the garment, and works with
irregular shapes as well.
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In a similar work, but posterior to the presented in this the-
sis, Stria et al. [80] propose a model-free approach to unfolding
garments based on the use of depth data to detect the overlap-
ping upper layer of a clothing item. The garment depth data
is segmented from the background using a color-based Gaus-
sian Mixture Model (GMM) and then a labeling algorithm is
applied to the segmented depth data based on an energy min-
imization framework that assigns different pixels to different
layers with different associated potentials and then performs
energy minimization based on those potentials. Finally, the fold
axis is estimated by a virtual reflection of the folded patch over
the different candidates, selecting the one resulting in a shortest
unfolded contour.

In a recent work, Jia et al. [31] approach the unfolding task
too, by selecting the optimal control action for the unfolding
manipulation operation using a Random-forest-based controller,
using the observed visual features as input. The random forest
is constructed using imitation learning with two substeps: sam-
pling the online dataset and optimizing the controller. The on-
line dataset is constructed by extracting the HOW (Histogram
of Oriented Wrinkles) features of the aligned raw RGB image,
which is then paired with the action(s) that resulted in that ob-
servation. The method is applied to different cloth-related tasks,
such as flattening, folding and twisting.

2.3 ironing

Before the garments can be folded and stored, possible wrin-
kles created during the washing and drying processes have to
be removed. Otherwise, storing an already wrinkled garment
will cause the existing wrinkles more be prominent. Different
kinds of wrinkles require different techniques to remove them.
Large soft wrinkles can be removed by pulling the garment, in
a process called flattening.

Sun et al. [83] present a method to flatten wrinkled garments
by iteratively pulling the garment, determining the most suit-
able action point, and force amount and direction to perform
the pulling operation. A heuristic-based strategy is applied based
on the wrinkles detected from the robot vision system, and a
simulator is used to close the interaction loop between the robot
end-effector, the garment and the visual feedback obtained by
the robot.
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In a later work, they propose a system [84] to flatten a piece
of clothing based on an dual-arm industrial manipulator robot
able to capture high-resolution RGB-D images though a DSLR-
camera based stereo vision sensor. The high resolution depth
image obtained from the robot is B-spline smoothed to act as a
low-pass filter and remove high frequency noise on the cloth re-
construction. Then, a shape and topology analysis based on the
shape index [43] is used to locate and characterize the wrinkles.
Wrinkle candidates are then analyzed using different quantifi-
cation metrics to select the most significant ones, which are
then used to plan a dual-arm manipulation sequence to flat-
ten the cloth. The complete multi-stage pipeline is depicted in
Figure 2.5.

Figure 2.5: Multi-stage pipeline for flattening garments introduced in
[84]. Stages 0 and 1 obtain the 2.5D data used by state 2

to locate the wrinkles, which are then flattened in stage
3. The figure was originally published as Figure 2 of “Accurate
Garment Surface Analysis using an Active Stereo Robot Head
with Application to Dual-Arm Flattening” by Sun et al., Proc.
IEEE ICRA 2015 © IEEE, 2015.

The previous system is extended in a later work [85], in
which the wrinkle information obtained is used to compute the
forces required to flatten the cloth, as well as their directions
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and gripper contact locations through a heuristic-based strat-
egy and a greedy algorithm that iteratively selects the largest
detected wrinkle.

On the other hand, as it will be further discussed in the
corresponding ironing chapter (Chapter 5), permanent marked
creases cannot be eliminated through flattening, and they must
be ironed to be removed. In order to be ironed, the garment is
usually placed (inserted) on an ironing board.

Twardon and Ritter introduce a method [92] to identify bound-
ary components using interactive perception to be able to put
a hat on a hat-stand, which could be modified to be applied to
garment placement on the ironing board prior to ironing. The
approach is based on the extraction of closed contours from a
depth image, from which boundary components are detected
by a graph-based search. After the boundary components have
been detected, a heuristic energy function is minimized to find
a suitable grasp pose to hold the garment by the boundary com-
ponent.

Once the garment has been set on the ironing board, the ac-
tual ironing can be performed. One of the first works on robot
ironing is one published by Khatib et al. [35], where they pro-
pose the use of a mobile manipulator for different types of do-
mestic tasks - including ironing. A few years later, the EPSRC
grant “A Feasibility Study into Robotic Ironing” resulted in a
number of theoretical analysis, such as a study on algorithms
for folding and unfolding garments as well as contemporary
robotic gripper solutions that could be of aid during the iron-
ing task [8] and a mathematical model of an ironing path de-
rived from a protractor-and-tracing-paper tracking of a human
demonstration [9]. Kormushev et al. [45] incorporated an ac-
tual physical robot with force feedback to the robotic ironing
process. Ironing paths were learned from user demonstrations
by kinesthetic teaching (Figure 2.6), and force profiles were ex-
tracted from demonstrations via a haptic device.

The most similar work to the one presented in this thesis is
the method introduced by Li et al. [52] in which they propose
a method to iron a piece of cloth based on the fusion of two
modalities of data. Low resolution depth data, which they call
“curvature scan”, is obtained through a 3D reconstruction ob-
tained from a standard RGB-D sensor. This kind of data is used
to identity large soft wrinkles, named “height bumps” in their
nomenclature, which are not marked and can therefore be re-
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Figure 2.6: Kinesthetic teaching of the positional profile for the iron-
ing task, introduced in [45]. The figure was originally pub-
lished as Figure 8a of “Imitation Learning of Positional and
Force Skills Demonstrated via Kinesthetic Teaching and Hap-
tic Input” by Kormushev et al., Advanced Robotics © Taylor &
Francis, 2011.

moved by pulling the garment, and it is obtained through a
volumetric analysis of the 3D reconstruction.

High resolution data, called “discontinuity scan”, is extracted
from a pair of RGB images captured under different illumi-
nation conditions. The high resolution data represent marked
creases, named “permanent wrinkles” in their nomenclature,
is obtained by using a Lambertian reflectance model [63] on
a pair of images captured under controlled illumination con-
ditions. More precisely, the indoor lights have to be turned off,
and two external light sources, calibrated with the current cloth
in a completely ironed state, have to be alternatively activated
to light the cloth from different directions, which is one of the
main limitations preventing this work to be used in a real-world
scenario outside the lab. Once located, marked creases are re-
moved by static or dynamic ironing using a combination of
position control in the robot and the use of a foam under the
cloth as a source of passive compliance. Figure 2.7 shows the
experimental setup required for this method.

Finally, we note that, for a machine learning-driven approach
to ironing, wrinkle simulation might be useful to obtain syn-
thetic data to speed up data gathering. A novel method for
wrinkle simulation is prosposed in recent work by Chen et al.



2.4 garment state estimation 25

Figure 2.7: Experimental setup of the ironing method presented in
[52], including the set of external lamps required for the
curvature scan and the green foam required for passive
compliance. The figure was originally published as Figure 8a
of “Multi-Sensor Surface Analysis for Robotic Ironing” by Li et
al., Proc. IEEE ICRA 2016 © IEEE, 2016.

[5]. Their method, called mesh superresolution, enhances a low-
resolution cloth mesh with high resolution wrinkles though
a Convolutional Neural Network, resulting in a 24x speedup
compared with a traditional simulation of a mesh of the same
size. To be able to use traditional (2D) Convolutional Neural
Networks, the cloth mesh is converted to an image by uni-
formly sampling the mesh and recording the baryocentric co-
ordinates of the triangle where each sample is located as the R,
G, and B components of an image.

2.4 garment state estimation

For a large proportion of the garment-related tasks, having in-
formation about the full garment state increases the probabil-
ities of success. Many tasks can benefit from state estimation
(Figure 2.8), ranging from classification and folding, to sock
pairing [94]. For that reason, many of the literature methods
perform some kind of garment state estimation either before or
during the performance of the main task. As garments are de-
formable objects, the location of the garment (over a flat surface,
hanging on a rope, etc) greatly influences the current garment
state.

Li et al. [48] present an approach to obtain the garment cat-
egory and current pose of a deformable object for later classi-
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Figure 2.8: The aim of the state estimation task is to obtain an internal
representation of the current shape and/or pose of a given
garment.

fication from a set of depth images. The core of the approach
is the use of sparse coding and dictionary learning to build a
codebook from a set of offline simulated garments in different
poses. The system is built from two layers: it first determines
the garment category of a given garment, and then estimates
the current pose from a set of predefined poses for that gar-
ment category.

An alternative approach is offered by the same authors in
a later work [49] where they present another method to per-
form joint garment state estimation and classification. Binary
3D features inspired by 3D Shape Context [20], but replacing
the spherical coordinate system with a cylindrical coordinate
system, are used to build a database with features obtained
from simulated garments hanging from different grasp points.
The same features can be computed from a 3D reconstruction
of the real garment obtained through volumetric fusion of sev-
eral RGB-D images, and then used to search the most similar
category and pose in the database.

Garment state estimation techniques can also be applied to
obtain a non-rigid 3D scan of a deformable object. Willimon
et al. [98] estimate the current garment state from an RGB-D
image using an energy minimization-based method, by com-
puting SURF features, depth, and boundary information, and
then applying a 3D nonlinear energy minimization framework.

This work is improved in a later work, where they present
a method to perform state estimation on a deformable object
from a video sequence of the object being manipulated, using
energy minimization and graph cuts [97]. As a consequence,
feature correspondence or texture information is no longer nec-
essary to be present in the input video sequence. The method
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Figure 2.9: Performing state estimation on a deformable object from
a video sequence [98]. On the left, the estimated garment
state is superimposed to the source video frame. On the
right, the same estimation is show from a 45◦ angle. The
figure was originally published as Figure 6d of “An Energy
Minimization Approach to 3D Non-Rigid Deformable Surface
Estimation Using RGBD Data” by Willimon et al., Proc. IEEE
IROS 2012 © IEEE, 2012.

is able to generate the corresponding mesh automatically and
handle in-plane rotation by re-initializing the mesh after data
has been lost in the image sequence.

Garments are not the only kind of deformable objects where
state estimation techniques can be applied, as show by Petit et
al. in a work focused on pizza manipulation [66]. Their method
tracks a 3D textureless object which undergoes elastic deforma-
tions, using the point cloud data provided by an RGB-D sensor
and in real-time. The point cloud obtained via visual perception
is first fit in a rigid manner and then non-rigidly by modeling
elasticity though a FEM simulation.

Recent work shows that non-rigid 3D scanning is possible
even from a single image: Pumarola et al. present a method to
predict a mesh representing the 3D shape of a patch of a de-
formable object surface from a single view [69]. Their Convolu-
tional Neural Network-based approach uses different branches
that perform 2D detection of the mesh and estimation of a 3D
shape consistent with image, respectively. They train the archi-
tecture in an end-to-end manner using synthetic data simulated
under different conditions in terms of light, deformation, mate-
rials, etc.

Visual shape servoing of the garment to be manipulated is
another possible application of garment state estimation. Han
et al. [24] introduce a method to estimate the shape of a de-
formable object from a RGB-D image sequence using Signed
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Distance Functions (SDFs), to use it in the feedback loop of a
manipulation controller.

Hu et al. [28] presents a data-driven controller to perform
visual servoing tasks with deformable objects, which allows a
robotic system to manipulate them to change their position and
shape. The controller is based on a fully-connected deep neu-
ral network that is used to map the end-effector’s movement
and the object’s deformation, and it is trained using an online
learning strategy. As input, a novel feature is extracted from
an RGB-D image using Fast Point Feature Histograms (FPFH)
[74] extended with a Principal Component Analysis (PCA). In
addition, this work also introduces an occlusion recovery algo-
rithm able to reconstruct the whole deformable object from an
incomplete input point cloud.

The same authors present a similar approach for visual ser-
voing of deformable objects with unknown deformation param-
eters, but using Gaussian Processes (GPs), in a different work
[27]. The alternative method uses a modified Gaussian Process
Regression (GPR) to learn a mapping between the movement
of the robot’s end-effector and the deformation measured in
the object. To reduce the high computational cost of GPR when
working with long manipulation sequences, they select and re-
move uninformative observation data from the regression pro-
cess.

2.5 classification

Before a garment can be folded, it is typically required to know
what garment category the clothing article belongs to, as dif-
ferent types of garments have different folding sequences. This
task is known as classification (Figure 2.10) and it is closely re-
lated to state estimation, as the garment state space depends on
the garment category and exact shape.

For classification, some approaches can be applied directly
to the crumpled clothing item, such as [103], where they intro-
duce a method to classify garments directly from an image of
the garment in a crumpled or wrinkled state. A set of features
invariant to translation, rotation, and scale are engineered by
hand from a set of Gabor filters applied to the input image, and
then used to match the input images with images in a garment
database.

Other approaches, such as Kita et al. [36] propose a system
to recognize the garment category directly from a hanging gar-
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Figure 2.10: The classification task is defined as obtaining the gar-
ment category of a given piece of clothing.

ment by virtually flattening the garment using the geodesic dis-
tance over the surface of a 3D reconstruction of the hanging
garment. Geodesic lines are computed from the 3D point cloud
using the boundary points of the observed region as start and
end points, by an interpolation of the depth and normal direc-
tion at any point of the surface using the element-free Galerkin
method and a numerical solution based on a zero-length spring
analogy. A later work [37] extends the previous method by inte-
grating 3D data from multiple views of the hanging garment, to
solve problems arising from self-occlusion when using a single-
view.

Some methods require the garment to be placed over a flat
surface for classification, such as GarmNet [22], a two-level
model based on Deep Neural Networks. The global level, based
on a retrained 50-layer Resnet [25] originally trained on Ima-
geNet [11], is used to locate the garment whereas the low level,
based on Convolutional Neural Networks, finds landmarks to
locate future grasping candidate regions.

An alternative approach is to pick up the garment to per-
form classification in mid-air. For instance, Mariolis et al. [54]
perform recognition and pose estimation of a garment that has
been grasped and is hanging from a single point. The camera
system acquires a depth image of the garment from a point of
view, although if needed it can integrate several views with a
majority voting scheme. The method is based on a 2-layer hier-
archy of Deep Convolutional Neural Networks (CNN), where
the first one classifies the garment from the raw depth images
into one of the three predefined categories: shirt, pants or towel.
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For each of the categories, a second CNN estimates the current
garment pose. The method has been validated on a custom two-
arm industrial manipulator. Figure 2.11 shows the proposed hi-
erarchical system.

Figure 2.11: Hierarchical system for estimation of garment category
and pose proposed in [54]. The garment category is esti-
mated in the first layer, and then the corresponding CNN
of layer 2 is selected for pose estimation. “Pose and Cate-
gory Recognition of Highly Deformable Objects Using Deep
Learning” by Mariolis et al., Proc. IEEE ICAR 2015 © IEEE,
2015.

Another approach where Deep Learning is used is [21], where
they present an approach to garment category classification
from a hanging grasped state based on the use of a Convo-
lutional Neural Network. The input of the network is a single
view of the garment as a 240x240 pixels depth image, and the
system is able to determine the garment category from 5 differ-
ent classes, including shirt, trousers, polo, towel or no garment.
If the current view is not enough to recognize the garment cat-
egory, the robot can rotate the clothing article to obtain a differ-
ent view with larger prediction confidence.

Manipulation of the clothing article can be employed to inter-
act with the garment in a similar manner a human would do
to find good views of the garment and recognize it. In addition
to the Active Random Forests [13][14] mentioned in the unfold-
ing section, other works [86] propose an interactive approach
to clothes classification for highly wrinkled clothes using multi-
class Gaussian Processes (GP), where the robot can use actions
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such as shake or flip to improve the confidence of the recogni-
tion. They use marginal likelihood maximization for GP hyper-
parameter optimization, as well as the Laplace approximation
for posterior inference.

Corona et al. [6] propose a method to simultaneously recog-
nize the garment category and bring it to a known pose though
interaction. They train a hierarchy made of three levels of Con-
volutional Neural Networks. First, a CNN classifier predicts the
garment category and then the input data is passed to a second
layer where, depending on the category, it is passed to a differ-
ent CNN that predicts the first grasping point. After the first
grasp has been executed, the resulting pose is passed to the
third layer, which predicts the second grasping point required
to bring the garment to the desired pose.

Instead of a depth image, [79] propose the use of a unstruc-
tured point cloud of the hanging garment1 to classify the gar-
ment using a Convolutional Neural Network based on Point-
Net [70], using local features based on k-nearest neighbors of
each point, which are later integrated into a global feature vec-
tor. The network is trained with ShapeNet [4], a large dataset
containing general 3D objects.

In recent work, Martinez et al. [56] investigate how perceiv-
ing the dynamic behavior of a garment in a continuous way as
it is being picked up improves the quality of the final classifica-
tion of the garment. For that purpose, they continuously extract
visual features from an RGB-D video stream, which are then
fused using the Locality Constrained Group Sparse Represen-
tation (LGSR) algorithm. For training, they prepared a database
with annotated videos of 150 picking actions.

2.6 folding

The last stage of the laundry pipeline is folding, a task required
to store garments in a compact way that reduces the chances of
producing additional wrinkles during storage. Folding is a very
active topic within the deformable object research community,
and there is a vast collection of works in the literature approach-
ing the folding task.

Some of the methods take advantage of state estimation tech-
niques to model the garment pose and the manipulation se-
quence required to successfully fold a clothing article. The UC

1 Obtained using a modified version of Kinfu: github.com/Nerei/kinfu_

remake

github.com/Nerei/kinfu_remake
github.com/Nerei/kinfu_remake
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Berkeley Robot Learning Lab published some of the early works
on robot folding, starting with a method for folding where a
grasp point detection algorithm is used to detect corners of a
piece of cloth [53]. The method is robust against changes in pat-
terns or textures present in the cloth, as it uses only geometric
cues.

The previous work was later extended by Miller et al. [60],
incorporating the use of a parameterized shape model to rec-
ognize the configuration of garments already spread out on a
flat surface. For each clothing category, a parameterized shape
model is created, and the intra-class variation in each garment
category is achieved by modifying the values of the different
parameters in the model. The different models are fit from an
image of the garment using an energy-based optimization pro-
cess to match the contour of the observed garment with the
contour of the parameterized shape model, that acts as a tem-
plate. The method is able to track the state of the garment even
when folds are introduced, and therefore serves to close the
perception loop during the folding sequence.

A different approach by the same lab utilizes a Hidden Markov
Model (HMM) [7] to enable a PR2 robot to bring a clothing ar-
ticle into a target configuration from any given state, by per-
forming a sequence of manipulations and observations. At the
end of the sequence the article is in a known state, although it
might not be the target configuration. This sequence is depicted
in Figure 2.12. After the first sequence, a second one is planned
to bring the article into the desired configuration. A simulation
with a simplified FEM model is used to train both the HMM
transition and observation models.

The aforementioned work was combined with work from
Van der Berg et al. [93] presenting the concept of gravity fold-
ing, a cloth model that allows a robot to work with garments
laying on a flat table based purely on geometry rather than
taking into account the dynamics of the garment. The concept
of g-fold is then introduced, as a fold helped by gravity and
achievable while in a certain region of the garment geometric
state space. Using the gravity folding cloth model, an algorithm
is presented than, given a certain cloth geometry (i.e. category),
computes the amount of grippers needed and the movement of
the grippers to achieve a given final configuration, specified as
a sequence of g-folds. The complete framework for robotic laun-
dry folding, combining all the described techniques are tested
and evalatuated in a later work [61].
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Figure 2.12: PR2 robot performing a folding sequence using the
method presented in [7]. On the left, the initial crum-
pled state is shown. Through a sequence of manipula-
tions the robot is able to unfold the pants to a known
state (shown on the right), and the robot can then pro-
ceed to fold them. The figure was originally published as
Figures 1 and 2 of “Bringing Clothing into Desired Configu-
rations with Limited Perception” by Cusumano-Towner et al.,
Proc. IEEE ICRA 2011 © IEEE, 2011.

Bersch et al. [3] present a similar approach using a PR2 robot
to fold a clothing article starting from an initial crumpled state.
To perceive the clothing article, it combines 3D information
from a 360º stereo scan with 2D information from several views,
using fiducial markers on the clothing article to determine the
garment state. Using the information extracted with the per-
ception system, a greedy policy selects the suitable grasp pose
to grab cloth folds and bring the garment to the target folded
state.

Yanakawa et al. [100] use a high-speed dual robot hand sys-
tem with a high-speed visual feedback loop to achieve dynamic
folding of a sheet-like flexible object such as a piece of cloth.
Planning is done in simulation and then applied to the real
robot by adding a high-speed visual feedback control loop in
order to correctly grasp the cloth in real time.

This work is later improved by Bergstom et al. [2] by learn-
ing a temporal object model for deformable objects from obser-
vations. For this, shapeme histograms are extracted from the
image obtained by the robot camera and used as features to
both train and test the model. The model is based on a Hid-
den Markov Model (HMM), whose states are obtained from the
training set by building a Gaussian Mixture Model over some
of the PCA components of the set, and is able to successfully
fold the cloth in both static and dynamic conditions.
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Stria et al. [81] propose a polygonal model that describes a
garment based on the angles and relative lengths of the dif-
ferent segments that define the garment contour, as shown for
different garments in Figure 2.13. The garment is segmented
from the background using a Gaussian Mixture Model (GMM)
based on the assumption of a uniform color background. The
contour is then extracted using Moore’s algorithm for tracing 8-
connected boundary of a region, and simplified by approximat-
ing it to a polyline with dynamic programming. Once extracted,
the contour is fitted to the template for that particular garment
category through the minimization of an energy function that
encodes the dissimilarities between the model and the observed
data. This work is extended in later work [82], and integrated
in the complete folding pipeline of the CloPeMa project [15].

Figure 2.13: Polygonal models from [81] for different garment cate-
gories: towel (left), T-shirt (middle), and pants (right).
The figure was originally published as Figure 4 of “Polygo-
nal Models for Clothing” by Stria et al., Proc. TAROS 2014
© Springer, 2014.

Hou et al. [26] [107] introduce a method to obtain the cor-
responding garment category from a piece of clothing already
spread out over a flat surface prior to folding. The method uti-
lizes a particle-based polygonal model which is fitted to an im-
age of the observed garment automatically, without the need
for a manual template. The garment is aligned by hand, and
there must be contrast between the garment and the background
surface. The model is restricted to the following garment cate-
gories: towel, shirt, and trousers, each one with its own model
and parameters.

The model is further tested in a later work [106], where they
approach the folding task by fitting the particle-based polygo-
nal model to a garment laying flat on a working surface, and
then plan and execute the folding trajectory according to a pre-
defined folding sequence.
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Jia et al. [30] present a method for deformable object manip-
ulation based on a novel feature called Histogram of Oriented
Wrinkles (HOW), obtained from an RGB data stream using Ga-
bor filters. The feature serves as high-level representation of
a clothing article and its current state. A visual feedback dic-
tionary is then built from the HOW features to correlate the
features to the control instructions required, mapping the ve-
locity in the high-dimensional feature space to the velocity of
the robot end-effectors.

The previous method is improved in a later work [31] by
selecting the optimal control action for the manipulation op-
eration through a Random-forest-based controller, using the
observed visual features as input. The random forest is con-
structed using imitation learning with two substeps: it first sam-
ples the online dataset, and then optimizes the controller. The
online dataset is constructed by extracting the HOW-features
of the aligned raw RGB image, which is then paired with the
actions that resulted in that observation. The method is tested
by applying it to different cloth-related tasks, such as flattening,
folding and twisting.

In recent work, Petrik et al. focus on understanding the phys-
ical properties and state of a cloth during folding. In [67], they
focus on accurate folding of a single cloth strip by taking into
account the dynamics and behavior of the cloth though a vi-
sion feedback-based controller. The controller is trained using
reinforcement learning in a calibrated simulation matching the
real cloth strip properties. In a later work [68] they study the
effect of the static instability present in the folding process, how
it affects the folding process, and how it is required to take it
into consideration to perform a successful trajectory planning,
by analyzing different existing trajectories for folding fabrics.

State estimation oriented to folding is not limited to gar-
ments, and it can be applied to other kinds of deformable ob-
jects. For instance, Elbrechter et al. [16] present a method for
paper manipulation with anthropomorphic hands. In this work,
real-time modeling of a sheet of paper is performed with the
combination of a visual tracking of the surface of the paper
though BCH-code fiducial markers with a physical model, in-
cluding elastic bending of the sheet plus non-elastic bending
corresponding to permanent folds or crease lines. The model is
tested on a set of Shadow Dexterous Hands to perform actual
manipulation via a closed loop controller based on tactile and
visual information (Figure 2.14).
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Figure 2.14: Two Shadow Dexterous Hands folding a sheet of paper
using the method proposed in [16]. The figure was orig-
inally published as Figure 1 of “Folding Paper with Anthro-
pomorphic Robot Hands using Real-Time Physics-Based Mod-
eling” by Elbrechter et al., Proc. Humanoids 2012 © IEEE,
2012.

While most approaches to garment folding leverage the use
of a model of the garment state to obtain extra information
that simplifies the folding task, there are other approaches to
folding that aim to perform folding directly without an explicit
modeling of the garment. Kruse et al. [46] developed a vision-
force hybrid controller for a dual-arm Baxter robot to manipu-
late cloths collaboratively with a human. The visual feedback
helps the controller to overcome the deficiencies present on a
pure force-feedback controller when the cloth is slack between
the two agents performing the manipulation task, and the sys-
tem is able to apply the required tension correctly.

Li et al. [50] propose a method to obtain an optimal folding
trajectory by minimizing a quadratic objective function measur-
ing similarity between the shape of the garment in a simulation
and the shape specified by the user, which is then transferred
to the robot for execution.

Yang et al. [105] study the possible use of a robot worker in
an automated production line of garment-related manufactur-
ing by studying the folding of a deformable object as main task.
For that purpose the robot acquires some demonstrations from
a remote operator, that controls the robot via a real-time tele-
operation setup including a first-person view of the robot via
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a head-mounted display for the operator. A two-phase deep
learning model including a Deep Convolutional Autoencoder
and a Deep Time Delay Neural Network is used to learn from
the human demonstrations.

Tanaka et al. [88] propose a system for manipulation plan-
ning based on a Deep Neural Network derived from an Au-
toencoder architecture with an extra manipulation network in
between the encoder and decoder networks that represent the
transformation on the cloth state due to a manipulation action.
This Encoder-Manipulation-Decoder network is able to predict,
given a low-resolution depth input image of the cloth initial
state, and a manipulation input, the corresponding aspect of
the cloth after the manipulation operation.

Other approaches make use of reinforcement learning or sim-
ilar methods to solve the folding task, generally by learning in
a simulated environment and then transferring that acquired
knowledge to the real task. Balaguer et al. [1] combine imita-
tion and reinforcement learning to solve the folding task, us-
ing human demonstrations to reduce the search space of the
reinforcement learning algorithm so that convergence is faster
while a deformable object model is not required. Folding is per-
form through a momentum fold, a swinging motion takes ad-
vantage of the cloth dynamics.

Tsurumine et al. [91] present a folding method based on
two sample-efficient Deep Reinforcement Learning (DRL) algo-
rithms: Deep P-Network (DPN) and Dueling Deep P-Networks
(DDPN). DPN exploits the advantages of both DRL for high-
dimensional state space and Dynamic Policy Programming for
smooth policy update, resulting in a method that combines the
nature of smooth policy update with the capability of auto-
matic feature extraction of Deep Neural Networks to enhance
the sample efficiency and learning stability with fewer samples.
Policy update smoothness is promoted by limiting the relative
entropy of the Kullback-Leibler divergence between the current
and new policies.

Wu et al. [99] propose to solve manipulation of deformable
objects through model-free visual reinforcement learning. To
accelerate learning, as the place point depends heavily on the
grasp point, they propose a conditional action space, where the
output of the picking policy is used as input for the placing
policy, while learning both policies independently. For training
the placing policy, the picking policy is random. For testing, the
Maximum Value of Placing (MVP) picking policy is used. The



38 background

proposed method is trained in simulation and transferred to a
real PR2 robot to perform the actual manipulation operations.
Figure 2.15 shows the corresponding manipulation sequences
obtained with two different deformable objects by following
the learned MVP policy.

Figure 2.15: Deformable object manipulation in a simulated environ-
ment using the MVP policy [99]. Each picture represents
the state of the rope after 5 manipulation steps (top) and
the garment after 10 manipulation steps (bottom), from
the state of the previous image. The figure was originally
published as Figure 5 of “Learning to Manipulate Deformable
Objects without Demonstrations” by Wu et al., ArXiv © Wu
et al., 2019.

Jangir et al. [29] introduce a Deep Reinforcement Learning
approach to solve cloth manipulation tasks in simulated cloths,
by focusing on reaching a goal position with non-grasped points
of the cloth by learning adequate trajectories of grasped points.
Few demonstrations are required to improve control policy learn-
ing, and sparse rewards are utilized to avoid engineering com-
plex reward functions. Observations are obtained from the sim-
ulator using different state spaces depending on the task to
solve, that are then performed within the simulator.
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2.7 chapter summary

In this chapter, the literature related to garment perception and
manipulation with robotic systems has been reviewed, and the
most significant methods have been listed and described.

In addition to the tasks related to our laundry pipeline, com-
posed by the hanging, unfolding, ironing, and folding tasks,
additional tasks have been included in this review. Since these
tasks, that include isolation, state estimation and classification,
are also applied to garments, they share some challenges and
techniques with the tasks on our pipeline, and therefore they
might be of interest for the reader.
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3
H A N G I N G

This chapter describes our advances in hanging with robots, the
first task of the laundry pipeline (Figure 3.1).

hanging unfolding ironing folding

storage

washing

laundry pipeline

Figure 3.1: Hanging is the first task of the laundry pipeline.

3.1 introduction

The laundry pipeline presented in this thesis starts immediately
after a washing cycle, when garments are extracted from the
washing machine. Although the water content present in the
washed garments can be reduced through the use of a final
spin cycle, most garments will remain wet after the washing
process. When clothing articles are kept wet for an extended
period of time, odors and bacteria may develop, and therefore
there is a need for garments to be completely dry before they
can be further processed in the laundry pipeline, for instance,
to store them.

Different methods exist for drying clothes. Traditionally, cloth-
ing articles have been hanged from a clothesline to let them dry
naturally, using clothespins to hold the garments to the rope, as
seen in Figure 3.2. Hanging them increases the garment surface
in contact with the air, causing a faster evaporation of the water
present in the garment, and therefore a faster drying. Although
the process can be further improved if sunlight is cast upon the
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clothes, this drying method works even in cold environments,
where water freezes and then sublimates into water vapor. Fig-
ure 3.2 depicts a traditional clothesline.

Figure 3.2: An example of a traditional clothesline, where wet gar-
ments are hanged from a rope using clothespins to let
them dry naturally.

Washing and drying clothes are the only two laundry-related
tasks that have been successfully automated with a widely avail-
able commercial machine: the washing machine and electric
dryer, respectively. Even though in some cases using a dryer
machine is useful and convenient, hanging clothes in a tradi-
tional way has some advantages over using an electric dryer:

• Exposing garments to open air and direct sunlight en-
hances freshness and removes strong odors from them,
while disinfecting and bleaching white clothes due to the
UV radiation present in sunlight.

• Hanging garments is more gentle on clothing than the
electric dryer, reducing the stress put on cloth fibers and
avoiding some side effects of heat such as shrinking.

• As clotheslines are usually located outside the house, in
balconies and patios, they take advantage of unused space,
while freeing useful space within the house by reducing
the number of dedicated machines to be stored in the
household.
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In addition to all the aforementioned advantages, traditional
clothes hanging takes advantage of natural sources of light, re-
sulting in a more environment-friendly method compared to
using a drying machine1, specially in countries with more sun-
light hours available. All the previous reasons motivate the use
of a robotic system to hang clothes in a traditional way.

3.2 overview

The hanging task can be defined as part of a more complete
hanging pipeline in which the garment is first isolated from the
rest of the wet clothing articles, then hanged on a clothesline to
let it dry, and finally retrieved to be processed in the next task
of the laundry pipeline. Depending on the initial conditions
of the task, the garment might need to be retrieved from the
washing machine, after the washing cycle has finished, or from
a pile of wet garments that have already been collected from the
washing machine, with different challenges associated to each
of these scenarios. Figure 3.3 depicts this hanging pipeline.

Figure 3.3: Hanging pipeline. Before garments can be hanged, they
have to be isolated from the rest of the wet garments.
Once they are hanged and dry, the garments have to be
retrieved.

Even if we only focus on the actual hanging task, hanging
garments from a clothesline is a complex and challenging task
involving several motor and perceptual skills. Through a care-
ful observation of how people perform this task, several sub-
tasks can be noticed, each of them requiring different skills:

• Selecting and picking a garment from a pile. This sub-
task requires the ability to differentiate between different

1 In this case, the author assumes that the robot introduced to do the hanging
performs other tasks from the laundry pipeline.
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garments in a pile based on visual information, and to
successfully grasp the desired garment exclusively, with-
out grabbing any other clothing item from the pile. The
target clothing article must be on the surface of the pile
to be reachable by the robot. As the pile arrangement will
change after each interaction, due to the dynamic nature
of garments, for grasping subsequent clothing articles the
pile analysis and grasp computation have to be repeated
iteratively.

• Placing the garment on the clothesline. This subtask po-
tentially requires bimanipulation to keep the clothing ar-
ticle spread on the clothesline, as well as the ability to
estimate the category and current pose of the garment to
be able to bring it from the initial grasped pose to the
target spread pose.

• Holding the garment with clothespins while keeping
the garment on the clothesline. Grasping and placing
clothespins requires fine precision and dexterity in the
robot hands, and holding the garment during the clothes-
pin placement requires bimanipulation as well as a high
degree of coordination between the different actions to
perform.

Each of these subtasks is, on its own, complex enough that
a whole thesis could be devoted to each of them, a fact en-
dorsed by the lack of scientific literature on the hanging task
(see Section 2.1). Therefore, to be able to achieve a first approx-
imation to solve the problem, a simplification of the previously
described hanging task is required.

In this work, the hanging task will be defined as “dropping a
randomly grasped garment over a clothesline or similar structure in
such a way that the garment will remain hanged from that structure”.
The main aim of the new formulation is not just simplifying
the problem, but also focusing the learning process of the robot
on the understanding of the basic dynamics of clothing articles
during the hanging task.

Under this formulation, a key ability for the robot is to pre-
dict whether a garment will remain hanged when dropped over
the hanger, or will fall. The objective of this chapter is then to
design and train a model that can be used by a robot to pre-
dict the result of a given hanging action prior to releasing the
garment over the hanger. As input, the model will use a depth
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image of the scene, including both the garment and the environ-
ment. Using the predictions from this model, the robot can then
search for a valid position to release the garment, achieving a
successful hanging result.

To fulfill the proposed objective, two HangNet models have
been developed using Deep Learning techniques, each of them
focused on predicting the outcome of a hanging operation with
two different precision levels: a simple binary classification (will
hang / won’t hang), and a more precise estimation of the final
garment position in the euclidean space, both described in Sec-
tion 3.4. To train these models, a new dataset has been gener-
ated using the process described in Section 3.3.

3.3 dataset generation

To gain the ability to predict the outcome of dropping a gar-
ment over a hanger, the model has to successfully learn the
garment behavior and dynamics through several training exam-
ples of different hanging actions. Deep Neural Networks with
several hidden layers, such as the ones used in the HangNet
models, have a large amount of parameters to fit during train-
ing, providing this kind of architectures with a large capacity
to express the variety and richness of a training set.

Nonetheless, the same large capacity can also lead to a ten-
dency to overfit the training data in the presence of a small
dataset, by memorizing the training examples so that the net-
work underperforms when it encounters novel inputs. As a con-
sequence, a large amount of training data is required for this
kind of model to learn the patterns present in the training data
and generalize correctly to unseen input data.

Nowadays, training Deep Neural Networks for general tasks
such as object classification is relatively simple, as high quality
public datasets exist with thousands of already preprocessed
and labeled images. On the other hand, there is a lack of similar
datasets for robotic tasks, specially when working in niche ap-
plications such as garment-related tasks. Therefore, new datasets
need to be created, curated and tailored for these particular ap-
plications.

However, recording real robot performances to obtain train-
ing data is expensive from multiple perspectives, including eco-
nomic requirements, human labor and time spent in both su-
pervising the robot performances and processing the recorded
data. For instance, for the hanging task described in this chap-
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ter, a garment has to be grasped by the robot and taken to a
random point for each of the training examples. Then it has to
be released and the system has to be reset to the initial state
before the grasp and release sequence for the next example can
take place.

In addition, if the garment position has to be recorded during
the freefall, as in this case, an additional tracking system needs
to be installed, possibly requiring some kind of fiducial marker.
Due to the large amount of time that has to be devoted to each
individual example, compiling a dataset with tens of thousands
of training examples is unattainable unless several robots are
setup to work in parallel, which is unfeasible for the budget of
most research groups.

One possible solution to this challenge is to augment or re-
place the real data with data obtained through simulation, much
more cost-effective and faster to obtain. Simulated data has the
additional advantage of being simpler to process and label, as
the simulation conditions can be controlled, and the state of the
simulation is known and can be recorded for every simulation
step.

The main disadvantage is that, since the characteristics of
the simulated domain are very different from those of the real
world domain (no noise, no lens distortion, different illumi-
nation conditions, uniform colors...), a Deep Neural Network
trained on simulated data may not necessarily have the same
performance on the real data, a fact that has to be taken into
account with techniques such as domain randomization.

As the robotics research community is focused mostly on
working with rigid objects, robotic simulators are generally de-
signed to work only with rigid bodies, offering very limited
support for deformable objects.

The computer graphics community, on the other hand, is a
very active community in the use of cloth and soft body sim-
ulations, as realistic simulations of deformable objects are of-
ten required to create compelling computer generated pictures,
movies and video-games. Motivated by a desire to depict gar-
ments in all these digital media with increasing realism has lead
to the development of very precise cloth simulation tools in
both 3D graphics editors and game engines. Therefore it makes
sense to borrow these tools from the computer graphics com-
munity for our simulation purposes.

To generate the simulated dataset, a rough digital replica of
our laboratory environment is built in a 3D editor, including the
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garment, floor and hanger, as depicted in Figure 3.4. For this
application a hanger made with aluminum extrusion has been
built instead of a clothesline, as it is more stable and simpler to
relocate than a fixture with a rope. To simulate the garment, a
simple square cloth is used as a starting point before moving
on to more complex garment geometries.

Figure 3.4: Virtual setup for the hanging simulation.

For each of the simulated trials, the garment is placed ran-
domly in the vicinity of the topmost region of the hanger, laid
flat and fixed by a random grasp point that is selected from all
the vertices that compose the cloth mesh. The initial position of
the garment is determined for each trial by sampling its X, Y
and Z coordinates from a normal distribution with mean µ⃗init

and standard deviation σ⃗init. This distribution is kept centered
around the hanger, and close to it, to increase the chances of
having instances where the garment is randomly hanged.

As mentioned previously, the cloth starts in a flat configu-
ration, and then the physics simulation is started, causing the
garment to hang in the air due to gravity, while being held only
at the randomly selected grasping point. Once the simulation
has reached a stable enough state, a depth image of the scene
is captured, and the garment is then released, letting it fall to-
wards the floor according to the physics simulation. The cen-
ter of mass of the garment is tracked and recorded for a fixed
amount of simulation steps. After the fixed amount of steps, it
is assumed that the garment has reached a stable state, that can
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be either hanging from the hanger, or laying on the floor. The
simulation procedure is shown in Figure 3.5.

Figure 3.5: Hanging simulation procedure for training examples. A
vertex of the cloth mesh is randomly selected (left) and
the cloth simulation is run while the cloth is held by that
vertex. Once the simulation has reached an steady state
(middle), the garment is dropped on to the hanger (right),
and is run for a predetermined amount of time.

For each of the trials, the depth image of the initial state of the
working environment is recorded as input, and the trajectory of
the center of mass of the garment once it has been dropped is
recorded as the expected prediction for a single training exam-
ple. A total of 15 000 examples were simulated and recorded.
Figure 3.6 shows a random selection of training examples from
the dataset.

The training dataset [18] is publicly available, and can be
downloaded from Zenodo2. The aim of releasing the dataset
publicly is twofold. On the one hand, it serves as a training set
for the models that will be introduced in the next sections, and
therefore can be used as a means to ensure the reproducibility
of this work. By training the proposed models with the original
data and hyperparameters, its possible to replicate the results
presented in the experimental results section of this work. Ad-
ditionally, the publicly available dataset can be used as a bench-
mark to compare the performance of this method as a baseline
with other future works, fostering a healthy scientific competi-
tion that can generate better and more efficient models.

3.4 hanging prediction

To study the problem of predicting whether a garment will fall
or hang when dropped over a hanger, two different tasks (re-

2 https://doi.org/10.5281/zenodo.3932102

https://doi.org/10.5281/zenodo.3932102
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2 3 4 5 6 7 8 9 100

Figure 3.6: Random selection of training examples for hanging task.
Each of the four input examples is shown as a depth map,
whose color represents the distance from the sensor, in the
scale indicated in the figure.
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gression and classification) are defined to represent the prob-
lem from two different perspectives:

• The regression problem consists in predicting the final po-
sition of the garment at a given time step after it has been
dropped over the hanger. The position of the garment, as
in the simulation, it is tracked using the X, Y and Z coor-
dinates of the center of mass of the garment.

• The classification problem, on the other hand, aims to pre-
dict just the final state of the garment once it has been
dropped over the hanger, and classify it as hanged or not
hanged.

For each of the two problems, a specific HangNet model has
been developed. Both HangNet models are based on Deep Con-
volutional Neural Networks (CNNs). Whereas fully-connected
neural networks have all the neurons of the previous layer con-
nected to the next layer, this kind of architecture uses neurons
connections to form filter banks that are then applied to the in-
put image by convolution, obtaining several feature maps. The
filter bank of the next layer then uses the previous layer feature
maps to obtain their own feature maps containing increasingly
abstract features as depth is increased.

A 2D convolutional layer can be described by four parame-
ters: the size of the input image (N rows by M columns), the
filter size (F) and the number of filters (D), and can be expressed
as conv2d(NxM, F,D). The activation map a of a given layer l

and filter f for the pixel (x,y) can be computed as:

a
xy
lf = g(blf +

D∑
d

F−1∑
i=0

F−1∑
j=0

w
ij
lfd · a

(x+i)(y+j)
(l−1)d

) (3.1)

Where blf is the bias for the current layer and filter, d is each
of the D filters in the (l− 1)-th layer, wij

lfd is the weight value
at position (i, j) of filter d for the current layer and filter, and g

is the activation function. For both models a stride of 1 pixel is
fixed for all filters and layers. Each of the weights and biases of
the model is a trainable parameter that has to be optimized to
fit a training set, as opposed to the activations a

xy
lf , which are

intermediate variables required to compute the final output of
the network.
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Several choices exist for the activation function g(z). In both
of the HangNet models, the Exponential Linear Unit (ELU) func-
tion is used due to its ability to yield negative output values, as
opposed to other activation functions such as the Rectified Lin-
ear Unit (ReLU). The activation function ELU can be defined
as:

g(z) =

{
z z > 0

α · (ez–1) z <= 0

}
(3.2)

Where α is a hyperparameter with a default value of 1.
Due to the large dimensionality of the input image, feature

maps from early layers are typically down-sampled progres-
sively to reduce their size, while allowing for larger filter banks
at deeper layers with more abstract features. This operation is
performed in a special type of layer called max-pooling layers.
A max-pooling layer performs a sample-based discretization by
applying a max filter to subregions of the feature maps.

As with the convolutional layer, this layer can also be de-
scribed in terms of its parameters as MaxPooling(N,S), where
N is the size of the subregion (an NxN patch) and S is the
stride, which is typically selected to avoid subregion overlap-
ping (S = N).

The architecture of the HangNet models for both regression
and classification are described in the following sections.

3.4.1 HangNet Regression Model

For the regression problem, the corresponding HangNet model
is a CNN composed of 4 sets of convolutional layers, and 2

fully connected layers to compute the output. Sets 1 and 3 are
built from 2 convolutional layers with 16 filters of size (3x3)
and an Exponential Linear Unit (ELU) as the activation func-
tion, followed by a max-pooling layer of size (2x2) and stride
2. Sets 2 and 4 are composed of a single convolutional layer
with 32 filters of size (3x3) and ELU as the activation function,
followed by a max-pooling layer of size (2x2) and stride 2. The
fully connected layers have 300 and 3 neurons, respectively. For
the regression problem, we use ELU as activation function for
the last layer, representing the predicted 3D coordinates (X, Y
and Z) of the garment at a given time step. The total number
of learnable parameters of this model is 2 100 707. Figure 3.7
shows the HangNet model architecture for regression.
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Figure 3.7: HangNet Regression Model architecture diagram.

The parameters are trained by optimizing a custom loss us-
ing an Adam stochastic optimizer. As the aim of the prediction
is to hang garments, the most interesting information obtained
from the prediction is the value of the Z coordinate. To empha-
size in the importance of the Z coordinate, a custom weighted
loss function was applied:

loss = ωx · (Xgt−Xpr)
2+ωy · (Ygt− Ypr)

2+ωz · (Zgt−Zpr)
2

(3.3)

Where X⃗gt = (Xgt, Ygt,Zgt) are the ground truth coordinates
of the point in the training example, X⃗pr = (Xpr, Ypr,Zpr) are the
predicted coordinates, and ωx, ωy and ωz are hyperparameters
expressing the relative importance of each of the coordinate
components.

3.4.2 HangNet Classification Model

For the classification problem, the corresponding HangNet model
is composed of a total of 4 sets of convolutional layers, and
2 fully connected layers to compute the output. Sets 1 and 3

include 2 convolutional layers with 16 filters of size (3x3) and
ELU as the activation function, followed by a max-pooling layer
of size (2x2) and stride 2. Sets 2 and 4 are composed of a sin-
gle convolutional layer with 32 filters of size (3x3) and ELU as
the activation function, followed by a max-pooling layer of size
(2x2) and stride 2. The fully connected layers have 300 and 1

neuron, respectively.
As only one class is to be predicted, instead of a conventional

Softmax function, a Sigmoid activation function is applied to
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the output neuron to obtain the probability of the garment
falling to the floor given a certain input depth image. When the
output is above a threshold of 0.5, the prediction is that the gar-
ment will fall, otherwise the prediction is that it will hang. The
total number of trainable parameters of this model is 2 099 705.
Figure 3.8 depicts the architecture of the classification network.
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Figure 3.8: HangNet Classification Model architecture diagram.

During the simulation only the waypoints of the trajectory
of the garment’s center of mass while falling were recorded
for each time step, so the binary labels for each training sam-
ple of the classification model were obtained from the recorded
waypoints, based on the Z coordinate of the last point of the tra-
jectory (Zend). Depending on the final location of the center of
mass, and considering a threshold Tfloor, the binary label floor
is computed as:

floor =

⎧⎨⎩1, if Zend < Tfloor

0, otherwise
(3.4)

The resulting labels are used as the ground truth to train
the classification model. For training, a Binary Cross Entropy
loss is optimized by an Adam stochastic optimizer. This loss
is weighted accordingly to account for the imbalance of the
hanged/floor classes in the synthetic dataset.

3.5 chapter summary

It is important to dry garments before they can be further pro-
cessed or stored after washing, to prevent odors and bacteria.
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Hanging is a traditional method for drying clothes that has
several advantages over using a drying machine. As the typi-
cal method for hanging clothes requires complex sensorimotor
skills, a proposed simplified formulation of the hanging task
is proposed: “dropping a garment over a clothesline or similar
device so that it will stay hanged”. Under this formulation, pre-
dicting whether a garment dropped over the hanger will fall or
not becomes a key ability for the assistive robot.

To develop such ability two HangNet models are proposed,
based on Deep Convolutional Neural Networks, for two differ-
ent hanging prediction tasks: regression and classification. The
regression task consists in estimating the final position of the
garment from a depth image of the initial conditions before
dropping the garment. In a similar way, the classification task
aims to predict whether the garment will hang or fall based on
the same initial information.

In the absence of existing datasets for this task, and due to the
cost, time, and labor required to build a dataset with real world
data to train both models, a synthetic dataset was built. The
dataset was generated through cloth simulation in a 3D editor,
from which the initial depth image of the grasped garment, and
the trajectory described by the garment during its fall after it is
released were recorded for several trials.



4
U N F O L D I N G

This chapter describes our advances in unfolding with robots,
the second task of the laundry pipeline (Figure 4.1).

hanging unfolding ironing folding

washing

storage

laundry pipeline

Figure 4.1: Unfolding is the second task of the laundry pipeline.

4.1 introduction

Over the decades, people have developed various techniques to
perform the different tasks in the laundry pipeline as efficiently
as possible, sometimes resorting to specific techniques tailored
for specific garment categories. For instance, the step sequence
followed to fold a shirt is different than the one a person would
execute to fold some pants or a skirt.

As a consequence, to apply the correct technique, it is highly
useful to possess certain knowledge about the garment cate-
gory to which the technique will be applied. Highly wrinkled
and entangled garments are challenging to work with because
it is extremely hard to recognize the garment category they be-
long to, and thus, for most techniques a previous unfolding
step is required to place the garment in a fully spread configu-
ration, noticeably increasing the chances of success of posterior
steps.

Due to the complexity of bringing a clothing article to a con-
crete folded configuration stochastically, when performing cer-
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tain tasks such as folding people usually follow a sequence of
predefined steps that are known to bring the garment to a given
folded configuration. Therefore, for this kind of tasks, the gar-
ment category has to be first recognized to be able to select the
correct sequence.

On the other hand, the unfolding task only requires to bring
the garment to a fully spread configuration, which is a simpler
state to reach than folded, and thus no predefined sequence
is required. For that reason, unfolding largely benefits from a
model-less approach, in which the robot performing the task
does not require any prior knowledge of the garment category
to be able to successfully unfold it.

4.2 overview

The method presented in this chapter is a model-less approach
to unfolding that can be applied to any type of cloth or gar-
ment category to obtain a fully spread configuration. After it is
fully spread, its category can be detected and the correspond-
ing folding algorithm or ironing placement procedure can be
applied.

The method assumes that a piece of clothing has already been
picked up from a pile of garments, ideally dry, and placed flat
over some working surface. For this, the most common method
is to grasp the garment by one random point, pick it up, and
grab the lowest point with the other arm. Once these two points
are grasped, the garment can be laid flat onto the working sur-
face, with some parts potentially overlapping the garment.

The aim of the method presented in this chapter is to remove
the resulting overlapped parts to achieve a fully spread configu-
ration. As input, the method takes an RGB-D image obtained by
the robot using a stock RGB-D camera located in its head. The
output obtained is the location of the 3D points where the robot
should pick and place some garment part to put the clothing
article in a configuration closer to the fully spread one.

The method can be divided into three consecutive stages:

• First, the Garment Segmentation Stage separates the gar-
ment from the background and extracts a simplified ver-
sion of the garment contour.

• The next stage, the Garment Clustering Stage, uses the
segmentation results from the previous stage and the depth
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channel of the RGB-D image to locate the different over-
lapping regions in the garment.

• Finally, the regions are passed to the Garment Pick and
Place Points Stage, that uses them in conjunction with
the simplified garment contour to locate the fold axis and
compute the most suitable pick and place points to re-
move the overlap.

This method can be applied recursively until all the overlap-
ping regions have been spread out. Figure 4.2 depicts the com-
plete unfolding pipeline.

Figure 4.2: Unfolding pipeline. The input of the system is the RGB-
D observation of the garment, and the output are the pick
and place points for the unfolding manipulation operation.
As the pipeline is iterative, the sequence of three stages
can be repeated until the garment is fully spread.

4.3 garment segmentation stage

The objective of the Garment Segmentation Stage is to detect
what elements of the input data belong to the garment, and
which ones belong to the background, as well as to obtain a
simplified representation of the garment outer shape or con-
tour.

This objective can be achieved in different ways depending
on the input data the robot has access to and the environmental
conditions in which the robot is going to operate. It is assumed
that only one garment is present in the input image, as the
preprocessing operation described in Section 4.2 has already
been performed.

If a single RGB-D image is to be used as input for this stage
(Figure 4.3), the robot has to operate under the assumption that
garments are typically more colorful than the background sur-
rounding them, which is a reasonable assumption for most ta-
bles and other working surfaces that can be found in real do-
mestic environments.
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Figure 4.3: Garment Segmentation Stage using an RGB-D image,
shown as an RGB and a depth image, as input.

In this case, the RGB components of the input image are
converted to the HSV color space, and then the Saturation (S)
and Value (V) channels are used to select colorful pixels (high
amount of Saturation and intermediate amount of Value). To
remove possible noise present in the input image, a Gaussian
kernel is applied to the S and V channels as a noise filter, and
then the optimal values for the threshold operations are found
using Otsu’s threshold selection method [65].

Once each of the channels has been thresholded, the binary
images are combined with a bitwise AND operation. To remove
existing holes in the resulting mask, a closing morphological
operation is applied, followed by an opening operation.

The previous method is simple and can be computed in a
fast manner, but as it is based only on color, its application is
limited to certain kinds of garments and backgrounds. More
robust results can be obtained if the working environment is
scanned and reconstructed as a 3D point cloud, and that point
cloud is used instead of a single RGB-D image (Figure 4.4).

This method has the additional benefit of achieving a gar-
ment reconstruction with a finer resolution, as several depth
images are integrated into a single point cloud. To obtain such
reconstruction, an existing algorithm such as KinectFusion [62]
can be used.

Once the reconstructed point cloud is obtained, the next step
is to correctly label the points belonging to the garment and
the ones belonging to the flat surface supporting the garment.
For such purpose RANSAC [19] is used to fit a plane represent-
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Figure 4.4: Garment Segmentation Stage using a 3D reconstruction of
the scene as input.

ing the working surface to the point cloud, where the points
matching the model are considered background and removed
from the point cloud.

Then, Euclidean Clustering is used to locate and label the
points belonging to the garment, as it is assumed to be the
largest cluster found by the clustering algorithm. The moments
of inertia of the garment cluster are computed and used to gen-
erate a 3D bounding box that encloses the garment. Based on
the height and spacing of the points inside the 3D bounding
box a depth image representing the garment from a top view
can be obtained by discretizing the bounding box in different
regions, that correspond to pixels of the generated depth im-
age. For each of the regions the highest point is found, and its
height, measured with respect to the base of the bounding box,
is stored in a 2D image.

Once this process has been completed for all the regions, a 2D
image is obtained that, after being normalized and converted to
a 8-bit representation, can be used as depth map in later stages.
To obtain the segmentation mask a similar process is followed,
but considering the occupancy of each region as the criteria
to create the 2D binary image representing the segmentation
mask.

Using any of the two different methods proposed for gar-
ment segmentation, a binary mask representing the pixels that
belong to the clothing article can be obtained. A blob labeling
algorithm is then applied to the mask to obtain the 2D projec-
tion of the garment contour, that is further simplified using the



62 unfolding

Ramer-Douglas-Peucker [71][12] algorithm to obtain the simpli-
fied garment contour. Both the binary mask and the simplified
garment contour will be used in later stages to determine the
most suitable points for the unfolding operation.

4.4 garment clustering stage

Once the garment has been successfully segmented from the
background the next stage, the Garment Clustering Stage, is
applied. This stage employs the depth information from the
3D reconstruction of the garment to both group together pixels
belonging to the same garment region, and to find the over-
lap relationship between them, that is, which garment region is
overlapping or being overlapped by another region.

The clustering stage (Figure 4.5) operates under two main
assumptions: that pixels with similar height values belong to
the same garment region, and that regions with a higher height
value overlap regions with a lower height value. Ideally, a single
cluster per region would yield the best performance in the next
stage, but our method also supports smaller, superpixel-like
regions that are more likely to appear in presence of noise in
the input data or wrinkled regions.

Figure 4.5: Garment Clustering Stage.

Using the segmentation mask obtained in the previous stage,
only depth pixels belonging to the garment are selected and
passed to the next step that performs height clustering.

To find the garment region clusters, the Watershed algorithm
[77] is used. The Watershed algorithm interprets the values of
the pixels in a grayscale image as heights, in a similar way a to-
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pographic map represents relief in a terrain. The algorithm then
starts flooding the “terrain” starting from the lower regions un-
til the basin from different points meet at the watershed lines.
The watershed lines represent the boundaries of the different
regions or clusters. Figure 4.6 illustrates the Watershed algo-
rithm.

Figure 4.6: Graphical representation of the Watershed algorithm. The
image represents a topografic relief that is filled with wa-
ter from the different seed points. The watershed lines,
shown as dotted lines in the right figure, indicate the
boundaries of the different labeled clusters.

Once the different clusters have been identified, the values
of the pixels in each region are substituted with the mean or
median value for all the pixels of that region, to obtain homoge-
neous regions and filter out the noise present in the input depth
image. The clustered image, as well as the highest cluster and
location of the highest point within that cluster are recorded
and passed to the next stage to compute the most suitable pick
and place points for the unfolding operation.

4.5 garment pick and place points stage

A simple way to describe the unfolding operation is to specify
two points: a point to pick the garment or garment part, and
a point to release it. The aim of the last stage of the unfolding
algorithm, the Garment Pick and Place Points Stage, is to find
the most suitable pick and place points to successfully perform
the unfolding operation. This stage requires as input both the
simplified garment contour obtained in the Garment Segmen-
tation Stage and the clustered depth image from the Garment
Clustering Stage (Figure 4.7).

First, a candidate set of unfolding paths is generated under
the assumption that the fold has at least one contour edge that
also belongs to the observed contour of the garment. To gener-
ate each of the paths, a straight line is constructed by joining
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Figure 4.7: Pick and place points computation.

the midpoint of each of the simplified garment contour edges
with the highest point of the highest cluster region. If any of
the candidate paths intersects the simplified garment contour
at any point other than the two points used to generate the
path, that path is discarded, so that no paths that go outside of
the garment are used as candidates for the next step.

For each of these candidate paths, a metric representing the
changes and discontinuities in height of the different garment
regions along the path is computed. This metric is called bumpi-
ness (B), and the procedure to compute the bumpiness value is
the following.

Each of the candidate paths, path, is a 2D parametric line
(R → R2) described by a single parameter r corresponding to
the radial distance from the highest point to a given point of
the line:

path(r) = [u(r), v(r)] (4.1)

Each of the paths, of length L, is divided in segments of con-
stant length l, obtaining a total of m sampled height values:

m =

⌊
L

l

⌋
(4.2)

The clustered depth image D(u, v) is sampled at each of the
m discrete points for each of the n candidate paths, generating
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n ordered sets S = {s1, ..., sm}, in which each element si of the
set is computed as follows:

si = D(path(i · l)), i = 0, 1, 2, ...,m , (4.3)

To obtain the bumpiness value Bpath of a given path, the ac-
cumulated relative difference of each set of m sampled height
values si is computed for the set corresponding to that path:

Bpath =

m∑
i=2

|si − si−1|, (4.4)

Once the bumpiness value Bpath is computed for all candidate
paths, the path with the lowest value is selected and the cor-
responding edge of the simplified garment contour is labeled
as fold edge. A large bumpiness value indicates that there is
one or more large discontinuities along the path, which means
that the path goes through regions belonging to two different
overlap levels. A path with low bumpiness, on the other hand,
indicates that the regions it crosses possess an approximately
continuous height value and therefore belong to the same over-
lapping region.

Once the fold edge has been located, the pick and place
points are selected. The pick point is computed by extending
the selected candidate path until it intersects with the bound-
ary of the highest cluster. If more than one intersection points
exist, the one with the largest distance to the fold edge is se-
lected.

To obtain the place point, the fold edge is used as symmetry
axis to compute the mirror image of the pick point. The com-
plete unfolding algorithm (Segmentation, Clustering and Pick
and Place Points Stages) can be repeated after the unfolding
operation has been performed until the garment is completely
unfolded.

The described process to obtain the pick and place points is
visually summarized in Figure 4.8.

4.6 manipulation

Once the pick and place points have been determined, the corre-
sponding manipulation operation is computed from them and
commanded to the robot. The typical manipulation operation
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Figure 4.8: The top figure shows the different watershed clusters of a
given garment, with the corresponding garment contour
and the candidate paths. (1) is one of the two candidates
discarded (yellow lines), as they intersect with the gar-
ment outline more than once. (2) and (3) are two paths
for which the height profile is shown on the middle fig-
ure. (3) has a higher bumpiness value than (2), as there
are several changes in height along the path. The bottom
figure shows the computation of the pick and place points
as described in this subsection, including the highest re-
gion outline used to compute the pick point and the fold
axis used to locate the place point.

for unfolding is composed of three actions: grasping the gar-
ment, following a trajectory computed from the pick and place
points, and releasing the garment.

A critical element for the grasping and releasing actions is
the end-effector or gripper installed on the robot. Depending
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on the task, different choices exist for grippers, that range from
claw-like grippers to anthropomorphic hands. For cloth-related
manipulation, some designs exist in the literature that allow to
grab very thin garments by scooping [47] or using rolling el-
ements [33]. Since the experiments performed in this thesis1

were executed by two different platforms, that were designed
with general purposes in mind, custom grippers were devel-
oped for each specific platform. The equipment and infrastruc-
ture already present on each of the platforms were taken into
account for the design of each of the grippers, resulting in two
different gripper models.

For the humanoid robot, a 3D printed gripper was designed,
featuring two single-link fingers actuated by two hobby servo-
motors. The angular position of the fingers is controlled by
an Arduino UNO board2 which serves as an interface with
the robot. It receives open and close commands and translates
them into angular positions for the gripper fingers. The grip-
per is small and lightweight, as it is aimed to be installed in
a humanoid robot arm, but at the same time the servomotors
provide enough force to hold most common garments such as
T-shirts and pants.

For the industrial robot, a different 3D printed gripper was
developed and integrated with the existing pneumatic system,
which is controlled through standard general purpose digital
signals of the robot. This gripper is designed to be opened and
closed with a linear action, while obtaining a certain amount
of compliance for grasping garments from the pneumatic sys-
tem that actuates the gripper. The tip of the gripper is coated
with EVA foam to increase the friction between the cloth and
the gripper, as the surface of the 3D printed plastic used for
the gripper is too smooth to provide enough friction. Figure 4.9
depicts the two different gripper models for the two robot plat-
forms to be used in the experiments.

When working with garments laying over a flat surface, the
design of both grippers ensures a successful grasp in most sit-
uations without any computation of the grasping orientation.
By approaching the garment using an orientation perpendicu-
lar to the flat surface, the gripper is able to correctly grasp the
garment.

Additionally, by controlling the height of the grasping point,
the amount of garment layers grasped can be controlled. This

1 The experimental evaluation will be described in detail in Section 7.2.
2 https://store.arduino.cc/arduino-uno-rev3, last visited: 04-06-2020

https://store.arduino.cc/arduino-uno-rev3
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Figure 4.9: Grippers for the unfolding task. On the left, the gripper to
be installed in the humanoid robot is depicted performing
a grasping test. On the right, the custom gripper to be
installed in the industrial robot is shown.

is useful, as when the garment presents an overlapping fold,
at least two layers are involved. But, even in the case of ma-
nipulating a single garment, it may involve dealing with many
cloth layers. For instance, a fully extended T-shirt has two cloth
layers: the front and the back of the garment.

For the trajectory, a path has to be selected to move the grip-
per from the pick point to the place point, lifting the corre-
sponding garment part to move it to the new location. Several
paths may be used for this purpose.

The simplest path is the rectangular one, consisting on three
straight segments. The first one, the lift segment, is composed
by a source point equal to the pick point and a destination
point with the same x and y coordinates than the source, but
its z coordinate is incremented by a small offset. A second
segment connects the ending of the previous segment with
the start of the next one, keeping a constant z coordinate. The
last segment lowers the garment part before its release, start-
ing with a point with the same x and y coordinates than the
place point, but with the same z coordinate as the ending of
the previous segment, and ending in the place point. For a
given pick point Ppick = (xpick,ypick, zpick) and place point



4.6 manipulation 69

Pplace = (xplace,yplace, zplace), the rectangular path is defined
as:

pathrect(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xpick,ypick, zpick + h · t) ∀t ∈ [0, 1)

(xpick + (xplace − xpick)(t− 1),

ypick + (yplace − ypick)(t− 1),

zpick + h) ∀t ∈ [1, 2)

(xplace,yplace,

zpick + h+ (zplace − zpick − h)(t− 2)) ∀t ∈ [2, 3]

(4.5)

Where h is the vertical offset, measured with respect to the
pick point, and t ∈ [0, 3] is a parameter describing the advance
of the end-effector along the path.

The rectangular path has the advantage of being simple to
compute and implement, but it can result in a movement ex-
cessively abrupt for some pick and place locations. If the lift
and lower segments are converted from vertical lines to oblique
lines, with angles α and β respectively for each segment, a
smoother trapezoidal path can be achieved. The trapezoidal
path can be defined in terms of the 4 points defining the three
segments of the path:

pathtrap =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = Ppick = (xpick,ypick, zpick)

P2 = (xpick +
h

tan(α) cos(arctan(yplace−ypick
xplace−xpick

)),

ypick +
h

tan(α) sin(arctan(yplace−ypick
xplace−xpick

)),

zpick + h)

P3 = (xplace +
h−(zplace−zpick)

tan(β) cos(arctan(yplace−ypick
xplace−xpick

)),

yplace +
h−(zplace−zpick)

tan(β) sin(arctan(yplace−ypick
xplace−xpick

)),

zpick + h)

P4 = Pplace = (xplace,yplace, zplace)

(4.6)

A fold can be described as a part of the garment that has
been rotated about 180◦ around the fold axis. Based on this de-
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scription, each of the points belonging to the folded part of the
garment can be considered to have followed a circular path. If
the fold has to be performed or removed with precision, the
most suitable path is therefore a circular path, that can be de-
scribed in terms of the pick point Ppick = (xpick,ypick, zpick) and
place point Pplace = (xplace,yplace, zplace) as:

pathcirc(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xpick+xplace
2 + R · cos(t · π) · cos(arctan(yplace−ypick

xplace−xpick
))

ypick+yplace
2 + R · cos(t · π) · sin(arctan(yplace−ypick

xplace−xpick
))

zpick+zplace
2 + R · sin(t · π)

(4.7)

Where t ∈ [0, 1] is a parameter describing the advance of the
end-effector along the path, and R is the radius of the circular
path, computed as:

R =
1

2
·
P⃗pick + P⃗place

 (4.8)

More advanced choices of folding paths exist, such as Bézier
curves [50], that can be selected depending on the garment char-
acteristics and requirements of the movement to be performed.
For folding, the expected result is a garment part being placed
over a specific location. Therefore, the choice of a manipulation
path is more critical, and circular or Bézier curve-based paths
are more appropiate choices. In this case, choosing an incorrect
path, as could be one that is too abrupt, might cause slipping
of the cloth during the movement, resulting in a displacement
of the garment that will prevent it from reaching the desired
target pose.

On the other hand, the requirements for unfolding are much
less strict. Even if the garment moves slightly as a result of
pulling it while following the selected path, the result will not
be affected, as the garment will be unfolded nonetheless. There-
fore, for the unfolding experiments, rectangular or trapezoidal
paths were typically selected for both robots.

4.7 chapter summary

Many tasks in the laundry pipeline benefit from having some
prior knowledge about the garment category with which the
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robot is working. As recognizing the garment category from
a crumpled or entangled piece of clothing is a highly difficult
task, an unfolding operation has to be performed to spread the
garment in preparation for the recognition algorithm.

This chapter describes the garment unfolding algorithm, that
is composed of three stages: the Garment Segmentation Stage,
the Garment Clustering Stage, and the Garment Pick and Place
Points Stage.

The Garment Segmentation stage uses RGB-D information
from the robot perception system to obtain a segmentation mask
and simplified garment contour. Then, the Garment Clustering
Stage groups pixels belonging to the different overlapping re-
gions present in the depth image and locates the highest clus-
ter and highest point within that cluster. With all the informa-
tion computed in previous stages, the Garment Pick and Place
Points Stage finds the most suitable pick and place points for a
successful unfolding operation based on a custom metric called
bumpiness.

For the final manipulation operation, two different grippers
were designed for each of the robots to be used. Even though
several choices of folding paths exist, for the unfolding exper-
iments rectangular and trapezoidal paths were selected as a
good compromise between complexity of the movement and a
successful unfold.
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I R O N I N G

This chapter describes our advances in ironing with robots, the
third task of the laundry pipeline (Figure 5.1).

laundry pipeline

hanging unfolding ironing folding

storage

washing

Figure 5.1: Ironing is the third task of the laundry pipeline.

5.1 introduction

Washing clothes responds to a necessity in terms of both hy-
giene and garment maintenance, as garments become increas-
ingly dirty the longer they are being worn, due to their contin-
uous contact with the environment and the human body. On
the other hand, wrinkle removal is performed purely for aes-
thetic purposes, as people find ironed clothes more aestheti-
cally pleasing. In some cases, winkled clothes can even be as-
sociated culturally with a lower status or a not careful enough
person, similar to the association made in the case of people
wearing dirty clothes.

As a consequence, people tend to remove wrinkles from their
garments before wearing them. Even if garments are not going
to be worn right after being washed, wrinkle removal is per-
formed before storage, to prevent wrinkles from appearing or
becoming harder to remove.

Two different kinds of wrinkles can be distinguished in cloth-
ing articles: soft wrinkles and marked creases, both depicted in
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Figure 5.2. The first ones, soft wrinkles, are large undulations
present in cloths due to the deformable nature of the textile ma-
terials of which they are made. The more flexible the material is,
the smaller the soft wrinkles that tend to be formed. Soft wrinkles
appear due to the interaction of the garment with objects and
elements of the environment or other parts of itself, and they
can be removed by flattening the garment, either by pulling the
outer rim of the garment outwards or by passing a flat object
on top of the garment surface.

Figure 5.2: Soft wrinkles (left) and marked creases (right) on the same
garment.

Marked creases, on the other hand, are sharper and smaller
than soft wrinkles and appear due to changes in the bonding
forces of fibers that occur during the washing process. Due to
the water and heat applied to the clothing article while wash-
ing it, fiber bonds in the garment are allowed to shift to new
positions, creating permanent marked creases, commonly known
as “wrinkles”1. As marked creases occur at fiber bond level, they
will persist any attempt to remove them by flattening them out
through manipulation alone.

In order to successfully remove marked creases, heat and pres-
sure have to be applied to the garment to reset the fiber bonds
to their flattened positions. This process is called ironing, and
it is typically performed with the help of an electric iron, al-
though other devices and methods based on steam also exist.

Despite the existence of devices such as washing machines,
that can easily wash any type of garment with very little as-
sistance from a human, there is not a similar machine able to
perform the ironing task for any kind of garment in an auto-
mated fashion. The most recent innovations in that direction
are still bulky and expensive, and are only capable to process

1 Although both soft wrinkles and marked creases are commonly referred by
people as “wrinkles”, the author will keep a different naming throughout
the thesis to be able to differentiate them.
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certain garment categories, requiring extensive assistance from
a person to set or manipulate the clothing article.

Having to own a specific machine for each laundry task is
both expensive and requires a large amount of dedicated space
for these devices in the household. To solve this issue, the au-
thor proposes to use a humanoid robot to be able to perform
all these tasks, as a Robot Household Companion.

5.2 overview

As discussed in the related work section (Section 2.3), exist-
ing approaches to ironing focus on static ironing of individual
marked creases by locating and targeting them one by one. Due
to the small size of marked creases, this method requires a work-
ing environment with controllable illumination, which is easily
achievable in an industrial setting, but almost impossible to ob-
tain in a real domestic setup.

As one of the objectives of this thesis is the application of the
developed methods in an unmodified domestic environment,
an alternative approach to the ironing task is required. For this
reason, the approach proposed in this thesis is based on ob-
servations of how people perform the ironing task. Instead of
looking for individual marked creases to apply the iron to them
one by one, people iron the whole garment surface dynamically,
focusing on avoiding the creation of additional marked creases.

This can occur if the heat and pressure from the iron is ap-
plied to a soft wrinkle incorrectly, altering the fiber bonds in such
a way that, instead of removing an existing marked crease, a new
one is created. This process of iteratively ironing the whole sur-
face is repeated until the whole surface is free of marked creases,
focusing on regions with a larger amount of remaining marked
creases.

The main advantage of this method is that the critical element
is shifted towards how to iron soft wrinkles, which are larger in
size, and therefore easier to locate with the current technology
in RGB-D sensors. This approach also removes the necessity
of detecting individual marked creases, allowing its application
in environments in which illumination cannot be controlled by
the robot.

The ironing approach proposed in this thesis is as follows.
First, a 3D reconstruction of the working environment is built,
and the garment data is segmented from the rest of the back-
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ground. Then, a wrinkle descriptor is computed to locate the
regions of the garment in which soft wrinkles are present.

Once the location of these regions is known, an ironing path
is computed in such a way that the soft wrinkles can be removed
with the next ironing operation, to avoid creating new marked
creases when ironing. Finally, an ironing path-following con-
troller allows the robot to apply the iron to the garment with
the correct amount of pressure, while following the previously
computed path. Figure 5.3 depicts the complete ironing pipe-
line.

Figure 5.3: Ironing pipeline. The input of the algorithm is a 3D recon-
struction of the working environment, which is used to
compute and perform the most suitable ironing path. The
sequence is repeated iteratively until all the marked creases
have been removed.

The proposed approach offers the following contributions:

• It applies the iron in a dynamic way which, as opposed
to other static ironing methods, results in a faster ironing
process, while reducing the chances of burning the gar-
ment, as it applies heat uniformly over a wider area.

• The proposed approach does not require a light-controlled
environment, as there is no need to locate individual marked
creases to apply the iron specifically to each of them, and
thus it can be applied to a real domestic environment.

• The ironing operation uses a force/torque-based controller,
removing the need for any external mechanism providing
passive compliance to cope for the lack of control over the
force exerted to the garment on the working surface.

5.3 garment segmentation

The first stage of the ironing algorithm consists in obtaining a
3D reconstruction of the garment surface. For this purpose, a
3D reconstruction of the whole working environment is built
by integrating several views obtained with an RGB-D sensor
using the KinectFusion [62] algorithm.
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In addition to the garment data, the resulting reconstruction
includes elements from the background and ironing board that
need to be removed. To achieve this, the RANSAC [19] algo-
rithm is used to locate different planes in the image, and is
combined with a set of heuristics to locate the most significant
elements of the reconstruction:

• The ground plane will be the horizontal plane with the
lowest z coordinate from all the horizontal planes detected.

• The ironing board legs and the part of the garment that
hangs from the board typically form a vertical plane close
to the robot.

• The top of the ironing board, which contains the region
of the garment we are interested in, is the remaining hor-
izontal plane.

• Any other elements of the background can be filtered out
based on their distance to the robot, as they will be further
away from the robot than the rest of the objects of interest.

Once the top of the ironing board is located and extracted,
the resulting point cloud will contain data from both the gar-
ment and the ironing board surface. It is assumed that points
from both distributions are linearly separable based on color
and location, in such a way that two sets of points X0 and X1

can be obtained such that:

n∑
i=1

ωixi > k ∀x ∈ X0 (5.1a)

n∑
i=1

ωixi < k ∀x ∈ X1 (5.1b)

Where ω1, ω2, . . . , ωn are weights, xi is a point in the joint
initial distribution, and k is a real number.

Based on the previous assumption, the set of n points con-
tained in the ironing board plane can be partitioned into k =

kG + kB different clusters, with kG containing all the points
that belong to the garment distribution, and kB containing the
points that belong to the ironing board distribution.

To limit the number of possible clusters to consider, uniform
color and a Lambertian reflectance model are assumed for the
garment surface and the ironing board, so that the number
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of clusters to be considered is k = 1 + 1 = 2. In addition, to
improve the separability of the clusters, the color space of the
point cloud is converted from the RGB space to the HSV space.

After the color space conversion, the feature vector x⃗ encodes
both the spatial location of the point and the HSV color compo-
nents:

x⃗ = (x,y, z,h, s, v) (5.2)

Encoded using the feature vector x⃗, the points in the region of
interest extracted in the previous step can now be partitioned
into the garment and ironing board clusters (kG and kB, re-
spectively) by iteratively minimizing the within-cluster sum of
squares with the following general expression:

arg min
S

k∑
i=1

∑
x⃗∈Si

∥x⃗− µi∥2 (5.3)

Where k is the number of clusters (in our case k = 2), Si is
the i-th cluster in S = S1,S2, . . . ,Sk, x⃗ is the feature vector, and
µi is the mean of all the feature vectors in Si.

Once both clusters have been obtained, each of them can be
labeled as either “garment” (kG) or “ironing board” (kB) based
on prior knowledge about the location and orientation of the
ironing board. Only one of the two extremes of a typical iron-
ing board is prepared to hold a garment, so the garment clus-
ter must lay in that direction; as opposed to the ironing board
cluster, that must correspond to the opposite direction. The cen-
troids of both clusters are used to determine their relative posi-
tion, that is matched against the aforementioned prior.

Once the garment cluster is located and labeled, smaller sub-
clusters that might appear within that cluster are filtered using
Euclidean clustering to ensure a single, consistent cluster. Fig-
ure 5.4 shows the different steps of the segmentation stage.

5.4 wrinkleness local descriptor (wild)

After the set of points belonging to the garment surface has
been extracted from the input point cloud, the garment surface
has to be analyzed to determine the location of soft wrinkles. Soft
wrinkle localization is critical to compute a successful ironing
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Figure 5.4: Ironing segmentation steps: 3D reconstruction of the work-
ing environment (left), segmentation of the top of the iron-
ing board (top right) and garment top segmentation (bot-
tom right).

path, as ironing a soft wrinkle incorrectly could lead to the cre-
ation of new additional marked creases, instead of removing the
existing ones. As soft wrinkles are regions of the garment with
a certain curvature and a high volume footprint, a curvature
analysis must be performed to the garment surface to estimate
the location of soft wrinkles.

A classic Hessian matrix analysis could be used to determine
the wrinkle location, as well as some general-purpose 3D de-
scriptors that use curvature to characterize objects, such as the
Radial Surface Descriptor (RSD) [58]. Instead, pursuing an in-
crease in performance with respect to existing methods, the au-
thor developed a custom descriptor, tailored to suit the needs
of this particular problem (i.e. locate wrinkles in garments).

The resulting descriptor, the Wrinkleness Local Descriptor
(WiLD), measures how abrupt is the curvature around a point
by comparing its normal with the normals of neighboring points.
To compute the neighbors of each point (and their normals) in
the most efficient way, a kd-tree or other kind of indexed space
representation might be constructed first. Then, for each of the
points in the garment surface, the WiLD descriptor value can
be computed according to the following expression:

WiLD(⃗i) =
1

k
·
∑
j⃗∈K

n⃗⃗
i
· n⃗⃗

j
(5.4)

Where i⃗ is the point for which the WiLD descriptor is being
computed, K is the set of k nearest neighbors of i⃗, each of them
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denoted by j⃗, and n⃗⃗
i

and n⃗⃗
j

are the normals of i⃗ and j⃗, respec-
tively.

For flat regions, the product of normals will result in a higher
value, and therefore the WiLD descriptor for that region will be
close to one. On the opposite side, a region with a very abrupt
curvature with yield a product of normals close to zero, result-
ing in a low WiLD value. Figure 5.5 depicts both scenarios.

Figure 5.5: On flat regions (left), the angle between the neighboring
normals, φ, is 0, and therefore the value of the WiLD de-
scriptor is close to 1. On the other hand, as the surface
curvature increases, the angle formed between two neigh-
boring normals gets closer to 90◦, and the WiLD descriptor
value is closer to 0. Note that some normals were omitted
in the figure to improve visualization.

As soft wrinkles are regions with a high curvature, but not
as abrupt as, for instance, marked creases, their values of the
WiLD descriptor will lay in the intermediate values, and can be
located by thresholding:

wrinkle(⃗x) =

⎧⎨⎩1, if Lt < WiLD(⃗x) < Ht

0, otherwise
(5.5)

Where Lt and Ht are the lower and higher thresholds, deter-
mined empirically.

5.5 ironing path extraction

Once the regions presenting soft wrinkles have been located, a
suitable ironing path has to be computed to be able to remove
the soft wrinkles while avoiding the creation of new additional
marked creases. Inspired by observations of how people perform
the soft wrinkle removal, an ironing path extraction method has
been developed that uses the location of the wrinkled regions as
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well as some heuristics to determine the most suitable ironing
path.

The assumption is that the most effective way to remove this
kind of wrinkles is to apply the iron perpendicularly to the
crest or spine of the soft wrinkle towards the edge of the ironing
board, so that the air trapped below the soft wrinkle can be re-
leased and the garment can recover its original flatness. As the
air has a pathway to escape, this strategy reduces the chances of
creating new marked creases by unintentionally folding the soft
wrinkle regions and ironing over the folded material.

As the garment surface can be considered mostly flat on top
of the ironing board, the previously computed raw wrinkle de-
scriptor is projected over the garment / ironing board plane
and then discretized to obtain a 2D image. Possible occlusions
due to several points of the point cloud belonging to the same
image pixel bucket are handled using z-buffering. A similar ap-
proach, but based on the occupancy of each of the pixel buckets
is used to obtain a 2D segmentation mask that identifies regions
with descriptor values as garment and regions without WiLD
data as part of the background.

To deal with possible artifacts from empty pixel buckets due
to noise or missing points during the discretization process, a
binary closing morphological operation is applied to the binary
mask. The erosion applied for the closing operation is slightly
larger than the dilation to remove the outer border of the gar-
ment. As the garment placed in the ironing board is pulled
down by effect of gravity, and due to the shape of the ironing
board, the outer border of the garment will be always curved
and can be ignored to improve the wrinkle detection capabili-
ties of the WiLD descriptor. The contour of the garment is then
obtained from the processed mask, as it will be required in a
later step.

Equation 5.5 is then applied to the normalized WiLD 2D im-
age to locate the wrinkled regions, that are labeled using a stan-
dard blob labeling algorithm. As any of the resulting regions
could be a equally suitable region to apply the next ironing op-
eration, the strategy selected is to start ironing the region with
the largest area, so the blob with a larger area size (in pixels) is
selected to perform the next steps.

To find the ironing path, the selected blob is skeletonized us-
ing the Zhang-Suen [108] algorithm, and the resulting pixels
are converted into a graph based on their connectivity. Depend-
ing on the shape of the wrinkle blob, it is possible for the graph
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obtained to have more than one branch. To determine the start-
ing and final points of the ironing path, the following criteria is
used:

• The starting point corresponds to the leaf node of the
graph closest to the garment contour extracted from the
processed segmentation mask.

• The final point is the leaf node of the graph that is furthest
from the garment contour.

By applying these rules, the ironing operation will always be
performed from the interior of the garment towards the outer
rim, allowing the release of the air trapped below the soft wrin-
kle. To recover the full path from the start and ending points, a
depth-first search is run on the skeleton graph using the start
point as the root node and the final point as the target.

After the method has been applied, the obtained waypoints
are then converted back to 3D space before the robot executes
the corresponding ironing action. Figure 5.6 depicts the differ-
ent steps of the path extraction stage.

5.6 ironing path-following controller

Once the most suitable ironing path has been computed, the
robot performs the ironing operation through a path-following
ironing hybrid controller. The objective of this controller is to
exert a certain force with the iron over the garment, while fol-
lowing the waypoints computed in the previous stage as refer-
ence.

Let w = {w(0), ...,w(N)} be the set of waypoints obtained by
the perception system in the previous stages of this method.
Each of the waypoints is described by its Cartesian components
as w(i) = (w

(i)
x ,w(i)

y ,w(i)
z ), where the components for each way-

point are expressed in the robot base reference system. To ob-
tain the waypoints, the ironing path computed in the WiLD im-
age frame of reference in the previous stage is first converted
back to the RGB-D sensor frame of reference, and then to the
robot root frame of reference. Figure 5.7 shows the different
reference systems for this task.

Starting from an initial resting position, the robot has to reach
the starting point of the trajectory, while avoiding any collisions
with the ironing board. For such purpose, two movements are
performed.
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Figure 5.6: Different steps of the path extraction stage. The origi-
nal setup is shown in the topmost subfigure as reference.
Then, from top to bottom: the largest wrinkle is selected
(shown in red) from the WiLD projected image. Then,
the selected binary blob is skeletonized. Finally, the iron-
ing path (red) is extracted from the skeletonized wrinkle,
along with the starting (blue) and final (green) points (bot-
tom).

First, the robot performs an initial trajectory with a set of
waypoints w0 = {w

(0)
0 , ...,w(N)

0 }, which is used to move the iron
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Figure 5.7: Reference systems for the ironing task, including the robot
root frame, the RGB-D sensor frame and the image frame,
along with the control vector c⃗.

from the initial pose to a position at a predefined height over
the ironing board, in such a way that the projection of the iron
over the ironing board plane corresponds to the starting point
of the ironing trajectory. The final position is computed by re-
placing the components w

(N)
0x and w

(N)
0y of the predefined initial

trajectory w0 by the components w
(0)
x and w

(0)
y of the visually-

obtained ironing trajectory w.
When the initial trajectory has been performed successfully, a

second movement to approximate the iron to the ironing board
and make a controlled contact is executed. The iron is lowered
vertically while monitoring the force/torque sensor to detect
contact. A threshold Fd = ((Fdx, Fdy, Fdz), (Tdx, Tdy, Tdz)) is set,
where (Fdx, Fdy, Fdz) correspond to the Cartesian components
of the force measured by the sensor, and (Tdx, Tdy, Tdz)) to the
Cartesian components of the torque. Once the measurements
of the sensor exceed this threshold, the downward movement
is concluded, and the ironing path-following hybrid controller
starts working.

The lowering movement is performed in the joint space, ei-
ther in position control mode or velocity control mode. If po-
sition control is used, a small joint space increment ∆qcmd is
computed for a given desired Cartesian increment vector ∆xd =

(0, 0,−xdz) using the Levenberg-Marquardt algorithm [55] to
perform inverse kinematics, which is then feed to the position
control system to perform the movement.

If velocity control is used instead, a velocity control loop
q̇cmd = J

†
A(q) · ẋd is implemented, where q̇cmd is the joint veloc-

ity vector that is commanded, J†A(q) is a Moore-Penrose pseu-
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doinverse that uses singular value decomposition (SVD) based
on householders rotations with updated joint positions q at
each iteration, and ẋd = (0, 0,−ẋdz) is the desired Cartesian
velocity vector.

Once contact with the ironing board is detected, the ironing
path-following hybrid controller starts the actual ironing oper-
ation using the ironing path waypoints w0 = {w

(0)
0 , ...,w(N)

0 } re-
ceived from the perception system and converted to the robot
base reference system. The path-following hybrid control is
governed by the control vector c⃗(τ):

c⃗(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c
(τ)
x = vt · cos(atan2((w(i)

y − y(τ)), (w(i)
x − x(τ))))

c
(τ)
y = vt · sin(atan2((w(i)

y − y(τ)), (w(i)
x − x(τ))))

c
(τ)
z = c

(τ−1)
z +Kf · (Fdz − F

(τ)
z )

,

(5.6)

Where the current time step is τ, the Cartesian components
of c⃗(τ) are (c

(τ)
x , c(τ)y , c(τ)z ), vt is a hand-crafted constant that cor-

responds to the desired tangential component of c⃗, x(τ) and
y(τ) are the Cartesian components of the instantaneous posi-
tion, and Kf is the user-tuned proportional gain of the force
control on the vertical axis. Figure 5.7 shows the control vector
c⃗ in the context of the wrinkle-following trajectory.

To perform the control in this stage position or velocity mode
in the joint space can be used, as in the contact trajectory. In po-
sition mode, the control vector c⃗ may be used as an increment
in the cartesian space ∆xd to compute a small commanded joint
increment ∆qcmd through inverse kinematics, as previously. In
velocity mode, the differential form q̇cmd may be computed
through the premultiplication of J†A(q) on c⃗ used as ẋd.

Once the ironing operation has been completed, a vertical
ascent stage similar to the contact trajectory is performed, us-
ing ∆xd = (0, 0,+xdz) for joint space position control through
inverse kinematics, or ẋd = (0, 0,+ẋdz) for joint space velocity
control via differential inverse kinematics. These commands are
performed until a safe height is reached.

5.7 chapter summary

Garments present two types of wrinkles: soft wrinkles, large
wrinkles that can be removed mechanically, and marked creases,
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smaller wrinkles that require heat and pressure to be removed
(i.e. ironing). Some existing approaches focus on the detection
and removal of individual marked creases, requiring a controlled
environment that is very difficult to obtain in real world do-
mestic scenarios. The proposed ironing algorithm, instead, is
inspired on the way people perform the ironing task, removing
the necessity of detecting marked creases, and requiring only the
detection of the larger, easier to locate soft wrinkles.

This chapter describes the human-inspired ironing algorithm,
built from two main components: a perception system and a
path-following ironing controller for the actual iron manipula-
tion. The perception system computes the most suitable ironing
trajectory in three stages.

First, a Garment Segmentation stage builds a 3D reconstruc-
tion of the working environment and separates the points that
belong to the garment from the background. In the next stage, a
custom descriptor, WiLD, is used to characterize the curvature
of the different garment regions. Finally, a path extraction stage
uses the descriptor computed in the previous stage to locate
the soft wrinkle regions and compute an ironing path to remove
them. The path is then used as input for the path-following
ironing controller to perform the ironing operation, following
the desired trajectory while maintaining a constant force over
the garment.



6
F O L D I N G

This chapter describes our advances in folding with robots, the
last task of the laundry pipeline (Figure 6.1).

laundry pipeline

hanging unfolding ironing folding

storage

washing

Figure 6.1: Folding is the last task of the laundry pipeline.

6.1 introduction

After a garment has been completely unfolded and, if needed,
ironed, the last step of the laundry pipeline is to fold it. Folding
garments serves several purposes. On the one hand, a folded
garment is easier to store, as it is kept more compact and flat,
so it is therefore easier to stack it and fit it in a wardrobe or
drawer. Folding garments also eases recognizing and fetching
stored garments, and allows transporting or handling them in
a more convenient way. In addition, folding garments can be
used to prevent wrinkles from appearing during storage, by
keeping the garment as flat as possible.

Folding is typically performed through a predefined sequence
of folding steps, that are dependent on the garment category. By
following a predefined sequence, a homogeneous result can be
achieved, obtaining folded garments with a similar final shape,
that can be stored more easily. Additionally, having a prede-
fined sequence makes it faster to achieve the task, as the person
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does not need to figure out a good method to fold the garment
for each new clothing article that he or she encounters.

As introduced in the corresponding State of the Art section
(Section 2.6), several approaches already exist that, once the
garment category has been correctly identified from a flattened
garment, are able to apply the folding sequence that matches
that particular garment category. The sequences are composed
of a concatenation of simple folding operations, that progres-
sively transform the garment shape from the fully spread state
to the folded state. As errors happening along the consecutive
steps of the sequence will accumulate and affect negatively to
the end result, a key aspect when folding is keeping the accu-
racy of the folds as high as possible.

But achieving the necessary fold precision is difficult. As op-
posed to rigid bodies, where the shape and dynamics of the
object are kept constant during their manipulation, garments
can be deformed and interact with other parts of themselves
while being folded. Furthermore, the deformation depends on
garment characteristics (e.g. material stiffness, weight, etc) that
are not directly observable from static images. In some cases,
these characteristics can be estimated through physical interac-
tion with the garment, but it is generally a slow and complex
process.

The aim of the folding method proposed in this chapter is to
focus in the precision aspect, through a controller that is able to
guide the folding action in real time using visual feedback as a
reference.

6.2 overview

As discussed in the previous section, a key aspect when folding
a garment is to be able to perform each action of the folding
sequence with enough accuracy to obtain the desired folded
shape once the sequence is complete. To achieve this objective,
and due to the large disparity in garment shapes and types, the
work presented in this chapter focuses on a simplified version
of the problem. In this version, a single folding operation is
performed over a cloth strip, so that both ends match at the
end of the folding action (Figure 6.2).

From all the possible folding paths to follow when perform-
ing the folding operation, the most frequently used in the lit-
erature are the triangular and circular paths. These paths are
computed statically based only on the initial garment shape,
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Figure 6.2: The folding task is defined as manipulating a cloth strip
so that both ends match at the end of the folding action.

without taking into account the material properties of the cloth
and, therefore, they suffer respectively from under and over
extension issues, as depicted in Figure 6.3. If accuracy is to be
achieved, the folding path has to adapt in real time to the behav-
ior of the garment, measured through some kind of feedback.

When correcting the folding trajectory, one aspect to keep in
mind is that the friction coefficient between the cloth and it-
self is typically larger than the friction coefficient between the
cloth and the working surface. As a consequence, once the gar-
ment has contacted itself during the fold, it is very difficult to
correct the folding path by pulling the grasping point, without
dragging the whole garment due to the lower friction between
the cloth and the working surface. Therefore, it is important to
make a good first contact in the correct location to avoid the
need for lifting the cloth and reattempting the folding opera-
tion.

To dynamically control the cloth during the folding opera-
tion, so that it can reach the correct contact location and pro-
ceed with the rest of the folding operation, a controller is pro-
posed based on prior work by Vladimír Petrík et al. [67]. The
proposed controller is currently being developed in collabo-
ration with the original authors, a collaboration materialized
through a research stay at the Czech Technical University (CTU)
of Prague. Although this is an ongoing work, with a pending
publication to report it, the author believes that the preliminary
results are interesting enough to be reported in this thesis in
the context of the complete laundry pipeline. In addition, in
later sections, the necessary improvements and evaluation to
be performed in the future will be listed.
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Figure 6.3: Under and over extension examples. Under extension
(top) happens in triangular folding paths, as the garment
flexibility does not allow the extension required to follow
exactly the path, pulling the garment as it is folded. Over
extension (bottom) occurs in circular paths, as the garment
is not only flexible on the folding axis, but it will curve due
to gravity, displacing the folding axis along the movement.

The prior work implemented a neural controller that used
visual feedback to estimate the state of the cloth strip during
folding, and to guide the cloth to the correct contact point while
being folded. To obtain the state of the cloth, classical computer
vision techniques were used to extract a 3-dimensional state
vector from the cloth strip profile and the location of two key-
points: the grasping point and the contact point. The neural
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controller was trained in the context of a reinforcement learn-
ing problem, augmented with domain randomization.

The work proposed in this thesis, developed in collaboration
with CTU Prague, improves their original garment state estima-
tion [67] by using a Deep Neural Network to obtain a state vec-
tor that describes the cloth strip state with a higher detail (723

dimensions vs the original 3 dimensions). The main objective
of this new state estimation method is to improve the accuracy
of the neural controller policy by increasing the amount of in-
formation available about the garment state, extracted visually
from RGB images during the cloth strip manipulation.

The following sections will describe in detail both compo-
nents of the folding method: the neural controller, and the new
improved state estimation model.

6.3 neural folding controller

To accurately control the cloth position during the folding ac-
tion, a Neural Folding Controller has been developed to com-
pute the next robot action given a certain garment state. The
neural controller is a contribution from the author’s collabora-
tor Vladimír Petrík, but it is included in this chapter as it is
crucial to understand the context of the state estimation algo-
rithm. The Neural Folding Controller can be expressed as:

aφ = πθ (x) (6.1)

Where aφ is the next robot action expressed as the angle of
the gripper motion relative to the horizontal axis φ, x is the
garment state, and πθ is the policy. In the original work, the
garment state was a 3-dimensional vector extracted from visual
feedback, where the 3 dimensions represented the vertical and
horizontal positions of the grasping point, and the horizontal
position of the contact point. In the improved version proposed
in this thesis, the state is a 723-dimensional vector, obtained
from an RGB image of the cloth strip by a deep neural network-
based model.

The policy πθ is built from a function-approximating neural
network with a single hidden layer featuring a total of 20 hid-
den units. The neural controller is trained using reinforcement
learning by finding the set of parameters θ that maximizes the
obtained rewards:

θ = arg max
θ

R (ϕ) (6.2)
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Where R (ϕ) is the reward obtained by following the policy
πθ, and ϕ encodes the cloth strip properties.

As the cloth strip properties are hard and time-consuming to
estimate from visual or tactile perceptions of the garment, one
possible strategy to obtain θ is to use domain randomization
to obtain the set of parameters θ as a function of some strip
properties sampled randomly from a prior cloth strip property
distribution:

θ = arg max
θ

Eϕ∼p(ϕ) [R (ϕ)] (6.3)

Where E is the expectation computed over the parameters ϕ

sampled from the prior cloth strip property distribution p(ϕ).
To obtain the reward R (ϕ), a simulation of the folding op-

eration following the folding policy πθ is computed. The cloth
strip is modeled in simulation as a set of balls of equal weight
placed at a constant distance from each other, joined by rota-
tional joints with stiffness and damping parameters that model
the cloth properties. The elasticity of the garment is considered
negligible, and the effect of friction is modeled indirectly, using
a method that will be described later on this section.

The simulation is run for a certain amount of simulation
timesteps, and finishes once the cloth has made contact with it-
self. If contact has not occurred after Nmax timesteps have been
reached, the simulation times out and halts. The reward is then
computed as the sum of two terms; an intermediate reward
computed every i-th timestep and a final reward, expressing
the expected final result:

R (ϕ) = α ·
N∑
i=0

ri (ϕ) + rf (ϕ) (6.4)

Where N is the total amount of timesteps that the simulation
has been run, ri and rf are the intermediate a final rewards,
respectively, and α is a scaling factor to prioritize the effect of
one reward over the other.

The objective of the intermediate reward ri is to indirectly
model the garment friction with the table. Modeling the exact
friction of the real garment would require to estimate the fric-
tion coefficient for different cloths and working surfaces, which
would be costly and time consuming. Instead, the simulated
strip is fixed on one end to the working surface, and the force
required to keep it fixed, fx, is tracked. The intermediate reward
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term teaches the controller to keep this force as low as possible
while performing the fold, to avoid slipping:

ri (ϕ) = −
|fx|

N
(6.5)

Where fx is the force required to keep the simulated cloth
fixed to the working surface and N is the number of simulation
steps. Note that, as fx is only used for training to model friction,
there is no need to measure it in the real world when running
the controller.

The final reward rf evaluates the suitability of the contact
point location reached by the cloth under the policy πθ. De-
pending on whether the contact was achieved or not, the value
of the final reward is:

rf (ϕ) =

⎧⎨⎩− |d| , if N < Nmax

−∞, otherwise
(6.6)

Where d is represents the layer misalignment, computed as
the difference in length between the two cloth branches span-
ning from the contact point, N is the number of timesteps elapsed
at the end of the simulation, and Nmax is the maximum amount
of timesteps the simulation will run without a contact before
timeout. If contact occurred, N will be less than the timeout
threshold Nmax.

Once the correct contact point has been reached using the
neural controller, the cloth can be fully folded by a linear in-
terpolation in the Cartesian space between the gripper location
at the timestep when contact occurred and the location of the
target cloth endpoint.

6.4 cloth state estimation

To improve the performance of Petrík’s method, a new deep
learning-based model, called FoldNet, is proposed in this work
as an improvement over the original state estimation algorithm.

The FoldNet model allows the Neural Controller to access a
more detailed visual feedback extracted from an RGB image of
the cloth, improving the accuracy of the estimation and, there-
fore, of the controller. Instead of the 3-dimensional state vector
used in Equation 6.1, FoldNet estimates a state vector with 723

dimensions, representing the 241 points that define the cloth
strip shape as is being folded. This feedback is then used by
the controller to estimate the next robot action aφ.
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To train the model, a custom dataset obtained through cloth
simulation is crafted. The dataset includes a total of 29 120 sam-
ples with a large visual variability in terms of textures, illumina-
tion, background, poses, etc, that help the model to generalize
and be applicable to real data.

This section will introduce both the data synthesis process as
well as the architecture of the FoldNet model.

6.4.1 Data Synthesis

Deep learning models, such as the FoldNet model presented in
this section, typically require a large amount of data for train-
ing, as they contain a significant number of layers, with a con-
siderable quantity of parameters to tune in each of the layers. If
the amount of training examples is not sufficiently large, it can
lead to a failure to extract the patterns present in the training
data, resulting in models with issues such as high bias or high
variance.

To perform the state estimation, the FoldNet model utilizes a
single RGB image as input, and estimates a state vector encod-
ing the predicted shape of the cloth strip in 3D. Consequently,
to train this model a series of labeled pairs of input RGB im-
ages and the corresponding 3D shape of the cloth strip for that
image are required.

As previously discussed in Section 3.3, to obtain such a large
amount of training examples, the most suitable option would
be to resort to an existing dataset. The advantages of using such
a dataset, in addition to obtaining high quality labeled data
with low-to-none effort, are that it serves as a benchmark of
the algorithm performance, enabling a comparison with other
methods, and fostering the reproducibility of this work.

Unfortunately, as in the case of the hanging task, there is no
specific dataset for this particular task publicly available. For
that reason, a new custom dataset for the cloth strip folding
task was generated synthetically from a cloth simulation.

Theoretically, to obtain the best performance, the model should
be trained with data from a domain as close as possible to the
data that will be used in the final application. In the case of the
FoldNet model, that would mean obtaining the dataset from
real world examples.

However, obtaining such a large dataset in a practical way is
very complicated. To name a few issues that arise with this ap-
proach, there is no simple way of tracking the shape of the gar-
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ment while performing the folding operation in the real world,
so it would possibly need to be labeled by hand. In addition,
obtaining enough variety of cloths, working surfaces and back-
grounds so that the resulting model is general enough would
be impractical in terms of cost and time required to record and
label all the examples.

An alternative method would be to obtain synthetic data
through a cloth simulation. However, training the model only
on this data will cause it to fail to generalize from the simulated
domain to the real world, due to the lack of variety in the vi-
sual cues than can be obtained from a standard simulation. The
reason is that the main focus of a simulator is to reproduce a
physical or mechanical behavior as closely as possible, and thus
images obtained from it are usually not photorealistic, and fea-
ture colorful and plain objects, with a visual aspect distant from
the aspect of real objects.

To solve this problem, one can exploit the high amount of
parameter customization in a simulation to vastly modify the
visual aspect of the simulated cloth and environment for each
trial or training example. This way, the model is trained from
images with very disparate aspects, learning how to distinguish
which visual features are important for the task, and which
ones are just stylistic. This technique of modifying the simu-
lated data to obtain variability is called domain randomization.

Using this technique, and similarly to the hanging task, a
synthetic dataset was created in an open source 3D modeling
software, which provides the following benefits over recording
real data:

• Since the shape of the cloth and its deformation can be
obtained in real time from the simulation, it provides au-
tomatic labeling of the 3D data to be used as ground truth
for each example.

• As the movement of the cloth can be defined manually by
the user, it provides a great variety of folding paths that
can be set up and simulated in a precise and repeatable
way.

• It offers a great diversity of materials, textures, shapes and
illumination choices, which contribute to obtain enough
variability in the input images to avoid overfitting the
model when training.
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The simulation is setup as follows: a flat piece of cloth, with
an elongated shape, is placed over a flat surface in the simu-
lated environment, to simulate the cloth strip on a table. The
cloth properties are selected to be in a range similar to the real
cloths used in the experiments to validate the old state estima-
tion method.

The cloth is fixed at one end, to avoid slipping, and the other
end is moved programmatically following a predefined path.
Support for simulating four different folding paths has been
added to the 3D modeling editor: triangular, circular, trape-
zoidal and polygonal (Figure 6.4). The first three paths have
already been defined in the corresponding section of the un-
folding chapter1 (Section 4.6). The polygonal path consists of
a series of equally-spaced waypoints that the cloth endpoint
crosses while performing a linear interpolation in the cartesian
space between two consecutive points.

Figure 6.4: Folding paths supported by the simulator: triangular (top
left), circular (top right), trapezoidal (bottom left) and
polygonal (bottom right). Note that for some of the paths,
due to slippage, the cloth is displaced during folding, re-
sulting in under or over extension (as described in Sec-
tion 6.2).

To increase the visual variability of the data, the aspect of the
cloth and the working surface was randomized for each train-
ing example. Two possible textures are supported: a uniform
color for the whole object, or a checkerboard pattern of two col-
ors, with a random scale factor for the size of the squares. The
illumination is achieved through three simulated point lights,

1 The triangular path can be considered a particular case of the trapezoidal
path where P2 = P3.
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that are randomly placed in the scene, with a random value of
intensity for each of them.

For the background of the scene, and to increase the variabil-
ity, a random image sampled from a picture dataset is used.
Additionally, for some of the samples, randomly, the working
surface is hidden for the final render, so the resulting image
only shows the cloth strip and the random background. Hid-
ing the working surface for some examples allows the model to
recognize the garment independently of the presence of a table
underneath it.

The point of view from which the render is generated is also
randomly selected by pointing the virtual camera towards the
cloth strip at a certain distance and modifying the location of
the camera randomly so that it keeps pointing at the garment.

A total of 29 120 examples have been generated, by rendering
the virtual scene while simulating the cloth behavior during 251

timesteps for each of the 4 types of folding paths. The aspect
of each of the scene elements (cloth strip, working surface, and
background) was randomized, along with the location of the
lights and camera. All the random variables of the scene are
sampled from normal distributions that control the boundaries
of the values and locations that are assigned to them.

Figure 6.5 depicts a random selection of training examples
sampled from the synthetic folding dataset.

For each of the training examples, the final rendered RGB
image is recorded as input for the model, along with a state
vector of 241 3D points that define the shape of the deformed
cloth strip. This state vector represents the ground truth or label
for that particular example, and is obtained by extracting the
location of the vertices that form the spine or midline of the
cloth strip.

6.4.2 FoldNet model

To perform the state estimation of the cloth strip during the
folding operation, a deep convolutional neural network-based
model called FoldNet was developed. As mentioned previously,
the input of the FoldNet model is a single RGB image of the
cloth strip being folded, and the output of the model is an esti-
mation of the current shape of the cloth strip, encoded as a 723-
dimensional state vector representing a total of 241 3D points
that describe the 3D shape of the cloth.
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Figure 6.5: Some examples randomly sampled from the synthetic
folding dataset with domain randomization enabled. Do-
main randomization adds visual variability to the im-
ages by changing the objects’ textures, illumination, back-
ground and camera pose.
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To exploit the 2-dimensional structure of the input data, the
FoldNet model is composed of several stacked 2D convolu-
tional layers, that use trainable filter banks applied through
convolutions to extract features from the input data. The ad-
vantage of this type of layer is that it not only uses the values
of each pixel in the image, but it also takes into account their
spatial distribution, being able to extract information from im-
ages in a more efficient way than a fully-connected layer.

A 2D convolutional layer can be described, using its four
main parameters, as conv2d(F,D,S,P); where F is the filter size,
D is the number of filters, S is the stride, and P is the padding.
The stride S represents the movement of the sliding window
used to apply the convolution operation for each of the filters
in the filter bank. A value of S = 1, for instance, signifies that
the window moves 1 pixel each time the filter bank is applied
to the input of the layer (Figure 6.6). The padding P represents
how many rows and columns of a certain value are added to the
borders of the input data of a given layer. A value of 1 indicates
that 1 row and column are added to every border of the input
image, so that for instance an image of 5x5 pixels becomes a
7x7 image (Figure 6.6). The purpose of padding is preserving
the spatial dimension of the input after a convolution so that
the input and output are identical in size.

The second type of layer used in the FoldNet model is the
Max Pooling layer, that can be described in terms of its window
size W, and stride S, and can be written as maxpooling(W,S).
The Max Pooling layer extracts as output the maximum value
among all the values found in a WxW window of the input
data, as depicted in Figure 6.7. Max Pooling is a form of down-
sampling where the spatial dimension of the output is effec-
tively reduced to:

Nout = (Nin–W)/S+ 1 (6.7)

With W being the window size, S being the stride, and Nout

and Nin being the size of the output and input data, respec-
tively. The purpose of Max Pooling is to reduce the computa-
tional cost by reducing the size of the output activation data for
each layer, which needs to be stored to compute the activations
of the next layer and the gradients required for training. Addi-
tionally, it increases the robustness of the system by removing
some of the information available to the next layers, reducing
the chances of overfitting the training data.
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Figure 6.6: In the top figure, a 3x3 convolutional filter kernel is ap-
plied to a given matrix, by applying the kernel to a win-
dow of size 3x3, represented with a red box. With a stride
value of 1, the window is shifted one position for each con-
volution, until all the possible vertical and horizontal com-
binations are covered. In the bottom figure, a padding of 1

is applied to the input matrix, using zeros as the padding
value.

FoldNet combines both types of layer to perform the cloth
strip shape estimation. The model has 5 blocks of stacked 2D
convolutional layers of homogeneous filter size, with Max Pool-
ing layers in between the blocks. By stacking convolutional lay-
ers with a small receptive field, the effective receptive field of
the block is increased, while keeping the number of parame-
ters to train low. For instance, a 5x5 convolution filter has the
same receptive field as two 3x3 filter size stacked layers, and
stacking three 3x3 filter size convolutional layers amounts to
an effective receptive field of 7x7. In both cases, the number of
required parameters is lower as the number of layers is higher.
An additional advantage of stacking several layers instead of
using a larger filter size, is that it adds more non-linearities to
the discriminative function of the resulting features.

Figure 6.8 shows the architecture of the FoldNet model. The
first block is composed by two 2D convolutional layers of filter
size 3x3, 64 filters, stride 1 and padding 1. Before the next block,
a Max Pooling layer with a 2x2 window and stride 2 is placed.
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Figure 6.7: Max Pooling is a downsampling technique that substitutes
a window of a given size by the maximum value in that
window. In this figure, the window size is 2x2, with a
stride of 2.

The next block has two 2D convolutional layers of filter size 3x3,
128 filters, stride 1 and padding 1, with a Max Pooling layer of
window size 2x2 and stride 2. The third block is composed by
three 2D convolutional layers of filter size 3x3, with 256 filters,
stride 1 and padding 1, followed by a Max Pooling layer of 2x2

window size and stride 2. The next two blocks are identical, and
feature three stacked 2D convolutional layers with filter size
3x3, a total of 512 filters each, stride 1 and padding 1. Each of
this 2 blocks has its respective Max Pooling layer with stride 2

and window size 2x2. For all the previous convolutional layers,
due to the filter size 3x3 and the padding of 1 px, the spatial
dimension of the output is preserved after each convolutional
layer, and the downsampling only occurs at the Max Pooling
layers.
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Figure 6.8: FoldNet architecture

After the last block, a fully-connected layer with a total of
1024 neurons combines the features in the last Max Pooling
layer to estimate the cloth shape. For both the convolutional
and the fully-connected layers, the activation function used is
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ReLU. To generate the output state vector, an additional fully-
connected layer of 723 neurons is added, with a linear activa-
tion function.

This architecture is inspired by the VGG-16 network [78],
a popular network for object classification. As the size and
amount of filters of the first layers of the FoldNet model is equal
to the corresponding filters of a VGG-16 model, the weights of
an already trained VGG-16 network can be used as the initial
state for our model. This technique is called transfer learning,
and allows our model to harness all the knowledge already
stored in the weights of the VGG-16 network, and use it to con-
struct more powerful features that are able to obtain an accurate
3D representation of the cloth strip shape.

As the first layers of the VGG-16 network contain low-level
features from which more abstract concepts are built, they are
general enough to be applicable to different tasks and detect
general patterns. For that reason, transfer learning can be used
to obtain a good initial set of weights to extract good features
from the RGB image. After the initial layers have computed
the features, a pair of fully connected layers learn to utilize the
aforementioned features to estimate the shape of the cloth strip.

The network is then initialized with the VGG-16 weights, and
then further trained with a new objective function to fine-tune
the weights for the cloth state estimation task. In this case, the
objective function to minimize is the Mean Squared Error (MSE)
of the predicted state vector and the ground truth vector ob-
tained from the simulation.

Transfer learning is an important technique to reduce the
costs of training in terms of time required, economic costs, and
energy consumption. The original VGG-16 network has 138 mil-
lion parameters and was trained on a very large dataset, Im-
ageNet [73], that includes over 14 million images from 1000

different object categories. According to the original paper, the
training of VGG-16 took between 2 and 3 weeks on 4 Titan Black
GPUs. Accordingly, to be able to train such a network from
scratch requires an immense amount of resources that only the
laboratories with the highest budgets can afford to spend, so
transfer learning allows other research groups to reuse and ben-
efit from the original VGG-16 training.

To make the input image compatible with the VGG-16 weights
used as initialization, the input image has to be preprocessed
before being fed to the network. The image is cropped and
isotropically scaled to 224x224 px to match the VGG-16 origi-
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nal input size, and then the RGB mean values of the ImageNet
training set are subtracted from the image to normalize it. The
image can then be fed into the network to obtain the estimated
723-dimensional output vector that can be unrolled into a state
vector of 241 3D points encoding the cloth shape.

The preliminary results obtained with the FoldNet model
will be reported in Section 7.4.

6.5 chapter summary

Folding is the last task in the laundry pipeline, and offers sev-
eral advantages such as a more compact storage of garments
or the prevention of wrinkles during storage. Typically, folding
is performed by applying a series of consecutive folding oper-
ations to a fully spread garment to reach the desired folded
shape. One key aspect when performing such folds is to be as
accurate as possible, as folding errors will accumulate through
the folding sequence, affecting the end result.

This chapter presents the improvement of an existing method
proposed by CTU Prague, being developed as an ongoing col-
laboration with the original authors that started from a research
stay. Although only preliminary results have been obtained from
this method, the author considers them interesting enough to
be included in this thesis.

The original neural controller used for folding utilizes low-
dimensional visual feedback to perform a folding operation
on a cloth strip. Reinforcement learning is used in conjunction
with domain randomization to train the controller from a cloth
simulation, using a two-term reward that takes into account the
final result of the folding action and helps modeling the friction
between the garment and the working surface.

In the improved version, the low-dimensional state vector is
replaced by a higher dimensional one, to achieve a higher pre-
cision. The cloth state estimation model, FoldNet, is able to es-
timate the cloth shape as it is being folded from an RGB im-
age of the cloth. The model is trained using a custom synthetic
dataset obtained though cloth simulation on a 3D editor, and
counts with a total of 29 120 training examples.
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E X P E R I M E N T S

This chapter describes the experimental evaluation of the dif-
ferent methods described in this thesis. To prove the validity of
all the algorithms and methods proposed in this thesis, a set of
experiments were designed and performed.

The aim of this chapter is to describe the purpose of each of
these experiments, along with the experimental setup for each
of them and the metrics used for the evaluation, reporting the
different results obtained from the experiments. As the meth-
ods proposed for the different tasks on the laundry pipeline
are very diverse, each of the sections of this chapter will be de-
voted to an individual task of the pipeline and its correspond-
ing method.

To foster the reproducibility of the results presented in this
chapter, the code for all the proposed methods that have been
already published is available as a public repository1.

7.1 hanging

This section describes the experimental setup and results of the
hanging methods introduced in Chapter 3. Two HangNet mod-
els were proposed for two different tasks: regression and classi-
fication. Each of the models is reported in a different subsection,
including a detailed description of the experimental setup and
obtained results.

7.1.1 Hanging Regression Model

7.1.1.1 Purpose of the Experiment

For the regression model, the main focus was to study the
degradation of the performance of the model as time advances
after the garment has been dropped. The proposed hypothesis
to validate is that, due to the chaotic behavior of deformable
objects and the interaction of the cloth with the hanger, as time
advances, the uncertainty of the model’s prediction would in-
crease, resulting in a decay in the model’s accuracy.

1 https://github.com/roboticslab-uc3m/textiles

https://github.com/roboticslab-uc3m/textiles
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For this purpose, the predictions of the regression model for
the trajectory of a cloth that has been dropped over a hanger
will be compared with the expected trajectory obtained through
deformable object simulation.

7.1.1.2 Experimental Setup

The experimental evaluation of the regression model requires
both a trained regression model, as well as some test data to
measure the performance of the model. This subsection de-
scribes the training process to obtain the trained model, as well
as how the test data was selected.

To train the regression model, a synthetic dataset [18] com-
posed by a total of 15 000 training examples was generated fol-
lowing the simulation procedure described in Section 3.3, us-
ing the Open Source 3D editor Blender2. The virtual camera
was placed in a fixed location, from which both the garment
and the hanger were visible at every step of the simulation.
The initial position of the garment is generated by sampling a
point from a normal distribution with µinit = (0, 0, 1.5) m and
σinit = (0.01, 0.4, 0.2) m. The dataset is publicly available online
and can be downloaded from Zenodo3.

For each of the training examples, once the garment reached
a stable pose in the simulation, a depth image of the virtual
setup was recorded as input for the HangNet model. Each pixel
of the depth image represents the distance from the camera to
the corresponding object, in meters. The time instant in which
the depth image is recorded is considered the initial time step
of the training example.

The simulation is then resumed and the garment is dropped
from its initial location, while tracking and recording the trajec-
tory of the center of mass of the garment, which will be used
as the expected output for training the HangNet model. The
simulation is run for a total duration of 51 simulation steps, a
number selected as a good compromise between computational
cost and achieving a stable final state (either hanged or fallen
to the floor) for the simulated garment.

Before the training examples can be fed to the deep neu-
ral network model for training, each of the depth images is
cropped at a distance of 2m to remove the empty background,

2 https://www.blender.org, last accessed: 18-05-2020

3 https://doi.org/10.5281/zenodo.3932102

https://www.blender.org
https://doi.org/10.5281/zenodo.3932102
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and then normalized in the 0m to 2m range. Figure 7.1 shows
a random training example gathered from the training set.
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Figure 7.1: Training example input (left) and expected output (right).
The input is a depth map, represented here in color to
improve the depth perception. The expected output is the
trajectory of the falling garment. In this particular exam-
ple, it can be observed that the garment hits the hanger,
but then falls to the floor.

As the training examples were obtained by randomly sam-
pling a different initial position for each of them, and due to
the chaotic nature of the garment physics, there is a variabil-
ity in the amount of training examples in which the garment
reaches a hanged state. More precisely, the ratio of garments
being hanged vs not hanged is near 1 to 3, resulting in an im-
balanced dataset.

To cope with the imbalance present in the dataset, stratifica-
tion was used as the technique selected to perform the split of
the dataset into the training/validation/test sets, in such a way
that each of the sets has a similar proportion of examples of
each of the two classes. The amount of training examples after
the stratified split was the following: 20% of the examples (3000)
were used for testing and, from the 80% remaining (12 000), 20%
(2400) were used for validation and 80% (9600) for training.

To train the HangNet regression model, an Adam stochastic
optimizer was used, with a learning rate of 10−4. The custom
loss introduced in section Section 3.4 (Equation 3.3) was used
as training loss, with weights ωx = 0.033, ωy = 0.033 and ωz =

0.33. The model was trained for 10 epochs, with a batch size of
32.
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7.1.1.3 Experimental Evaluation

To evaluate the overall performance of the regression model,
the Mean Squared Error (MSE) of the predicted location of the
center of mass of all the points in the test set is used as the
metric, which can be computed as:

MSE =
1

N

N∑
i

3∑
j

(Yij − Ŷij)
2 (7.1)

Where i represents each of the N examples in the test set, j
is each of the 3 Cartesian coordinates (x, y and z), Yij is the ex-
pected output for a given example and coordinate of the test set
(i.e. the ground thruth), and Ŷij is the corresponding prediction
value of the regression model for that example and coordinate.

To study the influence of the uncertainty on each of the in-
dividual coordinates of the prediction with respect to the time
step, the L1-norm is computed individually as the error for each
of the coordinates and examples, and from it, the Mean Abso-
lute Error (MAE) and standard deviation of each coordinate is
calculated for each time step.

The MAE can be defined in a compact form as:

MAE =
1

N

N∑
i

|Yd
i − Ŷd

i | (7.2)

Where i represents each of the N examples in the test set, d
is each of the 3 Cartesian coordinates (x, y and z), Yd

i is the ex-
pected output for a given example and coordinate of the test set
(i.e. the ground truth), and Ŷd

i is the corresponding prediction
value of the regression model for that example and coordinate.

7.1.1.4 Experimental Results

To check the hypothesis proposed for this model, characterizing
the effect of time on the uncertainty of the prediction and, as
a consequence, on the accuracy of the model, the regression
model was trained to predict the location of the center of mass
of the garment at different time steps. Figure 7.2 depicts the
results of this experiment, in terms of the Mean Squared Error
(MSE) of the predicted location of the center of mass of the
garment as simulation time advances.

To analyze how much each of the spatial coordinates con-
tributes to the total uncertainty of the prediction, the MAE was
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Figure 7.2: Mean Squared Error (MSE) and Validation MSE with re-
spect to the time step.

computed individually for each of the 3D components of the
prediction location (X, Y and Z). Figure 7.3 shows the value of
the MAE for each of the X, Y and Z components, as well as
the variation in error for each of them. As it can be observed in
the graph, the variation in the location error ranges form a few
millimeters right after the simulation has started to several cen-
timeters as the simulation advances, becoming more dramatic
in the case of the Z coordinate, which is an expected result, due
to the interaction of the garment with the hanger, and the fact
that the garment can remain randomly hanged or not hanged,
affecting mainly to the expected location in the Z axis.

7.1.2 Hanging Classification Model

7.1.2.1 Purpose of the Experiment

For the classification model, the main interest was to determine
its accuracy when predicting the outcome of dropping a given
garment with certain initial conditions over a hanger. As the
prediction has two possible outcomes, the garment remaining
hanged or otherwise falling to the floor, each outcome can be
considered one class of a binary classification problem.

With the purpose of determining such accuracy, and consid-
ering the difficulty of the task due to the uncertainty associated
with the chaotic behavior of garments, the performance of the
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Figure 7.3: Mean Absolute Error (MAE) of each of the 3 coordinates
(X, Y, Z) with respect to the time step, along with the stan-
dard deviation for each coordinate.

classification model was compared against the performance of
a human expert, used as a baseline.

7.1.2.2 Experimental Setup

As with the regression model, the experimental evaluation of
the classification model requires a trained classification model,
as well as some test data to evaluate the performance of the
model. Additionally, a baseline performance has to be obtained
from predictions from a human expert. This subsection describes
the training process to obtain the trained model, as well as the
test data selection process and acquisition of the human base-
line.

To train the HangNet classification model, the same dataset
as the one described in Section 7.1.1 was used, and the same
stratification techniques were use to deal with the imbalance
of the dataset when performing the training/validation/test
splits.

The trajectory previously recorded as expected output for the
regression experiment is processed to obtain a single binary la-
bel, since the output of the classification model is a single bi-
nary value representing the prediction of the network: 0 when
the garment will stay hanged after dropping it, or 1 if the gar-
ment will fall once dropped. To perform the conversion, Equa-
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tion 3.4 is used, with a threshold value empirically determined
to be Tfloor = 0.81m.

To train the classification model, an Adam stochastic opti-
mizer was used, with a learning rate of 10−4. In addition, L2

regularization was added to the model, with a regularization
strength of 0.01, to improve the generalization capabilities of
the deep neural network.

An additional subset of 200 examples were randomly selected
from the test set, and presented to a human expert to obtain a
performance baseline. The human expert, using the same input
data as the classification model -a depth image of the initial
conditions- had to predict which of the two possible outcomes
will happen once the garment is dropped.

The human visual perceptual range is more limited than a
computer to distinguish slight changes in shades of grey and,
therefore, depth values in the depth image. For that reason the
input image, originally a 8-bit greyscale depth image, was trans-
formed using a GIST stern4 colormap for display. Training ex-
amples depicted in Figure 7.1 have been rendered using the
GIST stern colormap and can serve as a reference for the inter-
ested reader.

7.1.2.3 Experimental Evaluation

The evaluation of the classification model is performed in two
different steps. First, the accuracy of the model is evaluated
using the test set alone, through a set of standard metrics that
include precision, recall and F1 score. Additionally, to evaluate
the relevance of the results achieved, the same set of metrics is
computed from a subset of 200 elements extracted from the test
set. The results from this subset are compared with a baseline
obtained from a human expert, by computing the same metrics
from predictions performed using as input the same data as the
HangNet model, a depth image of the initial conditions.

One of the metrics used for the model evaluation is the pre-
cision metric, which measures the capability of a model to dis-
tinguish true positives from false positives, and is computed as
follows:

Precision =
True positives

True positives+ False positives
(7.3)

4 https://www.ncl.ucar.edu/Document/Graphics/ColorTables/MPL_gist_

stern.shtml, last accessed: 18-05-2020

https://www.ncl.ucar.edu/Document/Graphics/ColorTables/MPL_gist_stern.shtml
https://www.ncl.ucar.edu/Document/Graphics/ColorTables/MPL_gist_stern.shtml
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Precision is an important metric for tasks in which the penalty
or cost of misclassifying a negative sample as a positive one is
high. An example of such task is email spam detection, where
classifying a legitimate email as spam causes some loss of infor-
mation to the user. In the case of the hanging task, precision is
an important metric too, as classifying a garment that will fall
to the floor as if it will remain hanged might cause the robot
to drop the garment in an incorrect position, expecting the gar-
ment to remain hanged.

Similarly, recall is a metric that measures the ability of a
model to distinguish and avoid false negatives, and can be com-
puted as:

Recall =
True positives

True positives+ False Negatives
(7.4)

Recall is an important metric for tasks where there is a high
penalty or cost associated to predicting a false negative. Some
examples of such tasks include fraud detection or sick patient
detection, tasks in which there is a high penalty if a true pos-
itive case is not detected correctly. For the hanging task, the
recall metric is less important than precision, as if a dropped
garment is predicted to fall to the floor, though it would have
remained hanged, it only delays the detection of a good drop lo-
cation for hanging, as the robot will keep looking for a suitable
drop location without releasing the garment.

When both metrics are important, the F1 score can be used
to obtain an overall performance by combining both metrics.
The F1 score is the harmonic mean of the precision and recall
metrics, and can be computed as:

F1 score = 2 ∗ Precision ∗ Recall
Precision+ Recall

(7.5)

As the F1 score represents a balance between precision and
recall, it is a good metric to be used in the case of unbalanced
datasets, like the synthetic dataset used in the experiments of
the hanging task.

7.1.2.4 Experimental Results

Once the model was trained, precision, recall and F1 score met-
rics were computed using a test set composed of 3000 training
examples, obtaining the results reported in Table 7.1.

The performance of the classification model was compared
with a baseline obtained by computing the same metrics as be-
fore -precision, recall and F1 score- from the performance of a
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Table 7.1: Classification model, 3000 elements

Class Precision Recall F1-score # elements

Hanged 0.51 0.32 0.39 819

Floor 0.78 0.88 0.83 2181

human expert in the subset of 200 randomly selected training
examples. Table 7.2 shows the results of the analysis. Although
the model has a lower recall for the hanged class than the hu-
man expert, it improves the performance of the human in all
remaining metrics being considered. As mentioned in the Ex-
perimental Evaluation section, for this application the recall is
not a critical factor, as a false negative (i.e. predicting that a gar-
ment will fall when it would remain hanged) only delays find-
ing a good location for dropping the garment over the hanger.

Table 7.2: Classification model vs Human baseline, 200 elements

Class Precision Recall F1-score # elements

Classification Model

Hanged 0.60 0.39 0.47 54

Floor 0.80 0.90 0.85 146

Human Baseline

Hanged 0.38 0.56 0.45 54

Floor 0.80 0.66 0.72 146

Additionally, and for a more detailed comparison of the per-
formance of the model and the human expert in terms of false
positives and false negatives, confusion matrices for both re-
sults were computed. As depicted in Figure 7.4, the confusion
matrices show that the classification model outperforms the
human expert when predicting garments that fell to the floor,
while having a similar performance when predicting garments
that remained hanged.
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Figure 7.4: Confusion matrices for the classification model and hu-
man baseline.
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7.2 unfolding

This section describes the experimental setup and results of
the unfolding algorithm presented in Chapter 4. Two different
versions of the algorithm were developed, a initial version us-
ing the color-based Garment Segmentation Stage, as well as
an improved version using the 3D reconstruction-based Gar-
ment Segmentation Stage. Both methods were described in de-
tail in the corresponding section (Section 4.3). Each of them
has been experimentally tested and validated using several dif-
ferent robotic platforms through the experimental procedures
explained in this section.

7.2.1 Purpose of the Experiment

The aim of the unfolding experiments is to measure the ability
of the presented algorithm to unfold clothing items belonging
to different garment categories. For this purpose, a set of gar-
ments will be assembled, from which they will be extracted
and placed over a flat surface with a series of hand-made folds.
The robot will then have to undo the folds autonomously by
applying the proposed unfolding algorithm. The performance
of the method will be evaluated by checking if the outcome
of the unfolding action matches the expected outcome (i.e. the
garment is correctly unfolded). Additionally, the experiments
will be performed with several robotic platforms to check the
validity of the proposed approach for different types of robots.

As the unfolding algorithm has three consecutive stages, the
performance of each of them will be tested independently, to
study which of the stages contributes more prominently to the
success or failure of each unfolding action.

7.2.2 Experimental Setup

Two different robotic platforms were used to evaluate the un-
folding algorithm: a humanoid robot and an industrial manipu-
lator, both depicted in Figure 7.5. The main motivation behind
the use of two different platforms is to take advantage of their
complementary features. The humanoid robot can offer valida-
tion of the approach in a real domestic environment, but as
a highly experimental platform, its reliability, repeatability and
setup times are inferior compared to an industrial solution. The
industrial manipulator, on the other hand, can only be used in a
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more controlled, industrial environment, but provides a higher
experimental throughput as it can be set up and operated at a
faster rate.

Figure 7.5: Robotic platforms used in the unfolding experiments:
TEO, the humanoid robot (left), and an ABB IRB 2400 in-
dustrial manipulator robot (right).

The humanoid robot is called TEO [57] and it is an ongoing
research project being developed in the Robotics Lab of the Car-
los III University of Madrid. It has a height and weight similar
to those of a adult male (around 1.8m and 80 kg), a total of 28

DOF, and is equipped with an ASUS Xtion PRO LIVE RGB-D
sensor for visual perception, and a custom 3D printed gripper
(previously described in Section 4.6). The humanoid robot of-
fers experimental proof of the validity of our approach in a
hypothetical real domestic environment, as it is a type of robot
very likely to be found in people’s houses in the future.

For the experiments with this robot, in addition to the inte-
grated RBG-D, an extra RGB-D sensor of the same model and
characteristics is placed in the upper part of the working envi-
ronment, to provide a birds-eye view of the garments the robot
is working with. The setup is completed with a flat white sur-
face on top of which the garments are placed. The unfolding
setup for the humanoid robot is shown in Figure 7.6.

Once validated on the humanoid robot, and to increase the
throughput of the experiments for a more thorough evaluation
of the algorithm, an industrial manipulator was used to per-
form a series of trials. The industrial manipulator selected to
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Figure 7.6: Unfolding setup for the humanoid robot TEO. Garments
are placed and folded on a white surface in front of the
robot to perform the unfolding action.

execute the exhaustive evaluation was an ABB IRB 2400 indus-
trial manipulator robot, due to its relatively large reachability.

A custom 3D printed gripper, with EVA foam added on the
inner part of the gripper claws to reduce slippage, was fixed
to the robot to grab the garments. Additionally, this custom
tool has an ASUS Xtion PRO LIVE RGB-D sensor attached as a
way to obtain a 3D reconstruction of the working environment.
This tool was described in detail in Section 4.6. The industrial
manipulator controller is running a server modified from the
open_abb5 controller that receives the target points and orien-
tations from our main PC and executes them accordingly. A
flat white surface is used as the working surface on which the
garments are placed, as depicted in Figure 7.7.

For the evaluation of the approach that uses the color-based
Garment Segmentation Stage, a pair of depth and RGB images
of size 640x480 px were recorded per garment sample, all cap-
tured from a bird’s eye perspective using the top ASUS Xtion
sensor as input for the algorithm. For the approach using a
3D reconstruction-based Garment Segmentation Stage, several
RGB-D images were obtained from different perspectives and
combined to obtain a 3D reconstruction of the working envi-
ronment. In the trials belonging to the evaluation with the hu-

5 https://github.com/robotics/open_abb, last accessed: 18-05-2020

https://github.com/robotics/open_abb
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Figure 7.7: Unfolding setup for the industrial manipulator robot. The
robot is equipped with a custom tool composed of a
3D printed gripper and an RGB-D camera. Garments are
placed and folded on a white surface located in front of
the robot.

manoid robot the different perspective were achieved by using
the 2 DOF of the robot’s neck to gather RGB-D data from dif-
ferent points of view.

In the trials where the industrial manipulator was used to
evaluate the algorithm, the industrial manipulator was used
to obtain different views of the garment by rotating the ASUS
Xtion sensor over the table and around the garment. For each
garment sample, the manipulator performs two circular trajec-
tories: a higher one with an average camera inclination of 60◦

with respect to the table normal, and a lower one, with an aver-
age inclination of 30◦.

Depth data obtained from different viewpoints along the cir-
cular trajectories is integrated using the Kinect Fusion algo-
rithm to obtain a single 3D reconstruction of the garment and
working environment. By integrating different views, the total
resolution achieved increases, providing more resolution than
a single depth frame. For these experiments, PCL’s [75] imple-
mentation of Kinect Fusion was used6.

6 https://pcl.readthedocs.io/projects/tutorials/en/latest/using_

kinfu_large_scale.html, last accessed: 24-07-2020

https://pcl.readthedocs.io/projects/tutorials/en/latest/using_kinfu_large_scale.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/using_kinfu_large_scale.html
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Once the garment data, either RGB-D or a 3D reconstruction
depending on the method, has been recorded, it is then used
as input for the unfolding algorithm. All the required stages of
the algorithm will be then executed: computing the segmenta-
tion mask, clustering of the different overlapped regions, and
the most suitable pick and place points. The obtained points
are then converted from the sensor frame of reference to the
robot’s root frame of reference, so that the robot can perform
the corresponding unfolding pick and place sequence.

For each individual trial of each experiment, a single gar-
ment is placed over the flat white surface. Each garment is ini-
tially laid fully extended over the working surface manually,
and then folded to obtain either one or two folds, depending
on the experiment. To have enough variation in color, shape,
and cloth thickness, a garment is selected from the following
garment categories: skirt, jacket, pants, polo, robe, hoodie.

7.2.3 Experimental Evaluation

To measure the performance of the unfolding algorithm, the
evaluation of the corresponding experiments will be performed
qualitatively, by classifying the outcome of each trial as a suc-
cess or failure based on whether the robot was able to unfold
the garment or not.

As the unfolding algorithm is composed by three sequential
stages, the performance of previous stages might affect the out-
come of later stages. For instance, if the Segmentation Stage
passes an incorrect segmentation mask to the next stage, the
results of the Clustering Stage might be affected. For that rea-
son, and to minimize the effect of previous stages in the perfor-
mance of later stages, the performance of each of the stages is
classified as a success or failure independently of the previous
stage results. This means that, for instance, even if some part of
the garment is missing on the masked image, it is still passed
to later stages and evaluated, as it might nevertheless lead to a
successful clustering and unfolding.

7.2.4 Experimental Results

Two experiments were performed with the industrial manipu-
lator to compare the performance of the color-based Garment
Segmentation Stage approach versus the 3D reconstruction-based
Garment Segmentation Stage approach. For both experiments,
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a total of 6 garment categories were evaluated: Skirt, Jacket,
Pants, Polo, Robe and Hoodie. For each of them, 5 trials were
performed, 3 of them with different single folds, and 2 of them
with different double folds. As mentioned in the previous sec-
tion, these initial folds were performed by hand to ensure con-
sistent initial conditions for all the trials.

The obtained results are reported in Table 7.3. A stage by
stage analysis is presented, demonstrating an increase of per-
formance of the 3D reconstruction-based Garment Segmenta-
tion Stage version of 20 % with respect to the color-based Gar-
ment Segmentation Stage approach, yielding an overall success
rate of 60 %. As some failures in previous stages of the algo-
rithm (e.g. Garment Segmentation Stage) could still lead to a
successful clustering and unfolding, the output of each stage of
each trial was independently classified as a success or failure
to obtain a more accurate description of the performance of the
algorithm.

Table 7.3: Results analysis of the Unfolding Algorithm (5 trials, 6 cat-
egories), per stage and garment category, expressed as per-
centage (%)

Stage / Category Skirt Jacket Pants Polo Robe Hoodie All

Color-based approach

Segmentation 100 100 80 100 100 20 83.3

Clustering 80 60 60 80 60 0 56.7

Pick & Place Points 60 40 20 80 40 0 40

3D reconstruction-based approach

Segmentation 100 100 100 60 60 100 86.7

Clustering 80 80 80 80 80 80 80

Pick & Place Points 60 60 60 40 80 60 60

Some examples of the final output and computed unfolding
directions by the 3D reconstruction-based unfolding algorithm
for 2 of the trials of each of the 6 categories are shown in Fig-
ure 7.8.

To further validate the results of the 3D reconstruction-based
approach, an additional experiment with 20 trials per garment
category for 5 garment categories was performed, for a total of
100 trials. For each category, 10 of the 20 trials were performed
with a single fold, and the remaining ones with 2 folds. For
each of the unfolding operations, the robot required an average
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Figure 7.8: Computed unfolding directions overlaid on top of the cor-
responding garment height map. Each row includes the
output corresponding to 2 of the 5 algorithm runs for each
of the 6 garment categories considered: Skirt, Jacket, Pants,
Polo, Robe, and Hoodie. The unfolded garment outline
has been added by hand to each figure for illustrative pur-
poses.
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of 63± 1 s for the 3D garment reconstruction and an average
of 28.5± 6.8 s to perform the actual pick and place operation.
Table 7.4 provides a stage by stage analysis regarding the ex-
tended experiments with the additional 20 trials for each of the
5 garment categories.

Table 7.4: Results analysis of the Unfolding Algorithm (20 trials, 5

categories), per stage and garment category, expressed in
percentage (%)

Stage / Category Skirt Jacket Pants Polo Robe All

3D reconstruction-based approach (extended trials)

Segmentation 100 100 95 100 100 99

Clustering 85 60 63.2 85 75 73.6

Pick & Place Points 70.6 75 33.3 94.1 78.6 70.3

Table 7.3 and Table 7.4 show that both experiments present
a consistent overall performance, with a slight decrease in per-
formance in the clustering stage and increasing in the remain-
ing stages. In the case of the color-based approach, the method
presents some sensitivity to the color of the garment as ex-
pected, with a decrease in performance occurring with darker
garments such as the hoodie.

On the other hand, with the 3D reconstruction-based method
some failure modes can be observed, for instance, in the case
of very thin garments such as the robe or the polo, where the
RANSAC algorithm misinterprets part of the garment as part
of the background table. In contrast, previous failure modes
in the presence of darker garments no longer occur, as the 3D
reconstruction-based approach is color-independent.

In the case of the clustering stage, the most common failure
mode is caused by single overlapped regions being divided into
several clusters, causing unstable bumpiness values. Split clus-
ters can also cause the selected cluster edge to not correspond
to the edge of the whole overlapped region, but to a smaller
region within it.

If this inner edge is used to compute a pick point, it is im-
possible for the robot to fully unfold the region, as the point
would lay below the unfolded region. Therefore a folded re-
gion of size equal to the distance between the pick point and
the region edge would be left after the manipulation operation.
To address these issues and improve the overall performance of
the algorithm, some discussion is provided in Chapter 8.
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7.3 ironing

This section describes the experimental setup and results of the
ironing algorithm presented in Chapter 5. For the evaluation of
the ironing algorithm, two sets of experiments were designed,
one for the evaluation of the perception algorithm, and other
for the evaluation of the complete ironing algorithm.

7.3.1 Purpose of the Experiment

The objective of the ironing experiments is to validate the per-
formance of the proposed ironing algorithm as a whole, as well
as to compare the effectiveness of the wrinkle detection algo-
rithm against other general purpose 3D descriptors.

More precisely, in the case of the complete ironing pipeline,
the aim of the experiment is to determine the effectiveness of
the approach in a real world setting. This is achieved by man-
ually setting a clothing item on an ironing board and letting
the robot iron it autonomously, tracking the amount of wrin-
kles removed, as well as how long it takes to iron it in terms of
iterations and time.

To validate the performance of the wrinkle detection algo-
rithm individually, it will be applied to a 3D reconstruction of
a garment in the working setup, and the results will be com-
pared to the performance of a general purpose 3D descriptor,
RSD, to demonstrate the effectiveness of the perception algo-
rithm finding wrinkles.

7.3.2 Experimental Setup

For the ironing algorithm, the experimental setup is intended
to emulate a typical domestic environment. For this purpose, a
real ironing board was set up in our laboratory and fit with real
garments, and a standard unmodified electric iron was used to
iron the garments (Figure 7.9).

The robotic platform selected for the experiments was our
humanoid robot TEO [57], previously introduced in the unfold-
ing experiments section. As the main focus of this set of exper-
iments was validating the ironing algorithm, and not grasping
or dexterous manipulation, one of the hands of the robot was
removed, and temporarily replaced by the iron, fixed to the
robot’s wrist using custom 3D printed parts.
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Figure 7.9: Ironing setup for the ironing task. The humanoid robot
TEO is fitted with a functional iron, and the garment to be
ironed is manually placed in an ironing board in front of
the robot.

To obtain the force/torque feedback required for the ironing
path-following hybrid controller described in Section 5.6, the
humanoid robot is equipped with a JR3 6D force/torque sensor
on each wrist. For visual feedback of the environment and the
garment to be ironed, an ASUS Xtion PRO LIVE RGB-D sensor
is present on the robot’s head.

Similarly to the unfolding experiments reported in Section 7.2,
the RGB-D sensor obtains a 3D reconstruction of the working
scene using PCL’s implementation of the Kinect Fusion algo-
rithm. Both the pan and tilt degrees of freedom of the robot
head are required to move the sensor and achieve sufficient dis-
parity to generate a correct 3D reconstruction of the working
environment.

Once the scene is scanned, the 3D reconstruction obtained is
then fed as input for the ironing algorithm, that uses the gar-
ment data to generate the ironing path waypoints that the iron
has to follow to perform the ironing operation. The waypoints
are computed by the algorithm in the 3D reconstruction frame
of reference, so they must be converted back to the robot’s root
frame of reference before any manipulation operation can be
performed.
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For the evaluation of the ironing algorithm, two sets of ex-
periments are proposed to evaluate, respectively, the perception
algorithm (wrinkle detection) and the algorithm as a whole (in-
cluding the actual ironing operation). The values for the pa-
rameters of the ironing algorithm used in both experiments
were the following: 0.02 for the RANSAC threshold, 0.02 for
the normal estimation radius, 0.03 for the WiLD neighborhood
radius, 0.95 for the WiLD upper threshold, 0.4 for the WiLD
lower threshold, 11 for the erosion structuring element size.

The first set of experiments was designed to evaluate the ac-
curacy of the perception algorithm to detect wrinkled regions.
For this purpose, a garment was set up on the ironing board
by hand, and the scene was then scanned and reconstructed
by the humanoid robot. The garment was segmented from the
background using the algorithm described in Section 5.3, and
then the wrinkled regions were extracted using the algorithm
from Section 5.4.

The second set of experiments evaluates the performance of
the whole ironing pipeline by completely ironing a garment
with the humanoid robot. For each of the trials, the garment to
be ironed is placed manually and mostly flat over the ironing
board. Then, two soft wrinkles are created randomly by hand
over the garment, ensuring similar initial conditions for all the
trials, both in terms of garment state and pose, as well as pre-
senting the same number of initial soft wrinkles along all the
trials.

7.3.3 Experimental Evaluation

For the first set of experiments, where only the perception com-
ponent is being evaluated, only the wrinkle extraction is re-
quired to compare its performance to other methods. In this
case, the performance of the WiLD descriptor was compared
against the performance of the Radius-based Surface Descrip-
tor (RSD), using the Jaccard similarity index (JSI) as the metric:

JSI(A,B) =
|A∩B|

|A∪B|
(7.6)

Where A and B are the sets of detections to be compared.
To compute the JSI metric, the results from the WiLD and RSD
evaluations were compared with hand-labeled ground truth of
the 3D reconstructions.
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On the other hand, for the second set of experiments, that
evaluates the performance of the complete ironing algorithm,
a wrinkleness metric, representing how wrinkled the garment
surface is, is computed from the 3D reconstruction of the gar-
ment after each ironing operation. The wrinkleness metric can
be obtained for a given wrinkle-extracting function as follows:

wrinkleness =

∑
x⃗∈Gwrinkle(⃗x)

|G|
(7.7)

Where G is the set of points belonging to the garment and |G|

represents the cardinality of that set. This wrinkleness measures
the progress towards a completely ironed garment, so that the
ironing algorithm can be executed iteratively until the wrinkle-
ness value obtained is sufficiently close to 0 to be negligible. The
number of iterations required to reach that state, as well as the
value of the wrinkleness metric for each iteration are recorded
for each trial, along with the time elapsed in each iteration, to
offer additional insight about the performance of the method.

7.3.4 Experimental Results

The first set of experiments, to evaluate the ability of the percep-
tion algorithm to detect wrinkles, were composed of 10 trials:
5 with garments with 1 soft wrinkle and 5 with garments pre-
senting 2 soft wrinkles. Results of this set of experiments are re-
ported in Table 7.5, along with the time required for computing
both descriptors, using a machine with an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz processor and NVidia GeForce GTX
960 graphics card with PCL-1.7 over an Ubuntu GNU/Linux
distribution.

On average, WiLD presents a 25% better JSI compared to the
RSD, while performing over 40% faster. In terms of the preci-
sion measured with the JSI metric, the hypothesis is that WiLD
reaches a higher value as it has been developed specifically for
wrinkles and does not attempt to be a general descriptor as is
the case of RSD.

Regarding computation times, the complexity of both algo-
rithms depends non-linearly on the size of the input to process,
which is in the order of millions of points. For that reason the
measured times for both methods lie in a 30 s to 60 s interval,
depending on the method. Still, WiLD enables much faster pro-
cessing through a simple and multi-threaded implementation,
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Table 7.5: Results of the Ironing Perception Algorithm

RSD WiLD

Experiment JSI (%) Time (s) JSI (%) Time (s)

#1 36.67 52.12 68.41 36.07

#2 32.51 50.23 60.98 34.51

#3 44.90 52.46 67.39 36.69

#4 30.75 52.37 59.65 36.62

#5 41.12 53.24 61.94 38.06

#6 42.27 50.30 68.64 34.88

#7 48.84 49.72 64.02 34.88

#8 38.30 50.42 65.56 35.39

#9 31.07 49.68 67.03 34.23

#10 34.60 51.60 60.64 35.39

Mean 38.10 51.22 64.43 35.67

which could be further improved by using GPU for the compu-
tations instead of CPU multithreading.

To evaluate the performance of the full ironing pipeline, in-
cluding the actual manipulation of the iron to perform the
computed ironing paths, a second set of experiments was per-
formed. A total of 5 experiments were performed where the
robot had to autonomously and iteratively remove all wrinkles
present in a garment setup in the ironing board by hand. For
the manipulation control, the values of the Fd parameter used
are ((0,0,-60), (0,25,0)) sensor Internal Units (IU).

For each iteration performed, the values of wrinkleness were
recorded along with the average times for each iteration, and
are reported in Table 7.6. Note that the average times shown in
Table 7.6 only measure the elapsed time per ironing manipula-
tion operation. While intermediate wrinkleness values vary for
each trial, all of them converge to zero wrinkles after only 2

ironing iterations, which can be considered a very satisfactory
result.

The values of wrinkleness tracked for each iteration and trial
are can be also seen as a graph in Figure 7.10.

Finally, Figure 7.11 shows a sequence of frames which depicts
one of the ironing operations that was performed during these
experiments.
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Table 7.6: Results of the Ironing Algorithm

Experiment #1 #2 #3 #4 #5

Number of iterations 2 2 2 2 2

Avg. time (s) / iteration 71.827 67.803 72.561 75.684 63.684
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Figure 7.10: Wrinkleness on each experiment trial, from iteration 0

(initial wrinkleness) to iteration 2. No trial required more
than 2 iterations to achieve zero wrinkleness (i.e. no wrin-
kles between the WiLD thresholds could be found).

7.4 folding

This section describes the experiments for the folding algorithm
presented in Chapter 6. As the folding neural controller and
cloth state estimation model are an ongoing work, only partial
validation of the performance has been executed and reported
in this section. Still, and for the sake of completeness, the author
will include in this section his proposal of the required future
experiments for the validation of this approach, as well as a
thorough justification of the necessity and usefulness of each
proposed experiment.

7.4.1 Purpose of the Experiment

The folding experiments have two main objectives: to validate
the usefulness and accuracy of the FoldNet model for cloth
state estimation during folding, and to check if the improved
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Figure 7.11: Several frames of an ironing operation executed as part
of an experiment.
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state estimation surpasses the performance of both the original
neural controller as well as other state-of-the-art methods for
folding.

More precisely, the accuracy of the cloth state estimation has
to be measured and compared with existing methods to deter-
mine how precise is the estimation and what kind of estima-
tion errors are incurred by the method. The evaluation will be
performed through both simulated and real world images, to
assess the generalization capabilities of the method.

Additionally, the neural controller has to be evaluated exper-
imentally with the original and the improved state estimation
methods to determine if there is an improvement in perfor-
mance with the new approach, as expected. Correspondingly,
the improved version of the neural controller will be compared
with two state-of-the-art methods for folding: the triangular
and circular folding paths, to determine if there is an improve-
ment in accuracy with respect to them too.

7.4.2 Experimental Setup

For the evaluation of the cloth state estimation model, as well
as testing the results in simulation using the test set, real data is
required to validate the generalization capabilities of the model
once applied to real data. For that purpose, real data needs to
be captured and labeled for the validation of the method.

The proposed setup to perform the data capture would be
a setup in which several cloths of different properties are at-
tached, one at a time, to a flat working surface. A side camera
will be placed to capture a side view of the cloth strip being
folded, from which the actual shape of the cloth can be ex-
tracted while being folded, and measured. Another camera is
placed to capture an RGB image of the cloth from a different
point of view, calibrating the system to determine the relative
locations of the cloth strip and both cameras. Once the system is
calibrated and set up, a robot arm can proceed to fold the cloth
strip using different paths, in a similar way as how the syn-
thetic data was captured. The state estimation obtained from
the FoldNet model can be matched with the labeled data to
check the accuracy of the estimation. Figure 7.12 depicts the
proposed experimental setup.

For the neural controller evaluation, the ideal setup would be
one that replicates as close as possible the setup employed to
test the original controller, to be able to perform a comparison
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Figure 7.12: Proposed folding setup. A cloth strip is fixed to a flat
surface, ready to be manipulated by a robot arm, while a
pair of cameras gather different views of the cloth strip.
Camera 1 records a side view of the cloth that allows to
estimate the cloth shape while folding. Camera 2 obtains
an RGB image of the cloth that is used as input for the
estimation algorithm.

of both systems under similar conditions. Therefore, the setup
would feature a cloth strip attached to a white flat surface and
a external calibrated camera recording the scene to obtain the
visual feedback. The original robot used for the experiments
was a Franka Emika Panda robot, although other similar robot
arms such as the KUKA IIWA available in the CTU Prague labs
can be used instead.

Additionally, and to validate the usefulness of the approach
for a robot that could be deployed in a domestic environment,
one of the aims of this thesis, the performance of the neural
controller should be tested and evaluated in our humanoid plat-
form TEO as well.

7.4.3 Experimental Evaluation

To measure the performance of the cloth state estimation model
using the synthetic data test set, the estimated cloth shape is
matched with the actual shape deformation obtained from the
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simulation. The average error of all the 241 3D points that de-
fine the shape is computesp as:

Error =
1

N
·

N∑
i

√ 3∑
j

(Yij − Ŷij)2 (7.8)

Where N = 271 is the total number of 3D points that define
the cloth shape, Yij is the current coordinate (X, Y, or Z) of the
current point of the ground truth cloth shape, and Ŷij is the
corresponding coordinate of the estimated cloth shape.

For the real data, the metrics to be used would be identical to
the ones used with the synthetic data, with the only difference
being that the labels of the ground truth (the 241 3D points that
define the cloth shape) would have to be extracted from an RGB
image, either using classical computer vision techniques or by
hand. An alternative approach would be measuring the error of
each of the 241 estimated points with respect to the measured
shape, defined with either a higher resolution polygonal chain
or a continuous curve.

As for the neural controller, the same metric as the original
paper would be used: layer displacement measured from the
first contact point to both extremes after a folding operation.
Additionally, other metrics such as time required for the folding
operation or for computing the required visual feedback could
be incorporated.

7.4.4 Esperimental Results

As mentioned along the thesis, the proposed folding method is
an ongoing work, and therefore only partial validation through
some of the proposed experiments has been performed and is
reported in this section, leaving the remaining experiments as
future work.

The FoldNet cloth state estimation model has been tested
with the synthetic dataset generated from simulation using a
test set of 5712 elements with promising results. The results for
that preliminary testing are reported in this section, along with
a study of how the different parameters of the synthetic data
affect the accuracy of the results.

Using Equation 7.8, the FoldNet model obtained an aver-
age error of 0.008m ,computed throughout the test set exam-
ples. The standard deviation of the error was 0.003 69m, with
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the more accurate examples having an error of about 0.002m-
0.003m, and the less accurate having an error ranging between
0.03m and 0.04m.

Figure 7.13 depicts some of the examples showing all the ac-
curacy range. As can be observed, in the case of the examples
with a higher error, the shape of the cloth is still captured accu-
rately, but shifted from the actual shape location. This could be
due to the model not perceiving correctly the depth or scale of
the image, as having only a flat ground surface might not pro-
vide enough visual cues to estimate depth from a monocular
image.

In addition to the study of the accuracy of the model, average
error values were computed based on different parameters of
the synthetic dataset, to study the influence of different factors
on the accuracy of the estimation. The factors selected were
the folding path being used, the camera point of view and the
frame of the simulation. Figure 7.14 shows the different results
obtained.

In the case of the simulation frame, as expected, early frames
have less errors than later frames, as the cloth strip in a flat state
is simpler to estimate than the folded strip. In the case of the
different trajectories, the difference in errors between them is
not that significant, being only about 0.0006m between the best
and the worst trajectory errors. The factor that most influences
the accuracy of the estimation is the camera point of view, with
a difference of about 0.005m between the best and the worst
performances.

In the case of the camera point of view, the best results (left
side of the graph) correspond to camera poses closer to the
cloth and with a lower elevation angle from the ground, while
the worst results (right side of the graph) correspond to points
of view closer to a bird’s eye perspective of the cloth strip.

7.5 chapter summary

To test the validity of the algorithms presented in this thesis,
a thorough experimental evaluation was performed for all the
tasks of the laundry pipeline addressed in this work: hanging,
unfolding, ironing and folding.

For hanging, the experiments aimed to understand the effect
of time on the uncertainty of predictions about the behavior of
a garment about to be hanged, and to compare the performance
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Figure 7.13: Selection of cloth state estimation results. On the left, the
input image is shown; on the right, the estimation of the
model (blue) is shown along the ground truth (orange). It
can be observed that even in the cases with a larger mean
error (bottom figure), the model is still able to capture the
cloth shape.

of the presented HangNet model with a baseline provided by a
human expert.

For unfolding, two different approaches based on color and
3D data were evaluated and compared through extensive test-
ing with garments from 6 categories in three sets of experi-
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Figure 7.14: This figure shows the different errors classified accord-
ing to different factors: path used for folding (top left),
simulation timestep (top right) and camera point of view
(bottom left). The last figure (bottom right) serves as a
comparison of the different factors in the same scale.

ments. Both approaches were tested on a humanoid robot and
an industrial manipulator.

For ironing, two experiments were designed to independently
test the wrinkle detection capabilities of the perception algo-
rithm, as well as the whole ironing pipeline. These experiments
were conducted in an emulated domestic environment, with a
standard ironing board and iron, and uncontrolled light condi-
tions.

For folding, a study of the preliminary results obtained in
simulation was provided, along with directions about how to
perform an extensive evaluation of the complete folding algo-
rithm, including a proposed experimental setup and metrics as
future work.





8
R E S U LT S A N D C O N C L U S I O N S

Doing laundry is a complex process involving a pipeline com-
posed of several tasks that are very different in nature. This the-
sis has presented an automated approach to the different tasks
belonging to the laundry pipeline: hanging, unfolding, ironing
and folding. Each of these tasks has been analyzed and tack-
led individually by the author, leading to several methods, one
per task, that can be applied with different robotic platforms,
including a full-body humanoid robot.

This chapter aims to offer a discussion of the experimental
results presented in Chapter 7, examining the main contribu-
tions of this work to the state of the art on deformable object
perception and manipulation. Additionally, the limitations of
the different methods are discussed at the end of the chapter,
providing several possible lines of future work to address them.

8.1 progress beyond the state of the art

The aim of this section is to present the contributions of this the-
sis to the advance of the state of the art on garment perception
and manipulation. As the methods proposed to solve each of
the tasks in the laundry pipeline are very disparate, they will be
analyzed independently, and the contributions of each method
will be shown in the context of their corresponding task.

Amongst all the contributions listed below, the author would
like to highlight his work on robotic ironing as the most rele-
vant contribution of this thesis to the State of the Art on robotic
garment perception and manipulation. The proposed ironing
method improves existing state-of-the-art approaches by being
able to successfully remove wrinkles in a domestic, uncontrolled
environment using unmodified human tools. The contributions
of this method will be discussed in detail in the corresponding
section, Section 8.1.3. In addition to the scientific contributions,
the author would like to highlight the interest attracted by this
particular method since its publication in the International Con-
ference on Intelligent Robots and Systems (IROS), not only by
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the research community, but also by the general public, as it has
been featured in several international press publications1234.

8.1.1 Hanging

This thesis presents a detailed study of the feasibility of predict-
ing the dynamic behavior of a garment during the hanging task,
defined as dropping a clothing article over a hanger. To predict
the outcome of a hanging action, a synthetic dataset composed
by a total of 15 000 examples was obtained via deformable ob-
ject simulation.

Two models based on deep convolutional neural networks
were trained using the synthetic data to predict the behavior of
a piece of clothing when dropped over a hanger. Each of them
was trained for a different task, either determining if the gar-
ment will hang or fall (classification) or estimating the future
location of the garment after a given amount of time (regres-
sion). In addition, the performance of this method was com-
pared with the prediction abilities of a human expert, obtaining
very positive results.

8.1.2 Unfolding

The unfolding task is defined as fully extending a garment over
a flat surface, starting from a garment state in which some
parts of the garment are overlapping other parts. This thesis
introduces a model-less approach to garment unfolding that
requires no prior knowledge of the garment category to deter-
mine the most suitable actions to unfold a given garment. The
proposed method leverages a custom metric called bumpiness
in combination with a set of heuristics to determine both the
fold axis and the corresponding manipulation actions required
to unfold the garment.

The proposed method can be applied directly to depth data
gathered by a RGB-D sensor, making it color-independent and
immune to the patterns frequently found in garments. Addi-
tionally, the presented method does not require bi-manipulation

1 https://www.bbc.com/news/av/technology-40435011/

ironing-robot-tackles-creased-clothes, last visited 01-06-2020

2 https://www.newscientist.com/article/2138264, last visited 01-06-2020

3 https://www.digitaltrends.com/cool-tech/teo-robot-ironing-home/,
last visited 01-06-2020

4 https://gizmodo.com/1796380533, last visited 01-06-2020

https://www.bbc.com/news/av/technology-40435011/ironing-robot-tackles-creased-clothes
https://www.bbc.com/news/av/technology-40435011/ironing-robot-tackles-creased-clothes
https://www.newscientist.com/article/2138264
https://www.digitaltrends.com/cool-tech/teo-robot-ironing-home/
https://gizmodo.com/1796380533
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to spread the garment, although it can benefit from it, and has
been validated successfully on different robotic platforms. Such
platforms include a full-body humanoid robot and an indus-
trial manipulator. An extensive experimental evaluation is pro-
vided demonstrating the effectiveness of this approach.

8.1.3 Ironing

This thesis presents a method to perform robotic ironing on sim-
ple garments. The main contribution of the proposed method,
as opposed to other existing methods based on marked creases
detection, is that it focuses on achieving a feasible implementa-
tion in a domestic setting. As a consequence, this work removes
the need for an extensive control of the light conditions of the
working environment, a requirement of existing methods.

To be able to be deployed in an unmodified domestic setup,
this approach leverages the use of 3D perception to detect large
soft wrinkles, and force/torque feedback to perform the ironing
operation in a compliant manner. This way, the robot can iter-
atively iron a garment using the same unmodified tools that a
person would use (i.e. iron and ironing board).

To detect the soft wrinkle regions a novel 3D descriptor called
WiLD (Wrinkleness Local Descriptor) was developed that, as
opposed to other generic 3D descriptors such as RSD, is tai-
lored specifically to find such regions on garments. As the ex-
perimental results show, the WiLD descriptor is faster and more
precise than other generic alternatives, and allows the robot to
completely iron the surface of a garment in a few iterations.

8.1.4 Folding

This thesis presents a method for garment state estimation based
on a deep neural network applied to garment folding. The pro-
posed method, developed in collaboration with CTU Prague,
improves their original neural controller applied to the folding
task by estimating the shape of the garment being folded with
a higher detail -241 3D points- from purely visual feedback.

Although this method is an ongoing work, preliminary tests
show promising results in simulation. Additionally, a complete
experimental evaluation of the method on real robotic plat-
forms is proposed and will be performed in the future to fully
validate the method.
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In addition to the garment estimation method, a synthetic
dataset of 29 120 training examples for the cloth strip folding
task has been compiled from simulated data, with a large vi-
sual variability in terms of textures, illumination, background,
poses, etc, that will be released to the public domain accompa-
nying the pending publication of the method.

8.2 future lines of work

It is of great importance to reflect and offer an honest discus-
sion of the limitations of this work so that they can be taken
into consideration and addressed in the future. For the same
purpose, it is equally important to additionally propose possi-
ble improvements and future lines of research relative to this
work.

One of the main limitations of this work as a whole is the in-
dependence between the different tasks of the laundry pipeline.
Individually, the presented methods can be applied to solve
each of the tasks, but they still require some initial setup to
place the garment in the initial working conditions for each of
them. An interesting extension to this work would be to focus
on the intermediate steps to be performed between tasks, so
that the whole laundry pipeline could be executed end-to-end
without human intervention.

Regarding each of the individual tasks, their main shortcom-
ings will be analyzed individually in the following subsections.

8.2.1 Hanging

As observed in the results obtained during the hanging exper-
iments, one of the main limitations of the proposed deep con-
volutional neural network-based model is the decrease of ac-
curacy in the prediction as time advances. The cause of the de-
creasing accuracy is an increase in uncertainty as the model has
to predict the future of a chaotic system. This issue could be ad-
dressed by explicitly taking into account the temporal compo-
nent of the garment movement in the regression model, using
a different architecture such as a Recurrent Neural Network.

An alternative approach could be to integrate both regression
and classification models to increase the accuracy of the predic-
tions by training the model in two different populations: the
samples where the garment falls to the floor and the samples
in which the garment remains hanged.
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The classification model surpasses the performance of a hu-
man expert for all metrics computed, except for the recall of
the hanged class, which can be seen as a limitation of this
model. This might be due to the imbalance of the hanged class
of the synthetic dataset used to train the model, and could be
improved by obtaining more examples of the hanged class to
balance the dataset.

Finally, this study works as a first approach to the hanging
task that paves the road for more complex solutions involving
experiments with real garments to validate the results obtained
with the synthetic data, as well as the addition of a controller
that uses this prediction model to successfully hang garments.

8.2.2 Unfolding

As mentioned in the corresponding section (Section 7.2.4), the
performance of the Segmentation Stage has been improved by
the color-based approach with a reconstruction-based approach.
However, for very thin garments, the reconstruction approach
might result in a bad segmentation, as RANSAC sometimes
confuses thin parts of the garment as being part of the table. In
these cases, some color information may increase the accuracy
of the segmentation.

Regarding the Clustering Stage, the overall performance of
the stage might be improved with a fine tuning of the water-
shed parameters based on the garment material or thickness.
Other clustering algorithms can be considered, aimed at in-
creasing robustness against wrinkles, which can result in small
clusters within the overlapped regions. Due to the recent suc-
cess of convolutional neural networks for object segmentation,
a possible future line of work might be to replace the Segmen-
tation and Clustering stages with a model able to directly seg-
ment the overlapping regions from the RGB-D (or even just
RGB) data from the sensor.

As the presented method is focused on visual perception,
there is room for more work to be developed in the domain of
manipulation. One aspect to improve could be grasping, by per-
forming material studies for increasing gripper-garment fric-
tion, and adding tactile feedback to avoid grasping both the
overlapped region and the underlying garment. Additionally,
the orientation of the gripper, as well as the trajectory for the
pick and place operation have been manually selected and fixed
for all the experiments, so further research is required to deter-
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mine if this strategy is optimal or results could be improved
by selecting a trajectory and gripper orientation based on each
particular unfolding case.

8.2.3 Ironing

Due to the great diversity of garment shapes, textures, materi-
als and decorative elements, ironing is a challenging task to au-
tomate. The proposed method, as a first approach to a practical
robot ironing process, is focused in ironing simple garments.

This initial work can be extended by the addition of a mecha-
nism to detect and take into account different elements present
in garments, such as buttons, zippers or other decorative ele-
ments. Ideally, the generated ironing trajectory should avoid
these elements. Other garment parts, such as collars, cuffs or
pockets require different ironing approaches, that in addition
have to be adapted depending on their size and location. De-
tecting such elements and incorporating their location in the
trajectory generator would benefit the proposed method.

Another limitation of the current method is the color unifor-
mity constraint, that limits this approach to garments with a
single color. A more relaxed constraint, or the incorporation of
other segmentation methods such as convolutional neural net-
works would allow this algorithm to work with garments with
more than one color, or even decorative patterns.

Regarding manipulation, position and velocity control have
been tested with force/torque feedback. While velocity control
reduces the jerk of the movements, it must be bounded to avoid
excessive joint space velocities when the determinant of the Ja-
cobian is near zero. There is obvious room for testing torque
control using the transposed Jacobian matrix JT which may en-
able enhancements through active compliance.

In addition, due to the complexity of the ironing task, the
current approach only tackles the actual ironing action, but this
approach could be extended by including the remaining steps
of the ironing process to have a fully automated process. One
of these steps is the manipulation of the garment for its place-
ment in the ironing board. Once the current garment patch is
correctly ironed, this garment has to be removed and, if neces-
sary, placed again in the next configuration.

Another possible step that might improve the performance
of the ironing method is to pull the garment once it has been
placed on the ironing board, to reduce the amount of soft wrin-
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kles initially present in the garment before ironing. This step
would require a robot able to perform bimanipulation to pull
to garment while holding the garment in position.

8.2.4 Folding

Even though this thesis has presented some preliminary results
of our proposed folding method, it is still an ongoing work that
is yet to be refined and published. As such, most of the future
lines of work that this section would have to introduce, have
already been discussed in previous sections. Therefore, this sec-
tion will serve as a review and summary of all the proposed
lines of action to be continued in the future.

The most important line of work that has be completed in the
near future is a full experimental evaluation of the proposed
cloth state estimation method, both in simulation and in real
world conditions. The experiments proposed in Section 7.4.2
will validate the accuracy of the state estimation model alone,
by comparing the shape estimations obtained through the Fold-
Net model with synthetic data and hand-labeled data, measur-
ing the magnitude of the estimation errors and comparing them
with state-of-the-art methods.

Once the validation of the state estimation method has been
performed individually, the complete improved neural controller
has to be tested with a real robotic manipulator to measure the
accuracy of the folding controller on real cloth strips. The exper-
imental setup proposed for such experiments tries to replicate
as close as possible the original experiments on Petrík’s neural
controller, so that the results obtained in the experiments can
be comparable. In addition, experiments with our humanoid
robot TEO are proposed to validate the usefulness of the neu-
ral controller on a real domestic setting.

Along with the experiments proposed in this work, addi-
tional extensions can be made to the folding method. For in-
stance, the neural controller could be extended to be able to
represent a more complex policy, which might increase the per-
formance of the controller. The current controller works on sim-
ple cloth strips that serve as a base to extend the method to
more complex cloth geometries, such as the ones found in real
garments. Finally, this work focuses on a single folding opera-
tion, but it could be extended to a complete folding sequence,
validating the approach.
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