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Highlights 

 Systematic literature review on objective and automated assessment of surgical technical skills

 537 papers published after 2013 screened and 101 analyzed in detail

 Main sensors: mechanical/electromagnetic for tool tracking and IMU for body tracking

 Indicators (e.g., path length, smoothness) to distinguish between levels of expertise

 SVM and Neural Networks are the main methods/algorithms for processing the data

Abstract: The assessment of surgical technical skills to be acquired by novice surgeons has been traditionally done by 
an expert surgeon and is therefore of a subjective nature. Nevertheless, the recent advances on IoT (Internet of Things), 
the possibility of incorporating sensors into objects and environments in order to collect large amounts of data, and the 
progress on machine learning are facilitating a more objective and automated assessment of surgical technical skills. This 
paper presents a systematic literature review of papers published after 2013 discussing the objective and automated 
assessment of surgical technical skills. 101 out of an initial list of 537 papers were analyzed to identify: 1) the sensors 
used; 2) the data collected by these sensors and the relationship between these data, surgical technical skills and surgeons’ 
levels of expertise; 3) the statistical methods and algorithms used to process these data; and 4) the feedback provided 
based on the outputs of these statistical methods and algorithms. Particularly, 1) mechanical and electromagnetic sensors 
are widely used for tool tracking, while inertial measurement units are widely used for body tracking; 2) path length, 
number of sub-movements, smoothness, fixation, saccade and total time are the main indicators obtained from raw data 
and serve to assess surgical technical skills such as economy, efficiency, hand tremor, or mind control, and distinguish 
between two or three levels of expertise (novice/intermediate/advanced surgeons); 3) SVM (Support Vector Machines) 
and Neural Networks are the preferred statistical methods and algorithms for processing the data collected, while new 
opportunities are opened up to combine various algorithms and use deep learning; and 4) feedback is provided by 
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matching performance indicators and a lexicon of words and visualizations, although there is considerable room for 
research in the context of feedback and visualizations, taking, for example, ideas from learning analytics. 

Keywords: technical skills, surgery, IoT, sensors, statistical methods, algorithms, literature review. 

1. Introduction
The acquisition of surgical technical skills is fundamental for any surgeon, both in open surgery and in less 
invasive techniques, such as robot-assisted laparoscopic surgery [1]. Traditionally, the assessment of 
surgical technical skills has been done by direct observation and feedback from an expert surgeon [2]. This 
method, although still the most used today, is a subjective method that presents many problems of 
homogeneity and can be influenced by the interrelationships between the trainee (novice surgeon / student), 
the mentor (expert surgeon / teacher) and the environment in which the learning takes place, as well as by 
personality traits of the trainee and the mentor [3]. 

A number of rating scales have been defined with the aim to structure and make the assessment process of 
surgical technical skills more objective. Some of these rating scales are used to assess surgical technical 
skills in general, such as GRS (Global Rating Scales) [4], OSATS (Objective Structured Assessment of 
Technical Skills) [5], and GEARS (Global Evaluative Assessment of Robotic Skills) [6], while some others 
are used to assess specific surgical technical skills by procedure, such as GAGES (Global Assessment of 
Gastrointestinal Endoscopic Skills) [7], in the case of digestive endoscopy. These rating scales have been 
validated in numerous surgical procedures and have helped to homogenize the assessment process of 
surgical technical skills, by reducing subjectivity in the scores that expert surgeons give to novice surgeons 
[8]; however, the application of these rating scales is not always systematic, and there is a major problem 
due to the low teacher-student ratio (one-to-one for certification purposes and somewhat higher, e.g., one-
to-fifteen in training workshops). In addition, in order to increase objectivity and avoid unbiased 
assessment, not only it is important to standardize the rating scales, but also the types of exercises on which 
these are applied, especially when the assessment is used for certification purposes; this is the case with 
e.g., the 5 FLS (Fundamentals of Laparoscopic Surgery) exercises endorsed by the American College of
Surgeons (ACS) in the specific domain of laparoscopic surgery [9]. Therefore, it is necessary to evolve the
assessment of surgical technical skills towards more objective and automated processes in order to optimize
the teacher-student ratio, both in the case of summative assessment (for certification purposes), and in the
case of formative assessment (for the continuous improvement of novice surgeons) [8].

Training novice surgeons in surgical technical skills faces similar problems to those of assessing surgical 
technical skills [10]. Traditionally, a novice surgeon was trained alongside an expert surgeon by seeing the 
technique as a first step. Then, the novice surgeon helped the expert surgeon by doing minor tasks in some 
procedures (e.g., handling the camera in laparoscopic surgery). Finally, the novice surgeon participated 
directly in certain procedures, progressively increasing the degree of difficulty of the tasks assigned. This 
approach has evolved over time to improve patient safety by introducing earlier stages in the training 
process that must be completed by the novice surgeon before any contact with the patient. This evolution 
has led to safer training models that are widely used around the world [11], such as the pyramid training 
model in the case of laparoscopic surgery [12], where novice surgeons begin their training with simulators 
(mainly box trainers and in some cases virtual simulators) [13][14][9][15], then continue their training with 
animals, and finally go to the operating room to do surgery with real patients. Nevertheless, despite this 
evolution and improvement of the training process through several stages (i.e., simulator, animal, patient), 
each of these stages still presents the same recurrent problems that also appear in the assessment of surgical 
technical skills: the difficulty of measuring and assessing progress in the training process of a novice 
surgeon; the need to improve the teacher-student ratio; and the need for a sequence of standardized exercises 
in the curriculum to facilitate objective assessment and certification at each learning stage [8]. 
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The technological advances in recent years, in particular the development of the so-called Internet of Things 
(IoT), have made it possible to incorporate sensors into all kinds of objects and environments with the aim 
to design new training settings and collect large amounts of data, which can be then processed with artificial 
intelligence techniques and machine learning algorithms [16]. In the case of training and assessment in 
surgery, IoT offers a great opportunity since there are various types of sensors which can be added to the 
surgeon, the instruments or the environment, and that can help to better understand, assess, and optimize a 
surgical procedure, not only during training but also in professional surgical practice. Nonetheless, although 
it is easier to add sensors to the more standard parts in surgical settings (surgeon and instruments) there are 
more difficulties in adding sensors to non-standard parts in surgical settings such as the patient or the 
environment. Advances in the use of IoT in surgery are rapid and promising with different systems and 
architectures proposed which could be useful as a support in the training of novice surgeons, as well as 
machine learning algorithms which could be useful to automatically process the large amounts of data 
collected and, in this way, assess the surgical technical skills in a more objective and automated manner 
[17]. 

There are already some systematic literature reviews (SLRs) addressing the objective and/or automated 
assessment of surgical technical skills [18][19][20][21][22][23]. Nevertheless, from a clinical point of view, 
existing SLRs focused on particular techniques (e.g., robotic surgery [18] or laparoscopic surgery 
[19][20][21]), particular procedures (e.g., mastoidectomy [22]), or specifically in the analysis of the 
methods used for each procedure (e.g., tool/hand/eye motion tracking [23]). From a technical point of view, 
existing SLRs analyzed the sensors (but without making explicit references to IoT), the data collected, and, 
in some cases, even the statistical techniques, but the circle is not closed including the feedback mechanisms 
that are used to provide the conclusions to the end user. Therefore, there is currently no comprehensive 
SLR on objective and automated assessment of surgical technical skills with a focus on IoT and that covers 
the full life cycle, which includes the type of sensors used, the data collected by these sensors (metrics and 
indicators), the statistical methods and algorithms used to process these data, and the feedback provided to 
the trainees based on the outputs of these statistical methods and algorithms.  

In this context, this SLR is built upon the following four research questions (RQs). 
● RQ1: Which sensors have been used to measure surgical technical skills?
● RQ2: Which data have been collected by sensors and served to differentiate between levels of

expertise when assessing surgical technical skills?
● RQ3: Which statistical methods and algorithms have been applied to data in relation to the

assessment of surgical technical skills?
● RQ4: How has feedback been provided to trainees in the context of assessment of surgical technical

skills?

This SLR aims to provide insights on how IoT can help to automate and make the assessment of surgical 
technical skills more objective, thus tackling also the problem of the low teacher-student ratio in traditional 
assessment approaches. This SLR can be useful for researchers and developers so that they can replicate 
similar IoT-supported scenarios or create new ones for the training of surgical technical skills, know what 
indicators may be useful for differentiating between surgeons’ levels of expertise, as well as identify 
possible drawbacks and future research directions. 

This paper is structured as follows. Section 2 presents the methodology used to identify the relevant 
publications on automated assessment of surgical technical skills with IoT systems. Section 3 answers the 
four research questions based on the analysis of the publications identified in the previous section. Section 
4 discusses the limitations of this literature review and suggests future research directions. The conclusions 
of this work are drawn in section 5. 
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2. Methods
2.1. Eligibility Criteria 

This systematic literature review (SLR) was done following the recommendations of PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis) statement [27]. For this SLR, six terms need 
to be defined: 1) “surgical technical skill” is defined as a manual ability required to perform the surgery in 
the operating room, which includes dexterity aspects such as efficiency, economy of movement, bimanual 
dexterity or tissue handling, among others; 2) “assessment” is defined as the evaluation of the surgical 
student’s performance in his or her technical tasks (the assessment can be subjective, if an expert surgeon 
assesses the student’s technical skills typically through rating scales, or objective, if automated methods, 
typically based on the collection of large amounts of quantitative data, are used); 3) “metrics” are defined 
as low-level quantitative data (crude measures) collected by IoT systems in scenarios where surgical 
students’ technical skills are assessed; 4) “indicators” are defined as high-level quantitative data (calculated 
measures) obtained from low-level data, and used to assess surgical students’ technical skills; 5) “IoT” is 
defined as a system of interrelated devices (including sensors) that collect and exchange data between them 
without requiring human interaction; and 6) “machine learning” is defined as the set of advanced 
techniques and methods that allow the processing of data obtained from IoT systems in order to objectively 
and automatically assess surgical technical skills. 

2.2. Search strategy 

The first step was the review of three doctoral dissertations (and their references) on automated methods 
for the assessment of surgical technical skills (two of them written in Spanish and the third one in English) 
[19][20][21]. These three doctoral dissertations included literature reviews until 2014 and focused on 
various aspects in the specific field of laparoscopic surgery. Sánchez Margallo [19] analyzed the motion-
based metrics and indicators used in the literature to assess surgical technical skills before 2014. Enciso 
Sanz [20] analyzed statistical approaches and metrics used to assess surgical technical skills before 2014. 
Kyaw [21] analyzed statistical methods and algorithms used to assess surgical technical skills before 2013. 
Although these two publications refer specifically to laparoscopic surgery, most of the problems they 
address are common to other surgical procedures. The second step was the review of three more recent 
related SLRs (and their references) [18][22][23]. These recent SLRs focused on particular techniques [18], 
particular procedures [22], or specifically in the methods used to assess surgical technical skills [23]. The 
review of all these SRLs served to delve deeper into the field and identify the key terms that constitute the 
query presented and justified in Table 1. This query was run in late 2019 on the scientific database Scopus, 
which includes several medical scientific databases, such as PubMed and Medline, resulting in 534 articles 
obtained. It is noteworthy that the three doctoral dissertations [19][20][21] did not appear in the results of 
running the query (as they are in Spanish and/or were published before 2014), while the three more recent 
literature reviews [18][22][23] did appear in the results of the query. 

Table 1. Query and justification. 

Objective Query* Justification 

Context 
To review articles from the 
literature on the field of 
surgical technical skills 

(“surgery” OR 
“surgical” OR 
“surgeon”) AND 

- General terms such as “medical”, “medicine”, or “clinical” are discarded because they 
are too generic and do not refer specifically to studies on surgical technical skills [23].

RQ1 
To identify types of 
sensors used to measure 
surgical technical skills 

(“motion” OR 
“tracking” OR 
“force”) AND 

- Terms are selected based on the most common actions by surgeons [19].
- General terms such as “sensors”, “IoT” or “Internet of Things” are discarded because 
of their low adoption in the field [24][25]. 
- Specific sensors, such as “accelerometer” or “electromagnetic”, are discarded since 
they are typically included in the action of the surgeon to be measured [26]. 
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RQ2 
To identify data collected 
(raw and high-level data) 
on surgical technical skills 

(“skill” OR 
“dexterity”) 
AND 

- Terms in the query refer to “skill” and the most common related term [19][20][21].
- Other related terms, such as “competence”, “competency” or “expertise” [23], are 
discarded because they do not add relevant papers.

RQ3 

To identify statistical 
methods and algorithms 
used to process the data on 
surgical technical skills 

(“classification” 
OR “assess*” 
OR “predict*”) 

- Terms in the query are selected based on the most common purposes for the analysis
of the data collected [19][20][21]. 
- General terms, such as “Training” and “education*”, are discarded as they do not focus 
on assessment of surgical technical skills.
- Specific terms, such as “data mining”, “machine learning” or “Learning Analytics” 
are discarded because of their low adoption in the field.

RQ4 
To identify feedback 
mechanisms for the trainee 
on surgical technical skills 

- 

- General terms such as “feedback” are discarded because the terms used to describe the 
feedback are highly dependent on the type of exercises which typically suffer from lack 
of standardization. In addition, the general term does not add relevant papers. 
- Feedback is analyzed from the papers found with the query, without including 
additional terms for specific feedback.

*Query applied on title, abstract and keywords for papers published after 2013.

2.3. Study selection 
Figure 1 presents the PRISMA flow chart [27] followed in this SLR. A total of 534 articles were obtained 
after running the query. After adding the three above mentioned doctoral dissertations [19][20][21] an initial 
set with 537 publications was obtained. A researcher reviewed each publication with the support of three 
additional senior researchers to reach consensus in case of uncertainty. Exclusion criteria were: 1) non-
journal or non-conference publications (conference reviews, editorial commentaries and errata were 
discarded); 2) non-English language publications; 3) publications not discussing metrics, indicators or tools 
for the objective and/or automated assessment of surgical technical skills; and 4) publications not using IoT 
systems for the objective and/or automated assessment of surgical technical skills (e.g., articles assessing 
surgical technical skills through video/image processing, or through Virtual Reality –VR– simulation 
games with specific VR indicators such as blood loss or volume of tumor removed were discarded). The 
title and abstract of each publication were screened in the first phase according to the exclusion criteria; 
this narrowed the publication set from 537 to 165. The full articles were assessed in the second phase 
according to the exclusion criteria; this narrowed the publication set from 165 to 101, which is the final 
number of articles included in the analysis. All 101 publications are listed in the references section of this 
paper. 
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Figure 1. PRISMA flow chart of the systematic literature review. 

3. Results
After agreeing upon all articles that were to be included in the analysis, relevant information was 
systematically extracted from each of them, being shared through a common spreadsheet. The extracted 
information was aimed at answering the four Research Questions (RQs), and thus the focus was on: 1) 
sensors used; 2) data collected; 3) statistical methods and algorithms used; and 4) feedback provided. Figure 
2 summarizes the analysis items from the identified articles. Next subsections present the results for each 
of the four RQs. 

Figure 2. Analysis items from identified articles. 
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3.1. RQ1: Which sensors have been used to measure surgical 
technical skills? 

IoT systems used in surgery include sensors that collect quantitative data that can be used for the objective 
and automated assessment of surgical technical skills. There are several types of sensors that are used alone 
or in combination with other sensors. Table 2 shows the sensors found in the 101 identified articles. For 
ease of explanation, the sensors are organized into four main categories: 1) tool motion; 2) body motion; 
3) cognitive load; and 4) object/tissue interaction.

Table 2. Sensors used to collect data and the corresponding references (one paper may include several sensors). 

Category Sensors Advantages Disadvantages # Papers References 

Tool 
motion 

Mechanical 
- Good accuracy 
- Robust against interference
- Sterilizable 

- Ergonomic problems
- Limited range of motion due to 
physical connection
- Less portable 

26 

[28][29][30][31][32][33][34]
[35][36][37][38][39][40][41]
[42][43][44][45][46][47][48]
[49][50][51][52][53] 

Electromagnetic 
(EM) 

- Good accuracy in low ranges
- Reduced size 
- Intermediate cost
- Line of sight not required

- Rapid decrease in precision and 
resolution with distance 
- Affected by the environment (metal 
and magnetic objects) 
- Sensors are wired
- Low sample rate 

18 
[23][44][54][55][56][57][58]
[59][60][61][62][63][64][65]
[66][67][68][69] 

Inertial 
Measurement 
Units (IMU) 

-High sample rate - Cumulative error
- Wired to provide power 10 [42][46][70][71][72][73][74]

[75][76][77] 

Optical markers 

-Accuracy
-Robustness (No dependence 
on objects in its environment) 
-Large Range 
- Wireless position markers

- Requires line of sight
- Optical markers are relatively high 7 [71][78][79][80][81][82][83] 

Active Infrared 
Sensors (AIR) 

- Large range
- Good accuracy
- High resolution

- Requires line of sight
- Affected by the environment (light, 
some materials)
- Commercial devices are too 
expensive

1 [84] 

Acoustic - High range 
- Low cost

- Slow update rates
- Speed of sound affected by 
environmental conditions 

1 [85] 

Flexion sensor for 
tool opening 
bending 

- Low cost
- Easy to use 
- Detects high range of bending 
angles

- Errors over time due to changes in 
sensor flexibility 
- Limitation of movement by wiring 

1 [63] 

Body 
motion 

Inertial 
Measurement 
Units (IMU) 

- High sample rate - Cumulative error
- Wired to provide power 14 [8][23][24][25][26][86][87] 

[88][89][90][91][92][93][94] 

Electromagnetic 
(EM) 

- Good accuracy in low ranges
- Reduced size 
- Intermediate cost
- Line of sight not required

- Rapid decrease in precision and 
resolution with distance 
- Affected by the environment (metal 
and magnetic objects) 
- Instrument sensors are wired
- Low sample rate 

6 [8][95][96][97][98][99] 

Optical markers 

- Accuracy 
- Robustness (No dependence 
on objects in its environment) 
- Large Range 
- Wireless position markers

- Requires line of sight
- Optical markers are relatively high 5 [51][77][100][101][102] 
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Active Infrared 
Sensors (AIR) 

- Large range
- Good accuracy
- High resolution

- Requires line of sight
- Affected by light/objects in the 
environment
- Commercial devices are too 
expensive

2 [23][103] 

Flexion sensor for 
fingers joint 
bending 

- Low cost
- Easy to use 
- Detects high range of bending 
angles

- Errors over time due to changes in 
sensor flexibility 
- Limitation of movement by wiring 

1 [26] 

Cognitive 
load  

Smart glasses 
(eye tracking) 

- Natural movement and 
unobstructive

- Expensive 
- Some people cannot work with the 
device 
- Calibration required (and this 
process takes some time). 

9 [23][29][104][105][106] 
[107][108][109][110] 

Electroencephalo
gram (EEG) 

- High precision in time 
- High sample rate 
- Rapid signal changes can be 
detected

- Poor spatial precision
- Difficult to determine source origin
- Limitation of movement by wiring

3 [87][94][111] 

Electromyograph
y (EMG) 

- High sample rate 
- Noisy, weak signals with 
interference caused by other muscles 
(difficult to filter) 
- Limitation of movement by wiring

2 [8][87] 

Electrodermal 
activity (EDA) 

- High sample rate 
- Easy to use 

- Sometimes time affects the 
polarization in the electrodes, and 
therefore the precision
- Limitation of movement by wiring

2 [8][87] 

Heart Rate 
Variability 
(HRV) 

-Easy to use 
- Low precision due to movement and 
skin types
- Limitation of movement by wiring

1 [87] 

Object / 
Tissue 
interaction 

Force sensor - Very thin and flexible 
construction

- Accuracy could vary depending on 
device and range of force applied 10 [31][54][64][66][71][75] 

[112][113][114][115] 

The main purpose for using sensors in a surgical procedure is to track tool motion (59 different articles); 
this is done by incorporating sensors that capture motion in surgical instruments, such as catheters, needles, 
graspers or scissors [31][55][70][75][80]. Sensors are also used to track motion in the surgeon’s body 
during a surgical procedure (25 different articles); this is done by incorporating sensors which capture 
motion typically on the surgeon’s hands, wrists, arms or head [86][91][94][99][103]. In addition, sensors 
are also used to measure the cognitive load of the surgeon (13 different articles), incorporating sensors 
that collect activity on the surgeon’s eyes, brain, muscles, heart or skin [8][87][110]. Finally, it is also 
possible to add sensors on other objects and/or tissues (10 articles) typically to measure the force used by 
the surgeon during the surgical procedure (e.g., when removing a gauze, staples, or the retrieval bag used 
when removing the appendix) [54][64][113] .  

Sensors can be used for different purposes related to the assessment of surgical technical skills and have 
both advantages and disadvantages. The most common type of sensors are mechanical sensors (26 
articles). Mechanical sensors have a high precision in movements, are immune to interferences and can be 
sterilized. However, their ergonomics can affect the surgeon’s movement during the execution of the 
surgical procedure. Moreover, mechanical sensors have a limited range of movement due to their wired 
connection and are more difficult to move due to their size [28]. Electromagnetic (EM) sensors are also 
very common (24 articles) due to their reduced size and cost compared to mechanical sensors. However, 
their low latency, wired connection and interferences with metallic objects can affect the quality of the data 
collected [65]. Inertial Measurement Units (IMUs) are also very popular (24 articles) since they can be 
found in small and inexpensive devices. IMUs combine gyroscopes and accelerometers and allow the 
measurement of g-forces, angular rates and orientations, taking samples at a high rate. However, IMUs may 
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need wires for power supply and have accumulative errors over time, which may affect the quality of the 
data collected [71]. Optical markers (12 articles) are a type of passive infrared sensors which are 
frequently used in motion capture since they can be accurately detected and have a reasonable range and 
precision in movements, although they present problems when there is not a straight line of sight; this same 
problem is also found in Active infrared sensors (AIR) (3 articles) [84]. Other popular sensors are force 
sensors (10 articles), although they require the isolation of friction forces and involuntary vibrations for a 
better precision [54], and smart glasses (9 articles), which are specifically used to analyze the surgeon’s 
eye activity (gaze patterns, eye blinking, etc.) and contain more expensive sensors [104][106]. Other sensors 
used to collect physiological information of the surgeon during the surgical procedure are 
electroencephalogram (EEG) (brain activity), electromyography (EMG) (muscle activity), 
electrodermal activity (EDA) (sweat), or heart rate variability (HRV) [87]. Nevertheless, the wires in 
these sensors limit the surgeon’ s range of movement. In addition, the data they collect is not very useful 
for the objective and automated assessment of surgical technical skills [8]. One last type of sensor, but with 
a very low use and for a very specific purpose, are flexion sensors (to measure surgeon’s fingers joint 
bending [26] and tool opening bending [63]). 

In summary, there are some research opportunities regarding the use of sensors for the objective and 
automated assessment of surgical technical skills. In relation to the movement of both instruments and 
surgeon’s body, although there are a number of related publications, there are still research gaps on the 
reduction of the weight of sensors, the increase in the range of movements (for instruments and surgeons’ 
body), and the creation of wireless IoT systems [28]; sensors can also be enhanced to have a higher number 
of Degrees of Freedom (DoF), in order to collect more data with one single sensor, as it is the case of 
Genovese et al. [72], who used a sensor with nine DoF to collect three-axis orientation, as well as three-
axis linear and angular velocities. In relation to biometric signals aimed at representing the cognitive load 
of the surgeon, it is necessary to create IoT systems that allow the collection of more useful data, perhaps 
by combining multiple biometric signals at once [8]. In relation to forces, more research work is needed to 
reduce friction forces and vibrations during surgical procedures in order to obtain higher quality data. 
Finally, it is important to note that some data are currently obtained using cameras and image processing, 
rather than sensors, such as perpendicular error or needle angle from plane [119]. Therefore, it is important 
to create sensor networks that allow the incorporation of data, not only from physical sensors but also from 
other less invasive sources of information such as image processing. All in all, more research is needed to 
integrate sensors in IoT systems to collect different types of data, such as tool motion, surgeon’s body 
motion, surgeon’s cognitive load, and forces applied to objects or tissues, and share all that quantitative 
data within an IoT network; in that context, it is worth noting the challenge of matching timestamps in order 
to combine data when using a large variety of sensors [24]. In addition, it should be noted that there is 
considerable research on the use of sensors in the elements that are common in all procedures (e.g., 
instruments and surgeon’s motion), but there is very little research on the use of sensors on the elements 
used in specific exercises (all the related efforts have focused on measuring the force applied to 
objects/tissues), hence the importance of standardizing first the types of exercises (as is the case with the 5 
FLS exercises) [9]. 

3.2. RQ2: Which data have been collected by sensors and served 
to differentiate between levels of expertise when assessing 
surgical technical skills? 

Sensors collect quantitative data that can be used for the objective and automated assessment of surgical 
technical skills. The raw data collected by sensors are called metrics, while the calculated measures obtained 
after processing raw data are called indicators. Indicators are important when making decisions, for 
example, to differentiate between various levels of expertise when assessing trainees’ performance (e.g., 
novice surgeon, intermediate surgeon, advanced/expert surgeon). The indicators found in the 101 identified 
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articles have been organized into three categories: 1) Tool and body motion tracking indicators; 2) Eye-
tracking indicators; and 3) Other indicators. Two of the most popular rating scales, OSATS [5] and 
GEARS [6], have been taken as a reference to identify the main eight surgical technical skills: 

● Bimanual dexterity (BD): Independent use of both hands.
● Depth perception (DP): Instruments handling to the target plane.
● Economy (EC): Smooth progress and economy of movement.
● Efficiency (EF): Optimization of movements made per time unit.
● Hand tremor (HT): Minimization of hand tremor in movements.
● Mind control (MC): Management of the mental workload in a surgical procedure.
● Precision (P): Precise movements from one point to the next one.
● Respect for tissue (RT): Tissue handling to minimize damage.

3.2.1. Tool and body tracking indicators 
There are numerous indicators related to tracking the tools the surgeon uses during a surgical procedure 
(e.g., needles or scissors) and the surgeon’s own body (e.g., hands or arms). For a better organization, the 
indicators found in the 101 identified articles related to tool and body tracking are organized into five types: 
a) Position; b) Velocity; c) Acceleration; d) Orientation; and e) Force. It is important to note that some
indicators, such as those related to velocity and acceleration, are usually calculated from the position values.
Table 3 (position indicators), Table 4 (velocity indicators), Table 5 (acceleration indicators), Table 6
(orientation indicators) and Table 7 (force indicators) detail the indicators of each type, pointing out the
surgical technical skills that can be assessed with each indicator and the articles that used each indicator. In
addition, Figure 3 summarizes the indicators of each type that can be used to distinguish between two or
three levels of expertise (novice surgeon, intermediate surgeon and advanced/expert surgeon) as detailed
throughout this subsection.

Figure 3. Indicators with significant differences between levels of expertise (novice surgeons, intermediate surgeons and advanced 
surgeons): a) position; b) velocity; c) acceleration; d) orientation; and e) force (see Table 3 - 7) for a full list of indicators). Those 
indicators that can be used to distinguish between the three levels of expertise are in the center of the corresponding triangle. 
Those indicators that can be used to distinguish between two levels of expertise are on the side of the corresponding triangle. 
Indicators for which no significant differences between levels of expertise were found are not shown in the corresponding triangle. 
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Regarding indicators related to position (see Table 3), path length is the most common indicator used (45 
articles) [61][64][65][71][78][80][100][101][103][116]. This indicator has shown significant differences 
between novice, intermediate and advanced surgeons when assessing the surgical technical skill called 
economy of movement (EC) in complex tasks and with the non-dominant hand [79], and between 
intermediate and advanced surgeons with the dominant hand [66]. Other indicators that have shown 
significant differences between the three levels of expertise are: depth perception [46] (8 articles) to assess 
the surgical technical skill also called Depth Perception (DP); range of work (5 articles) [92] to assess EC, 
especially with the right part of the body; and visible time (5 articles) [79] to assess the surgical technical 
skill called Efficiency (EF). Indicators that have shown significant differences between novice and 
advanced surgeons are: economy of movement (10 articles) to assess EC [60], working volume (7 articles) 
to assess EC [82][101], bimanual dexterity obtained through position (6 articles) to assess the surgical 
technical skill also called Bimanual Dexterity (BD) [44][46], perpendicular error (6 articles) to assess EC 
and Precision (P) [60], economy of area (5 articles) to assess EC [82], end-point error (3 articles) to assess 
EC and P [32][52], approaching time (2 articles) [96] to assess DP and EF, and distance between tips (1 
article) [79] to assess EC. In addition, five of these eight indicators (economy of movement, working volume, 
perpendicular error, economy of area and distance between tips) have also shown significant differences 
between intermediate and advanced surgeons. Nevertheless, the distinction between levels of expertise 
for position indicators may depend on the task (preferably complex for a better distinction) and simulator 
(preferably with more actions from the surgeon for a batter distinction), and in some cases there are articles 
who did not find significant differences for some of the above-mentioned indicators 
[31][65][72][81][83][102]. For example, it is more difficult to find differences between novice and 
advanced surgeons in simple tasks such as cutting, unlike in the case of more complex tasks, such as 
suturing [81]. Figure 3a summarizes the best results obtained for position indicators in the identified papers. 

Table 3. Descriptions, skills and references for position indicators related to tool and body tracking (one paper may include several 
indicators). 

Indicator Description Skill # Papers References 

Po
si

tio
n 

Path length Length of the path travel EC 45 

[8][18][23][25][28][29][30][31][33][35] 
[37][38][41][42][44][45][47][48][57][61] 
[63][64][65][66][71][72][74][78][79][80] 
[81][82][83][84][85][89][95][98][99] 
[100][101][102][103][116][117] 

Economy of 
movement 

Ratio between path length and theoretical shortest 
path, and/or number of movements per second EC 10 [25][32][34][35][41][46][52][60][85][88] 

Depth perception Total distance travelled along the depth axis DP 8 [28][38][44][46][80][82][83][85] 

Working volume 
Relationship between the maximum volume 
occupied by the instrument (spherical and/or cubic 
volume) and the total path length  

EC 7 [46][79][80][82][85][95][101] 

Bimanual dexterity 
(position) 

Ability to handle two instruments at the same time 
through position BD 6 [8][18][30][44][46][63] 

Perpendicular error Deviations from the ideal course in the direction of 
the ideal path EC/P 6 [31][32][52][60][85][95] 

Economy of area Relationship between the maximum area occupied 
by the instrument and total path length  EC 5 [34][45][80][82][85] 

Range of work Amplitude between position limits in one axis EC 5 [18][36][37][76][92] 

Visible time Percentage of time spent in the “search zone” and/or 
out of the camera view  EF 5 [34][48][63][79][85] 

Position time series Position in the three Cartesian axes at different 
times EC 4 [24][40][55][91] 
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End-point error Euclidean distance between the final point and the 
objective point EC/P 3 [31][32][52] 

Approaching time Time taken to reach the target point  DP/EF 2 [85][96] 

Distance between tips Mean distance between tooltips within the area of 
interest EC 1 [79] 

Transit profile Transit path projected in the 2D plane EC 1 [85] 

Regarding indicators related to velocity (see Table 4), velocity values, understood as the path traveled on 
each of the three Cartesian axes at a given time (including mean, maximum value, minimum value or 
standard deviation), is the most common indicator used (26 articles). This indicator has shown significant 
differences between novice, intermediate and advanced surgeons when assessing the surgical technical 
skill EF [44][64][80][88]. Other indicators that have shown significant differences between the three levels 
of expertise are: number of sub-movements obtained through velocity (18 articles) when assessing EC 
[31][56][57][61][64][74]; and spectral arc length obtained through Fourier spectrum of velocity (1 article) 
when assessing also EC [118] (distinguishing smooth movements through low-frequency components from 
non-smooth movements through high-frequency components). Indicators that have shown significant 
differences between novice and advanced surgeons are: idle duration (8 articles) when assessing EF 
[44][80]; bimanual dexterity obtained through velocity (5 articles) when assessing BD [44]; and sub-
movement duration obtained through velocity (3 articles) when assessing EF [56]. In addition, idle duration 
has also shown significant differences between novice and intermediate surgeons [82]. Nevertheless, 
once again, the distinction between levels of expertise for velocity indicators may depend on the task and 
environment, and some authors did not find significant differences for their specific settings in indicators 
such as velocity parameters [60][81][72], bimanual dexterity [82]; number of sub-movements [44][72]; or 
idle duration [100]. It is noteworthy that faster performances do not mean a better quality, as a trade-off 
between speed, accuracy and stability is needed [60]. Sánchez-Margallo et al. [82] suggested that some 
studies which found significant differences in velocity indicators may have committed an error in the post-
filtering stage, which could have reduced the motion information and, hence, the correlation between hands. 
In contrast, Hofstad et al. [44] suggested that some studies did not observe significant differences because 
they used data from each hand independently, instead of processing data from both hands together. In any 
case, Figure 3b summarizes the best results obtained for velocity indicators in the identified papers. 

Table 4. Descriptions, skills and references for velocity indicators related to tool and body tracking (one paper may include several 
indicators). 

Indicator Description Skill # Papers References 

V
el

oc
ity

 

Velocity values Total path traveled on each of the three Cartesian 
axes at a given time EF 26 

[8][18][23][25][28][29][38][39][43][44]
[48][49][50][53][57][60][63][64][72] 
[76][80][81][82][85][95][118]  

Number of sub-
movements (velocity) 

Number of movements made to complete the task 
through velocity EC 18 [25][28][31][33][36][44][45][47][56] 

[57][61][64][72][74][89][99][103][118] 

Idle duration Percentage of time where the instrument is still EF 8 [28][44][80][82][85][95][96][100] 

Bimanual dexterity 
(velocity) 

Ability to handle two instruments at the same 
time through velocity BD 5 [18][28][44][63][82] 

Sub-movement duration 
(velocity) 

Percentage of time where the velocity exceeds a 
threshold EF 3 [56][63][118]  

Spectral arc length 
(velocity) 

Image of the smooth movements composed 
mainly of low-frequency components and non-
smooth movements composed by high frequency 
components in the Fourier spectrum of velocity.

EC 1 [118]
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Regarding indicators related to acceleration (see Table 5), smoothness (sometimes referred to as jerk), 
which is defined as changes in acceleration, is the most common indicator used (23 articles) when assessing 
the surgical technical skill called Hand Tremor (HT). This indicator has shown significant differences 
between novice and advanced surgeons [82], as well as between intermediate and advanced surgeons [60]. 
The second most common indicator used is acceleration values in surgical instruments (22 articles) 
(including mean, maximum value, range, standard deviation, root-mean-square and total-sum-of-square). 
This indicator has shown significant differences between novice, intermediate and advanced surgeons 
when assessing the surgical technical skill EF [46][56][64][76][80][86][93][94][102], specially non-linear 
acceleration parameters, such as kurtosis (a measure of the combined weight of the tails of a distribution 
relative to the center of the distribution) and power spectral density (a measure of the power content of the 
signal relative to the frequency) [86]. Indicators that have shown significant differences between novice 
and advanced surgeons beyond smoothness are: number of sub-movements obtained through acceleration 
(9 articles) when assessing EC [31][52][102]; sub-movement duration obtained through acceleration (4 
articles) when assessing EF [102]; and spectral arc length obtained through Fourier spectrum of 
acceleration (2 articles) when assessing EC [56]. In addition, two of these three indicators beyond 
smoothness (number of sub-movements and sub-movement duration) have also shown significant 
differences between intermediate and advanced surgeons. Other indicators with a minor use, such as 
curvature, turning angle, tortuosity, velocity gain factor or dimensional squared jerk, do not report 
significant differences between levels of expertise. Nevertheless, once again, the distinction between levels 
of expertise for acceleration indicators may depend on the task and environment [94]. For example, 
Sánchez-Margallo et al. [81] did not find significant differences between levels of expertise for smoothness 
and acceleration values. In addition, Viriyasiripong et al. [94] showed that although novice surgeons tend 
to make more unnecessary movements, it is also possible to find involuntary movements in expert surgeons. 
Furthermore, as the surgeon gets older, the chances of having more hand tremor increase [52]. In any case, 
Figure 3c summarizes the best results obtained for acceleration indicators in the identified papers. 

Table 5. Descriptions, skills and references for acceleration indicators related to tool and body tracking (one paper may include 
several indicators). 

Indicator Description Skill # Papers References 

A
cc

el
er

at
io

n 

Smoothness / Jerk Motion analysis parameter based on the third 
derivative of position (change in acceleration) HT 23 

[8][25][28][32][35][38][41][42][44][46]
[50][56][57][60][64][70][80][81][82] 
[85][95][97][118] 

Acceleration values Rate of change of the instrument velocity EF 22 
[8][24][26][33][50][62][63][64][70][73]
[75][76][77][80][81][82][85][86][87] 
[90][94][102] 

Number of sub-
movements (acceleration) 

Number of movements made to complete the task 
through acceleration EC 9 [8][23][31][52][62][63][74][85][102] 

Sub-movement duration 
(acceleration) 

Time of the sub-movements made to complete the 
task through acceleration EF 4 [56][62][63][118] 

Bimanual dexterity 
(acceleration) 

Ability to handle two instruments at the same 
time through acceleration BD 2 [63][73] 

Spectral arc length 
(acceleration) 

Arc length of the Fourier magnitude spectrum 
within an adaptive frequency range  EC 2 [56][62] 

Curvature Calculated based on straightness of the path 
computed at each point  EC 2 [35][38] 

Turning angle Direction of movement with respect to the 
previous and subsequent steps EC 1 [38] 

Tortuosity Property of the curve traveled which depends on 
the number of turns EC 1 [38] 
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Velocity gain factor Gain factor relating velocity and radius of 
curvature EF 1 [41] 

Dimensional squared jerk Calculated based on deliberate hand movements HT 1 [102] 

Regarding indicators related to orientation (see Table 6), angular velocity, understood as the travel angle 
on each of the three axes of rotation in a given time, is the most common indicator used (14 articles). This 
indicator has shown significant differences between novice, intermediate and advanced surgeons when 
assessing the surgical technical skill EF [76]. Other indicators that have shown significant differences 
between the three levels of expertise are: angular path length (10 articles) when assessing EC [46][70][74]; 
orientation time series (9 articles) (including mean and standard deviation) when assessing EC; and 
response orientation (4 articles) when assessing also EC [46]. Indicators that have shown significant 
differences between novice and advanced surgeons are: orientation smoothness (2 articles) when 
assessing HT [96]; and bimanual dexterity obtained through angular velocity (1 article) when assessing BD 
[70]. In addition, significant differences between intermediate and advanced surgeons were also found 
in bimanual dexterity. Nevertheless, once again, the distinction between levels of expertise for orientation 
indicators may depend on the task and environment, and also on the use of the dominant and non-dominant 
hand [74], and some authors did not find significant differences for their specific settings in indicators such 
as angular velocity [70]. In any case, Figure 3d summarizes the best results obtained for orientation 
indicators in the identified papers.  

Table 6. Descriptions, skill and references for orientation indicators related to tool and body tracking (one paper may include 
several indicators). 

Indicator Description Skill # Papers References 

O
ri

en
ta

tio
n 

Angular velocity Total travel angle, on each of the three axes of rotation 
in a given time EF 14 [8][24][29][39][43][48][49][53][70] 

[73][76][86][90][103] 

Angular path length Change in the angle of the instrument in the plane 
perpendicular to the instrument axis EC 10 [28][44][46][57][63][70][73][74][77] 

[87] 

Orientation time series Orientation in three axes of rotation at different times EC 9 [24][26][39][43][48][49][53][55][86] 

Response orientation Rotation on the instrument axis (in radians) EC 4 [28][44][46][85] 

Orientation smoothness Derivative of the orientation acceleration HT 2 [96][97] 

Bimanual dexterity 
(angular velocity) 

Ability to handle two instruments at the same time 
through angular velocity BD 1 [70] 

Number of sub-
movements (angular 
velocity / acceleration) 

Number of movements made to complete the task, 
using angular velocity or angular acceleration EC 1 [63] 

Regarding indicators related to forces (see Table 7), force values, understood as the force applied on each 
of the three Cartesian axes at a given time (including maximum value, mean, median, deviation, root-mean-
square or total-sum-of-square), is the most common indicator used (14 articles); this force can be applied 
to a tissue or any other object needed to perform the surgical task, such as gauzes, staples, or retrieval bags. 
This indicator has shown significant differences between novice, intermediate and advanced surgeons 
when assessing the surgical technical skill called Respect for Tissue (RT) [64][71][77][79][88][113][117]. 
Force time, which is the time in which the force exceeds a certain threshold has shown differences between 
novice and advanced surgeons [115] and between intermediate and advanced surgeons [79] when 
assessing EF and RT. Nevertheless, once again, the distinction between levels of expertise for force 
indicators may depend on the task and environment [64], and some authors did not find significant 
differences for their specific settings in force values [66][71][112]. Figure 3c summarizes the best results 
obtained for force indicators in the identified papers. 
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Table 7. Descriptions, skill and references for force indicators related to tool and body tracking (one paper may include several 
indicators). 

Indicator Description Skill # Papers References 

Fo
rc

e Force values Force applied on the three Cartesian axes at a given 
time RT 14 [16][23][64][66][71][73][75][77][79] 

[112][113][114][115][117] 

Force time Time the force exceeds a certain threshold EF/RT 3 [79][88][115]  

3.2.2. Eye-tracking indicators 
Tool and body tracking indicators can be useful to assess surgical technical skills like BD, DP, EC, EF, HT, 
P, and RT. Nevertheless, the surgeon’s performance in the operating room also depends on the surgeon’s 
Mind Control (MC). Eye tracking considers the task-evoked pupillary response based on eye movements 
and changes in the pupil to observe the cognitive process [29], and, therefore, can be used to assess MC. In 
fact, there are a number of eye-tracking indicators that have been used to assess MC. For a better 
organization, the indicators found in the 101 identified articles related to eye tracking are organized into 
five types: a) fixation (i.e., eyes being focused on the area of interest); b) saccade (i.e., rapid eye movement 
between two points of interest); c) smooth pursuit (i.e., movements of the eye when following a moving 
object); d) pupil (including size and changes in size); and e) others (including blinking and combined 
indicators). Table 8 details the indicators of each type. 

The most common indicators are related to fixation: duration (5 articles), rate (4 articles), and number (3 
articles). These three indicators have shown significant differences between novice, intermediate and 
advanced surgeons [107], or at least between novice and advanced surgeons [104][106][108][109]. Other 
indicators that have been shown significant differences between novice and advanced surgeons are: 
saccade duration (3 articles), number (3 articles) and amplitude (2 articles) [104][108]; smooth pursuit 
number (1 article) and duration (1 article) [108]; pupil size (diameter) (4 articles), rate of change (2 articles), 
index of pupillary activity (2 articles), and entropy (1 article) [29][106][108][109]; blink rate (1 article) 
[106], and dwell time (1 article) [109]. Once again, the distinction between levels of expertise for eye-
tracking indicators may depend on the task and environment. For example, in the case of saccade duration, 
number, and rate, significant differences were found between novice and advanced surgeons in complex 
tasks, such as suturing, but not in basic ones [104]; this means that advanced surgeons may change their 
visual search strategy for a better information processing in more difficult tasks [104]. As another example, 
the surrounding light in the simulation environment may affect pupil size and change in pupil diameter 
[107]; in contrast, the index of pupillary activity allows a good distinction between levels of expertise, 
obtaining a pupil dilation response caused by cognition and not by the surrounding light [107]. Furthermore, 
in the particular case of saccade amplitude, differences may be due to the fact that the object is covered by 
tools or hands and not so much to the surgeon’s level of expertise [104]. Differences in saccade duration 
are typically due to the fact that advanced surgeons know the exact locations where they have to look at 
each moment, while novice surgeons use more visual feedback to perform the proper movements, so they 
need to follow more the objects [108]. Advanced surgeons also have less fixation duration than novice 
surgeons, which indicates a greater ability to obtain the appropriate information in the area of interest in a 
shorter time [108].  

Table 8. Description and references for eye tracking indicators (one paper may include several indicators). 

Type Indicator Description Skill # Papers References 

Fixation 
Duration Cumulative time in which the gaze is kept in the area of interest MC 5 [104][105][106][107][108] 

Rate Number of observations in the area of interest per second MC 4 [104][105][106][107] 
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Number  Total number of observations made in the area of interest MC 3 [107][108][109] 

Saccade 

Duration Cumulative time of rapid eye movements between several points in 
the area of interest. MC 3 [104][105][108] 

Number Total number of rapid eye movements between several points in the 
area of interest. MC 3 [104][105][108] 

Rate Number of rapid eye movements in the area of interest per second MC 2 [104][105] 

Amplitude Extent of rapid eye movements between several points in the area of 
interest MC 2 [104][105] 

Smooth 
pursuit 

Number Total number of eye movements that occur when following a dynamic 
object in the area of interest MC 1 [108] 

Duration Cumulative time of eye movements that occur when following a 
dynamic object in the area of interest MC 1 [108] 

Pupil 

Size Diameter of the pupil MC 4 [106][107][108][109] 

Rate of 
change Pupil dilation rate (mm/s) MC 2 [106][109] 

Index of 
activity 

Discontinuities in the signal created from a continuous recording of 
the pupil diameter MC 2 [29][107] 

Entropy Predictability of pupil change [bits] MC 1 [109] 

Change in 
diameter Modifications in pupil diameter compared to the baseline MC 1 [107] 

Others 
Blink rate Number of blinks per second MC 1 [106] 

Dwell time Sum of durations from fixations and saccades in the area of interest MC 1 [109] 

3.2.3. Other indicators 
There are some other indicators related to the surgeon’s performance that have been used in the literature 
(see Table 9). The most common indicator is the total time spent on the development of a task (49 articles) 
when assessing EF. This indicator typically serves to differentiate between novice, intermediate and 
advanced surgeons [47], although it is not always easy to differentiate between intermediate and advanced 
surgeons when performing very simple tasks [79]. The remaining indicators have been used only in a few 
articles. For example, the number of hits made (3 articles) when assessing EF has shown significant 
differences between novice and advanced surgeons [65], However, Gong et al. [88] carried out an 
experiment in which surgeons had to hit some markers with one tool and perform the next step with another 
tool in less than 0.5 seconds, without finding significant differences between levels of expertise for this 
particular experiment. In addition, four indicators have been used to assess MC, through the cognitive load 
associated with performing a surgical procedure and measured in various parts of the surgeon’s body: 1) 
electrical muscle activity collected through EMG (2 articles) has been used to classify surgeons in four 
levels of expertise [8]; 2) brain bioelectrical activity collected through EEG (2 articles) has been used to 
estimate surgeons’ workload [87], and has shown significant differences between novice and advanced 
surgeons [111]; 3) skin conductivity collected through EDA (2 articles) typically increases with stress and 
has been used to estimate performance, expertise and workload [87]; 4) pulsation rate collected through 
HRV parameters (e.g., Low Frequency power, High Frequency power, or ratio of Low Frequency power to 
High Frequency power) (1 article) also tends to increase with stress and has also been used to estimate 
performance, expertise and workload [87]. Finally, fingers joint flexion (1 articles) when assessing RT has 
been used to distinguish between two levels of expertise in surgeons [26]. In conclusion, with the exception 
of the total time, the most common indicators used in the literature are related to tool, body and eye tracking, 
although it may be interesting to consider other possible indicators. 
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Table 9. Descriptions, skills and references for other indicators (one paper may include several indicators). 

Indicator Description Skill # Papers References 

Total time Total time invested in the development 
of a task EF 49 

[18][23][25][28][29][30][31][33][34][36][37][38][44] 
[45][46][47][57][60][61][63][64][65][66][70][71][72] 
[74][78][79][80][81][82][83][84][85][88][89][90][93] 
[94][95][99][100][101][102][103][116][117] 

Number of hits Number of markers successfully hit EF 3 [65][88][116] 

Electrical muscle activity Muscle activity collected through EMG MC 2 [8][87] 

Brain bioelectrical activity Brain activity collected through EEG MC 2 [87][111] 

Skin conductivity Electrodermal activity collected through 
EDA MC 2 [33][87] 

Pulsation rate Heart activity collected through HRV MC 1 [87] 

Fingers joint flexion Bending angle of the finger joints RT 1 [26] 

3.2.4. Combination of indicators 
Each indicator has so far been examined in isolation, but it is also important to consider the effect of 
combining indicators when assessing surgical technical skills. Ideally, a skilled surgeon can be expected 
to perform surgical procedures with higher smoothness, lower velocity values, acceleration values, force 
values, and total time, following a shorter path, and doing a reduced number of movements [64]. There are 
widespread rating scales that have been used to assess surgical technical skills, such as GRS [4], OSATS 
[5] and, GEARS [6]. These scales use multiple-choice questions with rubrics in which the influence of
several of the above-mentioned indicators are combined to calculate an overall score of surgical ability.
These three scales have been widely validated in the literature in different procedures, and therefore, can
be taken as reference to assess the reliability of combinations of indicators.

One possible strategy for analyzing the effect of combining several indicators is to study the correlation 
among them or with the scores obtained by surgeons through rating scales. It is important to point out that 
sensors provide low-level indicators. These indicators are objective information, but this information cannot 
be directly extrapolated to surgical technical skills. In contrast, rating scales provide high-level indicators 
directly related with surgical ability, but this information is partly subjective because it is collected through 
an expert surgeon who completes these scales using a rubric through direct observation of the surgeon being 
evaluated. A high correlation of low-level indicators obtained through sensors with specific rating scales 
completed by expert surgeons could be the basis for replacing (or complementing) these rating scales with 
more objective and automated assessments based on data collected from sensors and transformed into high-
level indicators. Regarding correlations between several indicators, Binkley et al. [33] found a high 
correlation between total time, number of sub-movements, path length and level of expertise. In contrast, 
Hofstad et al. [44] found that bimanual dexterity and EDA do not correlate with any other indicator. 
Regarding correlations between indicators and rating scales, Estrada et al. [118] found that the number of 
sub-movements, sub-movement duration, smoothness and spectral arc length correlate well with the score 
obtained with GRS. In addition, Varas et al. [98] observed a strong correlation between path length and the 
score obtained with OSATS. Moreover, Dubin et al. [36] found strong correlations between total time and 
GEARS Efficiency, as well as between economy of movement and GEARS Depth Perception. It is worth 
noting that no correlation has been found between acceleration values and rating scales [44]. 

Another possible strategy is to create classifiers or prediction models. Classifiers are typically used to 
differentiate between levels of expertise in surgeons, while prediction models are typically used to get an 
objective score for the surgeon’s performance. Regarding classifiers and the indicators used (next 
subsection will specifically address the statistical methods and algorithms used), spectral arc length, 
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bimanual dexterity, number of sub-movements, curvature, turning angle, tortuosity and velocity gain factor 
have shown to be useful in the classification of surgeons’ levels of expertise [8][38][41][56][63]. In 
contrast, fixation duration, fixation rate, fixation number, saccade number, saccade duration, and saccade 
amplitude did not show very good results to classify levels of expertise [105]. In addition, other indicators 
that are not derived from data collected by sensors can be included in classification models, such as years 
of experience [8] or years of study of the surgeon [25], GRS real score [47], OSATS real score [24], GEARS 
real score [36], number of procedures made [28], and time and number of errors made [86]. Regarding 
prediction models and the indicators used, indicators can be combined with some weights to obtain scores 
about surgical technical skills. For example, Brown et al. [73] used force and acceleration indicators to 
predict the score obtained with GEARS. Linear and angular path lengths, bimanual dexterity from position, 
velocity values, acceleration values, economy of area, linear and angular velocity, number of sub-
movements from velocity and acceleration, sub-movement duration from velocity and acceleration, spectral 
arc length from acceleration, smoothness, forces values, total time, and visible time have shown to be useful 
to predict scores obtained with GRS [25][62][75][89][99], OSATS [45][63], and GEARS [73]. 

3.3. RQ3: Which statistical methods and algorithms have been 
applied to data in relation to the assessment of surgical 
technical skills? 

The data collected by the sensors and transformed into indicators are subjected to advanced processing, as 
seen in the previous subsection, typically for two purposes related to the objective and automated 
assessment of surgical technical skills: 1) classification (between two or more surgeons’ levels of 
expertise), and 2) prediction (of scores). There are several statistical methods and (machine learning) 
algorithms applied on the data collected (low-level data/metrics and high-level data/indicators). Table 10 
shows the statistical methods and algorithms found in the 101 articles identified organized according to the 
two above mentioned purposes. 

It is important to note that some of the statistical methods and algorithms for classification and prediction 
rely on preliminary steps related to pre-processing the data collected. These include: 1) feature extraction 
(to collect the most important data and reduce the dimensionality of the data) using e.g., PCA (Principal 
Component Analysis) [26]; 2) data normalization (in case data are scaled differently) using e.g., Z-
normalization [86]; and 3) feature selection (to collect the most relevant features/indicators, excluding those 
which may cause noise), using e.g., mRMR (Minimum Redundancy Maximum Relevance) [21] or Linear 
Correlation Coefficients [26]. The pre-processing of the data, although may be of interest, is not the focus 
of this article. 

Regarding classification, SVM (Support Vector Machine) (12 articles, including also SVR – Support Vector 
Regression), neural networks (11 articles), discriminant analysis (9 articles), Hidden Markov models (6 
articles), logistic regression (5 articles), k-NN (k-nearest neighbors) (5 articles), Naïve Bayes (3 articles), 
Random forest (3 articles), and SAX (Symbolic Aggregate approximation) (3 articles) are the most used 
statistical methods and algorithms. The use of these statistical methods and algorithms is subject to four 
main challenges that may have an impact on the accuracy of the results obtained [16] (this accuracy is 
typically calculated through scores obtained in rating scales or through the level of expertise reported by 
the surgeon in a survey). The first challenge refers to the quality of the input data, which depends on the 
type of sensors used (as these may contain errors and even affect the surgeon’s motion range) and the 
indicators selected (as these may be irrelevant to assess a surgical technical skill or contain errors derived 
from the computation and normalization processes) [16]. For example, for the same acceleration and 
orientation indicators, Brown et al. [73] obtained an accuracy of 50% in their classifier with random forest, 
collecting data from IMUs and force sensors with 3 DoF, while Nguyen et al. [90] obtained an accuracy of 
97.3% with neural networks, and 80.3% with SVM, collecting data from IMUs with 6 DoF and EM sensors 
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with 3 DoF. The second challenge refers to the dimensionality of the dataset. There are indicators which 
may reduce the accuracy of the classifier by adding noise, while some others may overfit the dataset causing 
an accuracy larger that the true one of the algorithm [16], hence the importance of proper feature selection. 
For example, Ershad et al. [8] used indicators such as path length, velocity values, number of sub-
movements, angular velocity, acceleration values, smoothness, EMG and EDA, and obtained an accuracy 
of 97% with SVM and 100% with Naïve Bayes when classifying surgeons between two levels of expertise. 
This accuracy was reduced to 84% with SVM and 89% with Naïve Bayes when classifying surgeons between 
four levels of expertise. As another example, Zhou et al. [87] used multiple biometric signals obtained from 
EEG, EMG, EDA, HRV, as well as wrist motion, to increase the dimensionality of the dataset, obtaining a 
normalized Median Absolute Error (nMAE) for accuracy of 11.05% using a variation of SVM called SVR 
(Support Vector Regression). The third challenge refers to the dependency on the task performed (hence 
the importance of standardizing the types of exercises performed by the surgeon). For example, Winkler et 
al. [50] used indicators based on position, velocity and acceleration, obtaining an accuracy of 90% with k-
NN, 84% with Naïve Bayes, 78% with discriminant analysis and 76% with SVM, with the problem that 
their indicators were obtained from a Virtual Reality (VR) simulation game and cannot be used in real 
surgical settings. As another example, Gomez et al. [75] used indicators based on acceleration and force, 
obtaining an accuracy of 90% and even 100% (depending on the task) with linear regression. Finally, Tien 
et al. [110] found a relevant study in which pupil indicators could classify with an accuracy of 91.9% on 
simulated tasks and of 81% on in-vivo simulators using neural networks. The fourth challenge refers to the 
training and testing sets used [16]. For example, Oropesa et al. [80] used indicators based on time, 
position, velocity, and acceleration and obtained an accuracy of 78.2% with SVM, 71.7% with adaptive 
neuro fuzzy inference system (ANFIS), and 71% with linear discriminant analysis (LDA), although they 
used the performance from 10 surgeons as training set, and thus their results may be affected by the skills 
of these 10 surgeons. In the case of the testing set used, cross-validation is a common technique to estimate 
the accuracy of many classification models [87], although it is not an exact measurement in real scenarios. 

Regarding prediction, SVM (3 articles, including also SVR – Support Vector Regression), Linear 
Regression (2 articles) and Regression tree (2 articles) are the most used statistical methods and algorithms. 
The use of these statistical methods and algorithms is also subject to three out of the four main challenges 
identified in the case of classification. The first challenge refers, once again, to the quality of the input 
data. For example, there are several research studies which obtained good results in their models when 
predicting GRS scores, OSATS scores and GEARS scores using different algorithms and indicators. 
Concerning the prediction of GRS scores with promising results, Zia et al. [53] used SVR and indicators 
based on position, velocity, and orientation to generate automated scale score reports that correlate with 
GRS scores available in a public dataset (0.61 average Spearman correlation coefficient); Ziesmann et al. 
[99] used linear regression and indicators such as path length (0.59 Pearson correlation) and number of
sub-movements (0.52 Pearson correlation); and Kirby et al. [89] used k-means and also indicators such as
path length and number of sub-movements collected from surgeons’ wrists and elbows (0.85 Pearson
correlation in the best case). Concerning the prediction of OSATS scores with promising results, Oquendo
et al. [63] used LASSO (Least Absolute Shrinkage and Selection Operator) and regression tree in several
models with indicators such as total time, path length, velocity values, angular path length, angular velocity,
visible time, idle time, acceleration values and number of sub-movements (0.85 Pearson correlation in the
best case); and Kowalewski et al. [24] obtained a 10% error with neural networks using indicators such as
acceleration values, angular velocity and orientation time series. Concerning the prediction of GEARS
scores with promising results, Dubin et al. [36] used linear regression and indicators such as total time,
economy of movement, and range of work to predict not only the total score of the GEARS scale (0,69
Pearson correlation), but also each one of the six domains in which the scale is divided, obtaining very good
results for some of them, such as depth perception (0.81 Pearson correlation) or efficiency (0.91 Pearson
correlation). The second challenge refers to the dependency on the task performed. For example, Brown
et al. [73] used indicators based on orientation, acceleration and force to predict GEARS scores with a
regressor composed of SVM, Elastic Net Regression, Regression tree and k-NN, reaching an accuracy of
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0.93 on GEARS Total Score, 0.93 on GEARS Efficiency, and 0.9 on GEARS force sensitivity, although 
they ran the experiment for one task and thus the results are difficult to extrapolate to real surgical settings 
[73]. As another example, Malpani et al. [57] used linear regression and indicators such as total time, path 
length, economy of area and number of sub-movements to predict OSATS scores (0.47 Spearman 
correlation in the best case), but once again for specific tasks (suture throw in two steps, suture throw in 
one step, first knot, any other knot in the task). The third challenge refers to the training and testing sets 
used. For example, for the training set to be used in prediction models, some surgeons declare to be experts, 
but they are uncomfortable with the sensors used while performing the tasks, which may eventually affect 
the outcomes of prediction models [25]. 

Table 10. Purpose, statistical methods / algorithms, and references (one paper may include several statistical methods / 
algorithms)). 

Purpose Statistical method / algorithm # Papers References 

Classification 

SVM 12 [8][16][24][26][38][41][50][55][64][80][87][90] 

Neural network 11 [16][24][26][48][49][59][68][80][86][90][110] 

Discriminant analysis 9 [16][26][35][41][50][79][80][95][114] 

Hidden Markov Models 6 [16][40][53][54][55][103] 

Logistic regression 5 [16][38][41][48][62] 

k-NN (k-nearest neighbors) 5 [35][38][43][50][53] 

Naïve Bayes 3 [8][16][50] 

Random forest 3 [35][73][105] 

SAX (Symbolic Aggregate approximation) 3 [39][40][43] 

Fuzzy 2 [16][80] 

Decision tree 2 [16][24] 

Linear regression 2 [70][75] 

DTW (Dynamic time warping) 2 [24][58] 

k-means 1 [69] 

Prediction 

SVM 3 [53][73][87] 

Linear regression 3 [37][45][99] 

Regression tree 2 [63][73] 

LASSO (Least Absolute Shrinkage and Selection Operator) 1 [63] 

Elastic Net Regression 1 [73] 

k-NN (k-nearest neighbors) 1 [73] 

Logistic regression 1 [37] 

k-means 1 [89] 

Neural network 1 [24] 

3.4. RQ4: How has feedback been provided to trainees in the 
context of assessment of surgical technical skills?  

Feedback, either real-time feedback or delayed feedback, is crucial in the assessment of surgical technical 
skills, since it allows surgeons to increase their awareness on the procedure undertaken and make changes 
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to improve their (on-going and/or future) performance. Feedback closes the full life cycle of objective and 
automated assessment of surgical technical skills, providing (in an understandable manner) the output of 
the statistical methods and algorithms applied to the data collected by the sensors in IoT systems. 
Nevertheless, feedback is not the main focus of this article and, therefore, no additional specific related 
terms were included in the query used to perform this SLR. Nonetheless, the way in which the 101 articles 
identified deal with feedback was analyzed. Table 11 summarizes the feedback mechanisms found and the 
corresponding references. It can be seen that very few of the articles identified have addressed the issue of 
feedback.  

Table 11. Type, mechanisms and references on feedback (one paper may include several feedback mechanisms). 

Type Mechanisms # Papers References 

Visualization 

Trajectories 5 [39][40][43][67][68] 

Bar charts 1 [68] 

Radar chart 1 [114] 

Text Lexicon of Words 1 [8] 

The most common way of providing feedback is by offering visualizations to trainees. The most popular 
visualization shows the trajectories (5 articles) followed by novice and expert surgeons in 2D [68] and 3D 
[39][40][43][67] indicating with a different color the specific sub-movements of the novice surgeon. In 
addition, Uemura et al. [68] used bar charts showing the scores for several indicators, including the range 
in which each score was considered “good”. Sugiyama et al. [114] used a triangle radar chart with three 
force parameters on the vertices to provide a visual feedback to trainees. Nevertheless, these charts are 
typically static and there is a need for research on how the indicators showed in these charts evolve over 
time with the number of repetitions by the same surgeon. A more dynamic representation would help not 
only to see the evolution of a surgeon with the number of repetitions but also the moment in which more 
repetitions do not lead to an improvement thus better calibrating the number of training sessions required. 

As for the summary feedback in text format, Ershad et al. [8] matched indicators on surgeon’s performance 
and a lexicon of words. They related number of sub-movements and angular velocity with “fluid”, 
acceleration and smoothness with “smooth”, smoothness in depth axis and maximum smoothness with 
“jittery”, total time with “swift”, EMG with “relaxed”, EDA with “calm”, velocity parameters with 
“wavering”, and path length of each hand with “coordinated”. 

In view of the few articles identified which dealt with feedback, the articles discarded during the assessment 
of full texts as part of the article selection process (see Figure 1) were further reviewed with the aim to look 
for additional feedback mechanisms. Interestingly, Payne et al. [120] studied the effectiveness of including 
real-time vibrations in the surgical instruments when the surgeon exceeds a threshold force while 
performing a task. Moreover, Yamaguchi et al. [121] used a hexagon radar chart showing an indicator 
collected from surgeon’s performance in each vertex (e.g., task time, left-hand instrument velocity, right-
hand instrument velocity, etc.); these authors also generated a timeline showing certain events which 
occurred in the course of the procedure, such as instrument intersection. 

All in all, there is an important research opportunity on how to provide (real-time and delayed) feedback as 
part of the assessment of surgical technical skills. Although this feedback may simply represent the 
indicators of the novice surgeon’s performance in a textual or visual manner, it is advisable to compare 
his/her performance with that of an expert surgeon or against reference values. Furthermore, it is worth 
noting that the lack of standardization of exercises makes it difficult to provide feedback to the surgeon as 
feedback is highly dependent of the type of exercise (the standardization of the curriculum in several phases 
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with models such as the pyramid training model [12] or the 5 FLS exercises [9] are some steps forward). 
Beyond the standardization of exercises, the identification of common errors per exercise, and the detection 
of common errors from sensors and indicators are still challenges to be addressed from a research 
perspective. 

4. Discussion
The assessment of surgical technical skills, such as bimanual dexterity, depth perception, economy, 
efficiency, hand tremor, mind control, precision or respect for tissue, among others, must evolve from the 
subjective and non-scalable assessment by an expert surgeon who assigns a score based on rating scales 
(e.g., GRS, OSATS, GEARS) to novice surgeons, to a more objective and automated assessment of surgical 
technical skills through IoT systems that can track e.g., surgical instruments, surgeon’s body and surgeon’s 
eyes. This SLR has revised 101 articles and has detected important differences in the literature in relation 
to the sensors used, the data collected (and the corresponding indicators obtained from low-level data) and 
the statistical methods and algorithms applied. In addition, another research gap has been identified in terms 
of closing the full life cycle by providing appropriate feedback to the trainees, especially real-time and 
action-oriented feedback. Moreover, the challenge of objectively and automatically assessing surgical 
technical skills is even more complex due to the lack of  standardization in the surgical tasks to be performed 
during this assessment [80] leading to a disparity in the results obtained in the literature which are 
sometimes difficult to compare or extrapolate to other tasks and surgical settings. More standardization 
efforts are needed, as is the case, for example, with the programs for specific procedures known as 
Fundamentals of Laparoscopic Surgery (FLS), Fundamentals of Endoscopic Surgery (FES) and 
Fundamentals Use of Surgical Energy (FUSE) [9], which try to extrapolate simulations to real scenarios. 

Regarding the sensors used, there are some limitations which need to be addressed. First, it is necessary to 
improve ergonomics of the tools and sensors used to reach a wider range of motions [28], limited 
sometimes by the particular sensors used or by the need for wires to get power supply [71]. Second, it is 
necessary to use tools and sensors without problems with line of sight (in the case of e.g., optical sensors) 
[84], interferences with metallic objects (in the case of e.g., electromagnetic sensors) [71][65], or friction 
forces and involuntary vibrations (in the case of e.g., IMUs or force sensors) [54]. Third, it is important 
to get a higher DoF in sensors although this may also require more complex IoT systems due to the need 
of collecting and combining data of different types and with possibly different timestamps. Fourth, it is 
necessary to explore the potential of combining motion data with biometric signals (such as those collected 
from EEG, EMG, EDA or HRV), for which there are currently few research articles published. Finally, it 
is also necessary to explore the use of IoT systems to collect position correction data, which is currently 
obtained mainly through cameras and image processing [119]. All these lines of research are aimed at 
obtaining more and better-quality raw data through IoT systems. 

Regarding the indicators used, the articles published in the literature have focused mainly on motion of 
surgical instruments/tools and surgeon’s body (position, velocity, acceleration, orientation and force), 
surgeon’s eyes (fixation, saccade, smooth pursuit, pupils, and others such as blinking), and others (e.g., 
total time and biometric indicators). Several of the indicators analyzed in the literature can be used to 
distinguish between levels of expertise, sometimes between three levels of expertise (novice, intermediate, 
advanced), and sometimes between two of them. An important challenge is that some indicators in isolation 
may present problems due to, for example, uncontrolled muscle movements (e.g., related to hand tremor in 
older expert surgeons [52][92]), high amplitude movements from changes in position [99], surrounding 
light (and thus affecting pupil dilation) [107], etc. Therefore, it is necessary to look for more controlled 
surgical settings, and possibly combine several indicators to better distinguish between levels of 
expertise. Another important challenge is that the results obtained are very dependent on the task. It has 
been observed that the significant differences between levels of expertise are more frequently found with 
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complex tasks [83] (rather than with basic tasks [113]), and in realistic surgical environments. Therefore, it 
is necessary to perform more complex tasks in real scenarios with patients to better distinguish between 
levels of expertise [64]. All these lines of research are aimed at (1) defining better experimental settings 
and (2) better low-level indicators (and combinations of these), to feed the statistical methods and 
algorithms in charge of classifying the surgeons in levels of expertise for different surgical technical skills 
and predicting their scores in rating scales. Low-level indicators mentioned in this SLR have shown to be 
useful to predict certain skills in simple tasks, but more complex exercises are necessary to collect other 
type of low-level indicators for more complex measurements, such as the approach angle of a certain tool 
or the tension of the thread in a suture, that allow predicting specific high-level skills required for complex 
interventions. 

Regarding the statistical methods and algorithms used, some of them get a high accuracy between the 
classified and actual level of expertise [8][90], and some of them get a high accuracy between the predicted 
score of a surgeon and the real one according to rating scales [73], but, in general, there is a lack of 
comparison between the classification and prediction models used in the literature. The statistical methods 
and algorithms used to classify surgeons into levels of expertise (e.g., novice/advanced surgeons) were 
predominant over the algorithms used to predict a quantitative variable such as scores 
(GRS/OSATS/GEARS); although knowing the score is more precise, it is usually enough to classify the 
surgeon according to his/her level of expertise. There are a number of related limitations which need to be 
addressed from a research perspective. Firstly, a great number of studies use small sample sizes (number 
of participants in the study), which makes it difficult to generalize the models [86][107]. Secondly, in some 
cases, samples are unbalanced, meaning that there are e.g., too many novice surgeons and a few expert 
surgeons [75]; in order to get more samples some studies used data from several performances of the same 
surgeons, although there is a risk that participants perform with higher accuracies and lower reproducibility 
in subsequent attempts [80]. Thirdly, the actual level of expertise of the surgeon (to be compared with the 
output of classification models) is based on tags and thresholds [109], and this is not always a reliable 
approach (e.g., the number of cases performed is not always the best method to assess the level of expertise 
of the surgeon). Fourthly, distinguishing between intermediate surgeons and advanced/expert surgeons 
for a certain surgical technical skill is complicated because surgeons from both levels of expertise could 
have reached the highest point in their learning curve [98]. Fifthly, surgeons can suffer the Hawthorne 
effect (modifications in their behavior due to being observed) during assessment activities, which may have 
a negative influence in their results [106]. All in all, the lines of research should focus on improving the 
quality of the input data (both the data collected by sensors and the actual data used to compare the accuracy 
of classifiers and prediction models), and the comparisons between the proposed classification and 
prediction models. For example, the application of deep learning techniques could improve the accuracy of 
predictions, although very few articles have used deep learning techniques [48][49][90].  

Finally, regarding feedback, it is necessary to prioritize research studies on feedback provision as part of 
the assessment of surgical technical skills. There are only a few examples of delayed feedback, such as 
summaries of the actions taken, either through visualizations [39][40][43][68] or texts [8] and some 
pioneering work in real-time feedback through vibrations in the surgical instruments when exceeding a 
threshold force [120]. All in all, the lines of research on feedback should focus on real-time feedback related 
to task correction during the realization of a surgical procedure, and summary visual feedback including 
group comparative results. For example, the assessment of surgical technical skills can benefit from 
previous research on learning analytics related to feedback provision and visualizations, adapting advances 
from other domains. 

5. Conclusions
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The objective and automated assessment of surgical technical skills is a growing research field motivated 
by the rapid evolution of technologies, in particular of IoT systems that include sensors which collect 
different types of data to be processed with statistical methods and (machine learning) algorithms. In this 
context, this SLR is relevant since it presents a comprehensive and updated overview of the sensors used, 
the indicators extracted from raw data (metrics), and the statistical methods and algorithms applied on these 
metrics and indicators, based on the analysis of 101 related articles published after 2013. Regarding sensors, 
there are research opportunities, for instance, related to the improvement of motion sensors (e.g., reduction 
of weight or increase of degrees of freedom) and force sensors (e.g., reduction of friction forces and 
vibrations), as well as in the realization of more studies focused on the use of biometric sensors to measure 
the surgeon’s cognitive load during a surgical procedure. Regarding indicators, there are research 
opportunities, for instance, related to the realization of more studies in which surgeons perform different 
tasks in different environment (as both tasks and environments can have an effect on the distinction between 
levels of expertise and there is currently a lack of standardized surgical simulation tasks), and in the 
combination of several indicators to create better classifiers and prediction models. Regarding statistical 
methods and algorithms, there are research opportunities, for instance, related to improving the quality of 
the input data and the metrics to evaluate the algorithms, such as accuracy in classifiers and prediction 
models. Finally, regarding feedback, there is considerable room for improvement related to the provision 
of real-time and delayed feedback through appropriate visualizations and/or texts in order to improve the 
learning experience.  

In addition, there are two important lessons learned from this SLR. First, most of the research conducted so 
far has focused on adding sensors on instruments and surgeons rather on sensing the specific elements of 
the surgical task, which is key to objectively and automatically assess surgeon’s performance in both 
formative and summative assessment. However, this requires standardizing the tasks, identifying relevant 
indicators and adding sensors that serve to obtain these relevant indicators. For example, FLS has taken a 
step forward in the standardization of tasks but the identification of relevant indicators and their automatic 
calculation is still missing [9]. Second, the assessment of surgical technical skills is dynamic. The absolute 
value of indicators is not as relevant as their evolution in time with the number of repetitions. There is a 
research opportunity in the use of algorithms that use time series, such as dynamic time warping [58][122], 
and the provision of feedback through appropriate visualizations. 

It is worth noting that this work has some limitations. Firstly, it focuses on a very specific field of surgery 
which is the (summative) assessment of surgical skills. Nevertheless, most of the findings related to the use 
of sensors, indicators, statistical methods and algorithms can also be used in the training (formative 
assessment) of novice surgeons and in the professional practice or intermediates and advanced surgeons. In 
addition, this SLR is limited by the keywords that comprise the query used, which could have left out 
relevant articles, and by the fact that articles not published after 2013 were not included in the SLR (as 
these had been previously analyzed in three doctoral dissertations [19][20][21]). In any case, we believe 
that the conclusions obtained from an SLR in which 537 were screened will contribute to advance the 
research in the field and draw attention to scientific debates on the objective and automated assessment of 
surgical technical skills. 
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