
This is a postprint version of the following published document:

Garcia, J.D., del Rio, D., Aldinucci, M. et al.
Challenging the abstraction penalty in parallel patterns
libraries. J Supercomput 76, 5139–5159 (2020).

DOI: https://doi.org/10.1007/s11227-019-02826-5

© 2019, Springer Science Business Media, LLC, part of Springer
Nature

https://doi.org/10.1007/s11227-019-02826-5
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Challenging the abstraction penalty in parallel
patterns libraries

Adding FastFlow support to GrPPI

J. Daniel Garcia · D. del Rio · M.
Aldinucci · F. Tordini · M. Danelutto ·
G. Mencagli · M. Torquati

Received: date / Accepted: date

Abstract 1 In the last years, pattern-based programming has been recog-
nized as a good practice for efficiently exploiting parallel hardware resources.
Following this approach, multiple libraries have been designed for providing
such high-level abstractions to ease the parallel programming. However, those
libraries do not share a common interface. To pave the way, GrPPI has been
designed for providing an intermediate abstraction layer between application
developers and existing parallel programming frameworks like OpenMP, Intel
TBB or ISO C++ threads. On the other hand, FastFlow has been adopted
as an efficient object-based programming framework that may benefit from
being supported as an additional GrPPI backend. However, the object-based
approach presents some major challenges to be incorporated under the GrPPI
type safe functional programming style. In this paper, we present the inte-
gration of FastFlow as a new GrPPI backend to demonstrate that structured
parallel programming frameworks perfectly fit the GrPPI design. Additionally,
we also demonstrate that GrPPI does not incur in additional overheads for
providing its abstraction layer, and we study the programmability in terms of
lines of code and cyclomatic complexity. In general, the presented work acts as
reciprocal validation of both FastFlow (as an efficient, native structured par-

This work has been partially supported by the European Commission EU H2020-ICT-2014-1
project RePhrase (No. 644235) and by the Spanish Ministry of Economy and Competitive-
ness through TIN2016-79637-P “Towards Unification of HPC and Big Data Paradigms”

J.D. Garcia, D. del Rio
University Carlos III of Madrid E-mail: {josedaniel.garcia,david.rio}@uc3m.es

M. Aldinucci, F. Tordini
University of Torino E-mail: {aldinuc,tordini}@di.unito.it

M. Danelutto, G. Mencagli, M. Torquati
University of Pisa E-mail: {marcod,mencagli,torquati}@di.unipi.it

1 This is a post-peer-review, pre-copyedit version of an article published in Journal of
Supercomputing. The final authenticated version is available online at: https://doi.org/
10.1007/s11227-019-02826-5

https://doi.org/10.1007/s11227-019-02826-5
https://doi.org/10.1007/s11227-019-02826-5

2

allel programming framework) and GrPPI (as an efficient abstraction layer on
top of existing parallel programming frameworks).

Keywords Parallel design patterns, data intensive computing, stream
computing, algorithmic skeletons

1 Introduction

Parallel design patterns have been identified since years as the tool to be
leveraged to overcome the difficulties and the scarce productivity typical of
parallel programming [4]. Leveraging also on the availability of mature algo-
rithmic skeleton [12] based programming frameworks [6,7,11,5] this lead to
an increasing interest in the possibility of widely using parallel patterns in the
development of parallel applications, targeting different kind of architectures,
both homogeneous and heterogeneous (e.g. exploiting different kind of accel-
erators). As an example, different EU funded research projects in the FP7
and H2020 frameworks adopted some kind of algorithmic skeleton/parallel de-
sign pattern approach, including FP7 ParaPhrase, Excess [8] and Repara [15]
projects, and more recently H2020 RePhrase [16] project.

Existing “structured” parallel programming environments provide the ap-
plication programmer with high level tools for the development of parallel
applications. In particular, through proper libraries or language extensions
they provide ready-to-use programming abstractions modeling common par-
allel patterns that can be used, alone or in composition, to express the full
parallel behavior of a given application. These abstractions encapsulate the
more challenging aspects related to parallelism exploitation (synchronization,
communication, load balancing, scheduling, etc.) and mainly relieve the appli-
cation programmers from the burden to manage the target hardware depen-
dent aspects related to the efficient implementation of parallel applications. It
is worth pointing out that part of the state-of-the-art parallel programming
frameworks also include some patterns. OpenMP [13] provides since the very
beginning a map pattern through its parallel for pragma, Intel TBB [20]
provides pipeline and farm (master worker) patterns, and Microsoft Parallel
Pattern Library [14] also provides different patterns.

However, the lack of a) a common terminology to denote the different
kind of patterns and b) the lack of a common, recognized and assessed API
to use these patterns prevented the diffusion of the concept and a general
acknowledgment of the related advantages.

GrPPI (the Generic Parallel Pattern Interface [10]) has been designed as
a fully modern C++ compliant interface providing to the application pro-
grammers an easy way to parallelize existing code using well known, effi-
cient stream and data parallel patterns. In its original version, GrPPI targeted
C++11 threads to guarantee portability to any ISO C++11 compliant plat-
form. Then, support for OpenMP and TBB has been added. The idea back to
GrPPI design was exactly to overcome the two problems just mentioned and,
possibly, to provide something that might be eventually included in a future

3

revision of the C++ standard [22]. The inclusion in the language standard
would favour the possibility that different parallel programming frameworks
providers invest in the implementation of suitable back-ends with the per-
spective of getting applications ported for free on their frameworks through a
common API.

FastFlow [9] is a structured parallel programming framework–built on top
of standard C++ and of the pthreads library–providing efficient implemen-
tation of both stream and data parallel patterns on top of shared memory
architectures. It has been demonstrated to be particularly efficient in the
implementation of fine grain computations, due to its extremely optimized
communication mechanisms [2]. While simple usage of high-level patterns in
FastFlow does not require sensibly different expertise than the one required us-
ing the same patterns through GrPPI, the FastFlow API does not reach GrPPI
’s level of abstraction.

Here we discuss the integration of FastFlow as an additional backend for
GrPPI. The integration has been challenging being FastFlow a framework al-
ready providing parallel patterns as objects of a header only library that appli-
cation programmers and system programmers may use alone or in composition
to model a variety of different parallel patterns. The main goal of this paper
is to show how the introduction of an extra layer on top of FastFlow, namely
GrPPI, does not necessarily imply a performance penalty and at the same time
may simplify the task of expressing parallel applications.

The main contributions of the paper can be summarized as follows:

– We describe the implementation of the FastFlow back-end for GrPPI to
demonstrate that GrPPI can be used as interface for object-based pro-
gramming frameworks.

– We analyze the potential performance penalties introduced by the GrPPI
abstraction layer.

– We evaluate the performance of a set of synthetic benchmarks using FastFlow
and the different supported GrPPI backends.

– We compare the programmability in terms of lines of code and cyclomatic
complexity between GrPPI and FastFlow and analyze the benefits of using
both parallel programming frameworks.

The rest of the paper is structured as follows: Sec. 2 and Sec. 3 introduce
FastFlow and GrPPI, respectively. Then Sec. 4 discusses the implementation
of the FastFlow back-end in GrPPI. Eventually Sec. 5 shows the experimental
results validating the porting and Sec. 6 draws conclusions.

2 FastFlow

FastFlow is a structured parallel programming framework, which is provided as
a header only C++ library. FastFlow has been designed to target shared mem-
ory multi/many core architectures and at the moment being exploits pthreads
as the main concurrency mechanism, backed up by an original, lock and wait

4

free communication queue that provides ultra efficient inter-thread communi-
cations.

The design of FastFlow is layered:

– A first layer implements the basic communication mechanisms.
– A second layer implements the “core” parallel patterns. These patterns

represent notable and efficient parallel patterns exposing a low level inter-
face suitable to use them both as “application” patterns and as “building
block” patterns to be used to provide different patterns to the application
programmer.

– A third layer provides “high level” patterns, with a specific, high level, full
C++11 compliant interface, ready to be used within application code.

In either the “core” or the “high level” pattern layer, FastFlow provides i)
stream parallel patterns (pipeline and farm, possibly with feedback); ii) data
parallel patterns (parallel for, map, reduce, stencil); and iii) higher level pat-
terns (divide&conquer, evolution pool, windowed stream processing patterns).

All these patterns are provided as objects the application (or the system)
programmer may instantiate and compose to set up a parallel program which is
eventually executed by issuing a specific member function call to the top level
pattern. In other words, the declaration of the pattern expression modeling the
parallel behavior of the application and the actual execution of the program
happen at different places in the program.

Fig. 1 shows an excerpt of the code needed to run a pipeline with a farm
stage inside in FastFlow.3 Generic and reusable parallel pattern interface

In this section we introduce GrPPI, a generic and reusable parallel pattern in-
terface for C++ applications [19]. This interface takes full advantage of mod-
ern C++ features, generic programming, and metaprogramming concepts to
act as common interface between different programming models hiding away
the complexity behind the use of concurrency mechanisms. Furthermore, the
modularity of GrPPI allows to easily integrate new patterns, as well as to com-
bine them to arrange more complex constructions. Thanks to this property,
GrPPI can be used to implement a wide range of existing stream-processing
and data-intensive applications with relative small efforts, having as a result
portable codes that can be executed on multiple platforms. Figure 1 depicts
the general view of the GrPPI library. As shown, GrPPI acts as a layer between
the user and the different programming models.

Basically, this library provides four main components in order to provide
a unified interface for the supported frameworks: i) type traits, ii) pattern
classes, iii) pattern interfaces and iv) execution policies.

Firstly, in order to accomplish the overloading of functions and to allow
composition of different patterns, GrPPI provides a set of type traits and
constexpr functions that are evaluated at compile time. In this sense, these
functions can be used along with the enable if construct from the C++
standard library to conditionally remove functions from compiler resolution.
This way, only version of functions meeting specific compile-time requirements

5

Listing 1: Sample farm+pipeline code in FastFlow

1 class Stage1: public ff_node_t<long,long> {
2 public:
3 long* svc(long* task) {
4 // ... here compute res out of task
5 return res;
6 }
7 };
8
9 class Stage2: public ff_node_t<long,long> {...};

10 class Emitter: public ff_node_t<noinput_t, long> {...};
11 class Collector: public ff_node_t<long,nooutput_t> {...};
12
13 int main(int argc, char* argv[]) {
14 // ...
15 // build the pattern expression ...
16 std::vector<std::unique_ptr<ff_node> > workers;
17 for(int i=0;i<nworkers;++i) {
18 // build worker pipeline
19 workers.push_back(make_unique< ff_Pipe<long,long> >(
20 make_unique<Stage1>(), make_unique<Stage2>()));
21 }
22 Emitter E;
23 Collector C;
24 // build the farm with emitter and collector
25 ff_Farm<noinput_t,nooutput_t> farm(std::move(workers), E, C);
26 // Launch farm execution
27 if (farm.run_and_wait_end()<0) {
28 error("running farm\n");
29 return -1;
30 }
31 return 0;
32 }

Fig. 1: GrPPI architecture.

on their parameters become available to the compiler. Consequently, this ap-
proach allows providing the same interface for different implementations.

On the other hand, GrPPI provides a set of classes that represent each
of the supported patterns in order to allow compositions. These objects store
references to the necessary functions and information (e.g. concurrency degree)
related to the pattern configuration. Thus, they can be composed in order to
express complex constructions that can not be represented by making use of
a single pattern.

Focusing on the pattern interfaces, GrPPI provides a set of functions for
each supported parallel pattern and offers two different alternatives for pattern

6

execution and composition. Both alternatives take the user functions that
will be executed accordingly to the pattern and configuration parameters as
function arguments, however, they differ in the first argument. The first version
takes an execution policy in order to select the back-end which will be used for
executing the pattern. On the other hand, the interface designed for pattern
composition does not receive the execution policy, as it will use the one from
its outer pattern. Instead of launching pattern execution, this version returns
the pattern representation that will be used for the composition. Listing 2
shows both interface alternatives for the pipeline pattern.

Listing 2: Pipeline interfaces.

1 // Interface for pattern execution
2 template <typename Execution, typename ... Transformers>
3 void pipeline(const Execution & ex, Transformers && ... transform_ops);
4
5 // Interface for pattern composition
6 template <typename ... Transformers>
7 pipeline_t<Transformers...> pipeline(Transformers && ... transform_ops);

Finally, a key point of GrPPI is the ability to easily switch between dif-
ferent programming framework implementations for a given pattern. This is
achieved by providing a set classes that encapsulate the actual pattern imple-
mentations in a specific framework. This way, by only changing the execution
policy provided as first argument to the pattern call, the framework used un-
derneath is selected accordingly. The current GrPPI version provides support
for sequential, C++ threads, OpenMP and Intel TBB frameworks.

In this paper we extend the set of GrPPI execution policies in order to
support FastFlow as a new back-end.

4 FastFlow under GrPPI

In this section we discuss how the FastFlow framework has been integrated
into the GrPPI interface.

FastFlow natively supports high-level stream and data parallel program-
ming patterns built on top of a lock-free run-time designed to boost perfor-
mance on multi-core and many-cores architectures. This makes it perfectly
suitable for being used as a back-end in the GrPPI interface. FastFlow provides
different high-level patterns as well as different lower level patterns (parallel
applications building blocks) that may be both used to implement quite effi-
cient parallel applications. In this section, we will go through the process of
implementing GrPPI’s interface by means of FastFlow patterns, and we will
provide an evaluation of the performance of the integration of FastFlow into
GrPPI by comparing the pure FastFlow implementation against the wrapped
one, in order to identify possible overheads.

4.1 Design

GrPPI provides parallel patterns to support both stream processing and data-
intensive applications. These parallel patterns can be nested and composed

7

together, in order to model more complex behaviors. GrPPI currently supports
different patterns, including: data-parallel patterns (map, reduce, mapreduce,
stencil), task-parallel patterns (divide&conquer), and stream-parallel patterns
(pipeline, farm, stream filter, stream reduction, stream iteration).

The parallel semantics associated to these patterns will not be discussed
here. The interested reader may refer to the RePhrase deliverables available
at rephrase-ict.eu, in particular in D2.1 [18] and D2.5 [17].

FastFlow natively supports most of the aforementioned skeletons, which are
implemented by properly combining instances of the ff_node class, which is
the main building block upon which every pattern can be designed. In partic-
ular, the ff_node class implements the abstraction of an independent concur-
rent activity receiving input tasks from an input queue, processing them and
delivering the related results to the output queue. For instance, ff_pipeline
and ff_farm are FastFlow’s core patterns built on top of ff_node, which rep-
resent the most basic and generic stream parallel patterns and de facto orches-
trate different kind of concurrent activities: stages, in the case of the pipeline
pattern, or scheduler, workers and result collector, in the case of the farm
pattern.

In its most recent fully C++11 compliant API FastFlow introduced en-
hanced features supporting a better control of the programming patterns
typing system. Starting from its building blocks, the ff_node_t<TypeIn,

TypeOut> becomes a typed abstract container for parallel activities, useful
to enforce better type checking on streaming patterns, while among the high-
level patterns ff_Farm<TypeIn, TypeOut> and ff_Pipe<TypeIn, TypeOut>

provide typed Farms and Pipelines.
GrPPI takes full advantage of modern C++ features, making an extensive

use of template meta-programming and generic programming concepts, that
surely help code minimization and leverage automatic compile-time optimiza-
tions. The transformations applied to input data are described using C++
lambda functions, where the callable entities are forwarded via template func-
tion parameters, and the body of the lambda may be completely inlined inside
a specific specialization of the template function that accepts it. Here the
compiler will optimize the whole body of the function: in performance-critical
applications, this solution certainly brings remarkable benefits.

Pattern interfaces are described as function templates, making them more
flexible and usable with any data type. The extensive use of variadic templates
allows an arbitrary number of data sets to be used by a pattern, and also
facilitates handling an arbitrary number of stages/components as typical in a
Pipeline pattern, by taking a sequence of callable entities passed as arguments
to the function: template overloading guarantees that the right case is matched
for every combination of Pipeline stages.

Each pattern function contains an Execution type, which represents the
back-end that will eventually power pattern execution (see listing 3). For in-
stance, it can be set to operate sequentially, or in parallel by means of one
of the supported parallel execution policies. The FastFlow back-end is fully
compliant with these techniques: it has been injected among the supported

rephrase-ict.eu

8

execution type, and its declaration updated among the type traits and meta-
functions that GrPPI applies to assert correctness of execution.

Listing 3: GrPPI’s Pipeline interface

1 template <typename Execution, typename Generator, typename ... Transformers,
2 requires_execution_supported<Execution> = 0>
3 void pipeline(const Execution & ex, Generator && gen_op, Transformers && ... transf_ops)
4 {
5 ex.pipeline(std::forward<Generator>(gen_op), std::forward<Transformers>(transf_ops)...);
6 }

The programming framework to be used to support the execution of a high
level GrPPI pattern is described specifying the proper parallel_execution_*
object as a pattern parameter. Each parallel_execution_* class provides
member functions for interacting with the underlying parallel framework and
contains the actual definition of patterns. Listing 4 reports an excerpt of the
parallel_execution_ff class, which reflects the way the other back-ends
have actually been designed: by default the concurrency degree is set to the
number of available physical cores, but it could be changed via proper access
member functions or by using the specific constructor taking the concurrency
degree as a parameter.

Listing 4: Parallel execution with FastFlow

1 class parallel_execution_ff {
2 public:
3 parallel_execution_ff() noexcept :
4 parallel_execution_ff{static_cast<int>(std::thread::hardware_concurrency()}
5 {}
6 parallel_execution_ff(int degree) noexcept :
7 concurrency_degree_{degree}
8 {}
9

10 // Members for access and modification
11
12 template <typename InputIterator, typename Identity, typename Combiner>
13 auto reduce(InputIterator first, std::size_t sequence_size,
14 Identity && identity, Combiner && combine_op) const;
15
16 // other patterns...
17
18 template <typename Generator, typename ... Transformers>
19 void pipeline(Generator && generate_op, Transformers && ... transform_op) const;
20 }

Stream parallel and data parallel patterns are declared and implemented
within the execution type: adding FastFlow to GrPPI’s data parallel patterns
is a rather straightforward job, as they can all be built on top FastFlow’s
ParallelFor skeleton. Stream parallel patterns require a slightly bigger ef-
fort, as the existing Pipeline pattern has to be used to support the “pattern-
matching” mechanism that drives template overloading, leading to the defini-
tion of the streaming patterns as composition of Pipelines with a minimum of
3 stages.

Concerning the Divide-and-Conquer (DAC) pattern, FastFlow’ DAC pat-
tern does not fully correspond to GrPPI’s one, thus the porting requires some
adjustments, due to differences in their programming interface. Further details
will be given in the following section.

9

4.2 Implementation

Data Parallel Patterns

FastFlow provides the ParallelFor and ParallelForReduce skeletons, de-
signed to efficiently exploit loop parallelism over input data collections. The
FastFlow ParallelFor has obtained comparable, or even better performance
results with respect to those achieved with well-known frameworks, such as
OpenMP or Intel TBB [1,3], which were already part of GrPPI’s back-end. As
previously mentioned, a FastFlow back-end to data parallel patterns is rather
straightforward, as they can all be built on top of FastFlow’s ParallelFor,
even though it requires some caution on pointers arithmetic.

Listing 5 shows the Map pattern built on top of the ParallelFor: the
object is constructed with the proper concurrency degree, enabling a non-
blocking run-time. The grain size also enables a dynamic scheduling of tasks
to the threads, and chunks of no more than grain iterations at a time are
computed by each thread, while the chunk of data is assigned to worker threads
dynamically.

Listing 5: Map pattern for FastFlow back-end

1 template <typename ... InputIterators, typename OutputIterator, typename Transformer>
2 void parallel_execution_ff::map(std::tuple<InputIterators...> firsts,
3 OutputIterator first_out, std::size_t sequence_size,
4 Transformer transform_op) const
5 {
6 ff::ParallelFor pf{concurrency_degree_, true};
7 long step = 1;
8 long grain = sequence_size/concurrency_degree_;
9

10 pf.parallel_for_idx(0, sequence_size, step, grain,
11 [&](const long start_, const long stop_, const int thid) {
12 for (size_t it_ = start_; it_ < stop_; ++it_)
13 *(first_out+it_) = apply_iterators_indexed(transform_op, firsts, it_);
14 },
15 concurrency_degree_);
16 }

The ParallelFor body traverses each chunk with indexes ranges, which
are controlled using pointer arithmetic: the apply_ iterators_indexed is a
meta-function provided by GrPPI that applies a callable entity (transform op)
to the values obtained from the iterators in a tuple by indexing. Results of the
callable are written directly into the output data structure.

Similarly, the Reduce pattern is built on top of the ParallelFor Reduce:
the reduction is executed in two phases: a partial reduction phase first runs in
parallel, while the second phase reduces partial results in series, returning the
final output. Iterations are scheduled to worker threads in blocks of at least
grain iterations.

The Map/Reduce pattern computes a Map-like operation on the input data
set, and then applies a Reduce operation on intermediate results2. It exploits

2 This pattern is not the titled Google’s MapReduce, which exploits key-value pairs to
compute problems that can be parallelized by mapping a function over a given data set or
stream of data, and then combining the results.

10

the intrinsic parallelism provided by the Map and the Reduce patterns, and
the implementation is thus a combination of two phases: the Map phase stores
its result in a temporary collection, which then undergoes the Reduce phase,
and the final result is returned (see listing 6).

Listing 6: Map/Reduce pattern for FastFlow back-end

1 template <typename ... InputIterators, typename Identity, typename Transformer,
2 typename Combiner>
3 auto parallel_execution_ff::map_reduce(std::tuple<InputIterators...> firsts,
4 std::size_t sequence_size, Identity && identity,
5 Transformer && transform_op, Combiner && combine_op) const
6 {
7 std::vector<Identity> partials(sequence_size);
8 map(firsts, partials.begin(), sequence_size, std::forward<Transformer>(transform_op));
9

10 return reduce(partials.begin(), sequence_size,
11 std::forward<Identity>(identity), std::forward<Combiner>(combine_op));
12 }

The Stencil pattern (see Listing 7) is a generalization of the Map pattern,
except that it also performs transformations on a set of neighbors in a given
coordinate of the input data set. Just like the Map pattern, it is implemented
on top of the ParallelFor, with the difference that for each element, the result
of the transformation is combined with the result of a function applied to the
neighboring elements of the current one. The pattern can deal with multiple
input data sets, which can be specified by means of variadic parameters in its
declaration.

Listing 7: Stencil pattern for FastFlow back-end

1 template <typename ... InputIterators, typename OutputIterator,
2 typename StencilTransformer, typename Neighbourhood>
3 void parallel_execution_ff::stencil(std::tuple<InputIterators...> firsts,
4 OutputIterator first_out, std::size_t sequence_size,
5 StencilTransformer&& transform_op, Neighbourhood&& neighbour_op) const
6 {
7 ff::ParallelFor pf(concurrency_degree_, true);
8 long step = 1;
9 long grain = sequence_size/concurrency_degree_;

10
11 pf.parallel_for_idx(0, sequence_size, step, grain,
12 [&](long start, long stop, int thid) {
13 const auto first_it = std::get<0>(firsts);
14 for (size_t i = start; i < stop; ++i) {
15 auto next_chunks = iterators_next(firsts, i);
16 *std::next(first_out,i) = transform_op(std::next(first_it,ot),
17 apply_increment(neighbour_op, next_chunks));
18 }
19 },
20 concurrency_degree_);
21 }

Stream Parallel Patterns

In streaming parallelism, the end-of-stream is a special event used to manage
termination that has to be orderly notified to the involved concurrent activ-
ities, so that they know the computation is terminated and they could start

11

the appropriate closing actions. For this reason, a tag or a marker that iden-
tifies the end of data stream is required. GrPPI uses the optional<T> data
type, officially introduced in C++17 but already available in C++14 under
the experimental namespace. This data type is basically a class template that
manages an optional contained value, i.e. a value that may or may not be
present. The empty optional is used to represent the EOS.

On the other hand, FastFlow propagates special tags through its actors to
notify special events, such as the termination of the data stream, or items
to be discarded. For instance, the end-of-stream is identified with the tag
(OutType *) EOS. This divergence among both interfaces has been handled
at the lower level, by wrapping the ff_node_t class at the base of patterns’
implementation.

A key characteristic of FastFlow is the possibility of using their its own
memory management mechanism. To allow this we provide customized ver-
sions of operators new and delete using a special tag ff_arena. The use of
this internal allocator is highly optimized for producer/consumer scenarios,
and helps maintaining a low memory footprint during program execution.

By exploiting template overloading, a node impl has been defined for three
basic situations in a Pipeline pattern: the first stage generating items, interme-
diate stages transforming items, and the las stage consuming items. Template
node_impl is parametrized by input and output data types as well as the
callable entity that transforms items.

An intermediate stage is modeled upon the ff_node_t class, and models a
sequential stage that receives data from the input channel, executes its trans-
former on the input data and returns its result on the output channel. Both
input and output data type need to be specified (see Listing 8).

Listing 8: node impl for intermediate stage

1 template <typename Input, typename Output, typename Transformer>
2 class node_impl : public ff::ff_node_t<Input,Output> {
3 public:
4 node_impl(Transformer && transform_op) :
5 transform_op_{transform_op}
6 {}
7
8 Output * svc(Input * p_item) {
9 return new (ff_arena) Output{transform_op_(*p_item)};

10 }
11 private:
12 Transformer transform_op_;
13 };

Listing 9 reports the corresponding node for the first stage as an special-
ization of node impl which does not have an input data type and send items
into the data stream as long as its generator returns a value.

The end-of-stream case is adapted by returning the EOS marker when the
generator produces and empty object which is GrPPI end-of-stream. Note that
this wrapper extends the generic ff_node instead of the typed one, because
FastFlow prohibits to have a node object typed with a void input type and a
specialized output type: in this case, it falls back to the generic version.

12
Listing 9: node impl for first stage

1 template <typename Output, typename Generator>
2 class node_impl<void,Output,Generator> : public ff::ff_node {
3 public:
4 node_impl(Generator && generate_op) :
5 generate_op_{generate_op}
6 {}
7
8 void * svc(void *) {
9 std::experimental::optional<Output> result{generate_op_()};

10 if (result) { return new (ff_arena) Output{*result}; }
11 else { return EOS; }
12 }
13 private:
14 Generator generate_op_;
15 };

A final stage does not return any data. It is a consumer stage, where input
data is stored or printed, and nothing is further placed in the data stream.
It is modeled upon the ff_node_t class, and no output data type needs to
be specified (see listing 10): if an input value exists, it is consumed and then
destroyed (such that memory leaks are avoided), additionally FastFlow’s GO ON

marker is returned.

Listing 10: node impl for final stage

1 template <typename Input, typename Consumer>
2 class node_impl<Input,void,Consumer> : public ff::ff_node_t<Input,void> {
3 public:
4 node_impl(Consumer && consume_op) :
5 consume_op_{consume_op}
6 {}
7
8 void * svc(Input * p_item) {
9 consume_op_(*p_item);

10 operator delete(p_item, ff_arena);
11 return GO_ON;
12 }
13 private:
14 Consumer consume_op_;
15 };

We built the back-end for stream parallel patterns using these building
blocks. By exploiting template overloading, a Pipeline is constructed out of
the stages passed to the variadic parameter in the Pipeline interface (see list-
ing 3). Except for the very first stage, which must be the stream generator3,
other stages can be any intermediate sequential stage, or another streaming
pattern that embeds a parallel logic (e.g., a Farm pattern). For instance, an
intermediate stage can be a nested Pipeline as well.

At the base of this mechanism there is FastFlow’s Pipeline pattern. By
wrapping the ff_pipeline class, pattern matching on function templates al-
lows to add stages to the Pipeline in the same order as they have been passed
to the variadic parameter in the interface. The only requirement is that each
stage must subclass one of the ff_node or ff_node_t classes, just like the
node_impl does, as well as FastFlow’s Farm pattern. Once the pipeline is con-
structed, the execution is triggered calling the run_and_wait_end() function,

3 GrPPI assumes all stream parallel comutations are pipelines, whose first stage acts as
stream generators and the last stage acts as stream absorber. In both cases, the stages may
anyway implement some kind of computation on the generated/absorbed stream items.

13

which starts the computation and awaits its termination in a cooperative way
(see listing 11).

Listing 11: Construction of the Pipeline

1 template <typename Generator, typename ... Transformers>
2 void parallel_execution_ff::pipeline(Generator && generate_op,
3 Transformers && ... transform_ops) const
4 {
5 detail_ff::pipeline_impl pipe{concurrency_degree_, ordering_,
6 std::forward<Generator>(generate_op),
7 std::forward<Transformers>(transform_ops)...};
8 pipe.setFixedSize(false);
9 pipe.run_and_wait_end();

10 }
11
12 class pipeline_impl : public ff::ff_pipeline {
13 public:
14 template <typename Generator, typename ... Transformers>
15 pipeline_impl(int nworkers, bool ordered, Generator && gen,
16 Transformers && ... transform_ops)
17 :
18 nworkers_{nworkers}, ordered_{ordered}, nodes_{}
19 {
20 // Type deduction...
21 auto first_stage = std::make_unique<node_type>(std::forward<Generator>(gen_op));
22 add_node(std::move(first_stage));
23 add_stages<generator_value_type>(std::forward<Transformers>(transform_ops)...);
24 }

In order to match the nesting of a stream parallel pattern into the Pipeline,
first proper type checking is performed at compile time via template type
matching, and then the pattern is constructed and added to the Pipeline. In
listing 11 there are two functions that insert stages into the underlying pipeline
object: add_node actually adds the stage, while add_stages forwards addi-
tional stages passed via the variadic parameter, and recurs over the template
functions until it finds the right match.

Listing 12 shows the creation of a Farm stage, which is added to the Pipeline
before subsequent stages: after type deduction is performed, the actual work-
ers of the Farm are constructed. The workers will be responsible for actually
applying Farm’s transformation over the input data stream, whose callable is
captured at compile time by the FarmTransformer parameter. The workers
are then added to an ordered4 Farm (ff_OFarm), which also adds default emit-
ter and collector to the Farm. The new pattern is added to the Pipeline, while
subsequent stages will be recursively added by matching the proper overload-
ing.

Stream reduce and Stream filter are basically Farm patterns, and can easily
be nested as Pipeline stages. Due to their semantics, they cannot be imple-
mented as generic Farms, where workers carry on their job and return results,
but need to be properly tuned.

The Stream reduce pattern aims at collapsing items appearing on the input
stream, and then delivers these results to the output stream. This computation

4 FastFlow provides two different Farm patterns: the ordered farm pattern preserves the
input/output data stream ordering; the normal farm does not preserve it, for all those
computations that, as an example, directly store results in shared memory and the order of
the write/updates doesn’t matter.

14

Listing 12: Adding a Farm stage to the Pipeline

1 template <typename Input, typename FarmTransformer, template <typename> class Farm,
2 typename ... OtherTransformers,
3 requires_farm<Farm<FarmTransformer>> = 0>
4 auto add_stages(Farm<FarmTransformer> && farm_obj,
5 OtherTransformers && ... other_transform_ops)
6 {
7 std::vector<std::unique_ptr<ff::ff_node>> workers;
8 for(int i=0; i<nworkers_; ++i) {
9 workers.push_back(std::make_unique<worker_type>(

10 std::forward<Farm<FarmTransformer>>(farm_obj)));
11 }
12
13 using node_type = ff::ff_OFarm<Input,output_type>;
14 auto p_farm = std::make_unique<node_type>(std::move(workers));
15 add_node(std::move(p_farm));
16 add_stages<output_type>(std::forward<OtherTransformers>(other_transform_ops)...);
17 }

is applied to a subset of the input stream called window, where each window
is processed independently. In order to accommodate such behavior, a simple
Windowed Farm is created, where the emitter is responsible for buffering items
coming from the stream, and dispatching them in batch to the workers, as soon
as the required window size is reached.

A Windowed Farm may have an offset parameter, which may create over-
lapping regions among two windows. This aspect is also managed by the emit-
ter, that drops items or keeps duplicates, according to what scenario the offset
size generates (depending on whether the offset is smaller, equal or greater
than the window size). Again, in constructing the Windowed Farm, care has
been taken for properly dealing with optional values, which are used to denote
the end-of-stream event.

The Stream filter pattern applies a filter over the items in the input stream,
such that only those items satisfying the filter pass to the output stream. The
filter is computed in parallel using a FastFlow Farm. Despite rather straightfor-
ward, an ad hoc Farm has been created to reproduce this behavior in FastFlow,
to properly deal with presence/absence of output item delivery by farm work-
ers depending on the evaluation of the filter predicate on the corresponding
input items.

The Stream iteration pattern applies a transformation to a data item in a
loop fashion, until a given condition is satisfied. When the condition is met,
the result is sent to the output stream. This pattern has been implemented
again using an specialization of ff_node_t.

Task Parallel Patterns

GrPPI provides a Divide-and-Conquer (DAC) pattern, which applies a multi-
branched recursion to break down a problem into several sub-problems, until
the base case is reached: at this point distinct sub-problems can be solved in
parallel and their solutions merged to form the definitive one. GrPPI comes
with two interfaces for calling the DAC pattern, where one of them allows to

15

explicitly pass the Predicate function that leads the divide phase, rather than
implicitly use it in the Divide function body.

FastFlow provides a DAC pattern, whose interface requires the Predicate
condition for the base case to be explicitly passed as a pure function: this
perfectly matches GrPPI, thus the implementation is rather easy and only
requires proper deduction of the output type.

5 Experimental evaluation

In this section, we perform an experimental evaluation of the Map, Reduce,
Stencil and Farm in order to compare the patterns’ scalability among the
different GrPPI backends, the new FastFlow backend and using directly the
FastFlow programming framework. Additionally, we have evaluated the pro-
grammability in terms of lines of code (LOC) and cyclomatic complexity.

The evaluation has been carried on a machine equipped with two Intel
Xeon Ivy Bridge E-2595 with a total of 24 cores running at 2.40 Ghz, 03 MB
of L3 cache and 128 GB of DDR3 RAM. The OS is a Linux Ubuntu 14.04.2
LST with the kernel 3.13.0-57. As for the C++ compiler we have used the
GCC 6.3.0.

5.1 Performance evaluation

To evaluate the performance and programmability, we have designed a set of
benchmarks to measure some of the patterns previously described: 1) Map, 2)
Reduce, 3) Stencil and 4) Farm. In this section, we present the performance
evaluation for the different supported GrPPI backends as well as for direct use
of FastFlow. The evaluation allows to analyze the potential overheads intro-
duced by the extra abstraction layer on top of FastFlow. Additionally, we show
how GrPPI can be used to compare performance among different backends.

Map benchmark: This benchmark has been used to compute a daxpy operation.
That is, it computes the operation: y = α · x + y, where x and y are vectors
of floating point numbers, and α is a random floating point scalar. The result
overwrites the initial values of vector y. Figure 2 compares execution times
using GrPPI against a direct FastFlow implementation. As observed, the exe-
cution times scale similarly independently of the framework used underneath.

Reduce benchmark: This benchmark stresses the pattern by computing the
addition of a sequence of natural numbers. Figure 3 shows the performance
achieved by the different backends with respect to the FastFlow implementa-
tion. As can be observed, similarly to the Map pattern benchmark, no signif-
icant difference among different backends can be identified. However, in this
case, we notice a slight performance degradation when using more than 13
cores. This is due to the inherent overhead related to the data sharing be-
tween the two NUMA nodes in which a thread that accesses memory on a
remote NUMA node has increased transfer costs.

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 4 8 12 16 20 24

E
x
ec

.
T

im
e

(s
)

Cores

GRPPI native
GRPPI TBB

GRPPI OpenMP
GRPPI FastFlow

FastFlow

Fig. 2: Execution time of the Map benchmark with respect to the number of
cores.

 0

 2

 4

 6

 8

 10

 12

1 4 8 12 16 20 24

E
x
ec

.
T

im
e

(s
)

Cores

GRPPI native
GRPPI TBB

GRPPI OpenMP
GRPPI FastFlow

FastFlow

Fig. 3: Execution time of the Reduce benchmark with respect to the number
of cores.

Stencil benchmark: This benchmark performs a stencil computation over two
one-dimensional vectors of the same size (v1, v2). The stencil function takes
into account the two preceding and the two following neighbors of each item in
each vector, and add their values to each item of the first vector. As observed
in Figure 4, the performance is almost the same on all supported backends.
Similar to the previous experiment, we notice the NUMA effect when using
more than 12 cores in all backends except for the FastFlow implementation.
This shows a better handling by FastFlow of NUMA platforms.

 0

 5

 10

 15

 20

 25

1 4 8 12 16 20 24

E
x
ec

.
T

im
e

(s
)

Cores

GRPPI native
GRPPI TBB

GRPPI OpenMP
GRPPI FastFlow

FastFlow

Fig. 4: Execution time of the Stencil benchmark with respect to the number
of cores.

Farm benchmark: This benchmark executes some calculation on a stream of
natural numbers: for each item in the input stream, workers perform repeated
math operations on the input item, and return the result of their computation.
As explained above, GrPPI builds all stream parallel patterns as a composition

17

of the Pipeline pattern: for example, a Farm is a three-stages pipeline where
the middle stage is a Farm pattern that exploits as many worker threads as
the concurrency degree defines. In this comparison, the Farm pattern used
with the pure FastFlow benchmark is actually a Pipeline+Farm composition,
as reported in listing 13.

Listing 13: Farm patterns

1 // Pure FastFlow version
2 void farm_bench_ff(int cores) {
3 ff::ff_Pipe<> pipe{make_unique<generator>(stream_len),
4 make_unique<ff::ff_OFarm<long>>(worker_func, num_workers), make_unique<Collector>()};
5 pipe.run_and_wait_end();
6 }
7
8 // GRPPI version
9 void farm_bench_grppi(const dynamic_execution & e, int cores) {

10 grppi::pipeline(e,
11 [&]() -> experimental::optional<long> {
12 if (idx_in < v.size()) {
13 idx_in++;
14 return v[idx_in-1];
15 }
16 else return {};
17 },
18 grppi::farm(cores, [&](long x) { return do_work(x); }),
19 [&](long x) { output += x; }
20);
21 }

Figure 5 shows the execution time of the Farm benchmark with respect
to the number of cores using the different backends. As observed, the TBB
backend outperforms the other backends since TBB employs a completely
different approach for implementing the pipeline. Intel TBB follows a task-
based paradigm with work-stealing. In contrast, the rest of GrPPI backends
and FastFlow use dedicated threads as for the generator and collector tasks.

 0

 10

 20

 30

 40

 50

 60

 70

1 4 8 12 16 20 24

E
x
ec

.
T

im
e

(s
)

Cores

GRPPI native
GRPPI TBB

GRPPI OpenMP
GRPPI FastFlow

FastFlow

Fig. 5: Execution time of the Farm benchmark with respect to the number of
cores.

In general, the GrPPI interface does not introduce additional overheads
and allows to easily compare the performance by the different backends. This
way, GrPPI eases the evaluation and selection of the most adequate backend
with a single codebase at the application level and without needing to perform
modifications when migrating from one backend to a different one.

18

5.2 Programmability evaluation

In this section we study the number of lines of code (LOC) and the average
cyclomatic complexity number (CCN) of the GrPPI and FastFlow benchmark
implementations. Table 1 shows the number of LOCs and average CCNs as
programmability metrics calculated by the lizard tool [21]. As observed, since
both FastFlow and GrPPI provide high-level interfaces, the number of required
LOC and CCN are quite similar. The main difference among both interfaces
is that FastFlow is targeted to expert parallel programmers providing more
tuning options, while GrPPI provides a more simplified and user-friendly in-
terface aimed to a wider range of application developers, while providing less
fine-tuning options. Additionally, the GrPPI implementation supports multiple
backends and allows to easily switch among them.

GrPPI FastFlow
Benchmark LOC CCN LOC CCN

Map 63 1.4 65 1.4
Reduce 54 1.3 65 1.4
Stencil 76 2.2 73 2.2
Farm 66 1.4 80 1.3

Table 1: Lines of code and cyclomatic complexity of the benchmarks.

6 Conclusions

In this work, we have presented the design and implementation of the new
FastFlow back-end for the GrPPI API supporting full pattern-based parallel
programming in C++. The experimental evaluation demonstrates that the
abstraction layer introduced by the GrPPI interface does not introduce addi-
tional overheads and performs equally to using FastFlow directly.

Additionally, we have analyzed the needed programming efforts for imple-
menting a GrPPI application with respect to using an already existing frame-
work. As we have seen, both approaches provide high-level interfaces that sim-
plify expressing parallel programs. However, the FastFlow interface has been
designed targeting expert parallel programmers and provide a way for fine-
tuning the application, while GrPPI provides a more functional programming
style interface aimed for a wider range of application developers.

References

1. Aldinucci, M., Danelutto, M., Drocco, M., Kilpatrick, P., Peretti Pezzi, G., Torquati, M.:
The loop-of-stencil-reduce paradigm. In: Proc. of Intl. Workshop on Reengineering for
Parallelism in Heterogeneous Parallel Platforms (RePara), pp. 172–177. IEEE, Helsinki,
Finland (2015)

19

2. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An efficient
unbounded lock-free queue for multi-core systems. In: Euro-Par 2012 Parallel Pro-
cessing: 18th International Conference, Euro-Par 2012, Rhodes Island, Greece, August
27-31, 2012. Proceedings, pp. 662–673. Springer (2012)

3. Aldinucci, M., Peretti Pezzi, G., Drocco, M., Spampinato, C., Torquati, M.: Parallel
visual data restoration on multi-GPGPUs using stencil-reduce pattern. International
Journal of High Performance Computing Application (2015)

4. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Mor-
gan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the
parallel computing landscape. Commun. ACM 52(10), 56–67 (2009)

5. Danelutto, M., Torquati, M.: Structured parallel programming with ”core” fastflow. In:
V. Zsók, Z. Horváth, L. Csató (eds.) Central European Functional Programming School,
LNCS, vol. 8606, pp. 29–75. Springer (2015)

6. Ernsting, S., Kuchen, H.: A scalable farm skeleton for hybrid parallel and distributed
programming. Int. J. Parallel Program. 42(6), 968–987 (2014)

7. Ernstsson, A., Li, L., Kessler, C.: Skepu 2: Flexible and type-safe skeleton program-
ming for heterogeneous parallel systems. International Journal of Parallel Programming
(2017)

8. Excess home page (2017). http://www.excess-project.eu/

9. FastFlow home page (2017). http://calvados.di.unipi.it/

10. GrPPI github (2017). https://github.com/arcosuc3m/grppi

11. Haidi, M., Gorlatch, S.: High-Level Programming for Many-Cores using C++14 and
the STL. International Journal of Parallel Programming 46, 23–41 (2018)

12. Kessler, C., Gorlatch, S., Enmyren, J., Dastgeer, U., Steuwer, M., Kegel, P.: Skeleton
Programming for Portable Many-Core Computing. In: Programming multi-core and
many-core computing systems. Wiley (2017)

13. OpenMP home page (2017). http://www.openmp.org/

14. Microsoft Parallel Pattern Library home page (2017). Https://msdn.microsoft.com/en-
us/library/dd492418.aspx

15. Repara home page (2017). http://repara-project.eu/

16. Rephrase home page (2017). rephrase-ict.eu

17. RePhrase, W.: Advanced patterns (2015). https://rephrase-eu.weebly.com/uploads/
3/1/0/9/31098995/d2-5.pdf

18. RePhrase, W.: Report on the initial pattern set (2015). https://rephrase-eu.weebly.
com/uploads/3/1/0/9/31098995/d2-1.pdf

19. del Rio Astorga, D., Dolz, M.F., Fernández, J., Garćıa, J.D.: A generic parallel pattern
interface for stream and data processing. Concurrency and Computation: Practice and
Experience pp. n/a–n/a (2017)

20. TBB home page (2017). https://www.threadingbuildingblocks.org/

21. Terry Yin: Lizard: an Cyclomatic Complexity Analyzer Tool Online; accesed 10 Novem-
ber 2018

22. Wong, M., Garcia, J.D., Keryell, R.: Supporting Pipelines in C++. Working paper
P1261R0, ISO/IEC JTC1/SC22/WG21 (2018)

http://www.excess-project.eu/
http://calvados.di.unipi.it/
https://github.com/arcosuc3m/grppi
http://www.openmp.org/
http://repara-project.eu/
rephrase-ict.eu
https://rephrase-eu.weebly.com/uploads/3/1/0/9/31098995/d2-5.pdf
https://rephrase-eu.weebly.com/uploads/3/1/0/9/31098995/d2-5.pdf
https://rephrase-eu.weebly.com/uploads/3/1/0/9/31098995/d2-1.pdf
https://rephrase-eu.weebly.com/uploads/3/1/0/9/31098995/d2-1.pdf
https://www.threadingbuildingblocks.org/

	Introduction
	FastFlow
	Generic and reusable parallel pattern interface
	FastFlow under GrPPI
	Experimental evaluation
	Conclusions

