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Abstract—In order to meet the requirements of services and
applications envisioned for post-5G and 6G networks, research
efforts are heading towards the convergence of architectures
aiming to support the wide variety of new compute-demanding
and latency-sensitive applications in the context of Tactile In-
ternet. In this paper, we study the resource allocation and
association of users with different delay requirements in a
shared-backhaul fiber-wireless (FiWi) enhanced Heterogeneous
Cloud Radio Access Network (H-CRAN) with Multi-access Edge
Computing (MEC) and offloading. As opposed to traditional
resource and association management, we propose a decen-
tralized algorithm based on a full dual decomposition of the
optimization problem to operate the network. Results show that
this approach outperforms the traditional one in terms of average
delay and energy consumption, achieving up to 80% average
delay improvement in high-load scenarios.

Index Terms—Backhaul Awareness, Downlinl-Uplink Decou-
pling, Fiber-Wireless, Heterogeneous Cloud Radio Access Net-
work, Self-Organizing Networks.

I. INTRODUCTION

The upcoming 5G cellular networks are expected to cope
with a massive increase in the number of mobile smart
devices and new applications. Research efforts have focused
on achieving massive bandwidth, extreme densification and
offloading, ultra-low round-trip times, and improved spectral
efficiency [1]. Also, the uplink has gained importance due to
the emerging Internet of Things (IoT).

One of the promising technologies to achieve the above-
mentioned requirements and reduce CAPEX and OPEX of
future netwoks is the Cloud Radio Access Network (C-RAN)
architecture. C-RAN moves the processing of cellular radio sig-
nals from base stations to the cloud. Accordingly, conventional
base stations are split into three elements: Central Unit (CU),
Distributed Unit (DU), and Remote Radio Unit (RRU). The
latter is in charge of radiating radio signals to the users as well
as gathering and digitizing them back to the processing units
by using appropriate transport protocols like eCPRI over IP or
Ethernet [2]. Additionally, DU and CU share further processing
functions that are dependent on the particular deployment [3].
This network architecture obviously reduces the complexity
and cost of the deployed base stations. It supports more com-
plex and smarter Coordinated Multi-Point (CoMP) services,

better interference management, energy-efficient cooling and
virtualization features that enable an agile and fast introduction
of new services [4]. However, this scheme poses stringent
latency requirements on the digitized data that must be met
for the proper functioning of the network.

Recently, a combination of C-RAN and heterogeneous
networks (HetNets), known as Heterogeneous Cloud Radio
Access Network (H-CRAN) [5], has emerged featuring sev-
eral types of base stations. Compared to C-RAN, H-CRAN
makes use of LTE-A and WiFi to alleviate the burden on
the fronthaul links and support offloading through different
technologies. In this context, a careful design of the network
becomes paramount to ensure that both C-RAN and non-C-
RAN/backhaul data can coexist while meeting the requirements
for both. Moreover, there exists the desire of going beyond this
coexistence and achieving the convergence of technologies that
brings us the best of both architectures and services.

Conventional communications between human mobile users
is not the only type of traffic that is envisioned in post-
5G/6G networks. In this paper, we consider the coexistence
of three types, each with a particular set of quality-of-service
(QoS) requirements: (1) Human-to-Human (H2H) commu-
nications with moderate delay requirements, (2) Human-to-
Machine (H2M) communications, in the so-called Tactile
Internet, posing stringent delay requirements for immersive
services and applications such as telepresence, remote control
of haptic machines, and remote surgery, and (3) Multi-access
Edge Computing (MEC) traffic, providing cloud computing
capabilities at the edge of access networks, leveraging the
physical proximity of servers and mobile users to achieve a
reduced latency and increased reliability.

Unfortunately, 5G deployments expose limitations regarding
the integration of new applications [6]. To overcome this,
there exists an increasing interest in next-generation 6G sys-
tems focused on the convergence of technologies [7]. The
major research branches of 6G consider not only delivering
another 1000x increase in data rates, but also diving into
self-sustaining networks and dynamic resource utilization.
6G will also put an end to smartphone-centric networks,
introducing new system paradigms (e.g., human-in-the-loop



communications, human-centric services). In this paper, we
aim at solving the user association and allocation of commu-
nication and computation resources to different types of users
over backhaul-shared fiber-wireless (FiWi) enhanced H-CRAN
networks supporting three transmission technologies: LTE-A,
WiFi, and C-RAN RRUs. Convergence in 6G appears to be
achievable only at the expense of an increased complexity. To
cope with this, decentralization represents a promising means
to keep the scalability via self-organization.

Moreover, the objective of this paper is to develop a decen-
tralized algorithm with very low information pass requirements
that is able to accomodate users (humans, machines and
computation tasks) to base stations of different technologies
(WiFi, LTE-A, C-RAN) in an optimal way so as to fulfill their
wide range of latency requirements and maximize the global
network utility.

The remainder of the paper is structured as follows. Sec-
tion II briefly reviews the related work. In Section III, we
present the network model based on a two-tier heterogeneous
H-CRAN network supported by an Ethernet Passive Optical
Network (EPON) backhaul, trying to answer several inter-
esting migration questions such as how to integrate C-RAN
in decentralized HetNets or the evolution of future C-RAN.
Additionally, we introduce a signal model and a traditional
association scheme based on stochastic geometry that will
serve as a baseline to compare with our derived solution.
Section IV presents the optimization problem and a scalable
decentralized solution is shown in Section IV-B based on a full
dual decomposition of the optimization problem. We further
validate the simulator in Section V-A. We show the utility of
our proposed approach in the use case of the emerging Tactile
Internet in Section V-B. Finally, Section VI summarizes the
conclusions of the paper.

II. RELATED WORK

Optimization of cellular networks through association bias-
ing [40], balancing between delay and throughput [41], [42], or
cell breathing [43], have been major research topics in HetNets
as a solution to maximize throughput and improve latency.
In [44], the authors present a holistic interference optimization
framework for LTE-A HetNets.

There already exist examples proposing the design mobility-
aware association strategies to overcome the limitations of
the conventional received power-based association schemes as
in [29]. Even though an interesting approach is followed to
reduce frequent handovers, the optimization algorithm does
not guarantee delay requirements or differentiate between
types of traffic. In [30], the user association for ultra-low
latency in LTE-A is studied from a Bayesian cell selection and
usser association perspective. The authors of [45] propose a
cooperative strategy based on centralized resource scheduling
and statistical traffic data. In [46], a taxonomy of different
association algorithms is presented. This extensive overview
reviews the most common options used for heterogeneous
networks, massive MIMO, mmWave, and energy harvesting
networks.

More recently, the authors of [47] have explored the
benefits of opportunistic relaying to achieve load balancing
and throughput gains in 5G/6G vehicular wireless networks.
In [48], the authors study an energy-efficiency optimization
problem in H-CRAN networks. Authors of [49] solve an
energy and bandwidth consumption minimization problem for
an H-CRAN network to decide on the used functional split
for each service. However, the C-RAN network is usually not
integrated with the rest of the network [5], using its own
aggregation network.

The use of EPON to support cloud and edge computing
capabilities has caught attention in the past [50], [51], studying
the suitable EPON features needed to provide these services.
The cloud vs MEC collaborative offloading is studied in [36]
using a game-theoretic framework. Recently, Castellano et
al. [52] studied the optimal assignment of computing resources
for heterogeneous edge applications. Finally, the use of priority
queuing to ensure that the C-RAN requirements are met, is a
common practice [12].

Other studies, rely on guaranteeing extreme delay per-
centiles [2], [10]. To the best of our knowledge, there is a lack
of solutions that analyze the multi-delay-constrained joint user
association and resource allocation in H-CRAN networks while
solving important network convergence and design aspects to
achieve a true operational integration.

III. SYSTEM MODEL

A. Network Architecture

Figure 1 depicts the generic architecture of the considered
FiWi enhanced H-CRAN network. The fiber backhaul consists
of a time or wavelength division multiplexing (TDM/WDM)
IEEE P802.3ca 25 Gbps EPON [8] with a typical fiber range
of 10 km between the central optical line terminal (OLT) –
located at the Central Office (CO)– and remote optical net-
work units (ONUs), which may be extended up to 100 km
to account for long-reach PON deployment scenarios. The
EPON may comprise multiple stages, each separated by a
wavelength broadcasting splitter/combiner or a wavelength
multiplexer/demultiplexer.

There are four different subsets of ONUs. An ONU may serve
fixed (wired) subscribers, it may connect to a cellular LTE-A
base station (BS) or an IEEE 802.11n/ac/s WLAN mesh portal
point (MPP), giving rise to a collocated ONU-BS or ONU-MPP,
respectively. Finally, ONUs are co-located with C-RAN DUs
that aggregate and preprocess fronthaul data coming from the
RRUs, creating what we call the ONU-DUs.

Note, in Figure 1, the implemented color code is used
to indicate the coverage areas of each technology. We use
orange color to fill the coverage areas that can be served
using WiFi technology, and blue color to indicate that 5G C-
RAN service is available in a given region. Finally, the areas
filled with green color represent those that can be served via
LTE-A technology. It is worth highlighting that, since the LTE-
A coverage areas are larger than those of WiFi and 5G C-
RAN, these are surrounded by the former. This means that
some users (humans or robots shown in the figure) might have



Fig. 1. Generic architecture of the MEC-enabled FiWi enhanced H-CRAN with coexistent C-RAN, H2H, and H2M traffic.

several options regarding the technology they use to access the
network.

Depending on her trajectory and position, a mobile user
(MU) may communicate through the cellular network and/or
WLAN mesh front-end, which consists of ONU-MPPs, inter-
mediate mesh points (MPs), and mesh access points (MAPs).
Alternatively, a MU may access the network through the C-
RAN deployment. The C-RAN RRUs are in charge of collecting,
digitizing, and sending the MU’s signals that will be processed
at the DU and CU.

In this architecture, DUs and RRUs are deployed close to
each other (on the order of 100s of meters) connected using
fiber [3], [9] or Ethernet point-to-point links [10]. However,
the unprocessed fronthaul traffic poses stringent delay require-
ments as noted in the eCPRI and IEEE 802.1CM time-sensitive
networking for fronthaul protocols [11], [12]. In summary,
eCPRI and the IEEE Standard identify the IQ data sent by the
RRUs as high priority fronthaul (HPF) class, with a hard 100 �s
budget limit for the end-to-end one-way latency. Assuming that
RRUs handle a low layer functional split (e.g., Option 7 Intra-
PHY - eCPRI Split IU = IID [9]) a protocol like eCPRI may
be utilized to encapsulate the digital samples and send them
to the DU for further processing.

After the processing is performed at the DU, the latency
requirements imposed on the EPON are relaxed as we move
to higher layer splits like Split Option 2 (PDC/high RLC [13]),
and thus enabling the network to transport C-RAN traffic with a
latency budget between 1:5 and 10 ms for Split Option 2 [14].
Further explanations of the functions placed at each processing
element can be found in Section III-D. Finally, after traversing

the EPON, the traffic reaches the CU pool at the OLT, where
the final processing takes place.

From the network coverage and operational point of view, a
two-tier multi-cell H-CRAN network is considered with macro-
cells providing LTE-A connectivity and small cells featuring
low-power and low-cost offloading. These small cells are re-
alized via WiFi MAPs and C-RAN RRUs. Note that only few of
them are highlighted in Figure 1 for illustration, using orange,
and blue color, respectively, to mark their coverage areas.
Through densification, users are virtually able to associate with
any radio technology, going beyond the usual cell boundaries
imposed by traditional power criteria. The management data
(control and signaling) and user data are treated in different
ways.

User traffic is transported using the infrastructure of the
user’s host network. However, taking advantage of the macro-
cell coverage, the control/signaling and broadcast data are
sent via the LTE-A macro-cells to the users, including the
C-RAN management information. Later in this paper, once
the optimization framework takes control of the network
operation, the LTE-A network can also be used to broadcast the
appropriate information that will enable the users to achieve
self-organization. Consequently, RRUs are mere hot-spots used
to provide high-speed data transfer. This also helps relax the
time and delay constraints in the fronthaul network located
between the CU/DU and the RRUs and thereby enables a
truly cooperative operation between C-RAN and non-C-RAN
networks, since the signaling data of both networks are no
longer unaware of each other.

In our work, several types of communication are taken into



account. In addition to conventional human end-users with
their typical triple-play human-to-human (H2H) traffic (i.e.,
voice, video, and data), we allow for the coexistence of Tactile
Internet robots, paired with human operators (HO), as the
next evolutionary step of IoT. Telesurgery is a well-known
application of such robots, featuring a number of sensors
and manipulators with different degrees of freedom (DoF),
typically ranging from 3 to > 20. Samples containing the
updated positions and orientation signals are transmitted from
the HO to the robot, and vice versa. These samples must
comply with certain QoS guarantees for an adequate immersive
experience, i.e., to extend human capabilities rather than just
automate them.

Finally, we equip ONU-BSs/MPPs/DUs with MEC servers –
simply called edge servers hereafter– collocated at the optical-
wireless interface, as shown in Figure 1. Therefore, MUs asso-
ciated to LTE-A, WiFi, or C-RAN may offload their incoming
computational tasks to nearby edge servers or execute their
computation tasks. Alternatively, a user may decide to offload
a task to an MEC server located at the CO [15] for more
powerful computation.

B. Radio signal model

We assume a two-tier HetNet where all BS in tier i, 8i 2
f1; 2g, are located according to two independent homogeneous
Poisson Point Processes (PPP) �i of density �i. Let Pi be the
transmission power of a node at tier i, where i = 1 for LTE-
A BSs and i = 2 for WiFi MAPs and RRUs. The transmission
power for each UE is Pd. We consider additive white Gaussian
noise with constant power �2. Thus, the received power in the
downlink channel measured at a typical user device located at
y 2 R2 and receiving a signal from a BS located at x0 is

P�r = Pi hx0 jjx0 � yjj��; (1)

where jj � jj is the Euclidean norm, � > 2 is the path
loss exponent, and hx0

is the small-scale Rayleigh fading.
Similarly, the signal power received at the BS in the uplink
is given by

P+
r = Pd hx0 jjx0 � yjj��: (2)

We assume some form of orthogonal transmission (e.g., TDMA
or OFDMA) so that no intra-cell interference exists. However,
interference from distant transmitters at other cells cannot be
neglected, especially when the path-loss exponent is low (� <
4). The resulting downlink SINR expression assuming a user
device at y connects to a BS in tier i located at position x0 is

SINR�(y) =
Pi hx0

kx0 � yk��Pk
j=1

P
x2�i; x6=x0

Pj hx0
kx� yk�� + �2

;

(3)
where j is the j-th tier. The same assumptions hold for the
uplink transmissions.

C. Traditional Association Scheme

In traditional cellular networks, it has been almost a univer-
sal practice to associate an MU in both uplink and downlink to

the same BS. Downlink/Uplink Decoupling (DUDe) represents
an alternative idea that proposes the use of different BSs for
uplink/downlink [16]–[18].

Current LTE-A networks enable dual connectivity from
the MUs, and DUDe has been shown to outperform coupled
association schemes [19], [20] besides having architectural
advantages, such as reliability. In DUDe, the association de-
cision is now based on the average received signal in DL/UL
separately, taking the expectation over the probability density
function of the fading process. We can obtain the received
signal powers for uplink and downlink by averaging (1) and (2)

Eh[P�r ] = Eh[P+
r ] = Pi kx0 � yk��;

where i = 1; 2 stands for the tier. Let Di(y) be the distance
between the device and the serving base station at tier i. Thus,
under the maximum-received-power policy, the following as-
sociation rules can be derived: Connect to an LTE-A BS in
the downlink if P1D

��
1 > P2D

��
2 , otherwise connect to a

tier 2 BS. Similarly, associate to an LTE-A BS in the uplink
if PdD��1 > PdD

��
2 ) D2 > D1 and associate to tier

2 otherwise. However, these decisions are independent from
each other and lack a holistic view of the system. Clustering
the users according to these rules leads to the so-called Voronoi
coverage maps, built under the premise of maximizing the
received power and minimizing the transmission distances.

Nevertheless, it is clear that this is not always optimal,
as load imbalance takes place due to the disparate transmit
powers of base station. Additionally, despite the fact that
DUDe still yields substantial performance gains over co-located
association, fixed coverage maps may cause that some BSs
are serving most of the users, whereas some others are idle.
Even though this can be partially solved by increasing the BS
densification, other approaches are investigated in more detail
in the following sections via the optimization theory.

D. Traffic Generation and Requirements

� One characteristic of the service ecosystem envisioned
for future mobile networks is heterogeneity. For H2H
communications, we assume that the packet size of a
mobile user is SH2H. Also, this data has moderate delay
requirements, given by the maximum end-to-end delay:
DThreshold

H2H . Regarding the H2M traffic, we assume that a
human operator (HO) in a haptic session of a teleoperation
system with n degrees of freedom requires an end-to-end
delay lower than DThreshold

H2M (usually, sub 10 ms [21]) as
well as a packet size of SH2M.

� With respect to MEC traffic, tasks are characterized by an
uplink and downlink packet size SULMEC and SDLMEC. Also, we
assume these tasks have a maximum completion time of
DThreshold

MEC . In the baseline scenario, each MU uses a sched-
uler to decide whether to offload a task to an Edge/CO
server or execute it locally, with probability POffload. If
the decision is to offload, it will decide between Edge/CO
with probability PEdge and (1�PEdge), respectively (only
applies to MEC users). Conversely, the distributed solution
will take care of the decision in the proposed approach.



Wired subscribers are assumed to contribute to the
EPON’s occupancy with average background rates of
RUL

Wired and RDL
Wired.

� C-RAN RRUs will periodically send traffic to the DU (and
to the CU pool, ultimately) so that the signal processing
can be performed on the received signals. This traffic has
stringent delay requirements, as low as DRRU-DU (Max)

C-RAN =
100 �s. The size of the packets and bursts highly depends
on the eCPRI functional split we choose to build our
network [2]. In this paper, we choose Split IU, which
represents the radio signals just after removing the cyclic
prefix and performing the Fast Fourier Transform, getting
rid of the unused guard band subcarriers, and demapping
the resource blocks. Note that all the processing functions
we just mentioned are performed at the RRU, that is
down to Option 7 Intra-PHY, not included. This split
particularly matches [3] the CU/DU distribution explained
in Section III. The output traffic of a single RRU can be
characterized as

RSplit IU = Nsc � 0:95 � (Ts)�1 � � � 2 �Nbits �Nant; (4)

where Nsc defines the used number of subcarriers, Ts is
the symbol period, and �, Nbits, and Nant stand for the
cell utilization, number of bits used to quantize signals
and the number of antennas, respectively. Note that the
cell utilzation (�) is directly affected by the number of
users connected to the antenna. Since � represents the
fraction of resource blocks that are under use, the more
users in the cell, the more resources are occupied.
Assuming a 4-antenna MIMO system supporting 100 MHz
channels with 60 KHz subcarrier spacing, the number of
used subcarriers is ' 1583. To maintain orthogonality, the
symbol interval is Ts = 16:6�s. Using 15 bits to quan-
tize the signals and assuming a worst-case utilization of
� = 1, the resulting rate for one RRU is � 11; 397 Mbit/s.
In other words, a burst of SRU-DU

C-RAN ' 23; 745 bytes is sent
every 16:6�s.
After the fronthaul traffic reaches the DU, this processing
element must perform all the tasks included in Option 7
split, down to split Option 2 (F1 interface). Among other
functions, between these splits we can find tasks such
as the channel estimation, equalization, demodulation,
descrambling, decoding, etc. These will be performed at
the DU.
Once that this traffic leaves the DU towards the CU,
the capacity requirements are relaxed since overheads
are processed and eliminated. At this moment, we are
at split Option 2 (F1 interface) functional split [9], as
mentioned in Section III-A. The authors of [22] calculate
the fronthaul rate for a 100 MHz channel after reaching
Option 2 processing split (see Table 1 in [22] and
Appendix C of [23]). They assume a number of 20 MHz
chunks, up to a total of 100 MHz. Together with state-of-
the-art assumptions about the modulation and number of
layers, the total radio bandwidth accounts for a fronthaul
rate of 4; 016 Mb/s in the downlink and 3; 024 Mb/s in the

uplink (see Table A-1 of [14]). We use these estimations
for the DU-CU transmission rates through the EPON. The
rest of the processing steps will be performed at the CU
site.

E. End-To-End Delay

In our delay analysis, we take into consideration different
ways of computing the end-to-end delay perceived by a user,
depending of what network(s) they make use of.
� In Cellular and WiFi commnunications, the transmis-

sion delays in uplink and downlink are modeled, for each
user, as

DUL
Comm =

SUL
H2H

RUL
(5)

DDL
Comm =

SDL
H2H

RDL
; (6)

where SUL and SDL are the packet sizes for uplink and
downlink, and RUL and RDL are the uplink and downlink
bitrates perceived by the user at a particular time.

� With respect to MEC computation delay, the task com-
pletion times depend on where the computation is per-
formed. If it is done locally, that is, in the local user CPU,
only the computation time is taken into account. However,
if the task scheduler decides to offload the computation,
both the computation time and transmission times are
taken into account. The computation time depends on
both the number of operations needed (OSize

MEC) and the
server computation capacity (CServer

MEC ) in cycles/second.
Consequently, the final task completion time (or response
time) is

DMEC =

8>><>>:
OSize

MEC

CServer
MEC

+
SUL

MEC

RUL +
SDL

MEC

RDL ; if offloading

OSize
MEC

CServer
MEC

; otherwise:

(7)

� Regarding the C-RAN delay, assuming that enough ca-
pacity is provided for the links connecting the RRUs and
DUs, the queueing delay should be negligible. Then, the
transmission delay of the fronthaul data between these
two elements can be modeled as

DRRU-DU =
SRU-DU

C-RAN

CRU-DU
; (8)

where SRU-DU
C-RAN and CRU-DU are the size of the eCPRI burst

and the channel capacity, respectively. Alternatively, if an
aggregation network is used to merge the C-RAN traffic
from several RRUs prior to sending the data to a DU,
special attention must be put on the queueing delay. In
that case, we refer the reader to [10] where we present
an extensive study about the modeling of the queueing
delay for eCPRI fronthaul flows merging in an Ethernet
aggregator.
Once the C-RAN traffic enters the EPON, it is treated as
any other type of traffic. Accordingly, the average packet



delay in the upstream/donwstream directions of an EPON
(DUL

PON/DDL
PON) are taken from [24] as

DUL
PON = 2 � �PON �

2� �UL

1� �UL
+

L

CPON
(9a)

DDL
PON = �PON +

L

CPON
; (9b)

where �UL is the occupancy of the EPON’s uplink, �PON is
the propagation delay, L is the average packet size, and
CPON is the uplink/downlink PON capacity.
Finally, the total response time for a user depends on
the requested services as well as on the path of com-
munication. Additionally, we assume for simplicity that
the C-RAN delay budget (the worst-case budget for split
processing) is subtracted from the service delay threshold.
This means that, if a user accessing the network via C-
RAN requests a service with a delay threshold of 5 ms,
the user will be treated by the system as a user requesting
the same service but with a target delay threshold of
5 ms�DWorst-case processing budget

C-RAN . Also, note that, with this
methodology, we make sure that the worst-case process-
ing budget for C-RAN is met and taken into account by
the optimization algorithm. Conversely, if we were only
measuring the splits processing times, we would have no
control over the delay requirement compliance.

F. Power Consumption Models

In order to compare all the operational approaches, we
model the energy consumption to assess the optimality of
each solution from an energy efficiency perspective. Mainly,
two power consuming elements are taken into consideration:
transmission and task execution. Regarding the communica-
tions, we model the consumption of an RF transmission in the
uplink as

EUL
RF = (kTX

1 + kTX
2 � PDevice) �DUL

Comm (10)

where kTX
1 is the static power consumption of the RF circuit,

kTX
2 is the transmitter power consumption, which increases

linearly with the emitted power (PDevice), and DUL
Comm is the

transmission time of the data, computed as in Section III-E.
Similarly, the downlink power consumption is modeled as

EDL
RF = (kRX

1 + kRX
2 �RDL) �DDL

Comm: (11)

Note that here the transmitter power consumption depends on
the downlink rate (RDL) rather than on the radiated power [25].
Adopting the work presented in [26], [27], we consider that
the power consumption of an MU’s computation task depends
on either (a) the number of required CPU cycles (OSize

MEC) if the
task is executed locally, or (b) the power needed to transmit
the task to and receive the answer from a MEC server.

EMEC =

8><>:
EUL

RF + EDL
RF ; if offloading

klocal � f2
i �OSize

MEC; otherwise;
(12)

where klocal represents the effective switched capacitance of the
particular chip architecture and fi is the CPU’s performance
in number of operations per second.

IV. NETWORK UTILITY MAXIMISATION

In this Section, we model the DUDe scheme as a generalized
Network Utility Maximisation (NUM) problem adapted to our
architecture. Under a Single Station Association (SSA) policy,
a mobile user is attached to a single base station in each link
(downlink and uplink). Computing both an optimal association
of MUs to base stations and optimal allocation of the BS
resources to every MU is, under SSA policy, a well-known
NP-hard combinatorial problem [28] whose complexity grows
exponentially with the number of BS and MUs. We shall
address this by adopting a Multi-Station Association (MSA)
policy, allowing each MU to use multiple BS per link and
simplify the solution later.

A. The Mixed NUM Problem

Let BDL be a set of BSs capable of providing a downlink
service, BUL the set of BSs capable of providing an uplink
service, and U the finite set of users. The maximum achievable
rate for user u 2 U in the uplink (+) or downlink (-) direction
with respect to the serving BS b is the ergodic (Shannon)
channel capacity given by

r�u = BWDL log2(1 + SINR�(u)) (13)

r+
u = BWUL log2(1 + SINR+(u)); (14)

where the signal-to-interference-plus-noise ratio in the down-
link for a user u is given by Eq. (3), SINR+(u) is defined sim-
ilarly for the uplink, and BWDL/BWUL are the uplink/downlink
channel bandwidths [29], [30].

Let yub, a real non-negative variable, be the fraction of
resources that BS b grants to MU u, representing a fraction of
the total bandwidth. Let us normalize the maximum amount
of resources that a BS can allocate to one, so that

P
u y
�
ub � 1

and
P
u y

+
ub � 1. The feasible allocations for each link are the

closed and convex sets

Y� = fy� : y� 2 RjUj�jBDLj
+ ;

X
u

y�ub � 1;8 b 2 BDLg

Y+ = fy+ : y+ 2 RjUj�jBULj
+ ;

X
u

y+
ub � 1; 8 b 2 BULg:

Note that the resource allocation variables can be used to
indicate if a user is associated to a given base station, that is,
a user u is associated to BS b in uplink if y+

ub > 0 and it is
not, otherwise. Then, the sum-rates for downlink and uplink
for user u are, respectively,

Ru(y�) =
X
b2BDL

r�uby
�
ub (15)

R0u(y+) =
X
b2BUL

r+
uby

+
ub: (16)

The objective is to maximize, for each user, a utility
function U�(�) that is continuously differentiable, monoton-
ically increasing and strictly concave. These conditions hold



formostoftheutilityfunctionsconsideredintheliterature
and,inparticular,fortheclassofα-proportionalfairutility
functions[31],[32],definedasfollows

Uα(x)=
x1 α

1−α, α≥0,α=1

log(x), α=1.
(17)

Thespecialcaseα=0giveslinearutility,α=1reduces
tologarithmicutility,andα→ ∞ isequivalenttomax-min
fairness.Accordingly,theobjectivefunctionbecomes

fα≡ max
y ∈YDL,y

+∈YUL u

Uα(
bDL

r−uby
−
ub)+Uα(

bUL

r+uby
+
ub).

(18)
Assumingthattheuplinkanddownlinkofthe EPONare
handledseparately,Eq.18clearlydecouplesbetweenuplink
anddownlinkpartsandcanbesolvedseparately.Knowingthat
theuplinkposesmorestringentdelayrequirementsthanthe
downlink(e.g.,C-RANuplinkdelayrequirement,largeMEC
uplinkcomputationpacketsandshortdownlinkpackets,...),
weshallprovidethesolutionfortheuplinkandsuggestthe
readertoapplythesamemethodologyforthedownlink.
Thegoalisthentoachievetheoptimalassociationof
userstobasestationsandtheoptimalresourceallocation
toeachusersothattheutilityismaximizedforallusers
whilethedelayrestrictionsofthedifferentservicesaremet.
Consequently,takingintoaccounttheconstraintsony+u and
theuplinkend-to-enddelayrequirementsofSectionIII-D,
wecanformulatethecanonicaloptimizationproblemforthe
uplinkas:

fUplinkα ≡ max
y+∈YUL u

Uα(
bUL

r+uby
+
ub) (19)

suchthat

SUL
H2H

bUL
r+uby

+
ub

+xbackhaulu DULPON≤D
Threshold
H2H ,∀u∈U (20a)

SUL
H2M

bUL
r+uby

+
ub

+xbackhaulu DULPON≤D
Threshold
H2M ,∀u∈U (20b)

bUL

x
MEC(Edge)
ub

OSizeMEC

CEdgeServer(b)

+
SULMEC
r+uby

+
ub

+

+xMEC(CO)ub

OSizeMEC
CCOServer

+
SULMEC
r+uby

+
ub

+
DULPON

xMEC(CO)ub

+

+x
MEC(Local)
ub

OSizeMEC
CLocalServer

≤DThresholdMEC ,∀u∈U

(20c)

bUL

x
MEC(Edge)
ub +xMEC(CO)ub +x

MEC(Local)
ub ≤1,xub∈R+,∀u∈U

(20d)

u∈U

y+ub≤1,∀b∈BUL,y
+∈YUL, (20e)

wherey+ub≥0.Constraints(20a),(20b),and(20c)establish
a maximumdelayperuserforeachservice. Also,con-
straints(20d)and(20e)arenormalizationconstraintsenforcing
thatwedividethetasksproperlyandthatbasestationsdo
notgrantmoreresourcesthanthoseavailable,respectively.
Notethatxbackhaulu isactiveifuseruisusingthebackhaulfor

thatparticularcommunicationprocess.Variablesx
MEC(Edge)
ub ,

xMEC(CO)ub ,andx
MEC(Local)
ub accountforthefractionofthetask

thatisgoingtobeexecutedattheedge,CO,andlocally,
respectively.

Lemma1.Choosefeasibleallocationschemesy−,y+ for
downlink,uplink.Then,problems(18)and(19)areconvex.

Proof.Ify− andy+ arefeasibleallocationschemes,the
objectivefunctionisasumofacompositionofaconcave
function withaffinefunctionsofy−,y+.Therefore,the
objectivefunctionisconcaveitself.Theconstraints(20a),
(20b)and(20c)areeasilyseentobeconcaveupwardfunctions
fory+ub ≥ 0.Also,constraints (20d)and(20e)areaffine
functionsofxubandy

+
u.Inaddition,thefeasibleallocation

setsYDLandYULareeasilyseentobeconvex.Note,however,
thattheutilityoftheaggregatedrateusedbyagivenuser
inthedownlinkorintheuplinkisnotstrictly(orstrongly)
concave,sinceanequationoftheform brubyub= Cmay
havemultiplesolutionsonyub.Thiswillbesolvedduringthe
solutionphase.

B.DecentralizedSolution

Inthissubsection,weperformadualdecompositionof
theproblemsoastoidentifydecomposablestructures.Us-
ingLagrangedualitytheory,weconnecttheoriginalmaxi-
mization(19)withthedualproblem(21).Thegeneralized
Lagrangianoftheuplinkproblemisdefinedas

L(y+,λ,µ,ν,γ,α,x)=
u

Uα(
bUL

r+uby
+
ub)

−
u

λu
SUL
H2H

bUL
r+uby

+
ub

+xbackhaulu DULPON−D
Threshold
H2H

−
u

µu
SUL
H2M

bUL
r+uby

+
ub

+xbackhaulu DULPON−D
Threshold
H2M

−
u

νu
bUL

x
MEC(Edge)
ub

OSizeMEC

CEdgeServer(b)

+
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r+uby

+
ub

+xMEC(CO)ub
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+
SULMEC
r+uby

+
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+
DULPON

xMEC(CO)ub
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MEC(Local)
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CLOCALServer

−DThresholdMEC

−
u

γu
bUL

x
MEC(Edge)
ub +xMEC(CO)ub +x

MEC(Local)
ub −1

−
bUL

αb
u

y+ub−1.

(21)



By reworking and grouping the summations over users and
over base stations, the Lagrangian becomes

L(y+;�;�;�;
;�;x) =
X
u

�
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ub)
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(22)

Now, the problem clearly separates into two different sides. On
the one hand, the dual decomposition consists of each user
solving the u-th Lagrangian Lu(y+

ub; �u; �u; �u; 
u; xub;�)
for the given vector of multipliers �

arg max
y+ub;x

MEC(-)
ub �0

�
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(23)
where each user knows its own multipliers �u, �u, �u, and

u. Multipliers can be understood as a price for each uplink
allocation so that the users can choose the most favorable one.
Recall that a similar Lagrangian can be posed for the downlink.
On the other hand, the master dual problem can be written as

min
�;�;�;
;�

g(�;�;�;
;�) =
X
u

gu(�u; �u; �u;�) + �T1

subject to �;�;�;� � 0;
(24)

where gu(�u; �u; �u; 
u;�) = maxLu, i.e., the Lagrangian
for user u evaluated at the optimal point. By Lemma 1 we
know that the problem stated in (19) is differentiable in its
domain. Accordingly, we may apply a gradient projection
method to solve (24). Partial derivatives of the dual function
give us the expressions to update the user’s multipliers:
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�
�u(t)��
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MEC(Local)
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���
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(25d)
where � is a sufficiently small positive step size and t denotes
the iteration index. Likewise, BS multipliers are updated as

�b(t+ 1) =

�
�b(t)� �

�
1�

X
u

y+
ub

��
; 8b 2 BUL: (26)

Finally, the solution for the user’s subproblems can be
characterized by computing the Karush-Kuhn-Tucker (KKT)
conditions for the Lagrangian. Assume we choose proportional
� � fairness = 1, i.e., U�(x) = log(x). Then the partial
derivative of the Lagrangian with respect to the decision
variable yub is8>>>>>><>>>>>>:

@Lu

@y+
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=
r+
ubP

bUL
r+
uby

+
ub

+
�uS

UL
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+
ub + �uS

UL
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+
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(
P
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uby

+
ub)

2

+
�uS

UL
MEC(x

MEC(Edge)
ub + xMEC(CO)

ub )

r+
uby

+
ub

2 � �b = 0:

�u; �u; �u; �b � 0

;8b 2 BUL:

(27)
However, it is not clear to solve it as

P
b rubyub = C may have

multiple solutions on y+
ub. To overcome this, assume that only

one base station is going to be used per link and choose the one
that maximizes (23) according to the updated multiplier values,
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Fig.2. CCDFofthetier2(WiFiorC-RAN)connectiontimes.

removingthesummationsoverbandassumingyub=1.This
requires,foreachuser,tocheckanumberofbasestationsin
range.Asfordecisionofwhetherandwheretooffloadatask,
notethatwecansimplifythesolutionbychoosing

[x
MEC(Edge)
ub ,xMEC(CO)ub ,x

MEC(Local)
ub ]∈{[1,0,0],[0,1,0],[0,0,1]},

(28)
adding3optionsperBSforMECusers.Confiningthefeasible
solutionsetto(28)automaticallysatisfiesconstraint(20d)and
removesthenecessityofupdatingγuvia(25d).Oncethatuser
uhaschosenabasestationbi,theremainingtaskistocompute
theoptimalresourceallocationyubi.Thepartialderivativeof
theLagrangiannowsimplifiesto

∂Lu

∂y+ubi
=

r+ubi
r+ubiy

+
ubi

+
λuS

UL
H2H+µuS

UL
H2M

r+ubiy
+
ubi

2

+
νuS

UL
MEC(x

MEC(Edge)
ubi

+xMEC(CO)ubi
)

r+ubiy
+
ubi

2 −αbi=0.

(29)

Solvingforyubi,wegetthefollowingpolynomial:

−αbiy
2
ubi+yubi+C=0, (30)

wheretheconstanttermisdefinedas

C=
λuS

UL
H2H+µuS

UL
H2M+νuS

UL
MEC(x

MEC(Edge)
ubi

+xMEC(CO)ubi
)

r+ubi
.

(31)
Itisworthhighlightingthatthetermsof(31)areonlyactive
whenauserhasanyH2H,H2MorMECrequest.Otherwise,
notethatC=0andtheoptimalresourceallocationbecomes
purelogarithmic,asexpectedwhenchoosingα−fairness=1.

V.NUMERICALRESULTS

Inthissection,wevalidateoursimulatorandmobilitymodel
andcomparetheproposedsolutionwiththebaselinescenario.

TABLEI
NETWORKDEPLOYMENTPARAMETERS.

NetworkParameters
Areaofinterest 1000mx1000m

Networkdeployment
LTE-ABS=3

WiFiSpots=9,RRUs=6
Numberofusers {25,50,75,100,125}

Transmitpowers[16],[19]
LTEBaseStations=46dBm
WiFi/C-RAN=20dBm

Path-lossexponent 4
Noiselevel -106dBm
Mobilitymodel Mobilitymodelof[24]
CEPON,CRU-DU 25Gb/s,10Gb/s
Backgroundtraffic(RULWired,R

DL
Wired) 5Gbit/s,7Gbit/s[37].

Packetsizes
SH2H∼1,500B,σ

2=0[24]
SH2M ∼88B,σ

2=0(6-DoF[21])
SULMEC∼N(150KB,100),S

DL
MEC ∼N(1,5KB,10)[38]

MECOsize U(100,200)MCycles[39]

MECServersCapacity
(Consistentwith[38])

CO=3000Mcycles/s
Edge(ONU)=2000Mcycles/s
Local(MU)=1000Mcycles/s

EnergyParameters[25],[27]
kTX1,k

RX
1 0.4W,0.4W

kTX2,k
RX
2 18,2.86/106W/bit

klocal,fi 10 26,1000cycles/s
FixedCoverageScenario

POffload,(PEdge,ifoffload) 0.5
Resourceallocation PureUniform:yub=1/BSUser

OptimizationParameters
θUsers 1.0
θBaseStation 0.004

A.ValidationoftheSimulatorandMobilityModel

Theauthorsof[24]makeuseofthePoneLab[33]data
tovalidatetheiranalyticalstudythatproposesananalytical
expressionfortheCCDFofthe WiFiconnectiontimes.Ac-
cordingly,wevalidateoursimulatorandmobilitymodelsby
comparingthisanalyticalmodelwithoursimulator.Itconsists
ofatruncatedParetowiththefollowingparameters,taken
fromexperimentalmeasurements[34]:αon=0.54,νon=13.2
hours,γon=3minutes,whereνonandγonaretheupperand
lowerboundsoftheWiFi(tier2)connectiontime,respectively.
Figure2plotstheempiricalCCDF ofthe WiFi/C-RAN
connectiontimesinour2-tierHetNetandthetruncatedPareto
characterizedbythepreviouslymentionedparameters.Close
inspectionoftheplotsrevealsthatthereisagood match
betweentheexperimentalandthefitteddistribution.
Ontheonehand,99%confidenceintervalsareplotted
fortheempiricalCCDF.NotehowthetheanalyticalCCDF
ofthetruncatedParetoliesinsidetheconfidenceinterval
oftheempiricalCCDF.Ontheotherhand,aTwo-sample
Kolmogorov-Smirnovtesthasbeenperformedtoassesifthe
twosamplepopulations(theempiricalandtheanalytical)
mightcomefromthesamedistribution.Theresultsconfirm
thatthenullhypothesisH0,thatbothsamplescomefrom
populationswiththesamedistribution,isnotrejectedfora
significancelevelαKS=1%withap-value=0.0128>αKS
andaKolmogorov-SmirnovstatisticofD=0.1014.Finally,
thecorrelationbetweentheempiricalandanalyticalcurvesis
0.9009.

B.Usecase:TactileInternet

WenowcompareaVoronoi-basedassociationanduniform
resourceallocationwiththeproposedoptimizationscheme.To
thatend,wesetacommontestscenariousingtheparameters
settingsinTableI.ForthisTactileInternetusecase,we



Fig. 3. Convergence of the multipliers announced by the base stations.

study (among other aspects), the successful integration of H2M
remote control of haptic machines in a network characterized
for a wide variety of technologies and services, as discussed in
the introduction. The success of such services (and any other
service) in these networks will be given by the ability to meet
stringent latency requirements.

Regarding delay thresholds, DThreshold
H2H = 100 ms (ITU-T

Recommendation G.114: < 150 ms [35]) and DThreshold
H2M =

5 ms are selected. MEC threshold is set to DThreshold
MEC = 500 ms,

consistent with the range in [36], so that we can assess the
system’s behavior when a solution is not always feasible.
Regarding the offloading probabilities, Poffload = Pedge = 0:5
are chosen for the baseline Voronoi-based scenario so that we
have a representative sample of all the possible combinations
(i.e., local computation, edge offloading, and CO offloading).

For the comparison of both approaches we assume that,
at the beginning of every time-slot (0:5s) of the simulation,
all users have a request of a resource (i.e., transmission of
H2H packet, H2M 6-DoF packet, MEC uplink and response
packets). The one-way-delay of all requests are recorded.
Also, the density and ratio (15=3) between the number of
small base stations (WiFi, RRU) and macro base stations
(LTE-A) has been chosen to favor the uplink and downlink
decoupling decisions in both scenarios, according to [20].
Channel bandwidth is 100 MHz for C-RAN [10] and 20 MHz
for LTE-A and WiFi [16]. In addition, note that each one
of the 6 C-RAN RRUs, under full utilization, is contributing
with 3; 024 Mb/s to the EPON uplink [14]. Adding the fixed
user traffic, this represents a total of 23 Gb/s out of 25 Gb/s
utilization. This way, we test the network performance in an
interesting high utilization regime where not all the decisions
will comply with the delay requirements.

After enough number of iterations at each point in time, all
multipliers converge to stable values, as shown in Figure 3
for t = 0. These multipliers reflect the state and needs of the

network at every particular point in time. Then, these will auto
adjust to changes, and cells will broadcast them so that they
become part of users’ computations. Once that users receive
the updated values, they can choose the optimal base station
by solving (23) and (28). Also, note that we take into account
the network usage at each base station. Each BS multiplier
is updated regarding the amount of resources left via (26).
This causes that those base stations with a high occupancy
or network usage start broadcasting a multiplier with a high
value (see red circle in Figure 3), which suggests the users to
choose another base station to access the network.

Figure 4a shows the evolution of the average end-to-end de-
lay for H2H and H2M traffic classes, and Figure 4b illustrates
the average response time for the MEC users. Recall that we
use response time to denote the combination of both the task’s
communication end-to-end delay and computation time. Every
point in the graph is averaged over 100 realizations, as we
gradually increase the number of users. It is worth highlighting
how the optimized solution outperforms the baseline solution
in all cases.

Figure 4a (as well as the remaining ones), includes 95%
confidence intervals for both the coverage/Voronoi-based and
the optimization solutions. Note that the confidence intervals
for the optimized solutions (see dashed lines) are so small
and almost negligible. Observe that the delay threshold for
the H2H users (100 ms) is met for both the Voronoi-based and
the optimization solutions, achieving an average delay below
the threshold, including the confidence interval. However, note
that the optimization solution (see dashed blue line) achieves
an average delay 5 times lower, in the worst-case utilization
scenario (� 125 users). This is roughly an 80% improvement.

With regard to the H2M users, the traditional Voronoi
approach is unable to meet their traffic delay threshold (set
to 5 ms). Conversely, the optimization approach is able to
confine the average end-to-end delay always under 5 ms. This
holds true for all system loads. Taking a look at the confidence
intervals, we conclude that the optimization solution is more
stable, enabling us to ensure narrower and more precise delay
intervals.

Close inspection of Figure 4b reveals that the optimization
algorithm provides a better average response time for MEC
users. For 75 users the decentralized algorithm achieves an
average response time 5 times lower than that of the original
approach. However, once that we exceed 80 users in the
system, even the optimization is unable to find a suitable
solution. Here, we find an interesting behavior of the proposed
solution which is that, whenever a global solution is unfeasible,
the service with the least stringent delay threshold is penalized.

Intuitively, we believe that it is a good choice to penalize
those services with a larger delay threshold. The reason is that
small deviations in the experienced service time will represent
a smaller fraction of the expected delay threshold for these
services, than it would for low delay threshold services. This
behavior can be explained by inspection of the optimization’s
equations. In terms of the cost optimization of the objective
function, it is more costly to leave unsatisfied a user with
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Fig. 4. Simulation results for the average one-way-delay and user energy consumption.

a low-latency requirement than to do it with a high latency
threshold user. As we already mentioned, small deviations in
the final service times for the low-latency threshold users, will
rapidly increase the value of their multipliers (see (25a),(25b)).
This gives them preference over those with a relaxed latency
threshold in the resource allocation process.

Even though we think it is a desirable feature, we suggest
several options to alter this behavior, if needed: (1) introduce
additional priorities/fairness parameters to control preferences
between small and big delay thresholds, (2) add supplementary
restrictions to control the tightness of the thresholds, and (3)
implement an adaptive convergence step for each user in the
gradient descent algorithm, proportional to the size of its delay
threshold.

Regarding possible scalability issues arising from this be-
havior: firstly, we think that it is a good feature that, even
though not all of the users can be satisfied, the algorithm is still
able to find the optimal solution with the available resources,

so no user is left unattended. Secondly, this can be used as a
warning flag to perform dynamic resource provisioning. If the
number of processing units (MEC servers, C-RAN DUs, C-RAN
CU pool, number of active femtocells, etc) is not enough, these
can be dynamically instantiated or turned on. The same idea
works the other way around, with the aim of saving resources.
It is worth highlighting that there is no need for a protocol to
include new users or resources into the optimization. Since the
algorithm is decentralized, all parameters are available to the
participants by just sensing the channel. Once that some new
(virtual or physical) resources are instantiated or installed, the
decentralized algorithm converges to the new global solution
seamlessly. We believe that overall, these features are a good
asset to achieve scalability.

Finally, Figures 4c and 4d show the H2H, H2M, and
MEC user’s energy consumption. Again, in Figure 4c the
optimization-based solution is able to reduce the energy con-
sumption for all kinds of services, spanning, for H2H, from



30% (with 25 users) to 50% (with 125 users). Regarding H2M
services, we find power consumption improvements ranging
from 28% to 56%, for 25 users and 125 users, respectively.
Also, note that the H2M range is wider and shows a better
improvement when the system is loaded, probably due to
the fact that these users are favored during the optimization
process. It is worth saying that the power consumption curves
are also monotonically increasing in the optimized case. How-
ever, since the delay for these services is confined to lower
values even with a high system occupancy (see Figure 4a),
the increment rate is much lower than that of the Voronoi-
based case. Likewise, the narrower confidence intervals for the
optimized solution, suggest a higher stability and reliability of
the system.

In Figure 4d, as the number of users increases, so does the
network load and overall latency for MEC users. Due to the fact
that in the Voronoi-based approach the MEC users are limited
by fixed offloading decisions based on coverage maps, they
keep offloading the tasks even though this is no longer the
optimal decision. As the network delay increases, they must
turn their radios on more time than before, causing the increase
in the power consumption. Conversely, in the optimization-
based solution, users change to local computation as soon as
the alternative is no longer worthwhile and keep their power
consumption stable.

After carefully reviewing the simulation results, it must
be stressed that the optimization of the resource allocation
and user association improves the overall throughput. Con-
sequently, the delay for H2H, H2M and MEC services is
reduced. Higher throughput also leads to shorter transmission
times of a given data load, which can be translated into a
reduced energy consumption.

VI. CONCLUSION

This paper considers the problem of decentralized resource
allocation and user association in FiWi enhanced H-CRAN
networks, for the converged technologies to support post-
5G/6G services.

One of the concerns while merging all the envisioned
technologies is to provide a converged network infrastructure
to support them, particularly if these traditionally use different
architectures. Since we are combining diverse wireless and
fixed technologies that traditionally use their own dedicated
equipment and orchestration (i.e., WiFi, LTE-A, C-RAN), es-
pecial attention must be put to how the integration is made
and how the orchestration is performed so as to meet the
requirements of all these technologies.

In this paper, a FiWi network topology based on a 25 Gbps
EPON is proposed. We formulate an optimization problem to
maximize the utility of all users while meeting the delay
requirements of different services, that can be solved using
a distributed iterative algorithm. The distributed algorithm is
computationally simple as it only requires broadcasting the
Lagrange multipliers. These work as a sort of price indicator,
transmitting information about the state and needs of base
stations and users at any particular time. Simulations show that

this solution outperforms the classical received-power criteria
in terms of average delay, power consumption and delay
thresholds compliance. Namely, the results suggest that the
distributed approach can achieve up to an 80% improvement in
terms of average delay. More importantly, it is able to organize
the user association and network resources in order to comply
with the delay requirements.

Simulations show that this is not the case when relying on
the traditional coverage maps. As a side effect, the energy
consumption reduction obtained using the proposed approach
is ranges from 28-56%, for H2M traffic, to 30-50% for H2H
traffic.

Finally, we believe that a critical research point for further
improvements of the optimization algorithm is the influence
of the �-fairness parameter in the power consumption and,
in general, the effects of other utility functions that can be
defined for the users. In this paper, a pure logarithmic resource
allocation (� = 1) was chosen. Other allocation flavors might
produce different results regarding the power consumption
since it is not directly included in the optimization as a
restriction. Consequently, we think this is a promising line for
future work. Other future lines include adding network usage
constraints, such as a maximum network usage of a certain
technology.
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