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Abstract

In this work the problem of the in-plane free vibrations (axial and bending) of a

Bernoulli-Euler nanobeam using the mixed local/nonlocal Eringen elasticity theory is stud-

ied. The natural frequencies of vibration have been analytically obtained solving two

uncoupled integro-differential eigenvalue problems, which are properly transformed in dif-

ferential eigenvalue problems. Different kinds of end supports have been considered, and

the influence of both mixture parameter and length scale has been analysed. The results

show the softening effect of the Eringen’s nonlocality, which is more pronounced as the

local phase fraction decreases.

A large number of papers devoted to the dynamics of Bernoulli-Euler beams considering

the fully nonlocal Eringen elasticity theory has been previously published. However, as

recently stated by Romano et al. (2017), the problem is ill-posed in general, and the

existence of a solution is an exception, the rule being non-existence. Nevertheless, the

presence of a local term in the constitutive equation, leading to the two-phase formulation,

renders the problem well-posed. To the best knowledge of the authors, this is the first time

an exact solution is presented for a dynamic problem involving structures with constitutive

equations corresponding to nonlocal integral Eringen’s elasticity.
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1. Introduction

The explosive growth of the nanotechnology and of the applications in the field of

nanostructures has soared the studies related to nonlocal elasticity theories, among other

generalized continuum mechanics approaches. The reasons are: (i) the clasical elasticity

is a scale-free theory which cannot adequately address the size effect commonly present in

nanotecnology applications, and (ii) they are an attractive alternative to the huge compu-

tational cost of the Molecular Dynamic techniques.

The origin of nonlocal continuum mechanics theories can be found in papers by Kröner

(1967), Krumhansl (1968) and Kunin (1968). Later, Eringen and coworkers (Eringen,

1972a,b; Eringen and Edelen, 1972; Eringen, 1983, 2002) simplified the above theories for

linear homogeneous isotropic nonlocal elastic materials. Further, Eringen proposed a two-

phase nonlocal model (Eringen, 1972a, 1987) which combine the classical local and the

nonlocal constitutive theories. The basic feature of the Eringen theory of elasticity is that

the stress at each point is related to the strain at all points in the domain. This influence

decreases as the distance between the point of interest and the neighboring points increases.

The nonlocal approach enabled different authors (Eringen, 1977; Eringen et al., 1977;

Zhou et al., 1999) to address problems related with stress singularities which arise in clas-

sical fracture mechanics formulations, showing that these disappear using the nonlocal

treatment. Additionally, these theories could overcome the difficulties showed by the clas-

sical local approaches to correctly predict solutions for problems in which microstructural

and size effects are significant. These effects are present in modern engineering applications

such as nano-machines (Drexler, 1992; Han et al., 1997; Fennimore et al., 2003; Bourlon

et al., 2004; Kim et al., 2015), micro- or nano-electromechanical (MEMS or NEMS) devices

(Martin, 1996; Ekinci and Roukes, 2005; Arndt et al., 2011; Berman and Krim, 2013), or

in biotechnology and biomedical areas (Bhushan, 2007; Saji et al., 2010).

The constitutive relation for the two-phase constitutive model originally proposed by

Eringen (1972a, 1987) has been recovered by other authors (Altan, 1989; Polizzotto, 2001;

Pisano and Fuschi, 2003; Zhu and Dai, 2012; Benvenuti and Simone, 2013; Khodabakhshia

and Reddy, 2015; Eptaimeros et al., 2016; Wang et al., 2016; Zhu et al., 2017), and is given
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by:

σ (x) = ξ1C : ε (x) + ξ2

∫
V

α (x,x′, κ) C : ε (x′) dV ′ (1)

σ being the nonlocal Cauchy stress tensor, and ε the infinitesimal strain tensor at a ref-

erence point x; α (x,x′, κ) is the kernel that represents the nonlocal behaviour which is

dependent on a internal characteristic length, κ, linked to some material properties (lattice

parameter, size of the grain, granular distance), C is the fourth-order elasticity tensor, and

V is the solid domain.

The parameters ξ1 and ξ2 represent the volumen fraction of material complying with

local and nonlocal integral elasticity, respectively. Thus, the relation ξ1 + ξ2 = 1 holds.

The case ξ2 = 0 corresponds to the pure local elasticity approach, while ξ1 = 0 deals with

the fully nonlocal integral elasticity formulation.

For this last case, ξ1 = 0, the nonlocal constitutive theory, introduced by Eringen (1983),

is recovered. Eringen showed that, for a specific class of kernel functions, the nonlocal

integral constitutive equation can be transformed into a differential form. Peddieson et al.

(2003) applied for the first time the differential Eringen nonlocal model to the Bernoulli-

Euler beams, and from that, and due to its simplicity, this approach has been widely used

to analyze the static, buckling, and dynamic behavior of nanostructures. It is not feasible

to report here the whole of the related papers. Therefore we refer the recent reviews by

Eltaher et al. (2016) and Rafii-Tabar et al. (2016) on the application of nonlocal continuum

theories to nanostructures.

However, Benvenuti and Simone (2013) found incoherent results related to the static

behavior of a bar subjected to axial loads. Moreover, several authors have pointed out

the paradoxical results obtained from the Eringen differential model regarding a cantilever

beam when compared to other boundary conditions, both for the static (Peddieson et al.,

2003; Wang and Liew, 2007; Challamel and Wang, 2008; Wang et al., 2008; Challamel

et al., 2014) and vibrational behaviour (Lu et al., 2006).

Although several attempts have been made to overcome these paradoxical results (Chal-

lamel and Wang, 2008; Fernández-Sáez et al., 2016), a clear picture of the problem has

been pointed out by Romano et al. (2017) who shown that, in the majorities of the cases,

the integral formulation of the fully nonlocal elasticity theory leads to problems that have
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to be considered as ill-posed. These problems have no solution in general. Only when

certain constitutive boundary conditions are fulfilled (Romano et al., 2017; Polyanin and

Manzhirov, 2008), the integral formulation is equivalent to the differential one, and the

problem has a unique solution. Therefore, Fernández-Sáez et al. (2016); Tuna and Kirca

(2016a,b); Eptaimeros et al. (2016) proposed improper solutions (numerical or analytical)

for a problem which is in fact unsolvable in most of the practical cases, since the consti-

tutive boundary conditions are not fulfilled. However, using the mixed constitutive model

with ξ1 > 0, the ill-posedness of the purely nonlocal problem is eliminated, and therefore

true solutions can be achieved using this formulation (Romano et al., 2017).

Variational principles governing the integral form of the two-phase nonlocal approach

were derived by Polizzotto (2001), and the model was applied latter to analyse several

problems related to the static behaviour of nanostructures. Zhu and Dai (2012), Pisano and

Fuschi (2003), and Benvenuti and Simone (2013) solved the problem of a bar subjected to

static axial loads. Pisano et al. (2009) used this integro-differential nonlocal model to derive

a finite element formulation for 2D problems. More recently, with the same constitutive

model, the static bending of Bernoulli-Euler beams subjected to different boundary and

load conditions has been studied, via a finite element approach (Khodabakhshia and Reddy,

2015), or with an analytical model (Wang et al., 2016). The buckling of Bernoulli-Euler

beams was also addressed using this constitutive formulation (Zhu et al., 2017).

The vibrational behaviour of Euler-Bernoulli beams involving the two-phase Eringen

nonlocality has been studied by Eptaimeros et al. (2016), using a FEM approach to

obtain the eigenfrequencies for different boundary conditions. They analyzed the effects of

different nonlocal parameters in the dynamic response of the beams.

In this paper we formulate and analytically solve the problem of the free in-plane (axial

and bending) vibrations of a beam using the mixed local/nonlocal Eringen elasticity theory.

The movement equations have been obtained using the Hamilton’s Principle, leading to

two uncoupled integro-differential eigenvalue problems corresponding to axial and bending

vibrations, respectively. For the case of axial vibrations the integro-differential eigenvalue

problem was transformed to a fourth-order differential equation with four boundary con-

ditions: two of them correspond to the classical ones (one for each end), while the other
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two come from the transformation process. The same procedure applied to the integro-

differential eigenvalue problem related to the bending vibrations leads to a sixth-order

differential equation with six boundary conditions: four of them correspond to the classi-

cal ones (two for each end), while the other two are related to the transformation process.

The natural frequencies have been obtained solving the corresponding eigenvalue prob-

lems in differential form. To that aim, a method based on the Krylov-Duncan procedure

(Karnovsky and Lebed, 2010), originally developed for the case of classical beams, has

been used. The method proved to be very efficient in all the examples considered. The

influence of both mixture parameter and length scale has been analysed.

To the best knowledge of the authors, this is the first time an exact solution is presented

for a dynamic problem involving structures with constitutive equations corresponding to

nonlocal integral Eringen’s elasticity.

2. Problem formulation

In the following section we present an application of the mixed local/nonlocal Eringen

integral model to the study of the axial and bending behaviour of a Bernoulli-Euler beam.

Consider a beam of length L, constant Young modulus E, and uniform cross section A

and inertia I. The variables x, y and z represent, respectively, the axial, out-of-plane and

transverse coordinates. The variables Ux and Uy, and Uz correspond to the displacements

in the coordinate directions. Using the kinematics of the Bernoulli-Euler beam, we have:

Ux(x, y, z, t) = u(x, t)− z∂xw(x, t); Uy(x, y, z, t) = 0; Uz(x, y, z, t) = w(x, t) (2)

where u and w represent, respectively, the axial and transverse displacements of the cross-

section’s centroid. Symbol t represents time. The strain εx follows the expression

εx (x, t) = ∂xu (x, t)− z ∂xxw (x, t) (3)

The nonlocal normal stress σx (x, t) is given by the 1D mixed local/nonlocal Eringen integral

constitutive equation

σx (x, t) = ξ1Eε (x, t) + ξ2E

∫ L

0

k (|x− x̄|, κ) εx (x̄, t) dx̄ (4)
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with the Helmholtz kernel

k (|x− x̄|, κ) =
1

2κ
e−
|x−x̄|
κ (5)

κ = e0a being the non-local parameter, depending on both an internal length scale a and

a material constant e0. Moreover, we consider that the relation ξ1 + ξ2 = 1 holds.

Assuming the previous hypotheses, the axial force is given by

N (x, t) =

∫
A

σx (x, t) dA = EA

[
ξ1∂xu (x, t) + ξ2

∫ L

0

k (|x− x̄|, κ) ∂x̄u (x̄, t) dx̄

]
(6)

and the bending moment is given by

M (x, t) =

∫
A

σx (x, t) z dA = −EI
[
ξ1 ∂xxw (x, t) + ξ2

∫ L

0

k (|x− x̄|, κ) ∂x̄x̄w (x, t) dx̄

]
(7)

The governing equation and the corresponding boundary conditions are derived ap-

plying the Hamilton’s Principle. Let L be the Lagrangian of the system, defined as the

difference between the kinetic energy, K, and the total potential energy, Π

L = K − Π (8)

Kinetic K and the potential Π energies are given by:

K =
1

2
ρA

∫ L

0

[
(∂tu (x, t))2 + (∂tw (x, t))2] dx (9)

and

Π =
1

2
EA

{
ξ1

∫ L

0

(∂xu (x, t))2 dx+ ξ2

∫ L

0

[∫ L

0

k (|x− x̄|, κ) ∂x̄u (x̄, t) dx̄

]
∂xu (x) dx

}
+

1

2
EI

{
ξ1

∫ L

0

(∂xxw (x, t))2 dx + ξ2

∫ L

0

[∫ L

0

k (|x− x̄|, κ) ∂x̄x̄w (x̄, t) dx̄

]
∂xxw (x) dx

}
−∫ L

0

qx (x, t)u (x, t) dx−
∫ L

0

qz (x, t)w (x, t) dx

(10)

with qx (x, t) and qz (x, t) being the external loads in directions x and z, respectively.

Equating the first variation of the action integral A =
∫ t2
t1
L dt to zero, the Euler-

Lagrange equations are determined

ξ1EA∂xxu (x, t) + ξ2EA∂x

[∫ L

0

k (|x− x̄|, κ) ∂x̄u (x̄, t) dx̄

]
+ qx (x, t) = ρA∂ttu (x, t) (11)
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−ξ1EI∂xxxxw (x, t)− ξ2EI∂xx

∫ L

0

k (|x− x̄|, κ) ∂x̄x̄w (x̄, t) dx̄+ qz (x, t) = ρA∂ttw (x, t)

(12)

together with the following pairs of essential and natural boundary conditions at x∗ = 0

or x∗ = L

u (x∗, t) = 0; or EA

[
ξ1∂xu (x∗, t) + ξ2

∫ L

0

k (|x∗ − x̄|, κ) ∂x̄u (x̄, t) dx̄

]
= 0 (13)

w (x∗, t) = 0; or EI

[
ξ1∂xxxw (x∗, t) + ξ2 ∂x

∫ L

0

k (|x∗ − x̄|, κ) ∂x̄x̄w (x̄, t) dx̄

]
= 0 (14)

∂xw (x∗, t) = 0; or EI

[
ξ1∂xxw (x∗, t) + ξ2

∫ L

0

k (|x∗ − x̄|, κ) ∂x̄x̄w (x̄, t) dx̄

]
= 0 (15)

A complete derivation of the previous equations can be found in Appendix A.

The initial conditions are stated as:

u (x, 0) = u0 (x) ; ∂tu (x, 0) = u0
t (x) (16)

w (x, 0) = w0 (x) ; ∂tw (x, 0) = w0
t (x) (17)

Assuming free vibrations (qx(x, t) = 0, qz(x, t) = 0) the governing equations, written in

terms of axial force and bending moment, become

∂xN (x, t) = ρA ∂ttu (x, t) (18)

∂xxM (x, t) = ρA ∂ttw (x, t) (19)

and the boundary conditions at x = 0 or x = L

u (x, t) = 0; or N (x, t) = 0 (20)

w (x, t) = 0; or ∂xM (x, t) = 0 (21)

∂xw (x, t) = 0; or M (x, t) = 0 (22)

According to the previous equations, the problems of axial and bending vibrations

become uncoupled, as in the local elasticity theory. Next, both of them will be solved

separately.
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2.1. Axial vibrations

The axial vibration problem is defined by the governing Eq. (18), the boundary condi-

tions (20), and the intial conditions (16).

Using the classical separation of variables method, the expression for the axial displace-

ment is:

u (x, t) = L U (x)Tu (t) (23)

Substituting (23) in (18), and using the following dimensionless variables and constants

ξ =
x

L
; s =

x̄

L
; τu = ωu0 t; ωu0 =

1

L

√
E

ρ
; h =

κ

L
; λ =

(
ωu
ωu0

)2

(24)

the governing equation for the function Tu(τu) is written as

T̈u(τu) + λuTu(τu) = 0 (25)

where ˙(•) ≡ ∂τu . The solution of the previous equation can be expressed as:

Tu (τu) = Ru sin
√
λuτu + Su cos

√
λuτu (26)

Ru and Su being constants that can be obtained from the initial conditions, and λu, related

with the frequency of the oscillation ωu (λu ∼ ω2
u), is obtained solving the eigenvalue

problem stated as follows.

Substituting (23) in (6), we get N (x, t) = N (x)Tu (t), and the nondimensional axial

force (N̄ (ξ) = N (ξ)L/EA) becomes

N̄ (ξ) = ξ1U
′ (ξ) + ξ2

1

2h

∫ 1

0

e−
|ξ−s|
h U ′ (s) ds (27)

where (•)′ ≡ ∂ξ, and the kernel given by Eq. (5) has been used. Then, the governing

equation for the function U(ξ) is written as an eigenvalue problem

N̄ ′ (ξ) = −λuU(ξ) (28)

or, written in terms of the displacement,[
ξ1U

′ (ξ) + ξ2
1

2h

∫ 1

0

e−
|ξ−s|
h U ′ (s) ds

]′
= −λuU(ξ) (29)

subject to one of the following sets of boundary conditions:
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• Supported

U(0) = 0; U(1) = 0 (30)

• Cantilever

U(0) = 0; N̄ (1) = 0 (31)

• Free

N̄ (0) = 0; N̄ (1) = 0 (32)

2.2. Bending vibrations

The bending vibration problem is defined by the governing Eq. (19), the boundary

conditions (21) and (22), and the intial conditions (17).

Using again the separation of variables method for the transverse displacement

w (x, t) = L W (x)Tw (t) (33)

Substituting (33) in (19), and defining the additional dimensionless parameters and vari-

ables

τw = ωw0t; ωw0 =
1

L2

√
EI

ρA
; λw =

(
ωw
ωw0

)2

(34)

the function Tw(τw) follows the differential equation

T̈w(τw) + λwTw(τw) = 0 (35)

where now ˙(•) ≡ ∂τw . The solution of Eq. (35) is of the form

Tw (τw) = Rw sin
√
λwτw + Sw cos

√
λwτw (36)

where the constants Rw and Sw can be obtained from the initial conditions, and λw, related

with the oscillation frequency ωw (λw ∼ ω2
w), is determined by solving the eigenvalue

problem described subsequently.

Substituting (33) in (7), we get M (x, t) =M (x)Tw (t), and the nondimensional bend-

ing moment (M̄ (ξ) =M (ξ)L/EI) becomes

M̄ (ξ) = −ξ1W
′′ (ξ)− ξ2

1

2h

∫ 1

0

e−
|ξ−s|
h W ′′ (s) ds (37)
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Therefore, the governing equation for the function W (ξ) is presented as an eigenvalue

problem

M̄′′ (ξ) = −λwW (ξ) (38)

or, written in terms of the displacement,[
−ξ1W

′′ (ξ)− ξ2
1

2h

∫ 1

0

e−
|ξ−s|
h W ′′ (s) ds

]′′
= −λwW (ξ) (39)

subject to one of the following sets of boundary conditions:

• Supported

W (0) = 0; M̄ (0) = 0; W (1) = 0; M̄ (1) = 0; (40)

• Cantilever

W (0) = 0; W ′ (0) = 0; M̄ (1) = 0; M̄′ (1) = 0; (41)

• Free

M̄ (0) = 0; M̄′ (0) = 0; M̄ (1) = 0; M̄′ (1) = 0; (42)

3. Transformation of the integro-differential eigenvalue problems into differen-

tial ones

3.1. General methodology

The integro-differential governing equation corresponding to the axial problem, Eq. (28)

or (29), and to the bending problem, Eq. (38) or (39), can be transformed into equivalent

differential ones. Integrating once Eq. (28) we get

N̄ (ξ)

ξ1

= fu (ξ) (43)

with

f ′u (ξ) = −λuU (ξ)

ξ1

(44)

Likewise, integrating twice Eq. (38), we obtain

M̄ (ξ)

ξ1

= −fw (ξ) (45)
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with

f ′′w (ξ) =
λwW (ξ)

ξ1

(46)

Inserting the expressions for N̄ (ξ), Eq. (27), and M̄ (ξ), Eq. (37), in Eqs. (43) and (45)

respectively, we get

U ′ (ξ) +
ξ2

ξ1

1

2h

∫ 1

0

e−
|ξ−s|
h U ′ (s) ds = fu (ξ) (47)

W ′′ (ξ) +
ξ2

ξ1

1

2h

∫ 1

0

e−
|ξ−s|
h W ′′ (s) ds = fw (ξ) (48)

Notice that both Eq. (47) and Eq. (48) are of the general form

y (ξ) + C

∫ b

a

eµ|ξ−s|y (s) ds = g (ξ) (49)

As stated in Polyanin and Manzhirov (2008), the function y (ξ) obeys the following second-

order linear nonhomogeneous ordinary differential equation with constant coefficients

y′′ (ξ) + µ (2C − µ) y (ξ) = g′′ (ξ)− µ2g (ξ) (50)

provided that the so-called constitutive boundary conditions (Romano et al., 2017) are

fulfilled (Polyanin and Manzhirov, 2008)

y′ (a) + µy (a) = g′ (a) + µg (a) (51)

y′ (b)− µy (b) = g′ (b)− µg (b) (52)

This permits the above mentioned transformation, that will be next developed for both

axial and bending cases.

3.2. Differential eigenvalue problem for axial vibration

In view of the above, using Eq. (50) and assuming the equivalences y (ξ) = U ′ (ξ), a = 0,

b = 1, µ = −1/h, C = ξ2/ (2ξ1h), and g (ξ) = fu (ξ), as well as the relation ξ1 + ξ2 = 1,

the following expression of the axial force in terms of derivatives of the displacement can

be obtained

N̄ (ξ) = −h2ξ1U
′′′ (ξ) +

(
1− h2λu

)
U ′ (ξ) (53)

Then, the integro-differential eigenvalue problem can be written in differential form

U IV (ξ)− 1

ξ1

(
1

h2
− λu

)
U ′′ (ξ)− λu

ξ1h2
U (ξ) = 0. (54)
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subject to the constitutive boundary conditions, Eqs. (51) and (52),

−h U ′′′ (0) + U ′′ (0) +
1− ξ1 − h2λu

ξ1h
U ′ (0) +

λu
ξ1

U (0) = 0 (55)

h U ′′′ (1) + U ′′ (1)− 1− ξ1 − h2λu
ξ1h

U ′ (1) +
λu
ξ1

U (1) = 0 (56)

and appropriate standard boundary conditions given by any of the Eqs. (30) to (32). Note

that these can be written in terms of the displacement using Eq. (53).

3.3. Differential eigenvalue problem for bending vibration

Using Eq. (50) with the equivalences y (ξ) = W ′′ (ξ), and g (ξ) = fw (ξ), the following

relation between bending moment and transverse displacement can be obtained

M̄ (ξ) = ξ1h
2W IV (ξ)−W ′′ (ξ)− h2λw W (ξ) (57)

The integro-differential eigenvalue problem can then be written in differential form

W V I (ξ)− 1

ξ1h2
W IV (ξ)− λw

ξ1

W ′′ (ξ) +
λw
ξ1h2

W (ξ) = 0 (58)

subject to the constitutive boundary conditions, Eqs. (51) and (52)

h2W V (0)−hW IV (0)− 1− ξ1

ξ1

W ′′′ (0)+
1− ξ1

ξ1h
W ′′ (0)− h

2λw
ξ1

W ′ (0)+
hλw
ξ1

W (0) = 0 (59)

h2W V (1)+hW IV (1)− 1− ξ1

ξ1

W ′′′ (1)− 1− ξ1

ξ1h
W ′′ (1)− h

2λw
ξ1

W ′ (1)− hλw
ξ1

W (1) = 0 (60)

as well as to the standard boundary conditions given by any of the Eqs. (40) to (42). Note

that these can be written in terms of the displacement using Eq. (57).

4. Solution of the differential eigenvalue problem

4.1. Axial problem

The general solution of the differential Eq. (54) is of the form

U (ξ) =
4∑
i=1

Bie
biξ (61)
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where bi are the roots of the characteristic polynomial

r4 − 1− h2λu
ξ1h2

r2 − λu
ξ1h2

= 0 (62)

and Bi are arbitrary constants that have to be determined by imposing two standard

boundary conditions, selected from any of Eqs. (30) to (32), and two additional constitu-

tive boundary conditions, Eqs. (55) and (56). The previous solution admits an alterna-

tive expression, following a procedure similar to that used to obtain the Krylov-Duncan

functions (Karnovsky and Lebed, 2010). Thus, the displacement function U (ξ) can be

alternatively written as

U (ξ) = U0 F1 (ξ) + N̄0 F2 (ξ) + κ0 F3 (ξ) + κ1 F4 (ξ) (63)

where Fi (ξ) are functions to be determined, U0 and N̄0 the axial displacement and axial

force at ξ = 0, respectively, and κ0 and κ1 the expressions that, equated to zero, define the

constitutive boundary conditions, see Eqs. (55) and (56):

κ0 = −h U ′′′0 + U ′′0 +
1− ξ1 − h2λu

ξ1h
U ′0 +

λu
ξ1

U0 (64)

κ1 = h U ′′′1 + U ′′1 −
1− ξ1 − h2λu

ξ1h
U ′1 +

λu
ξ1

U1 (65)

with U ′0, U ′′0 , U ′′′0 , and U ′1, U ′′1 , U ′′′1 being the first, second and third derivatives of U (ξ) at

ξ = 0 and ξ = 1, respectively. Using the general solution given by Eq. (61) to derive U0, Eq.

(53) to derive N̄0, and Eqs. (64) and (65) to obtain κ0 and κ1, the linear system Hu·B = Vu

can be constructed and solved, where B = {B1, B2, B3, B4}T , Vu =
{
U0, N̄0, κ0, κ1

}T
, and

Hu is a matrix of coefficients. Substituting back Bi as a function of U0, N̄0, κ0 and κ1 in

Eq. (61), and rearranging terms, the functions Fi (ξ) can be derived.

Finally, taking into account that κ0 and κ1 are zero in order to satisfy the constitutive

boundary conditions, the displacement solution reads

u (ξ) = U0 F1 (ξ) + N̄0 F2 (ξ) (66)

and the characteristic equation can be obtained by imposing suitable standard boundary

conditions to the solution:
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• Supported: U0 = 0, U (1) = 0.

F2 (1) = 0 (67)

• Cantilever: U0 = 0, N̄ (1) = 0.

(
1− h2λu

)
F ′2 (1)− h2ξ1F

′′′
2 (1) = 0 (68)

• Free: N̄0 = 0, N̄ (1) = 0.

(
1− h2λu

)
F ′1 (1)− h2ξ1F

′′′
1 (1) = 0 (69)

Note that the functions Fi depend on the eigenvalue λu and on the nonlocal parameter

h.

4.2. Bending problem

The general solution of the differential Eq. (58) is of the form

W (ξ) =
6∑
i=1

Die
diξ (70)

where the coefficients di are the roots of the characteristic polynomial

r6 − 1

ξ1h2
r4 − λw

ξ1

r2 +
λw
ξ1h2

= 0 (71)

and constants Di are determined by imposing four standard boundary conditions, selected

from any of Eqs. (40) to (42), and two additional constitutive boundary conditions, Eqs.

(59) and (60). Following the same procedure used for the solution of the axial vibration

problem, the displacement function is written as

W (ξ) = W0 G1 (ξ) + Φ0 G2 (ξ) + M̄0 G3 (ξ) + Q̄0 G4 (ξ) + κ0 G5 (ξ) + κ1 G6 (ξ) (72)

where Gi (ξ) are functions to be determined, W0 and M̄0 are the transverse displacement

and bending moment at ξ = 0, respectively, Φ0 = W ′ (0), Q̄0 = M̄′ (0), and η0 and η1 the

expressions that, equated to zero, define the constitutive boundary conditions, see Eqs.

(59) and (60):

η0 = h2W V
0 − hW IV

0 − 1− ξ1

ξ1

W ′′′
0 +

1− ξ1

ξ1h
W ′

0 −
h2λw
ξ1

W ′
0 +

hλw
ξ1

W0 (73)
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η1 = h2W V
1 + hW IV

1 (1)− 1− ξ1

ξ1

W ′′′
1 −

1− ξ1

ξ1h
W ′′

1 −
h2λw
ξ1

W ′
1 −

hλw
ξ1

W1 (74)

with W ′
0, W ′′

0 , W ′′′
0 , W IV

0 , W V
0 , and W ′

1, W ′′
1 , W ′′′

1 , W IV
1 , W V

1 being, respectively, the

first to fifth derivatives of W (ξ) at the boundaries ξ = 0 and ξ = 1. Using the general

solution given by Eq. (70) (and its derivative) to obtain W0 and Φ0, Eq. (57) and its

derivative to obtain M̄0 and Q̄0, and Eqs. (73) and (74) to get η0 and η1, the linear

system Hw ·D = Vw can be constructed and solved, where D = {D1, D2, D3, D4, D5, D6}T ,

Vw =
{
W0,Φ0,M̄0, Q̄0, η0, η1

}T
, and Hw is a matrix of coefficients. Substituting backDi as

a function of W0, Φ0, M̄0, Q̄0, η0, and η1 in Eq. (70), and obtaining the coefficients for each

of the elements in vector Vw, the functions Gi (ξ) are derived. Finally, the displacement

solution reads

W (ξ) = W0 G1 (ξ) + Φ0 G2 (ξ) + M̄0 G3 (ξ) + Q̄0 G4 (ξ) (75)

where η0 = 0 and η1 = 0 has been imposed, fulfilling the constitutive boundary conditions.

Finally, the characteristic equation can be obtained by imposing appropriate standard

boundary conditions to the solution:

• Supported: W0 = 0, M̄0 = 0, W (1) = 0, M̄ (1) = 0.∣∣∣∣∣∣ a
Supp
11 aSupp12

aSupp21 aSupp22

∣∣∣∣∣∣ = 0 (76)

• Cantilever: W0 = 0, Φ0 = 0, M̄ (1) = 0, M̄′ (1) = 0.∣∣∣∣∣∣ a
Cant
11 aCant12

aCant21 aCant22

∣∣∣∣∣∣ = 0 (77)

• Free: M̄0 = 0, Q̄0 = 0, M̄ (1) = 0, M̄′ (1) = 0.∣∣∣∣∣∣ a
Free
11 aFree12

aFree21 aFree22

∣∣∣∣∣∣ = 0 (78)

The elements in the three previous determinants are given in Appendix B. Note that

these elements are dependent on the functions Gi which, in turn, depend on the eigenvalue

λu and on the nonlocal parameter h.



16

5. Results. Natural frequencies of vibration

In this section, the eigenfrequencies for axial and bending vibration of the two-phase

nonlocal elastic beam are presented for three different boundary conditions in each case,

supported, cantilever, and free, using the presented solution procedure. The influence of

the material parameters in the vibrational behavior has been analysed by considering

four values of the nonlocal parameter h = {0.010, 0.025, 0.050, 0.075}, and ranging the

mixture parameter ξ1 from 0.1 to 1.0. The eigenfrequencies have been obtained applying the

capabilities of symbolic calculus provided by the Mathematica software (Wolfram Research,

Inc., 2017).

5.1. Axial vibration

Figs. 1 to 3 show, for each boundary condition, the first four eigenfrequencies ωun ,

n = 1, . . . , 4, as a function of the mixture parameter ξ1, and of the nonlocal parame-

ter h. Frequencies presented in the Figures are normalized by their corresponding local

counterparts given in Table 1.

Table 1: Nondimensional eigenfrequencies (n = 1, ..., 4) corresponding to axial vibration for different

boundary conditions. Fully local case (ξ1 = 1).

ωlocalu1
ωlocalu2

ωlocalu3
ωlocalu4

Supported π 2π 3π 4π

Cantilever π/2 3π/2 5π/2 7π/2

Free π 2π 3π 4π

For values ξ1 < 1 (thus ξ2 > 0), the eigenfrequencies decrease as the nonlocal effect

becomes more relevant, either by increasing the value of the nonlocal parameter h or by

decreasing the mixture parameter ξ1. This softening effect of the Eringen’s nonlocality has

been previously reported in the literature for static behavior of rods subjected to axial

loads (Benvenuti and Simone, 2013). It is worth to point out that, in all cases, the local

eigenfrequencies are recovered for ξ1 = 1.
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Figure 1: Axial vibration. First four natural frequencies of the supported beam as a function of the mixture

parameter ξ1, for four different values of the nonlocal parameter h. The frequency ωun
has been normalized

by the frequency ωlocal
un

corresponding to the local case (ξ1 = 1).
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Figure 2: Axial vibration. First four natural frequencies of the cantilever beam as a function of the mixture

parameter ξ1, for four different values of the nonlocal parameter h. The frequency ωun
has been normalized

by the frequency ωlocal
un

corresponding to the local case (ξ1 = 1).



19

0.97

0.98

0.99

1.00

1.01

0 0.2 0.4 0.6 0.8 1 1.2

Free
1st frequency

h=0.010
h=0.025
h=0.050
h=0.075

ω
u1

/ω
u1lo

ca
l

ξ
1

(a)

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0 0.2 0.4 0.6 0.8 1 1.2

Free
2nd frequency

h=0.010
h=0.025
h=0.050
h=0.075

ω
u2

/ω
u2lo

ca
l

ξ
1

(b)

0.80

0.85

0.90

0.95

1.00

1.05

0 0.2 0.4 0.6 0.8 1 1.2

Free
3rd frequency

h=0.010
h=0.025
h=0.050
h=0.075

ω
u3

/ω
u3lo

ca
l

ξ
1

(c)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 0.2 0.4 0.6 0.8 1 1.2

Free
4th frequency

h=0.010
h=0.025
h=0.050
h=0.075

ω
u4

/ω
u4lo

ca
l

ξ
1

(d)

Figure 3: Axial vibration. First four natural frequencies of the free beam as a function of the mixture

parameter ξ1, for four different values of the nonlocal parameter h. The frequency ωun
has been normalized

by the frequency ωlocal
un

corresponding to the local case (ξ1 = 1).
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5.2. Bending vibration

Figs. 4 to 6 show, for each boundary condition, the first four eigenfrequencies ωwn , n =

1, . . . , 4, as a function of h and ξ1. Frequencies presented in these Figures are normalized

by their corresponding local counterparts (Table 2).

Table 2: Nondimensional eigenfrequencies (n = 1, ..., 4) corresponding to bending vibration for different

boundary conditions. Fully local case (ξ1 = 1).

ωlocalw1
ωlocalw2

ωlocalw3
ωlocalw4

Supported π2 4π2 9π2 16π2

Cantilever 3.516 22.034 61.697 120.902

Free 22.373 61.673 120.903 199.859

As in the previous analysis devoted to axial vibrations, in all considered configurations,

the local eigenfrequencies are recovered for ξ1 = 1, when the contribution of the nonlocal

phase is neglected. Moreover, the results show the same trends independently of the

boundary condition; thus the paradoxical behavior of the cantilever beam that can be

found when using the (ill-posed) fully nonlocal Eringen model is not addressed with the

mixed formulation. A similar remark has been stated by Eptaimeros et al. (2016).

The eigenfrequencies decrease as the nonlocal effect becomes more relevant, either by

increasing the value of the nonlocal parameter h or by decreasing the mixture parame-

ter ξ1. Moreover, the influence of nonlocality becomes more relevant for higher modes.

This softening effect of the Eringen’s nonlocality has been reported for static bending

(Khodabakhshia and Reddy, 2015; Wang et al., 2016), as well as for bending vibrations

(Eptaimeros et al., 2016).

It is interesting to notice that, for the free case, it is possible to find a solution for

the fully nonlocal case (ξ1 = 0, ξ2 = 1). The reason is that, for this particular situation,

the fulfilment of the classical boundary conditions guarantees the accomplishment of the

constitutive boundary conditions associated to the transformation process from the integro-

differential eugenvalue problem to the differential one (see Appendix C for details). Thus,

for the free case, the four first eigenfrequencies corresponding to the fully nonlocal problem
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for different values of the nonlocal parameter h have been calculated and are quoted in Fig.

6. It can be seen that the obtained frequencies are the limit of the corresponding mixed

problem for ξ1 → 0.

6. Summary and conclusions

In this paper we presented an exact solution for the free in-plane vibrations (axial and

bending) of a Bernoulli-Euler beam using the mixed local/nonlocal constitutive equations

related to the Eringen elasticity theory. The two original uncoupled integro-differential

eigenvalue problems, governing the axial and bending vibrations, have been transformed

into the equivalent differential ones. Then, the governing equations in differential form

become of fourth-order (axial) or sixth-order (bending), and two constitutive boundary

conditions are added to the two (axial) or four (bending) standard ones. Moreover, expres-

sions for the axial force and bending moment in terms of the derivatives of displacement

have been derived.

The solution of the differential eigenvalue problems has been solved following a proce-

dure similar to that used to obtain the Krylov-Duncan functions. This permitted to reduce

the order of the determinant from which the characteristic equation is derived.

The method has been applied to study the in-plane free vibration of a Bernoulli-Euler

beam with different classical boundary conditions: supported, cantilever and free.

The corresponding eigenfrequencies for different values of the nonlocal parameter h,

and of the local phase fraction ξ1 have been calculated. Thus, the softening effect of

the Eringen’s nonlocality has been highlighted, which is more pronounced as the mixture

parameter ξ1 decreases. It is worth highlighting that existence of a solution for the fully

nonlocal problem with ξ1 = 0 is an exception (for instance, bending with free boundary

conditions), the rule being non-existence, as shown by Romano et al. (2017). However,

the presence of the local term in the constitutive equation introduces a regularization

parameter ξ1 > 1 which renders the problem well-posed.

To the authors knowledge, this is the first time an exact solution has been derived for

a dynamic problem involving the nonlocal integral Eringen constitutive equation. This

opens a pathway to the analysis of the vibrational behavior for other typologies of nonlocal
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Figure 4: Bending vibration. First four natural frequencies of the supported beam, as a function of the

mixture parameter ξ1, for four different values of the nonlocal parameter h. The frequency ωwn
has been

normalized by the frequency ωlocal
wn

corresponding to the local case (ξ1 = 1).
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Figure 5: Bending vibration. First four natural frequencies of the cantilever beam as a function of the

mixture parameter ξ1, for four different values of the nonlocal parameter h. The frequency ωwn
has been

normalized by the frequency ωlocal
wn

corresponding to the local case (ξ1 = 1).
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Figure 6: Bending vibration. First four natural frequencies of the free beam as a function of the mixture

parameter ξ1, for four different values of the nonlocal parameter h. The frequency ωwn
has been normalized

by the frequency ωlocal
wn

corresponding to the local case (ξ1 = 1).
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Appendix A. Application of Hamilton’s Principle

According to Hamilton’s Principle, the first variation of the functional
∫ t2
t1
Ldt is zero,

L being the Lagrangian of the system. Then

δ

∫ t2

t1

(K − Π) dt = 0 (A.1)

where the kinetic energy K and the total potential energy Π are defined by Eqs. (9) and

(10), respectively.

The term associated to the kinetic energy becomes, after intergating once by parts and

using δu (x, t1) = δu (x, t2) = 0, δw (x, t1) = δw (x, t2) = 0:

δ

∫ t2

t1

K dt = −
∫ t2

t1

[
ρA

∫ L

0

(∂ttu δu+ ∂ttw δw) dx

]
dt (A.2)

where functional dependences have been obviated for clarity.

The term associated with the total potential energy becomes:

δ

∫ t2

t1

Π dt =∫ t2

t1

{
ξ1EA

∫ L

0

∂xu ∂xδu dx + ξ2EA

∫ L

0

[∫ L

0

k (|x− x̄|, κ) ∂x̄u dx̄

]
∂xδu dx +

ξ1EI

∫ L

0

∂xxw ∂xxδw dx + ξ2EI

∫ L

0

[∫ L

0

k (|x− x̄|, κ) ∂x̄x̄w dx̄

]
∂xxδw dx −∫ L

0

qx δu dx−
∫ L

0

qz δw dx

}
(A.3)



26

and, after integration by parts,

δ

∫ t2

t1

Π dt =∫ t2

t1

{
ξ1EA

[
∂xu δu |L0 −

∫ L

0

∂xxu δu dx

]
+

ξ2EA

[(∫ L

0

k (|x− x̄|, κ) ∂x̄u dx̄

)
δu

∣∣∣∣L
0

−
∫ L

0

∂x

[∫ L

0

k (|x− x̄|, κ) ∂x̄u dx̄

]
δu dx

]
+

ξ1EI

[
∂xxw δ∂xw|L0 − ∂xxxw δw|L0 +

∫ L

0

∂xxxxw δw dx

]
+

ξ2EI

[[(∫ L

0

k (|x− x̄|, κ) ∂x̄x̄w dx̄

)
δ∂xw

]L
0

−
[(
∂x

∫ L

0

k (|x− x̄|, κ) ∂x̄x̄w dx̄

)
δw

]L
0

+∫ L

0

∂xx

(∫ L

0

k (|x− x̄|, κ) ∂x̄x̄w dx̄

)
δw dx

]
−∫ L

0

qx δu dx−
∫ L

0

qz δw dx

}
(A.4)

The Euler-Lagrange Eqs. (11) and (12) are then obtained from Eq. (A.1) by setting

the coefficients of δu and of δw in (0, L) to zero for all t in (t1, t2). If the terms evaluated

at x = 0 and x = L in Eq. (A.1) are likewise canceled, the essential and natural boundary

conditions given by Eqs. (13) to (15) are derived.

Appendix B. Elements of the determinants defining the characteristic equa-

tions for bending

• Supported: After the boundary conditions W0 = 0 and M̄0 = 0, Eq. (75) becomes

W (ξ) = Φ0 G2 (ξ) + Q̄0 G4 (ξ) (B.1)

and Eq. (57) becomes

M̄ (ξ) =
[
−h2λwG2 (ξ)−G′′2 (ξ) + ξ1h

2GIV
2 (ξ)

]
Φ0 +[

−h2λwG4 (ξ)−G′′4 (ξ) + ξ1h
2GIV

4 (ξ)
]
Q̄0

(B.2)

Imposing the boundary conditions W (1) = 0 and M̄ (1) = 0, the following system

of equations is obtained
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aSupp11 Φ0 + aSupp12 Q̄0 = 0

aSupp21 Φ0 + aSupp22 Q̄0 = 0

 (B.3)

with

aSupp11 = G2 (1) (B.4)

aSupp12 = G4 (1) (B.5)

aSupp21 = −h2λwG2 (1)−G′′2 (1) + ξ1h
2GIV

2 (1) (B.6)

aSupp22 = −h2λwG4 (1)−G′′4 (1) + ξ1h
2GIV

4 (1) (B.7)

thus providing the characteristic Eq. (76).

• Cantilever: Proceeding in a similar way, we get the elements of the characteristic Eq.

(77):

a
Cant)
11 = −h2λwG3 (1)−G′′3 (1) + ξ1h

2GIV
3 (1) (B.8)

aCant12 = −h2λwG4 (1)−G′′4 (1) + ξ1h
2GIV

4 (1) (B.9)

aCant21 = −h2λwG
′
3 (1)−G′′′3 (1) + ξ1h

2GV
3 (1) (B.10)

aCant22 = −h2λwG
′
4 (1)−G′′′4 (1) + ξ1h

2GV
4 (1) (B.11)

• Free: Proceeding in a similar way, we get the elements of the characteristic Eq. (78);

aFree11 = −h2λwG1 (1)−G′′1 (1) + ξ1h
2GIV

1 (1) (B.12)

aFree12 = −h2λwG2 (1)−G′′2 (1) + ξ1h
2GIV

2 (1) (B.13)
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aFree21 = −h2λwG
′
1 (1)−G′′′1 (1) + ξ1h

2GV
1 (1) (B.14)

aFree22 = −h2λwG
′
2 (1)−G′′′2 (1) + ξ1h

2GV
2 (1) (B.15)

Appendix C. Fully nonlocal case for free bending vibration

For the fully nonlocal case (ξ1 = 0), the governing Eq. (58) becomes

W IV (ξ) + h2λwW
′′ (ξ)− λwW (ξ) = 0 (C.1)

and for free bending vibration, the standard boundary conditions given by Eqs. (42)

become

M̄ (0) = −W ′′ (0)− h2λwW (0) = 0 (C.2)

M̄′ (0) = −W ′′′ (0)− h2λwW
′ (0) = 0 (C.3)

M̄ (1) = −W ′′ (1)− h2λwW (1) = 0 (C.4)

M̄′ (1) = −W ′′′ (1)− h2λwW
′ (1) = 0 (C.5)

Fullfilment of the previous boundary conditions automatically satisfies the constitutive

boundary conditions (73) and (74)

−hW ′′′ (0) +W ′′ (0)− h3λwW
′ (0) + h2λwW (0) = 0 (C.6)

−hW ′′′ (1)−W ′′ (1)− h3λwW
′ (1)− h2λwW (1) = 0 (C.7)

Note that, for the other studied boundary conditions, the constitutive boundary conditions

are not fulfilled.

Finally, following a solution procedure similar to that described in section 4, the char-

acteristic equation and eigenfrequencies can be derived.
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