
 

This is a postprint version of the following published document: 

Willatzen, Morten; Gao, Penglin; Christensen, Johan; 
Wang, Zhong Lin (2020). Acoustic gain in solids due to 
piezoelectricity, flexoelectricity, and electrostriction. 

Advanced Functional Materials, 30(39), 2003503, p.: 1-
7. 

DOI: https://doi.org/10.1002/adfm.202003503 

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

https://doi.org/10.1002/adfm.202003503


Acoustic Gain in Solids due to Piezoelectricity, Flexoelectricity, and

Electrostriction

Morten Willatzen,1, 2, 3 Penglin Gao,4 Johan Christensen,4 and Zhong Lin Wang1, 2, 5

1CAS Center for Excellence in Nanoscience,

Beijing Key Laboratory of Micro-nano Energy and Sensor,

Beijing Institute of Nanoenergy and Nanosystems,

Chinese Academy of Sciences, Beijing 100083, P. R. China

2School of Nanoscience and Technology, University of

Chinese Academy of Sciences, Beijing 100049, P. R. China

3Department of Photonics Engineering, Technical University

of Denmark, DK-2800 Kongens Lyngby, Denmark

4Department of Physics, Universidad Carlos III de Madrid, Spain

5School of Materials Science and Engineering,

Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

A quantitative discussion of the combined influence of three electromechanical ef-

fects: piezoelectricity, flexoelectricity, and electrostriction in solids is provided for

acoustic absorption and gain. While piezoelectricity occurs in non-centrosymmetric

materials only, flexoelectricity and electrostriction exist in all materials. We demon-

strate two important new results: (1) the possibility to realize acoustic gain in all

materials (centrosymmetric and non-centrosymmetric) when the acoustic Cherenkov

condition is fulfilled, and (2) realization of acoustic gain in the presence of a strong

dc electric field, even when the Cherenkov condition is not fulfilled, in the case of

strong cross coupling between piezoelectricity, flexoelectricity, and electrostriction.

A simple analytical expression for the acoustic dispersion relation is derived for the

combined effect of piezoelectricity, flexoelectricity, and electrostriction. At lower fre-

quencies, the piezoelectric effect dominates for inversion-asymmetric materials. At

high frequencies (∼> 1 MHz) flexoelectricity becomes increasingly important and

eventually provides a major mechanism for gain and absorption in BaTiO3. In the

presence of strong electric fields (∼> 1 MV/m), electrostriction provides a dominant

isolated contribution to absorption/gain in BaTiO3. Strong coupling between the
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three electromechanical contributions substantially affects the total absorption/gain

coefficient for certain material parameters, frequencies, and electric field combina-

tions.
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I. INTRODUCTION

Since the advent of graphene1 many new 2D materials with exotic physical properties and ap-

plication potential have been fabricated. Several of these new solid materials may find use in

device applications2–5 where electromechanical effects play an important yet different role com-

pared to usual bulk or quantum-confined structures. Piezoelectricity is one characteristic intrinsic

electromechanical property of many 2D materials6–8 that displays different qualitative and quan-

titative behavior than in their bulk counterparts. For example, it has been shown experimentally

and theoretically that the piezoelectric coefficient of MoS2 changes drastically with the number

of stacking layers9. 2D MoS2 structures with an even number of stacking layers are inversion

symmetric and have a piezoelectric coefficient equal to zero while odd-layered structures show a

non-zero but varying (usually decreasing) piezoelectric coefficient as the stacking number increases.

Since 2D structures consist of one or a small number of single atomic layers they are more flexible

than bulk materials. Hence, flexoelectric effects are expected to play an important role in these

materials. In addition, due to the small dimensions of nanodevices, electric fields may be as high

as 1 GV/m such that electrostriction, manifesting itself as a mechanical stress proportional to the

square of the electric field, can play a dominant role.

In the early sixties, Hutson, White and McFee10–12 demonstrated experimentally and proved

theoretically that piezoelectricity in bulk semiconductors provide a mechanism for acoustic gain

due to the Cherenkov effect when the electron drift velocity, in the presence of a dc electric field,

surpasses the speed of sound. Acoustic gain occurs as accelerated free electrons lose their kinetic

energy, driven by the dc electric field, by emitting phonons. Recently, we demonstrated14 in the

presence of epsilon-near-zero (ENZ) conditions acoustic gain due to piezoelectricity may become

orders of magnitude higher than found in Refs. 10–12. We also showed in the context of parity-

time symmetry acoustic metamaterials how amplified sound is an indispensable ingredient in many

striking wave-based phenomena15,16.

In this work, we make a systematic investigation of the combined effects of piezoelectricity,

flexoelectricity, and electrostriction in solid materials for acoustic absorption (see Figure 1). We

derive a closed form expression for the acoustic dispersion relation and show that typically, at low

frequencies and electric fields, piezoelectricity is the prevailing effect. In some materials, such as

BaTiO3, and at frequencies above ∼ 1 MHz or electric fields above ∼ 1 MV/m, flexoelectricity and

electristriction, respectively, contribute significantly to the acoustic absorption/gain. Interestingly,

we demonstrate that couplings between the different electromechanical effects from piezoelectricity,
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flexoelectricity, and electrostriction are dominant and lead to absorption/gain coefficients that

differ substantially from the sum of their individual contributions. We anticipate that for graphene

and other 2D materials, due to these materials’ small flexoelectric and electrostrictive coefficients,

acoustic absorption/gain contributions from flexoelectricity and electrostriction first set in at high,

yet realistic, frequencies and electric fields, respectively. In a recent work, the importance of

flexoelectricity in pyramidal composite (BaxSr1−xTiO3) microstructures was investigated17.

Figure 1. Schematic drawing of the BaTiO3 crystal structure. The lower panel shows the isolated effects

of (left) piezoelectricity, (middle) flexoelectricity, and (right) electrostriction for a cylinder-shaped BaTiO3

structure with electrodes mounted at the top and bottom ends. The red dashed rectangle shows in profile

the structure shape in the absence of an applied voltage.



5

II. THEORETICAL FRAMEWORK

For simplicity consider the constitutive relations of a one-dimensional semicondutor including

piezoelectricity, flexoelectricity, and electrostriction,

T = cS − eE − ν ∂E
∂x
− gE2, (1)

D = εE + P + eS + ν
∂S

∂x
+ 2gES, (2)

where T , S, D, E, P , c, ε, e, ν, and g are the stress, strain, electric displacement, electric field,

spontaneous polarization, stiffness, permittivity, piezoelectric e constant, flexoelectric coefficient,

and electrostriction coefficient, respectively. In deriving the relations between electrostrictive terms

in Eqs. (1) and (2), we used the one-dimensional thermodynamic relations13

˜̃
H = U − ED, (3)

d
˜̃
H = ΘdΩ + TdS −DdE, (4)

where
˜̃
H is the electric enthalpy, Ω is the entropy, and

T =
∂
˜̃
H

∂S
, (5)

D = −∂
˜̃
H

∂E
. (6)

Similarly, the relation between flexoelectric terms in Eqs. (1) and (2) is obtained by use of the

following expression for the differential electric enthalpy assuming constant entropy,

d
∂
˜̃
H

∂x
=
∂d
˜̃
H

∂x
=
∂T

∂x
dS + Td

(
∂S

∂x

)
− ∂D

∂x
dE −Dd

(
∂E

∂x

)
, (7)

thus

ν =
∂D

∂
(
∂S
∂x

) = −
∂
(
∂
(
∂
˜̃
H
∂x

))
∂
(
∂S
∂x

)
∂
(
∂E
∂x

) = −
∂
(
∂
(
∂
˜̃
H
∂x

))
∂
(
∂E
∂x

)
∂
(
∂S
∂x

) = − ∂T

∂
(
∂E
∂x

) . (8)

Consider next electromechanical wave motion along the x direction. The equation-of-motion
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for a solid is

ρ
∂2u

∂t2
=
∂T

∂x
= c

∂2u

∂x2
− e∂E

∂x
− ν ∂

2E

∂x2
− 2gE

∂E

∂x
, (9)

where ρ is the mass density, and S = ∂u
∂x

with u the material displacement due to the wave motion.

The continuity equation becomes

∂J

∂x
= −∂ρe

∂t
, (10)

where J and ρe are the free current density and the space charge density, respectively. Let ns be

the carrier density due to the presence of the acoustic wave. The total density n of electrons in

the conduction band is

n = n0 + fns, (11)

where f denotes the fraction of the acoustically generated electrons that are free to move, and n0 is

the conduction band electron density in equilibrium. Since the ion background exactly compensates

for the electron density in equilibrium, the free charge satisfies

ρe = −qns. (12)

The current density J due to electrons has drift and diffusion contributions. Two drift terms

arise due to the presence of flexoelectricity (strain gradients), i.e.,

J = qµcnE − qµcn
B

q

∂S

∂x
+ qfDn

∂ns
∂x

, (13)

where µc is the electron mobility and B is the conduction band deformation potential in eV. Note

that the flexoelectric drift terms arises from the contribution, B
q
S, to the electric potential φ in the

presence of strain and use of E = −∂φ
∂x

. The diffusion constant Dn is assumed to obey the Einstein

relation

Dn =
µckBΘ

q
, (14)

where kB and Θ are Boltzmann’s constant and the absolute temperature, respectively.
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We must supplement the above set of equations by the Maxwell-Poisson equation

∂D

∂x
= ρe = −qns. (15)

Before we proceed it is important to notice that the influence of holes is neglected. The argument

is simply that for semiconductors holes are usually much heavier than electrons. Hence, in a first

approximative model, we can safely neglect their contribution to charge transport and acoustic

dynamics.

A. Continuity equation

It follows from the continuity equation and the Maxwell-Poisson equation that

∂J

∂x
= qµc

(
n0
∂E

∂x
+ f

∂ns
∂x

E + fns
∂E

∂x

)
+ qfDn

∂2ns
∂x2

+ µcB

(
n
∂3u

∂x3
+
∂n

∂x

∂2u

∂x2

)
= −∂ρe

∂t
= − ∂

2D

∂x∂t
. (16)

Terms involving ns can be augmented by using the Maxwell-Poisson equation, i.e.,

∂2D

∂x∂t
= −qµcn0

∂E

∂x
+ µcf

∂2D

∂x
E + fµc

∂D

∂x

∂E

∂x
+ fDn

∂3D

∂x3
−

µcB

(
n0
∂3u

∂x3
− f

q

∂D

∂x

∂3u

∂x3
− f

q

∂2D

∂x2
∂2u

∂x2

)
. (17)

We now proceed to solve Eq. (17) for the case where the electric field consists of a dc term E0

and a small acoustic term E1

E(x, t) = E0 + E1 exp (iωt− ikx) , (18)

where k is the wavenumber associated with the acoustic wave of frequency ω
2π

. We also make the

ansatz

D(x, t) = D0 +D1 exp (iωt− ikx) , (19)

u(x, t) = u0(x) + u1 exp (iωt− ikx) , (20)

where E0, D0 are constants, and u0 is a time-independent function of x. The coefficients D1 and
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u1 are constant (small) acoustic amplitudes for the electric displacement and the displacement,

respectively.

Since acoustic amplitudes are small, we neglect all terms involving products of acoustic ampli-

tudes. Collecting first order plane wave terms in acoustic amplitudes we find from Eq. (17)

ωkD1 = qµcn0ikE1 − k2µcfE0D1 + ik3fDnD1 − µcn0Bik
3u1. (21)

Similarly, collecting terms to first order in acoustic amplitudes yields from Eq. (9)

−ρω2u1 = −ck2u1 + ikeE1 + νk2E1 + 2ikgE0E1, (22)

and from Eq. (2) we obtain

D1 = εE1 − ikeu1 − νk2u1 − 2ikgE0u1. (23)

From the latter three equations, a determinental equation in the acoustic amplitudes (D1, E1, u1)

is obtained specifying the ω−k dispersion relation. Attempting instead a direct solution, Eq. (21)

gives

D1 =
iqµcn0

ω + fµcE0k − ifDnk2
E1 −

ik2µcn0B

ω + fµcE0k − ifDnk2
u1, (24)

then from Eq. (23)(
ε− iqµcn0

ω + fµcE0k − ifDnk2

)
E1 =

(
ike+ νk2 + 2ikgE0 −

ik2µcn0B

ω + fµcE0k − ifDnk2

)
u1. (25)

Using the latter expression in Eq. (22) yields the dispersion equation

ρω2 = ck2 +
(ike+ νk2 + 2ikgE0)

(
ike+ νk2 + 2ikgE0 − ik2µcn0B

ω+fµcE0k−ifDnk2

)
iqµcn0

ω+fµcE0k−ifDnk2
− ε

. (26)

Eq. (26) is the general acoustic dispersion equation including piezoelectric, flexoelectric, elec-

trostriction, and strain-gradient current contributions. Due to the presence of imaginary terms in

the dispersion equation, and the possibility to tune the dc electric field E0 above the Cherenkov

condition (|E0| > |ω/ (fµck) |), allows for phonon amplification in both piezoelectric and flex-

oelectric materials. Note that flexoelectricity and electrostriction exist in all materials, also in
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inversion-symmetric crystals! Hence, application of the acoustic Cherenkov effect is not limited to

piezoelectric (inversion-asymmetric) materials as considered in earlier works by White et. al and

the present authors10–12,14.

In the following, we will consider various cases of physical interest.

B. Absence of piezoelectricity

In inversion-symmetric semiconductors such as silicon, diamond, and graphene, piezoelectric

effects vanish, i.e., e = 0. Then, Eq. (26) reduces to

ρω2 = ck2 +
(
νk2 + 2ikgE0

)(νk2 + 2ikgE0 − ik2µcn0B
ω+fµcE0k−ifDnk2

iqµcn0

ω+fµcE0k−ifDnk2
− ε

)
. (27)

C. Absence of piezoelectricity, electrostriction, and strain-gradient current contributions

If piezoelectricity, electrostriction, and strain-gradient current contributions can be neglected

(e = g = B = 0), then Eq. (26) reduces to

ρω2 = ck2 +
ν2k4

iqµcn0

ω+fµcE0k−ifDnk2
− ε

. (28)

D. Absence of flexoelectricity, electrostriction, and strain-gradient current contributions

In a piezoelectric semiconductor where flexoelectric, electrostriction, and strain-gradient effects

can be neglected, the coefficients ν, g, and B vanish. Then, Eq. (26) reduces to

ρω2 = ck2 − k2e2

iqµcn0

ω+fµcE0k−ifDnk2
− ε

, (29)

in agreement with previous results in the literature10–12,14.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we consider barium titanate BaTiO3 and examine the importance of piezoelec-

tricity, flexoelectricity, and electrostriction at different frequencies and dc electric fields. Param-

eters are shown in Table I. We tacitly assume that all parameters including the permittivity,
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mobility do not depend significantly on the acoustic frequency. For a detailed discussion of the

influence of frequency, in particular at ENZ conditions, on acoustic absorption/gain in GaAs, we

refer to our work in Ref.14. Further, we shall neglect the influence of the strain-gradient current

contribution (the term proportional to B in Eq. (26) in the following discussion.

Since the imaginary part of the wave vector k is small compared to its real part, it is possible to

simplify the algebraic equation for k versus ω given by the general dispersion equation, Eq. (26).

Firstly, we write out the numerator of the second term on the right handside of Eq. (26),

(
ike+ νk2 + 2ikgE0

)2
= −

(
e2 + 4gE0e+ 4g2E2

0 − i (2νe+ 4νgE0) k − ν2k2
)
k2. (30)

Then approximative solutions k1, k2 are now determined from the second-degree polynomial equa-

tion,

ρω2 = ck21 −
(
e2 + 4gE0e+ 4g2E2

0 − i (2νe+ 4νgE0) k0,1 − ν2k20,1
)
k21

iqµcn0

ω+fµcE0k0,1−ifDnk20,1
− ε

, (31)

ρω2 = ck22 −
(
e2 + 4gE0e+ 4g2E2

0 − i (2νe+ 4νgE0) k0,2 − ν2k20,2
)
k22

iqµcn0

ω+fµcE0k0,2−ifDnk20,2
− ε

, (32)

where

k0,1 = −k0,2 =

√
ρω2

c
. (33)

In Figure 2, 2D plots of the wavevector k1 as a function of the dc electric field E0 and the

frequency f = ω/(2π) are shown. The four panels correspond to cases with (upper left) piezoelec-

tricity only, (upper right) flexoelectricity only, (lower left) electrostriction only, and (lower right)

all three together, i.e., according to Eq. (31). The left [right] colorbar in the four panels refers

to the real part of k1: k′1 = Re(k1) [the imaginary part of k1: k′′1 = Im(k1)]. In the calcula-

tions, we use the values ν = −5 · 10−5 C/m for BaTiO3 where the minus sign reflects the best

compromise between experimental data and density functional theory calculated flexoelectric co-

efficients for BaTiO3 from Tables 3.2 and 3.4 in Ref. 18. For the electrostriction constant we used

g = cM = cε2Q with Q = 0.05 m4/C2 taken from Ref. 19 and ε = 2000ε0. This yields a value of M

equal to 1.6·10−17 m2/V2 and g = 4.3·10−6 Pa·m2/V2. As mentioned earlier, we tacitly assume the

dielectric constant is a constant with frequency to focus on the different contributions from piezo-

electricity, flexoelectricity, and electrostriction. For the piezoelectric coefficient we have chosen



11

e = e15 = 21.3 C/m2 taken from Ref. 21. We also use c = 275 GPa, σ = qµcn0 = 1 · 10−5 Ω−1m−1,

and µc = 6.9 · 10−5 m2/V/s (T = 300 K)22.

It is evident that the real part of the wave vector k1 is several orders of magnitude larger

than the imaginary part. The most important isolated contribution to the absorption stems from

electrostriction (lower left panel). Flexoelectricity (upper right panel) leads to an absorption

contribution about two orders of magnitude smaller than the contribution from electrostriction and

one order of magnitude smaller than the piezoelectric contribution (upper left panel). It is very

interesting to notice that all three effects combine (lower right panel) to yield a substantially higher

absorption coefficient, approximately five orders of magnitude higher than the sum of the isolated

contributions shown in the other three panels! This difference is attributed to the coupling of

electrostriction and piezoelectricity with flexoelectricity, i.e., the terms −4iνgE0k0,1 and −2iνek0,1

appearing inside the parentheses in the numerator of Eq. (31). The reason these terms have

a drastic effect on the absorption is that they are imaginary while all the isolated absorption

contributions Eq. (31) are real. In other words, our results anticipate the importance of accounting

for the full coupling of electrostriction, piezoelectricity, and flexoelectricity to the absorption. This

coupling is obviously absent from earlier analyses10–12,14 where only piezoelectricity was considered.

Our results also reveal that the imaginary part of k1 changes sign (absorption to gain) as the dc

electric field magnitude E0 crosses the value −2.471 MV/m (refer to the white dashed line in the

lower right panel). This effect reflects the strong coupling of flexoelectricity to both electrostriction

and piezoelectricity and not due to the acoustic Cherenkov condition being satisfied. Indeed, the

electric field EC
0 required to fulfill the Cherenkov condition is given by |EC

0 | ≥ ω
fµck1

' 100 MV/m.

The explanation follows from inspection of the second term on the right-hand side of the dispersion

relation Eq. (26). The flexoelectric term term provides a real value: νk2 while the piezoelectric and

electrostrictive terms are imaginary (ike and 2ikgE0, respectively). In effect, the overall sign of

the imaginary term in the dispersion equation is determined not only by the Cherenkov condition.

Thus, when flexoelectricity is present and sufficiently large, as it is for BaTiO3, gain occurs at a

much smaller electric field value than that determined by the Cherenkov condition.

We emphasize that the detailed frequency dependence of the dielectric constant and the mo-

bility is not considered in the present work. This choice is made since the isolated consequence

of a frequency-dependent dielectric constant and mobility will not affect the relative importance

of piezoelectric, flexoelectric, and electrostrictive contributions for the total absorption/gain co-

efficient nor the obtained five-order enhancement of the total absorption/gain coefficient due to
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their coupling. The latter conclusion follows from our general dispersion result in Eq. (26). Fur-

ther, frequency-dependent data are scarce for other model parameters such as the piezoelectric e,

flexoelectric ν, and electrostriction g constants. Hence, to maintain a homogeneous presentation,

we have chosen to discard the frequency (as well as the electric field) dependence of all material

parameters. It is important to notice, however, that Eq. (26) (and other equations) can be directly

used also for the case with frequency-dependent material parameters.

Due to the small flexoelectric and electrostrictive coefficients of bulk GaAs, we do not find

important coupling contributions from piezoelectricity, flexoelectricity, and electrostriction to the

total absorption/gain in bulk GaAs. Indeed, our calculations reveal that only piezoelectricity is

important for absorption/gain of bulk GaAs. Hence, we find that the unique combination of large

piezoelectric, flexoelectric, and electrostrictive constants makes BaTiO3 a promising material for

tunable acoustic absorption/gain applications.

It should be kept in mind that besides the above effects, there are other mechanisms that

contribute to the imaginary part of the acoustic wave vector and lead to acoustic absorption a solid.

These include temperature relaxation phenomena such as phonon absorption due to temperature

gradients and mechanical friction from scattering on impurities and dislocations. Note also that a

one-dimensional model represents an approximation and relies on parameter estimation based on

real material data. We therefore expect the present analysis to be of a qualitative nature more

than strict quantitative. We anticipate that quantitative data for the acoustic absorption/gain in

the presence of a dc electric field must be based on detailed experimental investigations.

Table I. Physical properties. Note that the electrostriction constant g is given by g = cM = cε2Q. Observe

that (GO) are data for graphene oxide.

Parameter BaTiO3 GaAs graphene

σ (Ω−1m−1) 1 · 10−5 2.69 · 10−7 1 · 104

µc (m2/V/s) 6.9 · 10−5 (T = 300 K) [22] 0.8 1.5

ρ (kg/m3) 6020 5320

e (C/m2) e15 = 21.3, e31 = −2.7, e33 = 3.7 [21] 0.154

ε (ε0) 2000 10.89 ε11 = 4.4, ε33 = 1.3

M (m2/V2) Q = 0.05 m4/C2 [19] M = −1 · 10−22 [20] M = −3 · 10−23 (GO) [27]

ν (C/m) −5 · 10−5 [18] 5.1 · 10−12 [24] 2.86 · 10−12 [23]

c (1011Pa) c11 = 2.75, c33 = 1.65, c44 = 0.543, c12 = 1.79 0.855
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Figure 2. 2D plots of k1 solutions for bulk BaTiO3 in the case with (upper left plot) piezoelectricity

only (upper right plot) flexoelectricity only (lower left plot) electrostriction only, and (lower right plot)

all. The x axis is the dc electric field E0 and the y axis is the acoustic frequency f = ω/(2π). The left

[right] colorbar in the four panels refers to the real part of k1: k
′
1 = Re(k1) [the imaginary part of k1:

k′′1 = Im(k1)].

IV. ESTIMATION OF FLEXOELECTRICITY, ELECTROSTRICTION, AND

STRAIN-GRADIENT CURRENT CONTRIBUTIONS IN OTHER SOLIDS

In this section, we make rough estimations of the importance of electrostriction, flexoelectricity,

and strain-gradient current contributions in selected other solids.

A. Flexoelectricity

According to a recent Review article23, direct flexoelectric constants µ are about 0.001 −

0.01 nC/m in 2D materials but there is substantial variation among the different 2D materi-

als (in MoS2 the value is as high as 0.03 nC/m). In bulk GaAs, the flexoelectric coefficient is
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5.1 · 10−12 C/m (Ref. 24), i.e., of the same order of magnitude as for the 2D materials. Therefore,

at frequencies near or below 10 MHz, flexoelectricity plays a reduced role. Yet, at frequencies near

or above 1− 10 GHz, by virtue of the k4 dependence of the flexoelectric term in the numerator of

the dispersion equation, flexoelectricity provides a dominant contribution in most solids.

B. Electrostriction

The importance of electrostrictive effects is estimated as follows. According to Ref. 25, elec-

trostrictive constants (M = g
c
) are very small, about 1 · 10−18 m2/V2 in GaN and 10−21 m2/V2

in silica26. For the 2D material graphene oxide the electrostriction coefficient is only M =

−3 · 10−23 m2/V2 (Ref. 27). Indeed, DFT calculations13 give much smaller electrostriction co-

efficients for GaN and similar materials closer to the values reported by Ref. 26 for silica. Hence,

the role of electrostriction is expected to be significantly smaller in typical bulk and 2D solids

as compared to BaTiO3 at dc electric fields of less than or near several MV/m. Note, however,

that at electric fields near or above 0.1 GV/m, electrostriction will play a significant role in most

materials. Such strong electric fields are realized in many nanostructure device applications28,29.

C. Strain-gradient current contribution

Let us attempt to determine the importance of the strain-gradient term in Eq. (21). By use of

Eq. (23),

u1 =
εE1 −D1

ike+ νk2 + 2ikgE0

, (34)

Eq. (21) becomes(
ωk − ik3fDn + k2µcfE0 −

µcn0Bk
2

e− iνk + 2gE0

)
D1 =

(
qµcn0ik −

µcn0Bk
2ε

e− iνk + 2gE0

)
E1

= qµcn0ik

(
1 +

ikBε

q (e− iνk + 2gE0)

)
E1. (35)

For GaAs14 with B ∼ 5 eV, ε ∼ 11ε0, e ∼ −0.16 C/m2, µc = 0.85 m2/s/V, n0 ∼ 2 · 1012 m−3,

ω/(2π) ∼ 15 MHz, and a sound speed about 4 · 103 m/s, we have |kBε
qe
| ∼ 1 · 10−4 [SI], which is

negligibly small compared to 1 on the right-handside. Similarly, on the left-handside, comparing

ωk ∼ 1 ·108×104 = 1012 [SI] and |µcn0Bk2

e
| ∼ 1×2 ·1012×5×108/0.16 ∼ 103 [SI] so strain-gradient
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current contributions are typically negligible. The above assertion that the strain-gradient current

contribution can be neglected also holds in the case of BaTiO3.

V. CONCLUSIONS

An quantitative discussion of the combined effects of piezoelectricity, flexoelectricity, and elec-

trostriction in solids for the acoustic absorption coefficient was presented. While piezoelectricity

occurs in non-centrosymmetric materials only, flexoelectricity and electrostriction exist in all mate-

rials. For bulk BaTiO3, in the presence of a dc electric field in the order of MV/m, electrostriction

is the most important isolated contribution to absorption. At lower electric fields, in the order

of kV/m or below, piezoelectricity provides the dominant contribution. It is demonstrated that

net acoustic gain is introduced at sufficiently high dc electric fields, when the acoustic Cherenkov

condition is fulfilled, and the magnitude of the net absorption/gain coefficient is governed by domi-

nant cross coupling effects between electrostriction, piezoelectricity, and flexoelectricity. The cross

coupling contribution leads to absorption/gain coefficients about five orders of magnitude higher

than the isolated contributions from electrostriction, piezoelectricity, and flexoelectricity. Exam-

ples were presented for BaTiO3. Estimation of the importance of flexoelectricity, electrostriction,

and strain-gradient effects was also discussed for other typical bulk and 2D semiconductors.
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