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Abstract

The Electromagnetic (EM) spectrum is well regulated by frequency assignment

authorities, national regulatory agencies and the International Communication Union

(ITU). Nowadays more and more devices such as mobile phones and Internet-of-Things

(IoT) sensors make use of wireless communication. Additionally we need a more efficient

use and a better understanding of the EM space to allocate and manage efficiently

all communications. Governments and telecommunication operators perform spectrum

measurements using expensive and bulky equipments scheduling very specific and limited

spectrum campaigns. However, this approach does not scale as it can not allow to

widely scan and analyze the spectrum 24/7 in real time due to the high cost of the

large deployment. A pervasive deployment of spectrum sensors is required to solve this

problem, allowing to monitor and analyze the EM radio waves in real time, across all

possible frequencies, and physical locations.

This thesis presents ElectroSense, a crowdsourcing and collaborative system that

enables large scale deployments using Internet-of-Things (IoT) spectrum sensors to collect

EM spectrum data which is analyzed in a big data infrastructure. The ElectroSense

platform seeks a more efficient, safe and reliable real-time monitoring of the EM space by

improving the accessibility and the democratization of spectrum data for the scientific

community, stakeholders and the general public. In this work, we first present the

ElectroSense architecture, and the design challenges that must be faced to attract a large

community of users and all potential stakeholders. It is envisioned that a large number of

sensors deployed in ElectroSense will be at affordable cost, supported by more powerful

spectrum sensors when possible. Although low-cost Radio Frequency (RF) sensors have an

acceptable performance for measuring the EM spectrum, they present several drawbacks

(e.g. frequency range, Analog-to-Digital Converter (ADC), maximum sampling rate, etc.)

that can negatively affect the quality of collected spectrum data as well as the applications

of interest for the community.

In order to counteract the above-mentioned limitations, we propose to exploit the fact

that a dense network of spectrum sensors will be in range of the same transmitter(s).

We envision to exploit this idea to enable smart collaborative algorithms among IoT

RF sensors. In this thesis we identify the main research challenges to enable smart

xiii
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collaborative algorithms among low-cost RF sensors. We explore different crowdsourcing

and collaborative scenarios where low-cost spectrum sensors work together in a distributed

manner. First, we propose a fast and precise frequency offset estimation method for low-

cost spectrum receivers that makes use of Long Term Evolution (LTE) signals broadcasted

by the base stations. Second, we propose a novel, fast and precise Time-of-Arrival

(ToA) estimation method for aircraft signals using low-cost IoT spectrum sensors that

can achieve sub-nanosecond precision. Third, we propose a collaborative time division

approach among sensors for sensing the spectrum in order to reduce the network uplink

bandwidth for each spectrum sensor. By last, we present a methodology to enable the

signal reconstruction in the backend. By multiplexing in frequency a certain number of

non-coherent low-cost spectrum sensors, we are able to cover a signal bandwidth that

would not otherwise be possible using a single receiver.

At the time of writing we are the first looking at the problem of collaborative

signal reconstruction and decoding using In-phase & Quadrature (I/Q) data received

from low-cost RF sensors. Our results reported in this thesis and obtained from the

experiments made in real scenarios, suggest that it is feasible to enable collaborative

spectrum monitoring strategies and signal decoding using commodity hardware as RF

sensing sensors.
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“The secret of getting ahead is getting started.”

Mark Twain (1864 – 1910)

1 Introduction

The Radio Frequency (RF) Electromagnetic (EM) spectrum is a scarce, precious and

widely used resource for many different tasks and purposes in our society. For instance,

the communication between the robots on Mars and the Earth is performed over the

radio EM spectrum by sending radio waves. Location systems such as Global Positioning

System (GPS), that is extensively used in aircraft, cars or smartphones, make use of the

radio EM waves. Public broadcast transmissions such as radio/television or even everyday

devices as Bluetooth peripherals, wearables and surveillance cameras use the radio EM

waves to transmit and exchange information. Mobile data traffic, that increases every day,

normally uses WiFi and Long Term Evolution (LTE) wireless communication technologies

to provide content to the users. In other words, EM spectrum is used everywhere.

In the 1980s, the only concern for spectrum management was mostly about

radio/television broadcasting and military communications. This is rapidly changing

today. We are in the age of the Internet-of-Things (IoT) where more and more devices

are connected to the Internet sending and exchanging information using the radio waves.

We expect to see more than 20 billion inter-connected devices by 2020 [12] and more than

75 billion by 2025 [13]. All of them will make use of the EM spectrum by using different

RF technologies such as WiFi, LTE, 5G, Bluetooth, Long-Range (LoRa), SigFox, etc. in

order to be connected to the Internet and send information. In addition, mobile phones

are becoming the main device used for multimedia content consumption which wireless

data usage has increased very quickly. These mobile devices will take advantage of the

fifth generation (5G) of cellular mobile communication, which is expected to provide high

wireless network capacity, up to 100 times more than actual networks [14]. As a result,

RF spectrum is becoming a limited resource and its use is fragmented, bursty and very

diverse. Monitoring the spectrum becomes a complex task, as it requires a very dense

information in frequency, time and space. Radio communications are and will remain

essential for society, yet the traditional approaches for monitoring the spectrum use very

expensive and bulky equipment. The latter disables the possibility to deploy large-scale

deployments running 24/7 to get a better understanding of the EM space. A new spectrum

3
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monitoring paradigm is needed to sense the EM waves, keep safe radio communications

and make sure that RF technologies are regulation compliance.

Traditionally the governmental agencies and international organizations (such as the

International Communication Unit, ITU) are responsible for regulating the usage of the

radio EM spectrum. Each country creates and maintains its own national frequency

allocation plan which describes how the EM spectrum shall be used [15]. Despite

the EM spectrum is well-organized in terms of frequency allocation, technologies and

organizations which can use it, its actual usage in different geographical places and

times is not well-known at all. Today’s spectrum measurements are mainly performed

by governmental agencies and telecommunication companies which drive around using

expensive and specialized hardware [16, 17]. This spectrum monitoring approach does

not allow to create a well-scaled infrastructure to cover the pervasive deployment of

wireless networks. Therefore the research community has recently focused on low-cost

Software Defined Radio (SDR) for sensing the spectrum, such as the RTL-SDR [18]. A

large-scale RF spectrum monitoring system in real time is desirable for a multitude of

practical reasons. Storing spectrum data at large scale can provide a historical spectrum

database that allows to get a better understanding and knowledge about how the EM

spectrum is used. Analyzing the EM spectrum in real-time at large-scale and 24/7 is

challenging, but can offer a wide-range of possibilities to build smart applications to

detect anomalies or non-authorized transmitters in specific bands [19]. The upcoming

smart and agile radios, cognitive radios [20, 21] could use spectrum data knowledge to

detect what spectral resources are unused and exploit them to provide high throughput

and better services. From the cyber-security point of view, it is important to monitor the

spectrum and protect it from attacks whose aim is to destabilize the communications in

a country and negatively impact its economical opportunities.

In the recent years, the idea of distributed spectrum monitoring has gained attention

to monitor and capture the real-time usage of the RF spectrum at large geographical

scale. Several platforms use expensive and specialized hardware for sensing the

spectrum at large scale such as DARPA’s Spectrum Challenge [22] and Microsoft

Spectrum Observatory [16]. Other platforms such as Google Spectrum Database [23],

BlueHorizon [24] or KiwiSDR [25] are application oriented (e.g. TV white spaces, amateur

radio 0-30 MHz) and cannot be used for other purposes. Other works such as SpecNet [17],

SpectrumSense [26] or RadioHound [27] propose the use of commodity hardware [28] for

sensing the spectrum to analyze its usage, transmitter coverage estimation, etc. However,

the previous works make use of expensive equipment to monitor the spectrum, and they

are all limited to applications in which power spectrum measurements or spectrum usage

are sufficient.
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In this thesis we present ElectroSense, a crowdsourcing and large-scale system for

monitoring and decoding the EM spectrum in real-time using a dense network of IoT

spectrum sensors. In our vision, most of these IoT RF sensors will run on low-cost

embedded boards, as they are affordable for most of users. In order to counteract

the limitations of low-cost spectrum sensors, we propose to exploit the fact that a

dense network of spectrum sensors will be in range of the same transmitter(s). These

IoT spectrum sensors collect the spectrum information that is sent to the backend in

a coordinated way to enable new collaborative applications as transmitter localization,

anomaly detection, collaborative signal decoding, etc.

We envision a wide deployment of small-factor and low-cost sensors across cities

monitoring and analyzing the spectrum in real time and reporting valuable information

for users, telecommunication operators, regulators, and governments. This new paradigm

for monitoring the spectrum presents new research challenges, which are presented in the

next section.

1.1. Challenges

Monitoring the spectrum at large-scale, in real-time and making use of the

crowdsourcing approach is challenging for several reasons ranging from the use of non-

expensive and inaccurate hardware to fuse and reconstruct spectrum information in the

backend. More details about the research challenges of this work are described below.

Real-time spectrum acquisition with low-cost IoT RF sensors: Commodity and

low-cost hardware has much more constraints in terms of computational calculation,

memory and their RF front-end are limited in terms of sampling rate, frequency

bandwidth, dynamic range which restrict the effectiveness of a spectrum monitoring

system.

The need for a fine time and frequency synchronization: A time/frequency fine

synchronization is required in order to use In-phase & Quadrature (I/Q) data from

multiple RF sensors for collaborative applications. This is not trivial to achieve

with low-cost spectrum sensors that are distributively deployed and connected over

the Internet.

Control of the uplink network bandwidth of the sensors: In a crowd-sourced

platform, the participation of the users is essential. Users may deploy the sensors

at a location with a limited network bandwidth. The collection of I/Q (raw)

spectrum information imposes a very large volume of data that most of the Internet

connections may not handle properly. Smart algorithms and techniques are required

to alleviate the network capacity needed for collaborative applications, and balance

the uplink network load among RF sensors.
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Spectrum data fusion using low-cost IoT RF sensors: A large-scale deployment

of sensors is an essential requirement for investigating collaborative strategies among

them. Since the low-cost spectrum sensing devices have important hardware and

computational limitations, fusing and reconstructing signals in the backend using

spectrum data received from different RF sensors becomes challenging.

1.2. Contributions

The main contributions of this thesis have been published in 10 publications, of which

1 has been published in IEEE Communication Magazine (indexed in Journal Citation

Reports (JCR)), and 1 is submitted to IEEE Communication Magazine and currently in

minor revision. Other 3 publications have been published in tier-1 conferences (IEEE

INFOCOM and ACM/IEEE IPSN ) according to CORE20141 or ERA20102 datasets, 2

more publications have been published in workshops (WiNTECH and TIWDC ) and also

3 demo papers have been presented in major conferences. In details,

Contribution 1. Large-scale Spectrum Measurement Network.

A large-scale framework for collaborative spectrum measurement has been investigated [4].

Crowd-sourcing networks, low-cost sensors and large-scale deployments are necessary

conditions to enable the massive and worldwide spectrum monitoring in real-time.

ElectroSense also allows users to remotely decode specific parts of the radio spectrum

using a peer-to-peer communication system [7], widely used in well known applications

such as Google Hangout and Skype. This spectrum sensing framework has been developed

together with researchers and engineers from KU Leuven University (Belgium), Sero

Systems (Germany) and armasuisse (Switzerland). The work made and explained in

this thesis is focused on the full system design and the implementation of the spectrum

sensor side.

Roberto Calvo-Palomino, Héctor Cordobés, Markus Engel, Markus

Fuchs, Pratiksha Jain, Marc Liechti, Sreeraj Rajendran, Matthias Schäfer,

Bertold Van den Bergh, Sofie Pollin, Domenico Giustiniano, Vincent Lenders.

ElectroSense+: Empowering People to Decode the Radio Spectrum [Submitted to

IEEE Communication Magazine, Minor Revision].

Sreeraj Rajendran, Roberto Calvo-Palomino, Markus Fuchs, Bertold Van

den Bergh, Héctor Cordobés de la Calle, Domenico Giustiniano, Sofie Pollin,

Vincent Lenders. ElectroSense: Open and Big Spectrum Data. Published in IEEE

Communications Magazine, 56 (1). pp. 210-217. ISSN 0163-6804.

1http://portal.core.edu.au/conf-ranks/
2http://www.conferenceranks.com/
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Roberto Calvo-Palomino, Domenico Giustiniano, Vincent Lenders.

Measuring Spectrum Similarity in Distributed Radio Monitoring Systems.

Published in Tyrrhenian International Workshop on Digital Communications

(TIWDC 2017), 18-20 September 2017, Mondello (Palermo), Italy.

Contribution 2. Crowd-sourced collaborative Time-of-Arrival estimator.

A collaborative, efficient and precise Time-of-Arrival (ToA) method estimator for aircraft

signals has been developed [5] using low-cost SDR receivers. Having a nanosecond-

precision ToA estimator allows to improve position estimation problems based on input

ToA measurements [29].

Roberto Calvo-Palomino, Fabio Ricciato, Blaz Repas, Domenico

Giustiniano, Vincent Lenders. Nanosecond-precision Time-of-Arrival Estimation for

Aircraft Signals with low-cost SDR Receivers. Published in the 17th ACM/IEEE

International Conference on Information Processing in Sensor Networks (IPSN

2018), 11-13 April 2018, Porto, Portugal.

Contribution 3. A precise and fast frequency offset estimation for low-cost SDR

platform.

An opportunistic frequency offset estimation has been developed [3] using LTE signals

broadcasted by the base stations. One important performance aspect of the low-cost

SDR receivers used in this work is related to the accuracy and stability of the internal

local oscillator. Being able to precisely estimate the frequency offset of the internal clock

becomes essential to enable collaborative methods and algorithms.

Roberto Calvo-Palomino, Fabio Ricciato, Domenico Giustiniano, Vincent

Lenders. LTESS-track: A Precise and Fast Frequency Offset Estimation for low-

cost SDR Platforms. Published in the 11th ACM Workshop on Wireless Network

Testbeds, Experimental evaluation CHaracterization (ACM WiNTECH 2017), 16-

20 October 2017, Snowbird, Utah, USA.

Contribution 4. Collaborative narrowband spectrum data for saving network bandwidth

in the communication from the sensors.

We have developed [1] a collaborative and distributed time-multiplexing mechanism to

sample the spectrum in a coordinated fashion using several IoT spectrum sensors, and

we have proposed techniques to identify and overcome errors in the timing information

provided by sensors. The collaborative approach among low-cost SDR receivers alleviates

the network bandwidth load used by each sensor by exploiting the similarity in the

spectrum for nodes in the same coverage area.
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Roberto Calvo-Palomino, Domenico Giustiniano, Vincent Lenders, Aymen

Fakhreddine. Crowdsourcing Spectrum Data Decoding. Published in the 36th IEEE

International Conference on Computer Communications (IEEE INFOCOM 2017),

1-4 May 2017, Atlanta, GA, USA.

Contribution 5. Increasing signal bandwidth by fusing spectrum information from

different non-coherent receivers.

The use of low-cost IoT RF sensors to have some important restrictions due to their low

quality components. One of the major drawbacks is their limited sampling rate, which

does not allow to decode wideband signals. We have proposed a methodology [6] to enable

the signal reconstruction in the backend by multiplexing in frequency a certain number of

non-coherent receivers (deployed in an area in range of the wideband signal transmitter),

in order to decode a larger signal bandwidth that would not otherwise be possible using

a single receiver. As such, it is equivalent to the reception of the signal by a high-end

receiver.

Roberto Calvo-Palomino, Héctor Cordobés de la Calle, Fabio Ricciato,

Domenico Giustiniano, Vincent Lenders. Collaborative Wideband Signal Decoding

using Non-coherent Receivers. Published in the 18th ACM/IEEE International

Conference on Information Processing in Sensor Networks (IPSN 2019), in

conjunction with CPS-IoT WEEK 2019, 14-16 April 2019, Montreal, Canada.

1.2.1. Software released as Open Source

Several outcomes of this research work are pieces of software related with the

ElectroSense architecture, algorithms and tools for SDR receivers. Publishing and

releasing the software as open source allows to the community, researchers and

practitioners to first, understand better the proposed solution and second, to make

possible the replication and validation of the experiments. Table 1.1 shows the software

released as open source along this thesis.

Table 1.1: Software released as Open Source.

Name License URL Paper

es-sensor GPLv3 github.com/electrosense/es-sensor [4, 7]

LTESS-Track GPLv3 github.com/electrosense/LTESS-track [3]

dump1090-hp GPLv3 github.com/openskynetwork/dump1090-hptoa [5]

Mode S decoder GPLv3 github.com/openskynetwork/modes-uplink-decoder [6]

github.com/electrosense/es-sensor
github.com/electrosense/LTESS-track
github.com/openskynetwork/dump1090-hptoa
github.com/openskynetwork/modes-uplink-decoder
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1.3. Outline of the thesis

The rest of the thesis is organized in different chapters detailing the contributions

aforementioned in the previous subsection.

The ElectroSense framework is presented in detail in Chapter 2 where we propose a

crowdsourcing approach together with low-cost SDR receivers to create a collaborative,

dense, and distributed spectrum monitoring system that enables novel applications using

RF spectrum data. Chapter 3 describes how to empower people to decode the radio

spectrum by allowing them to remotely decode specific parts of the radio spectrum. In

Chapter 4 we present a fast and precise frequency offset estimator for SDR platforms

which uses LTE signals to characterize the inaccuracies of SDR receivers.

In Chapter 5 we present one of the first collaborative scenarios using the ElectroSense

network, a collaborative ToA estimation for aircraft signals is proposed using low-cost

IoT spectrum sensors. We propose two novel methods that provide superior results for

real-world aircraft signals than the state-of-the-art.

Chapter 6 describes the methodology proposed for sampling the spectrum

collaboratively by multiplexing in time several low-cost sensors. Different techniques have

been studied and proposed to solve the time synchronization required among spectrum

sensors using embedded hardware with low accurate oscillators and distributively

connected over the Internet. In Chapter 7 we propose a solution for one of the major

limitations of the low-cost SDR receivers, the signal bandwidth. Our approach is based

on the idea of collecting spectrum information by different non-coherent receivers in a

collaborative manner, and then reconstruct the original signal in the backend, regardless

of the fact that its bandwidth is higher (e.g. twice) than the bandwidth of each SDR

receiver.

Finally, Chapter 8 draws the most important conclusions of this research work.





Part II

ElectroSense: Large-Scale Spectrum

Measurement Network

Over the past years, we have seen a tremendous increase in mobile data usage. To

meet the data demands, more Radio Frequency (RF) bands have been used, cells become

smaller, data rates increase and more users accommodated. In addition, novel technologies

have being proposed that can coexist with legacy technology and waveforms, and short

and long range Internet-of-Things (IoT) communications increase the variety of physical

and medium access protocols connected to the Internet. As a consequence, RF spectrum

use is fragmented and very diverse. Monitoring the spectrum is a complex task, as it

requires a very dense sampling in time, frequency and space, resulting in a radio spectrum

data deluge. Nevertheless, with the increasing spectrum usage complexity, knowledge

and understanding of the spectrum usage patterns is becoming more and more critical to

ensure continued effective use of this scarce resource. A large-scale spectrum measurement

network is required since the RF signals using the Electromagnetic (EM) spectrum could

vary considerably in nearby locations (due to interference, fading, shadowing, multi-path,

etc)

ElectroSense is a crowdsourcing network that measures and analyzes the EM spectrum

in real time using small-factor and low-cost IoT RF sensors, yet also supporting more

expensive spectrum sensors such as Ettus boards. In this part, ElectroSense network and

its capabilities are introduced in detail. In Chapter 2 we present the main architecture of

ElectroSense that allows to collect spectrum information from the sensors and send it to

the backend. Several algorithms are executed in the backend on the collected spectrum

information providing data already processed to the user. In Chapter 3 we describe how

users can remotely control IoT spectrum sensors of the ElectroSense network to decode

specific parts of the radio spectrum (broadcast and control signals) in real time through

the Internet. We also propose the use of a virtual accounting system to first incentivize

users to host ElectroSense sensors and second, regulate the access to the sensors in a fair

manner. Finally, in Chapter 4 we propose a fast and precise frequency offset estimation

(integrated in ElectroSense), for Software Defined Radio (SDR) platforms that makes use

of Long Term Evolution (LTE) signals as a reference to determine the inaccuracies of the

low-cost SDR receivers.
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“If you think that the internet has changed your life, think again.

The Internet of Things is about to change it all over again!.”

Brendan O’Brien (Aria Systems)

2 Open and Big Spectrum Data
with IoT Sensors

Spectrum resource monitoring is important for end users, operators, spectrum

regulatory organisms and also military applications. Each use case has its own specific

needs and challenges. The grand challenge is how to design a cost-effective solution that

meets the requirements of all potential end users. Users might be interested in electrosmog

or optimization of their indoor WiFi network. Regulatory organisms might be keen on

enforcing spectrum regulation. Operators might be concerned about coverage maps over

time for optimizing their cell networks or refarming of their frequency bands. Military

applications might be the most challenging, requiring the detection and positioning

of any signal hidden on purpose. Novel operators might be interested in Internet-of-

Things (IoT) cases, such as cooperative detection of signals transmitted by low-cost low-

power transceivers. The key aspect of this chapter is to design a spectrum sensing network

that meets all the aforementioned requirements and can be deployed quickly by synergistic

cooperation between all stakeholders.

Even though a majority of wireless researchers, industries and spectral regulators are

keen to develop a worldwide spectrum monitoring infrastructure, several attempts, the

research community has not succeeded in deploying one. The multidisciplinary nature

of the spectrum monitoring solution is one of the main challenges that prevents the

realization of such a system, which in turn requires proper integration of new disruptive

technologies. The infrastructure should flexibly address the variety and cost of the used

sensors, the need for large spectrum data management and sensor reliability, and the

security and privacy concerns, which can also target a wide variety of the use cases

mentioned before.

A few spectrum monitoring solutions are proposed in the literature. Some examples

include, Microsoft Spectrum Observatory [16] that allows to sense the spectrum using

expensive sensors, Google spectrum [23] for measurements on TV white-spaces and the

IBM Horizon [24] project that proposed a generic decentralized architecture to share IoT

data. While Google Spectrum and Blue Horizon fail to cover a large part of the spectrum

as they are application specific deployments, Microsoft observatory on the other hand fails

13
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Figure 2.1: High-level overview of the ElectroSense network: Low-cost sensors collect
spectrum information which are sent to the ElectroSense backend. Different algorithms
are run on the collected information in the backend and the results of these algorithms
are provided to the users as a service through an open API. Users can develop their own
applications from the spectrum information retrieved using the API.

to enable a large scale sensor deployment mainly due to the cost of the sensing stations.

We introduce and design ElectroSense. ElectroSense follows the crowdsourcing

paradigm to collect and analyze spectrum data using low-cost spectrum sensors as

main device for sensing the spectrum. The main goal of this initiative, as shown in

Figure 2.1, is to sense the whole spectrum in different regions of the world and provide

the processed spectrum data to any user interested to acquire a deeper knowledge of the

spectrum usage, enabling applications as the ones mentioned above [1, 30]. Worldwide

deployments are plausible when the crowdsourcing paradigm is combined with low-cost

sensors. ElectroSense sensors are designed using inexpensive and easily accessible Software

Defined Radio (SDR) front-ends and embedded platforms like Raspberry Pi [31], to

reduce the cost that spectrum data contributors have to bear. A low-cost down-converter
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design1 is also provided to extend the range of the low-end SDR platforms in two different

frequency ranges: from 0 to 24 MHz and from 1.7 GHz to 6 GHz. Even though the aim

of the ElectroSense project is to use low-cost hardware, high-end SDR devices can also

be part of the network. Open source software modules for low- and high-end sensors are

provided by ElectroSense for easy setup.

Crowdsourcing initiatives have been successfully applied in other sensing contexts,

for example, distributed sensor networks collecting information about temperature, air

quality, pollution or air traffic are now in widespread use today. Yet, the radio spectrum

data collection poses novel challenges because of the sheer volume of information in the

spectrum, which is several orders of magnitude higher than the data collected in typical

sensing contexts as mentioned above. The amount of data produced by a single sensor

typically varies between 50 Kb/s and 50 Mb/s depending on the sensor platform and

configuration. Storing spectrum data received from each sensor can swiftly get any server

machine out of storage space, for instance data from 60 sensors for a single month needs a

storage space of 1 terabyte in 50 Kb/s mode. In order to handle this large volume of data

in the backend and extract meaningful information over the entire spectrum, a flexible big

data architecture is designed. This spectrum management architecture is responsible for

the sensors’ control, data storage, and algorithm deployment in the back-end for further

processing.

ElectroSense also includes a complete framework for identifying, locating and

deploying sensors securely through a consistent registration process and remote control

framework of the sensors. The sensed spectrum data from different sensors can be

retrieved from the ElectroSense backend using an open API [32] over the Internet. Data

privacy concerns are addressed by enabling public, private and restricted data access

permissions which restrict user data access with suitable time resolutions. Readily

available spectrum aggregation tools in the back-end help the network users, to do easy

spectrum data analysis as an additional incentive. The data access permissions and other

applications are detailed in Section 2.1 and Section 2.3 of this chapter.

The rest of the chapter is organized as follows. A brief overview of the service model

and the open API are presented in Section 2.1. Section 2.2 defines ElectroSense system

design considerations and the proposed architecture. Section 2.3 details the spectrum

data analysis tools and applications. Finally, conclusions and future work are presented

in Section 2.4.

1https://github.com/electrosense/hardware
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2.1. Spectrum Data as a Service

2.1.1. Service Model

In order to make the most out of the data, we introduce an Open Spectrum Data

as a Service (OSDaaS) model in which the spectrum data can be used by several

applications, each of them with unique requirements. This approach differs from a

classical “Infrastructure as a Service” model used in other contexts where different

applications cannot run at the same time due to conflicting requirements. The spectrum

data inherently changes over time and thus allocating the node to a specific application

would reduce the information and the amount of users interested in the same spectrum

data. Therefore, the current framework prevents the users from launching their own

measurement campaigns as they only need to access gathered data from one of the two

pipelines of the sensor: Power Spectral Density (PSD) and In-phase & Quadrature (I/Q).

In contrast, the flexibility of the OSDaaS model is an incentive to join and use the network

and an opportunity for a wide engagement and participation of citizens. In addition, the

spectrum data gathered in the past can be re-processed with a new application in mind

or new spectrum data can be compared with older spectrum data. Users can join the

ElectroSense network easily by adding their own sensor through the web interface [33].

Specifics about the sensor such as antenna details and sensor location can be specified

during the registration process. The sensor status and location are readily visible in a

global sensor map once it is registered.

2.1.2. Application Programming Interface (API)

Alongside with data processing, it is important to provide the community with easy

access to the data. An open API serves this purpose for bulk or streaming data retrieval.

The API also allows access to the algorithms’ output running in the backend, for example

results of the modulation classification algorithms or the anomaly detector. ElectroSense

users can retrieve magnitude data along with the sensor details using the API. The

API allows two data retrieval modes: aggregated and raw Fast Fourier Transform (FFT)

data. Aggregated query type allows the user to request for a bulk of data with specified

frequency and time resolutions, after applying a predefined aggregation function such as

averaging or max-value. Raw requests permit to retrieve magnitude FFT data acquired by

a sensor as such without any modifications. Raw FFT data from a sensor can be accessed

only by its owner. In addition, as shown in Figure 2.3, there is an I/Q data pipeline which

is enabled on demand for data testing or for algorithms that work on I/Q data in the

backend. The I/Q data from a sensor is only directly available to its owner through the

API, but conclusions from algorithms related to I/Q data will be made available to all

users. Furthermore, real-time spectrum monitoring is possible through a streaming API
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in the backend. A few examples for data retrieval can be found in the repository2.

2.1.3. Security and Privacy

Wideband spectrum monitoring on a large scale typically raises critical security and

privacy concerns. Security concerns include secure data transmissions from the sensor and

proper sensor identification. Data privacy concerns in terms of data access restrictions

should also be addressed. In addition, capture and storage of I/Q data, which can be

decoded to reveal content, is not advisable especially in the military bands. ElectroSense’s

design addresses sensor identification via a proper registration process. The data from

ElectroSense sensors are sent over secure Transport Layer Security (TLS) channels which

guarantees data privacy and integrity and prevents the data getting modified by an

attacker. The I/Q pipeline is only accessible by the ElectroSense backend and the data

is deleted once the backend algorithms are done processing it. In addition, I/Q data is

only made available to the users for their own sensors through the API. Furthermore, the

highest time and frequency resolution that users can get from other sensors over the API

are limited to 60 seconds and 100 kHz respectively. ElectroSense also allows to obfuscate

sensor’s publicly displayed location within a range of a few kilometers in the sensor map,

thus protecting users’ location privacy.

2.2. System Architecture

ElectroSense was designed with a clear vision in mind that translates into a list of

design goals as described below. We present the actual architecture chosen to meet these

requirements and give a more detailed explanation of its components.

2.2.1. Design Goals and ElectroSense Vision

ElectroSense is a crowdsourcing approach towards spectrum monitoring where

volunteers play a central role. To keep the entry barrier as low as possible, large-scale

deployment can only be achieved with low-cost IoT sensors. The backend should be

flexible, to enable wide-band monitoring from sweeping low-end sensors, to real-time

scanning with more capable SDR platforms or spectrum analyzers. In addition, the

backend should be horizontally scalable, enabling to grow the network continuously.

Scalability introduces even more complexity into the system, which makes it prone to

failures. As such, the architecture must also be fault-tolerant. Finally, the backend should

be able to process a large amount of data from any sensor with low latency.

With its main goal to serve researchers as a platform for spectrum analysis, the

system should have a central component to control the sensors for specific measurement

2https://github.com/electrosense/api-examples
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(a) IoT sensor: Raspberry Pi and RTL-SDR (b) RF converter to enable 0-6 GHz range.

Figure 2.2: ElectroSense IoT spectrum sensor.

campaigns. Some applications might need to give immediate response while others

generate insights by inspecting the data set as a whole. Following these requirements, the

system should support low-latency stream processing and large-scale batch analyses at the

same time.

In order to address these goals and requirements, the ElectroSense architecture

consists of three main components: (i) the sensors deployed by users collecting spectrum

measurements, (ii) a centralized controller infrastructure to interact with the sensors and

to administrate measurement campaigns and (iii) the backend which is responsible for

collecting data from all the sensors and provide insights by applying algorithms. The

following subsections describe these components in detail.

2.2.2. IoT Spectrum Sensor

The spectrum sensing nodes used in the ElectroSense network consist of small-sized,

low-cost, software-defined embedded computing devices connected to a simplistic Radio

Frequency (RF) front-end and a general purpose antenna [34] as shown in Figure 2.2(a).

The sensors can measure the spectrum ranging from 0 MHz up to 6 GHz using an optional

down-converter shown in Figure 2.2(b). Occasionally sensors may include an optional low-

cost Global Positioning System (GPS) device to synchronize the time among them which

in turn helps in enabling collaborative spectrum scanning and detection algorithms. For

instance, in Chapter 6 the feasibility to recombine signals collaboratively from different

sensors, using GPS as a reference clock, is analyzed in detail.

Two signal pre-processing pipelines are enabled on the sensor as illustrated in

Figure 2.3. Each sensor can be configured in order to work with both PSD or I/Q pipeline.

When the sensor is configured in the PSD mode, the spectrum sensed by the RF front-

end is converted to the frequency domain using a FFT. In this mode only the averaged
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Figure 2.3: Spectrum sensor architecture: Sensor software contains two different pipelines
for retrieving spectrum information.

squared magnitude FFTs are sent to the backend. Depending on the averaging and

compression factors, the produced data is in the order of 50-100 Kb/s. This pipeline saves

bandwidth and storage over the I/Q pipeline and thus contributes to the cost-efficiency

of the whole network. Notice that we use advance spectrum estimation techniques such

as Welch’s method [35] to reduce the noise in the power spectrum estimations. The PSD

mode aids spectrum data retrieval using a restricted network bandwidth which enables

applications where phase information is not crucial to analyze data in terms of signal power

(Section 2.3.2). In addition, wide-band scanning techniques are applied that prioritize

frequency bands of bursty activities over bands which are stationary [34] to overcome the

hardware-limitations of low-cost radios, for instance the limited sampling bandwidth of

the low-end Analog-to-Digital Converters (ADCs) (e.g 2.4 MHz for RTL-SDR).

For applications which require phase and non-averaged information, the sensor

implements an I/Q pipeline. The I/Q mode retrieves raw measurements (I/Q samples)

from the RF front-end that are then compressed and sent to the backend. This pipeline

easily produces up to 50 Mb/s and hence the data is only stored temporarily in the

backend.

The software that runs in the ElectroSense spectrum sensors is released as open

source3. In addition to this, a GNU Radio based software module, gr-electrosense4, is

provided to allow high-end SDR users to be a part of the ElectroSense network (see

Appendix B).

The work presented in this thesis considers uncalibrated SDR receivers for all spectrum

data collected and analyzed by both PSD and I/Q pipelines. SDR receiver calibration is

out of the scope of this thesis.

3https://github.com/electrosense/es-sensor
4https://github.com/electrosense/gr-electrosensexamplese
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2.2.3. Controller

Apart from continuous wide-band monitoring, it is interesting to have a more detailed

look at particular parts of the frequency spectrum. This is accomplished with the help of

a command-and-control layer as depicted in Figure 2.4. In order to start and control such

in-depth measurements, the controller communicates with sensors directly and influences

their scanning strategy, some examples include, the frequency range the sensor should

scan, the sensor frequency hopping strategy or the sensor sampling rate.

The core of the controller infrastructure is a Message Queue Telemetry Transport

(MQTT) broker system which consists of a set of several independent machines forming

a cluster. This ensures scalability and fault-tolerance in case of a hardware failure.

MQTT is a publish-subscribe-based messaging protocol and has a wide adoption in IoT

applications [36]. The brokers have a permanent connection to the sensors over secure TLS

channels as well as to a machine called master controller. The master offers an interface

where administrators can start and stop measurement campaigns. It is responsible for

executing these commands on different sensors using the MQTT connection. Spectrum

measurements collected by the sensors are passed to the backend over secure TLS channels

as shown in Figure 2.4. The control layer is a part of the ElectroSense backend and works

in a closed loop with the data processing path for easy response validation.

2.2.4. Backend

All data collected by the spectrum sensors is sent to the backend. In order to fulfill the

design goals, in particular scalability, the system is built upon a Lambda architecture [37]

with exclusively horizontally scalable system components. The Lambda architecture is a

three-layered architecture consisting of batch, speed and serving layer. An overview of the

whole backend architecture can be found in Figure 2.4. The batch layer is responsible

for executing bulk analysis tasks on large data sets. These tasks, mostly involve complex

long-running algorithms, whose results might take several minutes to hours to complete.

To overcome this gap and, furthermore, provide the capability for real-time monitoring

with sub-second delay, there is the need for a speed layer. It is possible to run different

or identical applications on each of these layers simultaneously.

In addition, the ElectroSense backend has an ingestion layer to support high

availability. It consists of a distributed message queue that stores multiple replicas of

each incoming measurement. Implementation and functionality of each layer is detailed

in the subsequent sections.

2.2.4.1. Ingestion Layer

Sensor measurements eventually reach the collector as shown in Figure 2.4. The

collector inserts received data as messages into a distributed queuing system. Using a
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Figure 2.4: Sensors are managed by the control layer which sets the scanning parameters
for a specific campaign. The configured sensors send the spectrum information to the

backend, where the data is processed and distributed over the API to the users.
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distributed queuing system, we decouple data ingestion from processing in the batch and

speed layer, allowing an asynchronous mode of operation. Furthermore, the ingestion

layer serves as an intermediate buffer for incoming data, allowing maintenance of batch

and speed layers without data loss. Apache Kafka [38], a distributed messaging system

which features replication, partitioning and data retention is used as the queuing system.

Following the ingestion layer, spectrum data is processed on two different paths: in batch

and speed layer simultaneously.

2.2.4.2. Batch Layer

The batch layer is responsible for storing all incoming raw data as an immutable master

dataset and executing long-running workloads. The batch layer facilitates processing of

huge amounts of historical data, ensuring no loss of information in case of algorithmic

errors. The master dataset is stored in a binary format on a distributed file system. The

Hadoop Distributed File System (HDFS) [39] is employed allowing data to be stored in

files which are distributed and replicated over a cluster of servers.

Apache Spark [40], which allows parallel computation by evenly distributing workload

over several computing nodes, is employed for data processing.

For accessing data stored on HDFS, a fast and scalable query engine Cloudera Impala

[41] which understands a subset of the SQL language is deployed. The latency of the

batch layer as a whole is in the order of minutes or even hours.

2.2.4.3. Speed Layer

The ElectroSense speed layer is based on Spark Streaming. It is an extension of Spark

which computes its results continuously on a parallel cluster over a small window of recent

data, with the current default window length set to 5 seconds. Spark Streaming meets

the design requirements as the spectrum data is high in volume and algorithms do not

demand sub-second latency.

As Impala is not suitable for near real-time storage requirements, the speed layer

persists its results in another database. We use Apache Cassandra [42], a hybrid between

a key-value and column-oriented distributed storage system for this real-time database as

it represents well the data structure of spectrum data.

2.2.4.4. Serving Layer

As seen before, the batch and speed layers store their results differently. The serving

layer takes care of data fusion to provide query results to the user while hiding the

complexity of the multi-layer architecture. It offers the open API which serves as the

endpoint for any user or application to retrieve data. The serving layer handles queries

on different views and combines results from batch and speed layer if necessary. In case
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results are available in both layers, batch layer results are preferred as they provide more

accurate data. In ElectroSense, the serving layer is a custom component which offers a

RESTful web service over Hypertext Transfer Protocol (HTTP).

2.3. Spectrum Data Processing and Analysis

To substantiate the value of the data generated by the ElectroSense framework, a

few applications are presented in this section. We envision some of these applications

to be integrated in ElectroSense’s batch and speed layer in the backend, but the goal

of ElectroSense is that users can start implementing their own applications by using the

open API.

2.3.1. Live and Historical Spectrum Visualization

We have developed a web front-end to enable easy visualization of the spectrum

data5. The spectrum visualizer allows interactive sensor selection and varying frequency

resolution for detailed spectrum viewing. The visualization tool allows to look at historical

spectrum data from the sensors, since the sensor registration. For this purpose, the batch

layer pre-computes spectrum data at various temporal and frequency aggregation levels

and stores this information in queryable tables for low-latency access over the web. For

live spectrum updates with 5 second delays, a streaming display is incorporated to the

web interface directly from the speed layer.

A real example about how useful is to store historical data of spectrum measurements

is shown in Figure 2.5. Using an ElectroSense spectrum sensor located in Leganés

(40.33,-3.77), we were able to detect (on June 2015) when some DVB-T channels stopped

transmitting (800-860 MHz)6 to make room for 4G networks7.

Another real example is shown in Figure 2.6. Thanks to the real time 24/7 spectrum

sensing that ElectroSense platform provides, we are able to go back to specific moments

in time and check how the Electromagnetic (EM) spectrum was at that time. Figure 2.6

shows a spectrum screenshot corresponding to the 5th of June of 2018 in Leganés

(40.33,-3.77), the city of Madrid. We can observe some anomalies around 09:40 where

some channels stopped the transmission (2.6 GHz), and others started the transmission

(780 MHz). We can also note certain interference in some of the Long Term Evolution

(LTE) band frequencies (1.8 GHz and 2.2 GHz). A power outage in the region of Madrid

was reported at that time which is most likely the cause of these interference and anomalies

above-mentioned.

5https://electrosense.org/app.html
6Frequency reallocation - Dividendo Digital - https://es.wikipedia.org/wiki/Dividendo_Digital
7Spectrum data measured available in http://doi.org/10.5281/zenodo.168066

https://electrosense.org/app.html
https://es.wikipedia.org/wiki/Dividendo_Digital
http://doi.org/10.5281/zenodo.168066
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Figure 2.5: Some DVB-T channels stopped transmitting (800-860MHz) to make room for
4G networks (31/03/2015)

2.3.2. Dynamic Spectrum Access

Dynamic Spectrum Access (DAS) enables a technology model to manage spectrum

availability and needs in terms of frequency, time, geography, quality and cost of the

service. Cooperative and distributed spectrum sensing approaches for cognitive radios can

solve hidden primary user problems and reduce the non-detection probability and false

alarms remarkably [43]. Advanced collaborative sensing strategies along with detailed

sensor density analysis is required to address the complete cognitive cycle. A white space

detection study is done to validate the feasibility of the framework in this direction.

The term white spaces usually refers to the unused broadcasting frequencies in the

TV band (400-800 MHz). The availability of white spaces is highly region dependent, for

instance the white spaces in Europe in the 470-790 MHz band is found to be less than in

the USA [44]. Using the ElectroSense infrastructure and the sensors configured in the PSD

pipeline, it is feasible to detect the white spaces in a certain region. Figure 2.7 shows the

spectrum occupancy in the broadcasting TV band (400-800 MHz) of two different cities

in Europe with a frequency resolution of 1 MHz and 60 seconds time resolution. Similar

analysis can be easily performed by retrieving the aggregated data from the ElectroSense

backend through the API.

2.3.3. Spectrum Cop

Spectrum enforcement is challenging mainly due to the effort involved in analyzing,

detecting and locating anomalies occurring in the spectrum. Even with a large
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Figure 2.6: EM spectrum screenshot taken by a ElectroSense sensor
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Figure 2.7: TV band occupancy in Madrid and Trieste.

scale deployment of spectrum scanners, the anomaly detection process is demanding.

Automated systems to detect pirate Frequency Modulation (FM) stations, fake Global

System for Mobile communications (GSM) towers, unauthorized transmissions hindering

normal functioning of meteorological radars and even transmissions at higher power levels

than the permitted levels of operation are fundamental for effective enforcement. A good

anomaly detector should first detect whether a particular transmission type is allowed in

the frequency of interest. Moreover, it should fingerprint normal spectrum transmissions

by analyzing the temporal and spatial features of the transmitters in terms of power levels

and spectral occupancy. The former can be achieved to some extent using a modulation

classifier and the later by learning spectral occupancy distributions over time. A drastic

variation of any of the aforementioned features can be classified as an anomaly.

To validate modulation classification using ElectroSense, a time domain deep learning

modulation classifier is used in the backend which works effectively with gr-electrosense

using the I/Q pipeline [45, 46]. The deep learning model takes I/Q samples as input

giving out the probability of the data belonging to a particular modulation class. The

model is trained to learn from the modulation schemes’ time domain amplitude and

phase information, without requiring expert features, such as higher order cyclic moments.

Analyses show that the proposed model yields an average classification accuracy of over

90% at varying Signal-to-Noise Ratio (SNR) conditions ranging from 0 dB to 20 dB,

independent of channel characteristics. In future a computationally efficient binarized

version of the model will be deployed on low-cost sensors reducing the data overhead of
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Figure 2.8: RSSI measured using a LoRa and ElectroSense sensor.

sending I/Q samples to the backend [46].

2.3.4. Localization

Transmitter localization is a promising application used for generating both automated

transmitter maps and transmitter fingerprinting. Research on Received Signal Strength

Indicator (RSSI)-based indoor and outdoor localization has gained interest in recent years

[47]. However, the accuracy of the RSSI information drawn from the ElectroSense sensors

must be verified to validate localization. Such a sensor is calibrated and then the system

gain, consisting of the antenna gain, cable losses and front-end gain, is measured for

absolute power measurements. RSSI measurements are made in the 435 MHz ISM band

using standard Long-Range (LoRa) sensors. A splitter is employed to ensure an equal

antenna signal reaches both a LoRa receiver and a low-cost ElectroSense IoT sensor. A

mobile LoRa transmitter is configured to send packets every three second over a period of

80 minutes. Their GPS logged and time-stamped locations are sent to the receiver. The

collected RSSI measurements from both the LoRa and ElectroSense sensors are depicted

in Figure 2.8. This plot shows that accurate RSSI information can be obtained from

properly calibrated ElectroSense sensors. The RSSI dips in the sensor data are attributed

to the lengthy frequency scan of the sensor, which is over 40 seconds, causing it to miss

some packets. Existing algorithms presented in the literature [47] can be deployed using

the sensed spectrum data retrieved through the open API or implemented directly in the

backend.
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2.4. Discussion

We have introduced ElectroSense, a global initiative that seeks a more efficient, safe

and reliable use of the electromagnetic space by improving the accessibility of spectrum

data for the general public. ElectroSense as a crowdsourced network provides solutions

to the problems associated with large-scale spectrum monitoring and the resulting data

deluge. The network users receive incentives in terms of free data storage, readily available

applications and an open API.

As the first version of the ElectroSense network is fully functional, the next step will be

in the direction of enabling usable applications in the backend. The feasibility of various

applications were already presented in the section 2.3 of this chapter. Research will be

continued on the application space, to develop new algorithms for spectrum prediction and

anomaly detection. Furthermore, algorithms to extract useful analytics from the spectrum

data to overcome data storage constraints will also be explored in future. Detecting

fake or forged data from malicious users, by enabling temporal spectrum comparisons

among co-located sensors and user sensor ranking, is another active area for future

research. Extensive studies will be also done to understand how complex algorithms

can be disintegrated for large-scale deployment on these cheap sensors. ElectroSense can

be the first step to democratize the access to the spectrum data to everyone. The age of

spectrum data democratization has arrived and it could help to increase the transparency

and the knowledge about spectrum usage.



“Alone we can do so little; together we can do so much.”

Helen Keller ( 1880 – 1968 )

3 Empowering People to Decode
the Radio Spectrum

The idea of web-based distributed radio applications has recently gained interest [4,

48,49], motivated by the diversity in space of the spectrum and the wide range of services

benefiting from it. Multiple crowdsourcing initiatives have been proposed using various

spectrum sensors ranging from low-end hardware to expensive spectrum analysers. They

monitor the spectrum in a distributed way and provide applications that target specific

communities.

Some of the major initiatives for analyzing the entire wireless electromagnetic

spectrum are ElectroSense [4], Microsoft Spectrum Observatory [16], Google TV White

Space [23] and IBM Horizon [24] and SpecNet [17]. Other initiatives focus instead on more

specific monitoring applications over a limited frequency range, such as for example remote

radio monitoring stations in OpenWebRX [50] and WebSDR [48], live air traffic control

(ATC) broadcasts from air traffic control towers in LiveATC [49] or aircraft monitoring

systems such as OpenSky [51]. Airspy [52] provides a sensor client-server architecture

to operate Software Defined Radios (SDRs) remotely, but it relies on the computational

power of the client-side to decode the signals, and high network bandwidth to send In-

phase & Quadrature (I/Q) data stream to the client.

All the above initiatives have severe drawbacks, such as limited use cases (e.g., focus

only on FM radio decoding or spectrum analysis), limited incentives to host a sensor

(dynamic spectrum access and anomaly detection do not attract the large audience),

require expensive SDRs or dedicated hardware (such as the Microsoft Observatory), poor

scalability and complicated process to run measurement campaigns or access the data

(sensors are busy), or high network requirements for sending I/Q data to the client.

Our vision is that people are the primary operators of Internet-of-Things (IoT)

spectrum sensors. We aim at empowering people implementing a global spectrum system

which let them connect to any spectrum sensor in the network and decode any publicly

decodable radio spectrum part, such as broadcast and control messages, in real time

through the Internet. In our system, spectrum analysis, or applications such as dynamic

spectrum access and anomaly detection become secondary tasks, being active only if the

29
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sensor is not used by people. The overarching goal is to support low-cost and software-

defined IoT spectrum sensors devices and provide incentives for people to participate and

host those sensors at their homes or organizations, enhancing the mission of building a

crowdsourcing spectrum monitoring system.

In this Chapter we introduce ElectroSense+, an improved version of its predecessor

(ElectroSense [4]) which was introduced in Chapter 2. The contributions are:

We propose a novel radio spectrum decoding architecture where the primary

operators are the sensors’ owners. The architecture provides a transparent system

to remotely decoding the spectrum on the IoT embedded sensors, and makes use of

real-time peer-to-peer communication to send the information already decoded to

the users.

We implement the decoding process on the IoT spectrum sensors in an efficient

way alleviating the processing load in the client, reducing the network bandwidth

used, and adding a security-privacy layer since no raw data (I/Q) is sent to the

users.

We introduce an incentive for users to be part of the radio crowdsourcing

community based on digital coins called Electrocoins. We propose a rewarding

system for users that also helps to regulate the access rights of the users to the

sensors in a fair manner.

We evaluate the architecture proposed in real scenarios with 6 different

decoders: Frequency Modulation (FM)/Amplitude Modulation (AM) radio,

Automatic Dependent Surveillance - Broadcast (ADS-B), Automatic Identification

System (AIS), Long Term Evolution (LTE), and Aircraft Communication

Addressing and Reporting System (ACARS).

3.1. Design Goals

Past web-based spectrum monitoring initiatives are either application-specific [48,

50] or do not scale well for remote signal decoding [4]. Scalability is challenged by the

large data volumes needed for wideband spectrum monitoring, much higher than needed

by typical IoT applications. But, even with a larger bottleneck, we experienced that

motivating users to deploy sensors and keep their sensors operational is the main hurdle

for the wide-spread deployment of crowdsourced spectrum monitoring. The main reason

is that the most interesting services for stakeholders that need to monitor the spectrum,

such as governmental organizations and telecom providers, are orthogonal to the interests

of the vast majority of users.
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In this work, we propose a novel radio monitoring architecture that addresses the main

limitations of previous systems:

General purpose decoding. The system architecture allows to decode any public

decodable wireless technologies that is within range of the deployed sensors. As the

spectrum is used by many different wireless technologies and new technologies are

emerging constantly, we support the integration of open source spectrum decoders

developed by the community. The system architecture thus defines open interfaces and

Application Programming Interfaces (APIs) to allow easy integration of various decoder

types.

Peer-to-peer architecture. As the system is expected to support a large number of

concurrent users and spectrum data is very large in nature, a centralized approach is

unfeasible as it would cause a data deluge to the backend or large latency from the sensor

to the consumer. In order to support real-time applications and scale well, ElectroSense+

supports peer-to-peer communication between the IoT spectrum sensors and the users.

User incentive. Since in crowdsourcing initiatives, people are expected to acquire and

run a spectrum sensor on their own, good incentives are needed to foster participation.

This includes rewards for hosting a spectrum sensor but also to provide valuable spectrum

services that they will get in return. In ElectroSense+, spectrum services are provided to

the users in the form of spectrum apps and users receive Electrocoins for the time their

sensors are online and used by the community.

Security and privacy. Spectrum data can contain private information and there should

be limitations on some specific frequencies about the information type that users can listen

to. For example, the system should not allow users to listen to private voice or other

text conversations. It can instead decode broadcast and control messages. To this end,

ElectroSense+ does not ship raw I/Q data to the users but only aggregated spectrum data

and filtered decoded data. That way, ElectroSense+ keeps full control over the data that

users will receive by enforcing strict integration policies on which decoders are allowed to

run on the sensors and data is filtered.

3.2. Architecture

The ElectroSense+ architecture is depicted in Figure 3.1. The main system

components are the IoT spectrum sensor, the client, and the backend. While these

components were all present in the original ElectroSense design (described in Chapter 2),

the novelty is to enable direct peer-to-peer connections between the sensor and clients in

order to provide direct decoding services (apps) for users, and to account for the usage

patterns in order to reward sensor operators. In this section, we focus on the new required

architectural components for these enhancements.
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Figure 3.1: Full overview ElectroSense+ architecture

3.2.1. Signaling and Controlling

The sensors are managed by the ElectroSense+ backend over secure messaging via the

Message Queue Telemetry Transport (MQTT) [53] protocol. The client-sensor connection

is handled over the WebRTC protocol suite. WebRTC provides web browsers with Real

Time Communication (RTC) without using dedicate plugins for this task. At an initial

state of the communication, client and sensor need to exchange meta-data to coordinate

the communication using the signaling server. The STUN server allows to find the

public Internet Protocol (IP) address of the client and sensor in order to provide a direct

connection between them, even if they are located behind firewalls or Network Address

Translators (NAT).

When a client wants to connect to a sensor, it signals a request through the signaling

server and establishes a direct connection to the sensor (without passing though the

ElectroSense+ backend). Then, two different channels are created: Control/Data channel

and Audio channel (as Figure 3.1 shows). The Control/Data channel is a bi-directional

channel used to send the spectrum information and data decoded from the sensor to the

client, and to command the sensing parameters from the client to the sensor (frequency,

gain, etc.). The Audio channel is exclusively used to stream audio in real time from

the sensor to the client using Secure-Real-Time-Protocol (SRTP). This peer-to-peer

communication minimizes the network delays between the client and sensor, providing

a fast and scalable access to the data from the spectrum sensor.

When there are no users that are connected to a particular sensor, the sensor is handled
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Figure 3.2: User-Sensor communication diagram.

by the controller in the backend instructing it to sweep the spectrum or launch a specific

campaign. As soon as a client connects to a sensor the peer-to-peer communication is

established. Then, the client takes over the control of the sensor and selects the sensing

parameters (frequency, gain, etc.). Clients can remotely tune to any radio frequency and

thus influence which decoder is activated in the sensor, e.g., if the Radio Frequency (RF)

front-end is tuned to the FM radio band, the FM decoder will be active. If the client

tunes to a frequency which has no associated decoder on the spectrum sensor, the client

only sees a real-time waterfall diagram of the Power Spectral Density (PSD) data at the

selected frequency band.

3.2.2. IoT Spectrum Sensor

The software of the IoT spectrum sensor is designed to run on low-cost embedded

computing platforms such as Raspberry Pi [31] devices for the signal processing and RTL-

SDR USB [54] dongles as radio front-end. The sensor architecture supports 3 spectrum

data pipelines: I/Q , PSD and decoding pipeline as Figure 3.2 shows. The first 2 pipelines

have been presented in Chapter 2. ElectroSense+’s architecture allows to run PSD and

decoding signal processing pipelines in parallel. Both pipelines are reading the same I/Q

samples from the RTL-SDR, but they process the data in a different way.

The spectrum analysis pipeline computes an aggregated PSD representation of the

signal using the Fast Fourier Transform (FFT). The PSD data is sent to connected clients

and the backend. At the client, the PSD data is useful for the user to visually analyze the

spectrum in the frequency domain in real time, and to identify parts of the spectrum with
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ongoing transmissions. In the backend, the PSD data is stored for historical inspection

of the spectrum and to understand the evolution of spectrum activities over time.

The decoding pipeline is used to locally demodulate and decode the signals at the

sensor. We implement data decoding in the spectrum sensor as it largely reduces the

amount of data sent to the user. In addition, it avoids security and privacy concerns as

no I/Q data is sent directly to the users which would allow them to decode any wireless

signals, even those that may contain sensitive personal data. The sensor has multiple

decoders to decode different parts of the spectrum. So far, we have integrated existing

open source decoders including FM radio, AM radio, ADS-B / ACARS (air traffic signals),

AIS (automated tracking system of ships), and LTE cell broadcasting. In the future, we

plan to integrate many more technologies such as e.g., Digital Audio Broadcasting (DAB),

DVB-T, Global System for Mobile communications (GSM) cell broadcasting, Long-Range

(LoRa), Sigfox, etc. Given the limited resources of the embedded computing platform of

the sensor, only one decoder is active on each sensor at the same time.

To facilitate the integration of existing and future decoders that are provided by the

open source community, we have defined standard input and output interfaces. The input

interface (used between the sensing software and the decoder) is a Unix User Datagram

Protocol (UDP) socket over which the decoder can read the sampling parameters and I/Q

data in chunks. For the output interfaces (used between the decoder and web-browser),

we differentiate between a message and a streaming interface depending on the type

of data that is decoded. If the data is text, the data is sent as a JavaScript Object

Notation (JSON) object over a UDP socket. For audio and video, the data is streamed

over a Unix UDP socket in a raw audio/video format.

Since the sampling rate that the decoders expect may be different from the configured

sampling rate of the RTL-SDR, a re-sampler is implemented in front of the decoder

to provide the sampling rate that the decoder needs. The re-sampler is also useful to

decimate the I/Q data for performance reasons as some decoders consume too much CPU

processing power on the limited hardware of the sensors when the sampling rate is too

large.

3.2.3. Electrocoins

We propose a virtual accounting system based on our crypto-currency named

Electrocoins, that provides two main features in our system. First, it helps to regulate the

access to the sensors and distribute the rights among users in a fairly manner. And second,

it is used as an incentive for people to host a sensors (they will be rewarded for deploying

and hosting sensors). In addition, we plan to build Electrocoins on top of Ethereum [55]

using digital tokens. In that case, Electrocoins would be directly compatible with any

other contract that uses the Ethereum standards.

Our rewarding model consists of issuing Electrocoins to users which operate
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ElectroSense+ sensors. Sensor operators are rewarded with Electrocoins for each sensor

they operate. To avoid abuse, we check regularly the sensor quality in the backend which

is determined by how often users connect to one sensor. The latter is most likely a

good indicator that the sensor is deployed at a good location with a good antenna. This

approach could also be combined with more intelligent algorithms in the backend based

on signal learning capabilities [46] and anomaly detection [56].

Electrocoins are needed to directly connect to sensors and listen to the spectrum.

Hence we expect that users deploy sensors in order to get Electrocoins, and then use

them to connect to other sensors in order to consume spectrum decoded data.

3.2.4. Security and Privacy

While the ElectroSense+ architecture allows in principle to decode any type of

wireless signals that fall in the frequency range of our sensors, we enforce a strict policy

on the allowed decoders in the sensors in order to prevent from disclosing personal

information to ElectroSense users. The decoders and their operational frequencies are

set by ElectroSense+ to make sure that any decoded data provided by sensors does not

violate any private information. Although the user can propose, implement and even

integrate new decoders on the sensor side, the backend will not allow untrusted decoders

avoiding privacy leaks.

By allowing users to listen to the content of such communication would violate

the privacy of the persons using those devices. Our policy is thus to integrate only

decoders for broadcast communication systems and for public control signalling messages.

For example, in this work, we have implemented and integrated decoders for FM/AM

radio, ADS-B and AIS (broadcasting systems). These decoders are integrated in the

decoding pipeline on the sensor (see decoder block in Figure 3.2) where they read IQ

samples as input and send the decoded data to the user through the data channel. The

implementation of every decoder depends on the signal to be decoded. For communication

systems such as LTE or ACARS, we only decode the signalling and management messages

which are sent broadcast over the channel.

3.2.5. Spectrum Applications

Spectrum services are provided to the users by means of spectrum apps that give

valuable information. Various users are interested in different aspects of the wireless

spectrum, and the ElectroSense+ architecture is scalable and versatile enough to empower

all use cases. The most widespread use of the wireless spectrum is however to broadcast

information, and a primary set of spectrum apps focuses on the decoding of such broadcast

information. As this broadcast information is intended for the general public, and not

encrypted, hence there are no privacy concerns.
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Table 3.1: Decoders, operational frequencies/bandwidths and open source projects.

Decoder Frequencies Bandwidth Open Source Project

AM radio 153 kHz - 30 MHz 60 kHz SciPy.org

FM Radio 88-108 MHz 240 kHz SciPy.org

acars 129-136 MHz 2.4 MHz acarsdec

AIS 162.025 / 161.975 MHz 1.6 MHz rtl-ais

ADS-B 1090 MHz 2.0 MHz dump1090

LTE-Cell 700 - 3500 MHz 1.92 MHz LTE-Cell-Scanner

A first generation of ElectroSense+ spectrum apps focuses on the decoding of

broadcast signals that are of interest to a broad audience, such as AM and FM signals, but

also ADS-B, AIS or ACARS messages and LTE cells (see Table 3.1). These applications

make use of the lower frequency bands, making it easier to achieve good coverage with

a limited number of ElectroSense+ sensors. As the system scales to higher deployment

densities, also higher frequency signals can be added. We note that the frequencies for

AM signals are not covered by a standard RTL-SDR dongle, but with the ElectroSense

expansion board [4] also lower (and higher) frequencies ranging from DC to 6 GHz can

be covered.

3.3. User Interface

The user interface plays an important role in this work to empower people to use

the system for decoding radio signals of the electromagnetic spectrum. Using standard

technologies that execute in web browsers allows us to reach a great number of users

which do not have any signal processing knowledge.

An example of the user interface of ElectroSense+ is shown in Figure 3.3. In this case,

the user has selected the FM radio decoder and tunes the SDR receiver at 105 MHz. The

user can visually inspect the spectrum in that band by checking the PSD data represented

in the PSD plot. Although the decoder focuses in a narrow band for decoding the FM

radio channel (180 kHz), we show the spectrum information of a wider band (2.4 MHz)

for a better understanding of the spectrum by the user. The user can distinguish where

transmissions are going on by checking the power in different frequencies. The user can

click on the interested channel and he/she will start listening the current FM radio station.

This audio streaming is sent using the direct audio channel between the sensor and the

client. The user also can set different sensing parameters as the DC gain or the volume

used by the decoder, or even the power scale to identify better the EM spectrum.



3.3 User Interface 37

PSD Plot

Decoders

P
o
w

e
r 

S
c
a
le

Automatic channel identification

Figure 3.3: User interface for visualizing the spectrum and decoding FM radio.

PSD Plot

P
o
w

e
r 

S
c
a
le

Figure 3.4: User interface for decoding ADS-B aircraft messages.
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In order to help users to identify where the transmissions are, we provide an automatic

channel identification for FM radio bands that it is executed in the client side. The

browser runs a channel identification algorithm for detecting the transmissions using the

PSD data, and identifies where FM radio channels are located. A red rectangle is shown

in the web interface for every FM radio channel detected (see Figure 3.3), which makes

it easier for the user to select another FM radio channel.

Figure 3.4 shows the interface when the user configures the sensor to decode ADS-B

messages (aircraft continuously broadcast their position and other control information).

Usually aircraft broadcast their position and other control information to other aircraft

and/or ground stations (at 1090 MHz). Using the data channel, the sensor sends the PSD

data to the client and also sends the information decoded on the sensor. In this case,

the ADS-B decoder decodes the messages that aircraft send with information about their

location. All this information is collected by the sensor and shown to the user in a map

in the web interface.

3.4. Evaluation

In this section, we evaluate the performance of ElectroSense+ as a real-time system

for decoding the spectrum remotely. The sensors are based on the Raspberry Pi-3B+ [31]

and the RTL-SDR radio receiver [54]. The Raspberry Pi-3B+ has a Cortex-A53 processor

and 1 GB of RAM, representing a typical low-cost IoT embedded device.

3.4.1. CPU Load and Throughput

The software executed on the Raspberry Pi model 3B+ is split in three main

components: (1) sensing, which is responsible to execute the different pipelines to provide

PSD data to the client and I/Q data to the decoders (including also the resampler); (2)

WebRTC, which manages the communication between the sensor and the client; and (3)

signal decoders. Table 3.2 shows the CPU load for the three software components and for

every implemented decoder. The minimum CPU load of the sensing component (11%)

occurs when only the PSD data is computed. When one of the decoder is enabled, the

sensing process also needs to execute the resampler process, increasing the CPU load

(14-24%). The load depends on the bandwidth and sampling rate that is expected by

the decoder (see Table 3.1). The WebRTC CPU load is very low (0.1-0.2%) since the

only task is to manage the communication of the data/audio channel. For the case that

FM/AM decoders are enabled, the WebRTC component also needs to resample the audio

stream to make the audio compatible with the expected audio input of the browsers. This

increases the CPU load up to 6% for this component. The CPU load for every decoder

and the total CPU is also shown in Table 3.2. The decoders who use the CPU the most

are FM radio and LTECell, but still the Raspberry Pi has enough resources to properly
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Table 3.2: CPU Load on the ElectroSense+ sensor and Throughput for every decoder.

Decoder
CPU Load
sensing (%)

CPU Load
Web-RTC (%)

CPU Load
decoder (%)

CPU Load
Total (%)

Throughput
(kb/s)

PSD 11 0.1 - 11.1 120-140

FM radio 24 6.5 24.6 55.1 40-50

AM radio 22 6.2 10 38.2 40-50

ADS-B 14 0.2 4 18.2 190-200

AIS 20 0.1 6.2 26.3 50-60

acars 23 0.1 8.1 31.2 90-100

LTECell 21 0.2 48 69.2 10

process and deliver the decoded data in real time. While the FM/AM radio decoders have

a constant CPU usage, other decoders such as LTECell only consume CPU resources for

a specific amount of time (≈ 10 sec.) to compute the information that is delivered to the

client. It is important to mention that the CPU usage of decoders such as ADS-B, AIS,

or ACARS depends on the number of incoming messages over the channel.

The network bandwidth is also shown in Table 3.2. The data throughput for AM/FM

decoders together with PSD is less than 200 kb/s, which is reasonable for most of the

broadband internet connections nowadays. Other existing solutions like Airspy [52] (based

on rtl_tcp) make a more intensive use of the network reaching 300-1000 kb/s for the same

AM/FM decoding purpose. The maximum network throughput is used by the ADS-B

decoder which together with the PSD data reaches 350 kb/s, still a data rate affordable

for most home Internet users.

3.4.2. Real Time Response

Since the new ElectroSense+ architecture is built to provide a user experience close

to real time for decoding signals, it is important to measure the time delays for the

main tasks that can be performed by the user in the User Interface (UI). We want to

measure the response time when the user accesses the sensor for the first time and the

time between the moment a user selects a sensor until the first batch of PSD data flows

in the web-browser. The average delay across the sensors attached to ElectroSense+ for

the user to access the sensor for the first time is 0.97 seconds. This includes the time to

establish the WebRTC connection between the browser and the sensor (see Figure 3.1),

tuning the radio frontend to the frequency of operation, collect the I/Q stream, process

the first batch of I/Q data through the PSD pipeline (see Figure 3.2) and deliver the first

batch of processed PSD data through the data channel to the client (browser).

We have also evaluated the response time for the decoders, meaning that we measure
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the average delay between the moment a user selects a decoder until the first decoded

payload arrives to the web-browser. Every time a new decoder is selected by the user,

the sensor requires to stop the previous decoder, re-tune to a new frequency, and start

the new decoder (among other tasks). For radio FM/AM decoders, the average waiting

time until the user starts to receive and listen to the audio stream is 2.6 seconds. Once

the FM/AM decoder is set, the retuning by the user is much faster since there is no need

to start the decoder again. For the rest of the decoders that stream a data flow encoded

as JSON (e.g. ADS-B), the average waiting time for the user is 1.5 seconds.

3.4.3. Automatic Channel Identification

Using the PSD data sent by the spectrum sensor, the web-based client infers

where active channels are located in the spectrum by applying a power-based channel

identification algorithm. The idea of this feature is to support the user to identify

interesting parts of the spectrum which are utilized and can potentially be decoded.

We have evaluated the automatic channel identification algorithm performance over FM

radio bands. As Table 3.3 shows, using an averaging window of 5 seconds over the PSD

stream data, our model is 84% accurate with a precision of 0.88 (low false positive rate).

Applying an averaging window over the PSD data has two positive effects: 1) reducing

the noise and thus improving the performance of our algorithm, and 2) requiring less

computation power on the client side.

3.4.4. Scalability

ElectroSense+ architecture takes advantage of peer-to-peer communication between

the spectrum sensor and the user. The system scalability also depends on the traffic load

of the signaling server (see Figure 3.1) which handles the control messages (connection

request, keep alive, etc). These messages represent less than 2 kb/s per sensor, meaning

that one instance of the signaling server with a 50 Mb/s symmetric network can manage

more than 25K spectrum sensors at once.

Table 3.3: Automatic channel identification performance (FM Radio)

TP TN FP FN Accuracy Precision Recall F1

no-avg 14 31 2 9 0.80 0.88 0.61 0.72

avg-5sec 14 33 2 7 0.84 0.88 0.67 0.76
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3.5. Discussion

We have presented ElectroSense+, a system that allows users to remotely decode

specific parts of the radio spectrum using low-cost IoT devices as radio sensors.

ElectroSense+ is built on top of its predecessor [4], and provides a new peer-to-peer

communication among clients and sensors to exchange information and make the system

scalable (a centralized approach would cause large latency and high load resources in the

backend). The system architecture allows to decode any wireless signal that is within

range of the sensors. We have integrated several publicly available decoders that are not

intrusive to the privacy of the wireless users. Our decoders operate on the sensor-side

and have optimized their computational performance to run in embedded and low-cost

IoT devices. The decoders that are currently implemented are AM and FM for radio;

ADS-B, ACARS and AIS for tracking systems; and LTECell for LTE signals. We manage

to keep the average CPU load of the IoT sensors below 40% in most of the cases, even

when the PSD and decoding pipelines are executed on the sensor at the same time.

The communication channel is also implemented in an efficient way which allows to keep

the network bandwidth low between the sensor and the client. For streaming a single

audio channel to the user the bandwidth needed is 50 kb/s, while for sending data (e.g.

generated by the ADS-B decoder) the bandwidth used can go up to 200 kb/s. In both

cases the network bandwidth is low, allowing the users to connect to the system using

conventional home Internet connections and WiFi hotspots. We have implemented a

friendly user interface based on a web-browser (platform independent) for users to interact

with the sensors. ElectroSense+ provides the opportunity for individuals to gain better

knowledge and understanding of the spectrum utilization, by offering remotely signal

decoding capabilities and direct incentives to deploy own sensors.
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4 Characterizing the Frequency
Offset for SDR Platforms

In the previous chapters ElectroSense has been introduced as a spectrum monitoring

platform that uses low-cost Software Defined Radio (SDR) as Radio Frequency (RF)

receivers. The field of SDR is becoming increasingly popular among academics and

practitioners. The popularity of SDR was unleashed by the combined availability of

low-cost SDR hardware and free open-source SDR software. The so-called RTL-SDR

dongle devices are nowadays among the most popular in the SDR community and are

largely used in crowd-sourced projects [26,33,57].

Generally speaking, low-cost devices may be expected to have much higher Local

Oscillator (LO) instability than other classical receivers, possibly limiting some potential

applications. For example, in collaborative tasks amount sensors such as signal decoding,

receivers may need to compensate for frequency offset effects. A time-varying LO offset

might impede the correct estimation of time-of-arrival or time-difference-of-arrival, as

relevant e.g. in time-based localization, since timing information is ultimately derived

from LO. Also, it might impede the correct estimation of Doppler shifts [58]. In all such

application categories, the software designer should then decide whether to include more

or less sophisticated frequency correction methods into the SDR code to counteract the

LO frequency deviations and fluctuations.

In general, understanding LO offset near real-time is essential to take the most

appropriate actions. Low measurement delay is important for two reasons. First, it

allows to swiftly evaluate short-term frequency fluctuations of the device under test using

a recorded dataset. Second, it can be used as an ancillary tool serving other SDR

applications that requires periodic re-estimation of absolute LO offset. For instance,

low-cost RTL-SDR receivers scanning the spectrum may periodically re-tune their center

frequency to some common reference signal (e.g. Long Term Evolution (LTE) or Digital

Audio Broadcasting (DAB)) in order to estimate and correct their LO offset. This

procedure should be as fast as possible to minimize any outage in the measurement

campaign. For all theses reasons, we propose a fast and precise frequency offset estimator

for SDR platforms that is integrated in ElectroSense platform.

43
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The contribution of this work are three-fold:

We present LTESS-track, a LO frequency offset evaluation tool that allows

SDR practitioners to determine the frequency offset of their SDR devices without

the need to acquire additional laboratory equipment, such as high-end signal

generators or other methods. LTESS-track leverages the ubiquity of LTE coverage:

it exploits the Primary Synchronization Signal (PSS) that is continuously broadcast

by LTE base stations as a reference signal of opportunity. In principle, LTESS-

track can work with any SDR front-end capable of tuning to LTE frequencies (see

Appendix B). Our method is designed to deliver a frequency offset estimation with

sub-ppm resolution and maximum measurement delay below 1 second in embedded

environments such as Raspberry Pi. This is a particular feature of LTESS-track,

not present in other existing LO offset estimation methods [59–61].

We compare LTESS-track against three other popular software methods for

low-cost LO offset estimation, namely the rtl_test [59], Kalibrate-RTL [60] and

LTE-Cell-Scanner [61]. We show that previous works have under-exploited the

potential of cellular signaling for frequency offset estimation and we demonstrate

that our architecture design allows to achieve higher performance. As we show in our

work, one common limitation of previous methods is that they are computationally

expensive for running in embedded boards. As a result, they have a high

measurement delay, up to 12 seconds (Kalibrate-RTL) or even several minutes

(rtl_test). Furthermore, we show that some of these other tools present occasionally

large errors (LTE-Cell-Scanner), or simply do not work in the presence of large LO

offset (Kalibrate-RTL).

We use our method to assess the actual LO performance of two very popular

RTL-SDR models, namely the "Silver" and "Blue" models, respectively with and

without Temperature Controlled Local Oscillator (TCXO). We consider both

normal and harsh environments, with device temperatures exceeding 50 degrees

Celsius. The results show how the new generation of RTL-SDR with TCXO, despite

its low cost, has an exceptional LO stability in changing temperature environments.

LTESS-track implements several key mechanisms not presented in other methods,

such as initial frequency offset compensation, up-sampling, sampling of data only in time

proximity to the expected synchronization signal to reduce the computational cost and

linear regression of samples. Our method will further contribute to the “popularization"

of low-cost SDR development and related crowd-sourced SDR projects.
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4.1. Problem statement

4.1.1. Receiver model

The available specifications do not provide the exact details in all the levels of the RTL-

SDR hardware architecture [62]. For our work we have assumed the general architecture

depicted in Figure 4.1 with a single LO that feeds both the Down-Conversion (DC) and

the Sampling (S) stage by means of two distinct clock distribution networks.

We introduce the following notation:

fLO the nominal LO frequency.

∆fLO(t) the difference between the actual LO frequency at time t and its

nominal value, i.e., the absolute frequency offset of LO.

γ(t)
def

= ∆fLO

fLO
the instantaneous relative frequency offset of LO at time t.

fD the nominal tune-in frequency.

∆fD(t) the difference between the actual and nominal tune-in frequency at

time t, i.e., the absolute frequency offset at the down-conversion stage.

fS the nominal sampling rate.

∆fS(t) the difference between the actual and nominal sampling rate at time t,

i.e., the absolute frequency offset at the sampling stage.

In general, we can assume that the relative frequency offset at the down-conversion and

sampling stage are equal or anyway very close to the LO one, formally:

∆fS(t)

fS

≈ ∆fD(t)

fD

≈ ∆fLO(t)

fLO

= γ(t). (4.1)

The relative frequency offset γ(t) is a dimension-less parameter. The specifications

typically provide an indication of the maximum LO frequency tolerance φ expressed in

Parts Per Million (ppm). For example, a relative frequency tolerance of 30 ppm means a

maximum time offset of 30 microseconds in one second. The tolerance value represents

an upper bound on the maximum relative deviation that may be expected, i.e. |γ(t)| ≤ φ.

4.1.2. Design goals

Our goal is to develop a generic method to estimate and evaluate the frequency offset

of the low-cost RTL-SDR devices with the following features:

Reliable: The method should report a reliable estimate of the LO frequency

offset, with estimation error below 1 ppm.
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Figure 4.1: Reference receiver architecture.

Fast: The method should be fast to provide new estimates with a maximum

delay of 1 second, in order to minimize any outage in the spectrum measurement

campaign.

Flexible: The method shall be flexible enough to work with different RTL-

SDR devices (TCXO and non-TCXO models), possibly with large LO offset values

(several tens of ppm).

Efficient: The method should be executed in small-factor embedded

architectures such as Raspberry Pi.

4.2. LTESS-track

In this section, we detail the proposed methodology to estimate the LO offset of SDR

devices. Our method relies on the availability of LTE signals that are captured by the

SDR devices.

4.2.1. LTE signal model

We first briefly review a few fundamental concepts about LTE. Typically in LTE

networks, the user needs to get the cell id of the base station and the frame synchronization

to perform more complex operations. The first step in order to get the proper time and

frequency synchronization is to search for the PSS and Second Synchronization Signal
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Table 4.1: LTE Parameters

TF 10 ms Nominal period of LTE frames.

fS 1.92 MHz Nominal sampling frequency.

TS 520 ns Sampling period (f−1
S )

fD 806 MHz Nominal center frequency of the LTE cell ∗

∗ We have tested three different LTE cells at different frequencies: 796 MHz, 806 MHz and 816 MHz. All
results were very similar. In this work we present only the results for the 806 MHz cell.

(SSS) which have a band of 1.4 MHz [63, Chapter 7] [64]. LTE defines two structures

called frame and subframe [63]. Each frame has a duration of 10 ms and contains 10

subframes of 1 ms each. The PSS and SSS signals can be found in subframes 0 and 5 of

every frame. The PSS is a frequency-domain Zadoff-Chu [64] 128 bits long sequence and

encodes the layer identity of the cell. The SSS encodes the cell identity and is modulated

using Binary Phase-Shift Keying (BPSK). For our purposes, we consider only the PSS

signal and its periodicity (twice every 10 ms) to design a frequency offset estimation

method.

The choice of LTE synchronization signals as absolute clock reference is motivated by

the very high precision and stability of such signals: in fact, LTE base stations must meet

strict requirements in terms of frequency stability with maximum tolerance below 0.05

ppm [65], i.e., much smaller than the expected tolerance of RTL-SDR devices currently

on the market.

We consider the LTE parameters as shown in Table 4.1. The input stream of complex

baseband In-phase & Quadrature (I/Q) samples at the sampling rate fS will be denoted

by x[n]
def

= x(t)|t=nTs . We shall index in k = 0, 1, . . . consecutive LTE frames. Without

loss of generality, we fix the time origin at the (true) arrival time of the PSS signal for

the first frame k = 0. For the generic k-th frame, we denote by y[k] the true (unknown)

PSS arrival time, and by ŷ[k] the corresponding measured value, as obtained with the

measurement procedure detailed later in Section 4.2.2. Two distinct sources of errors

affect the measured value ŷ[k]: the clock error ρk and the measurement noise ek, i.e.

ŷ[k] = y[k] + ρk + ek = kTF + ρk + ek. (4.2)

The measurement noise term ek is modeled by a sequence of i.i.d. random variables with

zero-mean and variance σ2
e . The clock error accumulated until the k-th frame is given by

the integral of the instantaneous (relative) frequency deviation γ(t) and can be developed
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as

ρk =

∫ kTF

0
γ(t)dt ≈ γkTF +

∫ kTF

0

ℓ
∑

n=1

βntndt, (4.3)

wherein the last term represents the time-varying component of the LO frequency and is

modeled (approximated) by a polynomial of sufficiently high degree ℓ. From Eq. (4.3) we

derive the general signal model for time-varying LO frequency:

ŷ[k] = (1 + γ) · kTF +
ℓ+1
∑

n=2

αnkn + ek (4.4)

with αn = βnT n
F /n. For a short observation interval we can neglect the time-varying

component (αn = 0, n = 1, . . . , ℓ) and consider a static scenario with fixed frequency

offset γ(t) = γ. In this special case the model simplifies as:

ŷ[k] = (1 + γ) · kTF + ek. (4.5)

Consider an observation window of duration W seconds embedding N
def

= ⌊ W
TF

⌋ frames.

The vector of measurements collected in said window will be denoted by ŷ
def

= {ŷ[k], k =

1, . . . , N}. The choice between the static model Eq. (4.5) and the dynamic model Eq. (4.4)

depends on the duration W of the observation window and on the temporal stability of

the LO. For short windows of a few seconds, we can neglect temporal variations and

resort to the simpler static model Eq. (4.5).

4.2.2. Estimation of PSS arrival times

In this section, we describe the method implemented to obtain a precise estimate of

the (sequence of) PSS arrival times ŷ[k]. The overall scheme is depicted in Figure 4.2.

The PSS tracking stage is preceded by an initial acquisition stage.

The core block of the PSS detection process is a correlation filter: a chunk of L = 128

samples from the input I/Q stream starting at position m is correlated with the known

ZC-128 template z[n]. However, we introduce the following refinements:

Frequency offset compensation: in order to counteract the effect of frequency

offset in the down-conversion stage, we consider the following frequency-adjusted

template

z′[n]
def

= z[n] · exp
−j2πγ̂0

fD
fS (4.6)

wherein γ̂0 denotes a coarse initial estimate of the frequency offset, obtained during

the initial acquisition phase.

Up-sampling: in order to achieve sub-sample resolution for the individual

estimate ŷ[k] we up-sample the I/Q stream by a large factor U . Unless differently
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Figure 4.2: Overview of our PSS tracking algorithm.

specified we used U = 40. For more details on the principles of re-sampling and

up-sampling refer to [66].

To speed-up the computation process, in the tracking stage correlation and

up-sampling are applied only to the portion of the incoming I/Q stream in the

neighborhood of the expected PSS position as predicted from the previous frame,

and specifically in a search window of ±Nsearch samples centered at ŷ[k − 1] + TF ,

with Nsearch << TF fS .

Hereafter we elaborate on the need to consider the frequency-adjusted template Eq.

(4.6). Generally speaking, for a continuous-time signal s(t), the ambiguity function A(τ, ν)

is given by the cross-correlation of s(t) with a copy of the same signal delayed in time by

τ (sec) and shifted in frequency by ν (Hz), formally:

A(τ, ν)
def

=

∣

∣

∣

∣

∫ ∞

∞
s(t) · s∗(t − τ) exp+j2πνt dt

∣

∣

∣

∣

(4.7)

4.2.3. Estimation of instantaneous frequency deviation

The overall estimation process is split into two stages:

Estimation of PSS arrival times ŷ from the stream of I/Q samples, as presented

in the previous subsection.

Estimation of the instantaneous frequency offset γ̂ (or γ̂(t) for the dynamic

case) from the vector of PSS arrival times ŷ.
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(a) non-TCXO “blue" (b) TCXO “silver"

Figure 4.3: Short-term fluctuations: the red circles represent estimates obtained with
short windows of 5 seconds and linear regression. The continuous line represents the
result of higher-order polynomial regression on the total window of 5 minutes

The latter is detailed in the present subsection.

If the observation window W is sufficiently short, we can neglect higher-order

variations of the instantaneous LO frequency (i.e., frequency drift) occurring within the

observation window and consider the fixed-frequency (static) model in Eq. (4.5). In this

case, from the vector of N measurements ŷ[k] we obtain an estimate γ̂ simply by linear

regression. The higher the precision of individual measurements (i.e., the lower σe), the

faster a reliable estimate of γ̂ can be achieved. In case of longer observation windows

(larger W ), we must consider the dynamic clock error model in Eq. (4.4). In this case,

we apply higher-order polynomial regression in order to estimate the coefficients γ̂ and

α̂n’s, and from the latter compute the β̂n’s. The collection of such parameters represents

the full trajectory of the LO frequency within the (long) observation window.

To illustrate, in Figure 4.3 we present the estimated profile of γ̂(t) obtained with

real devices during an observation window of 5 minutes. The continuous line was

obtained by processing all the data from the whole long window of W = 5 minutes

in a single batch, with regression to an high-order polynomial. The red circles represent

the estimates obtained by splitting the dataset into short sub-windows of W = 5 seconds,

with simple linear regression based on the static model from Eq. (4.5). As expected,

the two approaches lead to very similar estimates. Unless differently specified, in the

remainder of this work we will adopt the short-window approach with linear regression in

order to reduce complexity and computational time.
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4.3. Evaluation

In this section, we detail the testbed used and explain the comparison made by LTESS-

track against three open source tools for frequency offset estimation.

4.3.1. Testbed

We deploy an outdoor testbed to perform the evaluation of the frequency offset for

different RTL-SDR devices. We rely on the Raspberry Pi as the main board (Figure

4.4(a)) to execute the different tools in a Linux environment. We setup a set of

Raspberry Pi in a small container with TCXO RTL-SDR devices (Figure 4.4(b)) and non-

TCXO RTL-SDR devices (Figure 4.4(c)) attached to enable the comparison among the

different frequency estimation methods. In addition to that, we also measure the ambient

temperature and the temperature of the RTL-SDR case (with commercial temperature

sensors) in order to study their relation with the frequency offset.

4.3.2. Evaluated tools

The following three existing tools have been considered for this study in addition to

the newly proposed method:

rtl_test [59]. This benchmark tool is part of the rtl-sdr software. The simple

approach used for rtl_test is to count the samples read by the RTL-SDR device and

compare it with the nominal sampling rate.

Kalibrate-RTL [60]. This tool allows to scan and find Global System for

Mobile communications (GSM) base stations in a frequency range and therefore use

them to estimate the frequency offset of the rtl-sdr local oscillator.

(a) Raspberry Pi (b) TCXO “Silver" (c) Non-TCXO “Blue"

Figure 4.4: Hardware
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LTE-Cell-Scanner [61]. This tool performs a LTE base station search in

a given frequency range. Once the base station is detected the tool reports the

cell id and the frequency offset estimated using the PSS and SSS defined in LTE

structure [63, Chapter 7] [64].

We evaluate each tool described above against our LTESS-track. As it is detailed

below, we found some common limitations among those tools in terms of coarse time

granularity, long processing time and, in some cases, gross estimation errors.

Comparison with rtl_test. The main limitation of the rtl_test tool is the coarse

temporal resolution. This tool computes the frequency offset based on the difference

between the actual number of I/Q samples collected in each time-bin of duration ω interval

[0, ω] and the expected number thereof based on the nominal sampling frequency. This

method is affected by errors in the determination of the reference interval ω in the absence

of an accurate reference clock. rtl_test introduces a new source of error which is the

frequency offset of the internal clock of the computer where the measurement is performed.

In order to mitigate this error, two possible approaches can be taken: (1) choose a large

value for W , and (2) average k subsequent measurements. The temporal resolution of

the measurements is therefore τ
def

= k · ω. Figure 4.5 shows the estimated LO frequency

offset values reported by rtl_test after τ seconds based on the average of k subsequent

measurements in window of size W , for different values of the latter. The measurement

obtained with our method is also plotted as reference. It can be seen that even with

the most favorable setting (W = 60 sec), it takes more than 3 minutes for rtl_test to

approach the LO offset value as determined by LTESS-track after 1 sec. Furthermore,

with W = 5 sec the output values appear to be diverging. We conclude that rtl_test

cannot be used to evaluate frequency offset variations at timescales smaller than a few
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Figure 4.6: Comparison with Kalibrate-RTL (non-TCXO).

minutes.

Comparison with Kalibrate-RTL. We observed that this tool delivers grossly

erroneous results when used with devices affected by large frequency offsets. For example,

for the “blue" non-TCXO dongle, it was reporting an estimated value of γ̂ = −22 ppm

while all other tools where consistently reporting values around γ̂ = +59 ppm. The

inaccuracy of this tool when applied on devices with LO offsets in excess of about 20

ppm is a known issue1. The problem can be mitigated by providing a good initial guess

of the LO frequency offset as input to the tool. That means Kalibrate-RTL can be used

only to refine the initial estimate obtained by other means. In Figure 4.6, we report the

estimated values obtained with Kalibrate-RTL for different initial guess values given as

input. It should be noted that even with proper initialization, the reported output value

is sensitive to the exact input value.

Comparison with LTE-Cell-Scanner. Next, we tested LTE-Cell-Scanner.

Similarly to our new tool, also LTE-cell-track relies on LTE signals as reference. This

tool uses a fixed observation window of 160 ms and this is the value that we used in our

tests. For most of the measurement timebins, the reported value were very close to the

one estimated by our method—a clear indication of the precision of both tools. However,

in less 1% of the timebins we observed occasional large errors (see Figure 4.7(a) and

Figure 4.7(b)). Another limitation of this tool is the heavy computation: on a Raspberry

Pi 3 it takes approximately 1 minute to process the data and report a frequency offset

estimation. Due to such limitations, it is not possible with this tool to observe frequency

offset fluctuations at small timescales.

1https://github.com/steve-m/kalibrate-rtl/issues/8
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Figure 4.7: Long-term frequency offset analysis.
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4.3.3. Short-term variations

In Figure 4.8(a) and Figure 4.8(b), we plot the evolution of the LO frequency offset

estimated with LTESS-track. We run our method during the first 40 minutes of operation

(starting from a cold state of the devices), respectively, for the blue and silver dongles.

Figure 4.8(c) shows the device temperature. An initial transitory state is clearly in place,

with steeper LO frequency excursion due to initial heating. After approximately 20 min

the device temperature stabilizes (around 40◦C) and so does the LO frequency. For the

non-TCXO dongle, we observe a maximum excursion of 4 ppm within the first 5 minutes.

For the TCXO device, we observe a smaller variation of 0.8 ppm during the first 5 minutes.

After this initial warm-up, the LO offset excursion remains contained within 0.2 ppm, well

within the declared specifications of 1 ppm [62].

4.3.4. Long-term variations

We have conducted a set of long-term measurements to evaluate LO offset variations

of the RTL-SDR devices over a long period and across different temperatures, and at

the same time to perform a long-term comparison of the output of different tools. The

different tools were run on the same device in a round-robin fashion, with cycles of 10

minutes during a measurement period of 90 hours. In order to perform a fair comparison

we have configured each tool to work in the most favorable conditions. More specifically:

1) rtl_test runs during τ = 4 minutes and averaging the cumulative frequency offset

estimation every ω = 1 minute; 2) Kalibrate-RTL executes taking as input the initial

offset estimation as computed by LTESS-track in the previous time-bin; 3) LTE-Cell-

scanner executes with default configuration (recall that the computation time is about 1

minute in the Raspberry Pi). 4) LTESS-track is configured with an observation window

of W = 1 second.

Figure 4.7(a) shows the frequency offset estimates reported in each cycle of 10 minutes

by the different tools for the non-TCXO "Blue" device. The first observation is that

the frequency offsets in these devices are strongly depending on the temperature: the

higher the temperature, the higher the instantaneous LO frequency, as can be seen more

clearly in Figure 4.7(c). LTESS-track and LTE-Cell-Scanner report very similar values

except that the second one occasionally estimates the frequency offset with a large error.

Kalibrate-RTL shows a similar trend of the frequency offset estimated but with a gap

in the order of 1-2 ppm. Recall from Figure 4.6 that the output values of this tool are

somewhat dependent on the initial guess provided in input. It seems that the precision

of this tool is somewhat limited to 1-2 ppm. By last, rtl_test reports very inaccurate

frequency offset values even using the most favorable settings, with observation intervals

of 4 minutes. Notice that the resolution of the estimates provided by rtl_test is 1 ppm.



4.3 Evaluation 57

(a) Non-TCXO “Blue" (b) TCXO “Silver" (c) Sensor temp. vs Ambient
temp.

Figure 4.9: Frequency offset and temperature analysis.

The long-term results for the TCXO "Silver" RTL-SDR device are shown in

Figure 4.7(b). The rtl_test tool again reports grossly inaccurate offset values (peaks

of ± 10 ppm and average around -4 ppm). that the minimum resolution is 1 ppm.

However the other 3 tools (Kalibrate-RTL, LTE-Cell-Scanner and LTESS-track) report

similar values < 1 ppm. Kalibrate-RTL shows a higher gap compared to our method (0.5

ppm), but as said above, the precision of this tool is anyway coarser than 1 ppm. LTE-

Cell-Scanner shows again occasional large errors (maximum peaks of -9 ppm). Besides

those, we observe a small and systematic gap of 0.2 ppm between the estimates delivered

by LTE-Cell-Scanner and LTESS-track that could be caused by minor differences in the

computation details between the two tools.

In Figure 4.9(b), we plot the frequency offset of the TCXO RTL-SDR device as

reported by LTESS-track versus the device temperature. The plotted data points span

the whole measurement period of 90 hours. We can conclude that the stability of the

TCXO device is well within the specifications (< 1 ppm). Notice that up to 50◦C there is

an approximately linear relation between frequency offset and temperature while in the

range of 50-60◦C the frequency offset remains constant. On the other hand, non-TCXO

RTL-SDR devices (Figure 4.9(a)) shows an absolute frequency offset of several tens of

ppm (50-70) with daily fluctuations around ±5 ppm depending on the temperature. By

last, Figure 4.9(c) shows the linear relation between the temperature in the ambient and

the temperature on the RTL-SDR device during operation. Both TCXO and non-TCXO

devices seem to be 15◦C above the temperature of the environment.

4.3.5. Computation performance

We have evaluated the execution time of every tool by measuring the time required

to compute one single LO offset estimate. The tests are performed in a Quad-Core i5

laptop. LTE-Cell-Scanner reads samples for 160 ms and then computes a single frequency

offset measurement in 15 seconds, due to the heavy computations needed for the PSS and
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SSS detection. However, LTESS-track is optimized for LO estimation and is able to

provide a frequency offset measurement every second (reading samples for 0.5 seconds).

LTESS-track is also 10 times faster than Kalibrate-RTL which performs each frequency

offset measurement every 10 seconds. The evaluation of the rtl_test performance is not

relevant since the performance depends on the the observation window, and the latter is

4 minutes long for this tool (besides the frequency offset estimated is not reliable).

4.4. Discussion

We have introduced a precise and fast frequency offset estimator for low-cost SDR

devices connected to embedded boards. LTESS-track exploits the synchronization signals

broadcasted by LTE base stations to determine the LO offset of the RTL-SDR devices.

LTESS-track implements several key mechanisms not presented in other methods such

as initial frequency offset compensation, up-sampling, sampling of data only in time

proximity to the expected synchronization signal to reduce the computational cost and

linear regression of samples. Our method is 10 times faster than the best open-source

tools currently available, and is able to provide a new estimate every second. Therefore,

our method allows to analyze and evaluate short-variations in time of the frequency offset.

We have evaluated the two most common RTL-SDR devices in the market, the ones with

TCXO integrated and the ones without. We have demonstrated that the frequency offset

of the LO can be highly temperature dependent. Thanks to LTESS-track we can conclude

that the maximum fluctuation in the TCXO "silver" device is around 0.2 ppm, while the

non-TCXO "blue" device reports daily fluctuations of ± 5 ppm around an average value

that can be in the order of 50-70 ppm. LTESS-track can also work with any SDR front-end

capable of tuning to LTE frequencies. The advantages of our approach become significant

in crowd-sourced scenarios where LO frequency offsets need to be estimated quickly and

compensated for a massive number of RTL-SDR devices deployed over a wide area. In

Chapter 7 we will show the direct benefits of estimating and correcting the frequency

offset of the SDR receivers.

The MATLAB implementation of LTESS-track is released as open-source2.

2https://github.com/electrosense/LTESS-track



Part III

CrowdSourcing Scenarios for

IoT Spectrum Receivers

We are experiencing a democratization of the spectrum monitoring with the emergence

of low-cost Software Defined Radio (SDR) boards. Spectrum measurements are now

affordable with commonly available general-purpose low-cost hardware. A real example

of this idea is ElectroSense, that has been introduced in the previous chapters.

In this third part we introduce and describe crowdsourcing and collaborative

scenarios for Internet-of-Things (IoT) spectrum sensors in the context of the ElectroSense

network. Thanks to the high scalability and reconfigurability of the ElectroSense system,

collaborative approaches among sensors are feasible to provide higher capabilities than

what it is possible with one single spectrum sensor.

In Chapter 5 we focus on new Time-of-Arrival (ToA) estimation methods that can

run on low-cost SDR receivers which are used for widely deployed sensor networks for

collecting air traffic control messages such as the OpenSky Network, FlightAware or

FlightRadar24. We compare our proposed methods with the state-of-the-art using real

scenarios and real air traffic signals. The results obtained show that our algorithm can

deliver ToA estimations with nanosecond-level precision even using the cheapest SDR

hardware that is currently available.

In Chapter 6 we focus on the collaborative approach among IoT spectrum sensors in

order to enable collaborative narrow-band decoding capabilities considering the limited

network uplink bandwidth of the sensor’s connection. We describe a distributed system

architecture for collaborative radio signal monitoring and decoding that builds on SDR

receivers, propose a time multiplexing approach for sampling the spectrum and address

the strict time synchronization required among sensors to efficiently optimize the network

bandwidth usage and reconstruct the signal.

In Chapter 7, the last of this part, we present a methodology to enable the wideband

signal reconstruction in the backend using non-coherent receivers. We propose a method

for collaborative wideband signal decoding that exploits the idea of multiplexing in

frequency a certain number of non-coherent receivers in order to cover a higher signal

bandwidth that would not otherwise be possible using a single SDR receiver.
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“The most effective way to do it, is to do it.”

Amelia Earhart (1898 – 1937)

5 Collaborative Time-of-Arrival
Estimation for Aircraft Signals

Aircraft and unmanned aerial vehicles continuously transmit wireless signals for air

traffic control and collision avoidance purposes. These signals are either sent as responses

to interrogations by Secondary Surveillance Radar (SSR) or automatically on a periodic

basis (Automatic Dependent Surveillance - Broadcast (ADS-B)). Both types of signals

are transmitted over the so-called Mode S data link [67] on the 1090 MHz radio frequency.

Over the last few years, sensor network projects have emerged which collect those

signals using a crowd of low-cost Software Defined Radio (SDR) receivers such as e.g.

the OpenSky Network [51], Flightaware [68], Flightradar24 [69] and many others. These

sensor networks can leverage the Time-of-Arrival (ToA) of Mode S signals for various kinds

of applications, including aircraft localization [51,70], air traffic data verification [57,71–

74], and self-localization [75]. In those applications, a set of cooperating receivers measure

locally the ToA of the arriving signals and then send these data to a central computation

server. By joint processing the ToA of the same signal arriving at different receivers,

the central server is able to estimate the location of the transmitter, the location of the

receivers, or the exact time when the signal was transmitted.

The accuracy of these applications heavily depends on the precision of the ToA

estimation, and in order to estimate positions up to a few meters it is necessary to

estimate the ToA with nanosecond precision. The goal of this work is to provide a

method for the ToA estimation of Mode S signals that delivers nanosecond-level precision

even with low-cost SDR receivers, such as the widespread RTL-SDR dongle [62]. We show

that existing ToA estimation approaches based on a cross-correlation with a reconstructed

signal template are sub-optimal in the particular context of Mode S signals. In fact, the

loose tolerance margins allowed by the specifications on the shape and position of each

individual symbol within the packet (up to ± 50 ns) adds uncertainty to the reconstruction

of the whole packet waveform at the receiver.

We propose two alternative methods that improve the precision and at the same time

reduce the computational load. We test different variants of ToA estimation on real-world

signal traces captured with RTL-SDR, which is currently the cheapest SDR device on the
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market and widely used by crowdsourced sensor networks. Our results show that the best

proposed method delivers ToA estimates with a standard deviation error of 1.5 ns. We

further identify the limited dynamic range of the RTL-SDR device (less than 50 dB with

8-bit Analog-to-Digital Converter (ADC) and fixed Automatic Gain Controller (AGC)) as

the main performance bottleneck, and show that sub-nanosecond precision is achievable

for signals that are not clipped due the limited dynamic range of the device.

5.1. Background

This section provides background on aircraft signals which we rely on to estimate the

ToA, and the limitations of classical ToA estimation methods.

5.1.1. Mode S signal format

Hereafter we briefly review the physical-layer format of SSR Mode S [76] reply

and ADS-B messages transmitted by aircraft on the 1090 MHz channel. Mode S

transmissions contain some information like higher resolution altitude, aircraft capabilities

and identification, while ADS-B transmissions (which are considered Mode S extended

messages) contain aircraft Global Positioning System (GPS) position and velocity. Both

packet formats consist of a preamble of 8 µs plus a payload of 112 or 56 bits (only for

other SSR Mode S replies) sent at 1 Mbps rate, for a total duration of 120 µs or 64 µs,

respectively. The information bits are modulated with a simple Binary Pulse Position

Modulation (BPPM) scheme as illustrated in Figure 5.1: the symbol period of 1 µs is

divided into two “chips" of 0.5 µs, and the high-to-low and low-to-high transitions encode

bits “1" and “0", respectively. It is clear from Figure 5.1 that the BPPM modulation

produces two types of pulses of different duration, denoted hereafter as “Type-I" and

“Type-II". Type-I pulses have a nominal duration of one chip period and are produced

by the bit sequences “00", “11" and “10". The preamble consists of four Type-I pulses.

On the other hand, Type-II pulses have a nominal duration of two chip periods and

are produced exclusively by the “01" sequence. On average, we expect approximately

112/2 = 56 Type-I and 112/4 = 28 Type-II pulses for a payload of 112 bits.

The real-valued baseband signal is then modulated on the 1090 MHz carrier frequency

and transmitted over the air. On the receiver side, the decoding process relies exclusively

on the signal amplitude, since in BPPM the signal phase carries no information.

5.1.2. Limitation of standard Time-of-Arrival methods

The standard “course book" approach to ToA estimation in the Additive White

Gaussian Noise (AWGN) channel is a correlation filter [77]: the received signal is cross-

correlated with a known template corresponding to the source signal, and the point in

time maximizing the cross-correlation module is taken as ToA estimate.
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1 µsec 

“1” symbol 

1 µsec 

“0” symbol 

preamble 

8 µsec 

payload  

112 µsec 

Type-I peaks Type-II peak 

… … 
time 

Figure 5.1: Mode S packet structure with a BPPM.

The correlation method relies on the assumption that the source signal can be

reconstructed very precisely at the receiver, based on the signal specifications and

knowledge of the payload bits pm. Under this assumption, the correlation method

represents the Maximum Likelihood Estimator (MLE) [77]. However, this assumption

is problematic in the particular case of real-world Mode S signals.

In fact, the standard specifications tolerate up to ±50 ns jitter in the position of

each individual pulse within the packet: such high tolerance value is practically negligible

for the decoding process, but not for the task of determining the ToA with nanosecond

precision. As to the shape of each pulse, tolerance values of 50 ns are allowed for the pulse

duration and rise time and up to 150 ns for the decay time, while pulse amplitude may

vary up to 2 dB (approximately 60%). Such loose tolerance margins introduce uncertainty

in the prediction of the shape and position of the pulses in the source signal. Considering

that Mode S signals are typically received with high Signal-to-Noise Ratio (SNR), such

an uncertainty might well prevail over the effect of additive noise. Consequently, the

correlation-based approach with a known packet template is no longer guaranteed to be

optimal, motivating the quest for alternative, more precise methods.
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High-Precision
TOA estimation

modified receiver
with HPTOA function

IQ samples sm

decoded 
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Figure 5.2: Block diagram of improved receiver with high-precision Time-of-Arrival
estimation.

5.2. Our Time-of-Arrival estimation methods

In this section we describe the general approach to ToA estimation based on the

decoded payload and received signal samples, and then present the different ToA

estimation algorithms that were tested.

5.2.1. Signal acquisition architecture

In the software domain, the high-precision ToA estimation process can be seen as an

additional function that is optionally called within the receiver and remains independent

from the main decoding process. As such, it can be implemented on top of any legacy

receiver, including but not limited to the widely adopted open-source tool dump1090 [78].

The overall block diagram of the proposed scheme is exemplified in Figure 5.2. The

legacy receiver takes as input a stream of complex in-phase and quadrature (In-phase

& Quadrature (I/Q)) samples collected at sampling rate fs (for RTL-SDR hardware

fs = 2.4 MHz). The legacy receiver seeks to detect and decode the incoming packet and,

if successful, provides as output the decoded bit sequence pm along with the indication

of the leading I/Q sample of the detected packet.

Denote by sm the sequence of complex I/Q samples corresponding to the whole

packet. The sequence includes approximately 300 samples since we also pick a few samples

immediately before and after the packet in order to mitigate edge effects. The sample

vector sm and the decoded bit vector pm represent the input to our ToA estimation block.

5.2.2. Proposed methods: CorrPulse and PeakPulse

Hereafter we describe two novel ToA estimation algorithms specifically developed for

Mode S signals. For a generic packet m we shall denote by Km the total number of pulses
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Figure 5.3: Example of received signal amplitude corresponding to the preamble and
initial payload of a real ADS-B packet. Original samples at fs = 2.4 MHz (top, red
circles) and corresponding upsampled version (bottom, blue line).

in the whole packet (preamble and payload). The input vector of complex samples sm

is preliminary upsampled by a factor N and transformed into vector s
′
m (for a review of

upsampling process see e.g. [66]).

To illustrate, Figure 5.3 plots an excerpt of the amplitude of both vectors, namely

|sm| (top plot) and |s′
m| (bottom plot), for a generic packet found in a real-world trace.

The key aspect of the proposed algorithms is that the actual temporal position τ̂k

of the generic kth pulse within the packet is estimated independently from other pulses,

with no need to reconstruct a template for the whole packet. For each pulse k ≥ 2, we

compute the individual shift ∆τk
def

= τ̂k −τk, i.e., the difference between the estimated and

nominal pulse position relative to the (estimated) position of the first pulse. Finally, the

pulse shifts are averaged in order to obtain the final ToA estimate:

t̂ = τ̂1 +
1

Km − 1

Km
∑

k=2

∆τk (5.1)

The two proposed variants differ in the way individual pulse position estimates are

obtained, and which type(s) of pulses are considered. In the first variant, labeled

CorrPulse, each pulse position is determined through pulse-level cross-correlation of the
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upsampled vector s
′
m with the corresponding nominal pulse shape. Both Type-I and

Type-II pulses are considered in the final averaging.

In the second variant, labeled PeakPulse, individual pulse positions are determined by

simply picking the local maximum point value within the pulse interval, with no cross-

correlation operation. In this variant only Type-I pulses are considered, while Type-II

pulses are ignored. This is motivated by the fact that Type-II pulses have lower curvature,

hence their local peaks cannot be identified as reliably as for Type-I pulses.

5.3. Evaluation Methodology

This section describes how we evaluate our new methods. First, we introduce the other

competing methods taken as reference for the comparison. Then, we present the testbed

setup with commercial low-cost hardware. Finally, we provide details on the procedure

adopted to empirically assess the precision of the ToA measurement methods in the given

setup.

5.3.1. Other methods for comparison

5.3.1.1. Correlation with whole-packet template: CorrPacket

This is the canonical cross-correlation method with a known signal template. For

every packet m, the whole packet template is reconstructed from the decoded bits pm and

then cross-correlated with the amplitude of the incoming signal. Here also, upsampling

by a factor N is adopted to achieve sub-sample precision. Within the template, the

kth pulse is positioned at the nominal time τk. As to the pulse shapes, we have tested

two different variants: “Rectangular" (R), and “Smoothed" (S). The two versions will

be denoted by CorrPacket/R and CorrPacket/S. The rectangular pulses have a nominal

duration of 0.5 µs and 1 µs for Type-I and Type-II pulses, respectively, and zero rise/decay

times. The rectangular pulse mask is represented exclusively by “0" and “1" values,

hence multiplications with another vector reduce to element selection, which saves on

computation load. The “Smoothed" shape corresponds to the output of a low-pass filter

with passband of 2.4 MHz—matched to the bandwidth of the RTL-SDR receiver—when

the input signal is a nominal Type-I/Type-II pulse with the minimum decay/rise time of

50 ns as per specifications [79].

5.3.1.2. Existing dump1090 based implementations

We also evaluate the precision of the timestamp reported by the mutability fork of

the open-source tool dump1090 [78]. Furthermore, we test on our traces also the method

adopted by Eichelberger et al. in a ACM SenSys’17 paper [75] which is also based on

dump1090. Code inspection revealed that this method is based on a cross-correlation
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Figure 5.4: Experimental setup. Two identical receivers connected to the same antenna
via a splitter are collecting Mode S messages sent by aircraft.

(implemented in frequency domain) with a partial packet template consisting of the

preamble plus one quarter of the payload, with rectangular pulses and upsampling factor

N = 25.

5.3.2. Testbed setup

The experimental setup consists of two identical sensors connected to a single antenna

through a power splitter and cables of identical length. The sensors are located on the

roof of a building as Figure 5.4 shows.

Every sensor consists of one RTL-SDRv3 “Silver" model [62] attached to a Raspberry

Pi-3 [31]. The AGC gain is set to a fixed value, manually tuned to maximize the packet

decoding rate. The sampling rate was set to fs = 2.4 MHz, the maximum value that our

setup is able to acquire with sample losses. Every I and Q sample is represented with 8

bit. The full stream of I/Q samples are recorded one and processed multiple times offline.

Our results are based on a sample trace of 5 minutes collected in Thun (Switzerland) on

02-Aug-2017 at time 09:41. The number of ADS-B packets that are correctly decoded at

both sensors by the dump1090 open-source tool [78] amount to 26445 from 59 different

aircraft.
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(a) Low upsampling factor (b) High upsampling factor

Figure 5.5: ECDF of ∆ǫ residuals.

5.3.3. Evaluation Metrics

In this section, we briefly describe the methodology adopted to assess the precision of

the different ToA estimation methods. The problem is not trivial, since our receivers are

not synchronized and the “true" ToA is unknown. Therefore, we developed an evaluation

method which allows us to quantify the ToA precision without a ground truth.

Denote by tm,i the true absolute arrival time of packet m to receiver i and by t̂m,i

the corresponding measured ToA (by the method under test). In general, the measured

value t̂m,i is affected by two distinct sources of error, namely clock error and measurement

noise:

t̂m,i = tm,i + ξi(t)|t=tm,i
+ ǫm,i. (5.2)

The term ξi(t) models the clock error between the receiver clock and the absolute time

reference, and can be modeled by a slowly-varying function of time. Its magnitude

depends on the hardware characteristics of the device, and specifically on the stability

of the local oscillator.

The term ǫm,i represents the measurement noise in the ToA estimation process and is

modeled by a random variable with zero mean and variance σ2
TOA. The precision of the

TOA estimate, defined as the reciprocal of the noise variance, is independent of the clock

error. The goal of the present study is to reduce σ2
TOA.

The problem of counteracting the clock error component remains outside the scope of

the present contribution. Here it suffices to mention that the clock error can be mitigated

by adopting receivers with GPS Disciplined Oscillator (GPSDO), or it can be estimated

and compensated in post-processing [29,80,81].

Hereafter we illustrate the methodology to experimentally quantify the empirical

ToA standard deviation σ̂TOA notwithstanding the presence of a non-zero clock error

component. First, we need to get rid of the unknown true absolute arrival time tm,i in
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Figure 5.6: TOA standard dev. error vs. upsampling factor N

Equation (5.2). Since we use two identical receivers attached to the same antenna, we can

set tm,1 = tm,2 = tm and subtract the ToA measurements at the two sensors to obtain

the corresponding time difference:

∆̂tm
def

= t̂m,2 − t̂m,1 = ∆ξ(tm) + ∆ǫm (5.3)

wherein ∆ξ(t)
def

= ξ2(t) − ξ1(t) denotes the compound clock error, and ∆ǫm
def

= ǫm,2 − ǫm,1

the compound measurement error with variance σ2
∆ǫ = 2σ2

TOA.

At short time-scales, within the coherence time of the process ∆ξ(t), the clock error

represents a systematic error, i.e. a bias term that can be estimated and removed in order

to estimate the error variance σ2
∆ǫ. We do so by modeling the slowly-varying function

∆ξi(t) by a polynomial whose coefficients are estimated by standard order-recursive Least

Squares (LS) (refer to [77, Chapter 8] for details). After removing the estimated clock error

component, we obtain a set of residuals {∆ǫ}. Their Mean Square Error (MSE) represents

an empirical estimate of twice the ToA variance MSE∆ǫ = 2 · σ2
TOA. Accordingly, their

Root Mean Square Error (RMSE) provides a direct empirical estimate of the ToA error

standard deviation, formally:

σ̂TOA =
1√
2

RMSE∆ǫ ≈ 0.7 · RMSE∆ǫ.

5.4. Numerical Results

We now present the results on the precision of the different ToA estimation methods

as evaluated in our testbed.
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Table 5.1: Empirical estimates of TOA error standard deviation σ̂TOA.

Estimation method σ̂TOA [nanoseconds]

all packets L M H

legacy dump1090 45.20 44.94 45.19 45.43

SenSys’17, N = 25 5.90 6.11 5.88 5.78

CorrPacket/R, N = 25 4.98 5.48 4.85 4.94

CorrPacket/R, N = 83 2.14 3.04 1.78 2.35

CorrPacket/S, N = 83 2.07 3.00 1.68 2.275

CorrPulse/R, N = 25 1.89 2.75 1.56 1.86

CorrPulse/R, N = 83 1.63 2.72 1.04 1.77

CorrPulse/S, N = 83 1.51 2.60 0.79 1.77

PeakPulse, N = 25 2.20 3.36 1.70 2.23

PeakPulse, N = 83 2.12 3.44 1.62 2.17

5.4.1. Error distribution

In Figure 5.5 we plot the Empirical Cumulative Distribution Function (ECDF) of

the residuals ∆ǫ’s obtained with different ToA estimation methods for all the packets in

the test trace. The corresponding values of the ToA error standard deviation σ̂TOA are

reported in the leftmost column of Table 5.1.

For those applications where the computation load is of concern, it is relevant

to investigate the performance of the different methods with moderate value of the

upsampling factor (N = 25). For CorrPacket and CorrPulse, we consider the rectangular

pulse shape with binary 0/1 values, due to lower computation load. Referring to Figure

5.5(a), we observe that the proposed PeakPulse algorithm achieves a RMSE∆ǫ = 3.15 ns,

less than half the value of the canonical CorrPacket/R method. It is remarkable that such

good result was obtained with no cross-correlation operation. Figure 5.6 shows σ̂TOA for

different values of the upsampling factor N . We observe that the precision of the proposed

methods PeakPulse and CorrPulse/R improves faster than CorrPacket/R with increasing

N . These results indicate that PeakPulse should be preferred when computation load is

at premium.

Next we consider applications that enjoy abundant computation power, for which the

main goal is to maximize precision and computation load is not of concern. For these,

it is convenient to consider higher upsampling factors (N = 83 in our case) and, for

the cross-correlation methods, the more elaborated “Smoothed" pulse shape. The latter
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Figure 5.7: Absolute error |∆ǫm| vs. packet strength γm.

matches more closely the pulse shape passed through the RTL-SDR front-end, leading to

slightly higher precision than the simpler “Rectangular" shape, as can be verified from

Table 5.1. The ECDF of the residuals ∆ǫ’s for these methods are plotted in Figure 5.5(b).

It can be seen that the proposed CorrPulse/S method is more precise than the classical

CorrPacket/S method, and achieves RMSE∆ǫ = 2.16 ns corresponding to σ̂TOA = 1.51

ns.

5.4.2. Error vs. signal strength

In the following, we investigate the impact of signal strength on the ToA error obtained

with the most precise method, namely CorrPulse/S with N = 83. For a generic packet

m and sensor i, we denote by γm,i the average of the squared pulse height over all pulses

— an indicator of the arriving packet strength. Furthermore, we denote by βm,i the

number of pulses that are clipped in the receiver due to one or more of the corresponding

I/Q samples saturating the ADC. In Figure 5.7, we plot for each individual packet m

the absolute value of the residual error |∆ǫm| obtained with CorrPulse/S (N = 83)

against the mean signal strength between the two sensors γm
def

=
γm,1+γm,2

2 . Each packet

is classified into one of three classes: packets with γm ≤ 0.04 are labeled by “L", packets

with mini=1,2 βm,i ≥ 10 are labeled with “H", and all remaining packets are labeled with

“M". The three classes are marked respectively with black, red and blue markers in Figure

5.7. The estimated ToA error standard deviation obtained by each method for each class

are reported in Table 5.1. On one extreme, timing estimates for “L" packets with lower

strength are impaired by quantization noise. On the other extreme, packets received with

high strength are subject to ADC clipping, a form of distortion that clearly degrades

timing precision. As expected, these two classes yield higher error with all methods.
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Figure 5.8: Quantile-quantile plot of empirical errors ∆ǫ vs. normal distribution.

Between the two extremes, the strength of “M" packets fits well the dynamic range: for

these, the proposed method achieves σ̂TOA = 0.79 ns.

In our traces, less than 60% of all packets fall into class “M". With better hardware,

and specifically with more ADC bits and larger dynamic range, it would be possible to

tune the AGC gain so as to increase the fraction of packets falling in this class, thus

improving the overall precision.

The above results indicate that the received packet metrics γm,1 and βm,i can be used

to provide, for each individual ToA measurement t̂m,i, also an indication of the expected

precision, i.e., of the error variance σ̂2
m,i affecting each individual measurement. In this

way, algorithms that take ToA measurements as input (e.g., for position estimation) have

the possibility to weight optimally each individual input measurement, as done e.g. in

Weighted Least Squares [82] methods.

Finally, we find that within each class the empirical error distribution is very well

approximated by the Gaussian distribution, as seen from the normal Q-Q plots in Figure

5.8. This justifies the adoption of LS methods for position estimation problems based on

input ToA measurements [29], since for normally distributed input errors the LS solution

coincides with the MLE.
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5.5. Discussion

We have presented two variants of a novel ToA estimation method for Mode S signals

that does not rely on long cross-correlations with the template of a full packet. The most

precise variant, namely CorrPulse/S, involves only short cross-correlation operations on

individual pulses. The other variant, namely PeakPulse, is lighter to compute, involves

no cross-correlation operation and works well also with moderate upsampling factors.

We have shown that such algorithms can achieve TOA estimates with nanosecond-level

precision even with real-world signals captured with the cheapest SDR hardware that

is currently available, namely RTL-SDR. A closer look at the test results reveals that

the main limiting factor for the achievable ToA precision with RTL-SDR is the limited

dynamic range, resulting in a large fraction of packets being clipped or drowned into

quantization noise. For packets that are received with signal strength well within the

dynamic range of the receiver, the CorrPulse/S achieves sub-nanosecond precision. It can

be expected that precision can be further improved with better hardware. The PeakPulse

method has been implemented in C, integrated in the dump1090 receiver and is released

as open-source1.

1http://github.com/openskynetwork/dump1090-hptoa





“It is the long history of humankind that those who learned

to collaborate and improvise most effectively have prevailed”

Charles Darwin (1809 – 1882)

6 Collaborative Narrowband
Spectrum Data Decoding

We are experiencing a democratization of the spectrum monitoring with the emergence

of low-cost software-defined radios such as RTL-Software Defined Radio (SDR) [30, 34]

and GnuRadio devices [83]. Spectrum measurements are now affordable with commonly

available general-purpose low-cost hardware. This has led researchers to the idea of

building a networked and distributed infrastructure connected over the public Internet [16,

17, 84], crowdsourcing the spectrum data collection to users with Internet connection.

While these systems represent a huge improvement over how the spectrum is monitored

today, they are all limited to applications in which simple power spectrum measurements

are sufficient. In this work we aim to make a step ahead, crowdsourcing the collection

of raw digitalized In-phase & Quadrature (I/Q) radio samples in a frequency band over

time and decode the information in the backend. Decoding of radio spectrum data in

the backend poses various challenges that do not exist in classical spectrum monitoring

solutions:

Challenge 1: Signal acquisition with low-cost IoT spectrum sensors. Low-

cost spectrum sensors are much more constrained in terms of sampling rate, frequency

bandwidth, sweep time, dynamic range and sensitivity than their high-end counterpart,

limiting the effectiveness of a spectrum monitoring system. At the extreme end, we

envision to use commodity hardware such as USB dongles for radio signal acquisition that

cost not more than $12 using software available as open-source [30, 34]. The spectrum

sensor used in this work is shown in Figure 6.1.

Challenge 2: The network bandwidth problem. The second challenge is that the

system requires the participation of users that may deploy the Internet-of-Things (IoT)

spectrum sensors at a location (such as their homes) with a limited network bandwidth.

This bandwidth is not a concern for most crowdsourcing initiatives which collect averages

of the power spectrum. Instead the collection of raw I/Q samples is necessary to decode

the original information in the backend. This imposes a large volume of data which is

several orders of magnitude higher than the power spectrum as collected in typical sensing

75
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GPSDO

Embedded 
machine
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Figure 6.1: IoT RF sensor for Challenge 1.

contexts. The core idea we investigate in this work to address Challenge 2 is to exploit the

similarity of the spectrum in the time domain in order to identify spectrum sensors that

are in the coverage range of the same transmitters (as shown in Figure 6.2). The principle

is to instruct from the backend the spectrum sensors to listen to the same frequency band

of interest in separate time slots, thus alleviating the amount of I/Q samples to be sent

from each sensor (and user). However, there is a fundamental problem in this approach

that brings to the challenge discussed next.

Challenge 3: The need for a fine time synchronization. It is not trivial to apply a

collaborative approach to the time domain analysis. In fact, collaboration for decoding a

signal transmitted over the air has much stricter timing requirements than signal energy

detection and occupancy map studies of independent sensor entities, each responsible

to monitor the spectrum in a given area and with fully autonomous decisions for signal

detection and radio occupancy such as in the focus of related works [17, 85–88]. The

approach we propose requires a time synchronization in the order of the sampling rate of

the signal to be decoded and up to the frequency bandwidth of the Radio Frequency (RF)

frontend (corresponding to sub-microseconds synchronization for our RF frontends).

Our contributions. We present and implement a system architecture able to collect

the digitalized radio samples (output of the Analog-to-Digital Converter (ADC) of each

sensor) of different sensors and to reconstruct and decode the signals in the backend.

The collaborative approach alleviates the network bandwidth load used by each sensor

by exploiting the similarity of the spectrum of sensors in the same coverage area. We

provide the following key contributions:

We introduce a distributed architecture for radio signal monitoring and

decoding using the digital samples collected by low-cost spectrum sensors.
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Figure 6.2: IoT RF sensors in coverage range of the same transmitter for Challenge 2.

We propose different techniques to solve the problem of timing synchronization

among the sensors even when it is not possible to use Global Positioning System

(GPS) for signal acquisition synchronization.

We present a distributed time multiplexing mechanism and introduce a Kalman

filter model that operates in the backend. It is used to estimate and correct

the relative time offset between pairs of sensors with a limited amount of uplink

bandwidth usage.

We evaluate the system with a proof-of-concept using real data from Long

Term Evolution (LTE) base stations.

We make the sensing spectrum software available as open source1.

The reminder of this chapter is organized as follows. We discuss the system

components and the principles for the time division approach in Section 6.1. We present

our findings and related techniques to solve the problem of timing synchronization in

Section 6.2. We present the distributed time multiplexing mechanism that uses a Kalman

filter model to estimate the offset with a limited amount of data in Section 6.3. We then

evaluate the platform and the algorithms in Section 6.4. Related work is provided in

Section 6.6. Finally, we draw the conclusions in Section 6.7.

1http://github.com/electrosense/sensing/

http://github.com/electrosense/sensing/
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6.1. Architecture

This work considers the overarching goal of collecting digitalized radio samples of

encoded signals transmitted over the air and decoding them in the backend. Next, we

present the proposed architecture which is based on the main ElectroSense architecture

explained in Chapter 2 but we also add a GPS device in order to study and evaluate the

time synchronization among IoT spectrum sensors.

Backend

Controller

INTERNET

Embedded machine

Signal

pre-processing
Transmission to

the backend

Tuner

ADC

Spectrum Sensor 1

Embedded machine

Signal

pre-processing
Transmission to
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GPS Time

Synchronization

GPS Time
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Figure 6.3: High-level overview of the distributed system architecture for collaborative
radio signal monitoring and decoding.
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6.1.1. System components

A high-level overview of the distributed system architecture for crowdsourcing radio

signal monitoring and decoding is presented in Figure 6.3. We can distinguish two main

components, the sensors and the backend.

IoT spectrum sensors. We consider sensors such as the ones shown in Figure 6.1.

We rely on a low-cost software defined-radio USB dongle for signal acquisition and a

commodity embedded machine for signal pre-processing and transmission to the backend.

Our hardware components are commercial off-the-shelf and among the cheapest currently

on the market (total sensor cost of less than 100 $).

Our radio signal acquisition hardware is a RTL-SDR based software-defined radio that

acts as RF frontend, providing raw I/Q samples to the embedded machine over USB. The

USB dongle can sample any radio frequency between 24 and 1766 MHz and send it to the

embedded machine at a maximum rate of 2.4 MS/s without any sample losses.

The embedded machine is a Raspberry Pi, model B+ with a CPU clocked at 700

MHz and 512 MB of RAM. A dedicated Raspberry Pi software module accesses the

RF frontend through the RTL-SDR library (librtlsdr from the OsmocomSDR project2)

to retrieve raw I/Q samples in a configurable frequency band. The Raspberry Pi then

processes, compresses (loss-less compression making use of the zlib data compression

library [34]) and sends the samples to the backend through Internet using the on-board

Ethernet interface.

Backend. The backend is a server or set of servers with sufficient large storage and

computation capabilities. It contains the two main blocks shown in Figure 6.3. The

controller block sends commands to the spectrum sensors and instructs them about the

configuration scheme for data collection. The storage, processing and decoding block

provides sufficient storage to save all I/Q samples and collaboratively recombines and

decodes spectrum data.

6.1.2. Spectrum similarity for the network bandwidth problem

Determine the spectrum similarity among sensors can be done by correlating in

frequency a small amount of data (c.f Appendix A). Reconstruct and decode the signal

in the backend requires a more complex architecture, which is described in this Chapter.

Transmitting raw I/Q samples to the backend requires a large volume of data. In

order to alleviate this problem, we consider that low-cost sensors can allow a pervasive

deployment, with nodes belonging to users in the same neighborhood and observing a

similar spectrum in the frequencies of interest.

Example. We consider two sensors with similarity in the spectrum. The controller

in the backend (c.f Figure 6.3) assigns time slots to each sensor to collect I/Q samples

2http://osmocom.org

http://osmocom.org


80 Collaborative Narrowband Spectrum Data Decoding

alternating the sensors in subsequent time slots (sensor 1 in time slot 1, sensor 2 in

time slot 2, sensor 1 in time slot 3, etc.). Samples are sent by sensor 1 and sensor 2

to the backend. After signal processing and storing, the original signal is recombined

and decoded. Considering slots of equal duration, this mechanism alleviates the network

bandwidth load of each user by a factor equal to the number of sensors in range of the

same transmitter.

Recombining the original signal with partial data from multiple sensors requires a tight

time synchronization among sensors. Otherwise, the decoder will not be able to correctly

decode the signals transmitted over the air. However, precisely collecting I/Q samples in

each sensor during the time slots assigned to is a difficult task given our software-defined

and low-cost distributed sensor network architecture. In the next section, we study this

problem in details.

6.2. Timing Synchronization Analysis

In order to apply the time division approach presented in Section 6.1.2, the backend

requires a precision close to the sampling rate of the signal to be decoded in order to align

the I/Q samples. This precision can be up to the frequency bandwidth of the RF frontend,

which corresponds to sub-microseconds time synchronization for our RF frontends. In this

section, we study the techniques we apply and the problems we have to solve to guarantee

this high precision of the time synchronization.

6.2.1. Precision with GPS disciplined oscillator

We embed a low-cost GPS Disciplined Oscillator (GPSDO) to improve the precision

of the timing synchronization between pairs of spectrum sensors (see Figure 6.1). The

GPSDO works as a stable time reference with nanosecond accuracy, and it is directly

connected to the Raspberry Pi (RPi) as a global time reference using a General Purpose

Input/Output (GPIO) pin. Using this pin, the GPSDO sends a Pulse Per Second (PPS)

signal every second. In this way, the Raspberry Pi knows when a second starts and

can correct any possible local clock drift. Local timestamps are then appended by the

Raspberry Pi to each single I/Q sample using the time reference provided by the GPSDO

module.

Evaluation. We integrate the GPSDO module in two sensors and evaluate their

relative time offset in two scenarios. In the GPSDO+RPi scenario, the two sensors are

scheduled to execute a command (local timestamp acquisition) at a given absolute time.

The offset is computed as the difference of the local timestamps acquired in each sensor.

In the GPSDO+RPi+RF scenario, the sensors are scheduled to start the RF sensing

command to tune to the same central frequency at the same absolute time. The offset

is computed by detecting the time shift between the signals captured by the two sensors



6.2 Timing Synchronization Analysis 81

0

0. 2

0. 4

0. 6

0. 8

Time offset (μs)

E
C

D
F

GPSDO+RPi

GPSDO+RPi+RF

0

100

200

300

400

Time (ms)

O
ffs

e
t 

(μ
s
)

Continuous Sampling

Start/Stop Sampling

100 101 102 103 104

1

0 0.025 0.05 0.075 0.1 0.125 0.15

Figure 6.4: GPSDO+RPi: time offset between spectrum sensors computed at the system
level; GPSDO+RPi+RF: time offset for the acquisition of samples via the radio frontend
(top). Comparison of the time offset, using continuous sampling strategy in both sensors
and the start/stop sampling strategy in both sensors (bottom).

(the methodology to detect the time shift is introduced in Section 6.2.3). The results are

plotted in Figure 6.4 (top). We observe that the GPSDO does not suffice to achieve high

precision (1 µs or less) between sensors in both scenarios.

Results analysis. There are three fundamental reasons imposed by our low-cost

sensor hardware for the results in Figure 6.4 (top). First, the minimum resolution of the

embedded machine software clock (i.e. of the RPi) is 1 µs. Even with the GPSDO as a

time reference signal, Figure 6.4 (top) shows that the 80th-percentile of the time offset

between two sensors (GPSDO+RPi) remains up to 8 µs. It follows that this software

clock is subjected to significant noise.

Second, the impossibility to directly discipline the Local Oscillator (LO) of the RF

front-end by using the GPSDO. Low-cost RF front-ends, such as the one shown in

Figure 6.1, do not allow an input signal clock to discipline their internal LO without

making any custom modification. As a result, it is not possible to synchronize the RF

front-ends at nanosecond level in the signal acquisition stage.

Third, the software-based signal acquisition transmits I/Q samples over the USB

interface of the spectrum sensor. This USB interface introduces significant jitter which

manifests itself in large sampling offsets between signals that are acquired by different

sensors. Figure 6.4 (top) shows that the 80th-percentile time offset of two signals acquired
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by different sensors (GPSDO+RPi+RF) is about 278 µs. Considering a sampling rate of

2.4 MS/s, an offset of 278 µs results already in a signal misalignment of more than 600

samples.

6.2.2. Continuous sampling methodology

The results in the previous section demonstrate a significant relative time shift of the

I/Q samples collected by independent spectrum sensors. We now instruct the two sensors

to start and stop sampling at the same time and we compute the offset by detecting the

time shift of the signals acquired. Figure 6.4 (bottom) shows that the time offset between

sensors varies over time with ranges between 0 and 400 µs (0-800 I/Q samples). Such

a large variation of the offset is undesired for the time division approach presented in

Section 6.1.2.

While a time-division approach intuitively suggests to apply a start-stop approach

as the one studied above, we propose instead to continuously collect samples from the

RF interface in each spectrum sensor. In other terms, we start the sampling process

at the booting time of the board and do not stop it. In this method, the sensor is

sampling continuously, but it just sends the I/Q samples of its slot time to the backend and

dumps the rest of samples. We show the resulting improvement in Figure 6.4 (bottom).

While this approach is still affected by a time offset between sensors (in the experiment,

approximately 78 µs ∼ 156 I/Q samples), the offset drift is largely reduced. We observe a

variation range of 8 I/Q samples over a short time, 100 times less than using the start/stop

method.

There are two advantages of this methodology. First, it inherently reduces any delay

caused by the main board for processing the requests to start and stop (embedded machine

software clock). Second, it significantly reduces the drift caused by the communication

between the main embedded board and the USB interface of the RF frontend. The

approach of continuously sampling the radio can be applied also to the RPi B+ used in

this work (an entry-level model), which features only one CPU core. In fact, the CPU

speed is sufficiently faster than the sampling process, and it is capable of executing other

tasks such as compressing and transmitting I/Q samples to the backend.

6.2.3. Technology independent offset computation

A longer trace over time of the continuous sampling approach is shown in

Figure 6.5(top) where we can observe how the offset increases over the time. This implies

that the internal clock of one of the RF frontend tuners works faster than the other one.

In order to compute the relative offset, we have used a beacon signal detection mechanism

(Primary Synchronization Signal (PSS) signal of LTE, see also Section 6.4.1). However,

this method has the drawback of being technology dependent. In fact, a beaconing signal
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Figure 6.5: Time offset computed using cross-correlation between signals and beacon
signal detection (top). Each pair of RF frontend tuners has a different drift (bottom).

is not always available, which calls for an approach which is technology independent. We

then propose to compute the relative offset between sensors using the cross-correlation

between the I/Q samples collected by each sensor. Let x and y be the complex vector

of I/Q samples of two different sensors and rx,y[m] denote the cross-correlation of both

vectors with a lag m. At time k, we then compute the time offset µk as the maximum

cross-correlation:

µk = arg max
m∈{−I,...,I}

rx,y[m] (6.1)

where I is the maximum lag. As shown in Figure 6.5(top), we obtain similar offset values

using both techniques. It follows that we can rely on the maximum cross-correlation

metric to compute the time offset between spectrum sensors.

Figure 6.5 (bottom) shows that each pair of RF SDR receiver has a different, but

stable, drift over time. From Figure 6.5 (bottom), we can infer that the offset largely

depends on the pairs of RF SDR receivers. Not shown in Figure, when changing the RPi

boards and using the same pair of RF SDR receivers, we observe a similar drift. This

confirms that the offset depends on the pair of RF SDR receivers, but not on the main

embedded boards. For “pair of sensors 2”, the measured offset results in a relative drift

equal to ≈ 73 kHz. This is consistent with the reported high frequency instability (up to

50 Parts Per Million (ppm)) of the low-cost on-board crystal oscillator of each RTL-SDR

USB dongle [89].
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Figure 6.6: Time multiplexing mechanism. The whole frequency band is covered by
collecting I/Q samples from multiple sensors. Cross-correlation analysis is enabled by
overlap intervals.

6.3. Distributed time multiplexing

As explained in Section 6.1.2, we want to assign different time slots to different IoT

spectrum sensors for I/Q sample collection. We have also seen that low-cost sensors

impose significant limitations that affect the time synchronization among sensing nodes

and that the correlation analysis provides a robust methodology to estimate the offset

with continuous sampling (c.f. Section 6.2). However, the following problems emerge:

Assigning continuous and independent slots to different sensors means that

there is no spectrum data that can be used for correlation analysis.

Even if we would be able to correctly estimate the time offset between sensors,

correcting this offset in the sensor would imply to stop the sampling process. In turn,

this would affect the quality of gathered I/Q samples, as shown in Figure 6.4 (top).

In order to solve these problems, we present in what follows our distributed time

multiplexing mechanism to collect I/Q samples from different spectrum sensors for data

decoding.

6.3.1. Overlap interval

We define time slots, called chunks, that include an overlap interval I, in which I/Q

samples are sent from more than one sensor to the backend. Figure 6.6 shows a schematic

of the distributed sampling technique. Our idea is to use the overlap interval I to perform

correlation analysis as in Eq. (6.1) and compute the offset. A fundamental trade-off exists

in the design of the overlap interval I:
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(a) It should be sufficiently large to ensure that the peak of the cross-correlation

(time offset) can be found.

(b) It should be sufficiently small to not waste the uplink network bandwidth

usage.

6.3.2. Estimation of the offset between pairs of sensors

We derive a model to estimate the offset and provide the correct alignment among

sensors. Our model is based on a Kalman Filter (KF) that allows us to estimate the offset

and drift more precisely that the one based on a single noisy measurement. The model

supports the empirical observation that the offset increases as a linear function over time

due to the drift between RF frontend tuners (cf. Section 6.2).

The state vector that we want to estimate using the KF is x =

[

O D

]T

where O

represents the offset and D the drift, following this state model:

xk = F · xk−1 + wk−1, (6.2)

To derive F and wk, let Ok and Dk = Ȯk denote respectively the offset and the drift

at time k. The second-order model is described by Ök = nk where nk ∼ N (0, σ2
n) is an

Additive White Gaussian Noise (AWGN). We assume that the drift is constant for this

model since the offset shown in Figure 6.5 is linear over a sufficient large time period3.

Thus, the choice of a very low value of σn = 10−2. We derive the parameters of the state

model as follow:

Ȯk = Ȯk−1 + ∆Tk · nk−1, (6.3)

Ok = Ok−1 + ∆Tk · Ȯk−1 +
∆T 2

k

2
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where ∆Tk = tk − tk−1 and tk represents the absolute time at iteration k.

3Effects such as the temperature can vary the offset, however they tend to occur at larger time scales
than what we consider here, and can then be easily tracked with a small value of σn.
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For the KF measurement model, we have:

zk = G · xk + vk, (6.8)
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where µk is the output (lag) of the maximum cross-correlation analysis in presence of

continuous sampling (cf. Eq. (6.1)).

wk ∼ N (0, Qk) and vk ∼ N (0, Rk) represent respectively the process noise and the

measurement noise that follow Gaussian distributions with autocovariance matrices Qk

and Rk. According to Eq. (6.7), we derive the following formulation of Qk:

Qk = E[wkwk
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For the autocovariance matrix Rk of the measurement noise, we use an adaptive

estimation based on the covariance matching method originally introduced in the context

of GPS positioning. This method calculates the residuals ν̂k = zk − G · x̂k that are the

differences between the observation vectors zk and their corresponding estimated values

G · xk consistent with their theoretical values (x̂k is the corrected state vector). Then, it

calculates Rk based on these residuals computed in the last w iterations [90].

As the KF assumes that the measurement noise is Gaussian distributed, any

measurement outlier can negatively affect the filter. We propose a method to determine

if the current measurement µk can be used to correct the prediction of the KF and

improve the estimation. Figure 6.7 shows that the new offset estimation is based on the

prediction+correction steps only if the new measurement is accepted. Otherwise, only

the prediction step is used to estimate the offset. The current measurement is accepted

if it is not an outlier. This evaluation method is based on the median calculation using

the last estimates. Measurement values higher than a certain threshold are considered as

outliers and discarded.
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Figure 6.7: The KF correction step is applied only if the measurement µk is not discarded
(it is not an outlier). Otherwise the time offset estimated for the next iteration will be
computed using exclusively the prediction step.

6.3.3. Signal reconstruction and decoding

Figure 6.8 shows the workflow to reconstruct the signal and decode it using I/Q

samples received from a set of sensors. The first step is to align the signals in time using

the overlap interval I. In case of two sensors, the overlap interval contains samples from

both sensors. Using the raw I/Q samples of this overlap interval, we compute the cross-

correlation for different lags to determine the time offset µk between pairs of sensors.

This offset is used in the data decoding step for iteration k and time slots assignment for

iteration k + 1.

Data decoding for iteration k. At each iteration k, the backend runs a test to

verify if signal reconstruction is feasible. We distinguish the following cases:

Low spectrum similarity. If µk is lower than a given threshold, spectrum sensors

are too far apart (they are not listening to the same transmitter), or the overlap

interval Ik is too small to mitigate the misalignment of the signals.

High spectrum similarity. If µk is equal or above the threshold, we can proceed

with signal combining and decoding.

In the latter case, we align the sequences of I/Q samples from pairs of sensors using

the value µk. While this technique can be performed independently at each iteration,

it is affected by noisy samples and the cross-correlation computation may erroneously

declare the lag with the highest correlation value. In order to increase the robustness

of the offset estimation, we also consider an estimator that uses the last N iterations

of overlap intervals {Ik−N−1, Ik−N−2, . . . , Ik}, and gives as output the sequence of drift

estimations. Since the drift is approximately constant over a sufficiently short period (cf.

Figure 6.5), using the last N subsequent overlap intervals, the aligned+median technique
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Figure 6.8: Workflow for collaborative signal monitoring and decoding.

takes as output the median of the sequence of drift estimations and converts it to the offset

between pairs of sensors. Finally, the backend aligns the sequences of I/Q samples received

from different spectrum sensors and it combines them in one sequence for data decoding.

The decoder is unaware that the sequence of I/Q samples has been received with inputs

from multiple spectrum sensors, and decodes the signal using standard demodulation and

decoding techniques.

Time slots assignment for iteration k + 1. Each spectrum sensor continuously

collects I/Q samples, and the controller compensates their relative offset by anticipating

or delaying the sequences of retrieved I/Q samples from each sensor accordingly. We start

with µk as input (measurement model) of the KF model introduced in Section 6.3.2. The

output of the KF gives the corrected time offset and drift x̂k between pairs of spectrum

sensors. As studied in Section 6.3.2, the KF correction step is applied only if µk is not

an outlier. Otherwise this step is bypassed. Finally, the KF model predicts the offset for

the iteration k + 1 using the prediction step of the KF model, and uses it to assign the

time slots in each sensor to compensate for their relative offset.

6.4. Evaluation

We evaluate our approach using LTE signals at 806 MHz in Madrid. Our analysis

combines both simulation and real scenarios. The simulation scenario focuses on the

impact of the offset among signals and how the noise affects the signal reconstruction. On

the other hand, the practical analysis focuses on the evaluation of the different sampling

strategies and the effect in the performance when the offset is estimated and corrected.
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6.4.1. LTE

We first briefly review the main LTE concepts that are necessary for the evaluation.

LTE defines two structures: frame and subframe. A frame is a structure represented in the

time domain with a duration of 10 ms. Each frame contains 10 subframes of 1 ms duration

and each subframe contains 7 Orthogonal Frequency Division Multiplexing (OFDM)

symbols. An OFDM symbol corresponds to a variable number of samples depending

on the system bandwidth. The UE (User Equipment) needs to get a cell id, a time slot

and a frame synchronization in order to perform any more complex operation in a given

network. The first step for the UE is to scan different frequencies and search for the

PSS and Second Synchronization Signal (SSS), which have a band of 1.4 MHz. The PSS

and SSS are located in subframes 0 and 5 of every frame. Since each subframe is 1 ms

long, this means the UE can synchronize every 5 ms. Once the PSS is detected, the

SSS is always located one OFDM symbol earlier. The PSS is a frequency-domain Zadoff-

Chu [64] sequence and provides the layer identity (0 to 2). The SSS codes the cell identity

as 1 out of 168 pseudo random sequences which are Binary Phase-Shift Keying (BPSK)

modulated. Decoding the PSS and SSS properly, we obtain the Physical Cell Id (PCI) as:

PCI = 3 × (cell_identity) + layer_identity. To decode the PCI, the minimum sampling

rate is 1.92 MS/s, which implies that an OFDM symbol is 128 I/Q samples long. We use

the LTE-Cell-Scanner4 to decode the LTE channel cell id.

6.4.2. Emulation with real data

In this experiment, spectrum data is collected from one single spectrum sensor that

scans continuously with a center frequency of 806 MHz. With this data, our simulation

environment creates two datasets using the following configuration: chunk_size = 100 I/Q

samples and overlap_interval = 20 I/Q samples. We introduce artificial time offsets and

add Gaussian noise to one copy of the signal in order to understand the impact of sensor

synchronization errors and noise on the signal recombining and decoding process. We

set the threshold correlation value to determine if there is sufficient similarity or not for

signal reconstruction equal to 0.65 (cf. Section 6.3.3). We recombine the signal in time

using these two datasets and finally decode the control information of the LTE channel.

Figure 6.9(a) shows the cross-correlation value and decoding success rate for different

techniques and different offsets. The aligned technique can decode the signals in the

simulation environment with a high success rate as long as the offset is not higher than

40% of the overlap interval. In addition, the aligned+median technique can decode the

signals as long as the offset is not higher than 50% of the overlap interval. These results

outperform the not-aligned technique that simply assumes there is no time offset between

signals and computes the cross-correlation without shifting on the overlap area of both

4https://github.com/Evrytania/LTE-Cell-Scanner
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Figure 6.9: Average correlation (top) and decoding success rate (DSR) applying different
artificial offsets and several techniques to reconstruct the signal (bottom) (chunk_size =
100 I/Q and overlap_interval = 20 I/Q).

datasets (therefore, it only works with an offset equal to 0).

We also evaluate the impact of the noise. In order to conduct this experiment, we add

AWGN to one of the signals. The results are shown in Figure 6.9(b). For the evaluation,

we set the signal-to-noise ratio equal to SNR = 10 dB. The aligned and aligned+median

techniques reduce their success rate, but it is still possible to decode the signal when

the offset is lower than 20% and 30% of the overlap_interval, respectively. We finally

evaluate the robustness of the different techniques in presence of various levels of noise and

offset = 10 I/Q. Figure 6.10 shows that the aligned-median technique clearly outperforms

the other two methods.

6.4.3. Real scenario

In this experiment, two IoT spectrum sensors are located three meters from each

other, scanning in the center frequency of 806 MHz (wavelength is 0.37 meters) with a

sampling rate of 1.92 MS/s (complex samples). In our envisioned crowdsourcing scenario,

sensing nodes may be located farther apart but this reference scenario serves as a baseline

to understand the decoding performance when spectrum sensors receive almost identical

signals. As in the previous section, we compare the decoding success rate using different

sampling techniques. In these experiments, we compare the sampling process using the

start/stop approach and the continuous approach introduced in Section 6.2.2. This

experiment is executed 300 times. Each time, the generated dataset contains between

15 and 18 PSS-SSS signals, corresponding to a total of more than 4000 PSS-SSS.

As explained in Section 6.2.2, the start/stop sampling approach introduces a large and

unpredictable offset. This implies that the overlap areas are misaligned and the correlation
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Figure 6.10: Decoding success rate applying different SNR values and evaluating the signal
reconstruction techniques (offset = 10 I/Q, chunk_size = 100 I/Q, overlap_interval =
20 I/Q).
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Figure 6.11: Evaluation of the offset (top), correlation (middle) and decoding success
rate (bottom) between the start/stop and continuous scanning strategies using real
spectrum data coming from two different spectrum sensors (chunk_size = 100 I/Q,
overlap_interval = 20 I/Q).



92 Collaborative Narrowband Spectrum Data Decoding

value is low. Figure 6.11 (top) shows how the offset spans a very large set of values, and

therefore the correlation value is not enough to obtain reliable decoding information.

However, the continuous sampling approach allows to keep the overlap interval aligned

thanks to the KF model proposed in this work. As shown in Figure 6.11 (middle), the

correlation value increases when applying the continuous sampling technique since the

overlap intervals are aligned. We finally evaluate the impact on the decoding success rate

in Figure 6.11 (bottom). While the correlation for start/stop sampling does not guarantee

reliable decoding (with values close to zero), the decoding success rate is highly improved

with the proposed continuous sampling approach, making the system functional.

6.4.4. Evaluation of the Kalman filter model for offset estimation

We study the accuracy of the KF model using the same setup scenario of Section 6.4.3

and we present the results in Figure 6.12. First we consider the case of a long overlap

interval (10,000 samples) which guarantees that the maximum of the offset can be

easily found with the technology independent cross-correlation analysis. The plot in

Figure 6.12 (top) for 10,000 I/Q samples (“estimated offset (10000)”) shows that the filter

has the same performance as the real offset (computed using the technology dependent

approach in Section 6.2.3).
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Figure 6.12: Estimated offset (top) and estimation error (bottom) using the proposed
Kalman Filter model.
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Figure 6.13: Decoding success rate of cell id (overlap_interval = 20 I/Q).

As explained in Section 6.3.1, a smaller overlap interval should be preferred to reduce

the load of the uplink bandwidth of users. We then evaluate the accuracy of the filter with

smaller overlap intervals. As expected, the convergence is slightly slower. Yet, as shown

in Figure 6.12 for 500 and 5,000 I/Q samples, the filter is always able to converge to the

true offset. The KF model adapts well to different conditions. For instance (not shown

in figure), it estimates an average standard deviation of the offset for 500 I/Q samples

that is more than 15 times larger than for 10,000 I/Q samples. This shows that the

estimated autocovariance matrix Rk of the measurement noise can deal with more noisy

data observed with a smaller overlap interval I, and it automatically assigns a standard

deviation that tends to increase when the overlap interval I decreases.

We then study the decoding success rate for different chunk sizes and using a small

overlap interval (20 I/Q). For a fair comparison in terms of network bandwidth, the

baseline is represented by one spectrum sensor scanning in its assigned time slots. We

present the results in Figure 6.13. In the case that the KF model is not applied, the

decoding success rate decreases considerably for almost all chunk size values. Here, the

overlap intervals are misaligned and the predicted offset is not corrected. For all the

different chunk sizes, the collaborative sampling approach using the KF model provides

a high decoding success rate of the signals recombined from the I/Q samples of two

spectrum sensors.
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Figure 6.14: Uplink bandwidth used by each IoT spectrum sensor.

6.4.5. Uplink network bandwidth

One of the important benefits to use the collaborative approach for signal

reconstruction and decoding is that it can reduce the uplink bandwidth used by each

single IoT RF sensor. One single node scanning continuously a LTE channel at 1.92 MS/s

would need an uplink bandwidth of about 36.8 Mb/s to send all I/Q samples to the

backend using a compression factor of 70 %. Depending on the number of spectrum

sensors and the sampling configuration parameters of the system (chunk size and overlap

interval), the uplink network bandwidth for each IoT spectrum sensor can be reduced.

Figure 6.14 shows in simulations how the uplink network bandwidth decreases considering

a set of spectrum sensors in range of the same transmitter. The crowdsourcing approach

clearly allows to relieve the network bandwidth per user.

6.5. Extended Evaluation

We have extended the evaluation of the signal recombination methodology using other

different type of signal. In this case, we evaluate the decoding success rate of Mode S

downlink channel. This communication channel is used by aircraft to send air-traffic

messages (refer to Section 5.1.1 of previous chapter to details). We rely on dump1090

decoder [78] to obtain the decoding success rate after the recombination. Figure 6.15

shows the decoding success rate of Mode S packets when a small overlap interval is used

(20 I/Q). As we also saw in the previous evaluation, for all different chunk sizes evaluated

the collaborative approach using the KF model provides a better decoding success rate

of the packets. We can also observe that for small chunk sizes (lower than 103 samples)

the estimated offset by the KF results much more beneficial for the decoding success rate
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Figure 6.15: Decoding success rate of Mode S downlink messages (overlap_interval =
20 I/Q).

in comparison with the non-KF scenario. If the KF is not applied to estimate properly

the offset between signals, the decoding success rate decreases dramatically. The reason

for this is because there is no tracking of the offset between signals, and overlap interval

only contains a few IQ samples. As a consequence, the correlation is more sensitive to

noise in the overlap interval.

6.6. Related work

Large corporations have shown interest in the topic of large-scale spectrum sensing.

Google has lunched the Spectrum Database [23], a joint initiative between Google,

industry and regulators to make more spectrum available by using a database to enable

dynamic spectrum sharing in TV white spaces. They provide an access to the data

to query white space availability based on time and location. Microsoft Spectrum

Observatory [16] is a platform with a high cost (approximately 5000 dollars per node).

Using data collected with the Spectrum Observatory, [88] proposed a system that identifies

transmitters from raw spectrum measurements without prior knowledge of transmitter

signatures. SpecNet [17] is a platform developed by Microsoft Research that the scientific

community can use to remotely schedule spectrum measurements in real-time in order

to study the spectrum usage. ElectroSense [4, 7] and BlueHorizon [24] are crowdsourced

architectures that allow to share spectrum information. In contrast to the works above,

the sensors in our system work collaboratively with the overarching goal of reconstructing

and decoding a radio signal transmitted in the backend.
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[87] described the implementation and evaluation of a real-time, centralized spectrum

monitoring and alerting system. Their analysis is conducted using binary vectors, by

comparing each power value in the received power vector to a user-defined threshold.

[91] introduced the idea of cooperative sensing where a certain frequency spectrum is

monitored distributively with different sensing nodes. [92] proposed to use a cooperative

environment to distinguish between an unused band and deep fade due to shadowing

or fading effects. That work has been studied only by means of simulations. [93, 94]

employed correlation techniques in different environments, but the study is based on

simulations only. No system architecture problems were studied in these works for

their actual implementation. In addition, unlike classical collaborative decoding [84]

and cooperative diversity schemes [95], the sensors in our work are not performing the

physical-layer decoding, but just provide interleaved measurements of raw I/Q samples

which are stored and decoded in the backend. SpecInsight was introduced in [85] and is

a system for acquiring 4 GHz of spectrum in real-time using Universal Software Radio

Peripheral (USRP) radios with tens of MHz in 7 locations in the US. Because of the high-

end platform used in their work, there are little opportunities for pervasive deployments.

[34] proposed different frequency hopping strategies to overcome the hardware limitations

of low-cost radios. These systems considered spectrum data in the frequency domain,

while we consider data in the time domain (I/Q samples), posing new challenges, as

discussed in this chapter.

6.7. Discussion

We have studied the problem of crowdsourcing spectrum data decoding using

low-cost software defined radios. We have addressed the main challenges and

proposed a distributed approach and several techniques and strategies for sampling

the spectrum collaboratively. We have proposed sampling methods on the sensor side

and synchronization techniques on the backend side in order to align, at the sub-

microsecond level, the signals received from multiple sensors connected over the Internet

when traditional approaches, such as discipline the LO of the RF frontend, are not

an option due to the hardware limitations. Our approach can reconstruct the signal

based on raw I/Q samples received by different low-cost sensors, all in range of the same

transmitter. We have provided an evaluation with real LTE and Mode S signals and

shown the feasibility to reconstruct and decode signals in a crowdsourcing scenario with

low-cost sensors.



“Coming together is a beginning, staying together

is progress, and working together is success.”

Henry Ford (1863 – 1947)

7 Collaborative Wideband
Spectrum Data Decoding

We are in the age where crowdsourcing systems are helping the society to solve complex

problems by collecting data, using low-cost devices massively deployed around the world

and exploiting collaborative techniques among them. These systems can measure different

indicators as pollution, temperature, solar radiation, and air-traffic signals. More recently,

we are experiencing an important growth of interest for crowdsourced sensing of the

electromagnetic spectrum and democratize the access to the community. Several projects

such as ElectroSense [4, 7] rely on volunteers that host low-cost Internet-of-Things (IoT)

spectrum sensors to sense the electromagnetic spectrum at large scale. Having IoT Radio

Frequency (RF) sensors deployed massively enables new strategies of spectrum analysis.

Yet, as Analog-to-Digital Converter (ADC) are costly, said Software Defined Radio (SDR)

receivers are affected by a low sampling rate. The consequence is that they do not fulfill

the Nyquist-Shannon theorem for several types of wideband signals and are not able to

decode them.

In particular, what has strongly gained attention in the research community is the

ability to sense the spectrum using low-cost SDR receivers, such as the RTL-SDR [62].

These receivers are used in large deployments such as RadioHound [27], ElectroSense [4,7]

(for sensing radio spectrum) and OpenSky [51] (for collecting air-traffic signals). RTL-

SDR receivers have an acceptable performance but obviously due to their low quality

components they have serious limitations in terms of ADC resolution, frequency range or

maximum signal bandwidth, and lack calibration. The maximum bandwidth of low-cost

RTL-SDR usually is 2.4 MHz [62], meaning they cannot decode signals such as Long Term

Evolution (LTE) (10 MHz), Wi-Fi (20 MHz), WiMAX (20 MHz) or air traffic signals such

as Mode-S uplink (4 MHz) [67].

In order to solve this problem, we envision a scenario where low-cost RF spectrum

sensors deployed distributively in an area work collaboratively to cover a bandwidth

larger than the one of a single SDR receiver. As a crowdsourced approach, we use such a

distributed sensor arrangement to maximize the signal coverage of the system, even if some

sensors may suffer reception issues in the band of interest (higher-capability receivers are

97
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Figure 7.1: Several IoT RF sensors distributed in a geographical area cover a bandwidth
larger than the single spectrum sensor. By letting each spectrum sensor sample different
adjacent portions of the wideband signal, we can reconstruct and decode a signal, which
would not be possible using one single receiver.

less suited due to the increased cost of geographical scalability). A pictorial representation

is given in Figure 7.1. Several IoT spectrum sensors located in different places are

multiplexed in frequency, and take care of a specific portion of the signal. The spectrum

data obtained by the sensors is sent to the backend where the signal is reconstructed. This

scenario presents important challenges among non-coherent SDR receivers that must be

solved in order to guarantee the signal integrity and the reconstruction in the backend

using the partial view of the signal seen by each sensor. The signal reconstruction

in the backend is performed in an agnostic way, i.e., the system is not aware of the

specific modulation scheme. As such, the system must deal with the fundamental signal

information (amplitude, frequency, phase. . . ) provided by each sensor to make the signal

recombination feasible in the backend.

In this chapter we aim to provide a generic methodology and architecture to enable

the signal reconstruction in the backend by multiplexing in frequency a certain number

of IoT spectrum sensors in order to cover a signal bandwidth that would not otherwise
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be received using a single sensor. Our contributions are as follows:

We propose a distributed frequency multiplexing mechanism for covering

bandwidths higher than what a single SDR receiver can.

We identify the main challenges in signal processing to solve in order to enable

the collaborative signal reconstruction.

We present an architecture for collaborative signal reconstruction performed

in a common backend that does not use information from the modulation scheme.

We evaluate our solution in a real scenario using low-cost IoT RF sensors for

reconstructing and decoding collaboratively air traffic signals (Mode-S [79]) in the

backend and we compare our solution against high-performance receivers.

7.1. Motivation

The collaborative and distributed signal decoding using non-coherent and low-cost

SDR receivers is the main scope of the work described in the Chapter. Decoding signals

of larger bandwidth than a single receiver in a distributed network is the main application

that is presented in this work. These sensors are independently deployed by users in a

given area and connected to the backend over the internet. Yet, the ability of decoding

signals larger than what a single spectrum sensor can do is a primitive that can enable

other key applications, a foundation that exploits the crowdsourcing and the distribution

of costs among all participants to now be able to do more with a sensor, and can provide

incentives for people in the same neighborhood to join the initiative. The applications

below are presented for completeness.

- Anomaly detection. Anomaly detection can be more powerful if part of the data

can be labelled (e.g. signal-modulation classification [46]). Yet, if the signal is of wider

bandwidth than the SDR receiver, the backend cannot decode the data and label it

properly, limiting the applicability of methods already proposed [19] to detect anomalies

in the spectrum.

- Localization. For signals of larger bandwidth than the SDR receiver, the ability to

decode the signal can be considered as a sanity check that the different IoT spectrum

sensors are synchronized. By exploiting the position of known transmitters, the IoT

spectrum sensors can then solve the delay from the transmitter to each spectrum sensor

and from the spectrum sensor to the backend. Also, the fact that a subset of IoT spectrum

sensors yields the best collaborative decoding rate of a known signal may be used as an

indicator that this group of sensors could be the optimum to localize the transmitter.

- Selection of sensors. Usually crowdsourced and collaborative systems face the

problem of choosing the most favourable set of sensors to achieve a specific goal as in
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spectrum monitoring, transmitter localization or detection of anomalies in the spectrum.

Choosing the closest sensors not always ensures the best performance, due to interference

or antenna location. IoT spectrum sensors can be instead better grouped depending

on how good they perform in the process of decoding collaboratively a known signal.

The problem of choosing the best subset of sensors for this task is not trivial. If one of

those sensors reports bad information it may taint the final goal. Besides the great value

and contribution of collaboratively decoding a signal using different low-cost sensors, this

method can help in ranking and grouping sensors in crowdsourced spectrum monitoring

networks.

- Enhanced diversity. By having IoT spectrum sensors located away from each other

we can implement a diversity schema to increase the signal-to-noise ratio. The methods

exposed in this work can be used to align signals, so they can be further processed in

equal-ratio, maximal-ratio or selection combination.

7.2. Decoding wideband signals with distributed sensors

The objective of this work is to use different low-cost SDR receivers to cover a high

bandwidth that would not otherwise be possible using one single receiver given its limited

ADC sampling rate. The first problem to address is what type of receiver to use, and two

options are possible. On the one hand, coherent-receivers [96] know the type of signal

that has been transmitted, and typically use calibration and synchronization techniques

in order to synchronize in time and phase and compensate for impairments in the wireless

channel. On the other hand, non-coherent receivers do not have instead any knowledge

of the signal properties. Spectrum sensors have the capabilities of collecting In-phase &

Quadrature (I/Q) samples at different frequencies (in the case of the RTL-SDR, with low

ADC sampling rate, the range is between 24 and 1766 MHz [34]), and they do not need

to interact with the transmitters (no strict time requirements to process the incoming

I/Q data). Therefore we propose to use non-coherent receivers to divide the wideband

signals in different sub-channels, each of them monitored by one single receiver, and then

reconstruct said wideband signals in the backend. In other terms, we apply a frequency

division approach to multiplex the signal. The advantage of non-coherent receivers is

that they do not need to be close to each other and share internal components (e.g., local

oscillators), but the disadvantage is that the signals provided by non-coherent receivers

are not synchronized.

7.2.1. Common signals in the frequency domain

In typical non-dense frequency-division multiplexing, the spectrum of each channel is

independent. Instead, in order to solve the issue of synchronization among non-coherent

receivers, we propose that the sub-channels have a small overlap area. We use this common
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Figure 7.2: High-level representation of the frequency division approach to deal with
wideband signals and low-cost spectrum sensors. The collected samples in the overlap
areas are used to synchronize and equalize the signals in the backend.

area, named as overlap area, to extract the estimators needed to synchronize the signals.

As Figure 7.2 shows, IoT spectrum sensors are located in nearby frequencies in such

a way there is a overlap frequency area among them. This overlap area (O) contains

common information that will be used to reconstruct the signal as it is explained later

in Section 7.3. Notice that the overlap area size does not depend on the final aggregated

bandwidth. The overlap area size can be set depending on the use case or the scenario

conditions, e.g. if the noise in the signal is too high the overlap area bandwidth can be

increased until enough data for a clean merge is available.

More formally, a given signal s(t) with a specific bandwidth BWs and center frequency

fcs is to be reconstructed and decoded by using N receivers, configured with certain

bandwidths (BW1, BW2, ..., BWn) and center frequencies (fc1, fc2, ..., fcn) in such a way

that the complete bandwidth of the signal s(t) is covered. The signal reconstruction using

the frequency division approach can be exploited as long as the sum of the bandwidths

covered by the receivers is strictly greater that the bandwidth of the original signal as

Eq. 7.1 shows:

N
∑

k=1

BWk > BWs (7.1)

Notice that in the above equation the terms BWk already include the overlap area

bandwidth (c.f. Figure 7.2). Therefore, the overlap area between two consecutive

receivers, which is the key of the signal reconstruction, given that the frequencies fc(n)
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are in ascending order, can be expressed as follows:

O(n,n−1) =
(

fc(n−1) +
BWn−1

2

)

−
(

fc(n) − BWn

2

)

(7.2)

7.2.2. Challenges

The usage of distributed non-coherent receivers implies that we need to process the

signals in such a way that we can cope with the signal impairments with respect to a pure

ideal scenario. The following challenges must be solved in order to reconstruct the signal

collaboratively by applying the proposed approach that exploits overlap areas.

Relative time delays between signals. As each signal traverses a different path

(different location, antenna, receiver sampling time. . . ), most likely a delay from one

signal to the other will be found. The main root causes are: i) Different time-of-arrival in

multi-antennas scenarios: the electromagnetic signal may reach each antenna at different

times, mainly depending on the different path observed by different antennas. On a

more generic set-up, the collaborative reception may be performed from distant receivers,

so there may appear a time delay between the different received signals because of this

distance; ii) Different receiver architectures: if using different receivers, the delay from

the RF interface to the final acquisition point may differ. Also, as the sampling clock is

a synthesized signal, the sampling instant can be additionally delayed from one signal to

the other on a sub-sample quantity.

Frequency alignment. The internal clocks used in radio circuitry are affected by

tolerances and environmental factors, so we need to handle these effects when combining

signals. We have to bear in mind that this is an agnostic reconstruction without any

knowledge of the signal properties, so the overall reconstructed signal does not guarantee

a specific center frequency better than the clock tolerances. This is not a problem, as

in typical low-cost SDR there is no Phase-Locked Loop (PLL) synchronization to the

carrier [97], and demodulators cope with this effect. In fact for contributions from receivers
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which are not receiving a carrier, performing phase-lock could be unfeasible. The main

source of misalignment is the offset in the local oscillators. As a simplification on the

signal flow, let us consider without loss of generality that on each receiver there is only

one local oscillator to down-convert the radio transmission into an complex base-band

signal. This oscillator may be affected by an offset in its reference clock (such as a

quartz crystal, where tuning during manufacture and operating temperature may affect

its nominal frequency). Additionally this type of oscillators is generated from a chain of

integer multipliers and dividers of the clock frequency, so an additional granularity error

may appear as well.

Signal power at the receiver. There could be many different factors that could impact

the power of the sampled signal among different receivers (radio channel differences,

antenna gain, amplifier configurations, etc.), so it will be needed to equalize the signal

power from each spectrum sensor so that the reconstruction does not distort the original

signal.

Receiver frequency response equalization. The receivers apply an antialiasing filter

prior to sampling the signal. As an example, Figure 7.3(a) shows the final magnitude and

phase response of the FIR (Finite Impulse Response) filter applied in the RTL-SDR-v3 [62]

receiver in the frequency range of interest (using the maximum sampling rate available).

In the overlapping ranges (Figure 7.3(b)) we aim to compare and fuse contributions from

different receivers, so it will be necessary to invert the filter response to better reconstruct

the signal. In case the receiver implements a Finite Impulse Response (FIR) filter the

phase response can be considered just a delay in the time domain. If not, a complementary

phase correction at this stage will make sure that the final phase response is linear with

the frequency.

Phase matching. Once the receiver filter response in the receiver has been equalized,

and the signals received in the overlap areas from the non-coherent receivers have been

corrected in time and frequency, the phases of the signals in this overlap areas have to

be matched. The phase difference may be caused by different reasons. As the final

synthesized signal from the local oscillators is generated by a series of multipliers and

dividers, without a PLL on the received signal, we cannot guarantee the value of the

local oscillator phase, even in shared-local-clock scenarios. So we will not have a phase

synchronization of the local oscillators. This will be seen as a relative phase rotation

between the signals (a constant phase difference in the same frequency components from

the signals). We may also find a subsample-delay phase change, as we cannot control the

exact sampling instant among all the signals (even with synchronized clocks). Because of

that, we may still find some additional subsample delay that can be interpreted as a linear

phase change. Also some different phase contribution during combination may appear. If

there is still some linear-phase response in the chain (some delays unaccounted for, other

filters, etc.) that has not been completely corrected, as the final phase integration of the
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contributions reflect different bands, we may find an additional separation of the phases.

To understand this difference, we can see the distance between the phase responses (red

and blue straight lines) in the overlap area in Figure 7.3(b). This height is proportional

to the separation of the tuning frequencies (fc1, fc2).

7.3. Collaborative Signal Reconstruction

In this section we present our methodology to collaboratively reconstruct a signal in

the backend using partial representations captured by different receivers.

The proposed methodology only assumes the following signal properties to achieve

a correct collaborative signal reconstruction in the backend: (1) The Signal-to-Noise

Ratio (SNR) must be good enough in order to detect a potential packet on the overlap

area. (2) The signal must allow a clear cross-correlation maximum computation in the

overlap area to estimate the coarse time synchronization. (3) The signal must occupy a

continuous portion of the spectrum with no gaps bigger than the overlap area, allowing

the merge using that portion of the signal. (4) The channel response in the overlap area

must be similar for both receivers.

The overview of the signal reconstruction methodology is shown in Figure 7.4. In the

previous section, we discuss the case of two signals, as the case of more signals can be

regarded as an inductive extension (adding any additional received signal to the previously

reconstructed one). Our solution does not make any assumption on the signal besides

the frequency range and maximum expected length of the packets. The architecture

consists of four different blocks: Calibration, Correction, Estimation and Recombination.

The calibration block computes the intrinsic parameters of the receivers such as the

absolute frequency offset (∆fa). The correction block is responsible for modifying the
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signals according to the parameters provided by the estimation block. The estimation

block computes the parameters to synchronize both signals as time offset (∆t), relative

frequency offset (∆f), amplitude ratio (α) and phase offset (∆φ). All these parameters

are computed using only the overlap area, where the received signals share a common

frequency range. Lastly, the recombination block takes two signals already synchronized

and fuses them to generate a signal with the specific bandwidth required.

For the simplest model of two different receivers (more receivers could be considered

sequentially once the first two portions have been integrated), let us consider the signal

received on the overlapping area. From a complex signal transmitted originally as

x(t) = ℜ{s(t)ej2πft} (7.3)

the received signals xr(t) can be modeled like this to account for time, amplitude and

phase differences in the receivers, assuming that the frequency deviation ∆f is actually

an error induced by the local oscillator, and the channel transfer function is flat.

x1(t) = ℜ{s(t)ej2πft+φ1} + σ1(t) (7.4)

x2(t + ∆t) = α[ℜ{s(t)ej2π(f+∆f)t+φ2}] + σ2(t) (7.5)

We will define sr[n] as the complex baseband, discrete-time signal provided by the

receiver r, which have been obtained by tuning the receivers to the frequencies fc,r and a

sampling rate fs,r in accordance with the receiving bandwidth BWr.

As the original signal s(t) is not available, our goal is to find the parameters so we can

correct the differences between both signals in the overlapping area, and subsequently

apply these parameters to correct the whole signals sr[n].

7.3.1. Calibration Block

There are some intrinsic parameters in the receivers that do not change substantially

over time. One of these parameters is the frequency offset on the receiver caused by

the internal oscillator. Nowadays, most receivers integrate a Temperature Controlled

Local Oscillator (TCXO) to mitigate the fluctuations of the internal oscillator due to

temperature changes.

This block is responsible for estimating, in a calibration process, the absolute frequency

offset (∆fa) of the receiver using a known and precise signal. We rely on LTESS-Track [3]

in order to estimate the frequency error of the receiver. LTESS-Track takes advantage

on the synchronization signals transmitted by LTE base stations as reference in order

to provide a frequency offset estimation with sub-ppm (parts-per-million) accuracy. The
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absolute frequency offset (∆fa) for each receiver will be used to compensate the frequency

error between the receiver and the nominal frequency of the transmitter, providing the

coarse frequency synchronization of the system. Notice that this calibration process is

run only once per receiver and therefore the ∆fa value can be used as long as the receiver

is not replaced.

Since ∆fa may vary slightly due to the tolerance error of the local oscillator, the

variance on the calibration, environment factors [3], and the intrinsic uncertainty of real

oscillators, a fine frequency synchronization is needed as is explained in Section 7.3.3. The

calibration process is needed since two given receivers may have a significant frequency

error (for instance 100 Parts Per Million (ppm)). As the reconstruction process matches

the frequency components between the sensors, but not to the original fc, the final

reconstructed signal will show the same frequency error shift.

7.3.2. Correction Block

The correction block receives I/Q data directly from the receivers. The Analog-to-

Digital Converters make use of an antialiasing [98] filter prior to obtaining the samples

that will be the discrete representation of the signal. As an example, the magnitude and

phase response of the FIR filter applied in the RTL-SDR v3 is shown in Figure 7.3. The

first step is to equalize the signal to correct the possible changes made by this filter, in

such a way that the rest of the reconstruction steps can use a signal without distortions

(or reasonably minimized). It comes without saying that for this process to work the filter

response must be known for all the different devices involved in the reconstruction task.

Recalling that to perform the signal recombination we will use the overlap frequencies

between the two receivers, we see the band of the common area in every receiver has been

modified by a different band of the filter, as Figure 7.3 shows. This difference makes it

clear why this effect must be handled and minimized.

The next action is to correct both signals in frequency given the ∆fa,n provided by

the calibration block. The goal is to obtain a signal as close to the raw ideal as possible

so to perform a precise synchronization in the estimation block.

The I/Q alignment block then performs the operations needed over one of the signals

using the estimated corrections provided by the estimation block that is disclosed in the

next subsection.

7.3.3. Estimation Block

The estimation block receives the signals already equalized as input. The discrete-time

signals present in the overlap areas (o1 and o2) are extracted from the received signals

(s1 and s2) by extracting the higher and lower frequencies of the signals respectively as

Figure 7.4 shows. The overlap area represents the common frequencies in both receivers
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Figure 7.5: Amplitude and phase representation of the original bursts (left), phase
difference estimation (center) and bursts already aligned (right).

where all the synchronization operations will take place. The width of the area is directly

related to the receiver bandwidth (BWr) and the tuning frequencies of the receivers (fc, r).

First, the coarse time synchronization (∆t) is computed by cross-correlating the

overlap areas of both signals in the time domain using chunks of data of certain duration

as Eq. 7.6 shows. As at this point we cannot guarantee that the I and Q components from

both signals are matched (as there might be a phase rotation between them, φn values

are unknown), this operation is calculated over the norms. Considering ∆t in number of

samples:

∆t̂ = argmax
τ

(|o1| ⋆ |o2|)[τ ] (7.6)

We assume the signals sr have a SNR high enough to detect the presence of a

transmission. Other characteristics from s(t), such as the modulation scheme, are not

needed to estimate the corrections. For every chunk of data already synchronized in time

an energy detector is applied in order to get the interesting time ranges of the signal

called bursts. Then, a burst is defined as a time range of the signal, considered in the

overlap area, where a potential packet (P ) can be and therefore where the synchronization

parameters will be estimated. A couple of bursts (b1 and b2) are shown in Figure 7.5-a).

At this point is where the synchronization parameters needed for this potential packet

(P ) can be estimated, in order to combine and match the signals.

Secondly, the power normalization of the bursts is done by computing the scale

factor α. The original energy in the overlapping area is nominally the same, so we can
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estimate the α parameter as the square root of the power ratio of the two signals:

α̂ =

√

E[|b2|2]

E[|b1|2]
(7.7)

Third, the relative frequency shift (∆f) is estimated providing the fine frequency

synchronization in the system. To compute the frequency misalignment between both

signals we may use the discrete Fourier transform of the signals. Given that the signals

have not been distorted we may use their frequency representations to find the best

match. As the values for φr are still unknown, once again it is needed to use the norm

of the functions to calculate cross-correlation. Given that br[n]
DF T−−−→ Br[k], and by

cross-correlating the overlap areas in the frequency domain:

∆k̂r = argmax
θ

(|B1| ⋆ |B2|)[θ] (7.8)

It is worth noting that the bursts have been extracted so to contain some guard time

before and after the packet P . This helps to reduce spurious components in the Discrete

Fourier Transform (DFT), as it behaves as a windowing in time. The relation with the

real frequency is then, given the length of the DFT as M :

∆f̂r =
fs∆k̂r

M
(7.9)

From this point forward, let us define B′
2[n] as the frequency-corrected equivalent of

B2[n].

Fourth, we perform the phase difference estimation. In order to have a coherent

recombination process of the signal, the phases of both bursts must be matched. This step

is important since phase alignment represents both a matching of I and Q components

from each sr[n] (neutralizing the relative phase rotation between them), and a fine

(subsample) time synchronization. Figure 7.5-b) represents the phase of the bursts in

the frequency domain. Notice that we only take those bins whose amplitude values are

above a certain threshold (Ath) since low amplitude values usually introduce noise in the

phase component that can lead to an erroneous phase estimation.

After that, we can study the phase of the bursts visually, by unwrapping the phases

to get a continuous representation of the phase over the frequency bins as Figure 7.5-c)

shows. It is clear that phases are not equal and therefore we compute the phase difference

over all the frequency components of both bursts and then we obtain the phase difference

shown in Figure 7.5-d). This difference should take care of the local phase conditions

φn, possible fine time adjustments and phase rotations. As we saw in section 7.2.2 the

expected difference is a linear function of the frequency.
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Thus we will first calculate the phase difference:

∆φ[k] = ∠B1[k] − ∠B′
2[k] (7.10)

And given that the k elements are ordered such to keep the DC component in the

center, then the linear regression over ∆φ could be expressed as:

∆φ̂[k] = ∆φ̂R + k∆φ̂D (7.11)

where ∆φR can be regarded as a rotation that applies to all the frequency components,

and the slope ∆φD as a time delay, with a subsample resolution.

Figure 7.5-d) shows the value of the burst phase difference and its linear regression.

Figure 7.5-e) and Figure 7.5-f) show the bursts normalized in amplitude and synchronized

in phase after applying the correction values, α̂ and [∆φ̂D, ∆φ̂R] respectively.

We note that the estimation block does not have the notion of packet. In particular,

this block performs a signal-level synchronization only using the bursts (portion of signal

in the overlap area). The packet-level synchronization and its detection are performed by

the decoder ("Signal decoding" block in Figure 7.4), which is independent from the signal

reconstruction scheme.

7.3.4. Recombination Block

The recombination block takes as input the signals sr[n] of bandwidth BWr, which

were tuned to in fc,r. The first step is to resample both signals to increase the sampling

rate. The minimum upsampling is that which obtains a sampling frequency enough to

contain the full reconstructed signal. After that, both signals are relocated so their

components of fc match the equivalent fc of s(t), by shifting fc − fc,1 and fc − fc,2

respectively. The frequency components on the overlapping area are halved, as that

area will receive the energy from the two signals. After that, both signals are summed

and downsampled if needed to match the specific bandwidth desired and therefore the

reconstructed signal is complete as Figure 7.4 shows.

7.3.5. Decoding

The last step of the process is to decode the signal that has been reconstructed.

Decoding the signal provides a good indicator that the reconstruction is done properly

in the backend. It is worth mentioning that the signal decoding block (Figure 7.4) is not

aware about the origin of the signal, e.g., the decoder does not know if the signal either

has been reconstructed by our method or has been collected by a regular receiver.
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7.4. Evaluation

This section describes how we evaluate our methodology for signal reconstruction

in real scenarios. We use real signals to evaluate our collaborative signal decoding,

specifically we use Mode-S uplink [67, 79]. These signals are sent by aircraft and uses

1030 MHz frequency for transmissions and 4 MHz of signal bandwidth. The receivers

used for the signal reconstruction are the well-known RTL-SDRv3, whose maximum

available signal bandwidth is 2.4 MHz. Therefore this is a very complete set-up for testing

and evaluating our collaborative signal reconstruction methodology in a real-world and

complex scenario (amplitude-phase modulation, signal sent from moving transmitters,

different SNRs, etc.). In the following subsections, Mode-S and the experimental setup

are explained and after that the most important evaluation results are shown.

7.4.1. Real use case: Mode-S uplink

Aircraft are constantly sending air traffic signals that contain useful information for

the safety and optimization of the flight routes. Several initiatives as OpenSky [51],

Flightradar [69] or Flightaware [68] have already deployed low-cost sensors based on RTL-

SDR devices for collecting avionic signals whose signal bandwidth is smaller than 2.4 MHz,

e.g., Mode-S downlink channel. All those platforms could get benefit of our contribution of

using non-coherent receivers for decoding signals with a higher bandwidth than 2.4 MHz.

Mode-S [67,79] is a Secondary Surveillance Radar (SSR) process that allows selective

interrogation of aircraft according to the unique address assigned to each aircraft named

ICAO. The ICAO is a 24-bit field used to identify every aircraft uniquely worldwide.

Mode-S uses two different channels, one for interrogating (uplink channel, 1030 MHz

/ 4 MHz) and another for answering (downlink channel, 1090 MHz / 2.4 MHz). The

aircraft replies to interrogations initiated from either a ground station or other aircraft.

The aircraft interrogation is performed using the uplink channel and has the capability

for selective interrogation of individual Mode-S transponders. This functionality allows

to interrogate a specific aircraft as needed, avoiding the response from nearby aircraft

and therefore an unnecessary saturation of the channel. The messages sent by the uplink

channel are the ones that cannot be decoded currently by one single RTL-SDR due to the

signal bandwidth limitation.

Mode-S messages can be 56 or 112 bits long. As Figure 7.6 shows, Mode-S uplink

messages consist of a preamble part (used for message detection), a Sync Phase Reversal

(SPR) (used for time synchronization), and the payload encoded using Differential Binary

Phase Shift Keying (DBPSK) where the ICAO of the addressed aircraft is indicated.

Other important piece of information encoded in the payload is the uplink format, reply

length, acquisition special or designator id [76,79]. It is worth mentioning that our generic

solution proposed in Section 7.3 and the evaluation performed in Section 7.4.3 are not



7.4 Evaluation 111

0 5 10 15 20 25

time (microsec)

0

0.2

0.4

0.6
a
m

p
li
tu

d
e

0 5 10 15 20 25

time (microsec)

-2

0

2

p
h
a
s
e
 (

ra
d
ia

n
ts

)

Preamble

Sync Phase 
Reversal

ICAO

Preamble

Figure 7.6: Amplitude representation (top) and phase representation (bottom) of a Mode-
S uplink packet captured at 1030 MHz @ 4 MHz by an USRP.

aware about the signal specifications explained here. Our solution is able to reconstruct

the signal from two different channels without any knowledge about Mode-S uplink signals.

7.4.2. Mode-S Decoder

We have implemented the first open source decoder for Mode-S uplink using an initial

and experimental implementation provided by [99]. The decoder has been implemented

following the standard described in [76, 79]. Our decoder implements the following

features:

Preamble detection.

Size packet detection: supports lengths of 56 or 112 bits.

Sync Phase Reversal (SPR) detection which is located at 4.75 µs from the

beginning of the packet.

Sliding window implemented to analyze data continuously.

Support input signals of 4 MHz and 8 MHz bandwidth.

DBPSK demodulator for payload extraction.

ICAO of aircraft: The last 24-bits of the payload are the parity bits xored

with the ICAO address of the aircraft. The Cyclic Redundancy Check (CRC) is

computed as specified in [76] and aircraft’s address is retrieved.
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Symbol timing recovery implementation since transmitter and receiver are not

synchronized.

Our decoder is the first open source implementation1 and is able to decode properly

the 92% of the Mode-S packets detected.

7.4.3. Testbed

The experimental set-up consists of 3 pairs of sensors with two RTL-SDRv3 "Silver"

model attached to a Raspberry Pi-v3 with different Automatic Dependent Surveillance

- Broadcast (ADS-B) antennas and internal oscillator configurations. The maximum

bandwidth supported by the RTL-SDRv3 is 2.4 MHz, therefore every pair of sensors has

the mission of reconstruct the Mode-S uplink packets sent at 1030 MHz with 4 MHz

of signal bandwidth. In order to do that, both receivers have to tune at 1029.1 MHz

and 1030.9 MHz respectively in such a way the overlap area is 0.6 MHz and the total

bandwidth covered is 4.2 MHz. Figure 7.7 shows the different configurations tested on

every pair of receivers depending on the resources shared:

Local oscillator and antenna shared ("local oscillator + antenna"): This is the

most favourable set-up where we use a clock-shared receiver based on two RTL-

SDR2 that shares the local oscillator (TCXO @ 28.8 MHz). They also share the

same ADS-B antenna thought the 8-port active splitter.

Antenna shared ("Antenna"): This configuration uses two vanilla RTL-SDRv3

receivers without sharing the internal clock and whose only shared resource is the

ADS-B antenna thought the splitter.

Non-shared resources ("None"): This configuration consists of two vanilla

RTL-SDRv3 receivers without sharing the internal clock and attached to different

antennas that are 1 meter away.

Our results are based on multiple traces collected in Madrid (Spain) where more than

30,000 Mode-S uplink messages were recorded. In order to compare the performance

in every configuration we use a baseline simultaneously created by a high-end receiver,

Universal Software Radio Peripheral (USRP) Ettus B2103 that is set at 1030 MHz and

covering the whole signal bandwidth (4 MHz). The USRP is also connected to the splitter

to share the same ADS-B antenna that the RTL-SDR receivers use. Therefore, the

baseline is defined as the number of Mode-S uplink packets correctly decoded with the

USRP samples. Since we do not know whether the ICAO encoded in the packet belongs to

1http://github.com/openskynetwork/modes-uplink-decoder
2https://coherent-receiver.com/products/coherent-receivers/1-supervisory-and-4-coherent-channels
3https://www.ettus.com/product/details/UB210-KIT

http://github.com/openskynetwork/modes-uplink-decoder
https://coherent-receiver.com/products/coherent-receivers/1-supervisory-and-4-coherent-channels
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a real aircraft, we cross-verify that ICAO was also detected by the OpenSky [51] network

in the Mode-S downlink channel at the time and place the trace is collected.

7.4.4. Evaluation metrics

In this section we evaluate the most important parameters of the system and how

they can play an important role for the final signal reconstruction and decoding.

As we described in Section 7.3, one of the first synchronization steps is the time

alignment between the signals. This step must be successfully performed to estimate the

amplitude, frequency and phase offset accurately. All the synchronization steps over the

signal are performed on the overlapping frequency area (which is common among the

receivers). Therefore the width of the overlap area becomes a significant parameter of

the system to be evaluated. The overlap area width optimization will also optimize the

effective bandwidth available for every receiver, thus covering wider bandwidths with the

same number of receivers. Figure 7.8 shows the estimated time difference between the two

signals at 2.4 MHz for different widths of the overlapping area. Note that to illustrate with

comparable magnitudes, the y-axis units are samples of the original signal. The smaller

the overlap area is, the less signal data we have to perform the time synchronization, and

as expected by the time-frequency relation, the coarser time resolution we obtain.
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Figure 7.8: Sample synchronization vs. overlap area.

Figure 7.9: Phase delay evaluation vs. overlap area.

To mitigate this effect, and obtain a better time representation of the signal edges,

we can upsample [66] the original signal in post-processing. Figure 7.8 shows how for the

"no-upsampling" scenario the ∆samples estimation fluctuates depending on the overlap

bandwidth size, and how this behaviour is much more contained in the "upsampling"

scenarios. This is an indicator that we need more accuracy in the ∆t̂ since the existence

of synchronization errors at sample level could hinder the final collaborative reconstruction

of the signal. For higher upsampling factors we can see how the ∆samples remains stable

for overlap bandwidths from 0.3 MHz onwards.

We have also performed an evaluation of the phase estimation of our system that

becomes important for two reasons: 1) it gives the sub-sample synchronization among
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signals and 2) allows us to reconstruct and decode signals with phase coded information.

Figure 7.9 (top) shows the phase delay estimation between bursts (potential packets)

using different overlap area sizes. We assume that the phase delay estimation among

packets will be similar for each pair of receivers once the signal has been corrected in

time. For overlap bandwidths over 0.3 MHz we can observe that the phase delay values

are contained in the same range with no important fluctuations. However for overlap

bandwidths smaller than 0.3 MHz we can observe how the values are spread over a large

range, meaning that the estimation is not performed accurately. The smaller the overlap

area is, the bigger the standard deviation of ∆φD appears to be (see Figure 7.9 bottom),

due to the fewer data that the system has to properly perform the initial time offset

estimation. It is possible this impact the subsequent phase delay estimation as the linear

regression might have been computed with fewer data.

As we explained in Section 7.3, the final goal is to decode a signal that has been

reconstructed collaboratively in the backend. Therefore, the packets decoded rate is a

metric that must be evaluated in our system. As we mentioned before we use the Mode-S

Table 7.1: Different SDR receiver models and their frequency stability of LO.

Receiver Local Oscillator stability Frequency error at 1030 MHz

RTL-SDR-v3 ± 2 ppm ± 2,1 kHz

Ettus B210 (USRP) ± 2 ppm ± 2,1 kHz

HackRF One ± 20 ppm ± 20,06 kHz

Adalm-Pluto ± 25 ppm ± 25,75 kHz

RTL-SDR (blue edition) ± 60 ppm ± 61,80 kHz

RTL-SDR (black edition) ± 120 ppm ± 123,60 kHz



116 Collaborative Wideband Spectrum Data Decoding

0

20

40

60

80

100

P
a
c
k
e
ts

 d
e
c
o
d
e
d
 r

a
te

 (
%

)

Time Time + Phase Time + Phase +
freq_offset
(relative)

Time + Phase +
freq_offset
(relative +
absolute)

sharing: local oscillator + antenna
sharing: antenna
sharing: none

Figure 7.11: Mode-S uplink packets decoding rate in different scenarios (USRP used as
baseline).

uplink decoder that we implemented (see Section 7.4.2) to evaluate the decoding of the

signal. Figure 7.10 shows the performance of the message decoding depending on the

frequency offset among signals. In essence, we manually introduce a frequency offset in

one of the signals and we check how the decoder performs in these scenarios. We can

observe how the packet decoded rate is close to 100% when the frequency offset is below

1 kHz. The higher the frequency offset, the smaller the decoding packet rate. This proves

the importance of a proper estimate for the frequency offset among signals caused by the

local oscillator of the different receivers (see Table 7.1).

Figure 7.11 shows the decoding packet rate for different experiment configurations

(described before) and different signal synchronizations steps (explained in Section 7.3).

The gentle case ("local oscillator + antenna") shows that is able to yields a 98% ratio of

properly decoded packets once the time and phase are properly aligned. No improvements

are visible even if the relative frequency offset is corrected since both receivers are sharing

the local oscillator and therefore their relative frequency offset is negligible. For the

shared antenna ("antenna") scenario using non-coherent receivers we may observe that

it reaches 85% of decoded packets ratio, and in this case correcting the frequency offset

helps to reach the 90%. For the most unfavourable and challenging case ("none"), in which

antennas are not shared and non-coherent receivers are used, we are able to reach more

than 80% of correct packet decoding ratio by applying all the signal alignment steps as

Figure 7.11 shows.
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7.4.5. Network Bandwidth

In order to perform the signal reconstruction in the backend, each IoT spectrum

sensor needs to send I/Q data through the Internet connection. Our solution is based

on a crowdsourcing approach where spectrum sensors are distributed among different

locations and therefore they may use different Internet connections. Nevertheless the

network bandwidth used for each IoT spectrum sensor is a concern due to the I/Q data

transmission. Figure 7.12 shows how one single receiver sampling at 2.4 MSPS with 8-bit

resolution would need to transmit ∼ 39 Mbit/s, or ∼ 15 Mbit/s if data is compressed

with a generic DEFLATE [100] algorithm. Going further, packet detection is performed

on the spectrum sensors, and then only small portions of I/Q data are sent where potential

packets can be decoded. This alleviates the network bandwidth used by each spectrum

sensor. Assuming a detection packet rate of 700 packets/second and knowing that a

Mode S packet is 40µs long [79], the network bandwidth used for each IoT spectrum

sensor decreases to 0.89 Mbit/s (0.35 Mbit/s compressed-data), which is affordable over

most domestic Internet connections.

Figure 7.12: Network bandwidth used by one single sensor to deliver I/Q data to the
backend.
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7.5. Related work

Monitoring the electromagnetic spectrum at large scale is more challenging than

traditional approaches. Several platforms use expensive and specialized hardware for

sensing the spectrum at large scale such as DARPA’s Spectrum Challenge, Google

Spectrum Database [23] and Microsoft Spectrum Observatory [16]. Our solution relies

on low-cost receivers for sensing the spectrum distributively. In [101], the authors used a

collaborative spectrum sensing approach for detecting unauthorized transmissions using

Power Spectral Density (PSD) data. In this work, we propose to work with I/Q data

what allows us to reconstruct and decode signals. As I/Q data can imply a deluge of

information sent to the backend, we expect that it can be applied either in presence of

very high uplink bandwidth or, most likely, for a short period of time, with the objective

of decoding specific messages.

The authors of [102] proposed a method to receive and decode weak signals, by

applying maximum ratio combining in the cloud. Previous paper used also I/Q data, yet

they tuned all receivers in the same frequency and assumed that the receiver can sample

the whole signal of interest. Our problem space is complementary and requires dedicated

solutions, as we deal with signals of higher bandwidth that the one single receiver can

provide, a problem that emerges with the advent of low-cost spectrum sensors and has

been so far largely ignored in the context of signal decoding.

Past work that considered wider bands focused on the problem of extracting

information about the spectrum usage and which bands are more interesting to monitor

(e.g., applying a multi-armed bandit game [85]). Some other work proposed instead to

use the sparse Fourier transform to decode signals [103]. However, they did not look at

the problem of decoding signals that are of larger bandwidth than the single receiver, and

required access to dedicated USRP hardware rather than low-cost commercial off-the-shelf

hardware as in this work.

Different works [104,105] had the need of using coherent-receivers to achieve a precise

signal synchronization over different channels, e.g., passive radars using low cost receivers.

In [96], authors used coherent-receivers and a GPS Disciplined Oscillator (GPSDO) in

order to synchronize the ADC clock in each channel. In contrast with these works, our

solution uses non-coherent receivers and relies on the job done in the backend for the final

synchronization and decoding of the signals.
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7.6. Discussion

We have studied the problem of collaborative sampling the spectrum using low-cost

and distributed IoT spectrum sensors to decode a wider signal bandwidth than the one

of the single spectrum sensor. We have introduced the main concept of dividing the

wideband signal in sub-frequency channels with a small overlap area, and addressed

the main challenges to reconstruct the wideband signal in the backend. We have then

presented a distributed architecture with the needed synchronization steps in order to

align the sampled I/Q signals from independent receivers and decode the whole signal in

the backend. We have tested and evaluated our solution with real signals (Mode S) sent

by aircraft that are used for collision avoidance. We have implemented a Mode S uplink

decoder that is released as open source4. Our results show that is feasible to use low-

cost and distributed non-coherent spectrum sensors for decoding wideband signals, getting

more than 80% of packets correctly decoded, and reaching nearly 100% of packets decoded

when receivers share the local oscillator. Collaborative signal decoding using low cost IoT

spectrum sensors has been successfully proved and can enable multiple applications for

those existing systems that deploy low-cost receivers such as RTL-SDR at large scale.

4http://github.com/openskynetwork/modes-uplink-decoder





“Now this is not the end. It is not even the beginning

of the end. But it is, perhaps, the end of the beginning”

Winston Churchill (1874 – 1965)

8 Conclusions

In this thesis, we have presented ElectroSense, a collaborative and crowd-sourcing

initiative for collecting and analyzing the Electromagnetic (EM) spectrum by using low-

cost RF IoT sensors as well as more expensive RF spectrum devices to monitor the

spectrum at large scale. We have identified the main research problems to enable smart

and collaborative algorithms among low-cost spectrum sensors, which are challenging to

solve due to the limitations of their components, both in the RF front-end and in the

embedded board capabilities.

Chapters 2 and 3 of this thesis have described in detail the advantages and benefits

of the ElectroSense framework, where we mainly focused the work on the sensor side by

providing different capabilities and data pipelines (PSD, I/Q and decoding) that are used

depending on the final application desired. Sensors are able to monitor the spectrum in

real time and send the data to the backend by using mechanisms to reduce the uplink

network bandwidth from every IoT RF sensor. In Chapter 4 we have introduced a precise

and fast frequency offset estimator (LTESS-track) for SDR devices, which relies on the

synchronization signals transmitted by LTE base stations as reference. One of the key

aspects to enable the collaborative approach among sensors is to properly characterize

the frequency offset of the Local Oscillator (LO) of the receiver. Our approach, LTESS-

track, is 10 times faster than the best open source tools currently available, and is able

to provide a new estimate every second.

In the Part III of the thesis we have investigated real scenarios where low-cost IoT RF

sensors work collaboratively to reach a specific goal. In Chapter 5 we have proposed new

algorithms for Time-of-Arrival (ToA) estimation for aircraft, glider or drone signals that

can achieve nanosecond-level precision using real-world signals (ADS-B) captured with the

cheapest SDR receiver available on the market. We have shown that the ADC resolution

(dynamic range) of the RTL-SDR is the limiting factor for the achievable ToA precision.

We have demonstrated that ToA estimations are worst when either the signal strength

packet is clipped or drowned into quantization noise. Our best algorithm, CorrPulse/S,

achieves sub-nanosecond prevision for ToA estimation for packets that are received with

121



122 Conclusions

signal strength well within the dynamic range of the receiver.

We have studied and evaluated the main research challenges for collaborative narrow-

band signal in Chapter 6. We have presented a distributed time-multiplexing mechanism

to sample the spectrum in a coordinated fashion that exploits the similarity of the radio

signal received by more than one RF receiver in the same radio coverage. We have

addressed the strict time synchronization required among spectrum sensors to reconstruct

the signal. We have also overcome errors in the timing information in the presence of noise

sources and decode the data in the backend using low-cost RF spectrum sensors. Our

approach is able to reconstruct the signal based on raw I/Q samples received by different

low-cost receivers solving problems such as the sub-microsecond level time synchronization

required between independent sensors and reducing the uplink network bandwidth of every

sensor.

Finally, in Chapter 7 we have presented the collaborative wideband signal decoding

performed in the backend using non-coherent receivers. To the best of our knowledge,

we are the first proposing this using I/Q data received from very low-cost RF receivers

and commodity hardware. We have proposed a methodology to enable the signal

reconstruction in the backend by multiplexing in frequency a certain number of non-

coherent spectrum sensors in order to cover a signal bandwidth that would not otherwise

be possible using a single sensor. Our method does not use the knowledge of the

modulation scheme to enable the signal recombination. We have demonstrated and

evaluated our approach with two non-coherent receivers which collaboratively sample

a real aviation signal (Mode-S uplink channel) of almost twice the RF bandwidth of each

receiver.

In summary, we have proposed ElectroSense, a crowdsourcing framework for spectrum

monitoring based on 3 main ideas: i) a sensing architecture that provides different

spectrum data pipelines, ii) low-cost and software-defined IoT spectrum sensors to enable

large-scale deployments, and iii) signal processing performed in the big data architecture.

By using ElectroSense, we have successfully proved that complex tasks such as ToA

estimation or collaborative signal decoding are affordable using very simple and low-cost

RF receivers thanks to the signal synchronization mechanisms and algorithms proposed

in this thesis.
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A
Measuring Spectrum Similarity

in Distributed Monitoring
Systems

Measuring the similarity between data spectra collected by independent sensors at

different locations and connected to a backend over the Internet could allow us to explore

intelligent collaborative decisions. Sensors may collaborate to detect anomalies if they

learn that they are in range of the same transmitter in that specific frequency band.

Also, sensors may decide to monitor a bandwidth larger than the one of the single sensor

(with each node sampling on a 2 MHz band only partially overlapped with other sensors

in range) and then jointly reconstruct the spectrum more efficiently in the backend.

In this appendix we demonstrate and implement a system architecture able to

determine the similarity of the radio signal received at nearby locations by different sensing

node. In order to realize this vision, there are three fundamental challenges that need to

be addressed with low-cost spectrum sensors: 1) time synchronization, 2) rapid decision

making and 3) minimize network bandwidth.

A.1. Measuring Spectrum Similarity

The methodology proposed to measure the spectrum similarity is composed by three

main concepts.

First, the sensors that are located in the range of the same transmitter have a coarse

synchronization in time using Network Time Protocol (NTP). The sensors can then read

spectrum data with synchronization with millisecond precision over the public Internet,

and better that one millisecond precision in local area networks (as measured in ad-hoc

experiments). In our architecture, each sensor synchronizes its internal clock with NTP

server every 60 seconds. A finer synchronization could be achieved using the time reference

provided by an additional GPSDO module, as explained in Chapter 6. Yet, this may not

be available in all the spectrum sensors, as they are run by users of the community, with

they own hardware.

Second, each spectrum sensor activates the sampling thread for a fixed period, and
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Figure A.1: Technique for computing spectrum similarity between two sensors.

then executes the other threads. This period is the same for each sensor. The total time

to execute the entire set of operations should be such that the embedded machine can

send spectrum data with the minimum delay (i.e. there are no other tasks pending).

Finally, in order to reduce the network bandwidth used, some operations need to be

computed on the sensors. Sensors should decide the parameters such as averaging over

larger set of Fast Fourier Transform (FFT) blocks, if the bandwidth should be reduced

further. This however comes at the cost of additional delay in the decision making. In

the following section we describe this problem in details.

A.1.1. Spectrum Correlation

We perform signal correlation analysis in the backend to understand the similarity

in the spectrum data collected by different sensors. Figure A.1 shows the overview of

the architecture that is responsible to compute the spectrum similarity (it is presented

for two sensors, but it could be generalized to any number of sensors). First, the same

center frequency and sampling_time is set in both sensors. During this sampling time

the sensors continuously read the spectrum. After that, the raw data spectrum is split

in N segments of duty_cycle long each one. For every segment, the FFT is computed
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according to the fft_size (which defines the number of bins). Each fft_block has the

spectrum information of 2.0 MHz bandwidth channel. Therefore, the FFT blocks contain

frequency information that is averaged using avg_factor blocks to produce M averaging

blocks. These averaging blocks are sent to the backend for every sensor involved in the

similarity spectrum evaluation. Tuning the different values of the system (sampling_time,

fft_size and avg_factor) the amount of data sent to the backend (bandwidth used) can

be modulated depending of the needs.

The backend computes the Pearson correlation coefficient using the averaged FFT

blocks received from every sensor. The correlation is computed for every pair of averaged

FFT blocks coming for different sensors. Then, the average is computed using the

correlation output for every averaging block. The system evaluates this value to determine

if the sensors are reading similar spectrum and if it is possible to enable the collaborative

approach between them.

A.2. Evaluation

This section presents the experimental evaluation of our architecture. The aim is

to determine the minimum network bandwidth and time needed to achieve a good

signal correlation for analog and digital signals. For analog signals we choose Frequency

Modulation (FM) and for digital signals we use LTE. The FM radio in Spain occupies

the range from 87.5 MHz to 108 MHz. Each FM radio channel uses 200 kHz of bandwidth

to transmit the signal. For LTE, we monitor three channels of 10 MHz bandwidth that

are available in Spain at center frequencies equal to 796, 806 and 816 MHz.

Sampling Process’ Synchronization. The synchronization between sensors is an

important issue to achieve a good correlation between the signals. In our experiment,

the sensors use Ethernet connection through Internet to synchronize their internal clock

through NTP. This technology provides us an accuracy of 0.1 ms in a local network
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Figure A.3: Analog and digital signal correlation between sensors with different averaging
(fft_size=256 and duty_cycle=2ms.)

scenario and around a millisecond over Internet. The backend is responsible to define the

precise moment when the sensors start to sample at the same time. This operation

provides a coarse synchronization due to the delays added by the network and the

operative system. Figure A.2 shows the time offset between sensors when they are in

the same local network or connected through Internet. The 90% of the time the sensors

have a time offset lower than 2 milliseconds when they are connected through Internet.

In our solution we are interested to enable the collaboration among sensors connected

through Internet (no just in the same local network). This provides a lower bound for

the amount of data to be transmitted from the sensors for spectrum similarity analysis.

Spectrum Correlation. The spectrum correlation value is the metric used to

determinate if the sensors are receiving a similar signal in the same frequency at the same

time. The data provided by each sensor covers 2.0 MHz of bandwidth. The spectrum

resolution in this bandwidth is determined by the fft_size used. We run experiments

with fft_size=256, which implies that each fft_block of 2.0 MHz contains 214 frequency

bins. We also set duty_cycle equal to 2 ms. Figure A.3(a) shows the correlation between

the analog signal acquired by two sensors that are 3 meters away. In the case that the
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Figure A.4: Analog and digital signal correlation (same frequency band) between sensors
with different fft_size (duty_cycle=2ms.)

sensors are set to the same frequency band (fc=101 MHz) the correlation value reaches

0.7 for average factors higher than 10. Note that with a avg_factor of 10, the average is

computed every 20 ms. The correlation keeps stable and close to 0 in the case that two

sensors are set to a different frequency bands. Therefore, we can reliably detect that the

sensors are not reading in the same frequency band. Figure A.3(b) shows how we reach a

good correlation value between digital signals if the sensors are configured with averaging

factor from 20 on-wards. Again the correlation over digital signals when two sensors are

set to a different frequencies is stable and close to -0.3.

Impact of Spectrum Resolution. The FFT resolution is an important parameter

to set in our system because it will decide, first, the computational cost on the sensor

in order to compute the FFT and then the average of the FFT bins, and second the

bandwidth used in order to transfer the FFT bins from the sensors to the backend. We

would like to reach the maximum correlation value with the minimum data sent to the

backend. Figure A.4 shows that there is not so much difference among using different

FFT values (256 up to 2048) in order to reach a good correlation value. However, using

digital signals, we can see how the lower is the fft_size the better is the correlation value.
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Figure A.5: Signal correlation with different distances between sensors

For digital signals that change faster that analog ones and contain more information

seems to be a good option to use low values of fft_size to reach the maximum correlation

between signals. In addition, larger fft_size tend to be affected by larger noise, which can

negatively affect the correlation. Both analog and digital signals can be correlated using

low values of fft_size (256), which also minimizes the bandwidth used by the sensors to

perform the correlation on the backend.

Distance between the Sensors. The distance between the sensors is an important

factor that can affect the spectrum correlation among sensors. If the sensors are located far

from each other, the channel path loss can severely affect any collaborative strategy. This

phenomenon is frequency dependent, since the path loss model decays with 20 log10 fc,

where fc indicates the carrier frequency. Therefore higher density is expected at higher

frequency to harness the spectrum correlation.

In this experiment we locate several sensors at indoor environment with different

distances between each other. The distances between sensors are 3, 15, 25 and 50

meters respectively. We remark that the tests are conducted in indoor environment.

Figure A.5(a) shows the signal correlation of the sensors located at different distances and

scanning an analog signal. Up to 15 meters the correlation value is close to 0.8 and with
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Figure A.6: Convergence of signal correlation using fft_size=256, avg_factor=30 and
duty_cycle=2ms.

distances between 25 and 50 meters the correlation is around 0.6. Figure A.5(b) shows

the same scenario but using digital signals. The correlation for distances up to 15 meters

reports a value above 0.6 but for longer distances the correlation decrease dramatically.

These results suggest that for analog signals the sensors could work collaboratively

together for maximum distances of 50 meters and for digital signals the limit is around

15-20 meters.

Minimum bandwidth required. The goal of this experiment is to provide an

answer to the following question: what is the minimum sampling time and the minimum

data sent to the backend in order to measure the similarity in the spectrum ? In a

distributed approach, like the one studied in this work, it is required to make decisions

in the shortest possible time and with the minimum amount of data. Therefore, it is

important to evaluate the convergence time to decide if the sensors are getting similar

spectrum or not, and the minimum data sent over Internet to perform the correlation in

the backend.

In order to detect when the system converges, we define the cumulative correlation

(CC) metric as the average of the last K observations of correlation values.
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Figure A.7: Data transferred to the server for a duty_cycle=2ms and avg_factor=30.

Figure A.6 shows the CC metric over time for analog and digital signals. We can

observe that after 0.2 seconds we reach a stable correlation value that allows us to

distinguish if the sensors are reading a similar spectrum or not. Figure A.7 shows the

data sent to the backend over time for different fft_size configurations. As we determined

in the previous experiment, the best configuration of fft_size to perform the correlation

in the backend is 256. In addition to that, we have already found that after 0.2 seconds

the correlation gets stable. From Figure A.7, we can then conclude that every sensor

needs to send only 1 Kbyte to the backend in order to get a reliable decision about the

spectrum similarity.

A.3. Discussion

We have addressed the computation in the backend of the spectrum similarity of data

collected by low-cost RF sensors in range of the same transmitter. We have proposed

various methods to achieve reliable correlation in presence of noisy PSD data both for

analog and digital signals. We have proved that our architecture provides good spectrum

correlation for sensors in radio range. We have then studied problems such as how the

spectrum correlation varies with the distance between sensors. Our system can reliably

correlate the spectrum of analog and digital signals of different sensors using data collected

during 200 ms and sending only 1 Kbyte of data per sensor to the backend.

Our experiments have shown that spectrum similarity using PSD data can be

measured using analog and digital signals, and that a spectrum resolution of 256 bins

provides the best performance in terms of similarity. The ElectroSense network operates

by default using 256 bins, and it is then in the best configuration for measuring spectrum

similarity using the PSD pipeline. This can allow to perform such a study for a preliminary

verification of the potential to collaborate for two IoT spectrum sensors, for instance, in

the scenarios presented in Chapter 6 and 7 of this thesis.



B Software Defined Radio (SDR)

According to Wikipedia a Software-defined Radio (SDR) is: "a radio communication

system where components that have been traditionally implemented in hardware (e.g.

mixers, filters, amplifiers, modulators/demodulators, detectors, etc.) are instead

implemented by means of software on a personal computer or embedded system.

In the recent years, these SDR devices have caught the attention of practitioners,

researchers and also the industry due to their great diversity and low cost price. The

Figure B.1 shows the evolution over the last 18 years of the published scientific papers

related to SDR devices (source: Web of Science1). The Table B.1 shows the SDR devices

currently available in the market for a price less than 300 e.
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Figure B.1: Evolution of the publications related to SDRs (source: Web of Science).

1https://www.fecyt.es/es/recurso/web-science
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C Communication Activities

On the way of making the research work needed for this thesis, I had also the

opportunity to communicate our progress along different small industrial conferences,

events and workshops. The attendance at these events gave me the opportunity to explain

ElectroSense from a different technical level perspective and collect useful feedback from

the industry point of view.

C.1. Cyber Alp Retreat (2015-2019)

The Cyber Alp Retreat is an annual research event organized by armasuisse Science

and Technology. It brings together researchers, partners, and collaborators that are

contributing with their work to the Cyber and Information research program. The retreat

offers an ideal platform for presenting ongoing project results, discussing new ideas, and

coordinating among the different research activities. During the 4 years I attended this

scientific retreat and I also participated on it by giving a talk every year about the

advances and the ongoing research of ElectroSense.

C.2. T3chFest (February 2015)

On Thursday, February 11th 2016, UC3M opened the doors for the 4th edition of

T3chFest, a yearly event that brings together students, researchers and start-ups as well

as established companies and specialists in new technologies. I had the opportunity to

give a talk1 in front of students and people from the industry to introduce, at that time,

what were the first ideas and implementations about ElectroSense.

1https://www.networks.imdea.org/whats-new/news/2016/imdea-networks-participates-t3chfest-uc3m

135

https://www.networks.imdea.org/whats-new/news/2016/imdea-networks-participates-t3chfest-uc3m


136 Communication Activities

Figure C.1: ElectroSense talk at T3chFest.

C.3. Visiting Telefónica (July 2018)

On July 12th, we had an important visiting at IMDEA Networks Institute of the

top executives managers of Telefónica. Telefónica’s Global CTO and Telefónica Research

CEO of Spain were visiting our labs and I had also the time to show them a ElectroSense

demo, and how we could use it to provide useful information to mobile operators helping

them in the new infrastructure deployments for IoT or 5G.

Figure C.2: ElectroSense presented to Telefónica.

C.4. Ericsson Innovation Day (November 2018)

On November 13th, Ericsson celebrated its Innovation Day at the company’s R&D

center in Madrid. It is one of the reference centers in Europe gathering more than 500

engineers working on the latest technologies. The event focused mainly on the innovation

needed for the transformation that will involve the implementation of 5G technology.

Along 2 days I was in the demonstration area showing the capabilities of ElectroSense

in real-time to the attenders. They could see the EM spectrum usage in the room and

we could detect and analyze several transmissions that were using 5G technology in the

event.
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Figure C.3: ElectroSense at Ericsson Innovation Day.

C.5. Madrid fair of Science and Technology (April 2019)

IMDEA Networks Institute joined the Madrid Fair for Science and Innovation, the

leading national event for the dissemination of science and research, that was organized

by the Madri+d Foundation for Knowledge. Together with other colleges and using

ElectroSense we encouraged attendees to explore from the workings of FM radio with,

which we are all familiar, to the IoT, at the cutting edge of technological innovation.

Figure C.4: ElectroSense used as learning tool to explain EM spectrum and radio FM to
students.
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C.6. 1st ElectroSense Workshop (April 2019)

The first ElectroSense workshop2 was hold on KU Leuven University (Belgium), on 4-5

of April 2019 and was organized by the ElectroSense association. The two-days workshop

was targeted at anyone interested in research and applications with spectrum data. The

workshop served as a forum to discuss new ideas, the network itself, and research activities

around ElectroSense. About 25 people attended the workshop where I personally had 3

different talks to explain the main features of the infrastructure on the sensor side and to

draw the main research challenges for the collaborative signal decoding.

(a) (b)

Figure C.5: 1st ElectroSense workshop at KU Leuven University.

2http://workshop.electrosense.org

http://workshop.electrosense.org
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