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Abstract.  The discovery of novel entanglement patterns in quantum many-
body systems is a prominent research direction in contemporary physics. Here 
we provide the example of a spin chain with random and inhomogeneous 
couplings that in the ground state exhibits a very unusual area-law violation. 
In the clean limit, i.e. without disorder, the model is the rainbow chain and 
has volume law entanglement. We show that, in the presence of disorder, the 
entanglement entropy exhibits a power-law growth with the subsystem size, 
with an exponent 1/2. By employing the strong disorder renormalization group 
(SDRG) framework, we show that this exponent is related to the survival 
probability of certain random walks. The ground state of the model exhibits 
extended regions of short-range singlets (that we term ‘bubble’ regions) as well 
as rare long range singlet (‘rainbow’ regions). Crucially, while the probability 
of extended rainbow regions decays exponentially with their size, that of the 
bubble regions is power law. We provide strong numerical evidence for the 
correctness of SDRG results by exploiting the free-fermion solution of the 
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model. Finally, we investigate the role of interactions by considering the 
random inhomogeneous XXZ spin chain. Within the SDRG framework and 
in the strong inhomogeneous limit, we show that the above area-law violation 
takes place only at the free-fermion point of phase diagram. This point divides 
two extended regions, which exhibit volume-law and area-law entanglement, 
respectively.

Keywords: disordered spin chains, entanglement entropies, entanglement in 
extended quantum systems, spin chains, ladders and planes
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1. Introduction

A striking feature of local gapped quantum many-body systems is that the ground-
state entanglement entropy of a subsystem scales with the area of its boundary rather 
than with its volume [1–4]. This statement is the essence of the famous area law for
the entanglement. Given a quantum system in a pure state in D dimensions, and 
given a bipartition of the system into a subsystem A and its complement Ā (see, for
instance, figure 1 for a one-dimensional setup), the von Neumann entanglement entropy
is defined as

S ≡ −TrρA ln ρA,� (1)
where ρA is the reduced density matrix of A, which is obtained by tracing over the 
degrees of freedom of Ā in the full-system density matrix ρ. After denoting as � the typ-
ical length of A, the area law states that for large � the entanglement entropy scales like 
S ∝ �D−1. Physically, the area law suggests that the ground state of local Hamiltonians
contains much less quantum correlation than what one might have expected. The area 
law has enormous consequences for the simulability of quantum states using classi-
cal computers. For instance, it underlies the extraordinary success of Matrix Product 
States (MPS) methods, such as the Density Matrix Renormalization Group [5–7]
(DMRG) to eectively describe ground states of one-dimensional systems. For gapped
many-body systems, there is an unanimous consensus that the area law is valid in 
arbitrary dimension [1], although a rigorous proof is only available for one-dimensional
systems [8] (see also [9]). Conversely, it is well known that the ground states of gapless
free-fermionic Hamiltonians exhibit logarithmic corrections to the area law [10–12], i.e.
one has S = O(�D−1 ln �), in contrast with gapless bosonic systems [13], for which no
corrections are present for d � 2. However, the most prominent examples of logarithmic
area-law violations are critical one-dimensional models whose low energy properties are 
captured by a conformal field theory (CFT) [14–17], and spin chains with a permuta-
tion symmetric ground state [18–21]. Importantly, the area-law is not generic. Typical
excited states of local Hamiltonians exhibit a volume law entanglement [22–24] (and
in these cases the density of entanglement entropy is the same as the thermodynamic 
entropy of a generalised microcanonical ensemble at the correct energy, see, e.g. [25]).
However, there are many examples of eigenstates with sub-volume (logarithmic) scal-
ing of the entanglement entropy (see, e.g. [24, 26]), in particular when the low-energy
part of the spectrum is described by a CFT for which exact analytic predictions are 
obtainable [27–35].

Motivated by this evidence, there is strong common belief that ground states of 
‘physically reasonable local Hamiltonians’ fulfil the area law, and that violations are
at most logarithmic (see, however, [36]). Only very recently, devising local models that
exhibit more dramatic area-law violations became an important research theme. The 
motivation is twofold. On the one hand, highly-entangled ground states are potentially 
useful for quantum computation technologies. On the other hand, from a condensed 
matter perspective, area-law violations could be witnesses of exotic features of quantum 
matter. As a matter of fact, examples of ground states violating the area law start to 
be discovered (see, for instance, [37–51]). These comprise inhomogeneous systems [39],
translation invariant models with large spin [37], free-fermion Hamiltonians [43] with
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a fractal Fermi surface, nonlocal quantum field theories [42], and supersymmetric mod-
els [41]. An interesting class of frustration-free, local, translational invariant models
that exhibit area-law violations has been constructed by Movassagh and Shor in [44].
Their ground-state entanglement entropy is ∝ �1/2, thus exhibiting a polynomial viola-
tion of the area law. Importantly, the exponent of the entanglement growth originates 
from universal properties of the random walk. This is due to the fact that the ground 
state of the model is written in terms of a special class of combinatorial objects, called 
Motzkin paths [52]. A similar result can be obtained [45, 46] using the Fredkin gates
[53]. An interesting generalization of [44] obtained by deforming a colored version of
the Motzkin paths has been presented in [47]. The ground-state phase diagram of the
model exhibits two phases with area-law and volume-law entanglement, respectively. 
These are separated by a ‘special’ point, where the ground state displays square-root
entanglement scaling.

In this paper, we show that unusual area-law violations can be obtained in a one-
dimensional inhomogeneous local system in the presence of disorder. Specifically, here 
we investigate the random inhomogeneous XX chain. In the clean limit, i.e. in the 
absence of disorder, our model reduces to the rainbow chain of [39], whose ground
state, in the limit of strong inhomogeneity, is the rainbow state. In the rainbow state 
long-range singlets are formed between spins across the chain center. An immediate 
striking consequence is that the half-chain entanglement entropy is proportional to 
the subsystem volume (volume law). Here we show that upon including disorder the
structure of the ground state changes dramatically. In contrast with the clean case, 
now the probability of having long-range singlets across the chain center is strongly 
suppressed. In particular, the probability of having extended regions (that we term
‘rainbow’ regions) of mirror symmetric singlets across the chain center decays expo-
nentially with the region size. On the other hand, the probability of having extended 
regions with short-range singlets connecting nearest-neighbor spins decays algebraically 
with the region size, with an exponent 3/2. This has striking consequences for the 
entanglement scaling. Precisely, in contrast with the clean case, the entropy exhibits 
an unusual square root growth, which represents a polynomial violation of the area 
law. We provide numerical evidence for this behavior by using the strong disorder 
renormalization group (SDRG) method [54] (see also [55]). We numerically verify that
the unusual area-law violation happens both in the strong inhomogeneous limit, as well 
as for weak inhomogeneity. Specifically, we numerically observe the square-root scal-
ing for considerably weak inhomogeneity, although we do not have any proof that it 

Figure 1.  Setup used in this work. (Top) definition of the random inhomogeneous
XX chain. The chain couplings are denoted as Jn = e−|n|hKn, with n half integer 
numbers, h a real inhomogeneity parameter, and Kn independent random variables 
distributed with (4). In this work we focus on the entanglement entropy of a
subregion A of length � (shaded area in the figure). Subsystem A starts from the
chain center.
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persists for arbitrarily small one. We provide robust numerical evidence of the unusual 
area-law violation in a microscopic model by calculating the entanglement entropy of 
the random inhomogeneous XX chain, which is obtained by using the free-fermion solu-
tion of the model. Furthermore, we establish a mapping between the SDRG flow of the 
renormalized couplings and an alternating random walk. Interestingly, in the strong 
inhomogeneous limit the exponents of the entanglement scaling, and several ground-
state features, can be quantitatively understood from certain survival probabilities of 
the random walk. Finally, we investigate the role of interactions by considering the 
random inhomogeneous spin-1/2 XXZ chain. Within the SDRG framework, we show 
that the unusual area-law violation does not survive in the presence of interactions. 
Precisely, we find that the entanglement entropy exhibits square-root scaling only at 
the XX point. Interestingly, this marks the transition between two extended regions, 
where the entanglement entropy exhibits area-law and volume-law scaling, respec-
tively. Both the two behaviors can be qualitatively understood in the SDRG framework 
by exploiting the mapping to the random walk, at least in the strong inhomogeneous 
limit. This scenario is somewhat similar to the one presented in [47], although the mod-
els are substantially dierent.

The paper is organized as follows. In section 2 we introduce the random inhomo-
geneous XX chain and the SDRG framework. In particular, in section 2.2 we show 
that for the XX chain the SDRG renormalization flow exhibits an intriguing independ
ence on the specific renormalization pattern. In section 3 we present numerical SDRG 
results for the entanglement entropy in the XX chain. In section 4 we describe how the 
unusual area-law violation is reflected in the behavior of the entanglement contour. In 
section 5, by exploiting the exact solvability of the random inhomogeneous XX chain, 
we provide evidence of the area-law violation. In section 6 we discuss the scaling of the 
energy gap. In section 7 we address the strongly inhomogeneous limit of the model, 
by exploiting a mapping between the SDRG flow and the random walk. Section 8 is 
devoted to discuss the entanglement scaling in the XXZ chain. We conclude in sec-
tion 9. Finally, in appendix A we propose an algebraic interpretation of the SDRG 
scheme, and in appendix B we report the calculations of certain survival probabilities 
for the random walk introduced in section 7.

2. The random inhomogeneous XX chain (randbow chain)

We consider a chain with 2L sites, described by the following inhomogeneous random 
hopping Hamiltonian (see figure 1)

H = −1

2

L−1∑
m=−L+1

Jm c†
m− 1

2

c
m+ 1

2
+ h.c., with m = 0,±1,±2, · · · ,±(L− 1).

(2)
Here cm± 1

2
(c†

m± 1
2

) denotes the annihilation (creation) operator of a spinless fermion

at sites m± 1
2
, and Jm  >  0 is the inhomogeneous random hopping parameter between 

the sites m− 1
2
 and m+ 1

2
. In (2), the coupling J0 is associated to the link 

(
−1

2
, 1
2

)
located at the center of the chain. The hopping parameters Jm are defined as
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Jm ≡ Km ×
{
e−h/2, m = 0 ,

e−h|m|, |m| > 0 ,
� (3)

where h  >  0 is a real parameter that measures the strength of the inhomogeneity. If 
Km = O(1) are nonzero, for h  >  0 the coupling strength decreases exponentially with
the distance from the chain center. In (3), we choose Km to be independent (from site
to site) random variables distributed in the interval [0, 1] according to

P (K) = δ−1K−1+ 1
δ ,� (4)

with δ > 0 parametrizing the noise strength. For δ = 1, P (K) becomes the uniform dis-
tribution in the interval [0, 1]. For δ → 0, P (K) is peaked at K  =  1 and the model (2) is
clean, i.e. without disorder. On the other hand, for δ → ∞, P (K) is peaked at K  =  0. 
In the limit δ → ∞, equation  (4) defines the infinite randomness fixed point (IRFP)
distribution, which describes the long-distance properties of the ground state of (2) for
h  =  0 and any δ (see below).

After a Jordan–Wigner transformation, the random hopping model in (2) is mapped
onto the spin-1/2 inhomogeneous XX chain defined by

H =
1

2

L−1∑
m=−L+1

Jm S+
m− 1

2

S−
m+ 1

2

+ h.c., with m = 0,±1,±2, · · · ,±(L− 1) . (5)

Here S±
m are spin-1/2 raising and lowering operators. In this work we investigate 

the ground-state entanglement entropy S of a subregion A that starts from the chain 
center. The precise bipartition that we consider is pictorially illustrated in figure 1.

Clearly, the properties of the model (5) depend on two parameters, h and δ, giving
rise to a two-dimensional ground-state phase diagram. The clean homogeneous XX 
chain is recovered for δ → 0 and h  =  0. Its ground state is critical, and it is described 
by a conformal field theory (CFT) with central charge c  =  1. The entanglement entropy
of a finite subsystem A exhibits a logarithmic area-law violation described by [17]

S =
c

3
ln �+ k,� (6)

with k a non-universal constant, � the size of A, and c  =  1 the central charge of the 
CFT. In this work we focus on the entanglement properties of (5) at δ > 0. In the limit
h → 0 and for any finite δ (see (3)), equation (5) defines the random antiferromagnetic
XX chain. The ground state of the model has been extensively studied using the SDRG 
[54, 56, 57], and it is described by the random singlet (RS) phase. The structure of the
random singlet phase (RSP) is depicted in figure 2(a). In the figure the links denote
a singlet bond between the spins at their end points. In the RS phase short bonds 
between spins on near neighbour sites are present, as well as bonds joining distant 
spins. A distinctive feature of the RS phase, which can be derived by using the SDRG 
approach, is that, similar to the clean case (see (6)), the entanglement entropy of a
finite subregion scales logarithmically as [58–61]

S =
ln 2

3
ln �+ k′,

(7)
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where k′ is a non universal constant. The crucial dierence with (6) is the ln 2 prefactor.
For the random XX chain, this prefactor can be interpreted as a renormalization of the 
central charge c  =  1 due to the disorder, which reduces the amount of the entanglement 
(see, however, [62] for a counterexample).

For δ = 0 and h  >  0, the ground state of (5) is in the rainbow phase [39]. The struc-
ture of the ground state of (5) is illustrated in figure 2(c). The system exhibits a prolif-
eration of long bonds connecting distant spins symmetrically across the chain center. 
This behavior can be understood in the strong inhomogeneity limit at h � 1, By using
the SDRG method, one can easily show that the ground state of (5) is the rainbow
state. In the language of fermions this reads

|RAINBOW〉 =
L−1/2∏
n=1/2

(
c†−n + (−1)n−1/2c†+n

)
|0〉.� (8)

In the spin representation, the state (8) corresponds to a product of singlets between
the sites (−n, +n) of the chain. An important feature of the rainbow state (8) is that
the entanglement entropy of a subsystem starting from the chain center grows linearly 
with its size � (corresponding to a volume law) as [39, 63–67]

lim
h→∞

S(h, �) = � ln 2,� (9)

where subleading O(1) terms have been neglected. Equation (9) reflects that the entan-
glement is proportional to the number of singlets shared between A and its complement 
Ā, i.e. connecting a site in A and the other in Ā. Remarkably, the volume-law scaling
(9) survives in the weak inhomogeneity limit h → 0. One can take the continuum limit
of (2), by sending the lattice spacing a → 0 and by considering h → 0 and L → ∞ with
h/a and aL fixed, to show that the half-chain entanglement entropy is still linear with
L, but with a dierent coecient as [67]

S(h,L) � 1

6
ln

(
ehL − 1

h

)
→ hL

6
.� (10)

The last expression in (10) is obtained in the limit hL � 1.
In this work we focus on the regime with finite nonzero δ and 0 < h < ∞. In this

regime the ground state of (5) is in a dramatically dierent phase. This is illustrated in
figure 2(b). Its structure is easily understood in the limit h � 1. Similar to the rainbow
phase, long bonds connecting spins on symmetric sites with respect to the center of the 
chain are present. However, in contrast with the rainbow case (see figure 2(c)), they
are rare and do not form an extended phase. Precisely, the probability of forming a 
sequence of rainbow links decreases exponentially with its size, i.e. with the number of 
consecutive sites involved. On the other hand, the ground state of (5) exhibits a pro-
liferation of short-range singlets between spins on nearest-neighbor sites. These form 
extended ‘bubble’ regions (see figure 2(b)). We anticipate that the probability of form-

ing a bubble region of length �b decays as a power law as ∝ �
−3/2
b , in contrast with that

of forming a rainbow region, which is exponential. This has striking consequences for 
the scaling of the entanglement entropy. First, only rainbow bonds can contribute to 
the entanglement between A and the rest, because short singlets connect mostly sites 
within A and Ā, separately. On the other hand, the typical length scale over which the

https://doi.org/10.1088/1742-5468/ab02df
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system is entangled is determined by the scaling of the regions with short-range sin-
glets. Specifically, our main result is that for 0 < h < ∞ and finite δ the von Neumann
entropy exhibits a square-root scaling behavior as

S = C · �1/2 + k′′,� (11)
where C and k′′ are non-universal constants. Notice that equation  (11) represents a
dramatic violation of the area-law.

2.1. Strong disorder renormalization group (SDRG) method

Away from the limits h = δ = 0, the Hamiltonian (5) can be studied using the SDRG
technique, first introduced by Dasgupta and Ma [56]. In the standard SDRG frame-
work, high-energy degrees of freedom in (5) are progressively removed from the model
via a decimation procedure. This works as follows. At each SDRG step, we select the 
link with the largest value of the coupling JM ≡ max{Ji} (see (3)). Thus, we put in a
singlet state the two spins connected by the link. This has the eect of renormalizing 
the interaction between the next-nearest neighbor spins. This eect can be derived by 
treating the couplings on the links next to JM using standard second-order perturbation 
theory. The resulting eective coupling J ′ between the next-nearest neighbor spins is 
obtained as

J ′ =
JLJR
JM

,� (12)

where JL and JR are the coupling to the left and to the right of JM, respectively. After 
many iterations of the SDRG step, all the spins are decimated, and the resulting state 
is a collection of singlets, i.e. a valence bond state (VBS).

(a) h 1, Random Singlet Phase (b) h ∼ 1, Randbow Phase (c) h → ∞, Rainbow Phase

Figure 2.  Summary of the phase diagram of the model, using open boundaries. Arcs 
in the figure correspond to spins forming SU(2) singlet bonds. Notice that for any 
h �= 0 the coupling strength Ji decreases exponentially away from the center of the 
chain. (a) For h � 1 the model becomes the XX chain with random antiferromagnetic
couplings. The ground state of the model is the random singlet (RS) phase. In the
RS phase bonds of arbitrary length are present, but no symmetry with respect to 
the chain center is observed. RS phases exhibit logarithmic entanglement growth. 
(b) For intermediate values of h we observe some long distance bonds along with
a proliferation of short ones, connecting neighboring sites (bubbles). The bond
diagram presents left-right symmetry, and the entanglement is characterized 
by a subextensive (square root) entanglement growth. (c) For h → ∞ the model
approaches the standard rainbow chain, with all bonds symmetric with respect to 
the chain center and exhibiting volume-law entanglement.

https://doi.org/10.1088/1742-5468/ab02df
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It is useful to rewrite the SDRG procedure by introducing the logarithmic couplings 
Tm as

Tm ≡ − ln Jm.� (13)
Notice that Tm takes into account both the random part of the coupling Km (see (3)), as
well as the inhomogeneity due to the presence of h. Notice that the contribution of h is 
a non-random position-dependent shift in Tm. In the variables Tm the SDRG renormal-
ization step (12) becomes additive. We anticipate that this allows one to interpret the
SDRG procedure as a random walk in the space of Tm (see, for instance, section 2.2).

The structure of the SDRG renormalization has been intensively investigated for 
the homogeneous random [54] XX chain which is obtained for h  =  0. As it was antici-
pated, the ground state of the model is described by the random singlet phase. In the 
RS phase singlets are mostly formed between nearest-neighbor sites, although random 
singlets connecting spins at arbitrary large distance are also present. Although they 
are suppressed, the latter are responsible for a slow decay, as a power law, of the 
spin-spin correlation function. An important observation is that after many SDRG 
steps the distribution of the renormalized couplings is of the form (4) with δ → ∞.
This implies that the strength of the disorder eectively increases during the SDRG 
flow, which justifies the use of perturbation approach in (12), and the applicability of
the SDRG method. Finally, we should mention that the SDRG approach proved to 
be the method of choice to understand the entanglement scaling in generic disordered 
systems [54, 68–80].

Here we choose Km (see (3)) distributed according to (4). Writing this quantity as
Km = ξδm, one can easily verify that ξm is a random variable uniformly distributed in 
the interval [0, 1]. This allows one to rewrite the couplings Tm as

Tm =

{
h
(
1
2
− δ

h
ln ξ0

)
, m = 0 ,

h
(
|m| − δ

h
ln ξm

)
, |m| > 0 .� (14)

An important consequence of (14) is that apart from the overall factor h, the couplings
Tm are functions of the ratio δ/h only. Hence, the VBS state obtained at the end of the 
SDRG, as well as the entanglement entropy, only depends on δ/h.

2.2. Path invariance of the SDRG for the XX chain: a useful lemma

Since in this paper we mostly focus on the random XX chain, here we wish to discuss 
a crucial simplification that occurs when one applies the SDRG method to this model. 
We show that for the random XX chain (see (5)) the renormalized coupling between
two sites separated by an odd number of consecutive bonds is independent of the deci-
mation pattern, and it has a simple form that we provide. To the best of our knowledge 
this interesting property has not been noticed before in the literature. In appendix A we 
propose an algebraic derivation of this property in terms of a triplet product inspired 
by the SDRG method.

Let us start with the SRDG decimation of the block of four spins shown in figure 3(a),
that we denote as [i− 1

2
, i+ 5

2
], where i is an integer. The renormalization of this block 

amounts to the formation of a bond between the sites i+ 1
2
 and i+ 3

2
 and a new eective 

coupling between the sites i− 1
2
 and i+ 5

2
 whose value is given by equation (12),

https://doi.org/10.1088/1742-5468/ab02df
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J[i− 1
2
,i+ 5

2
] =

Ji Ji+2

Ji+1

.� (15)

Working with the logarithmic couplings Ti = − ln Ji, this equation becomes

T[i− 1
2
,i+ 5

2
] = Ti − Ti+1 + Ti+2 .� (16)

The next example involves the renormalization of the block of six consecutive sites 

[i− 1
2
, i+ 9

2
] depicted in figure 3(b). Now there are two possible patterns. In the first one

(figure 3(b) top) a nested rainbow diagram with two bonds is formed. The other possi-

bility is to create two bubble diagrams forming the bonds (i+ 1
2
, i+ 3

2
) and (i+ 5

2
, i+ 7

2
) 

(figure 3(b) bottom). Using (12), it is straightforward to check that both decimation

patterns give the same eective coupling between sites i− 1
2
 and i+ 9

2
, which reads

T[i− 1
2
,i+ 9

2
] = Ti − Ti+1 + Ti+2 − Ti+3 + Ti+4 .� (17)

The general expression for the renormalized coupling for a block [i− 1
2
, i+ n+ 1

2
] with 

n  +  1 bonds is given by

T[i− 1
2
,i+n+ 1

2
] =

n∑
j=0

(−1) j Ti+j,� (18)

where n is the number of spins decimated, that must be an even number. Equations (16)
and (17) correspond to the cases n  =  2 and n  =  4 of (18) respectively.

We now prove (18) by general induction. The key step of the proof is summarized in
figure 3(c). The boxes in the figure denote renormalized couplings. The numbers n,m, p
inside the boxes denote the numbers of spins that have been decimated. To proceed by 
induction, we assume that equation (18) holds for these renormalized couplings. Now,

two spins are left at positions i+ n+ 1
2
 and i+ n+m+ 3

2
. Without loss of generality 

we can assume that these are the two spins that are decimated at the next SDRG step. 

After the decimation, one obtains that the renormalized coupling connecting sites i− 1
2

and i+ n+m+ p+ 5
2
 is given as

T[i− 1
2
,i+n+m+p+ 5

2
] = T[i− 1

2
,i+n+ 1

2
] − T[i+n+ 1

2
,i+n+m+ 3

2
] + T[i+n+m+ 3

2
,i+n+m+p+ 5

2
].

�

(19)

Using that all the renormalized couplings appearing in the right hand side in (19) sat-
isfy (18), one obtains that

T[i− 1
2
,i+n+m+p+ 5

2
] =

n∑
j=0

(−1) j Ti+j −
m∑
j=0

(−1) j Ti+n+1+j +

p∑
j=0

(−1) j Ti+n+m+2+j

=

n+m+p+2∑
j=0

(−1) j Ti+j

� (20)
that reproduces equation (18) for the renormalized coupling of the block. This gives the
proof of the desired result.

A few comments are in order to show the relevance of our result. First, equa-
tion (18) provides an exact mapping between the SDRG flow of the couplings Ti and
an alternating random walk. This mapping holds true for any distribution of the initial 
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couplings Ji. However, equation (18) does not contain any spatial information about
the SDRG flow. This means that from (18) it is not straightforward to reconstruct the
information about the place where the SDRG processes has occurred. This fact repre-
sents an obstacle to derive from equation (18) the scaling of correlation functions or
of the entanglement entropy. Still, we anticipate that this limitation can be overcome 
for the random inhomogeneous XX chain in the large h limit (strongly inhomogeneous
limit). This happens because the presence of the inhomogeneity provides a simple rela-
tion between the SDRG step n and the distance from the chain center. More precisely, 
sites far away from the chain center are usually renormalized at later stages along the 
SDRG procedure.

Another important consequence of equation (18) is that, given a region containing n
spins, equation (18) allows one to derive the distribution of the renormalized couplings
after decimating all the spins. Using the random walk framework, one obtains that this 
is the distribution of the final position of the walker after n steps. It is straightforward 
to derive this distribution in the limit n → ∞. Clearly, the sum of the even and odd
sequences in equation  (18) can be treated separately. Both are the sum of indepen-
dent identically distributed exponential variables, that follow the gamma distribution. 
By using that for large n the gamma distribution is well approximated by a normal 
distribution, one has that the sum of the even and odd terms in equation  (18) are
distributed with (πn)−1/2 exp[(x− n/2)2/n]. The renormalized coupling after n SDRG
steps is obtained as the dierence between the sum of the odd and even sequences in 
equation (18). This is again a normal distribution with zero mean and variance n, i.e.

P
(
T = T[i− 1

2
,i+n+ 1

2
]

)
=

1√
2πn

e−T 2/(2n).� (21)

2.3. Entanglement entropy of random singlet states

In the following sections we will present numerical results for the von Neumann entropy 
in the random inhomogeneous XX chain. The results are obtained by using the SDRG 
method. At the end of the SDRG procedure one obtains a VBS, in which all the spins 

i− 1
2

i

i+ 1
2

i+ 1

i+ 3
2

i+ 2

i+ 5
2

(a) n = 2

i− 1
2

i

i+ 1
2

i+ 1

i+ 3
2

i+ 2

i+ 5
2

i+ 3

i+ 7
2

i+ 4

i+ 9
2

i− 1
2

i

i+ 1
2

i+ 1

i+ 3
2

i+ 2

i+ 5
2

i+ 3

i+ 7
2

i+ 4

i+ 9
2

(b) n = 4

i− 1
2 i+ n+ 1

2 i+ n+m+ 3
2 i+ n+m+ p+ 5

2

n m p

(c) induction

Figure 3.  Path invariance theorem for the SDRG in the random XX chain: 
pictorial proof by induction. The figure  shows that the renormalized coupling 

between two sites i− 1
2
 and i+ n+ 1

2
 obtained after decimating all the n spins in

between does not depend on the decimation pattern. (a) The theorem for n  =  2. 
Only one decimation pattern is possible. (b) n  =  4. Now two patterns are possible:
a rainbow and a bubble pattern (top and bottom, respectively). (c) Induction step
to prove the theorem. The boxes denote the renormalized couplings for which the 
theorem applies.

https://doi.org/10.1088/1742-5468/ab02df


12

are paired forming singlets. For any VBS configuration, the entanglement entropy S 
between a subsystem A and the rest (see figure 1) is proportional to the number of
singlets that are shared between A and its complement Ā. It is straightforward to show
that for any VBS state, the reduced density matrix ρA of subsystem A is written as

ρA =

nA:A⊗
i=1

ρ2S

nA:Ā⊗
i=1

ρS,� (22)

where nA:A is the number of singlets between spins in A and nA:Ā. In (22), ρS and ρ2S are
the density matrices of a system of one spin and of a singlet, respectively. Specifically, 
ρ2S is defined as

ρ2S =
1

2




0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0


 ,� (23)

in the basis |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. ρ2S has eigenvalues 0, 1. The reduced density matrix
ρS for one of the spins is

ρS =
1

2

(
1 0

0 1

)
.� (24)

Only ρS contributes to the von Neumann entropy of subsystem A with the rest. This is 
because ρ2S has only eigenvalues 0, 1. This is also physically expected because ρ2S takes 
into account the singlets between spins in A. The entropy is obtained from (22) to (24)

S = nA:Ā ln 2.� (25)
From (25) one has that the disorder averaged entropy 〈S〉 is proportional to the average
number of singlets 〈nA:Ā〉 shared between A and its complement Ā.

3. Area-law violation in the random inhomogeneous XX chain

3.1. Von Neumann entropy: SDRG results

We now discuss the scaling behavior of the ground-state von Neumann entropy in the 
random inhomogeneous XX chain (see (5)). In figure 4 we present numerical data for
the von Neumann entropy S of a subsystem A placed at the center of the chain (see
figure 1). The results are obtained by implementing the SDRG method discussed in
section 2.1. The entropy S is plotted versus the subsystem size � of A. The dierent 
symbols in the figure correspond to dierent values of the inhomogeneity h. The dis
order strength parameter δ (see (3)) is fixed to δ = 1. For h → ∞ the model reduces to
the rainbow chain, and the volume law S ∝ � is expected. Oppositely, for h → 0 the
homogeneous random XX chain is recovered with logarithmic entanglement scaling 
(7). Surprisingly, for all the intermediate values of 0.5  <  h  <  10, the entropy exhibits
a power-law increase with � (notice the logarithmic scale in both axes). A preliminary
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analysis suggests the behavior S ∝ �1/2. To perform a more careful finite-size analysis
we fit the SDRG results to

S = a+ b�1/2,� (26)
where a and b are fitting parameters. The results of the fits are reported in figure 4 
as dashed-dotted lines. Clearly, for small values of � the data exhibit deviations from 
(26). This behavior has to be attributed to finite-size corrections, due to the small �.
Similar corrections are present for clean models, as well as for the random XX chain 
[60]. However, already for � � 10 the data are in perfect agreement with (26) for all
values of h considered.

Alternatively, in figure 5 we plot the half-chain entropy as a function of the chain 
length L. The data are now for a wide range of 0 � δ � 64. The data are for h  =  1. For 
δ = 0 the volume law behavior is visible, whereas the data for δ = 64 are suggestive of
the logarithmic behavior that is expected in the random singlet phase. For all other
values of δ the square root scaling is visible, confirming the results of figure 4.

It is interesting to investigate the combined eect of disorder and inhomogene-
ity on the scaling of S. This is discussed in figure 6, by considering dierent values of 
δ and h. The figure plots S as a function of � for several values of h and δ (dierent
symbols). All the data for dierent δ and h but with the same value of h/δ collapse on
the same curve. This confirms that S is a function of h/δ only, as it was anticipated in 
section 2.1. The figure shows SDRG results for h/δ = 7 (empty symbols), h/δ = 4 (filled
symbols), and h/δ = 0.5 (hatched symbols). This scaling behavior, however, is valid
only within the SDRG method. We anticipate that for the random inhomogeneous XX 
chain the entanglement entropy can be calculated exactly (see section 5) using free-
fermion techniques, and it is a function of h/δ only for large h.

Finally, for all values of h, δ considered in figure 6 the von Neumann entropy exhib-
its the square-root scaling (26). The dashed-dotted lines in the figures are fits to (26),
and they are in good agreement with the SDRG results. We should also remark that for 
h/δ = 0.5 the square root scaling of the von Neumann entropy is visible only for larger 
� � 100, due to larger finite-size eects, as it is also clear also from figure 4.

3.2. Understanding the area-law violation: bubble versus rainbow regions

The square-root entanglement scaling discussed in figures 4 and 5 can be qualitatively 
derived from the distribution of the rainbow and bubble regions of the states. To this 
end we shall define �r as the number of consecutive concentric bonds that constitute 
a given rainbow region. For example, in the pure rainbow state we have �r = L bonds 
connecting the left and right halves of the chain. On the other hand, we define �b as 
the number of points that are connected by consecutive dimer bonds that constitute 
a bubble region (see figure 2). An example of a VBS state for a chain with 2L  =  14 
sites is shown in figure 7. This configuration contains two rainbow regions with �r = 2 
and �r = 1 bonds (continuous links), and two bubble regions with �b = 4 sites each (see
dashed lines in the figure).

To compute the probability distribution of �r and �b we apply the SDRG method to 
decimate all the spins for a set of disorder realizations.
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The distribution of the rainbow bonds Pr(�r) is obtained by constructing the his-
tograms of the values of �r of the dierent rainbow regions. An average over dierent 
disorder realizations is performed. The resulting histograms for �r are shown in figure 8. 
The data are for the random inhomogeneous XX chain in the strongly inhomogeneous 
limit for h � 1. We use a logarithmic scale on the y -axis. The data show a clear expo-
nential decay with �r. The exponential decay is smaller for greater values of h. This 
is an expected result because in the limit h → ∞ the rainbow regions will start to
proliferate.

A similar analysis can be performed for the distribution Pb(�b) of the extension 
�b of the bubble regions. The results are reported in figure  9 for h  =  7 and h  =  10. 
Interestingly, on the scale of the figure the two histograms are not distinguishable, sig-
nalling that Pb does not depend significantly on h, at least for large h. In stark contrast 
with the rainbow regions (see figure 8), Pb exhibits a power-law decay with �b. A careful
analysis suggests the behavior

Pb(�b) ∝ �
−3/2
b .� (27)

The dash-dotted line in figure 9 is a fit to the behavior (27), and it perfectly describes
the numerical data.

The results of figures 8 and 9 allow one to understand qualitatively the square-root 
behavior of the von Neumann entropy (11). First of all, since Pr is an exponential func-
tion, the average number of rainbow bonds 〈�r〉 is a constant independent on L,

〈�r〉 =
∫ ∞

1

dx xPr(x) ,� (28)

where we have replaced the upper limit of the integral, namely L (total number of
bonds) by ∞, without changing essentially the final result. On the other hand, given a

Figure 4.  Unusual scaling of the entanglement entropy in the randbow phase: 
entanglement entropy plotted as a function of the subsystem length �. The 
subsystem starts from the center of the chain (see figure 1). The data are SDRG
results for the random inhomogeneous XX chain. The dierent symbols are for 
dierent values of h and fixed value of δ = 1. Logarithmic scale is used on both 
axes. The dashed-dotted lines are fits to a+ b�1/2, with a, b fitting parameters.
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subsystem A of length �, the average number of points of the bubble regions contained 
in A is given by

〈�b〉 =
∫ �

2

dx xPb(x) ∝ �1/2.� (29)

Figure 5.  Unusual scaling of the entanglement entropy in the randbow phase: 
half-chain entanglement entropy plotted as a function of the chain length L. The 
data are SDRG results for the random inhomogeneous XX chain. The dierent 
symbols are for dierent values of δ and h  =  1. The data are averaged over 104 
disorder realizations.

Figure 6.  Entanglement entropy S plotted as a function of the subsystem size 
�: SDRG results for the randbow XX chain. The symbols correspond to several
values of δ and h. The data collapse shows that the von Neumann entropy is a
function of the ratio h/δ.
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The short-range singlets forming the bubble phase do not contribute to the entangle-
ment between A and the rest, because they mostly entangle spins within A. The entan-
glement between A and the rest is due to long range links forming the rainbow phase. 
However, the scaling of the entropy is determined by the distribution of �b, which deter-
mines the typical spatial separation between the dierent rainbow regions. A crude 
estimate of the entanglement entropy is obtained as follows. On average, there are 〈�r〉
rainbow links every 〈�b〉 sites. Hence a region A with � sites can be divided roughly into
�/〈�b〉 bubbles separated by 〈�r〉 rainbow bonds. The von Neumann entropy can then
be approximated as

S ∝ �

〈�b〉
× 〈�r〉 ln 2 ∝ �1/2〈�r〉 ln 2,� (30)

i.e. the square-root scaling in equation (11). Crucially, in (30) we have assumed that the
average bubble size 〈�b〉 and average number of rainbow bonds 〈�r〉 do not depend on
the position in the chain. This might be surprising at first look because the system is 
not homogeneous. However, as it will be clear in the following sections, due to the form 
of the renormalization rule (12) and the type of inhomogeneity, the condition that leads
to the bubble formation does not depend on the precise SDRG step, and, consequently, 
on the position in the chain. Notice that this relies on the precise form of (12), which
holds only for the XX model, and it breaks down for the interacting XXZ chain.

4. Entanglement contour

It is enlightening to investigate how the square-root scaling of the von Neumann entropy 
(11) is reflected in the behavior of the entanglement contour. The entanglement con-
tour has been introduced in [81] as a tool to quantify the spatial contributions to the
entanglement entropy. The key idea is to write S as the integral of a contour function 
sA(x), where x ∈ A. The natural constraints that sA(x) has to satisfy are

S =

∫

x∈A
dxsA(x), sA(x) � 0.� (31)

In (31) we considered a continuous system. The extension to lattice models is obtained
by replacing the integrals with the sum over the lattice sites. The first condition in (31)
is a normalization, whereas the second ensures that the contribution of each site to 
the entanglement entropy is positive. Clearly, the conditions (31) are not sucient to

Figure 7.  An example of singlet configuration obtained using the SDRG method 
in the random inhomogeneous XX chain. The limit of strong inhomogeneity h � 1
is considered. The singlet configuration contains two rainbow regions with two and 
one long singlets, respectively. These are denoted with continuous lines. A bubble 
region with four short-range singlet denoted by dashed lines is present.
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Figure 8.  Exponential decaying distribution of the rainbow bonds. The probability 
Pr(�r) of the number of bonds �r, of the rainbows. The figure shows normalized 
histograms for the distribution of �r. The data are SDRG results for the random 
inhomogeneous XX chain. The histograms correspond to the values h = 7, 10 and 
δ = 1. Notice the logarithmic scale on the y -axis. The dashed-dotted lines are
exponential fits. The data are obtained by averaging over  ∼1000 dierent disorder
realizations.

Figure 9.  Power law distribution of the size of the bubble regions. The figure shows 
the probability Pb(�b) of the extension of the bubble regions. Notice the logarithmic 
scale on both axes. The data are renormalized histograms for the length of the 
bubble phase in the random inhomogeneous XX chain. The data are are obtained 
using the SDRG method for a chain with h = 7, 10 and δ = 1. Each point is 
obtained by averaging over  ∼1000 disorder realizations. The dierence between 
the histograms for h  =  7 and h  =  10 is not visible. The dashed-dotted line is a fit 
to  ∼x−3/2.
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uniquely identify the contour function sA. For instance, for an homogeneous system the 
simplest choice is the flat contour sA(x)  =  S/|A|, where |A| is the volume of A. However,
although this is a legitimate choice, it does not take into account that, due to the area 
law, most of the contribution to the entanglement between A and its complement Ā
originates at the boundary between them. For gapped one and two dimensional systems 
this boundary locality of the entanglement entropy has been thoroughly investigated 
in [82] and [83]. We should mention that exact calculations of the contour function sA

are possible only for free models [84, 85], and in conformal field theories [86] (CFT).
Within the SDRG framework for random systems, there is a natural definition of 

entanglement contour. Precisely, the value of sA on a given site x of A is ln 2 if there is 
a link starting at site x and ending in Ā, and it is zero otherwise. Numerical results for
the contour function sA(x) in the random inhomogeneous XX chain as a function of the
position x in A are shown in figure 10. We have chosen the block A as the right half of 
the chain that contains L sites.

This figure shows the average contour function 〈sA(x)〉 over  ∼1000 disorder realiza-
tions. The position x = 1, 2, . . . ,L is measured starting from the center of the chain. 
The figure shows results for several values of 1/64 � h � 100. Clearly, for h → ∞, the
ground state of the model is in the rainbow phase (see figure 2(c)). This implies that sA

is flat and sA(x) ∼ ln 2.
In the limit h → 0 the ground state is described by the random singlet phase.

This is reflected in the behavior of the contour function sA. Already for h  =  1/64 the 
data in figure (31) exhibit a ∝ 1/x decay with x. This implies that for a subsystem of

length � one has S =
∫ �

1
sA(x)dx ∝ ln �, which is consistent with the expected result (7).

Notice that for h  =  1/64, for large x, sA(x) exhibits large oscillations. We do not have
an analytic understanding of this behavior, although we should mention that similar 
oscillations in the entanglement were observed for the clean rainbow XX chain in [86].
Finally, for intermediate values 1/64  <  h  <  100 one has sA(x) ∝ x−1/2. This is clearly
consistent with the square-root scaling behavior S ∝ �1/2, as it was shown in figure 4.
Again, this behavior of the contour is a consequence of the power-law scaling of the 
distribution of �b. Indeed, the probability that a site at distance x = � from the chain 
center contributes to the entanglement is roughly 1/〈�b〉 ∼ 1/�1/2.

Finally, we should mention that the knowledge of the contour function allows one to 
obtain the scaling of the von Neumann entropy for a generic bipartition. For a generic 
interval with endpoints x1 and x2, with x2 > x1, one obtains

S ∝
∫ x2

x1

dxx−1/2 = x
1/2
2 − x

1/2
1 .� (32)

The validity of (32) is illustrated in figure 11 for the case of a subsystem starting from

one of the chain boundaries. In this case equation (32) gives that S ∝
√
L/2−

√
L/2− �.

The figure shows the von Neumann entropy of a subsystem of length � starting from 
one boundary of the chain, as a function of 2�/L. The data are for a chain with 
h/δ = 1, 2. The results are SDRG data for a chain with L  =  400 averaged over  ∼1000 
disorder realizations. The dashed-dotted lines are fits to

S = a+ b(
√

L/2− (L/2− �)1/2),� (33)
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with a, b fitting parameters. The agreement between the numerical data and (33) is
perfect, supporting the validity of (32).

5. Numerical benchmarks using the exact solution of the XX chain

In this section we provide exact results for the entanglement entropy of the random 
inhomogeneous XX chain (5). The key observation is that for any disorder distribution,
the XX chain is exactly solvable after mapping it to free fermions. The single-particle 
eigenstates |Ψq〉 (with q an integer that labels the dierent eigenstates) of (2) are of the
form

η†q|0〉 ≡ |Ψq〉 =
L− 1

2∑

i=−L+ 1
2

Φq(i)c
†
i |0〉,� (34)

with |0〉 denoting the fermionic vacuum, and Φq(i) the eigenstate amplitudes. Here ηq
denotes a new fermionic operator creating the single particle excitation. To determine 
Φq(i) one has to solve the Schödinger equation, which reads

−Ji+ 1
2
Φq(i+ 1)− Ji− 1

2
Φq(i− 1) = 2εqΦq(i), i = ±1

2
,±3

2
, . . . ,±(L− 1

2
),

�

(35)

with JL = J−L = 0, and εq the single-particle energies. Equation (35) defines the eigen-

value problem for the banded (2L)× (2L) matrix Ti,j ≡ 1
2
(Jj+ 1

2
δi,j+1 + Jj− 1

2
δi,j−1). The

eigenvalues of T are organized in pairs with opposite sign. This can be shown as follows. 
Given the amplitude Φ1(i) of an eigenvector with εq > 0, it is straightforward to check 
that the amplitudes of the eigenvector with eigenvalue −εq are obtained as (−1)iΦq(i).
The ground state |GS〉 of (2) at half filling belongs to the sector with M  =  L fermions,
and it is constructed by filling all the negative modes as

|GS〉 = η†qMη†qM−1
· · · η†q1 |0〉.� (36)

It is useful for the following to derive the anticommutation relations

{η†q, c
†
j} = {ηq, cj} = 0,� (37)

and

{η†q, cj} = Φq( j)δk,j, {ηq, c†j} = Φ∗( j)δk,j.� (38)

Using (37) and (38), the expectation value of the two-point function 〈c†ici〉 in a generic
eigenstate of (5) reads

〈c†icj〉 =
∑
q

Φ∗
q(i)Φq( j), (39)

where the sum if over the filled modes q defining the eigenstate.
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Figure 10.  Spatial contributions to the subsystem entanglement entropy S 
(entanglement contour). The data are SDRG results for the inhomogeneous random
XX chain. The figure shows the contour function sA(x) as a function of the position
x inside block A of the chain. The dierent symbols correspond to dierent values 
of h and fixed δ = 1 . For h → ∞ the contour is flat and equal to ln 2, implying that
all the sites of A contribute equally to the von Neumann entropy, which exhibits 
volume-law scaling. For intermediate values of 0 < h < ∞, one has the behavior
x−1/2, which implies that S ∝

√
�. Finally, in the limit h → 0, one has the scaling

sA ∝ x−1, implying S ∝ ln �, reflecting the onset of the random singlet phase in
that limit.

Figure 11.  Entanglement entropy of a subsystem starting from one of the 
boundaries of the chain. The data are SDRG results for the XX chain. The results 
are for a chain with L  =  400 sites, and h/δ = 1, 2. The dashed-dotted lines are fits 
to a+ b(

√
L/2− (L/2− �)1/2), with a, b fitting parameters, and � the subsystem

length.
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Let us now consider the bipartition of the chain in figure 1. For any free-fermion 
model, even in the presence of disorder, the reduced density matrix ρA of subsystem A 
can be obtained from the correlation matrix [87–92] restricted to A

C(A)
ij ≡ 〈c†icj〉,� (40)

where i, j ∈ A. Moreover, given the eigenvalues λk of C(A), the entanglement entropy
S is given as

S = −
∑
k

(λk lnλk + (1− λk) ln(1− λk)).� (41)

Numerical results for the von Neumann entropy S obtained using (41) are reported
in figure  12 versus the subsystem size �. The figure  shows results for a chain with 
2L  =  100 sites and several values of h and δ (dierent symbols in the figure). We should
mention that due to the exponential decay of the couplings Ji, the calculation of the 
eigenvalues λj requires to use arbitrary precision routines. The results in figure 12 were 
obtained requiring precision up to 10−80. To highlight the power-law behavior of S, in
the figure we use a logarithmic scale on both axes. Clearly, for all values of h and δ, 
the data exhibit the behavior S ∝ �1/2. The dashed-dotted lines in the figure are fits to

S = a+ b�1/2,� (42)
with a, b fitting parameters. For small values of h the asymptotic scaling of S is already 
visible for � � 3, whereas upon increasing h the asymptotic scaling sets in at larger val-
ues of �, as expected. We should also mention that the finite-size eects due to L are 
negligible. This is expected because the subsystem is placed at the center of the chain. 
One should observe that all the data shown in the figure correspond to the same value 
of h/δ = 3. Surprisingly, no data collapse is observed, suggesting that the entropy is not 
a function of the ratio h/δ only. This is in contrast with the SDRG data (see figure 6),
for which the scaling with h/δ holds.

6. Energy gap

It is interesting to investigate the relation between the square-root scaling of the von 
Neumann entropy and the scaling of the energy gap of the model. For the Fredkin and 
Motzkin spin chains this has been investigated in [93–95]. This analysis is presented
in figure 13. In the figure we discuss the scaling behavior of the energy gap in both 
the random XX chain (see section 5) and within the SDRG formalism. For the XX
chain the gap is calculated exactly as the dierence ∆E = E1 − E0, with E0 and E1 the
ground state and the first excited state of the chain. In the SDRG formalism, a good 
estimate for the energy gap is the final value of the renormalized coupling, which will 
often correspond to a long distance bond from site  −L to site  +L. In this case, we may 
use equation (18) to estimate the energy gap:
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− ln(∆ESDRG) = h

[
(−1)L

2
+ 2

L−1∑
j=0

(−1) j(L− j)

]
− δ

2L∑
j=0

(−1) j log ξj−L.� (43)

It is straightforward to show that the disorder-average of the gap and the standard 
deviation of the fluctuations are given as

〈− ln(∆ESDRG)〉 ∝ h(L+ 1/2)� (44)

σ(− ln(∆ESDRG)) ∝ δ
√
2L1/2.� (45)

Here we neglect additive constant terms. The correctness of (44) and (45) is discussed
in figure 13. Panels (a) and (b) focus on the mean value of the energy gaps and its
fluctuations, respectively. The figure shows both exact results for the XX chain (circles)
as well as numerical SDRG data (diamonds). For the XX chain the data are for a chain
up to L  =  100, whereas for the SDRG data we show results up to L  =  500. In both cases 
we average over  ∼1000 disorder realizations. The figure show 〈− ln∆E〉 and the stan-
dard deviation of its fluctuations σ(− ln∆E) plotted as a function of L. In (a) and (b)
the dashed-dotted lines are the theoretical results equations (44) and (45), respectively.
First, it is remarkable that the SDRG results are in quantitative agreement with the 
data for the XX chain. Moreover, in both panels the theory predictions (44) and (45)
are in perfect agreement with the numerical data.

Figure 12.  Entanglement entropy S in the random inhomogeneous XX chain: 
exact results. The figure shows S obtained using free-fermion techniques plotted 
versus the size � of the subsystem. Note the logarithmic scale on both axes. The 
symbols are the data for a chain with 2L  =  100 sites and several values of h and δ. 
Each point is obtained by averaging S over 500 dierent disorder realizations. The 
dashed-dotted line is a fit to the expected behavior S = a+ b�1/2, with a, b fitting 
parameters. Notice that S is not a function of the ratio h/δ only.
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7. A toy model for the strongly inhomogeneous limit

In this section we discuss the strongly inhomogeneous limit of the random XX chain 
(see (5)), which is obtained for h → ∞ in (3). In this limit, several analytical results can
be obtained, for instance the scaling of the survival probabilities for the rainbow and 
the bubble regions presented in figures 8 and 9. For h � 1, the ground state of (5) has
the structure presented in figure 2(b). This consists of long links forming a ‘rainbow’
phase connecting distant spins across the chain center, and of short links connecting 
spins on neighboring sites, forming a ‘bubble’ phase. Importantly, for large h all the
link configurations are symmetric with respect to the center of the chain. This is due 
to the fact that for large h, more degrees of freedom (bonds), which are decimated first,
which are nearer to the center of the chain. This implies that SDRG decimations hap-
pen symmetrically with respect to the chain center. To further enforce this symmetry 
in the following we will restrict ourselves to symmetric couplings, i.e. Kn = K−n (see
(3)). A crucial consequence of the large h limit is that the net eect of the SDRG pro-
cedure, at any step, is to renormalize the central coupling J0 (see (2)). Moreover, the
VBS state obtained at the end of the renormalization is constructed using only two 
types of diagrams that we term ‘rainbow diagrams’ and ‘bubble diagrams’. A typical
singlet configuration is depicted in figure 14(a). The building blocks, i.e. rainbow and
bubble diagrams, are better discussed in figures 14(b) and (c), respectively. In both

(b) and (c) the coupling J
(n+1)
0 , connecting sites n  +  1 and  −n  −  1, is the renormalized 

coupling obtained after decimating the first 2n spins around the chain center (in this
section the position of the spins are labelled by integers: ±1,±2, . . . ,±L). In the fol-

lowing we derive exact analytic expressions for J
(n+1)
0 . Also, by using (18) we establish

a relation between the survival probability of the rainbow and bubble diagrams with 
certain survival probabilities of an alternating random walk.

Figure 13.  Energy gap of the random inhomgeneous XX chain. Panels (a) and (b)
show the mean energy gap 〈− ln∆E〉 and the standard deviation σ(− ln∆E) of its
fluctuations, respectively. The x-axis shows the chain length L. In both figures, 
circles are exact results for the XX chain up to L  =  100, whereas the diamonds are 
SDRG data up to L  =  500. The disorder average is over 1000 disorder realizations, 
and we use h = δ = 2. The dashed-dotted lines are the theoretical SDRG results.
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7.1. Rainbow diagrams: random walk and survival probability

Here we discuss the renormalized coupling obtained from the rainbow configuration 

illustrated in figure 14(b). First, the initial coupling J
(n+1)
0  can result from both rain-

bow and bubble configurations. We now consider the eect of a rainbow diagram of k 
links. This is obtained by decimating k  +  1 spin pairs around the chain center. Using 

the strong disorder RG rule (12) the renormalized coupling J
(n+k+1)
0  that connects the 

spins at sites n  +  k  +  1 and  −n  −  k  −  1 is given as

J
(n+k+1)
0 = [J

(n+1)
0 ](−1)k

[ k−1∏
α=0

(
Jn+α+1J−(n+α+1)

)(−1)α](−1)k−1

.� (46)

As in equation (18), it is useful to take the logarithm of (46) obtaining

− ln J
(n+k+1)
0 = (−1)k−1

[
−X

(n+1)
0 +

k−1∑
α=0

(−1)α(Xn+α+1 +X−n−α−1)
]
+ (n+ k + 1/2)h. (47)

Here we defined Xj ≡ − lnKj. In (47), the term (n+ k + 1/2)h is the contribution of
the inhomogeneity (see (3)). Importantly, in (47), X(n+1)

0  is obtained from − ln J
(n+1)
0

by considering only the contributions of Kj  (see (3)), i.e. it does not take into account
the contribution of h, which is included in the last term in (47). Crucially, here we are
using that the h-dependent term in (47) does not depend on the renormalization pat-

tern leading to J
(n+1)
0 . This is a simple consequence of (18). Specifically, we observe

that the h-dependent term in − ln J
(n)
0  is (n− 1/2)h, from which the last term in (47)

follows. This is easy to prove by induction. The proof is a simpler version of that for 
(18). One first assumes that after decimating all the spins between sites n and  −n the
h-dependent contribution to the coupling is given by (n+ 1/2)h. Then one considers
the two possible SDRG processes, which consist in adding a rainbow link between the
spins at (n+ 1) and −(n+ 1), or two short links connecting spins (n+ 1) and (n+ 2)
and the spins −(n+ 1) and −(n+ 2), respectively. It is trivial to verify that in both
cases the formula holds.

It is important to observe in (47) the overall alternating term (−1)k−1 and the alter-
nating term (−1)α. We anticipate that the former is crucial to determine the survival
probability of the rainbow diagrams. Here we are interested in the probability that the 
rainbow diagram survives k successive SDRG decimation steps. Crucially, while this 
survival probability could depend on the history of SDRG process, for the XX chain 
this is not the case, as we are going to show. Given a rainbow diagram of length k, we 
start by calculating the probability for the diagram to survive for an extra SDRG step. 
In terms of the couplings Ji (see (3)), the survival condition is

J
(n+k+1)
0 > Jn+k+1,� (48)

which ensures that an extra rainbow link is created by decimating the spins at posi-
tions  −n  −  k  −  1 and n  +  k  +  1. Equivalently, in terms of the logarithmic variables Xk

(see (47)) equation (48) reads

(−1)k−1
[
X +

k−1∑
(−1)αXn+α+1

]
<

h

4
+

1

2
Xn+k+1,� (49)
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where we used that Xα = X−α and we defined X = −X
(n+1)
0 /2 as the starting point of

the random walk. The survival probability condition (49) does not depend on n and k.
The linear term in n  +  k in (47) cancels out with the h dependent term in Jn+k+1. We
anticipate that this is not the case in presence of interactions, i.e. for the XXZ chain, 
and it will have striking consequences for the scaling of the von Neumann entropy (see
section 8). To further simplify the condition (49), in the following we shall neglect the
term Xn+k+1. For large enough h this should be allowed because Xn+k+1 is exponentially 
distributed in [0,∞]. The condition in equation (49) has a simple interpretation in terms
of random walks. Due to the factor (−1)k−1 the rainbow survival probability is the
probability of a walker to stay below h/4 if (k − 1) is even and above  −h/4 if (k − 1) is
odd, remaining confined in the alternating strip [−h/4,h/4]. This is illustrated pictori-
ally in figure 15(a). Interestingly, the probability that the walker survives within the
strip for n steps decays exponentially with n. The details of the calculation are reported 
in appendix B.

7.2. Bubble diagrams: random walk and survival probability

We now discuss the survival probability for the bubble diagram. The typical bubble 
diagram is shown in figure 14(c), and it consists of a sequence of short-range singlets
between nearest neighbor spins. Here we restrict ourselves to the situation in which the 
bubble diagrams appear in pairs (i.e. symmetrically) around the chain center, which
is a consequence of the choice Jm = J−m. Similar to the rainbow diagrams, the net

eect of bubble diagrams is to renormalize the central coupling J
(n+1)
0 . After a repeated

Figure 14.  (a) Typical singlet configuration in the ground state of the random
inhomogeneous chain in the limit h � 1. The continuous lines denote long-range
singlets (‘rainbow’ configurations), whereas the dashed ones are short-range singlets
connecting spins on nearest-neighbor sites and forming the ‘bubble’ phase. Notice
that only symmetric link configurations with respect to the center of the chain 
(marked by the vertical line) are allowed. (b) A rainbow diagram formed by long

links connecting distant spins across the chain center. The renormalized central 

link J
(n+1)
0 results from link configurations as in (a). The length of the diagram is

denoted as k. (c) Bubble diagram of length k formed by short singlets joining spins
on nearest-neighbor sites. Notice in both (b) and (c) the symmetry with respect
to the chain center. In the limit h → ∞ typical bond configurations as in (a) are
obtained by combining rainbow and bubble diagrams ((b) and (c)).
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application of the SDRG rule (12), the renormalized coupling J
(n+1+2k)
0  for the diagram 

in figure 14(c) is given as

J
(n+1+2k)
0 = J

(n+1)
0

2k−1∏
α=0

[
Jn+α+1J−n−α−1

](−1)α+1

.� (50)

It is convenient to use logarithmic variables to obtain

− ln J
(n+1+2k)
0 = X

(n+1)
0 +

2k−1∑
α=0

(−1)α−1(Xn+α+1 +X−n−α−1) + (n+ 2k + 1/2)h.

�

(51)

Again, the flow of the renormalized coupling in (51) can be interpreted as a random

walk with starting point X
(n+1)
0 . In contrast to the rainbow, there is no overall oscil-

lating term (−1)k−1, and the walker can only make an even number of steps, because
bubbles are produced in pairs. The last term in (51) encodes the inhomogeneity contrib
ution to the renormalized coupling, and it is independent on the renormalization pat-
tern, as for the rainbow diagram. The condition for the bubble diagram to survive two 
SDRG steps is

J
(n+1+2k)
0 < Jn+1+2k.� (52)

In the logarithmic variables one finds

X +
2k−1∑
α=0

(−1)α−1Xn+α+1 >
h

4
+

1

2
Xn+2k+1� (53)

where now the starting point of the random walk is defined as X = X
(n+1)
0 /2. Similar 

to the rainbow, in the following we neglect the term Xn+2k+1 in (53), because it does not
aect the qualitative behavior of the results. In the random walk language, the condi-
tion (53) defines the probability that the walker stays above the line h/4, as depicted
in figure 15(b). Importantly, the survival condition does not depend on the SDRG step,
due to the cancellation of the linear term in n in (52). Now, the probability that the
walker satisfies (53) for n steps decays as n−3/2, in contrast with the rainbow survival
probability, which decays exponentially. This is a standard calculation in the random 
walk literature. We report the details in appendix B.

8. Entanglement entropy in the interacting case

Having established that in the random inhomogeneous XX chain the entanglement 
entropy exhibits an unusual area-law violation, it is natural to investigate whether 
this scenario survives in the presence of interactions. In this section we show that 
the square-root scaling of the entropy (11) is very fragile, and it does not survive if
the model is interacting. To be specific, here we consider the inhomogeneous random 
Heisenberg XXZ chain. This is defined by the Hamiltonian
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H =
L−1∑
i=1

Ji

{1

2

[
S+
i S

−
i+1 + S−

i S
+
i+1

]
+∆Sz

i S
z
i+1

}
.� (54)

Here ∆ is an anisotropy parameter. The XXX chain corresponds to the isotropic limit 
∆ = 1. In (54), Ji are the same as in (3). For simplicity, we choose Ji = J−i. The SDRG
method for the Heisenberg chain is similar to that for the XX chain. The only dierence
(see (12)) is a factor 1 + ∆ in the coupling renormalization [54]. Precisely, the SDRG
rule for the renormalized coupling J ′ in the XXZ chain now reads [70]

J ′ =
JLJR

(1 + ∆)JM
,� (55)

where, as in (12), JM is the largest coupling. In the random homogeneous XXZ chain
(i.e. for h  =  0) the factor 1 + ∆ in (55) is irrelevant in the scaling limit of large systems.
For instance, the SDRG fixed point describing the ground state is the same for both 
the XX and the XXX chain. This implies that universal properties are the same for 
both models. The entanglement entropy exhibits the logarithmic growth (7), and the
prefactor of the logarithm does not depend on ∆.

The goal of this section is to show that in the presence of inhomogeneous couplings 
the factor 1 + ∆ in (55) dramatically changes this picture, at least within the frame-
work of the SDRG method. The results are discussed in figure 16. The figure shows 
SDRG data for the von Neumann entropy S of a subsystem at the center of the chain 
plotted as a function of the subsystem size �. The continuous lines in the figure cor-
respond to several values of the inhomogeneity parameter h and ∆ = 1. Surprisingly, 
for all values of h, S saturates in the limit � → ∞. For h  =  8 there is a large intermedi-
ate region where the square-root scaling behavior (11) holds. This signals the presence
of an h dependent crossover length scale ξh separating the square-root behavior from 
the saturating behavior at � → ∞. This behavior changes dramatically for ∆ < 0. For
instance, the dashed line in figure 16 denotes the SDRG data for h  =  2 and ∆ = −1/2.

Figure 15.  Random walk interpretation of the rainbow and bubble diagrams (see
figures 14(b) and (c), respectively). (a) The probability for a rainbow diagram to
survive k SDRG steps is mapped to the probability for an alternating random walk 
to be confined in the alternating strip between [−h/4,h/4] for k consecutive steps.
(b) The probability for a bubble phase to survive k SDRG steps is the probability
for the random walk to stay above the line h/4 for k consecutive steps. In both 
(a) and (b) the initial point of the walker x is related to the renormalized central
bond J0 in figures 14(b) and (c).
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Clearly, the entanglement entropy exhibits the volume-law scaling S ∝ �. We numer
ically observed that this volume-law scaling happens generically for ∆ < 0.

8.1. Random walk interpretation

We now discuss the origin of the behavior observed in figure 16. Here we focus on 
the limit h � 1, where one can exploit the mapping between the SDRG flow and the
alternating random walk. First, in the large h limit, similar to the non-interacting case, 
higher-energy degrees of freedom are nearer to the chain center, and are decimated 
first. This implies that the eect of the SDRG procedure is to renormalize the central 
coupling, similar to the XX chain. It is also natural to expect that for large h the most 
likely SDRG patterns are the rainbow and bubble patterns discussed in figures 14(b)
and (c).

To proceed, we first discuss the renormalization of J0 due to a rainbow diagram of 
length k (see figure 14(b)). A straightforward calculation gives

J
(n+k+1)
0 = (1 + ∆)−kmod 2(J

(n+1)
0 )(−1)k

[ k−1∏
α=0

(
Jn+α+1J−(n+α+1)

)(−1)α](−1)k−1

.

(56)
Notice that the renormalized coupling J

(n+k+1)
0  depends on the parity of k. The condi-

tion for the rainbow diagram to survive one SDRG step is still given by equation (48),
and in the logarithmic variables Xi we have

(−1)k−1
[
X +

k−1∑
α=0

(−1)α−1Xn+α+1

]
�

h

4
− ln(1 + ∆)

2
(kmod 2).� (57)

Figure 16.  Scaling of the entanglement entropy in an interacting inhomogeneous 
model. The figure shows the von Neumann entropy S as a function of �, � being 
the subsystem size. The curves are SDRG results for the randbow XXZ chain for 
dierent values of h and ∆. In contrast with the XX chain, S exhibits a saturating 
behavior for ∆ > 0, whereas the volume-law behavior S ∝ � is observed for ∆ < 0.
In particular, the dashed-dotted line is the SDRG result for ∆ = −0.5 and h  =  2.
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The condition (57) is the same as for the XX chain apart from the parity dependent
term ln(1 + ∆)/2. However, this extra term is not expected to change the qualitative 
behavior of the survival probability. Specifically, in the framework of the random walk 
(compare with figure 15(a)), one has that the walker is now constrained to stay below
h/4− log(1 + ∆)/2 if k is odd, and above  −h/4 if k is even, i.e. in a strip that is not
symmetric around zero (compare with figure 15). It is natural to expect that the decay
of the survival probability for the walker will remain exponential.

In stark contrast, the factor 1 + ∆ in (55) has striking consequences for the survival
probability of the bubble diagrams (see figure 14(c)). The renormalized coupling J0 due
to a bubble diagram of length 2k reads

J
(n+1+2k)
0 = (1 + ∆)−2kJ

(n+1)
0

2k−1∏
α=0

[
Jn+α+1J−n−α−1

](−1)α+1

.� (58)

Using equation (58), the condition equation (52) for the survival of the bubble phase
can be rewritten as

X +
2k−1∑
α=0

(−1)α−1Xn+α+1 �
h

4
− k ln(1 + ∆).� (59)

In contrast with the non-interacting case, the condition (59) depends on the step k of
the walker. This means that for ∆ > 0 the survival condition (59) for the walker to be
above the line h/4− k ln(1 + ∆) is always satisfied for large k. Physically, this suggests
that the bubble phase becomes more and more stable as its size increases. However, 
the short-range singlets in the bubble phase do not contribute to the entanglement 
entropy, which explains the saturating behavior observed in figure 16. On the other 
hand, for ∆ < 0 one has that for large k the condition (59) is never verified. This implies
that the bubble phase is suppressed and the ground state of the model is in the rainbow 
phase, with volume-law entanglement.

9. Conclusions

In this paper, we have provided evidence of an unusual violation of the area law in a 
random inhomogeneous one-dimensional model. Specifically, we showed that in a ran-
dom inhomogeneous XX chain the ground-state entanglement entropy grows with the 
square root of the subsystem length. We derived this result by mapping the SDRG 
renormalization flow to an alternating random walk. The exponent 1/2 of the entangle-
ment growth can be understood from certain survival probabilities of the random walk. 
We also investigated the eect of interactions, considering the random inhomogeneous 
XXZ chain. The unusual area-law violation is very fragile, and it does not survive when 
interactions are present.

It is worth mentioning some research directions for future investigation. First, it 
would be interesting to further study the structure of the renormalization group flow in 
the light of the result (18). For instance, it is natural to wonder whether (18) might be
the starting point for an alternative derivation of the Refael and Moore result [58] for
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the entanglement entropy in the random XX chain (as well as for the Rényi entropies in
[61]). Another question concerns the fate of the unusual area-law violation in the limit
of weak inhomogeneity. In the clean case, i.e. without disorder, using the approach 
of [96] it has been shown that the model can be mapped to a CFT in curved space-
time [67, 86], but what happens to this scenario in the presence of randomness is still
unknown. Also, it would be important to extend the analysis performed in this work to 
other entanglement-related quantities, such as the Rényi entropies, the entanglement
spectrum and Hamiltonian, and the logarithmic negativity.

Going beyond the behavior of the XX spin-chain, it would be very useful to thor-
oughly investigate the phase diagram of the random inhomogeneous XXZ chain. For 
instance, while for strong inhomogeneity we observed that the entanglement entropy has 
a volume-law scaling for ∆ < 0, the regime of weak inhomogeneity remains unexplored. 
The most relevant question would be to understand whether the volume-law behavior 
holds true at any value of the inhomogeneity or if there is a transition to the expected 
behavior (7) taking place at finite inhomogeneity. Another natural question is whether
the mapping between the SDRG flow and the random walk allows one to obtain dierent 
exotic area-law violations, such as a power-law growth of the entanglement with an 
exponent α �= 1/2. A possibility would be to explore the eects of spatially-correlated dis
order, that in the homogenous case are known to dramatically aect the critical behavior 
[54, 55]. Moreover, the nature of the transition between the volume-law and the area-law
entanglement in the random inhomogeneous XXZ chain has still to be clarified.

Finally, an independent, but very timely research direction would be to understand 
how the anomalous scaling of the ground-state entanglement can aect the out-of-
equilibrium behavior of the random inhomogeneous XX chain after a (local or global)
quantum quench, in particular for the entanglement evolution [97, 98]. For instance,
for another model with similar anomalous behavior, the spreading of quantum correla-
tions, turned out to be very peculiar [45].
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Appendix A. SDRG and ternary algebras

In this appendix we propose an algebraic interpretation of the SDRG procedure that 
gives a simple explanation of the associativity lemma described in section 2.2. We start 
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by defining an algebra A with a ternary product, that is, a map between three ordered
elements into a fourth one,

A×A×A → A
(a1, a2, a3) → a4 = {a1, a2, a3} .� (A.1)

Algebras with a binary product, say a1 · a2, are called associative if the following condi-
tion holds: (a1 · a2) · a3 = a1 · (a2 · a3). Similarly, a ternary algebra is called associative
if the triplet product of five elements satisfy [99]

{{a1, a2, a3}, a4, a5} = {a1, {a2, a3, a4}, a5} = {a1, a2, {a3, a4, a5}} , (A.2)
and it is called partially associative if the less restrictive condition holds

{{a1, a2, a3}, a4, a5} = {a1, a2, {a3, a4, a5}} .� (A.3)
An associative algebra is obviously partially associative but not vice versa necessarily. 
Graphical representations of the ternary product (A.1) and the partial associativity
condition (A.3) are given in figure A1. An example of ternary algebra is given by the
set on non zero complex numbers, A = − {0} with product

{a1, a2, a3} = α
a1a3
a2

, α �= 0 .� (A.4)

This definition yields

{a1, {a2, a3, a4}, a5} =
a1a3a5
a2a4

,

{{a1, a2, a3}, a4, a5} = {a1, a2, {a3, a4, a5}} = α2a1a3a5
a2a4

,
� (A.5)

Figure A1.  Top: geometric representation of the ternary product a4 = {a1, a2, a3} (see
equation (A.1)). Fixing the position of the vertices a1, a2 and a3, of the parallelogram
determines the position of the fourth one, a4. Bottom: depiction of the products: 
{{a1, a2, a3}, a4, a5} = {a6, a4, a5} = a8 and {a1, a2, {a3, a4, a5}} = {a1, a2, a7} = a8,
that is represented by the corner shaped region with the top vertex a8 (see A.3)).
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which shows that A is partially associative for any α �= 0, and associative only for
α = ±1. Notice that the product (A.4) coincides with the SDRG equation (55) of the
XXZ model, under the identification α = 1/(1 + ∆). Hence the algebra corresponding 
to the XX model is associative, a result that provides an algebraic derivation of the 
path invariance of the renormalized coupling described in section 2.2. Indeed, the car-
toon at the top of figure 3(b) can be seen to correspond to the products

{Ji, {Ji+1, Ji+2, Ji+3}, Ji+4} ,� (A.6)
while the cartoon at the bottom of figure 3(b) correspond to the products

{{Ji, Ji+1, Ji+2}, Ji+3, Ji+4} = {Ji, Ji+1, {Ji+2, Ji+3, Ji+4}} . (A.7)
The equality between (A.6) and (A.7) amounts to the associativity of the ternary
product. Finally, the case α = −1, can be shown to correspond to the SDRG of a free
fermion which is equivalent to that of the XX model.

Appendix B. Survival probabilities: exact results

We now proceed to calculate the survival probability for the alternating random walks 
shown in figures B1(a) and (b) (see also figure 15). In the following we will employ
standard techniques for the random walk (see, for instance, [100] and [101]). The main
result of this section will be an exact formula for the survival probabilities for the alter-

nating walks in figures B1(a) and (b).

B.1. Rainbow diagram

We start discussing the alternating random walk in figure B1(a). Due to the alternat-
ing structure of the random walk, it is first convenient to calculate the probability that 
the walker survives an even number of steps. The building blocks are the probabilities 

P
(∨)
r (x, x′′) and P

(∧)
r (x, x′′) (see figure B1(c) for their pictorial definition). These are

the probabilities of surviving two steps starting from the initial position x, jumping 
to a generic intermediate point x′, and arriving at x′′. The mid-point x′ is integrated 

over. In the definition of P
(∨)
r (x, x′′) the intermediate point x′ has to satisfy the condi-

tion x′ > −h/4, whereas for P
(∧)
r (x, x′′) one has x′ < h/4. Formally, as it is clear from 

figure B1(c), the definition of P
(∨)
r (x, x′′) is

P (∨)
r (x, x′′) ≡

∫ ∞

0

dz

∫ ∞

0

dz′δ−1 exp
(
− z + z′

δ

)
θ
(
x− z +

h

4

)
δ(x′′ + z − z′ − x).

�

(B.1)

In (B.1) the Heaviside theta function is to ensure the condition x′ > −h/4. After per-
forming the integrals, one obtains

P (∨)(x, x′′) =

{
(2δ)−1

(
e−|x−x′′|/δ − e−(h/2+x+x′′)/δ

)
x, x′′ > −h/4

0 otherwise.
� (B.2)

To proceed, following the random walk literature [100], it is convenient to define

G
(∨)
r (x′, x,n) as the probability that the walker starts from position x, it survives 2n

steps (note the factor 2), and it arrives at x′′. Due to the Markovianity of the random
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walk, G
(∨)
r (x′, x,n) has to obey the infinite system of integral equations (one for each

value of n)

G(∨)
r (x′, x,n′) =

∫ h
4

−∞
dyG(∨)

r (x′, y,n′ − 1)P (∨)
r (x, y).� (B.3)

Figure B1.  Random walk interpretation of the rainbow diagram (a) and of the
bubble diagram (b), same as in figures 15(a) and (b). (c) The alternating random

walk in (a) is constructed from the two-step survival probabilities P
(∨)
r (x, x′′) 

or P
(∧)
r (x, x′′). The mid-point x′ is integrated over in the interval [−h/4,∞].

P
(∨)
r (x, x′′) corresponds to the probability for the walker to jump from x to x′′ 

with the condition x′ > −h/4. (d) Similar definitions for the two-step probabilities

P
(∨)
b (x, x′′) and P

(∧)
b (x, x′′) for the random walk in (b).

Figure B2.  Generating functions ψ
(∨)
r (s, x) and ψ

(∨)
b (s, x) for the rainbow and the 

bubble survival probabilities. On the x-axis x is the initial point of the walker (see
figure 14). The results are for fixed s  =  0.5 and h  =  8. Notice that ψ

(∨)
r  is zero for 

h  <  −h/4 and it is vanishing exponentially for x � h/4. The width of the region

where ψ
(∨)
r  is significantly non-zero is h/2. Inset: probabilities Q

(∨)
r  that the walker

survives at least for n steps, plotted as a function of n. The data are for h  =  8 and 

x  =  0. Note the logarithmic scale on the y -axis signaling the exponential decay 

with n. (b) The same as in (a) for the generating function of the bubble diagrams

ψ
(∨)
b . The curve is for h  =  8 and s  =  0.25. Notice that ψ

(∨)
b  is exactly zero for x  <  h/4 

and it saturates for x → ∞. This reflects that for large x the condition Xk  >  h/4 is

relevant only after many steps. Inset: probabilities Q
(∨)
b  that the walker survives 

for n steps plotted as a function of n. Results are for h  =  8 and x  =  3. Note the 

logarithmic scale on both axes, signalling a power-law behavior. The dashed-dotted 
line is the asymptotic result ∝ n−1/2 for large n.
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Figure B3.  Survival probabilities Q
(∧)
b for the bubble diagrams. Here Q

(∧)
b (n) is

the probability to have a bubble diagram of at least n sites. In the random walk 

language (see figure 15(b)) this corresponds to the probability of the walker to
start from the initial point x and to stay above the line h/4 for at least n steps. 
The probabilities depend only on the combination x  −  h/4 (dierent symbols in the

figure). Here we fixed δ = 1. The dashed-dotted lines are the asymptotic results in

the limit n → ∞. Notice that one has Q
(∧)
b = (x− h/4 + 1)/(πn/2)1/2 for n → ∞.

Figure B4.  The alternating random walk: numerical checks. The two panels 

show the walker survival probabilities P
(∨)
b (n) and P

(∨)
r (n) (panels (a) and (b),

respectively). Here P
(∨)
b (n) is defined as the probability that the walker starts from

the initial point x and remains above the line h/4 (see figure 15) exactly for n steps.

Notice that P
(∨)
b (2k) = 0 for any k due to the alternation. P

(∨)
r (n) is the probability 

of the walker to start from x and stay confined in the staggered strip [−h/4,h/4]

(see figure 15(b)) for n steps. The circles in the panels are obtained by numerically
simulating the alternating random walk and correspond to an average over  ∼1000 
realization of the walk. We used x  =  2 in (a) and x  =  0 in (b) and h  =  4. In both 
panels the crosses are analytical results. In (b) only results for even n are reported.
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Equation (B.3) states that the probability for the walker to survive 2n steps starting
from position x and arriving x′ is obtained from the product of the probability to jump 
from x to y  with that of starting from y  and surviving for 2n  −  2 steps, by summing 
over all the allowed values of y .

Note that in (B.3) the integral is in (−∞,h/4], which prevents us from solving (B.3)
by Fourier transform. To proceed, it is convenient to define the total survival prob-

ability Q
(∨)
r (x,n) by integrating over the final point of the walker as

Q(∨)
r (x,n) ≡

∫ h
4

−∞
dx′G(∨)

r (x′, x,n).� (B.4)

Thus, after using (B.4), equation (B.3) becomes

Q(∨)
r (x,n) =

∫ h
4

−∞
dyQ(∨)

r (y,n− 1)P (∨)
r (x, y).� (B.5)

To solve the system of equation (B.5), it is convenient to define the generating function

ψ
(∨)
r (x, s) as

ψ(∨)
r (x, s) ≡

∞∑
m=1

Q(∨)
r (x,m)sm,� (B.6)

where s is a real parameter. The probabilities Q
(∨)
r (x,n) are obtained as the coecients 

of the Taylor expansion of ψ
(∨)
r (x, s) around s  =  0. After substituting (B.6) in (B.5) one

obtains the integral equation

ψ(∨)
r (x, s) = s

∫ h
4

−∞
dx′ψ(∨)

r (x′, s)P (∨)
r (x, x′) + s

∫ h
4

−∞
dx′P (∨)

r (x, x′).� (B.7)

For generic distributions P
(∨)
r (x, x′) it is dicult to solve (B.7) analytically. However,

for the exponential distribution in (B.2) the solution of (B.7) is straightforward. The
key ingredient is the identity

[
P (∨)
r (x, x′)

]′′
=

1

δ2

[
P (∨)
r (x, x′)− δ(x− x′)

]
with [ f(x)]′′ ≡ d2f

dx2
.� (B.8)

Thus, after taking the second derivative with respect to x in (B.7), and after using
(B.8), one obtains a linear system of dierential equations as




δ2
[
ψ

(∨)
r

]′′
= (1− s)ψ

(∨)
r − s −h/4 � x � h/4

δ2
[
ψ

(∨)
r (x, s)

]′′
= ψ

(∨)
r x > h/4

ψ
(∨)
r = 0 x < −h/4.

� (B.9)

The solution of (B.9) is straightforward. First, one solves independently (B.9) in the
three independent domains (−∞,−h/4], (−h/4,h/4], and (h/4,∞). After discarding the
divergent solutions for x → ±∞, one has to match the dierent solutions by impos-

∨
]′ at x  =  h/4. ing the continuity of ψ ∨r( )

 at x = ±h/4 and of its first derivative [ψr
( ) 

Eventually, one obtains for −h/4 � x � h/4
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ψ(∨)
r (x, s) =

s

1− s
+

se
√
1−sh/(4δ)

(−1 + e
√
1−sh/δ +

√
1− s+ e

√
1−sh/δ

√
1− s)(s− 1)

×
[
(e

√
1−sh/(2δ) +

√
1− s− 1)e

√
1−sx/δ + (e

√
1−sh/(2δ) + e

√
1−sh/(2δ)

√
1− s− 1)e−

√
1−sx/δ

]
.

�

(B.10)On the other hand, for x  >  h/4, one obtains

ψ(∨)
r (x, s) = −seh/(4δ)(−1 + e

√
1−sh/(2δ))2

√
1− se−

√
1−sx/δ

(−1 + e
√
1−sh/δ + e

√
1−sh/δ

√
1− s)(s− 1)

.� (B.11)

Importantly, the generating function, and therefore the probabilities Q
(∨)
r , depend only 

on h/δ and x/δ . This also reflects that the von Neumann entropy is a function of the 

ratio h/δ. For completeness we now discuss the result for ψ
(∧)
r (x, s). The probability

P
(∧)
r (x, x′′) (see figure 15(c)) is now given as

P (∧)
r (x, x′′) =

{
(2δ)−1

(
e−|x−x′′|/δ − e(−h/2+x+x′′)/δ

)
x, x′′ < h/4

0 otherwise.
� (B.12)

By comparing (B.2) and (B.12), one has that P
(∧)
r (x, x′′) = P

(∨)
r (−x,−x′′). One now has

to solve the integral equation (the analog of (B.7))

ψ(∧)
r (x, s) = s

∫ ∞

−h
4

dx′ψ(∧)
r (x′, s)P (∧)

r (x, x′) + s

∫ ∞

−h
4

dx′P (∧)
r (x, x′).� (B.13)

It is trivial to show that equation  (B.13) is obtained from (B.7) after the change of
variables x → −x. Clearly, this implies that

ψ(∧)
r (x, s) = ψ(∨)

r (−x, s).� (B.14)

Finally, we should stress that the nth order coecient of the Taylor series of the gener-

ating function ψ
(∧)
r  around s  =  0 is the probabilities Q

(∧)
r  of the walker to survives for at 

least 2n steps within the alternating strip in figure 15(a). The generating function ψ
(odd)
r

for the probability for the walker to survive an odd number of steps 2n  +  1 is obtained 

from ψ
(∧)
r  by performing an extra integration. Formally, one has

ψ(odd)
r (x, s) =

∫ h
4

−h
4

dx′δ−1e−|x−x′|/δψ(∧)
r (x′, s)θ(x− x′), for x <

h

4
� (B.15)

whereas, ψ
(odd)
r (x, s) = 0 for x  >  h/4. The survival proability for odd number of steps 

Qr(x,2n  +  1) corresponds to the nth coecient in the series expansion of ψ
(odd)
r (x, s) 

around s  =  0.

It is interesting to investigate the behavior of ψ
(∨)
r  as a function of the initial point 

of the walker x. This is shown in figure B2(a) for fixed s  =  0.5, h  =  8, and δ = 1. ψ
(∨)
r

is zero for x  <  −h/4 and it is vanishing exponentially for x → ∞. Similar behavior is

found for dierent values of s. The inset in the figure shows the probability Q
(∨)
r  for the

walker to survive n steps, as a function of n. Clearly, it decays exponentially (note the
logarithmic scale on the y -axis).
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B.2. Bubble diagram

We now derive analytically the probability for the walker to remain above the line h/4 
(see figure B1(b)). As in the previous section, we can define the generating function

ψ
(∨)
b (x, s) for the probability to survive an even number of steps n. The building block 

two-steps probability P
(∨)
b (x, x′′) is defined in figure B1(d), and it is given as

P (∨)
s (x, x′′) =

{
(2δ)−1

(
e−|x−x′′|/δ − e(h/2−x−x′′)/δ

)
x, x′′ > h/4

0 otherwise.
� (B.16)

Notice that P
(∨)
b is obtained from P

(∨)
r  after sending h → −h, as it clear from comparing

figures B1(c) and (d). The equation for ψ
(∨)
b (x, s) reads

ψ
(∨)
b (x, s) = s

∫ ∞

h
4

dx′P
(∨)
b (x, x′)ψ(∨)

s (x′, s) + s

∫ ∞

h
4

dx′P
(∨)
b (x, x′).� (B.17)

As in the previous section, equation (B.17) can be reduced to a system of dierential

equations. Specifically, ψ
(∨)
b  is obtained by solving the system

{
ψ

(∨)
b (x, s) = 0 x � h/4

δ2[ψ
(∨)
b ]′′ = (1− s)ψ

(∨)
b − s x > h/4.

(B.18)

In contrast with equation (B.9), the domain of the system (B.18) is composed of the
two half-infinite intervals (−∞,h/4] and [h/4,∞). The solution for x  >  h/4 is given as

ψ
(∨)
b = − s

1− s
e−

√
1−s(x−h/4)/δ +

s

1− s
.� (B.19)

The strategy to derive the generating function ψ
(∧)
b  is similar, and we do not report the 

calculation, quoting only the final result. One obtains

ψ
(∧)
b =

s

1− s
+

se
√
1−s(h/4−x)/δ

(1 +
√
1− s)(s− 1)

, for x > h/4� (B.20)

ψ
(∧)
b =

se(−h/4+x)/δ

(1 +
√
1− s)

√
1− s

, for x � h/4.� (B.21)

In the limit x → ∞ one has ψ
(∧)
b = s/(1− s). This reflects that if the starting point of

the walker is at x → ∞, it remains above the line h/4 for an infinite number of steps.

The probability Q
(∧)
b  that the walker survives for at least 2n steps is the nth coecient 

of the Taylor expansion of ψ
(∧)
b  around s  =  0. Notice that for the bubble diagram, the 

probability that the walker survives at least for 2n  +  1 steps is the same as that for 
surviving 2n steps. This is clear from figure B2(b), and it is due to the fact that the
random walk is alternating.

We now discuss the structure of ψ
(∨)
b . A similar behavior is observed for ψ

(∧)
b . The 

result is shown in figure B2(b). The data are for h  =  8 and s  =  0.25. Clearly, the gener-

ating function vanishes for x  <  h/4, while it saturates to s/(1− s) in the limit x → ∞.

The inset in the figure shows the survival probabilities Q
(∨)
b (x,n) for the walker to start 
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from x and survive for at least n steps. In contrast with the survival probability for 
the rainbow, which decays exponentially (see figure B2(a)), now the decay for large n
is power law as

Q
(∨)
b (x,n) ∝ n− 1

2 .� (B.22)

Using equation  (B.22) it is straightforward to derive the probability P
(∨)
b  that the 

walker survives exactly n steps as

P
(∨)
b ≡ Q

(∨)
b (n)−Q

(∨)
b (n+ 1).� (B.23)

Since Q
(∨)
b (n+ 1) = Q

(∨)
b (n) for any n odd, one has that P

(∨)
b (n) = 0 for any n odd.

Oppositely, one has that P
(∧)
b (n) = 0 for n even. Finally, using (B.22), one has that P

(∨)
b

(and P
(∧)
b ) for large n decays as

P
(∨)
b (n) ≡ Q

(∨)
b (x,n)−Q

(∨)
b (x,n+ 1) ∝ n− 3

2 .� (B.24)

B.3. Asymptotic behavior of the length of the bubble diagrams

The asymptotic behavior as n−1/2 of Q
(∧)
b (x,n) (and of Q

(∧)
b ) can be obtained analyti-

cally by studying the coecients of the Taylor series of ψ
(∧)
s (x, s) around s  =  0. Here 

we focus on the generating function for x  >  h/4. First, it is convenient to rewrite the 
generating function (B.20) as

ψ
(∧)
b (x, s) =

s

1− s
− se

√
1−s(h/4−x)/δ

[ 1

1 + (1− s)
1
2

+
1

1− s
− 1

(1− s)
1
2

]
.� (B.25)

One can check that the first term in the square brackets in (B.25) gives a subleading
contribution in the limit n → ∞, and it can be neglected. Now we focus on the second
term in the brackets. It is useful to observe that

e−a
√
1−s

1− s
= −a

∞∑
k=0

a2k(1− s)k−1/2

(2k + 1)!
+

∞∑
k=0

a2k(1− s)k−1

(2k)!
, with a ≡ 1

δ

(
x− h

4

)
.

� (B.26)
The first term in (B.26) can be rewritten as

−a
∞∑
k=0

a2k(1− s)k−1/2

(2k + 1)!
≡

∑
n=0

cns
n, with cn ≡ −

∞∑
k=0

a2k+1Γ(n− k + 1/2)

Γ(−k + 1/2)Γ(n+ 1)Γ(2k + 2)
.� (B.27)

Here we are interested in the limit n → ∞ of cn. In this limit one can expand the terms
Γ(n− k + 1/2) and Γ(n+ 1) in (B.27) to obtain

cn → −
∞∑
k=0

a2k+1n−k−1/2

Γ(−k + 1/2)Γ(2k + 2)
= −Erf

( a

2
√
n

)
→ − a√

πn
.� (B.28)

In the last step in (B.28) we used the expansion of the error function Erf(x) around
x  =  0. On the other hand, the second sum in (B.26) gives
∞∑
k=0

a2k(1− s)k−1

(2k)!
≡

∞∑
n=0

c′ns
n, with c′n ≡

∞∑
k=0

a2kΓ(n− k + 1)

Γ(−k + 1)Γ(n+ 1)Γ(2k + 1)
. (B.29)
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The factor Γ(−k + 1) implies that only the term with k  =  0 is nonzero. The result can-
cels out with the term s/(1− s) in (B.25).

A similar analysis can be performed for the last term in (B.25). One obtains

se−a
√
1−s

(1− s)
1
2

≡
∞∑
n=0

c′′ns
n, with c′′n → 1√

πn
. (B.30)

Notice that the right hand side in (B.30) does not depend on a. The asymptotic behavior

of Q
(∨)
b for large n is obtained by putting together (B.30) and (B.28). A similar approach

can be used to derive the asymptotic behavior of Q
(∨)
b (x,n). Our final formulas read

Q
(∧)
b (x,n) ∝

(
x− h

4
+ 1

) √
2

δ
√
πn

, Q
(∨)
b (x,n) ∝

(
x− h

4

) √
2

δ
√
πn

.� (B.31)

The factor 
√
2 in (B.31) takes into account that the nth order coecient in the expan-

sion of the generating functions around s  =  0 is the probability of surviving at least 2n 
steps.

Finally, we provide some numerical checks of the validity of (B.31). The results are

reported in figure B3 for Q
(∧)
b (x,n). The figure shows Q

(∧)
b (x,n) versus n. The dierent 

symbols correspond to dierent values of x  −  h/4. The dashed-dotted lines are the 
asymptotic results obtained from (B.31), and they perfectly describe the numerical
data.

Appendix C. Random walk survival probabilities: numerical simulations

In this section we provide some numerical checks of the analytical results for the walker 

survival probabilities P
(∨)
r (n) and P

(∨)
b (n). The former is the probability that the alter-

nating random walk is confined in the strip [−h/4,h/4] (see figure B1(a)) for exactly n
steps, whereas the latter is the probability that the walk remains above the line h/4 
for exactly n steps (see figure B1(b)). The analytical results for the probabilities are
obtained as

P
(∨)
b (n) = Q

(∨)
b (n)−Q

(∨)
b (n+ 1),� (C.1)

P (∨)
r (n) = Q(∨)

r (n)−Q(∨)
r (n+ 1),� (C.2)

where Q
(∨)
b and Q

(∨)
r  are obtained from the generating functions ψ

(∨)
b and ψ

(∨)
r . To bench-

mark equation (C.1) here we present numerical data obtained by simulating directly
the alternating random walk (see (18)) that describes the SDRG flow of the couplings.

Our results are shown in figure B4. Panel (a) shows P
(∨)
b (n) plotted as function of n.

The data are for fixed h  =  4 and initial point of the walker x  =  h/4. The data are aver-
aged over  ∼1000 realizations of the random walk. Notice that, due to the alternating 

structure (see figure B1), one has that P
(∨)
b (2n) = 0, as it is clear from figure B1(b).

The crosses figure  B4 are the theoretical predictions using (C.2). Panel (b) in the
figure focuses on the random walk in figure B1(a). For simplicity we focus on the case
with h  =  4 and x  =  0. The survival probabailities decay exponentially with n (note the
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logarithmic scale on the y -axis). The crosses are now the theory predictions calculated
from (C.1). We only show results for even n, although Pr(n) for n odd is nonzero.
Clearly, the analytical results are in perfect agreement with the numerical data.
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