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ABSTRACT 

The ability of four models to provide short-term (up to 6 h ahead) GHI and DNI forecasts in the Iberian Peninsula is assessed based on two years of data collected at 
four stations. The models follow (mostly) independent ap-proaches: one pure statistical model (Smart Persistence), one model based on CMV derived from satellite 
images (Satellite), one NWP model {WRF-Solar) and a hybrid satellite-NWP model (CIADCast). Overall, results show Smart Persistence to be the best at the first 
lead steps, advective models (Satellite and CIADCast) at intermediate ones and the WRF-Solar at the end of the forecasting period. The break-even point between the 
advective models and WRF-Solar varies between 1 and 3 h for GHI and 3 and 5 h for DNI. Nevertheless, a detailed analysis shows enormous differences between 
models performance related to 1) the local geographic and topographic condi-tions of the evaluation stations; 2) the evaluated variable (GHI vs. DNI); and 3) 
the sky and synoptic weather conditions over the study area. Depending on the station and lead time, rRMSE values range from 25% to 70%for GHl and from 
35% to 100% for DNI. For the same stations and leading time, rRMSE values for DNI are between 50% and 100% higher than the corresponding GHI 
counterparts. Depending on the synoptic pattern, rRMSE values are about 10/ 20% for GHVDNI (3 h lead time, during high pressure conditions) to about 80/ 180% 
for GHVDNI (during low pressure conditions). All models show a poor performance at a coastal station, at-tributed to a lack of ability to forecast clouds 
associated with sea-land breezes. To conclude, no single model proves to be the best performing model and, therefore, results show that the four models are, 
somehow, com-plementary. The advantages attained by this complementarity are further explored in a companion paper (Part IT). 

1. Introd uction 

Throughout the last years an enormous effort has been made in 
order to include solar energy as a feasible alternative to conventional 
energy sources. Many countries have already reached a notable solar 
energy share in their energy mixes and an important growth is expected 
over the next decades (International Energy Agency, 2018). Despite the 
fact that the Iberian Peninsula is one of the areas in Europe with the 
highest potential for the deployment of solar energy (Santos-Alamillos 
et al., 2017), nowadays the installed solar power is still modest. There 
are about 6.7 GW installed that only provide about 4.6% of the elec-
tricity demand in Spain (Red Elect:rica de Espana, 2017) and about 0.5 
GW in Portugal (Redes Energeticas Nacionais, 2018). Nevertheless, an 
important growth is expected in the next years. 

The use of some renewable energies to generate electricity, 
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particularly solar energy, implies a great drawback: its integration into 
the electricity grid. Contrary to conventional generation, solar pro-
duction is conditioned by weather, thus being highly intermittent. The 
problems related with solar energy grid integration have been the 
subject of several studies in recent years (Ela et al., 2011; Brouwer 
et al., 2014; Zhang et al., 2015a). One particular problem is that pho-
tovoltaic solar energy has lower spatial variability than, for instance, 
wind energy (Santos-Alamillos et al., 2014). This issue constrains the 
reduction of the intermittency by spatial aggregation. As a con-
sequence, the power variability generated in systems with a high solar 
share is higher than in the case of system with high wind energy share 
(Lew et al., 2012). The importance of this solar integration issue is 
expected to increase as the participation of solar energy rises. 

Currently, in addition to expensive storage-based solutions, solar 
radiation forecasts are a plausible way to mitigate the intermittency and 



facilitate solar energy grid integration. Solar power forecasts are used
by grid operators for the scheduling of solar power plants and by their
owners in order to participate in the electricity market and also for
plant management (Antonanzas et al., 2017). For these purposes, solar
forecasts are needed in time horizons ranging from minutes and hours
to several days ahead. Short-term forecasts, i.e., up to 6 h ahead are
particularly important for the management of concentrating solar
power plants (Dersch et al., 2019), to participate in the intra-day
electricity markets or forecasting ramp events (Zhang et al., 2015b).
Therefore, the development of accurate solar radiation forecasting
methods has become a key element for the increase of solar energy
deployment and its grid integration (Renné, 2014; Brancucci Martinez-
Anido et al., 2016; Haupt, 2018).

For short-term forecasting, reference methods are based on satellite
imagery processing (Lorenz and Heinemann, 2012). Consecutive cloud
index (CI) maps are used to estimate the cloud motion vectors (CMVs).
Then the underlying atmospheric flow is estimated to finally provide
the cloudiness and solar radiation forecasts. This methodology was
firstly proposed in the context of the Meteosat Second Generation
(MSG) images by Beyer et al. (1994), but there have been several im-
provements since then (see for a review (Diagne et al., 2013; Inman
et al., 2013)). Recently, improved methods for CMV estimation have
been proposed (Schroedter-Homscheidt et al., 2018; Wang et al., 2019).
These approaches rely on the use of cloud physical properties derived
from the MSG data instead of the (CI) images. Sirch et al. (2017) have
proposed a cloud-specific method for direct normal irradiance (DNI)
nowcasting.

On the other hand, numerical weather prediction (NWP) models
have also been used to provide short-term solar radiation forecasts
(Mathiesen and Kleissl, 2011; Lara-Fanego et al., 2012; Wolff et al.,
2016). Although NWP models are able to forecast the arrival of frontal
systems and their associated cloudiness, they still lack the ability to
reproduce cloud amount and location accurately (Deng et al., 2014;
Arbizu-Barrena et al., 2015). Improvements in subgrid-scale cloud-ra-
diation feedback, for instance shallow cumulus, yield notable en-
hancements in global horizontal irradiance (GHI) forecasting derived
from NWP models (Lee et al., 2017).

Overall results from the comparison between satellite and NWP
based short-term GHI forecast show that satellite tends to provide better
forecasts in the first hours, after which NWP models show lower errors.
Nevertheless, the break-even point varies among studies. Some studies
(Kühnert et al., 2013) showed that this point is at a horizon of 3 h,
approximately. However, Wolff et al. (2016) and Perez et al. (2010),
found this break-even point to be around 5 h. Lee et al. (2017) eval-
uated several short-term GHI forecasting techniques (ranging from pure
statistical, to CMV based and NWP models). Evaluation was conducted
under different sky conditions, finding that the performance of the
different models depended on the weather conditions. Even in some
evaluations over complex terrain, satellite approaches have been shown
to be unsuitable (Guillot et al., 2012; Arbizu-Barrena et al., 2017).
These discrepancies arise because of differences between the evaluated
models, the study area or the period of analysis. It should be high-
lighted that, unlike GHI, very few studies have compared different
approaches for short-term DNI forecasting. Only recently Dersch et al.
(2019) compared several satellite and NWP based DNI nowcasts for two
Mediterranean locations. Results for one of the stations showed that the
NWP-based method outperforms the satellite-based nowcast for hor-
izons greater than 2 h, approximately.

Recently, several models have been proposed with the aim of
combining the capabilities of satellites and NWP models. For instance,
the CIRACast forecast algorithm (Miller et al., 2018) uses winds derived
from a NWP to advect cloud fields estimated based on satellite images,
providing in this way short-term solar radiation forecasts. NWP models
have the ability not only to advect but also to diffuse cloudiness in-
formation. This ability is used by the MADCast model (Descombes et al.,
2014), where clouds are transported and diffused in three dimensions

within the Weather Research and Forecasting (WRF) NWP model
(Skamarock et al., 2008). Lee et al. (2017) showed that this method
outperforms other models at short lead times except on rapidly cloud
forming, growing or dissipating situations. Arbizu-Barrena et al. (2017)
presented a similar hybrid approach (CIADCast) which also advects and
diffuses the MSG CI images within the WRF model. Other authors have
proposed probabilistic approaches to improve short-term solar radia-
tion forecasting (Boland and Grantham, 2018).

Finally, other approaches aimed at improving short-term solar
forecasts rely on the development of model blending approaches.
Typically, multiple models are blended together using some statistical
technique. This may provide a synthetic model with enhanced fore-
casting capability compared to the individual models. Linear combi-
nation of satellite and NWP models were evaluated in Lorenz et al.
(2012). In Wolff et al. (2016) irradiance measurements, satellite and
NWP derived short-term solar forecasts were used as input of a support
vector regression machine learning algorithm in order to derive a
blended forecasting model. In that case, results showed that the
blending approach outperforms the individual models for all the fore-
casting horizons.

The purpose of this work (Part I) and the work presented in the
companion paper (Part II) is twofold: a) to provide a comprehensive
assessment of the performance of four short-term GHI and DNI state-of-
the-art forecasting models, based on different approaches, in the Iberian
Peninsula; b) to explore the benefits obtained by developing optimal
blending of these models using machine learning approaches.

This first part includes the description of the four models and the
evaluation of their ability to provide single forecasts. The four models
rely on different approaches: a pure statistical model (Smart
Persistence), a model based on satellite images (Satellite), a NWP model
(WRF-Solar) and a hybrid satellite-NWP model (CIADCast). Specific
analyses are conducted to evaluate their performance dependence on
the sky and synoptic weather conditions.

In the companion paper (Part II), different model blending ap-
proaches are presented and the improvement attained in the forecasting
accuracy is discussed. Additionally, in this second part, regional fore-
casting models are specifically developed and evaluated.

This paper is organized as follows: Section 2 presents the study area
and describes the ground and remote sensing dataset used. Section 3
introduces the four forecasting models. Section 4 describes the metrics
and procedure involved in the models assessment. In Section 5 the re-
sults are presented and discussed and, finally, in Section 6 a summary of
the main results and some conclusions are provided. Additional ana-
lyses are discussed in Appendix A and Appendix B.

2. Datasets

2.1. Evaluation sites and measurements

One-minute time resolution solar irradiance data collected at four
radiometric stations representative of the central (Madrid station),
southern/southwestern (Seville and Jaen) and western (Lisbon) areas of
the Iberian Peninsula (Fig. 1) are used. Except in Madrid station, where
only GHI and DNI are available, the three components of the solar ra-
diation, GHI, diffuse horizontal irradiance and DNI, are gathered. Given
the characteristics of the database, an uncertainty of about ± 2.5% for
the DNI and about ± 3.0% for the GHI data can be assumed following
Sengupta et al. (2015). These uncertainties accounts for that of cali-
bration and other sources of measurement errors. The observation
covers the period from March 2015 to February 2017, (i.e., two years).
Radiometers description and data quality procedure were fully detailed
in Rodríguez-Benítez et al. (2018). Data associated with solar zenith
angle >75° are discarded. Only the records available simultaneously at
the four stations are considered.

The semi-permanent anticyclone of the Azores Island rules the at-
mospheric circulation over the study area (Trigo et al., 2002). Changes
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Fig. I. Shaded relief map of the study area and location of the evaluation 
stations (garnet dots). 

in the location and intensity of the Azores anticyclone cause a marked 
seasonal climate variability in the study area. During winter, the Azores 
anticyclone is at lower latitudes, allowing the study area to be influ-
enced by westerly winds. Thus, transient synoptic perturbation reaches 
the study area usually from October to March. During summer, this 
anticyclone migrates northward, blocking the westerly circulations. 
This marked seasonality is clearly observed also in the solar radiation 
variability (Santos-Alamillos et al., 2012). In a recent paper (Rodriguez-
Benitez et al., 2018), the weather patterns associated with different 
solar radiation modes of variability in the study area were analyzed. 

From a topographic point of view, the study area may be split into 
two different parts. The western area is a homogeneous region, with 
wide valleys open to the Atlantic Ocean. The Lisbon and Seville stations 
are located in this part (Fig. 1). On the other hand, the central and 
southern area shows a more complex topography, with several moun-
tain ranges in the south (where the Jaen station is located) and a pla-
teau in the center (where the Madrid station is located). Although local 
cloudiness may be found in mountain areas (orographic clouds) or in 
coastal areas as Lisbon station (convective clouds), most of the clou-
diness over the study area is related with transient weather patterns 
that affect uniformly the entire study area (Trigo et al, 2002; 
Rodriguez-Benitez et al, 2018). 

2.2. Satellite retrievals 

CI maps, obtained based on the Heliosat-2 method (Rigollier et al., 
2004), are used for the satellite-based and CIADCast (see Section 3.4) 
forecasting models. MSG satellite images (Schmetz et al., 2002) have 
15 min temporal resolution and the projection applied produces a 
spatial resolution of about 5 km. According to the Heliosat-2 method, 
GHI is computed multiplying the clear-sky index (Kc) value by the 
clear-sky irradiance. The European Solar Radiation Atlas (ESRA) clear-
sky solar irradiance model (Rigollier et al., 2000) is used, with the 
worldwide monthly climatology Linke turbidity parameter proposed by 
Remund et al. (2003). DNI estimates are obtained from GHI values 
using the Dirlndex method (Perez et aL, 2002), using the ESRA model 
with the same parameterization. 

Cloud top height (CTH) estimates from the European Organization 
for the Exploitation of Meteorological Satellites (EUMETSAn Satellite 
Application Facility on Climate Monitoring (CMSAF) have been used in 
order to compute the CIADCast model forecasts. This CTH database, 
which is available for the whole study area, provides estimates of the 
height at the top of the highest cloud. A root mean square error (RMSE) 
of about 4 km, and a bias (BIAS) of about 2 km, has been reported for 
this dataset in Hamann et al. (2014). 

3. Forecast models description 

Six-hours ahead GHI and DNI forecasts provided by four different 
models are assessed in this work. The models are described below. 

3.1. Smart Persistence 

Smart Persistence model is used as the reference. 

I (t) = Io ·Ic1ror- sky(t) , 
Ic1ear- sky(to) (1) 

where Io is the 1-min time resolution measured irradiance at the initial 
time (t0 ) , Ic1ea,- szy(t0) is the corresponding clear sky irradiance and 
Ic1ear- sk)l (t) is the clear sky irradiance at a future time t. I stands for both 
GHI and DNI. The ESRA (Rigollier et aL, 2000) clear-sky model is used 
to compute Ic1ear-sk)I· 

3.2. Satellite 

The CI images are used to provide satellite-based GHI and DNI es-
timates, as described in Section 22. Firstly, the open source Particle 
Image Velocimetry (OpenPIV) (Mori and Chang, 2003) algorithm, with 
a square window of 41 px, is used to estimate the CMVs field. In a 
second step, and similarly to Nonnenmacher and Coimbra (2014), the 
streamlines based on the CMVs are derived. The CI forecasts are then 
obtained following a streamline backwards the corresponding time 
steps. Irradiances are finally obtained as explained in Section 2.2. Fig. 2 
represents the area of the MSG images analyzed to derive the CMV 
fields. 

3.3. WRF-Solar 

GHI and DNI forecasts are obtained from the WRF-Solar (Jimenez 
et aL, 2016), a particular physical configuration of the WRF model 
version 3.6 devised for solar energy applications. Some of the para-
meterizations used are the Thompson aerosol-aware microphysics 
scheme (Thompson and Eidhammer, 2014) with monthly climatolo-
gical aerosol which accounts for that emitted by natural and anthro-
pogenic sources. It is also used the Rapid Radiative Transfer Model for 
General Circulation Models (RRTMG) short- and long-wave radiation 
parameterizations (Iacono et al., 2008), called every 5 min, which are 
coupled with cloud physics parameterization. Direct effect of rural 
aerosol is taken into account in order to fully connect the cloud-aerosol-
radiation system. A new option for shallow convection (Deng et al., 
2014) is included in WRF-Solar, thus the cumulus parameterization is 
switched off. 

The model is configured with one domain of 5 km spatial resolution 
(30 s of model time-step) and 50 vertical levels. The domain is drawn in 

: _..., : : r··············r ·········-···•············ 
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i ............... L 
: i 
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so0 w 40°w 30°w 20°w 10°w 0° 
Fig. 2. Domains of the CIADCast and WRF-Solar (yellow line), and Satellite-
based model (purple line). The garnet dots indicate the location of the eva-
luation stations. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 2. Initial and boundary conditions are taken from the National 
Centers for Environmental Prediction (NCEP) GFS (0.5 Deg] dataset 
(NCEP, 2006). For each day, three 18-h simulations are run starting at 
00, 06 and 12 UTC, discarding the first 6 simulated hours as spin-up. 
Outputs are saved every 15 min, at the moment when the satellite 
passed over the study area. 

3.4. CIADCast 

The CIADCast model (Arbizu-Barre.na et al., 2017) is here also as-
sessed. CIADCast is a hybrid model which aims to combine the accuracy 
of the cloud representation in satellite images with the dynamical 
capabilities of the WRF NWP model. In this work, CIADCast forecasts 
are run simultaneously with the WRF-Solar model, as explained in 
Section 3.3. In this model, CI retrievals from satellite are advected and 
diffused to obtain cloudiness forecasts and, therefore, radiation fore-
casts. To this end, firstly, the CI maps are interpolated, using nearest 
neighbors criteria, in order to adapt the initial satellite domain to that 
of the WRF-Solar runs. Secondly, the interpolated CI maps are ingested 
in the model for every satellite gathering time at a particular vertical 
layer of each column of the model. In this work, unlike in Arbizu-
Barrena et al. (2017), the MSG CTH information is used to select this 
vertical layer. Thus, the CTH images are also interpolated to the WRF-
Solar grid. Empty pixels are filled with nearest values so all of the 
columns in the WRF-Solar model have CTH value. The CI maps are 
ingested in WRF-solar as mass mixing ratios (each grid-cell value is 
divided by the model dry air mass of the grid-cell), and thus the total 
amount of CI is conserved during the simulation. The WRF-Solar model 
advects and diffuses the CI values as dynamical tracers mainly hor-
izontally, but also vertically. Then, the CI forecasts are de-normalized 
with the dry air mass of the corresponding grid-cell and the sum of each 
column values is computed to obtain again two-dimensional CI maps. 
Finally, the GHI and DNI forecasts at the stations are obtained as ex-
plained in Section 2.2. 

During the simulation run, the model is stopped at the satellite re-
trieval time, then the CI image is inserted, and the simulation is re-
started for the next 6 h. Outputs are saved every 15 min, at the moment 
when the satellite passed over each evaluation station. 

4. Evaluation procedure 

Evaluation of the forecasts with ground data is carried out at 15 min 
time steps, according to the time when the MSG images were obtained 
for each station, and at 1-min time resolution. Table 1 shows the 
number of forecasts available (for each model) as a function of the 
forecasting horizon. Forecasts are evaluated only when they are avail-
able from all the models and for all stations at a given forecasting 
horizon. A total of 116458 forecasts were obtained, ranging from about 

Table 1 
Number of predictions obtained at each forecasting horizon. 

Horizon (minutes) Number of Horizon Number of 
forecasts (minutes) forecasts 

15 7779 195 4145 
30 7594 210 3785 
45 7427 225 3451 
60 7248 240 3140 
75 7019 255 2856 
90 6754 270 2607 
105 6433 285 2364 
120 6072 300 2094 
135 5722 315 1837 
150 5306 330 1592 
165 4884 345 1384 
180 4484 360 1175 

Total 107152 

7800 for the first horizon (15 min) to 1500 at the 6 h forecasting 
horizon. 

No post-processing procedure has been applied to any of the models, 
i.e., the outputs of the models are assessed directly. However, in the 
companion paper (Part II), machine learning algorithms are applied to 
the models retrievals, allowing the benefits obtained by using advanced 
post-processing procedures to be quantified. 

The performance of the models is assessed based on several metrics: 
the RMSE, the Forecast Skill (FS) based on the comparison between the 
RMSE values produced by the forecasting models and those from Smart 
Persistence model (Coimbra et al., 2013), the relative RMSE (rRMSE), 
the relative mean absolute error (rMAE) and BIAS error defined as: 

1 N NL (Irorecast(t),i - lmeasured(t),i)2 
r= l 

RMSE(t) = 

( ) 
RMSErorecast(t) 

F'S t = I - -------
RMSESmart Persistence(t) 

N 
_Nt "' 2 £..J (/rorecast(t), i - lmeasured(t),i) 

rRMSE(t) = ____ i=-1----.,N,--------·100 

'Fi L lmeasured(t),i 
i=l 

N 

_Nl "' I I £..J lrorecast(t),i - lmeasured(ti i 

rMAE(t) = _ __ i= .... 1---,,N,--------·lOO 

i 1: 1measured(t),i 
i=l 

1 N 
BIAS(t) = - L Urorecast( t),i - lmeasured(t),i), 

N i=1 

(2) 

(3) 

(4) 

(5) 

(6) 

where, N is the number of data involved in the calculation, I is the 
irradiance (GHI or DNI) and t the time step. Independent yearly and 
seasonal analyses are conducted. 

In addition, and in order to gain insight into the models perfor-
mance dependence, additional analyses are conducted. Firstly (Section 
5.2), the ability of the models to forecast GHI and DNI variability is 
assessed. The direct deterministic forecast accuracy of the solar has 
important limitations, caused by the double penalty problem of the 
cloud forecasting. Accurate forecasts of the solar variability, instead of 
deterministic forecasts, can be used to mitigate solar power inter-
mittency, facilitating the solar energy grid integration (Perez and Hoff, 
2013). As opposed to deterministic forecasts (assessed in Section 5.1), 
solar variability predictions involve the use of specific scores that ac-
count for this variability along a certain reference period. To this end, 
the nominal variability is used (Perez et al., 2016), defined as: 

1 N 
O'aJC, = - L (Mc,i - lil<;)2 

, 
N i=1 (7) 

where Mc,i is the difference between two consecutive values of the 
clear-sky index and iilr;; is the mean over the considered period. The 
formula stands for both GHI and DNI variability. For each forecasting 
horizon and starting every 15 min, the observed and forecasted nominal 
variability is computed, when at least one sample is available, using a 
reference period of 3 h. Then, the correlation between the observed and 
forecasted values are used to assess the skill of the different models to 
forecast GHI and DNI variability. 

FinaJly, in Section 5.4, the models' performance dependence on the 
weather conditions is assessed. The type of analysis is usually addressed 
using the clearness index (Lorenz et al., 2016; Wolff et al., 2016; Wang 
et al., 2019). Other authors used specific sky conditions in the analysis 
(Lee et al., 2017) or cloud regimes (McCandless et al., 2016). Here we 
follow a different approach based on the use of weather types. To this 



end, the four weather types (WTs) of the annual analysis described in
Rodríguez-Benítez et al. (2018) are used. Notably, the first type, “WT
1”, accounts for presence of a synoptic perturbation over the study area.
In terms of cloudiness, this means overcast conditions. The second type,
“WT 2”, represents transient weather conditions, i.e., those usually
observed some days before or after a synoptic perturbation that passes
over the study area. Cloudiness shows intermediate values for this WT.
The third type, “WT 3”, accounts for the presence of moderate high
pressure anomalies over the study area, which allows the development
of local weather features as, for instance, convection. Cloudiness is
highly variable among the stations for this WT. Finally, “WT 4” ac-
counts for the presence of a high pressure system over the whole study
area. As a consequence, clear sky is mostly observed at the four stations.
Each forecast is assigned to one of these four categories, according to
the WT observed at the time when the prediction was issued.

For the sake of completeness, the models’ performance dependence
on the sky conditions are also evaluated.

5. Results

5.1. General evaluation

Fig. 3 shows the rRMSE and rMAE values for the four prediction
models and the four stations, depending on the forecasting horizon.
Values are shown for both GHI and DNI.

GHI prediction errors (upper row Fig. 3) show a notable variability
among stations. Seville station (fourth column) shows the lowest errors
(about 30% rRMSE value at 2 h-ahead forecasting horizon) followed by
Jaen and Madrid. The Lisbon station (second column) shows con-
siderably higher errors (about 45% rRMSE at 2 h-ahead). Similarly, the
lowest rMAE values are found at the Seville station and the highest at
Lisbon. Regarding rRMSE, Smart Persistence is the best performing
model at the first horizon (i.e., 15 min ahead) for all stations, except at
Seville. At this station, the Satellite model performs as the best, up to
2 h and 30 min, after which WRF-Solar provides the best forecasts. For
the Jaen station, Smart Persistence provides the most accurate forecast
in the first 2 h and 30 min, after which, as in the case of Seville, WRF-
Solar outperforms the rest of the models. For the Madrid station, the
break-even point between Satellite and WRF-Solar forecasts is observed
at the first leading hour. Between the 15 and 60 min forecasting hor-
izons, the Satellite model provides the best forecasts. Finally, for the
Lisbon station, CIADCast and Smart Persistence show similar perfor-
mance in the first 2 h. From 2 to 5 h, the Satellite model shows slightly
better forecasts, while the WRF-Solar performs as the best after 5 h,

approximately. Regarding the rMAE metric, and except in Jaen, the
Smart Persistence model outperforms the rest of the models in the first
2–3 h, after which WRF-Solar shows a superior performance.

DNI forecasts errors (lower row Fig. 3) are considerably larger than
GHI ones. Notably, both rRMSE and rMAE are about 60% higher than
their GHI counterparts for the same leading time at Seville and Jaen
stations and about 75% higher for Madrid and Lisbon stations. At the
Seville station, the performance of the different models, in terms of the
rRMSE, is similar to the case of GHI. Also, at the Jaen station, the
models show a performance similar than to the GHI case, although the
break-even point between Smart Persistence and WRF-Solar is located
at about 3 h (half an hour later than in the GHI case). The performance
of the different models differs from the GHI cases at the Madrid and
Lisbon stations. At Madrid, Smart Persistence outperforms the rest in
the first 4 h and a half, after which WRF-Solar provides slightly better
results. At the Lisbon station, Smart Persistence is the best performing
model in the first 3 h. From this time, Satellite provides the most ac-
curate forecasts. Only around the end of the forecasting period, WRF-
Solar provides a similar performance to Satellite. Regarding the rMAE,
the performance of the four models is similar to the GHI case for all
stations except Madrid, where Smart Persistence performs best for all
the forecasting horizons.

Fig. 4 shows the RMSE values produced by the four models at the
four stations, for both GHI and DNI predictions. The performance of the
different models, in terms of RMSE, is similar than in case of rRMSE
(Fig. 3). For GHI predictions, RMSE values show a low dependence on
the forecasting horizon. Values keep below 230 W·m 2, except in
Lisbon station. On the other hand, the DNI RMSE values show a notable
upward trend with the forecasting horizon, reaching values between
330 and 400 W·m 2, approximately, depending on the station, at the
final of the forecasting window.

The CIADCast, Satellite, and WRF-Solar model forecasts are com-
pared with those from the Smart Persistence model using the FS score.
Fig. 5 shows the results for both GHI and DNI forecasts. As may be
expected based on the analysis showed at Figs. 3 and 4, notable dif-
ferences in the skill are observed depending of the evaluation station
and the variable of interest. Overall, the FS values for GHI forecasts are
slightly larger than those for DNI. At the Jaen station and both for GHI
and DNI, the WRF-Solar shows positive skill after 3 h. Satellite and
CIADCast models show positive skill only at the end of the forecasting
period. At Lisbon station, Satellite model shows positive skill for both
the GHI and DNI after 3 h approximately, and WRF-Solar after 4 h. At
Madrid station, WRF-Solar shows positive skill for GHI predictions from
the first lead hour, while Satellite shows positive skill below one h.

Fig. 3. rRMSE (solid lines) and rMAE (dashed
lines), depending on the forecasting horizon, for
predictions of GHI (upper row) and DNI (bottom
row). Values (in %) are displayed for CIADCast,
Satellite, Smart Persistence, and WRF-Solar model
with a turquoise, purple, garnet, and yellow line,
respectively. The first, second, third, and fourth
columns show the results of Jaen, Lisbon, Madrid,
and Seville station, respectively. The small figures
for the Lisbon stations (low right hand corner)
represent the same values but using a different
vertical scale. This allows representing the whole
range of values. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)

F.J. Rodríguez-Benítez, et al.
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Fig. 4. RMSE values for GHI (solid lines) and ON! (dashed Jines) forecasts, depending on the forecasting horiwn. The color code is the same used in Fig. 3. 
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Fig. 5. Forecast skills (FS) of the GHI (solid lines) and ON! (dashed lines), depending on the forecasting horizon. The color code is the same used in Fig. 3. 

Finally, Seville station shows the best performance for the different 
models. In case of GHI predictions, both Satellite and CIADCast models 
show positive skill up to 5 h ahead (approximately). WRF-Solar shows 
positive skill at lead times higher than 1 hand 2 h in case of GHI and 
DNI predictions, respectively, reaching, with the latter, values close to 
0.2 at the end of the forecasting window. 

To sum up, it should be highlighted that Smart Persistence proves to 
be a very competitive model regarding all the metrics here evaluated, 
particularly for DNI predictions. 

To conclude this first evaluation analysis, Fig. 6 shows the BIAS 
error values for both GHI and DNI. GHI BIAS values are relatively low 
and negative (between 20 and - 80 W · m- 2) and with almost no de-
pendence on the forecasting horizon, except at Lisbon. At this station, a 
considerable increase of the BIAS values with the forecasting horizon is 
observed, reaching maximum positive values at about 4 h and 30 min 
ahead. Results for DNI are qualitatively similar. The main difference is 
observed for WRF-Solar, since the BIAS errors are considerably higher 
and positive for all stations. This feature is particularly outstanding at 
the Madrid and Lisbon stations. For the latter, all the models except 
Satellite show positive BIAS values at longer forecasting horizons, in-
dicating a lack of ability to predict cloudy conditions at these lead 
times. 

Jaen Lisbon 
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The differences in model performance among stations can be ex-
plained according to topographic and geographic conditions, described 
in Section 2.1. Firstly, models performance is particularly poor at the 
only coastal analyzed station: Lisbon. This station also shows the stee-
pest increment of the errors with the forecasting horizon. The rapid 
development of convective clouds in the area of the station, that are 
particularly difficult to forecast, may explain this result. The role of this 
type of cloud is further discussed in Section 5.4. 

After Lisbon, Madrid shows the greatest forecasting errors. The 
geographic location of this station can explain this result. Most synoptic 
perturbations enter in the study area from the Atlantic Ocean. In their 
way to the central Iberian Peninsula, they interact notably with 
mountain ranges. Pure advective models, such as Satellite and 
CIADCast, had been reported to be unable to account for this interac-
tion properly (Arbizu-Barrena et al., 2017), providing a poor perfor-
mance at longer forecasting horizons. Only the WRF-Solar model is able 
to account for this interaction, providing the best results. On the other 
hand, the lowest errors are found at Seville station, where advective 
models (Satellite and CIADCast) show a good performance. These re-
sults can be explained based on the topographic features of this station, 
at the entrance of a wide valley (Guadalquivir) open to the Atlantic 
Ocean. There are no relevant mountain ranges between the station and 
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Fig. 6. As in Fig. 4 but for. the BIAS score. 
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the usual storms track direction in the study area. Finally, the Jaen 
station is located up in the Guadalquivir Valley, sharing some features 
with the Seville station. Nevertheless, it is surrounded by notable 
mountain ranges, which reduce the performance of the advective 
models and increase the models' forecasting errors in general. 

In addition to the armual analysis, a study of the seasonal depen-
dence on the models performance is conducted Appendix A. For the GHI 
(Fig. A.12) and for all the stations except Lisbon, the highest forecasting 
errors are observed for winter, followed by spring and autumn, being 
summer the season with the lowest errors. Similar results are observed 
for the DNI (Fig. A.13). Lisbon station results differ considerably. At this 
station, summer forecasting error values are of similar magnitude than 
winter ones (even higher for the DNI), showing the steepest increase 
with the forecasting horizon. Also for spring and autumn, forecasting 
errors at Lisbon are slightly higher than those for the other stations. 
These results can be associated with presence of land-sea breeze, since 
this local phenomenon is more frequent in summer, followed by spring 
and autumn. This issue is discussed in Section 5.3. In general, differ-
ences between models are low, except in winter, when WRF-Solar beats 
Smart Persistence at lead times higher than 1.5 or 3 h, depending of the 
station. These conclusions are also supported by the analysis of the 
Forecast Skill scores (Fig. A.14). Finally, for spring and winter, the 
WRF-Solar shows a superior performance, especially for the DNI (Fig. 
A.14). 

Comparison of the results here presented with those obtained in 
similar work is difficult due to, particularly, the differences in the da-
tasets (study region climatology, length of the datasets). Nevertheless, 
results are in close agreement with those reported in Wang et al. (2019) 
and Dersch et al. (2019). The main difference is a higher dependence of 
the forecasting error with the lead time. 

5.2. Variability forecasts evaluation 

Fig. 7 shows the correlation coefficient, as a function of the fore-
casting horizon, between the observed and forecasted nominal varia-
bility index. Therefore, this figure indicates the skill of the different 
models predicting GHI and DNI nominal variability. Correlation values 
decrease with the forecasting horizon for all stations and models, as 
may be expected. Note also that correlation values tend to be higher for 
GHI compared to DNI. Up to 4 h lead time, Smart Persistence clearly 
outperforms the rest of the models, showing correlations higher than 
0.4. For forecasting horizons longer than 4 h, results greatly vary be-
tween stations. For instance, at Seville and particularly at Lisbon, WRF-
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Solar is shown to be the best performing model both for GHI and DNI. 
On the contrary, for the Jaen station and in terms of GHI, Satellite 
provides the highest correlations. For the rest of the cases (i.e., Jaen 
DNI and Madrid GHI and DNI) WRF-Solar, Satellite and Smart Persis-
tence models show similar results. 

5.3. Forecasts dependence on the time of day 

Fig. 8 shows the rRMSE values depending on the time of the day for 
two representative forecasting horizons: 1 and 4 h. Fig. 9 shows the 
BIAS error for the 4 h horizon. 

According to Figs. 8 and 9, no significant dependence on the time of 
the day is observed, except at the Lisbon station (Fig. 8). For this sta-
tion, error dramatically increases during evening hours (approximately 
from 16:00 onward). 

The time-of-day dependence forecating errors at Lisbon may be at-
tributed to a daily cloudiness cycle. This cycle is caused by availability 
of moisture, along with the frequent occurrence of sea-land breezes at 
this coastal station. This local circulation reaches its maximum in the 
afternoon hours. As observed in Fig. 9, all models, and for both GHI and 
DNI, show positive BIAS in the evening, when convective clouds de-
velopment is more frequent. This indicates a lack of ability of all the 
models to forecasts convective cloudy conditions, even at 1 h fore-
casting horizon (Fig. 8). The lack of ability of the statistical model 
(Smart Persistence) or advective models (Satellite and CIADCast) to 
accurately forecast cloudiness may have been anticipated (Sirch et al., 
2017) . But this is not the case of the WRF-Solar model, which also 
shows scant skills in this regard. The accurate representation of local 
thermally-driven circulation still presents a challenge for numerical 
weather models. For instance, Avolio et al. (2017) evaluated the per-
formance of the WRF model when the local weather in a coastal area in 
southern Italy was simulated. Results showed that the WRF model had a 
considerable better performance for synoptic scale forcing than for local 
scale (i.e., breeze) conditions. In addtion to this issue, the WRF-Solar 
domain set-up and shallow cumulus parameteriztion here used may 
also account for these results. 

5.4. Forecasts dependence on the synoptic weather conditions 

Figs. 10 and 11 show the models performance, depending on the 
weather type observed when the forecasts were issued, for GHI and 
DNI, respectively. 

As may be expected, the performance of the different models has a 

Madrid Seville 
1.0 1,0 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 
1 2 3 4 5 6 1 2 3 4 5 6 

1.0 1.0 
I I I I I 
I I I I I 

0.8 0.8 --L-.!--L-.J-
I I I I 
I I I I 
I I I I 

0.6 0.6 -1---1--1---1-
I I I 

I I 

0.4 0.4 · I 

0.2 0.2 
1 2 3 4 5 6 1 2 3 4 5 6 

Forecast horizon [h) Forecast horizon [h) 
--<>-- Smart Pers --<>-- WRF-Solar 

Fig. 7. Correlation coefficient, r, between the forecasted and observed solar radiation nominal variability index, as function of the forecasting horizon. Color code, 
rows, and columns stntcture as in Fig. 3. 
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Fig. 8. Upper row, rRMSE values (GHVDNI solid/dashed lines) for 1 h ahead forecasts as function of the time of the day. Lower row, as upper row but for 4 h ahead 
forecasts. Color code as in Fig. 3. 

marked dependence on the WT for both GHI and DNI. Overall, WT 1 
(low pressure system) shows the highest errors for all stations, followed 
by WT 2 (transition) and WT 3 (relatively high pressures/local condi-
tions). On the other hand, WT 4 (high pressures system) shows the 
lowest errors. In addition, for the same WT and station, DNI rRMSE 
error values tend to be, approximately, double the corresponding GHI 
values. 

For WT 1 and GHI (Fig. 8 first row), the Satellite model presents the 
lowest rRMSE values for almost all the forecasting horizons and for all 
stations except Jaen. Performance is particularly outstanding at Seville 
and Lisbon stations, which are located most westerly. At the Lisbon 
station, and only at the very end of the forecasting period, WRF-Solar 
shows a superior performance. The performance of the different models 
for the DNI forecasts for this WT (Fig. 9, first row) are qualitatively 
similar than that for the GHI case, although forecasting errors are 
considerably higher (about 2- 3 times for the case of the rRMSE). The 
Satellite model performs the best (or is competitive) for all the fore-
casting horizons and stations, except Lisbon. At this station, and as in 
the case of GHI, at the last forecasting lead times, WRF-Solar provides 
lower errors. In general, and for both GHI and DNI, for this WT, WRF-
Solar performance is particularly poor at the beginning of the fore-
casting period. This feature is particularly outstanding for DNI. Except 
in Lisbon, forecasting errors show little dependence on the forecasting 
horizon. It makes sense, since low pressure systems tend to be asso-
ciated with overcast conditions covering thousands of square kilometers 
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and lasting for more than 6 h (the forecasting horizon). 
Overall, results show that Satellite tends to outperform the other 

models under these overcast conditions. This model performance is 
specially outstanding at stations located at the west of the Iberian 
Peninsula (Seville and Lisbon). This can be explained based on the fact 
that low pressure systems tend to enter into the Iberian Peninsula from 
the west and the Satellite model seems to be able to track these systems 
better than the other models. Nevertheless, forecasting errors are re-
latively high, particularly for the DNI. 

Forecasts associated with WT 2 show the second highest forecasting 
errors (Figs. 10 and 11, second row). This WT is associated with 
changing weather conditions and intermediate cloud covers. The per-
formance of the models varies greatly among stations. For the case of 
rRMSE and GHI, Satellite model performs the best at Lisbon and Seville 
stations in the first 3 h, after which the WRF-Solar is shown to be su-
perior. On the other hand, at Madrid station, WRF-Solar is the best 
performing model from 1 to 6 h for both rRMSE and rMAE metrics. 
Regarding DNI and rRMSE, the performance of the models at Lisbon 
and Seville stations is similar in the case of GHI. The main difference is 
that the break-even point between the Satellite and the WRF-Solar 
model is now located at just 2 h. At Madrid station, all the models 
perform similarly except WRF-Solar for the first 2 h, which has the 
highest errors. At Jaen, WRF-Solar performs the best from 3 h onward. 

The third row at Figs. 10 and 11 shows the results for GHI and DNI, 
respectively, for WT 3 (relative high pressures). Forecast error values 
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Fig. 9. BIAS values (GHVDNI solid/dashed lines) for 4 h ahead forecasts as a function of the time of the day. Color oode as in Fig. 3. 
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Fig. 10. rRMSE (solid Jines) and rMAE (dashed lines) depending on the forecasting horizon, for predictions of GHI classified by the weather type observed at the time 
11vhen the forecasts were issued. Each row represents a weather type. Results for Jaen, Lisbon, Madrid and Seville are displayed at the first, second, third and fourth 
column, respectively. Colors code as in Fig. 3. The vertical range of values (%) varies with the WTs, but is kept the same at the four stations, for the sak.e of 
comparison. 

are the second lowest, but show a notable upward trend with the 
forecasting horizon for all stations and for both GHI and DNI. This in-
dicates the difficulties to predict local cloudiness at large forecasting 
horizons, often originated by convection. The performance of the dif-
ferent models varies among the stations. In the case of rRMSE and GHI 
(Fig. 10, third row), at Jaen station, Smart Persistence performs the best 
for all the lead times. At Seville WRF-Solar provides lower errors from 
2 h onward (4 h for Madrid). Lisbon station shows the highest errors 
and the performance of all the models is similar. None of the models 
show special skills at this station under these weather conditions. Re-
garding the DNI (Fig. 11, third row), the performance of the different 
models at the different stations is qualitatively similar in the case of 
GHI. The main differences are found at Lisbon station, where WRF-
Solar outperforms the other models after 4 h. Interestingly, for this WT, 
Smart Persistence performs the best regarding the rMAE for all stations 
up to, approximately, the first four leading hours. 

Finally, the last row in Figs. 10 and 11 show the results for WT 4 
(high pressure conditions). As may be expected, errors associated with 
this WT are the lowest ones. For instance, at Seville, rRMSE values are 

below 25% for GHI and 40% for DNI. The Lisbon station shows the 
largest errors and a remarkable increment with lead time. The special 
conditions at the location of this station, once again, explain these re-
sults. Given the availability of moisture, high pressure systems enhance 
the development of convective clouds under clear sky conditions. For 
GHI and rRMSE, (Fig. 10 last row), Smart Persistence is the best model 
for all stations and forecasting horizons, except at Madrid, where WRF-
Solar outperforms the rest from 1 h ahead horizons. At the other sta-
tions, WRF-Solar proves to be competitive at the end of the forecasting 
period. Results for the DNI (Fig. 11, last row) are qualitatively similar. 
Smart Persistence is the best performing model for all the lead times 
and stations except at Lisbon. At this station, Satellite model provides 
lower rRMSE errors after 4 h. A special feature observed for this WT is 
the poor performance of WRF-Solar for DNI, as opposed to GHI, where 
this model was competitive. This suggests a misrepresentation of the 
aerosol load in the WRF-Solar model, that in this study is set climato-
logically. Finally, a distinctive feature of this WT is that Smart Persis-
tence is the best model for DNI and rMAE for all stations and leading 
times. For GHI, WRF-Solar proves to be competitive at the end of the 
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Fig. 11. As in Fig. 10 but for the ON!. 

forecasting horizon. Again, this seems to be related with a mis-
representation of the aerosol in the WRF-Solar model, but also in the 
Satellite and CIADCast models. Generally, the use of enhanced sources 
of aerosol data would improve the results of forecasting models. 

In addition to the former analysis based on weather types, a study 
on the models dependence on the sky conditions (using the clearness 
index, k,) is conducted Appendix B. General results show that Smart 
Persistence is difficult to beat in clear (k1 > 0.65) and cloudy (k1 < 0.4) 
skies, but performs the worst in days of high intermi ttency. In the latter, 
other models show a superior performance for lead times higher than 
around 1 h. Under clear sky conditions, WRF-Solar and Smart Persis-
tence are the best performing models, while CIADCast and Satellite 
models show considerable higher erros. In case of overcast conditions, 
overall errors increase considerably, especially for DNI. 

6. Summary and conclusions 

In this work four short-term solar radiation forecasting models are 
evaluated in the centre and south of the Iberian Peninsula, a region 
particularly suitable for the development of solar energy. The four 
models follow (mostly) independent approaches: one pure statistical 
model (Smart Persistence), one model based on CMV derived from 

satellite images (Satellite), one NWP model (WRF-Solar), and a hybrid 
satellite-NWP model (CIADCast). GHI and DNI forecasts are obtained 
for the four models, for two years of up to 6 h ahead and 15 min time 
step. The models' performance is assessed using radiometric data col-
lected at four stations, representative of different topographic and 
geographic conditions within the study area. Performance of the models 
is analyzed in the light of these features. The models' ability to forecast 
solar radiation variability and the dependence of the models perfor-
mance on the synoptic weather conditions over the study area are also 
analyzed. For this latter analysis, four different synoptic patterns are 
considered. 

Overall, the four models' performance shows a marked dependence 
on the evaluation stations and strong differences are found between 
GHI and DNI. For the same stations and forecasting horizons, DNI 
rRMSE values are between 30% and 90% higher than the corresponding 
GHI counterparts. The highest errors are observed at the coastal station 
of Lisbon (GHI rRMSE ranging from 30% to 70% and DNI 40% to 
1300!6) and the lowest errors are observed at the Seville station (GHI 
rRMSE 25% to 40% and DNI 35% to 70%), which is located at the 
entrance of a valley open to the Atlantic Ocean. 

Notable differences among models' performance are observed. In 
general, and as may be expected, Smart Persistence is the best 



performing model at the first lead times, then advective models
(Satellite and CIADCast) show a good performance and the WRF-Solar
tends to provide the most accurate forecast at the end of the forecasting
period. Nevertheless, notable differences are observed depending on the
evaluation station and variable (GHI vs. DNI). Advective models are the
most accurate models at the stations located most westerly (Lisbon and
Seville), while they show poor results for stations located at the centre
and east of the study region. At these stations WRF-Solar shows a su-
perior performance. The break-even point between Satellite and WRF-
Solar models varies between stations, but it is located between 1 and
3 h for GHI and 3 and 5 h for the DNI. Finally, Smart Persistence is
shown to be the best performing model for DNI up to, approximately,
the third lead hour for the rRMSE and for almost the entire forecasting
window for the rMAE. Smart Persistence also is shown to be the best
performing model regarding the forecasts of GHI and DNI variability.

The results of the Lisbon station show some different features. First
of all, all the models show poor performances and a marked increment
of the errors with the forecasting horizon. Secondly, all the models
show a marked dependence of the forecast errors on the time of day.
Notably, a dramatically error increment during evening hours (ap-
proximately from 16:00 onward) is observed. This dependence can be
attributed to a daily cloudiness cycle, associated with the development
of sea-land breezes. All models show a lack of ability to forecast con-
vective cloudy conditions, even at 1 h forecasting horizon. This result
may be anticipated for all the models, except WRF-Solar that also shows
limited skills in this regard. Results concerning the WRF-Solar model
may be influenced by the nesting configuration and shallow cumulus
parameterization used in this study. Notably, the Deng et al. (2014)
parameterization has not yet tested at the here used 5 km spatial re-
solution. This may end in spurious cloudiness forecasting that would
have implications on the solar radiation forecasts reliability.

The seasonal analysis reveals significant differences between the
models performance among seasons. Notably, the WRF-Solar model
shows a notable skill for winter and spring for almost all the stations
and both for the GHI and DNI. On the other hand, for the other seasons,
differences among models performance are, in general, lower.

Lastly, models’ performance showed to be highly dependent on the
synoptic weather conditions. For low pressure conditions over the study
area (overcast conditions), rRMSE values of the Satellite model are
shown to be the lowest for all the forecasting window. Nevertheless,
error values for these synoptic conditions are shown to be the highest
ones (about 80% for GHI and 180% for DNI). For transient weather
conditions (intermediate cloudiness) results are more variable, but
Satellite tends to be the best performing model up to 3 h ahead, after
which WRF-Solar provides the most accurate forecasts. For the two
former synoptic conditions, little dependence of the errors on the
forecasting horizon is observed. For moderate high pressure conditions,
the third analyzed synoptic pattern, overall forecasting errors are small,
but show a notable increase with the forecasting horizon. This pattern is
associated with mostly clear sky conditions but also with the develop-
ment of local cloudiness, associated with local convection and

mountain breezes. The increase of the error with horizon indicates the
difficulties to forecast this cloudiness. For this weather pattern, all
models tend to provide a similar performance, except at the end of the
lead time when the WRF-Solar is shown to be superior. Finally, the last
synoptic pattern analyzed is the presence of high pressures over the
study area. This pattern is associated with clear skies and models show
the lowest forecasting errors (for instance, at Seville, rRMSE is below
25% for GHI and below 40% for DNI) except at the Lisbon station. At
this station, high errors are observed and also an increase of these errors
with the forecasting horizon. The availability of moisture, along with
the frequent occurrence of sea-land breezes at this station, may explain
this result.

Results of the models dependence on the daily clearness index (kt)
show that, in partly cloudy conditions, Smart Persistence is overcome
by either WRF-Solar or advective models in all stations, for rMAE and
rRMSE and for GHI and DNI. Therefore, for intermittent sky conditions,
models have demonstrated their usefulness in solar radiation fore-
casting.

To conclude, even though the four evaluation stations belong to the
same climatic region, the performance of the four models shows en-
ormous differences. These differences are associated with: 1) the local
geographic and topographic conditions of the evaluation stations; 2) the
evaluated variable (GHI vs. DNI) and 3) the sky and synoptic weather
conditions over the study area. No single model proves to be always the
best performing model and, therefore, results show that the four models
evaluated are, somehow, complementary. Unlike some other previous
studies, results here presented show the Smart Persistence model to
have a remarkable performance, particularly for low lead-times. This
result, however is constrained by the limited number of stations eval-
uated, and may change for a regional analysis (which itself is limited
due to data availability).

Based on this fact, in the companion paper the benefits obtained by
developing optimal blending of the four models are explored.
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Appendix A. Seasonal analyses

Figs. A.12 and A.13 show the rRMSE and rMAE values for each season of the year. Seasons are composed by three months, being winter from
December to February, spring from March to May, summer from June to August and autumn from September to November.

Overall, summer shows the lowest errors, as well as the lowest differences between models performance. Spring and autumn show intermediate
errors, while the highest errors are observed during winter (up to 70% for GHI rRMSE and 120% for DNI rRMSE, almost double than those of
summer). Winter, in addition, shows the greatest differences among models performance. The exception is found for the Lisbon station, where
summer errors are similar to winter ones for the GHI and higher for DNI. The seasonal differences of the models performance can be explained based
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Fig. A.12. rRMSE (solid lines) and rMAE (dashed lines) depending on the forecasting horizon, for predictions of GHI classified according to the season. Results for 
Jaen, Lisbon, Madrid and Seville are displayed at the first, second, third, and fourth column, respectively. Colors code as in Fig. 3 . 

on the climatic characteristics of the study area. In particular, the higher errors during winter compared to summer ( except at the Lisbon station) are 
related with the seasonal cycle of cloudiness and precipitation in the study area. 

Regarding the relative performance of the models, for the GHI (Fig. A.12) and during winter, WRF-Solar shows a notable performance. Notably, 
WRF-Solar presents the lowest rRMSE values at lead time higher than 1.5 h in Lisbon and Madrid and higher than 3 hat the other two stations. At 
lower lead times, Smart Persistence is the best performing model. For the other seasons, differences among models performance are, in general, low. 
The most notable feature is observed at Madrid station during spring and autumn. In these cases, WRF-Solar clearly shows the lowest rRMSE values 
at lead times higher than 1 h. Also at Seville station and during summer, WRF-Solar shows a superior performance. On the other hand, performance 
of the WRF-Solar at Lisbon during summer is poor, probably due to the Jack of ability to account for the land-see breeze circulation. The use of an 
alternative cumulus parameterization could have depict this beha\'ior. The relative performance of the models for the DNI (Fig. A.13) is qualitatively 
similar than in the GHI counterpart. Main differences are observed at Madrid station during winter and autumn, where Smart Persistence clearly 
outperforms the rest of the models. 

Fig. A.14 shows the seasonal Forecast Skill (FS) score, i.e., the relative performance of the models with respect to Smart Persistence model in 
terms of RMSE, computed by season. Overall, the lowest skills are observed during summer, followed by autumn. But notable differences are oberved 
among evaluation stations. Notably, the Jaen station shows the lowest skill for all the seasons. During winter, WRF-Solar shows a notable perfor-
mance for all the stations and for the GHI, specially for lead times greater than 3 h. During summer, CIADCast and Satellite models show significant 
FS scores at the Lisbon station and the WRF-Solar at the Seville station. For DNI, the WRF-Solar shows a notable performance during spring. 
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Appendix B. Daily k, distribution analysis 

Figs. B.15 and B.16 show the models performance, according to the daily mean clearness index (k,) observed when the forecasts were issued, for 
GHI and DNI, respectively. Following Lara-Fanego et al. (2012), days with mean (k1) greater than 0.65 are considered as clear sky conditions, 
between 0.4 and 0.65 partly cloudy, and below 0.4 as overcast conditions. 

For clear-sky conditions and GHI (Fig. B.15 first row), errors reach around 20% for rMAE and 30% for rRMSE, except in Lisbon where errors of 
CIADCast and Satellite models reach 50% of rRMSE at 6 h-ahead. These models might wrongly advect satellite-derived cloudiness, commonly present 
at coastline, into the station, resulting in higher errors, in agreement with their negative bias (not shown). This performance is observed to a Jess 
extent at the rest of the stations. Values for DNI (Fig. B.16 first row) are qualitatively similar but 50% higher than those of the GHI counterpart. In 
general, for clear conditions, Smart Persistence is the best performing model. 

The performance of the models in partly cloudy (Figs. B.15 and B.16, second row) and clear sky conditions considerably differs. During partly 
cloudy conditions, Smart Persistence is the worst performing model, as may be expected. For the GHI, rMAE values range from 25% to 55% and 
rRMSE from 35% to 75% (Fig. B.15). For the DNI case (Fig. B.16) rMAE values range from 40% to 140% and rRMSE from 600Ai to 170%. For these 
partly cloudy conditions, the WRF-Solar shows to be the best performing model in Madrid and Jaen for the GHI (Fig. B.15). At the Seville station for 
both GHI and DNI, and at the Jaen station just for the DNI, CIADCast and Satellite models show lower errors for lead times lower than 3 h, when 
WRF-Solar performs similarly. 

For overcast conditions (Figs. B.15 and B.16 third row), as in clear sky conditions, Smart Persistence shows a superior performance. Only in 
Lisbon station and for the GHI, the WRF-Solar provides better forecasts at the end of the forecasting horizon (Fig. B.15). For the GHI, rMAE values in 
the range 500Ai to 90% and rRMSE values between 80% and 120% are observed (Fig. B.15). For DNI (Fig. B.16), error values are considerable higher. 
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