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ABSTRACT 

In this article we explore the blending of the four models (Satellite, WRF-Solar, Smart Persistence and CIADCast) studied in Part 1 by means of Support Vector Machines 
with the aim of improving GHI and DNI forecasts. Two blending approaches that use the four models as predictors have been studied: the horizon approach constructs a 
different blending model for each forecast horizon, while the general approach trains a single model valid for all horizons. The influence on the blending models of 
adding information about weather types is also studied. The approaches have been evaluated in the same four Iberian Peninsula stations of Part 1. Blending approaches 
have been extended to a regional context with the goal of obtaining improved regional forecasts. In general, results show that blending greatly outperforms the 
individual predictors, with no large differences between the blending approaches themselves. Horizon approaches were more suitable to minimize rRMSE and general 
ap-proaches work better for rMAE. The relative improvement in rRMSE obtained by model blending was up to 17%for GHI (16% for DNI), and up to 15% for rMAE. 
Similar improvements were observed for the regional forecast An analysis of performance depending on the horizon shows that while the advantage of blending for 
GHI remains more or less constant along horizons, it tends to increase with horizon for DNI, with the largest im-provements occurring at 6 h. The knowledge of weather 
conditions helped to slightly improve further the forecasts (up to 3%), but only at some locations and for rRMSE. 

1. Introduction 

In the companion paper (Part 1), four different short term solar (GHI 
and DNO forecasting models (Satellite based model, WRF Solar, Smart 
Persistence and CIADCast) were presented and their performance was 
evaluated at four stations located in the Iberian Peninsula. Results 
showed that those models are complementary because no model out 
performs the rest for all forecasting horizon, location or variable (GHI 
and DNO. 

In this second part we aim to explore the benefits obtained by de 
veloping optimal integration (blending) models, using Machine 
Learning techniques. The question arises of whether an optimal 
blending of the four models can provide enhanced forecasts at any 
forecasting horizon and station compared with the most accurate 
forecasts derived from a single model, taking advantage of their sy 
nergies and complementarities (Vislocky and Fritsch, 1995). This 
question is not new in the framework of weather forecasting research. 
Already, the blending of different forecasting sources has been shown to 
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provide enhanced precipitation (Xie and Arkin, 1996), temperature 
(Salazar et al., 2011) and wind speed (Xiao et al., 2015) forecasts. 
WOLFF2016197 For renewable energies in general, model blending has 
been identified as a great possible avenue for improving forecasting 
accuracy for both wind velocity (Tascikaraoglu and Uzunoglu, 2014) 
and solar radiation (Tuohy et al., 2015). The integration methods 
proposed across the literature mostly make use of statistical integration 
of data via linear regression (Lorenz et al., 2012) or other estimates. A 
weighting of models can drastically improve prediction as was pro 
posed in Kilhnert (2016), whose results show that linear regression 
applied to numerical weather prediction (NWP) and cloud motion 
vector (CMV) models can improve the overall accuracy of forecasts on 
horizons from O to 5 h. The system described in Haupt et al. (2018) 
blends several short term forecasting models by weighting the model 
contributions according to their historical performance at each lead 
time. 

Machine learning is a very popular approach to forecasting and time 
series in general, and it has seen some use in solar forecasting with ever 



growing popularity (Mellit, 2008; Voyant et al., 2017; Zamo et al.,
2014a; Zamo et al., 2014b). Previous work shows the potential of using
machine learning to combine NWP forecasts. For example, artificial
neural networks (ANNs) can be applied as proposed by Voyant et al.
(2012), where a NWP and meteorological current measurements are
merged by means of an ANN. In another approach (Lu et al., 2015),
three different NWPs are used to forecast meteorological variables,
from which predictor variables are obtained and they are blended with
random forest to predict day ahead radiation. The results again show
that this combination is more accurate than the individual NWPs. Wolff
et al. (2016) combines irradiance measurements, satellite and NWP to
produce better forecasts of PV production using support vector ma
chines (SVM) with notable results. The work of Aguiar et al. (2016)
builds an ANN where ground measurements, European Center for
Medium Range Weather Forecasts (ECMWF) and satellite data are
blended. The experimental results show a clear increase of skill when
multiple information sources are used. Machine learning and integra
tion have been also used in operational environments (Hamann, 2017)
with multiple configurations of input NWP models, learning algorithms
and data size. Recently, Dersch et al. (2019) have proposed and eval
uated an optimal combination of forecasting models specifically de
signed for obtaining improved DNI forecasts.

The models proposed across the literature have shown promising
results for forecasting integration. The interest of the present work is to
study the integration of different forecasting models in order to obtain
improved short term (i.e. six hours ahead, and time resolution of
15 min) GHI and DNI radiation predictions. With this aim, we propose
and evaluate different blending approaches that integrate the predic
tions of GHI (or DNI) provided by the four models analyzed in the
companion paper (Part 1). The blending of those four models is of
particular interest because they follow four almost independent ap
proaches/foundations.

Two different blending approaches are studied and evaluated,
namely: horizon and general approach. The difference between them is
that the horizon approach constructs one model per forecasting horizon
using training data from that horizon only, while the general approach
constructs a single model trained with data from all forecasting hor
izons. The horizon approach trains models specialized on each horizon
but there is less data to train each of the models, while the general one
constructs a model independent of the horizon, being trained using data
from all horizons. Both approaches make use of the SVM (Cortes and
Vapnik, 1995). SVM models use as input the four models presented and
assessed in Part 1, which will be referred hereinafter as the four pre
dictors. SVM has been trained using linear and non linear kernels with
the aim to study whether non linear blending is more adequate than
linear.

Blending strategies may include additional parameters, beyond the
models input. For instance, Lu et al. (2015) have proposed a novel
methodology for model’s blending that takes into account additional
weather state parameters for day ahead solar radiation forecasting.
These parameters accounted for different weather categories in which
the different models provided enhanced performances. Results showed
improved accuracy compared to reference model blending approaches.
In McCandless et al. (2016b) and McCandless et al. (2016a) a cloud
regime dependent short term statistical model is proposed, which also
showed enhanced performance. In the companion paper (Part 1)
weather conditions were found to have an important influence on the
performance of the four models evaluated. Then, a specific study, that
attempts to include the weather conditions in the model blending
procedure, is here conducted. To this end, the weather types identified
as relevant for the solar radiation in the study area (Rodríguez Benítez
et al., 2018), and already assessed in the companion paper, are the
starting point.

Finally, accurate solar forecasts at site (station) level are relevant for
plant owners. On the other hand, regional average (or aggregated)
forecasts for entire regions are important for transmission system

operators (TSOs) (Pierro et al., 2017). As solar energy increases its
share in electricity systems, an enhanced accuracy of the solar radiation
forecast at grid level is needed in order to manage the electricity sys
tems (Renné, 2014). In this work a specific blended regional model is
presented and evaluated.

This work is organized as follows. 2 presents in detail the different
blending approaches (horizon, general, weather type aware and re
gional forecast), including at the end of this section a brief introduction
to the SVM methodology. In 3 the data and experimental procedure are
introduced, while in 4 results are presented and discussed. Overall
conclusions are provided in 5. Additional analyses are discussed in
Appendices A and B.

2. Blending approaches

This section describes the methodology followed for obtaining the
blending models. Firstly, two different blending strategies (general and
by horizons) are explained. Secondly, an approach that constructs
blended models conditioned to the weather types described in
Rodríguez Benítez et al. (2018) will be presented. The previously
mentioned blending approaches are suitable for individual stations.
Therefore, in the third subsection, regional blending approaches are
described. In principle, any machine learning technique could be used
for obtaining the blending models. In this article, SVMs have been used
because they have shown very good performance. Therefore, finally, a
short description of the SVM for regression will be provided.

2.1. Horizon and general approaches

The approach to predict both types of irradiance (GHI and DNI) is to
blend the four predictors described in the companion paper (Part 1) by
means of machine learning models. The blending aims to find a func
tion (f) that combines the predictors (Pi) using Eq. (1):

=I f P P P P( , , , )1 2 3 4 (1)

where f is constructed using SVMs. To test the linearity of this problem,
both linear and non linear SVM kernels have been used.

The blending approach aims to calculate at a given point in time (t)
an accurate prediction of irradiance (I) for different forecasting hor
izons (h), from 15 min to 6 h, with 15 min steps. Two different ap
proaches have been used to optimize the combination of the four pre
dictors. The main difference between them is that the horizon approach
constructs a model for each horizon, while the general approach trains
a unique model valid for all horizons. Both are described below.

Horizon approach: This approach trains a different model fh for
each horizon, hence allowing for horizon dependent predictor
blending. Therefore, there is a model for horizon 15, another for hor
izon 30, and so on, up to horizon 360 (thus, there are 24 models in
total). Fig. 1 displays how each model fh is trained using data belonging
to horizon h only. Data for training model fh is made of patterns like

+P t h P t h P t h P t h I t h(( ( , ), ( , ), ( , ), ( , )), ( )1 2 3 4 , for all t. The P t h( , )i de
note predictors issued at time t, that make forecasts for time +t h. Once
the models have been constructed, Eq. (2) shows how the fh models can
be used for irradiance forecasting. For instance, if at time t we would
like to know the forecast in 15 min time, f15 would be used and
f P t P t P t P t( ( , 15), ( , 15), ( , 15), ( , 15))15 1 2 3 4 would be computed.
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( ( , 30), ( , 30), ( , 30), ( , 30)) if 30

( ( , 360), ( , 360), ( , 360), ( , 360)) if 360

15 1 2 3 4

30 1 2 3 4

360 1 2 3 4

(2)

General approach: This approach constructs a single model f that
blends the four predictors independently of the horizon. Fig. 2 shows
how data from all horizons is combined and a single model f is trained.
In this case, training data are the patterns
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+P t h P t h P t h P t h I t h( ( , ), ( , ), ( , ), ( , )), ( )1 2 3 4 , for all available t and h.
Once the model f is trained, it is used for irradiance prediction using Eq.
(3). It can be noticed that, although P t h( , )i is used as input for pre
dictions at +t h, f itself is independent of h.

+ =I t h f P t h P t h P t h P t h( ) ( ( , ), ( , ), ( , ), ( , ))1 2 3 4 (3)

2.2. Blending approach using weather types

In the companion paper (Part 1), a remarkable dependence of the
four predictors on the weather conditions was found (Section 5.4).
Motivated by this result, a specific blending analysis depending on the
weather conditions is undertaken. The same weather types (WT) de
scribed in Section 5.4 of the companion paper have been used. There
are basically four weather types: synoptic perturbation over the study
area (WT1), transient weather conditions (WT2), moderate high pres
sure anomalies over the study area (WT3), and high pressure system
over the whole study area (WT4). The aim is to construct blended

models specialized in each of these weather types.
With this purpose, the general blending approach described in

Section 2.1 has been modified to consider WT’s. For this analysis, four
different general models have been trained grouping data by the four
WT’s considered. Each of those four models is constructed using the
scheme shown in Fig. 2, that is joining data for all horizons but se
parating data by WT. Therefore, in this case, there will be four general
blending models, one per WT. The horizon approach could also have
been used, but it has not been considered because it would involve
dividing the data into too many groups (one group for each WT and
horizon), resulting in 4 WT’s × 24 horizons = 96 models (versus the
four models required by the general approach). This implies that there
would be few data for training each of the models. That is the main
reason why the general approach has been used instead.

2.3. Regional forecasting

Regional forecasting means that only the regional average (or ag
gregated) irradiance is of interest, instead of the local irradiance pre
diction addressed in previous sections. In principle, regional forecasting
should be more accurate, as local fluctuations will be averaged. The aim
is to predict the average of irradiance (GHI and DNI) over a region,
which in this case, it will be the mean of the four individual stations
(Jaen, Lisbon, Madrid, and Seville).

In this work, two different regional blending approaches are studied
to predict irradiance at the different forecasting horizons considered.
The first one performs regional forecasting by computing the average of
the four local blending models. That is, if Eq. (4) represents the
blending model for station S (where S can be Jaen, Lisbon, Madrid, and
Seville), then the regional model is given by Eq. (5), where r is the
number of stations (r = 4 in this case).

+ =I t h f P t h P t h P t h P t h( ) ( ( , ), ( , ), ( , ), ( , ))S S S S S S
1 2 3 4 (4)

∑⎛
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=

I t h
r

f P t h P t h P t h P t h1 ( ( , ), ( , ), ( , ), ( , ))
S

r
S S S S S

1
1 2 3 4

(5)

The second one constructs a model (Eq. (6)) whose inputs are the
four available predictors at each of the r stations. Therefore, r stations x
4 predictors will be used as inputs. The target output to train model f is
now directly the average of irradiance (GHI or DNI) at the four loca
tions.

+ = … … …I t h f P t h P t h P t h P t h( ) ( ( , ), , ( , ), , ( , ), , ( , ))S S S S
1 4 1 4

r r1 1 (6)

2.4. Support Vector Machines

SVM (Cortes and Vapnik, 1995) is a machine learning algorithm
often used for classification and regression problems. For classification,
the learning algorithm searches the optimal hyperplane dividing two
different classes. This is achieved maximizing the margin between the
instances of both classes. Non linear models can be obtained by means
of kernel functions (the so called kernel trick). These functions trans
form data into a higher dimensional space where the maximum margin
hyperplane is computed.

In this article, SVM’s have been used for regression. The SVM ap
proach to regression has been described in Scholkopf and Smola (2001),
and some details will be provided here. Assume a training data set

…x y x y{( , ), , ( , )}n n1 1 where the outputs yi are real values, and the xi are
the input variables. The equation = +f x w x b( ) , is the general form
of the model, where ·,· is the dot product, b a real number and w is the
weights vector, to be optimized. The objective is to look for a model f as
simple as possible, but achieving predictions for all instances with er
rors no larger than some allowed deviation ε. This can be done by
minimizing the modulus of w by means of the optimization problem
represented in Eq. (7).

Fig. 1. Horizon Blending Approach: there is one model fh per forecast horizon.
Each fh is trained with data belonging to that horizon. In order to make pre-
dictions for +I t h( ), the appropriate model fh and predictors P t h( , )i are used.

Fig. 2. General Approach: there is a single model f valid for all horizons, which
is trained with data belonging to all horizons. In order to make predictions for

+I t h( ), the appropriate predictors P t h( , )i are used together with model f.
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wminimize1
2

2

− − ⩽ + − ⩽y w x b ε w x b y εsubject{ , ,i i i i (7)

However, Eq. (7) assumes the existence of a valid solution that
approximates all x y( , )i i pairs within the allowed deviation ε. This may
not always be the case (for instance, if some of the instances are very
noisy) and some minor errors should be allowed in order to find a
feasible solution. This is achieved by introducing slack variables ξi and
∗ξi (errors beyond the allowed deviation ε). The final optimization
problem is presented in Eq. (8).

∑+ +
=

∗w C ξ ξminimize1
2

( )
i

n

i i

2

1

− − ⩽ + + − ⩽ + ⩾∗ ∗y w x b ε ξ w x b y ε ξ ξ ξsubject{ , , , 0,i i i i i i i i

(8)

where >C 0 is a constant that determines the degree of importance of
the two goals in the optimization process (the complexity of the model
measured by w 2 and the size of the slack variables ξi and

∗ξi . If C is too
large, then the slack variables will be small, but this may lead to
overfitting to noise. If C is too small, the optimization process will focus
on minimizing the complexity of the model, and thus underfitting may
be the result. C is therefore the main hyper parameter that must be
tuned in order to obtain well performing SVM’s. This optimization
problem can be further extended to non linear models by means of the
kernel trick, already mentioned for classification. Different kernels can
be used (polynomial, radial, sigmoidal, …). One of the most widely
used kernels is the gaussian (or radial) one. In that case, the SVM model
becomes that of Eq. (9).

∑= −
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∗
− −

f x α α e( ) ( )
i

n

i i

x x
σ

1

2
i
2

2

(9)

Those xi in Eq. (9) for which − ≠∗α α( ) 0i i are the support vectors,
that is, the training instances selected by the optimization method for
constructing model f. − ∗α α( )i i are factors computed during optimiza
tion that determine the importance of each of the support vectors, and σ
is the standard deviation of the gaussian function, around each of the
support vectors.

In order to train SVM models, the e1071 library (Meyer et al., 2019)
for R language (R Core Team, 2019) has been used. The Caret library
(Kuhn, 2008; Kuhn et al., 2019) has also been used to facilitate tasks
such as hyper parameter tuning.

3. Data and experimental methodology

The four predictors described in the companion paper (Part 1),
namely Satellite, WRF Solar, Smart Persistence and CIADCast, are here
used as inputs for the blending approaches. Also, the same forecasts
dataset (Table 1 of Part 1) is here used for both training and evaluating
the proposed blended models. Note that there is significantly less data
as the horizon increases, due to the time range and the increasing time
window from t to +t h. Forecasts are made at different time horizons,
from 15 min to 6 h, with 15 min steps. Models are evaluated in
dependently for the GHI and the DNI at the four evaluation stations:
Seville, Jaen, Madrid and Lisbon.

Every approach described in 2 requires models to be trained and
validated. In this work, cross validation (CV) has been applied for this
purpose. CV is a common practice in machine learning validation. CV
creates N random partitions (or folds) of the same size. For each par
tition i, a model is trained with all partitions but i, and tested on i. The
CV result is the average of the i testing partitions.

Standard CV partitions the dataset randomly. This is appropriate
when instances are independent but in the case of time series, there is a

temporal dependency between instances. However, this kind of CV risks
using consecutive days for both training and testing, which may result
in overly optimistic estimations of performance. In order to mitigate
this problem, a variation of CV has been used here (called grouped CV).
There will be 4 different partitions (CV with N = 4), one for each week
of every month. Therefore, partition 1 contains the first week of
January, the first of February, and so on. This is similar for partition 2,
with the second week of every month. This guarantees that, at least,
training and testing partitions will never contain instances belonging to
the same week.

The SVM method used for blending in this article can employ both
linear and non linear kernels. In addition to the linear kernel, we have
tested three non linear kernels (radial, polynomial, and sigmoidal).
Appendix A contains the experimental comparison of these three ker
nels. The best performing non linear kernel is the radial one, and it has
been used for the rest of experiments in this article. SVMs require
tuning hyper parameter C (see Eq. (8)). This has been done by sys
tematically evaluating different C values (C= 0.25,0.5,1,2,4) by means
of standard CV on the training partition. It must be noted that the test
partition is not used for hyper parameter tuning.

To measure the quality of the blending models, the metrics relative
root mean square error (rRMSE), relative mean absolute error (rMAE),
and RMSE forecast skill (FSRMSE) presented in the companion paper
(Part 1) have also been used.

4. Results and discussion

4.1. Overall performance of the Horizon and General approaches

In this section, we show the empirical results of the Horizon and
General blending approaches described in Section 2.1 for the four sta
tions: Jaen, Lisbon, Madrid, and Seville. Both approaches have been
estimated using SVM with linear and radial kernels, resulting in four
blending models, referred to as: SVMLinear Horizon, SVMRadial Hor
izon, SVMLinear General, and SVMRadial General. They are compared
to the performance of the four original predictors. Both GHI and DNI
are considered. The average errors (rRMSE and rMAE) for all horizons
and for each station (Jaen, Lisbon, Madrid, Seville) are shown in Tables
1 and 2 for GHI and DNI, respectively.

As is observed in Table 1 (top), the average rRMSE for GHI of the
four predictors is consistently higher than any of the blending ap
proaches. The improvement attained using the blending models, com
pared to the best performing predictor model, is maximum at Lisbon. At
this station the rRMSE of the best predictor is 49.97% and SVMLinear
Horizon model value is 41.38%, i.e., about 9% absolute improvement,
or 17% relative improvement. Jaen and Seville stations show a similar
relative improvement (17% and 16%, respectively). Comparing
blending techniques, it is observed that the rRMSE for different ap
proaches is very similar, although the SVMLinear Horizon performs
best in Jaen (28.83%), Lisbon (41.38%) and Madrid (32.20%). In Se
ville the lowest rRMSE of 27.23% is reached using the General ap
proach and Linear SVM, although the differences in terms of rRMSE are
very small. With respect to rMAE (Table 1 (bottom)), blending models
also outperform the four predictors. In this case all stations show
around 3% of absolute improvement. The maximum relative improve
ment is achieved at Jaen (14%) and Seville (15%). The best blending
approach is SVMRadial General for all stations: Jaen (16.75%), Lisbon
(29.02%), Madrid (20.12%) and Seville (15.92%). It is also observed
that there is some variability across stations, errors in Lisbon tend to be
higher than others while the error in Seville tends to be the lower than
the rest. Regarding the standard deviation, the Lisbon station has the
highest deviations in terms of rRMSE and rMAE. Furthermore, devia
tions of rRMSE and rMAE appear to be slightly higher for predictors
than blending models, with the exception of WRF Solar, which shows
the smallest deviations. In general terms it can be said that for GHI, on
the one hand all blending approaches show a smaller error than any of
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the predictors, while on the other hand, the standard deviation of the
blending models is never larger than the maximum deviation of the four
predictors. That is, better performance is not bought at the cost of in
creasing variance.

A similar performance is observed for DNI forecasting (see Table 2).
All error metrics are lower for the blending methods than the four
predictors, and comparing the machine learning methods also shows
that they perform similarly. The main difference between GHI and DNI
is that the errors are overall much worse than for GHI (for example,
rRMSE from Lisbon goes from 41.38% to 73.45% and rMAE goes from
29.02% to 50.51%). For rRMSE, the best approach appears to be the
Horizon one. For Jaen (44.24%) and Lisbon (73.45%) the Radial SVM

performs best, and for Madrid (55.48%) and Seville (41.81%) the
Linear SVM has the lowest error. The improvement attained using the
blending models, compared to the best performing input predictors, is
maximum at Lisbon, about 14% of absolute improvement and 16%
relative improvement. With respect to rMAE and DNI (Table 2
(bottom)), the average results show that the SVMRadial General ap
proach outperforms all other models, as was also observed for GHI (see
Table 1). The most important improvement versus the performance of
predictors, is observed at the Lisbon station (about 7% in absolute value
and 12% in relative value). In this case the maximum relative im
provement happens at Seville station (14%). Standard deviation are in
general larger than those of GHI (Table 1), but they follow a similar

Table 1
Summary of average and standard deviation GHI results: (top) rRMSE and (bottom) rMAE. Over the line the four predictors and below the line the four blending
approaches. The average is computed over all forecasting horizons. Values are in %.

rRMSE

Jaen Lisbon Madrid Seville

Satellite 35.85 (4.42) 49.97 (10.29) 39.53 (4.47) 33.64 (6.18)
WRF-Solar 35.35 (2.38) 51.11 (8.7) 36.3 (2.95) 32.37 (2.61)

SmartPersistance 34.87 (4.47) 50.1 (11.65) 38.7 (4.48) 34.23 (4.63)
CIADCast 35.36 (3.69) 50.76 (11.65) 41.61 (5.64) 33.82 (5.02)

SVMRadial General 29.19 (3.37) 41.94 (9.58) 32.89 (4.17) 27.67 (3.85)
SVMLinear General 28.98 (3.61) 41.67 (9.72) 32.33 (4.18) 27.23 (3.73)
SVMRadial Horizon 28.97 (3.43) 42.31 (9.22) 32.5 (3.92) 27.86 (3.85)
SVMLinear Horizon 28.83 (3.74) 41.38 (10.4) 32.2 (4.26) 27.28 (3.69)

rMAE

Jaen Lisbon Madrid Seville

Satellite 22.63 (3.35) 36.86 (8.66) 27.18 (3.45) 20.49 (4.29)
WRF-Solar 21.93 (2.14) 33.95 (7.62) 23.78 (2.58) 18.75 (1.75)

SmartPersistance 19.5 (3.91) 32.88 (10.34) 23.23 (4.37) 18.86 (3.66)
CIADCast 22.78 (2.83) 36.86 (10.18) 29.68 (4.47) 21.23 (3.87)

SVMRadial General 16.75 (3.01) 29.02 (8.38) 20.12 (3.5) 15.92 (3.1)
SVMLinear General 17.4 (2.91) 29.43 (8.45) 20.85 (3.54) 16.55 (2.86)
SVMRadial Horizon 17.64 (3.15) 30.35 (8.96) 20.79 (3.66) 17.08 (3.05)
SVMLinear Horizon 17.34 (3.21) 29.51 (10.06) 20.8 (3.89) 16.43 (3.1)

Table 2
As in Table 1 but for the DNI.

rRMSE

Jaen Lisbon Madrid Seville

Satellite 53.36 (7.29) 88.99 (20.51) 66.69 (8.94) 51.35 (9.97)
WRFsolar 54.36 (2.99) 89.21 (22.5) 67.86 (4.03) 48.72 (3.17)

SmartPersistence 52.49 (9.81) 87.41 (27.48) 62.6 (11.16) 51.56 (9.08)
CIADCast 55.21 (7.71) 90.95 (25.49) 70.73 (10.05) 54.46 (10.28)

svmRadial General 45.15 (8.47) 73.99 (24.66) 56.19 (10.17) 42.54 (7.07)
svmLinear General 46.79 (6.76) 78.35 (21.26) 57.04 (9.97) 42.8 (6.54)

svmRadial Horizontes 44.42 (6.05) 73.45 (20.22) 55.75 (8.84) 42.08 (6.04)
svmLinear Horizontes 44.78 (7.18) 74.5 (21.41) 55.48 (9.87) 41.81 (7.03)

rMAE

Jaen Lisbon Madrid Seville

Satellite 36.25 (5.68) 67.96 (16.5) 46.53 (6.47) 34.74 (8.09)
WRFsolar 36.64 (2.82) 63.33 (17.69) 46.18 (3.69) 32.48 (2.78)

SmartPersistence 29.74 (8.16) 57.14 (22.99) 37.35 (9.36) 29.14 (7.5)
CIADCast 38.24 (5.57) 69.17 (21.55) 50.99 (8.2) 37.37 (8.43)

svmRadial General 27.09 (6.99) 50.51 (20.51) 35.5 (8.34) 25.14 (6.17)
svmLinear General 28.9 (5.83) 55.05 (17.06) 36.54 (8.33) 27.41 (5.42)

svmRadial Horizontes 27.52 (7) 51.43 (20.9) 36.27 (8.7) 25.97 (6.23)
svmLinear Horizontes 28.55 (6.53) 54.76 (18.77) 36.33 (9.06) 27.15 (6.03)

J. Huertas-Tato, et al.
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Table 3 
Average FSRMSB for GHI and DNI of the four blending approaches. The average 
is computed over all forecasting horizons. Values are in %. 

GHI FSRMSB 

Jaen Lisbon Madrid Seville 

SVMRadial General 16.19(0.74) 16.21 (0. 97) 15.04 (0. 78) 19.14 (1.05) 
SVML!near General 16.89 (1.53) 16.72 (1.42) 16.51 (0. 97) 20.48 (1.21) 
SVMRadial Horizon 16.86 (1.67) 15.79(1.02) 16.09 (1.44) 18.52 (1.6) 
SVMUnear Horizon 17.17 (2.11) 17.18 (1.53) 16.74 (1.11) 20.33 (2.17) 

DNI FSRMSB 

Jaen Lisbon Madrid Seville 

SVMRadial General 13.33 (0. 71) 14.46 (0.47) 10.19 (0.41) 17.09 (1.37) 
SVML!near General 10.76(3.79) 10.39(2.95) 8.87 (0.87) 16. 79 (2.82) 
SVMRadial Horizon 14.93 (4.87) 15.26 ( 4.24) 10.89 (2.96) 18.21 (3.26) 
SVMUnear Horizon 13.81 (2.62) 13.49 (2.45) 10.88 (1.17) 18.38 (1.59) 

pattern except that Satellite display smaller deviation than blending 
models in general. Similarly to GHI, also for DNI the standard deviation 
of the blending models is never large than the maximum of the pre 
dictors, therefore better performance is not bought at the cost of in 
creasing variance. 

Additionally, in Table 3 the average of the forecast skill CFS&1fSE) for 
all horizons and each location is shown. The FS™sE is calculated for 
both GHI and DNI for the four blending approaches. It is observed that 
the blending approaches achieve good values of FS™sE for GHI and 
DNI, being better for GHI. As it has been observed previously con 
cerning RMSE, there are no important differences regarding the per 
formance of the four different blending models, although Horizon 
models tend to perform better in general. 

4.2. Horizon and General approaches performance depending on the 
forecasting horizon 

Here, the performance of the blending approaches and the four 
predictors is broken down by forecasting horizon for GHI and DNI and 
for the four stations. Given that machine learning methods outperform 
the four predictors, in the following figures the line named "optimal" 
represents the best performance for each horizon among the four pre 
dictors (Satellite, WRF Solar, Smart Persistence and CIADCast), in terms 
of minimum rRMSE or rMAE. Note that this reference is highly strin 
gent, since the best performing predictor at each forecasting horizon is 
unknown beforehand. 

Fig. 3 displays the rRMSE for GHI along the horizons for the four 
stations. It is observed that the blending approaches outperform the 
optimal line for all forecasting horizons. Blending machine learning 

Jaen 
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55 
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Lisbon 

Forecast horizon [h] Forecast horizon [h] 

SVMRadial General 

models reach relative improvements with respect to the optimal line of 
6% in the worst case and 18% in the best one. On the other hand, the 
errors of the blending machine learning models overlap with each 
other, it being difficult to decide the best one approach for every hor 
izon. However, SVMLinear Horizon approach seems to perform better 
than the other approaches at least in some horizons. This is true for all 
stations, except for Seville, where this approach performs similar to 
SVMGeneral Linear model. In any case, the difference in terms of 
rRMSE is very small The rRMSE in every station increases with the 
horizon, without large differences between blending models. 

In Fig. 4 the evolution of the rMAE for GHI is shown. In all stations, 
the optimal line is also worse than any other model, except at some 
horizons in Lisbon (from 330 to 360) and in Seville (from 285 to 345), 
where the optimal line is similar to the SVMRadial Horizon approach. 
For rMAE, the relative improvement of blending models with respect to 
the optimal line goes from 3% (worst case) to 18% (best case, Jaen 
around 4 h lead time). With respect to blending approaches, the best 
model for all stations is the SVMRadial General approach. There is 
some overlap for some horizons with the SVMLinear Horizon approach 
and with the SVMLinear General approach in Lisbon station, but it still 
shows the best results. The relative improvement of the SVMRadial 
General model with respect to the SVMLinear Horizon approach is 
around 3%, 4% and 5% in many cases. It is also observed that the 
SVMRadial Horizon approach is very poor for rMAE metric. It ends up 
being outperformed by all other machine learning models at far hor 
izons in Jaen (from h = 285 to h = 360) and Lisbon (from h = 225 to 
h = 360) and at most horizons for Seville station. For short horizons, all 
models start at the same range and the rMAE grows as the horizon 
increases, but the growth amount depends on the station. 

Unlike the rRMSE, observing the rMAE values for GHI, there is a 
clear best model for all stations, the SVMRadial General approach. It is 
better for Jaen, Madrid and Seville than the rest of the machine learning 
approaches, and it is similar to the SVMLinear General and SVMLinear 
Horizon approaches for the Lisbon station. 

Fig. 5 shows the rRMSE for DNI forecasting along the horizons. Si 
milarly to GHI forecasting, the blending approaches outperform the 
optimal line, with relative improvements between 5% and 16%. There 
is also overlap between blending machine learning models, but as the 
horizon increases, the SVMLinear Horizon approach outperforms other 
models, where relative improvements of 2%, 3% and 4% are reached 
with respect to other approaches. At short horizons, the SVMRadial 
Horizon model is slightly better, but the improvements are smaller. This 
pattern repeats for all stations, but it is more noticeable in Jaen, Madrid 
and Seville. Here the SVMLinear General model is worse than the other 
models by a fair margin mainly for long horizons. 

Fig. 6 shows the rMAE evolution for DNI forecasts. Unlike every 
other result presented before, here the optimal line outperforms or is 
similar to the blending models at short horizons (up to 60 min). As the 
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Fig. 3. GHI rRMSE of blending models (General and Horizon) by horizon. "Optimal" displays the best performance out of the four predictors (the optimal line). Note 
the difference range of values for the Lisbon station. 
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Fig. 4. As in Fig. 3 but for the GHI rMAE forecasting errors. 

horizon increases, the differences become greater and the SVMRadial 
General approach appears to offer the best performance for long term 
predictions, between 3% and 16% relative improvement over the op 
timal line. It is also observed that this approach overlaps with the 
SVMRadial Horizon model in some stations and for short horizons. 
However, as the horizon increases, the advantage of the SVMRadial 
General blending model becomes clearer, obtaining relative improve 
ments up to 8%. 

In summary, for GHI the four blending models perform similarly 
with respect to rRMSE, although for some horizons SVMLinear Horizon 
is slightly better. For DNI and rRMSE, the SVMRadial Horizon model 
seems the best model for short horizons and the SVMLinear Horizon 
one for far horizons. For rMAE the SVMRadial General model is the best 
for both GHI and DNI, although for DNI this shows more clearly at far 
horizons. Overall, the blending approaches outperform the optimal line 
for most of the forecasting horizons, at all stations and for both metrics, 
rRMSE and rMAE, reaching relative improvements from 3% to 18%. 

It can also be seen that the differences between the optimal DNI line 
and blending models increases with the forecasting horizon. Therefore, 
it can be concluded that the main added value of the blended model is 
attained at the end of the forecasting horizon and that the improvement 
statistics summarized in Table 2 can mainly be attributed to the longest 
forecasting horizons. For the case of the GHI, the differences among 
forecasting horizons are not so relevant, and the blending models 
provide a similar improvement along the whole forecasting period. 

Comparisons of the improvements of the forecasting error attained 
here by model blending with those obtained in similar work are difficult 
due to, particularly, the differences in the dataset (location climatology, 
input models, and length of the dataset). A reference work is Wolff et al. 
(2016), that proposed and evaluated an optimal linear combination of 
three GHI short term forecasting models (persistence, satellite, and 
NWP). Evaluation was conducted in Germany for the period March to 
November. Model combination provided the lowest errors for all lead 
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times, with improvements of a few percent of the installed solar power 
capacity. More recently, Dersch et al. (2019) evaluated an optimal 
combination of five DNI short term forecasting models (two satellite 
derived, two NWP derived and persistence). Evaluation was conducted 
in two stations located in south eastern Spain and northern Africa. 
Results showed that the blended model outperformed all individual 
models for lead times below 300 min, in terms of rRMSE, when NWP 
models were the best performing models. Maximum relative improve 
ments were found to be around 200Ai for one hour lead time, but dif 
ferences rapidly decreased with lead time. Results here presented are 
qualitatively similar, although climatology is more stringent here, re 
garding solar radiation forecasting, for the analyzed stations. 

In addition to the above analysis for rRMSE and rMAE, a study of 
forecasting skill (FSAAfSE) broken down by horizon is provided in 
Appendix B, where the blending models dependence on the sky con 
ditions (using the clearness index, k,) is analyzed. 

4.3. Analysis of models performance depending on the synoptic conditions 

The role of the weather conditions on model blending is here as 
sessed, based on the four WTs described in Rodriguez Benitez et al. 
(2018). As has been mentioned in Section 2.2, only the general ap 
proach has been used to study the influence of WTs in the blending 
model. Linear and non linear approximations have been validated, but 
results are only displayed for the linear one (referred to as SVMLinear 
WT) because it showed a better performance. 

Fig. 7 breaks down SVMLinear WT performance (rRMSE) by fore 
casting horizon, for both GHI and DNI. Performance is compared with 
the other blending approaches (General and Horizon) for the four sta 
tions. Results show that the inclusion of the weather types in the 
blending provides a relatively modest, but significant, improvement of 
the forecasts accuracy compared to the other blending approaches for 
some stations at certain forecasting horizons. Particularly, the 

Madrid Seville 
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Fig. 5. As in Fig. 3 but for DNI rRMSE forecasting errors. 
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Fig. 6. As in Fig. 5 but for DNI rMAE forecasting errors. 

SVMLinear WT is shown to be the most accurate model for GHI at Se 
ville for horizons larger than four hours, aproximately. The relative 
improvement is about 3% at the end of the forecasting period compared 
with SVMLinear Horizon (overall the best approach for rRMSE). For the 
DNI and Jaen, the SVMLinear WT shows better forecast for time hor 
izons below 3 h. But the best performance is observed for DNI and 
Seville, where a relative improvement between 1 % and 3% is found for 
time horizons between 1 and 3 h (compared to SVMRadial Horizon, 
overall the best approach for rRMSE for short horizons). On the other 
hand, weather type information does not improve the forecast for 
Lisbon and Madrid. 

The use of WT in model blending regarding short term solar ra 
diation forecasting has not received much attention in the literature. Lu 
et al. (2015) reported an absolute improvement of the forecasting errors 
of about 300Ai (in terms of RMSE) when using a model blending ap 
proach based of WTs. But comparison is difficult due to, mainly, the 
different input predictors (they only used different NWP models as 
input of the blending approach) and the forecasting horizon (they as 
sessed day ahead forecast). 

4.4. Regional model apJXOOch 

Next, experimental results for the two regional approaches 
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described in Section 2.3 are presented. In this case, SVM with radial 
kernel and a general approach (a single model for all horizons) have 
been used to construct the two regional blending models. They are 
referred to as SVMRadial General Mean (the first one: mean of local 
SVMRadial General models) and SVMRadial General Regional (the 
second one: a model constructed with all available predictors of all local 
stations). Other approaches (General Linear, Horizon Linear or Horizon 
with Radial Kernel) might have been used, but only the general non 
linear one has been selected here for empirical validation because it has 
shown good performance overall. 

The results for both approaches are shown in Fig. 8, where the 
metrics (rRMSE and rMAE) have been calculated at each horizon and 
for both GHI and DNI. For comparison purposes, the figure also in 
eludes, for each predictor, its mean over the four locations. For in 
stance, C1ADCast in Fig. 8 is the mean of the CIADCast predictor over 
Jaen, Seville, Madrid, and Lisbon. 

As may be expected, regional forecasts derived from each predictor 
(Satellite, WRF Solar, Smart Persistence and CIADCast) show con 
siderably smaller errors than forecasts of single stations (Figs. 3 6), 
because of the spatial decorrelation of the forecasts errors. The Smart 
Persistence predictor performance is particularly outstanding, since 
only WRF Solar, for GHI and for lead times greater than 4 h, is com 
petitive. It is also observed that both regional blending approaches 
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Fig. 7. Performance of SVMlinear-WT model for rRMSE (GHI and ON!) compared with Global and Horizon approaches in all stations. 
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Fig. 8. Performance of the two machine learning regional blending models (SVMRadial-General-Regional and SVMRadial-General-Mean). As reference, the per-
formance of the four forecasting predictors (Satellite, WRF-Solar, Smart Persistence and CIADCast) and their average (mean) are also shown. Values are displayed 
both for the GHI and DNI and for rRMSE and rMAE metrics. The range of error values (in % ) are different for GHI and DNI. 

Table 4 
Summary for average GHI errors and standard deviation of the four predictors 
means (top) and the two regional blending approaches (bottom). The average is 
computed over all forecasting horizons. Values are in % . 

Satellite 
WRFsolar 

SmartPersistence 
CIADCast 

SVMRadial-GeneraJ.Mean 
SVMRadial-<;eneral-Regional 

Table 5 
As in Table 4 but for the DNI 

Satellite 
WRFsolar 

SmartPersistence 
CIADCast 

SVMRadial-GeneraJ.Mean 
SVMRadial-<;eneral-Regional 

rMAE 

16.06 (2.5) 
14.83 (1.91) 
13.78 (2.99) 
15.89 (2.63) 

11.87 (2.42) 
12.51 (2.35) 

rMAE 

27.87 (4.54) 
29.09 (3.02) 
23.44 (6.71) 
30.00 (5. 71) 

20.57 ( 4. 98) 
21.05 (4.81) 

rRMSE 

21.76 (3.33) 
21.10 (2.15) 
20.03 (3.47) 
21.43 (3.23) 

16.94 (2.8) 
17.48 (2.09) 

rRMSE 

35.64 (6.04) 
37.78 (3.74) 
32.29 (7.92) 

38.03 (7) 

28.01 (6.01) 
27 .84 (5. 79) 

display similar performance and they outperform the predictors for all 
horizons and for both GHI and DNI. Error reduction attained with these 
approaches increases with the forecast horizon (Fig. 8), and is higher 
for rRMSE than for rMAE. For instance, an absolute improvement of 
about 8% is observed for DNI and rRMSE at the end of the forecast 
period, when comparing the blending model against the best 

Table 6 

performing one (WRF Solar). 
As a summary of the regional forecast results, Table 4 (GHI) and 

Table 5 (ONO show the average rRMSE and rMAE for all horizons and 
evaluated regional models. It can be seen that, indeed, the two regional 
approaches are very close, but SVMRadial General Mean displays 
smaller errors (except for rRMSE ONO. The relative improvement in 
rRMSE obtained by model blending is about 15% for GHI and 13% for 
DNI, compared to the best performing input predictor. In rMAE, the 
improvements are 14% (GHI) and 12% (ONO. Comparing Tables 1,2 
with 4 and 5, it is observed, both for GHI and DNI, that the rRMSE 
values of the regional forecast are about one half of those of the in 
dividual stations. Previous work (Wolff et al., 2016) has reported that 
GHI forecast errors of regional forecasts are reduced to about one third 
of the single stations forecasts. Differences may be explained based on 
the number of stations involved in the analysis, here only 4. This lim 
ited number of stations, only accounts for part of the spatial variability 
of the errors, and does not allow a full evaluation of the compensation 
effects of the forecasting error associated with the spatial decorrelation 
of these errors. Particularly, a further reduction of the error can be 
anticipated if the number of stations analyzed in the study area would 
be greater. Regarding DNI, no previous work has assessed regional DNI 
forecasts. 

5. Summary and Conclusions 

In this article, the integration of GHI and DNI forecasting models 
has been addressed, with the aim of improving the prediction ac 
curacies of those models used individually. This is achieved by using 
the forecasting models as predictors and blending them by means of 
machine learning techniques. In particular, in this work, the four 
forecasting models analyzed in the companion article (Satellite based 

Summary of rRMSE for the non-linear kernels: (top) GHI and (bottom) DNL The average is computed over all forecasting horizons. Values are in 
%. 

rRMSEGHI 

Kernel Jaen Lisbon Madrid Seville 

Radial 16.75 29.02 20.12 15.92 
Polynomk 18.13 30.87 21.66 17.84 
Sigmoidal 24.12 39.10 30.09 23.27 

rRMSE DNI 

Kernel Jaen Lisbon Madrid Seville 

Radial 27.09 SO.SI 35.5 25.14 
Polynomk 29.41 56.45 37.57 29.43 
Sigmoidal 51.83 85.25 67.33 51.32 
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Table 7 
Summary of MAE for the non-linear kernels: (top) GHI and (bottom) DNI. The average is computed over all forecasting horizons. Values are in%. 

rMAEGHI 

Kernel Jaen Lisbon Madrid Seville 

Radial 29.19 
Polynomk 30.36 
Sigmoidal 39.43 

41.94 
42.46 
49.25 

32.89 
34.05 
45.89 

ZJ.67 
29.40 
37.60 

rMAE DNI 

Kernel Jaen Lisbon Madrid Seville 

Radial 
Polynomk 
Sigmoidal 

45.15 
46.83 
72.68 

73.99 
78.86 
92.52 

56.19 42.54 
57.65 45.81 
84.88 70.58 
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Fig. 9. FSRMSB of the blending models (General and Horiron) for GHI according to daily mean k,. Top row: le, > 0: 65 (clear sky), Middle row: 0: 4 < = kt< = 0: 65 
(partly cloudy), Bottom row: kt < 0: 4 (overcast conditions). Values are in%. 

model, WRF Solar, Smart Persistence and CIADCast) are blended using 
SVM's. Two approaches have been evaluated: Horizon and General. The 
first one constructs a model for each horizon and the second one trains a 
single model valid for all horizons. 

The blending approaches have been validated at four locations 
(Jaen, Lisbon, Madrid, and Seville) for forecasting horizons from 
15 min to 6 h with step; of 15 min. The two commonly used SVM 
kernels (linear and radial) have been tested. Results show that all 
blending approaches are able to reduce significantly the error of the 
original four predictors. This occurs for both GHI and DNI, for all 
horizons, and locations, and the two evaluation metrics. In general, it is 
observed that the improvement provided by the blending approaches 

does not strongly depend on the forecasting horizon, except for DNL In 
that case, the improvement tends to increase for long horizons. 

Differences between the blending approaches themselves are small, 
although the best approach depends on the kind of error to be used: 
Horizon models work slightly better for reducing rRMSE, while the 
General non linear (radial) model works better for rMAE (being that 
difference larger than for rRMSE). This is true for both GHI and DNI. 

With regard to the blending approach that uses weather type in 
formation, it has been shown that there can be some improvement 
depending on the location. In this study, knowledge about weather 
conditions is useful for GHI at Seville for horizons larger than four 
hours. For DNI the gain is obtained for Seville and Jaen for horizons 
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Fig. 10. FSAAtSB of the blending models (General and Horizon) for DNI according to daily mean k,. Top row: k, > 0: 65 (clear sky), Middle row: 0: 4 < = kt< = 0: 65 
(partly cloudy), Bottom row: kt < 0: 4 (overcast conditions). Values are in %. 

below three hours. Improvements occur only for rRMSE. This is prob 
ably due to weather type help predicting outliers better, which is more 
important for the rRMSE metric. 

Finally, predictor blending has also been applied in a regional 
context, where the aim is to predict the mean radiation of several lo 
cations in the region of interest. In this work, the region is represented 
by the four locations studied. Two machine learning approaches have 
been analyzed: the mean of the local blending models, and a model that 
uses as inputs all available predictors at all locations. Regional fore 
casting using the individual predictors (by computing their mean over 
the four locations) has been used for comparison. Again, the two re 
gional blending methods outperform the regional predictors. This 
conclusion is general for both GHI and DNI, all horizons, and both 
metrics. The differences between the two approaches are small, al 
though the first one obtains the smallest errors. 

Appendix A. Experimental comparison of non-linear SVM kernels 
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The aim of this Appendix is to carry out an experimental comparison of the performance of different non linear SVM kernels: radial, polynomial 
(with degree 3), and sigmoidal. This study has been done using the general blending approach for both rRMSE and rMAE, for both GHI and DNI, and 
for the four stations (Jaen, Lisbon, Madrid, and Seville). Results are shown in Tables 6, 7. The errors represent the average over all the forecasting 
horizons. It is observed that in all cases the radial kernel obtains the smallest errors. The polynomial kernel shows similar performance to the radial 
one, while the sigmoidal errors much larger. 

Appendix B. Analysis of blending models skill broken down by daily mean clearness index Ck,) 

Figs. 9 and 10 show the forecast skill (FSRA!SE) of the blending models, according to the daily mean clearness index Ck,) observed when the 
forecasts were issued, for GHI and DNI, respectively. The performance has been broken down on days of high, medium, and low irradiance, which 
correspond with k1 > 0: 65 (clear sky), 0: 4 ~ kt~ 0: 65 (partly cloudy), and kt < 0: 4 (overcast conditions), respectively. As in Part I, we follow 



(Lara Fanego et al., 2012) to classify days: those with mean (kt) greater than 0.65 are considered as clear sky conditions, between 0.4 and 0.65 partly
cloudy, and below 0.4 as overcast conditions.

For both GHI and DNI it can be seen that for all stations, for all sky conditions, for all horizons and for most blending models, the FSRMSE is above
zero. That means they perform better than persistence in all cases. The only exception is the SVMRadial Horizon model, that in some cases for long
horizons the FSRMSE is below zero (for both GHI and DNI in Jaen/overcast and Lisbon/clear sky). It is also observed that blending models perform
similarly in most situations. The exceptions are, for GHI (Fig. 9), the already mentioned SVMRadial Horizon model displays a different behavior to
the rest. For DNI (Fig. 10), in addition to the SVMRadial Horizon model, the SVMLinear General also displays worse trends for partly cloudy skies
and for overcast conditions, model behavior is less similar in general.

Figs. 9 and 10 also show that blending models are sensitive to the sky conditions. In particular for GHI, it can be seen that for clear sky days,
FSRMSE tends to decrease with the horizon, for all stations and models. This is presumably due to persistence performing well in that kind of days. For
partly cloudy days, FSRMSE tends to slightly increase in the first horizons and keep stable for longer horizons (except in Madrid where a slight
decrease is observed). For overcast conditions, FSRMSE either increases with horizon (Lisbon and Madrid) or starts increasing but decreases at some
horizon (Jaen and Seville). For DNI, models also display sensitivity to sky conditions although the behavior is different to the one observed for GHI.
In this case, for clear sky the FSRMSE is mostly stable across horizons, and for partly cloudy the skill tends to increase with horizon. For overcast
conditions, there is a tendency to initially increase and eventually decrease, however, there is a larger variability in the behavior of the different
models, therefore a general characterization is difficult to state.
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