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Optimal sensing policy for energy harvesting
cognitive radio systems

David Alejandro Urquiza Villalonga, Jorge Torres Gómez
and M. Julia Fernández-Getino Garcı́a

Abstract—Energy harvesting (EH) emerges as a novel technol-
ogy to promote green energy policies. Based on Cognitive Radio
(CR) paradigm, nodes are designed to operate with harvested
energy from radio frequency signals. CR-EH systems state several
strategies based on sensing and access policies to maximize
throughput and protect primary users from interference, simulta-
neously. However, reported solutions do not consider to maximize
detection performance to detect spectrum holes which represent a
major drawback whenever available energy is not efficiently used.
In this concern, this paper addresses optimal sensing policies
based on energy harvesting schemes to maximize probability of
detection of available spectrum. These novel policies may be
incorporated to previous reported solutions to maximize per-
formance. Optimal processing scheduling schemes are proposed
for offline and online scenarios based on convex optimization
theory, Dynamic Programming (DP) algorithm and heuristic
solutions (Constant Power and Greedy policies). Performance
of proposed policies are validated by simulations for common
detection techniques such as Matched Filter (MF), Quadrature
Matched Filter (QMF) and Energy Detector (ED). As a result, it
is shown that the best detection scheme theoretically addressed
by MF, does not always perform better than the poorest detection
scheme, given by the ED, in an energy harvesting scenario.

Index Terms—Energy harvesting, cognitive radio, optimal
processing scheduling, offline power allocation policies, online
power allocation policies.

I. INTRODUCTION

COGNITIVE radio systems with energy harvesting capa-
bilities (CR-EH) are designed to develop communication

nodes to operate with spectral and energy efficient concep-
tions. In this concern, green cognitive networks capable of
managing the use of spectrum, as well as energy, are currently
available based on Green Communication paradigm [1].
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In CR-EH systems, energy may be harvested from multiple
ambient sources (e.g., solar, wind, thermal, vibration). How-
ever, CR-EH nodes are mainly designed to harvest energy
from radio frequency (RF) signals [1] [2]. Ambient radio
signals are also energy sources provided wireless signals carry
information and energy simultaneously [3]. In this direction,
several solutions based on simultaneous wireless information
and power transfer (SWIPT) algorithms are proposed to har-
vest energy from interference signals [4], [5], and from self-
interference in full duplex communication channels [6] as well.

Primary problem in CR-EH is regarded to how Secondary
Users (SUs) efficiently use harvested energy over time to
maximize data throughput while keeping Primary Users (PUs)
protected from interference. In this case, CR-EH primary
problem is addressed through different solutions according to
overlay [2], [7]–[13], underlay [14] or hybrid overlay-underlay
dynamic spectrum access [15]. Through spectrum sensing
(SS) operations, according to spectrum overlay model, SUs
get opportunistic access to idle spectrum licensed by PUs to
maximize data throughput. Additionally, to avoid interference
to PUs, while the usability of the PU channel is properly
guaranteed, two main detection performance parameters must
be satisfied; the probabilities of detection (Pd) and false alarm
(Pf a) [16]. These values are defined by IEEE 802.22 standard
for cognitive wireless regional area networks (WRANs), where
value of Pd must be superior to 0.9 and Pf a must be lower
than 0.1 to have proper performance when detecting signals
of interest (SoI) [17]. On the other hand, in underlay model,
SU do not perform SS. In this case, SU develops a power
allocation policy to maximize throughput but also to maintain
interference levels on the PU under a given threshold [14].
Current research addresses overlay dynamic spectrum access
problem through the proposal of optimal formulations to
maximize detection performance.

A. Literature Survey

CR-EH problem for overlay dynamic spectrum access has
been extensively investigated and several strategies, based on
sensing and access policies, have been designed to maximize
throughput in overlay model and simultaneously satisfy de-
tection performance parameters according to standard 802.22
with energy restrictions [2], [7]–[13]. These strategies are
usually based on a Markov decision process (MDP) to model
randomness of energy harvesting profile as well as channel
condition and the behavior of PUs. Based on available energy
and probabilistic knowledge of PU activity, sensing policies
determine the schedule of SUs in an energy efficient manner.
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By this schedule, SUs sense the channel or remains idle
conserving residual energy for future events. On the other
hand, based on available energy and Channel State Information
(CSI), access policies decide whether SUs occupy the channels
or not.

Solution in [7] derives optimal distribution of energy val-
ues for SS and transmission operations in the time domain.
This optimal distribution of energy values is formulated to
maximize throughput based on MDP according to Bellman
equation. A similar approach is proposed in [15] for a hybrid
overlay-underlay dynamic spectrum access. In addition, in
[2] authors propose an optimal harvesting-access policy to
maximize the long-term achievable throughput. This proposed
policy specifies the allocated time duration to harvest energy
and power levels to be used in transmission based on CSI.
Several relevant solutions are also focused in a single-user
multi-channel scenario [8], [9]. In [8] a channel selection
scheme based on the PU traffic characteristics as well as CSI to
maximize energy efficiency criteria is proposed. Then, in [9] a
channel selection criterion is developed based on probabilistic
knowledge of PU occupancy, CSI and the available energy in
SU’s battery to maximize throughput of the SU.

Additional strategies for SS techniques to maximize achiev-
able throughput are based on collision probability metrics
[10]–[12]. Authors in [10] derive the optimal detection thresh-
old for an energy detector technique that maximizes the
expected total throughput subject to energy causality and
collision constraints. Then, in [11] an upper bound on the
achievable throughput based on energy arrival rate is de-
scribed. Furthermore, authors in [12] propose an optimal
access policy to achieve the upper bound of the throughput
derived in [11]. In [13] an overlay dynamic spectrum access is
studied while maintaining a quality of service (QoS) constraint
on PU in terms of a given collision probability.

B. Motivation

Although solutions in [2], [7]–[13] and [15] are derived to
maximize throughput, while maintaining PU protected from
interference based on a given value of Pd or probability of
collision, the efficient use of available energy to implement
SS operations is not considered. The assumed constant sensing
power value to obtain a fixed detection performance represents
a major drawback as long as the dynamics of harvested energy
values during the processing time-interval is not examined. In
addition, reported sensing policies are only based on Energy
Detector scheme and do not consider any other SS techniques.
These drawbacks will in turn drive to reduced processing
capabilities during a given detection time-interval.

In contrast, we may provide further system throughput when
detection performance is maximized based on available har-
vested energy values. Maximizing Pd with the available energy
implies throughput improvements provided the probability of
collisions will be reduced. Therefore, if an optimal sensing
policy, to dynamically schedule SS operations according to
harvesting process, is incorporated to the SS stage of the
reported solutions, then detection performance will be max-
imized and throughput will be improved. The development of

an optimal energy allocation policy to schedule SS operations,
then to maximize detection performance, represents a current
open problem which demands further research [18].

To the best of our knowledge, optimal energy allocation
policies are only reported in offline and online settings for
transmitting information over communication channels [1]
[19]–[41]. This without any optimal use of harvested energy
for SS operations. Similar to optimal energy allocation policies
to transmit information, a new policy may be derived to detect
SoI from PU but to maximize detection performance.

Furthermore, selection criteria regarding the best SS tech-
nique to efficiently use available energy and to achieve the
highest detection performance are not reported in scientific
literature. Therefore, a comparison between performance of
common reported SS techniques (e.g., Matched Filter (MF),
Quadrature Matched Filter (QMF) and Energy Detector (ED))
must be conducted.

C. Contributions
In this paper, we propose an optimal sensing and scheduling

policy to maximize detection probability Pd , subject to an
established Pf a, signal-to-noise-ratio (η) value and energy
constraints, when energy from wireless sources is harvested.
This paper is divided in two parts. First part assumes prior
knowledge regarding energy harvesting times as well as har-
vested energy amounts to develop an offline scheduling policy.
The second part only assumes causal knowledge regarding
energy harvesting rate, which is more realistic in practice.

Main contributions of this paper are detailed as follows:
1) Based on the increasing monotone relation between

Pd and total number of processed samples (N), we
demonstrate that for a constant value of Pf a and η,
maximizing Pd is equivalent to maximizing N for the
same energy constrains.

2) We design an energetic model to compute energy con-
sumption required to detect SoI. We assume that energy
consumption only depends on the processing of received
samples to compute the test statistic. We derive an
expression to relate energy consumption with N and the
technology dependent parameters of the processing unit.

3) We derive a closed-form expression to establish the
objective function to maximize N based on a dynamic
adjustment of processing power and subject to the avail-
able harvested energy. Provided the objective function
satisfies a concave relation between N and the process-
ing power, we solve this optimization problem based on
the underlying theory for transmission-scenario in [21].

4) We provide solutions to the optimization problem con-
sidering the offline and online scenarios. In particular,
for online scenario we first derive Dynamic Program-
ming (DP) algorithm, which offers the online optimal
solution. However, DP demands high computational
costs, which is not suitable in practice. For that reason,
we propose two heuristic solutions: Constant Power and
Greedy policies.

5) Finally, we provide proper comparison metrics based on
detection performance criteria with common SS tech-
niques (MF, QMF and ED) using the proposed offline
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and online policies. We illustrate the selection of proper
SS technique that achieves the highest Pd given a value
of Pf a and η.

Presented results exhibit that the best detection scheme
theoretically addressed by MF, does not always perform better
than the poorest detection scheme given by the ED in an en-
ergy harvesting scenario. The proper selection of the detection
scheme will be also dependent on the dynamic of harvested
energy. This paper analyzes a scenario composed by a PU-
SU pair. However, results here demonstrated are discussed to
be extended to multi-channel settings and cooperative green
cognitive networks.

D. Paper organization

This paper is organized as follows. The system model
and problem formulation for offline and online scenarios
are presented in Section II. In Section III the problem of
maximizing Pd is considered in an offline setting. In Section
III-A an energetic model to compute energy consumption
required to detect SoI is designed. Then, in Section III-B
the proposed offline processing policy is developed based
on convex optimization algorithm. Section IV considers the
optimization problem in an online setting. Optimal processing
policy given by DP algorithm and less complex policies such
as Constant Power and Greedy policies are developed. A case
of study considering main SS techniques such as MF, QMF
and ED, and assuming ARM Cortex-A7 as processor unit is
presented in Section V to illustrate the operation of proposed
policies in offline and online scenarios. Then, in Section
V-D the behavior of the policy and practical scenarios for
implementation are discussed. Simulations results are obtained
in Section VI to validate policies performance. Finally, Section
VII concludes the paper and the further remarks regarding to
future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single CR scenario, compounded by only a
pair of SU and PU. SU has not fixed power supplies, instead
it is equipped with an EH device. Dynamic spectrum access
is performed according to spectrum overlay model reference.
Hence, in order to avoid collisions with PU, SU senses the
activity of primary channel before transmission.

The sensing node of SU is modeled as a processing unit to
compute a test statistic from primary received signal then to
decide between two possible hypothesis: idle or busy primary
channel. This is known as binary hypothesis testing problem,
where H1 is the hypothesis that PU is active (received signal
is compounded by information and additive noise), while H0
means the spectrum is idle (received signal is only com-
pounded by noise).

Provided a detection scheme, Pd is related to three main
quantities: the total number of processed samples used to
detect SoI given by N (proportional to sensing time TS), Pf a

and η values. Therefore, given a detection technique, sensing
performance is described by:

Pd = f (N, η,Pf a), (1)

where f (·) is a function related to a given sensing technique.
For instance, in case of common detection schemes such as
MF, QMF and ED, Pd values in (1) are given as [42]:

Pd = Q
(
Q−1(Pf a) −

√
N · η

)
, (2)

Pd = QX2
2 (N ·η)

(
2 ln

1
Pf a

)
, (3)

Pd ≈ Q
©­­«
Q−1(Pf a) −

√
N
2 · η

η + 1
ª®®¬ , (4)

respectively, where Q(x) is the complementary distribution
of a standard Gaussian random variable and QX2

2 (λ)
(x) is the

complementary distribution of a noncentral chi-squared ran-
dom variable with two degrees of freedom and noncentrality
parameter λ. Equations above illustrate that Pd is an increasing
monotone function related to variable N .

Processing unit of SU is powered by an energy harvester
circuit. Energy harvesting process is modeled as energy pack-
ets arriving at discrete time slots of index i, i = {1,2, ...,M},
according to the vector E = [E1,E2...,EM ] at time vector
s = [s1, s2, ..., sM ] [20]. Then, collected energy is stored in
an infinite-sized battery and finally is used to process SoI. We
consider that there is no energy loss in storing and retrieving
energy from the battery. Additionally, the operation of the
sensing node is constrained by energy causality (i.e., energy
consumption by SS operations has to be less or equal than
harvested energy) described by:

Es(t) ≤
∑

i:si<t
Ei, 0 < t ≤ Tp, (5)

where Es(t) represents energy consumption over time in SS
operations and

∑
i:si<t

Ei represents the cumulative harvested

energy until time instant t. We also assume a temporal
constraint Tp to complete the processing of received signals.
This constraint is related to the required time for detecting
SoI.

We assume that energy consumption Es only depends on
processing unit operations to compute the test statistic. We do
not consider the energy consumption of RF circuit to receive
signal samples. Analogue to [21], where bits to be transmitted
are available in a transmission buffer, we also consider that
received signal samples are available in memory. Then we
assume that the processing unit has always samples to be
processed in order to determine the maximum number of
processed samples. According to [43], energy consumption of
CMOS processing unit is expressed as:

Es = NclkV2
ccC, (6)

where Vcc is the supply voltage, C is the average switched
capacitance per clock cycle and Nclk is the total number
of clock cycles required for the given task. Then, to imple-
ment detection of SoI, Nclk value will be dependent on the
complexity of SS technique and the number of processed
samples N . Thus, energy consumption of processing unit
over time is modeled by a function that depends on N , Vcc ,
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technology depending constant of the processing unit (C) and
the implemented sensing technique as:

Es(t) = Fe(N,Vcc,C), (7)

where Fe(·) is an energy consumption function related to the
implemented SS technique.

The increase in the total number of processed samples
implies that detection performance will improve based on the
monotonically increasing relation between Pd and N in (1).
However, according to (7), energy consumption values will
be also greater as a consequence of the higher N . That is,
detection performance is improved at the cost of incrementing
energy consumption values. In this work, we propose an
optimal balance of this trade-off, considering the dynamics
of harvested energy to maximize Pd .

Based on the linear relation between energy consumption
over time and power consumption p(t) given by Es(t) =
Tp∫
0

p(t) dt, above trade-off may be stated in terms of power

instead of energy. This is a more tractable representation
because it is expressed in terms of instantaneous values of
power consumption that can be dynamically modified in actual
processors. Similar to [19]–[41], we assume that processing
unit can adaptively change its processing power for SS oper-
ations according to harvested energy. Then, it is possible to
propose a power allocation policy to dynamically adjust digital
signal processing operations in an interval Tp . By this way,
processing rate can be adjusted to harvesting rate by optimally
selecting processing power vector p = [p1, p2, ..., pK ] and its
corresponding processing duration l = [l1, l2, ..., lK ]. Here, we
assume a time-index k, k = {1,2, ...,K}, to denote the time
instants when the processing power changes. The processing
power may not change at every energy harvesting time instant
and then index k does not necessarily match with i. In this
direction, optimal scheduling policy objective is to find vectors
p and l given E and s to maximize total number of processed
samples.

Additionally, to select the SS technique to achieve the best
detection performance based on its energetic model is still to
be analyzed. For instance, coherent SS techniques such as MF
require to process less samples to achieve the same Pd than
non-coherent techniques such as ED. However, MF demands
more energy cost operations per given sample than ED. In this
case, ED may process more samples than MF, then to achieve
better performance.

This paper proposes optimal energy management policy for
offline and online scenarios. Both scenarios are implemented
by two stages: first a processing power allocation policy for
executing the highest number of SS operations with the har-
vested energy is developed. Then, we select the SS technique
that achieves the highest Pd provided Pf a and η values.

A. Offline problem formulation

We first study an offline scenario with full knowledge
of harvested energy amounts E and harvesting times s. We
consider that there is E0 amount of energy stored in an
infinite-sized battery at initial time t0. We also assume that

the processing unit may change dynamically its processing
power K times in an interval Tp according to the obtained
power vector p with corresponding processing duration l.

Based on the optimization problem stated in [21], this to
maximize total number of transmitted bits by a deadline T , we
present a new optimization problem to find the optimal power
allocation policy for SS. By considering simultaneously the
two goals: maximize probability of detection and the efficient
use of harvested energy the optimization problem is formulated
as follows:

max Pd(N, η,Pf a)

p,l
s.t . Pf a = A

η = B
Es(t) ≤

∑
i:si<t

Ei 0 < t ≤ Tp,

(8)

where A and B represent positive-real valued constants, Tp

is the maximum processing time,
∑

i:si<t
Ei is the cumulative

harvested energy and the energy consumed up to time t is
given by Es(t) = p1 · t if t ≤ l1. Otherwise, energy consumed
is given by [20]:

Es(t) =
k̄∑

k=1
pk · lk + pk̄+1

©­«t −
k̄∑

k=1
lk
ª®¬ , (9)

where k̄ = max{k :
k∑

n=1
ln ≤ t}.

The optimization problem in (8) proposes to maximize Pd

subject to a given value of Pf a and η [42] and satisfying energy
causality constraints. However, a more tractable approach may
be derived based on the monotone relation between N and
Pd . Therefore, the larger the value of N for a fixed value
of Pf a and η, the better the obtained Pd . Thus, maximizing
Pd is equivalent to maximizing N provided certain Pf a and
η values and same energy causality constraints. To this end,
maximizing Pd in (8) may be derived by maximizing N as
follows:

max N
p, l
s.t . Es(t) ≤

∑
i:si<t

Ei 0 < t ≤ Tp,
(10)

given a SS technique. Then, the maximum number of pro-
cessed samples (Nmax) given an energy harvesting profile is
obtained by solving the optimization problem in (10). Provided
that N does not depend on Pf a and η, then formulation in (10)
does not consider these quantities. Values of Pf a and η will be
considered to compute Pd after evaluating Nmax in equations
(2), (3) and (4). Then, the SS technique that maximizes Pd is
selected. This procedure is detailed in subsequent sections for
offline and online scenarios.

B. Online problem formulation

Here, we consider an online scenario where processing
unit has only a causal knowledge of harvesting rate, i.e.
past realizations of harvesting process and the statistical
behavior of harvesting rate random variable are available.
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We model harvested energy E = [E1,E2, ...,EM ] by a first-
order stationary Markov model over time slots defined by
vector l = [l1, l2, ..., lM ] as in [1], [26], [30], and [39].
Several models are reported in scientific literature to describe
the energy harvesting process including: Bernoulli, uniform,
Poisson, and exponential processes [1]. However, these models
do not consider the temporal correlation properties of energy
harvesting process as examined in [1]. On the other hand, the
use of the Markov model, similarly to reports in [1], [26],
[30], and [39] to describe the energy harvesting process, will
provide a more realistic scenario to study the proper use of
arriving energy packets in the context of energy harvesting
applications.

Based on the online formulation, bi denotes the available
energy in battery at the beginning of slot i and evolves
according to:

bi+1 = (bi − pi · li)+ + Ei, (11)

where (·)+ = max{0, ·} and p = [p1, p2, ..., pM ] is the pro-
cessing power in ith slot. Here we assume the same index i,
i = {1,2, ...,M}, to denote the instants of energy harvesting
and processing power variations. This assumption is based on
the fact that in online case, at the beginning of each time-
slot, a processing power value is selected. Therefore, unlike
offline scenario, here both indices for energy harvesting and
processing power match.

According to (11), processing power pi in time slot i
modifies the battery state to next slot and consequently it
influences the future decisions on the use of available energy.
The balance, between the current consumed energy and the
remaining for the future use, represents a trade-off to have an
overall optimum performance. Online problem formulation is
to find optimal processing power value p* = [p∗1, p

∗
2, ..., p

∗
M ]

at the beginning of each time slot based on the statistical
description of future energy arrivals to maximize detection
performance. Similar to offline scenario, online optimization
problem will maximize expected detection performance E[Pd]

by maximizing the total number of expected processed sam-
ples E[N] with same energy constraints than in (10).

III. OPTIMAL OFFLINE PROCESSING POLICY

Based on the optimization problem in (10) variable N is
related to the processing capacity to detect SoI, while Es(t) is
constrained by energy harvesting rate values. Then, consumed
energy Es(t) is related to processed samples N according
to (7). In this case, an energetic model must be derived to
compute energy consumption to process N samples given a
processing unit and a detection technique. By using this model,
values of N may be timely modified based on energy collected
and execution speed of the processor. The optimal processing
policy to be derived modifies the processing power p∗ during
time-intervals l∗ by controlling the frequency of the processor.

A. Energetic model

Proposed energetic model describes the total energetic cost
to process SoI associated to arithmetic operators (adders, mul-
tipliers, dividers) and memory accesses (read/write) needed by

a given SS technique to compute the test statistic. Analytically,
the energetic model is formulated by the additive contribution
of each operation as Es = EaddNadd +EmulNmul +EdivNdiv +

EmemNmem, where Nadd , Nmul , Ndiv and Nmem are the total
number of adders, multipliers, dividers and memory accesses
used to implement a given detection technique, respectively,
and Eadd , Emul , Ediv and Emem are their corresponding
associated energetic costs. In order to simplify the analysis,
the energetic model is computed based on the cost of an adder
operator as follows:

Es = Eadd (Nadd + αNmul + βNdiv + γNmem) , (12)

where α, β and γ are processor technology depending con-
stants to relate the energetic cost of an adder to the energetic
cost of a multiplier, a divider and memory access instructions,
respectively.

On the other hand, dynamic energy consumption per instruc-
tion in general purpose CMOS processors can be modeled as
in equation (6). Thus, the energetic model in (12) is related
to the total number of clock cycles as α = Emul/Eadd =

Nclkmul
/Nclkadd

, β = Ediv/Eadd = Nclkdiv
/Nclkadd

and
γ = Emem/Eadd .

Provided that the same detection process is applied to each
received sample, then total number of operations after N
received samples will be the addition of performed operations
for each specific sample. Therefore, values of Nadd , Nmul ,
Ndiv and Nmem in (12) will depend linearly on the total
number of samples N used to compute the test statistic of the
given SS technique. In this case, provided that (12) represents
also a linear relation on N , the energetic model may be
simplified as follows:

Es = Eadd (θN + ϑ) , (13)

where θ and ϑ are parameters depending on computational
complexity of each detection technique and processor tech-
nology.

B. Offline processing policy

The optimization problem in (10) states to maximize the
number of processed samples of the received signals. This
problem is similar to the proposed in [20] when the total num-
ber of processed samples N is interpreted in a similar fashion
to the total number of transmitted bits. Thus, similar to [20],
we select processing power consumption p as the optimization
variable to be dynamically modulated to maximize N .

According to the proposed energetic model in (13), by
clearing variable N we obtain:

N =
Es

Eadd
· µ + υ, (14)

where we use µ = θ−1 and υ = −ϑ · θ−1 for convenience.
This equation describes the total number of processed samples
characterized by constants Eadd , µ and υ where Es represents
the processing energy consumption.

Based on (14), a practical description of the processing
policy is derived when N is related to power consumption
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p instead of Es , similar to [20]. Then, we maximize N
by adjusting the time varying processing rate and power
judiciously in response to harvested energy. To represent N
in terms of p instead of Es we consider the relation in [43]
for the dynamic energy consumption per instruction. Then,
energy consumption of an adder operation can be expressed
as:

Eadd = CV2
ccNclkadd

. (15)

The expression in (15) may be developed in terms of p by
using equations:

p = CV2
cc fclk, (16)

and:
Vcc = δ · fclk, (17)

where fclk is the clock frequency and δ is a technology
depending constant [44]. Proposed processing policy utilizes
Dynamic Voltage and Frequency Scaling (DVFS) technique
to obtain the optimal relation between Vcc and fclk to have
control on consumed power. By using DVFS technique fclk
can be adjusted dynamically during processing operations [45].
By replacing (17) in (16) and clearing fclk yields:

fclk = 3√p · ξ, (18)

where ξ = 3
√

1
C ·δ2 is also a technology depending constant.

Finally, by replacing (18) in (17) and then in (15) we obtain:

Eadd = C(δ 3√p · ξ)2Nclkadd
. (19)

By using this expression and considering E = p · t after the
proper substitutions in (14), then the objective function to
solve problem in (10) is formulated by:

N =
t · 3
√

p
Nclkadd

· ξµ + υ. (20)

This expression in terms of p represents the objective
function to solve the problem formulated in (10). Main idea is
to modify the value of p to maximize N accordingly, subject
to EH constraints.

By this way, the optimization problem in (10) can be
expressed as:

max
p,l

N =
K∑
k=1

lk · 3√pk
Nclkadd

· ξµ + υ

s.t E(t) ≤
∑

i:si<t
Ei 0 < t < Tp .

(21)

The objective function in (21) represents a concave function
in p. This function may be used to establish an offline
processing optimal policy to detect SoI. In this case, lemmas
obtained in [20] for the optimal transmission policy might be
applied to this processing scenario in (21) using the concave
property of the objective function as follows:

Lemma 1 Under the optimal policy, the processing powers
increase monotonically, i.e, p∗1 ≤ p∗2 ≤ ... ≤ p∗K .

Lemma 2 Under the optimal policy, the processing powers
remain constant between energy harvests, i.e., the processing
powers only potentially change when new energy arrives.

Lemma 3 Under the optimal policy, whenever the process-
ing powers change, the energy consumed up to that instant
equals the energy harvested up to that instant.

In addition, by using [20], a fourth lemma is included to
the structure of the optimal processing policy.

Lemma 4 Under the optimal policy based on Lemmas 1
to 3, all harvested energy has to be consumed in a maximum
processing time Tp .

Lemmas 1, 2 and 3 are proven in [20] by using properties
of concave function defined by Jensen’s inequality [46]. The
proof of Lemma 4 is given in Appendix A. Based on the four
lemmas above Theorem proposed in [20] may be extrapolated
to optimal processing policy as follows:

Theorem 1: For a given maximum processing time Tp ,
consider a processing policy with consumption power vec-
tor p∗ = [p∗1, p

∗
2, ..., p

∗
K ] and corresponding duration vector

l∗ = [l∗1, l
∗
2, ..., l

∗
K ]. This policy is optimal if and only if it

has the structure:
K∑
k=1

l∗
k
= Tp and for k = {1,2, ...,K},

ik = arg min
i:si ≤Tp ,si>sik−1


i−1∑

n=ik−1
En

si−sik−1

 , p∗
k
=

ik−1∑
n=ik−1

En

sik −sik−1
, l∗

k
=

sik − sik−1, where ik is the index of the energy arrival slot
when the processing power p∗

k
switches to p∗

k+1, i.e., at t = sik
the rate of energy consumption changes. Then, the maximum
number of processed samples is:

Nmax =

K∑
k=1

l∗
k
· 3
√

p∗
k

Nclkadd

· ξµ + υ, (22)

where ξ = 3
√

1
C ·δ2 is a technology depending constant, µ and

υ are parameters depending on computational complexity of
each detection technique and processor technology. The proof
of Theorem 1 is given in Appendix B.

Based on Lemmas 1, 2, 3 and 4, Theorem 1 states the
optimal structure to compute the optimal processing power
vector p∗ and its time-duration l∗. We can note that optimal
processing policy leads to the tightest piecewise linear energy
consumption that never exceeds the energy harvesting curve
and spend all collected energy in the maximum processing
time Tp . Therefore, offline processing policy is stated by ap-
plying Theorem 1 to maximize the total number of processed
samples N . This is based on the available harvested energy and
a given SS technique according to (10). Then, Pd is calculated
given Nmax and established values of Pf a and η for each SS
scheme. The highest Pd defines the SS technique to be chosen
according to the optimization problem in (8).

IV. ONLINE PROCESSING POLICIES

According to (11) online optimal processing power alloca-
tion policy has to balance present and future energy consump-
tion to maximize a given reward. To this end, we derive an
online policy that utilizes the statistic of the harvesting process
to optimally adjust processing power vector p* maximizing
the expected value of N over a finite horizon of M slots.
We assume that processing power decisions are restricted to a
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discrete set U (p∗i ∈ U). The derived policy will be feasible if
the energy causality constraint is satisfied, i.e. p∗i · li ≤ bi .

The objective function in (20), derived for the offline
scenario, will be used as well to define the cost function
Ni(p∗i ) of the current online problem. Let p∗ = [p∗i , p

∗
i+1, ..., p

∗
M ]

be the optimal policy that maximizes the expected value
of processed samples E[N∗i (bi,Ei−1)] from ith slot till the
deadline according to state vector (bi,Ei−1). Then, based on
the DP principles described in [47] the following DP algorithm
to solve the online problem is derived:

N∗M (bM ) = max
pM ∈U:0≤pM ·lM ≤bM

NM (pM ) (23)

where Ni(p∗i ) =
li · 3
√

p∗i
Nclkadd

· ξµ + υ, then

N∗i (bi,Ei−1) = max
p∗i ∈U:0≤p∗i ·li ≤bi

Ni(p∗i ) + E[N
∗
i+1(bi+1, Ẽi)] (24)

where Ẽi denotes the harvested energy on current slot given
the harvested energy Ei−1 on past slot modeled by first-order
stationary Markov model. In addition bi+1 = (bi−p∗i · li)+ + Ẽi

is the energy available in the battery in the next slot. DP
algorithm proposes to solve optimization problem recursively
starting from last slot M and proceeds backward to slot i.

The online solution based on DP offers the optimal results,
but demands higher computational cost, which may not be
suitable for practical scenarios. An alternative solution is to
compute DP algorithm in offline manner, then to store results
in a lookup table to future use on online processing for real
time implementation [26]. However, changes on harvesting
rate will produce regular updates of this lookup table, which
also demands higher computational costs.

In addition to DP, less complex solutions have been derived
given by Constant Power and Greedy policies [26], [30], [48].
Constant Power policy processes samples with constant power
equal to the time average energy harvest rate (E[E]) as long as
there is sufficient energy on battery. If battery is out of energy
then processing is stopped until next energy arrival. Then,
assuming a discrete set of processing power U, Constant Power
policy processes with the maximum power in the set U lower
than E[E] whenever there is enough energy for processing.
On the other hand, Greedy Policy establishes to use all the
available harvested energy by the processing unit on each slot.
These policies offer sub-optimal solutions, however they are
rather simple to implement and do not require an extensive
statistical knowledge of harvesting process. Constant policy
only needs the average value of harvesting rate and Greedy
Policy needs to sense battery state to have the available amount
of collected energy.

Similar to offline scenario, online policy first proposes to
apply processing power allocation policy (optimal policy based
on DP algorithm or heuristics policies such as Constant or
Greedy) to compute total number of samples from the received
signal utilizing different SS techniques. Then, the SS technique
that achieves the highest Pd is selected.

V. CASE OF STUDY

By considering three main detection techniques: Matched
Filter (MF), Quadrature Matched Filter (QMF) and Energy

Detector (ED), the offline and online processing policies
are illustrated by obtaining total of processed samples and
related probability of detection by using ARM Cortex-A7
processor [49]. Table I summarizes the computational com-
plexity of these SS techniques to compute the test statistic
considering the simplest detection scenario: a single tone
s[n] = cos(2π f0n + ϕL), where f0 represents its frequency
and ϕL represents a given phase [42]. In case of MF, a phase
recovery system was considered as described in [50].

TABLE I
COMPUTATIONAL COST FOR A VARIETY OF SENSING TECHNIQUES.

Detection
Technique

Adders Multipliers Dividers Memory
Accesses

MF 3N − 3 7N − 2 - 4N − 2
QMF 2N − 1 2N + 2 2 -
ED N − 1 N 1 -

According to (12) and Table I, energy consumption relations
of these detectors are computed as EMF = Eadd(3N − 3 +
α(7N−2)+γ(4N−2)), EQMF = Eadd(2N−1+α(2N+2)+2β)
and EED = Eadd(N − 1 + αN + β), respectively. To illustrate,
in case of MF technique, clearing N in EMF = Eadd(3N −3+
α(7N − 2) + γ(4N − 2)), we obtain:

NMF =
EMF

Eadd
·

1
3 + 7α + 4γ

+
3 + 2α + 2γ
3 + 7α + 4γ

, (25)

where µ =
1

3 + 7α + 4γ
and υ =

3 + 2α + 2γ
3 + 7α + 4γ

based on direct

comparison with (14). Then, substituting µ and υ in (22) we
finally obtain:

NMF =

M∑
i=1

li · 3
√

pi · ξ
Nclkadd

·
1

3 + 7α + 4γ
+

3 + 2α + 2γ
3 + 7α + 4γ

. (26)

A similar procedure may be applied to obtain objective
functions for QMF and ED as follows:

NQMF =

M∑
i=1

li · 3
√

pi · ξ
Nclkadd

·
1

2 + 2α
+

1 − 2(α + β)
2 + 2α

, (27)

NED =

M∑
i=1

li · 3
√

pi · ξ
Nclkadd

·
1

α + 1
+

1 − β
α + 1

. (28)

Proposed sensing policies are described by simulations in
MatLab using ARM Cortex-A7 processor to run sensing node
operations. According to several measurements reported in
[49] for float arithmetic instructions, values of Eadd = 0.157
nJ for 500 MHz, α = 1, β = 5, Nclkadd

= 4, γ = 0.8 and
ξ = 2.62 · 109 are established. In terms of frequency scaling,
this processor operates in a clock frequency range between
500 MHz and 1.2 GHz with discrete frequency steps of 100
MHz.

A. Offline processing policy

We consider for offline scenario an initial energy amount
given by E0 = 144 nJ and a harvested energy vec-
tor E = [240,148,600] nJ, collected at time vector
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s = [200,400,600] µs and maximum processing time
Tp = 1 ms. These values are properly selected to illustrate
performance of processing policy in a commercial proces-
sor. Vector E and s are computed taking into account the
common power harvested values reported in [2], [8]–[10],
[20] and depicted in Fig. 1 by using the solid line. Through
optimal offline processing policy in Theorem 1, we obtain
the optimal processing power vector p* = [7.2,9.7,15] mW
with time-duration l∗ = [200,400,400] µs by conforming a
monotonically increasing sequence (Lemma 1) as depicted
in Fig. 1. Additionally, optimal policy employs all harvested
energy at time Tp (Lemma 4) and power consumption only
potentially changes at harvesting instances (Lemma 2) when
energy consumption curve intercepts to the energy harvesting
curve (Lemma 3).

The optimal power vector may be achieved on a processor
unit by dynamically modifying the processing frequency ac-
cording to (18). Corresponding frequency values required to
achieve vector p* are given by fclk = [506,559,646] MHz.
However, these frequency values are not available for ARM
Cortex-A7 processor. Therefore, optimal processing policy
is not technologically possible to achieve with the selected
processor. Instead, a suboptimal policy is developed by using
available frequency values in ARM Cortex-A7 processor near-
est to the optimal ones. Selected frequency vector is fclk =
[500,700] MHz which implies a suboptimal processing power
vector p′ = [6.9,19] mW with time duration l

′

= [600,376]
µs. The suboptimal policy is depicted by the dashed line in
Fig. 1, where Theorem 1 is not fulfilled.

To illustrate efficiency of proposed method we compare
the total number of processed samples by using the optimal
and suboptimal policies. By evaluating optimal power vector
in (26), (27) and (28), we obtain the maximum number
of processed samples for MF, QMF and ED, respectively.
Obtained results show that NMF = 11053, NQMF = 36471
and NED = 72946 samples based on harvested energy values.
However, by developing the suboptimal policy, as depicted in
dashed line in Fig. 1, we obtain that MF reduces its processing
capacity to NMF = 10670 samples, QMF to NQMF = 35207
samples and ED to NED = 70418 samples. We remark that ED
obtains the larger total number of processed samples, provided
this is the less complex technique.

Then, we study policy performance regarding to Pd when
signal detection is operating under low SNR regime (η = −20
dB) and low Pf a values (Pf a = 10−8). The computed amount
of processed samples N for each SS technique is substituted
by NMF , NQMF and NED into equations (2), (3) and (4),
respectively. The obtained Pd values are illustrated in Table
II where QMF is the detection scheme recommended to max-
imize detection performance. This particular case illustrates
that the best detector scheme, theoretically addressed by MF,
does not perform better than QMF when energy causality
restrictions are established. This concern is further discussed
on next Sections V-D and VI.

B. Online processing policy
Current section analyzes online processing policies perfor-

mance (DP, Constant Power and Greedy policies) by com-

0

200

400

600

800

1000

1200

Harvested Energy

Energy consumed according
to optimal policy

Energy consumed according
to suboptimal policy

Σ
E

[n
J
]

i

t[  s]
100 200 300 400 500 600 700 800 900 1000 11000

Fig. 1. Processing curve according to optimal and suboptimal policies.

TABLE II
PROBABILITY OF DETECTION ACHIEVED WITH OPTIMAL AND

SUBOPTIMAL POLICY CONSIDERING η = −20 DB.

Detection
Technique

Optimal Policy Suboptimal Policy

PMF 0.999999525486607 0.999998808732362
PQMF 0.999999999999999 0.999999999999991
PED 1.23e-04 1.08e-04

paring average processed samples over 104 random real-
izations of energy harvesting profile generated with first-
order Markov model. We consider a Markov model with
two states (h0 = 0 and h1 = 200 nJ). We assume tran-
sition probabilities q00 = 0.8, q01 = 0.2, q10 = 0.5,
q11 = 0.5 to simulate burst arrival case similar to [30].
Processing power decisions are restricted to a discrete set of
U = [6.9,12,19,28.4,40.4,55.5,73.8,95.9] mW derived from
equation (18) according to permissible frequency range of
ARM Cortex-A7 processor when ξ = 2.62 · 109. Processing
time (Tp = 1 ms) is slotted into 100 slots with 10 µs of interval
duration.

Table III shows averaged processed samples achieved for
different online policies and spectrum sensing techniques
during the whole processing interval Tp . Based on results
illustrated in Table III we note that the highest amount of
processed samples is obtained by applying DP.

Table IV illustrates Pd values achieved based on online
policies in case of several SS techniques considering a low
SNR value (η = −20 dB). We note that Constant Power
achieves higher performance than Greedy policy. This is an
expected result provided Constant Power is based on first order
statistic of energy harvesting rate and Greedy is an even simple
policy without any knowledge of harvesting rate.

Similar to the offline case, although ED processes the
biggest amount of samples, achieves the poorest detection
performance, instead. On the other hand, QMF stays as the
detector that achieves the highest Pd . In this case QMF
balances better required amount of samples to obtain higher
values of Pd and energy consumption per processed samples.
Further remarks are considered in Section VI to illustrate the
better selection of SS techniques.
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TABLE III
AVERAGED PROCESSED SAMPLES ACHIEVED FOR DIFFERENT ONLINE

POLICIES AND SPECTRUM SENSING TECHNIQUES.

Detection
Technique

Dynamic
Program-
ming

Constant
Power
Policy

Greedy Pol-
icy

NMF 9577 7130 4047
NQMF 31601 23287 13374
NED 63222 47123 26752

TABLE IV
PROBABILITY OF DETECTION FOR DIFFERENT ONLINE POLICIES AND

SPECTRUM SENSING TECHNIQUES CONSIDERING η = −20 DB.

Detection
Technique

Dynamic
Program-
ming

Constant
Power
Policy

Greedy Pol-
icy

Pd (MF) 0.99998 0.997 0.773
Pd (QMF) 0.999999999 0.999999999 0.99999998
Pd (ED) 7.35-05 2.71e-05 5.14e-06

C. Detection performance of wideband signals

Above subsections illustrate the performance of the pro-
posed offline and online policies on the detection of single tone
signals. In addition, to consider the case of wideband commu-
nications with multi-tone signals, then MF and QMF are not
recommended SS techniques due to their high implementation-
complexity. MF and QMF demand to detect each orthogonal
component of the received complex signals, therefore the
basic structure for single tone detection must be replicated
to detect each orthogonal component. On the contrary, ED
is commonly presented as the employed method provided
that the detection criteria only depends on the arrived signal
energy, hence the less complex implementation. Therefore, for
detecting wideband signals our policy follows the description
above excepting for the use of the ED only.

In case of offline scenario, we compute the optimal pro-
cessing power vector through Theorem 1 above. Then, we
compute the maximum total number of processed samples for
ED (NED) by equation (28). Finally, we obtain the maximum
value of Pd for a given value of Pf a and η by using expression
(4). In case of online scenario, we compute the maximum
total number of processed samples through the optimal DP
algorithm, or sub-optimal Constant or Greedy policies.

To illustrate, let us consider a received complex signal with
η = −12 dB and Pf a = 10−8. For offline scenario we assume
the same energy harvesting values used in Section V-A. In this
case, we obtain a maximum detection performance given by
Pd ≈ 1 when evaluating NED , η and Pf a in (4). On the other
hand, for online scenario using the same energy distribution
than in Section V-B for DP algorithm, Constant and Greedy
policies, we obtain values of Pd ≈ 1, Pd = 0.9999 and Pd =

0.9435, respectively.

D. Concluding remarks

The implementation of the proposed policy presented above
is divided into two major steps. A first step computes the opti-
mal energy values to be used for offline and online scenarios.

A second step evaluates the best SS technique (MF, QMF or
ED) to have the highest performance in terms of probability of
detection subject to a given false alarm condition as illustrated
in Tables II and IV for offline and online policies, respectively.
The developed method was theoretically addressed by the
offline scenario to derive the optimum settings for maximum
performance. In this case, a complete description of the
arriving energy values is known apriori. However, in a practical
context, the receiver operates in a realtime manner, where a
current decision must be taken without the prior knowledge
of future energy arrival values. In this direction, the online
scheme establishes optimal (DP) and suboptimal (Constant
Power and Greedy policies) settings to have the best affordable
performance.

Although the presented method is illustrated through one
pair of PU-SU only, it is also applicable to a multi-channel
setting [8], [9]. In this scenario, our policy may be incorporated
in a straightforward way to the reported multi-channel solu-
tions to guarantee optimum SoI detection performance. Once
the SU decided which channels will be sensed, our policy will
provide the optimum detection structure to maximize Pd .

In addition, proposed solution may be easily extended to
a cooperative environment, where SUs have the opportunity
to operate and share sensing results in an energy-efficient
manner [51], [52]. Proposed method may be implemented on
each SU to achieve the best local performance when each PU
channel is sensed with the harvested energy values. Through
this approach, each SU will operate with optimal performance.
On the other hand, a new problem formulation may be defined
based on a similar objective function but in a global manner;
i.e. to consider the contribution of the several SUs to a global
probability of detection. In this direction, further investigation
plans envisage addressing new formulations to include the
mechanisms of cooperative environments.

VI. SIMULATION RESULTS

Simulation results are derived for offline and online sce-
narios by obtaining curves for Pd vs SNR. We assume
same values of constants ξ, µ,υ and Nclkadd

that we have
already considered in Section V. However, we obtain these
results independently of frequency values available in actual
processors to illustrate performance of the proposed policy.
In addition, low energy harvesting rate is considered to show
policy performance under critical scenarios.

A. Offline processing policy

We consider for offline scenario, an initial energy amount
on battery E0 = 70 nJ and a harvested energy vector
given by E = [40,130,80] nJ, collected at time vector
s = [200,400,600] µs and maximum processing time Tp =

800 µs as depicted in Fig. 2 by using the solid line.
By using the optimal structure given in Theorem 1, we

obtain the optimal offline processing power vector p =

[275,525] µW with time duration l = [400,400] µs as depicted
in Fig. 2. Then, in order to illustrate the efficiency of the
proposed method, a suboptimal policy is developed by the
dashed line in Fig. 2, where Theorem 1 is not fulfilled.
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Fig. 3. Detection performance of the offline processing policy for Pf a =

10−8. (a) Probability of detection for different SS techniques over SNR range
[-25 5] dB. (b) Performance of different SS techniques for several values of
energy consumption on adder operators averaging over SNR range [-25 5]
dB.

Performance of optimal and suboptimal policies are de-
scribed in Fig. 3(a) by obtaining curves of Pd vs SNR by each
SS technique. Parameters selected for simulations are Pf a =

10−8 and SNR range [-25 5] dB according to requirements of
common applications such as Digital Television systems [53].
Fig. 3(a) exhibits that proposed optimal processing policy
always obtain improved Pd related to the suboptimal policy
considered in Fig. 2. In addition, on this scenario QMF
results with the highest values of Pd . In this case, the best
balance between complexity and performance is provided by
the QMF filter, which represents the best option to implement
the detection process in comparison to the theoretical optimal
MF and the less complex ED scheme.

To analyze the influence of energetic cost on the optimal
performance, Fig. 3(b) illustrates average Pd related to a
variety of SNR values vs energetic cost of adding operations
Eadd . These results are obtained by using the energetic model
described in Section III-A and considering that all harvested
energy, given by E = 320 nJ, is spent in SS operations. The
obtained curves are derived by evaluating Es = 320 nJ into
equation (14) with the proper µ and υ variables for each SS
technique. Then N is computed for several values of Eadd .
Finally, performance metric is obtained as the mean value of
Pd , computed by expressions (2) to (4), over the SNR range
[-25 5] dB when Pf a = 10−8.

Fig. 3(b) shows that QMF performs better except on in-
terval Eadd > 2 nJ where ED obtains the best Pd values.
Additionally, although MF is theoretically the best detector
scheme, under higher values of Eadd superior to 0.245 nJ,

the MF detector performs worst than QMF and ED. These
results, illustrate the performance of each SS technique for
several processor technologies. We remark that QMF does not
always perform better than the other SS techniques for higher
power consumption processors. Therefore, the proper detection
method for a given value of Pf a is then based on SNR, energy
harvesting profile and processor power consumption.

Based on Fig. 3(b) the best detector scheme to apply when
the device is high power consumer is the less complex scheme
(given by the ED). This is mainly due to its lower complexity,
therefore lower energy consumption, which in turns allows to
process much more received samples. On the other hand, when
the device has less power consumption, then it is preferable
to implement a complex scheme to improve detection perfor-
mance. In general, to obtain higher detection performance, the
selected scheme must be of reduced complexity whenever the
device has higher power consumption and viceversa.

B. Online processing policy

In case that causal knowledge of harvesting profile is
available, online policies may be developed. Energy harvesting
profile is generated with first-order Markov model with two
states (h0 = 0 and h1 = 6 nJ). We assume transition
probabilities q00 = 0.8, q01 = 0.2, q10 = 0.5 and q11 = 0.5 to
simulate burst arrival case as already presented in Section V.
Processing power decisions are restricted to a discrete set of
U = [50,65,72,102,130,180,200] µW. Processing time is
slotted into 100 slots with 10 µs of interval duration. Achieved
processed samples are averaged over 104 random realizations,
then these values are divided by total number of slots. Fig
4 shows average processed samples per slot achieved with
DP, Constant Power and Greedy policy by using common SS
techniques.

We note that highest amount of samples is always obtained
through optimal online policy given by DP algorithm. We
also remark that Constant Power has superior performance
than Greedy policy. Constant Power performance increases as
total number of slots increases provided that mean value of
harvesting rate becomes better estimated for higher number of
processing slots. Thus, Constant Power is the proper online
policy to apply for large values of total number of slots
provided the balance between simplicity of implementation
and performance. Additionally, Fig 4 shows that ED is the SS
technique that achieved the highest amount of processed sam-
ples, provided it is the less computational complex technique.

Fig. 5(a) illustrates curves of Pd vs SNR by each SS
technique by using values of Pf a = 10−8 and SNR range [-25
5] dB. Similar to offline scenario, we note that QMF presents
the best performance for each online policy in comparison
to another results from MF and ED. This is because QMF
balances the trade-off between energy consumption per pro-
cessed samples and the required number of processed samples
to obtain a given value of Pd .

Similarly to Fig 3(b) for offline scenario, Fig 5(b) illustrates
average Pd vs energetic cost related to adding operations
obtained for Constant Power policy. These curves show that
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Fig. 4. Average processed samples achieved for different online policies by
using: (a) MF; (b) QMF;(c) ED.
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Fig. 5. Detection performance of the online processing policy for Pf a =

10−8. (a) Probability of detection achieved for different SS techniques over
SNR range [-25 5] dB. (b) Performance of different sensing techniques for
several values of energy consumption on adder operators obtained for Constant
Power policy and averaging over SNR range [-25 5] dB.

QMF does not always present the best results for higher power
consumption processors. For instance, values of Eadd superior
to 0.817 nJ implies that ED is the detection scheme that
achieves the highest Pd . In addition, similar to the case of
offline scenario, the best detection scheme for high power
consumption devices will be given by the less complex scheme
and viceversa.

C. Discussion on performance

Reported CR-EH policies [2], [10] and [11] employ a
constant sensing power during the whole sensing time, which
is identified as the major drawback as long as the dynamics
of energy harvesting values during the sensing interval is not
considered. Above references report similar constant sensing
power value of 110 mW in 2 ms time-length interval to achieve
a fixed Pd = 0.9. This implies an energy consumption value
of 220 µJ. By applying ED technique, a Pf a = 0.0011 is
obtained for η = −10 dB in case of [2], while [10] and [11]
report values of η = −15 dB and Pf a = 0.4630. However,
our offline proposed policy, that employs a lower energy
consumption (320 nJ) than in above references in a time-

interval of 0.8 ms, obtains an even improved Pd nearly unity
value Pd ≈ 1 when η = −10 dB and a lower Pf a = 10−8

as depicted in Fig 3(a). On the other hand, proposed online
polices with ED achieve, in 1 ms time-interval, a similar
value of Pd ≈ 1 for same conditions with also a reduced
energy consumption value compared to previous references
as illustrated in Fig 5(a). Through these comparisons it is
pointed out that our policy employs energy more efficiently
and therefore obtains higher detection performance. Moreover,
the consequence of our higher performance, at the end, will
be an increased throughput, compared to previous works.

VII. CONCLUSIONS

In this paper a spectrum sensing policy for offline processing
was derived to maximize the probability of detection in a
CR system subject to false alarm probability, energy and
temporal restrictions on several signal-to-noise ratio values.
The proposed policy has two major contributions: provides the
optimal processing strategy to maximize processed samples
of the received signal and establishes the detection technique
with highest energy efficiency. Additionally, optimal online
processing policy based on Dynamic Programming is also
developed. Two online heuristic policies: Constant Power
and Greedy policy are investigated to reduce computational
complexity of Dynamic Programming algorithm. Constant
Power policy presents a recommended balance between simple
implementation and high performance. Future work will be
conducted on different directions: to include energetic costs
related to acquiring samples in offline policy formulation, to
develop a new heuristic policy for online scenarios, and further
studies to establish offline and online processing policies in a
cooperative cognitive radio scenario.

APPENDIX A
PROOF OF LEMMA 4

Assume that there exist two policies A and B that share
the same structure over the duration [0 siK−1 ). Policy A
will process samples with optimal processing power p∗K and
duration l∗K until maximum processing time Tp , as suggested
in Lemma 4. Then, policy B uses processing power p′K and
duration l ′K < l∗K , which means that the processing time period
ends before Tp . Based on Lemma 3, energy consumption up to
time instant siK−1 will be equal to the harvested energy value.
In addition, Lemma 4 considers that there is no remanent
energy at the end of processing time period to maximize N ,
that is p∗K · l

∗
K = p′K · l

′
K . Thus, based on the objective function

in (20), we have to proof that the total number of processed
samples N with policy A is higher than with policy B, that is:
l∗K ·

3
√

p∗K
Nclkadd

· ξµ+υ >
l′K ·

3
√

p′K
Nclkadd

· ξµ+υ. After simplifying common

terms, this inequality could be rewritten as l∗K ·p
∗
K

3√p∗2K
>

l′K ·p
′
K

3√p′2K
,

where the inequality holds based on the fact that the numerator
terms are equal in both sides whereas the denominator terms
accomplish with the inequality p′K > p∗K .
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APPENDIX B
PROOF OF THEOREM 1

The optimality of Theorem 1 may be proved by establishing
the necessariness and the sufficiency of the described structure.
To prove the necessariness, p∗

k
must follow the structure given

on Lemmas 1 to 4 and we prove this through contradiction
similar to [20]. We consider that the optimal policy that
satisfies Lemmas 1 to 4, do not follow the statement in
Theorem 1. To this end, we assume that there is another policy
p′ with same structure than p∗ until time instant sik−1 but
with less consumed power p′

k
< p∗

k
right after sik−1 . Then,

provided that consumed energy up to sik−1 is equal to the
harvested energy, there is not any available energy at sik−1 . In

addition,
i′−1∑

n=ik−1

En is the available energy up to time si′ , which

is the next time instant where p′
k

changes. If we consider that

si′ < sik , then p∗
k
(si′ − sik−1 ) >

i
′
−1∑

n=ik−1

En. As a consequence,

energy causality constraint is not satisfied and this energy
allocation is unfeasible under this policy. On the other hand, if
we assume that si′ > sik , then p∗

k
(sik − sik−1 )+ p∗

k+1(si′ − sik ) =
p
′

k
(si′− sik−1 ) provided both policies consume all the harvested

energy at time instant si′ . Since we assume p′
k
< p∗

k
, then

p∗
k+1 < p′

k
< p∗

k
is also satisfied. Therefore, Lemma 1 is not

satisfied and this policy can not be optimal.
Then we consider a processing power policy p∗ with time

duration vector l∗ that satisfies the structure given by Theorem
1 to prove the sufficient condition of optimality. We prove this
through contradiction assuming there is another policy p′ and
time duration vector l′ by which the total number of processed
samples N ′ is higher. Considering the same structure for the
new policy as p∗ until time instant sik−1 and same deadline Tp ,
then p′

k
> p∗

k
for two possible cases: l

′

k
> l∗

k
and l

′

k
< l∗

k
. In

addition, based on Lemma 3 then
ik∑

n=ik−1

En = p∗
k
l∗
k
. Consider-

ing the case l ′
k
> l∗

k
, then

ik∑
n=ik−1

En < p′
k
l ′
k

provided p′
k
> p∗

k
,

therefore the energy causality constraint is not satisfied. On
the other hand, assuming the second possibility l ′

k
< l∗

k
then

p∗
k
< p′

k
< p′

k+1 (based on Lemma 1) and energy causality

constraint is also not satisfied
(

ik∑
n=ik−1

En < p′
k
l ′
k
+ p′

k+1l ′
k+1

)
.

Thus, the new assumed policy p′ with time duration l′ is
infeasible and not optimal. Summarizing, the policy described
by Theorem 1 is optimal if and only if it has the given
structure.
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