
University Degree in Computer Science and Engineering
2018-2019

Bachelor Thesis

“Development of customized
conversational interfaces with Deep

Learning techniques”

Pablo Cañas Castellanos

Tutor: David Griol Barres
Co-Tutor: Juan Manuel Alonso Webber

Leganés, June 2019

This work is licensed under Creative Commons Attribution – Non Commercial –
Non Derivatives

SUMMARY

This Bachelor’s thesis will cover the end-to-end process of developing a personalized
conversational interface for a specific domain, using Deep Learning techniques. In par-
ticular, it will focus on the study of the Dialog Manager module, which is in charge of
deciding the next system response based on the current dialog state.

Although there is plenty of literature about Machine Learning applied to the construc-
tion of dialog management models, there is very little reference to the utilization of Deep
Learning for such task. As a result, this work analyzes the improvement that deep neural
networks can bring to accuracy. Several models are created with TensorFlow, and com-
parisons are made with traditional Machine Learning solutions. Results show that Deep
Learning is not the most recommended approach for this type of problems, yet further
research is suggested for more complex datasets.

After this, one of the Deep Learning models, based on a train scheduling domain, is
used for the implementation of the dialog manager inside a real spoken dialog system.
To integrate the rest of required components of such technology (automatic speech rec-
ognizer, natural language understanding module and text-to-speech service), a modern
framework is used: DialogFlow. With this platform, a complete chatbot is built in the
form of an assistant in the train scheduling domain.

Evaluation of the spoken dialog system with real users generates a very positive feed-
back, demonstrating that a Deep Learning based dialog manager is a valid solution in
commercial conversational interfaces.

Keywords: Conversational Interfaces, Spoken Dialog Systems, Machine learning,
DialogFlow, Deep Learning, TensorFlow

iii

DEDICATION

This thesis is the culmination of the greatest educational experience of my life. Not
only I have learnt to become a competent Computer Science professional, but I have also
grown up to a person that I can feel proud of and that is living accordingly to his major
interests and principles.

I would like to dedicate my work to every person that has accompanied me during this
wonderful journey. In special, I would like to thank my parents, María Jesús and Pedro,
for supporting me in every decision that I took, shedding light on every problem that I
encountered, and teaching me correct moral values; and my brothers, Jorge and Sergio,
for being direct authors of the joy in my life.

The deepest gratitude goes to every relative, friend and person that brings me back
to happy memories. There have been innumerable lifetime experiences that I will carry
with me forever and that have shown me that the most important thing in life is the people
whom you share your path with. There are way too many people to mention them all,
but those include friends from my neighbourhood, university (LaVendiciónDevs), Ruta
Quetzal, Ruta Inti, San Diego, CERN, travelling mates, and a large et cetera.

Finally, I would like to thank my tutors, David and Juan, for helping me with the
construction of this project.

v

CONTENTS

1. INTRODUCTION. 1

1.1. Motivation of Work . 1

1.2. Goals . 4

1.3. Document Structure . 4

2. STATE OF THE ART . 6

2.1. Prior Background . 6

2.1.1. Machine Learning . 6

2.1.2. Artificial Neural Networks . 9

2.1.3. Deep Learning . 13

2.2. Conversational Interfaces . 18

2.2.1. Introduction. 18

2.2.2. Automatic Speech Recognition . 20

2.2.3. Natural Language Understanding. 21

2.2.4. Dialog Management . 23

2.3. Tools Analysis . 24

2.3.1. Tools for Machine Learning. 25

2.3.2. Tools for Deep Learning. 27

2.3.3. Tools for SDS implementation . 29

3. DEEP LEARNING ANALYSIS APPLIED TO CUI DIALOG MANAGER . . . 31

3.1. Analysis for pizza ordering domain . 31

3.2. Analysis for train scheduling domain. 42

3.3. Conclusions. 55

4. IMPLEMENTATION OF THE CONVERSATIONAL AGENT 56

4.1. DialogFlow Basic Elements . 56

4.1.1. Intents . 56

4.1.2. Entities . 61

4.1.3. Contexts. 63

vii

4.2. DialogFlow Fulfillment . 64

4.2.1. Model Creation and Integration. 65

4.2.2. Handling User Intents . 67

4.2.3. Conversational Interface Deployment . 71

5. EVALUATION OF THE CONVERSATIONAL AGENT 73

5.1. Evaluation Methodology . 73

5.2. Objective Evaluation . 74

5.3. Subjective Evaluation . 79

6. REGULATORY FRAMEWORK . 81

6.1. Applicable Regulations . 81

6.2. Technical Standards . 82

6.3. Intellectual Property . 83

7. SOCIO-ECONOMIC ENVIRONMENT . 84

7.1. Socio-economic impact . 84

7.2. Planning. 86

7.3. Budgeting . 89

8. CONCLUSIONS . 93

8.1. Main conclusions. 93

8.2. Future research lines . 95

BIBLIOGRAPHY. 97

viii

LIST OF FIGURES

1.1 An example of user interaction with Google Now VPA 1

1.2 Result to weather request from Google Now 2

1.3 An example of user request with Google Now VPA 2

1.4 Result to calling request from Google Now 3

2.1 Machine Learning typical working flow [7] 8

2.2 Representation of a neuron . 10

2.3 Representation of how Gradient Descent works 11

2.4 Representation of a MLP [23] . 12

2.5 Milestones in the Development of Neural Networks (Source: Andrew L.
Beam [25]) . 13

2.6 Schema of an autoencoder (Author: Chervinskii [28]) 14

2.7 Dropout method: with a probability p we remove a neuron from the net-
work, both its incoming and outgoing connections. This helps to build
more robust neurons, as they cannot always rely on receiving all the pa-
rameters. In the end, it helps to generalize better, preventing overfitting
(Source: Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov
[30]). 15

2.8 Architecture of a Convolutional Neural Network (Credits to Clarifai [33]) 16

2.9 Prototype of how a self-driving car will identify other objects in the road
(Credits to NVidia [36]) . 17

2.10 Person Blocker example (Author: Max Woolf [38]). 17

2.11 The components of a spoken language conversational interface [2] 20

2.12 Learning Dialog Strategies with a Simulated User (Source: [69]) 23

3.1 Example of interaction between the user and the CUI within the pizza
ordering domain (Ref: [2]) . 32

3.2 Representation of a 5-fold cross validation 35

3.3 Pizza Domain model M.T1 accuracy evolution (Fold 1) 36

3.4 Pizza Domain model M.T1 accuracy evolution (Fold 2) 37

3.5 Pizza Domain model M.T1 accuracy evolution (Fold 3) 37

x

3.6 Pizza Domain model M.T7 accuracy evolution (Fold 1) 39

3.7 Pizza Domain model M.T7 accuracy evolution (Fold 4) 40

3.8 Representation of a majority-vote ensemble (Source: [88]) 41

3.9 Example of interaction between the user and the CUI within the train
scheduling domain (Source: [77]) . 45

3.10 Train Domain model M.T1 accuracy evolution (Fold 1) 49

3.11 Train Domain model M.T1 accuracy evolution (Fold 2) 49

3.12 Train Domain model M.T1 accuracy evolution (Fold 4) 50

3.13 Train Domain model M.T10 accuracy evolution (Fold 4) 52

3.14 Train Domain model M.T8 accuracy evolution (Fold 1) 53

3.15 Train Domain model M.T8 accuracy evolution (Fold 3) 53

4.1 Dialog Manager Architecture for the proposed SDS implementation . . . 65

4.2 Example of interaction with a web service integration 71

4.3 Example of interaction with a Google Assistant integration 72

5.1 An example of the most common dialog extracted from the evaluation
experiments, along with its translation to English 75

5.2 An example of a failed dialog extracted from the evaluation experiments,
along with its translation to English . 77

5.3 An example of a successful dialog extracted from the evaluation experi-
ments, along with its translation to English 78

7.1 Gantt Diagram for the planning of the thesis 88

7.2 Total Expenses Distribution . 92

xi

LIST OF TABLES

3.1 Pizza Domain TensorFlow Multilayer Perceptron Models 34

3.2 Pizza Domain TensorFlow CNN Models 34

3.3 Pizza Domain Traditional Models Results 35

3.4 Pizza Domain model M.T1 confusion matrix (Fold 2) 38

3.5 Pizza Domain model M.T1 confusion matrix (Fold 3) 38

3.6 Pizza Domain CNN Models Results . 39

3.7 Pizza Domain model M.T7 confusion matrix (Fold 1) 40

3.8 Pizza Domain Ensemble Model Results 41

3.9 Pizza Domain model M.Ensemble confusion matrix (Fold 3) 42

3.10 Train Domain TensorFlow Multilayer Perceptron Models 47

3.11 Train Domain TensorFlow CNN Models 47

3.12 Train Domain Traditional Models Results 48

3.13 Train Domain model M.T1 confusion matrix (Fold 4) 51

3.14 Train Domain model M.T1 confusion matrix (Fold 5) 51

3.15 Train Domain CNN Models Results . 52

3.16 Train Domain model M.T8 confusion matrix (Fold 1) 54

3.17 Train Domain Ensemble Model Results 54

4.1 Intents defined for the train scheduling SDS, along with their correspond-
ing translation to English . 60

4.2 Entities defined for the train scheduling SDS, along with their correspond-
ing translation to English . 62

4.3 Parameters defined for the train scheduling SDS 62

5.1 Objective evaluation results after 20 experiments 74

5.2 Objective evaluation results after 20 experiments 79

7.1 Human resources costs . 89

7.2 Hardware equipment costs . 90

7.3 Software equipment costs . 90

xiii

7.4 Information gathering costs . 91

7.5 Total project costs . 91

xiv

1. INTRODUCTION

1.1. Motivation of Work

Conversational Interfaces (CUI) are systems that simulate interactive conversations with
humans [1]. These platforms are meant to display human-like characteristics and sup-
port the use of spontaneous natural language in order to make interactions with different
purposes, such as performing transactions, responding to questions, or simply to chat [2].

Conversational interfaces have become a key research subject for many companies, as
they have understood the potential revenue of introducing these devices in society’s main-
stream. Virtual Personal Assistants (VPAs), such as Google Now, Apple’s Siri, Amazon’s
Alexa or Microsoft’s Cortana, are the clearest examples of this. These VPAs are used for
a wide variety of tasks, from setting an alarm to updating the calendar, passing through
getting directions, finding nearest restaurants or stores, or even recipe planning and re-
porting the news. But personal assistants are not the only application of conversational
interfaces. Companies can use CUIs to enhance their services and increase customers’
satisfaction. They are currently being used for making appointments and reservations,
secretarial work, and support service, saving companies the cost related to human labour
and being even more efficient than humans in solving such issues.

Interactions with conversational interfaces are designed to be really simple. Figure 1.1
shows an example from an interaction with Google Now personal assistant, which can be
activated from any Android smartphone by pronouncing the words "Ok Google".

User: What is the weather like in Madrid today?
Google Now: The weather in Madrid is 18 degrees and sunny.

Fig. 1.1. An example of user interaction with Google Now VPA

Figure 1.3 shows an example of a user requesting information about the weather in
Madrid. As it can be observed, the assistant responds with the updated information about
the weather. In addition to the spoken response, there is also a visual display of the
recognized question, a visual representation of the weather forecast, and other related
questions that could be asked (Figure 1.2).

1

Fig. 1.2. Result to weather request from Google Now

But not only virtual personal assistants can retrieve the information that is being asked.
Besides, they can make several actions, such as buying a product or making an appoint-
ment in the calendar. Figure 1.3 displays an example of an interaction were the user is
asking Google Now to call the contact ’Mom’. Together with the response, that confirms
the understanding of the query, the smartphone automatically calls the contact, as it can
be observed in Figure 1.4.

User: Call Mom
Google Now: Calling to Mom’s mobile...

Fig. 1.3. An example of user request with Google Now VPA

2

Fig. 1.4. Result to calling request from Google Now

On the other hand, we find a recently developed field in Artificial Intelligence (AI)
named Deep Learning (DL) [3]. This area began to grow in the beginning of the decade
as an alternative solution to tasks where traditional Machine Learning algorithms were
reaching a saturation point. In particular, it had to deal with the treatment of large amounts
of data. As a result, Deep Learning has become part of many of the current intelligent
systems, such as video surveillance or biological data classifiers. It has also become very
popular in the media due to its advantages for the development of self-driving cars. Since
its rise, all the industry is strived towards the evolution of this technology, and it seems to
keep offering plenty of potential for the future.

The merge of these two technologies is something inevitable and that is going to bring
millions of euros in revenues in the years to come. For this reason, there will be a huge
industry generated around it, with hundreds of research groups investigating in the area
and thousands of jobs created. This is the main motivation of my Bachelor’s thesis, to get
in touch with the technical background required to understand the topic, and to make a
small contribution to this exciting field.

3

1.2. Goals

The main goal of this bachelor project is to show the whole process of the development
of a spoken dialog system with Deep Learning techniques. This process goes from the
experimentation with different DL architectures and the analysis of performance for each
model, to the implementation and evaluation of a commercial conversational interface
solution.

In particular, the objectives of the thesis are:

• To make an study of the importance Deep Learning has for developing a modern
conversational interface with respect to traditional Machine Learning techniques,
using several domains.

• To learn a reliable approximation of a dialog manager for a specific domain, using
Deep Learning techniques.

• To integrate such dialog manager with the rest of the components of a conversa-
tional interface.

• To implement a conversational interface as a commercial application that people
could use from their devices.

• To evaluate and validate such application by executing a test plan with real users.

1.3. Document Structure

The content of each of the chapters of the report is now exposed, with the objective of
showing the organization of the document:

• Chapter 1: Introduction. This chapter describes the main motivation behind the
project, as well as the main goals pursued by the author. It will also make a brief
description of the document structure.

• Chapter 2: State of the Art. This chapter makes a review of the literature and
the concepts surrounding the development of the thesis. As such, it explains what a
conversational interface is and its history, reviews the terms of Machine Learning,
Artificial Neural Networks, Deep Learning, Automatic Speech Recognition, Natu-
ral Language Processing and Dialog Management, and shows the current tools and
frameworks used for the development of such systems.

• Chapter 3: Deep Learning analysis applied to CUI Dialog Manager. In this
chapter, the experimentation phase of the thesis is presented. Different validated
datasets are taken, preprocessed and trained with a variety of Machine Learning
and Deep Learning algorithms. Results will be compared and commented, hence

4

obtaining overall conclusions of the utility of Deep Learning methodologies for
dialog management modelling.

• Chapter 4: Implementation of the Conversational Agent. This chapter describes
the complete conversational agent implementation process. After choosing one of
the models created in Chapter 3, the necessary parts for a basic spoken dialog sys-
tem will be assembled, and a functional conversational agent will be created.

• Chapter 5: Evaluation of the Conversational Agent. In this chapter, the previ-
ously created system is validated with real experimentation. As a result, the system
will be presented to the users for external assessment. Based on the results, an ob-
jective will be made, whereas users will also provide subjective feedback from their
experience.

• Chapter 6: Regulatory Framework. This chapter approaches the thesis from the
legal point of view. As a result, it makes an overview of the applicable regulations,
as well as the possible issues concerning intellectual property. It also enumerates
the technical standards of the project.

• Chapter 7: Socio-economic Environment. In this chapter, a detailed analysis of
the socio-economic impact derived from the project will be crafted, as well as a
justification for the planning and budgeting of the work.

• Chapter 8: Conclusions. This chapter will list the main ideas and conclusions
extracted from the development of the thesis. It also analyses the future lines of
investigation that could be followed from such work.

• Bibliography. This chapter is dedicated to the list the online resources, documents,
papers and books reviewed and referenced for the development of the thesis.

• Annexes. This final chapter lists a glossary of common and technical abbreviations
with the objective of facilitating the reading.

5

2. STATE OF THE ART

This thesis touches many different areas of Computer Science (CS) and Artificial In-
telligence, as well as several toolkits and techniques that are commonly used for the de-
velopment of conversational interfaces. As a result, this section provides an overview of
all the concepts and tools used in the project, together with previous work done by other
authors, in order to get a better understanding on the context of the thesis.

2.1. Prior Background

The main subject in which this project is based is Machine Learning (ML). Therefore, a
small introduction to the topic is made so as to understand the basic aspects and objec-
tives of ML algorithms. After this, Artificial Neural Networks (ANN) algorithm will be
explained, as it is the main predecessor of Deep Learning. Finally, the major concepts
and related work behind Deep Learning will be exposed.

2.1.1. Machine Learning

Machine Learning is a term that is extremely popular nowadays. We can always find
news about several novel applications of this technique, and new ways about how it is
improving people’s lives. But, what is exactly Machine Learning?

According to Arthur Samuel [4], Machine Learning is the subset of Artificial Intelli-
gence that studies the algorithms and statistical models which computer systems use to
effectively perform a specific task without being explicit programmed. Instead, Machine
Learning algorithms build mathematical models that are then used to solve a wide variety
of tasks relying on patterns and inference [5].

Machine Learning paradigms are classified in three main groups [6]:

• Supervised Learning: based on training a model from data source with correct
output already assigned. This can be divided in two types of tasks: classification, in
which the output variable is a category (e.g. deciding whether to give a credit to an
individual or not, detecting if an image is a dog or a cat...), and regression, in which
the output variable is a real number (e.g. predicting the price of a house based on
its characteristics, predicting the temperature for the next week...).

• Unsupervised Learning: based on training a model to identify hidden patterns
from unlabelled input data. We can as well divide this group into two categories
of algorithms: clustering, which tries to discover the inherent groups in data (e.g.
grouping clients by purchasing behaviour), and association, which tries to find rules

6

that describe large proportions of your data (e.g. people who watch movie X may
like also movie Y).

• Reinforcement Learning (RL): based on training a model by maximizing the re-
ward along a particular dimension over many steps. It differs from supervised or
unsupervised learning methods in the learning process: while the others try to iden-
tify patterns or approximate functions in the data, reinforcement algorithms are
goal-oriented, and focus on maximizing the reward. As a result, a reinforcement
problem consists of an agent that has several actions to transit between states with
an associated reward, and the objective is to arrive to a final state with the max-
imum possible reward. An example of application of this methodology is traffic
light control in a smart city.

A typical Machine Learning work cycle involves the following subtasks:

1. Generate example data: in order to build a model, one needs to provide training
examples so that the system identifies and learns patterns from them. Therefore, an
appropriate sized training set must be collected to build an effective algorithm. This
also includes the cleaning and preprocessing of data, so that the relevant information
is optimized as much as possible.

2. Train the model: once the dataset is ready, the model is trained using a specific ML
algorithm. The idea is to use a subset for training and another subset for evaluating
the model. Therefore, this is an iterative process in which one tries several algo-
rithms and configurations and keep refining the learning outcome until you manage
to achieve the best possible result.

3. Deploy the model: this includes the implementation of the ML algorithm in the
system for which it was created, and the validation of such product by results mon-
itoring and data analytics.

A representation of the working flow is shown in figure 2.1.

7

Fig. 2.1. Machine Learning typical working flow [7]

Machine Learning is currently used in a wide variety of areas, going from predicting
the next value of a financial asset in the Stock Exchange Market (SEM) to Outer Space
exploration [8]. Some of the most common applications from day-to-day life include [9]:

• Malware filtering: malicious software has always been a very important concern
since the beginning of the digital era. Being affected by a virus could entail the
public exposure of people’s private data (as we have recently seen with various
celebrities [10]) or a loss of billions of dollars for a company [11]. Fortunately,
every new malware that is created has a high percentage of similarity with its previ-
ous versions, and thus there exists a pattern that a Machine Learning algorithm can
learn to prevent those situations.

• Online customer support: lately, it has become extremely common for services
that were traditionally provided physically to be used through an online platform.
As a result, many of these websites offer the possibility to chat with a customer
support representative in order to solve any issue that the client may have. However,
it has been shown that using a chatbot for such functionality can multiply your
investment return and increase the degree of customer satisfaction [12].

• Product recommendations: keeping the fidelity of customers in e-commerce sites
is vital for the success of those business. Therefore, making predictions on the
products that a user may like based on their previous purchases or searches has
become a topic of great interest for every multinational company. It is considered
to be a task of such importance that Netflix offered a prize of 1 million dollars to the
team that improved their movie recommendation system by a 10% accuracy [13].

8

• Videos surveillance: security is one of the main concerns of society. Imagine a
single person monitoring multiple cameras at the same time, trying to find suspi-
cious movements from normality, for several hours. Certainly, it is a very difficult
job to perform. On the other hand, thanks to new Machine Learning techniques
like Convolutional Neural Networks (CNN), processing data from images has be-
come a feasible task. Therefore, such technology is used to improve surveillance
services, tracking unusual behaviour, recognizing faces, and ultimately detecting a
crime before it happens.

• Online fraud detection: Machine Learning is also contributing to build a secure
cyberspace for even the most delicate operations, such as online monetary transac-
tion. For example, Paypal is using ML to detect money laundering (see [14]), and
traditional banks are blocking credit cards when they spot irregular transactions in
a small period of time.

• Virtual personal assistants: current birthday gift par excellence, Alexa, Siri or
Google Now are some of the most popular virtual personal assistants in the market.
They perform a wide variety of tasks, from setting an alarm to ordering a pizza,
when asked over voice. These devices use ML to understand what the user is re-
questing, and they have a high level of accuracy.

Once we have had a brief overview of what Machine Learning is, let’s move on to
more specific concepts that are closely related to the main work of the thesis.

2.1.2. Artificial Neural Networks

The ML technique that is most commonly use nowadays is artificial neural networks.
Haykin [15] describes ANN as a massively parallel combination of simple processing
units which can acquire knowledge from environment through a learning process and
store the knowledge in its connections.

Artificial neural networks design is inspired by the biological neural networks that
constitute animal brains. Each connection, like the synapses in a biological brain, can
transmit a signal from one artificial neuron to another. An artificial neuron that receives a
signal can process it and then signal additional artificial neurons connected to it [16].

The first studies related to the area were made by McCulloch and Pitts in 1943 [17].
They were seeing neurons as units that, depending on the connected inputs attached to
them, will activate according to a threshold value. They only theorized about the archi-
tecture, with no mention to the learning process. However, in 1949 Donald Hebb appeared
to introduce Hebbian learning [18]. He proposed that, when two neurons fire together, the
connection between them is strengthened. As a result, this activity is one of the funda-
mental operations necessary for learning.

9

Some authors used these ideas to create the first known neural networks. Frank Rosen-
blatt introduced the Perceptron in 1958 [19], and Bernard Widrow the Adaptative Lin-
ear Element (ADALINE) in 1960 [20]. The basic architecture of their neuron is shown
in figure 2.2.

Fig. 2.2. Representation of a neuron

As we can observe, a neuron is essentially a mathematical function. It receives several
inputs, and some weights that are associated to the connections between those inputs and
the neuron. All these, together with a bias variable, are added up, in order to produce and
output. The mathematical equation for the output is the following:

y = f (b +
n∑

i=1

xiwi) (2.1)

The main difference between the two models is actually the activation function. The
Perceptron uses a threshold function (2.2), while ADALINE uses the real sum of inputs
(2.3). This is a big difference, as Perceptron can only be used for classification tasks,
while ADALINE can also be used for linear regression problems.

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 if > 0

−1 if ≤ 0
(2.2)

f (x) = x (2.3)

The objective of ADALINE is to minimize the error derived from the output. The
error function specified for this neural network is the Mean Square Error (MSE):

10

E =
1
m

m∑
p=1

Ep =
1

2m

m∑
p=1

(dp − yp)2 (2.4)

where m is the total number of examples, dp is the desired output of example p, and yp is
the real output of such pattern.

The learning process of ADALINE implies iteratively updating the weights of the
connections between neurons in order to minimize the error function of the output. The
learning rule used for such update is the Delta Rule, which tries to minimize the error
of each individual example using a technique called Gradient Descent, summarized in
equation 2.5.

w(t) = w(t − 1) − α
∂Ep

∂w
(2.5)

Not entering into deeper mathematics, the idea of gradient descent method is to sub-
tract the derivative of the error function. If we think of the error function as a n-dimensional
surface, subtracting its derivative is equivalent to descending in that surface, until a min-
imum is found. As a result, we are reducing the error in each iteration. Figure 2.3 shows
a representation of such logic in a 2-dimensional space, for a better understanding.

Fig. 2.3. Representation of how Gradient Descent works

These two neural network architectures became very popular for a few years and were
the first indicator of what learning algorithms could achieve in the future. However, they
had a huge drawback: they only were able to solve linear tasks. In the other hand, most of
the problems that we find in the real world have a non-linear behaviour, for which current
networks could not deal with.

11

In this context we arrive to the late 60s, in which the Artificial Intelligence field suf-
fered from a huge depression in the research community. The lack of new advancements
made many researchers think that eventually AI would only be a topic for science fiction,
and investigation was paused by different groups. Artificial neural networks were knocked
by a paper from M. Minsky and S. Papert, in which they proved that the Perceptron was
not even able to learn an XOR function [21].

No progress was made until 1986, year in which Rumelhart et al. presented the Gen-
eralized Delta Rule [22]. Also named Backpropagation Rule, it consisted of updating
the weights by distributing errors backwards throughout the network’s layers. This al-
lowed the creation of multiple layers of neurons, in which the output of one neuron could
be connected to the input of another neuron, in order to build up a network that passes
information from one neuron to another. All this idea was also based in gradient descent,
and the objective was exactly the same: minimizing the error of the examples. However,
with this new approach, non-linear problems were also solvable.

Together with backpropagation, a new ANN was introduced: the Multilayer Percep-
tron (MLP). It consists of at least three layers of nodes: an input layer, a hidden layer
and an output layer, but it may contain several hidden layers.

The most common activation function for the MLP is the sigmoid function, which is
what inserts non-linearity into de algorithm. Its equation is the following:

f (x) =
1

1 + e−x (2.6)

The architecture of the MLP is pictured in figure 2.4.

Fig. 2.4. Representation of a MLP [23]

12

Around the same time, it was shown that the MLP has the ability to approximate any
function. For this reason, it became go to Machine Learning algorithm for every research
lab. Unfortunately, this network was computationally expensive to use and, when more
complex problems emerged, such as image recognition, MLP did not scale correctly. For
this reason, they were eventually substituted by other learning algorithms, such as Support
Vector Machines (SVM), leading to another cold period around the 2000s.

This second crisis was solved with the appearance of Deep Learning, main concept
of this thesis, that will be explained in depth in the following section. Deep Learning
is such important nowadays that recently the Association for Computer Machine (ACM)
has awarded with the Turing Award to the main promoters of this revolutionary technol-
ogy: Yoshua Bengio, Yann LeCun and Geoffrey E Hinton [24]. The Turing Award is
considered to be the most prestigious honor in the field of Computer Science.

A brief summary of the history of artificial neural networks is shown in figure 2.5.

Fig. 2.5. Milestones in the Development of Neural Networks (Source: Andrew L. Beam [25])

2.1.3. Deep Learning

Deep Learning is a subset of the family of artificial neural networks algorithms, which
consists of ANN with several hidden layers and neurons [26]. But, why is it important
to add more hidden layers if one-hidden-layered networks work quite decently? There
exist two ideas: on the theoretical side, it has been proven that some problems can be
generalized better when increasing the number of hidden layers [27]. On the empirical

13

side, information processing in the brain works in a similar way, from the simpler ideas
to the abstract concepts, and researchers believe in creating a mathematical model that
emulates this.

Besides, as we previously studied, there existed an acceptable number of problems
for which traditional neural network algorithms could not handle with successful results.
Many of these issues were related to image processing, as the number of inputs (pixels)
was so huge that parameters had been reduced to just a variety of image characteristics.
This was not an effective approach anymore, and it was one of the main reasons why
ANN lost popularity during the 2000s. However, with the appearance of Deep Neural
Networks, the area enjoyed a new rise that continues in our days.

The first reference to the Deep Learning concept dates back to 2006, when Geoffrey
E. Hinton introduced the idea of Deep Belief Networks (DBN) during his NIPS 2010
workshop: Deep Learning and Unsupervised Feature Learning. The idea was to use a
composition of autoencoders, where each sub-network’s hidden layer served as the visible
layer for the next (see Figure 2.6). With this procedure, one could make an unsupervised
pretraining of the parameters, and this would be used as an initialization of the parameters
of a traditional neural network.

Fig. 2.6. Schema of an autoencoder (Author: Chervinskii [28])

After this first concept of DBN, interest was renewed and many neural networks re-
search groups were publishing more and more papers on the area. However, the break-
through did not arrive until 2012, when Alex Krizhevsky, Ilya Sutskever, and Geoff Hin-
ton, propose the ImageNet [29], a novel architecture that included three main improve-
ments: the use of GPUs to train the model, the use of Rectified Linear Unit (ReLU) as

14

activation function, and the use of a method to reduce overfitting named dropout (see Fig-
ure 2.7) . From that moment, those innovations became mainstays in subsequent Deep
Learning investigations.

ReLU function has the following equation:

f (x) = max(0, x) (2.7)

Fig. 2.7. Dropout method: with a probability p we remove a neuron from the network, both its in-
coming and outgoing connections. This helps to build more robust neurons, as they can-
not always rely on receiving all the parameters. In the end, it helps to generalize better,
preventing overfitting (Source: Srivastava, Hinton, Krizhevsky, Sutskever and Salakhut-
dinov [30]).

The most typical architecture used nowadays for Deep Learning is convolutional neu-
ral networks. They were first proposed in 1995 by Yann LeCun and Yoshua Bengio [31],
but it was not until the previously commented improvements when they became a very
effective learning algorithm.

CNNs unsupervised learning process consists of the combination of two types of lay-
ers: convolutional layers and pooling layers. Units in a convolutional layer are organized
in feature maps, which will gather up the characteristics of each group of units. The
reason why this is effective is that, in array data, such as images, local groups of values
are often highly correlated, forming distinctive local motifs that are easily detected [32].
The role of the pooling layer is to merge semantically similar features into one. This is
typically done by computing the maximum of a local patch of units in one feature map.

15

The result of this is that the dimension of the representation is reduced without losing
important characteristics from the feature maps.

A CNN consists then of a series of stacked convolutional and pooling layers that are
finally connected to a regular ANN (see Figure 2.8). Backpropagation through a CNN is
as easy as through a regular neural network, making the learning process simple.

Fig. 2.8. Architecture of a Convolutional Neural Network (Credits to Clarifai [33])

The most direct beneficiary from convolutional neural networks has been image recog-
nition. There are tens of applications for this technology in a wide variety of subjects,
going from computer vision in videogames to segmentation of biological images [34].
Two very interesting examples of projects made with CNN include the following:

• Self-driving cars AI platform. Nobody doubts that self-driving cars is the future
of automotive industry, and many companies are racing to be the first to build a fully
automatic vehicle for the economic revenue that the achievement will mean. Nvidia
is one of these companies, but they are going one step ahead: they have created a
platform that helps other manufacturers make autonomous driving a reality. They
have achieved this combining its excellent hardware (Nvidia’s main industry is the
design of GPUs) with a software that uses Deep Learning to identify elements in the
road. Their solution has such potential that even Toyota, the world’s largest vehicle
manufacturer, has partnered with Nvidia for this venture [35].

16

Fig. 2.9. Prototype of how a self-driving car will identify other objects in the road (Credits to
NVidia [36])

• Person Blocker. Remember TV series Black Mirror’s episode White Christmas,
in which a new technology able to block people from your life was presented?
Data scientist Max Woolf brought this vision to reality with the help of convolu-
tional neural networks [37]. This software receives an image and it will produce
the blocking effect on the elements specified by the user (see Figure 2.10). With the
Person Blocker you cannot only block people, but also a wide variety of objects:
animals, food, vehicles, or other domestic utensils. It is a very nice example of how
accurate image recognition is.

Fig. 2.10. Person Blocker example (Author: Max Woolf [38]).

17

Besides image recognition related solutions, Deep Learning has also become a fun-
damental pillar in areas such as Automatic Speech Recognition (ASR) and Natural Lan-
guage Understanding (NLU). These two subjects are closely related with the system that
we are going to build for this thesis, so we will make a brief overview of them in the
following sections.

2.2. Conversational Interfaces

Conversational Interfaces are the main focus of this thesis. As a result, a whole section
is given to study the history of the field, as well as the evolution of each of its main
components (automatic speech recognizer, natural language understanding module, and
dialog manager) through the work done by preceding authors.

2.2.1. Introduction

Since the 1980s, the idea of a conversational interface with which humans could interact
for different purposes has been a focus of study for a wide variety of research groups and
communities, that largely worked to make this technology come to reality, and not just
an utopia of contemporary science fiction films and books, such as Star Wars or Blade
Runner. Up to this point, conversational interfaces had taken the form of either text-based
dialog systems, where the main emphasis was on applying techniques from linguistics, or
chatbots, that simulated conversation using simple pattern-matching techniques.

Major advances in automatic speech recognition technology made it possible to rec-
ognize user’s spoken input with a reasonably high degree of accuracy [39]. This led to the
development of Spoken Dialog Systems (SDS), which tried to go one step ahead in the
simulation of "intelligence" that previous dialog systems had. Areas of Artificial Intelli-
gence such as user modelling [40] and planning [41] were being used in order to deal with
problematic aspects of communication and recognize intentions behind user’s statements.
The results were ATIS [42] and SUNDIAL [43], considered to be the first SDS projects.

On the other hand, we have Voice-User Interfaces (VUI), which began around the
1990s with the realization that speech could be used to automate self-service tasks, such as
call routing, directory assistance and information enquiries. Although they used the same
spoken language technologies as SDS, VUI development was oriented towards business
needs, such as return on investment, usability and user satisfaction. This technology was
early adopted by telecommunications companies such as AT&T [44][45] to address the
task of call routing, and it is still widely used in our days.

The last precursor that we are going to talk about are chatbots. The main aim of these
systems is to fool the user into thinking that they are conversing with another human.
However, the interaction with chatbots is not oriented towards task solving as in SDSs
and VUIs, but to generate small conversations. As a result, chatbots do not usually take

18

the initiative in conversations and they are limited to react to user’s input. Chatbots have
their origins in ELIZA [46], which simulates a Rogerian psychotherapist, and has been
used until our days in areas such as education, e-commerce and information retrieval.

Some of the key technologies that made conversational interfaces a reality are the
following:

• Artificial Intelligence: Since Alan Turing first proposed in 1950 a kind of sys-
tem capable of learning [47], researchers have worked towards creating computers
capable of demonstrating intelligent behaviour. At first, it was thought that intel-
ligent behaviour could be extracted based on rules, and knowledge-based systems
achieved spectacular results such as chess playing computer Deep Blue, which de-
feated the human world champion in 1996 [48]. However, other aspects of intelli-
gent learning, such as image recognition or speech recognition, could not be solved
using these methods and required inference-based knowledge in order to extract
appropriate patterns in data. The field got stuck for a while until GPUs started to
be used for computing purposes, allowing process vast amounts of data (Big Data).
New algorithms like Deep Learning also contributed to improve the efficacy of AI
systems.

• Language technologies: language understanding has enormously benefited from
the newer Machine Learning advancements. Besides, the field has such an interest
for big tech companies like Google, Apple, Amazon or Facebook, that they have
promoted the research in various areas of speech and language technology, includ-
ing speech recognition, text-to-speech synthesis, spoken dialog management, and
natural language learning.

• Semantic Web: in 2001, Berners-Lee and colleagues [49] put forward a vision for
a Web in which all the content will be structured and machine-readable, so that
different agents could easily perform tasks such as checking calendars, making ap-
pointments, and finding locations. They called it Semantic Web. This research has
enabled to better interpret the semantics of a user’s query and to return structured
responses to that query.

• Device technologies: smartphones have incorporated such powerful processors that
they have the same computing power as large personal computers. This, combined
with appearance of cloud computing, has enabled that resource-intensive operations
such as speech recognition can be handled faster. Furthermore, smartphones’ access
to user’s location, contacts or calendar, has enabled the increasing of customization
of virtual personal assistants for each user.

Current conversational interfaces are made up of some basic components, represented
in Figure 2.11. Those are the following:

19

• Automatic speech recognition: obtains the sequence of words uttered by a speaker.
It is actually a very complex task, and has been a matter of research (see [50][51])
in order to overcome the issues of linguistics, transmission channel or interaction
context.

• Spoken Language Understanding (SLU): obtains the semantics from the recog-
nized sentence. It involves morpholigical, lexical and syntactical analysis [52].

• Dialog Management (DM): decides the next action of the system, interpreting the
incoming semantic representation of the user input in the context of the dialog [53].

• Natural Language Generation (NLG): usually considered part of the dialog man-
ager, obtains sentences in natural language from internal representation of informa-
tion handled by the dialog system [54].

• Text-To-Speech Synthesis (TTS): transforms the generated sentences into synthe-
sized speech [55].

Fig. 2.11. The components of a spoken language conversational interface [2]

2.2.2. Automatic Speech Recognition

Speech recognition is the discipline that develops technologies to automatically recognize
spoken language and translate that spoken input into text. It is the first main component
that we find in a conversational interface, as the first interaction with the user is listening
to what the user is saying to later understand it.

20

This task has an enormous complexity and requires a great amount of training, as
the number of variables affecting the speech recognition is huge. A speech recognizer
should know how to deal with differences in tone, volume or pitch; with possible speech
disorders such as stuttering; or with environment sound and noise. It also requires an in-
depth research in linguistics, in order to understand the sentence structure and to correct
possible mistakes from the user.

In its early stages, speech recognition was an exercise of pattern recognition based on
templates and the spectral distance of the sound that was recorded. The first system able
to recognize speech was developed at Bell Laboratories in 1952. Scientists S. Balashek,
R. Biddulph, and K. H. Davis, built ’Audrey’ [56], which was able to recognize numer-
ical digits. In the following years, improvements to that system were made, including
arithmetic operations, vowels and consonants recognition.

The U.S. government centered its interest in ASR, probably due to the advantage that
they would obtain for their intelligence operations. As a result, U.S. Department of De-
fense’s invested in the technology, driving considerable improvements in the field. The
most remarkable system was Carnegie Mellon University’s Harpy, which could recog-
nize just over 1,000 words by 1976 [57].

In the mid 80s, the field was revolutionized with the popularization of Hidden Markov
Models (HMMs). This approach represented a shift towards a statistical method for
speech processing, and meant a great improvement of accuracy. By the end of the decade,
there were various companies competing for the best ASR system, and the 90s intro-
duced consumers to speech recognition with the Dragon, a system that could identify
over 80,000 words.

By the 2000s, speech recognition was still dominated by traditional approaches such
as HMMs and ANNs, and funding was mainly coming from U.S. government initiatives.
However, that changed soon, when companies with vast financial resources such as Mi-
crosoft, Apple and Google foresaw the potential of the technology in the future. Soon,
they began to hire experts in the field to develop their own ASR systems.

Most recently, the field has benefited from advances in the Deep Learning area. The
appearance of a DL method called Long Short-Term Memory (LSTM) marked the be-
ginning of the ASR systems that we know today. Besides, there is a increasing interest
from companies and institutions in speech recognition research, for all the applications
that it has. Some examples of recent publications include Deep Learning applied to
Audio-Visual Speech Recognition [58] or Distributed Deep Learning strategies applied
to ASR [59].

2.2.3. Natural Language Understanding

Natural language understanding is the discipline that develops technologies to deal with
machine reading comprehension. It is the conversational interface component that comes

21

after ASR, and its job is to use the context of the conversation and the ASR input to match
the sentence with a previously learned series of options. These options, which are specific
of each problem and represent the different intentions of the user, are called intents, and
are the main concept of NLU systems. As a result, the component has an ontology around
the product that is used to calculate the probability of some intent.

One of the earliest softwares developed for natural-language understanding dates from
1964. Daniel Brobow wrote the program STUDENT [60], which could solve simple
algebra word problems. It was the first demonstration of how a computer could understand
natural language input.

However, the greatest advancement came a year later with the creation of ELIZA [46]
which, as previously mentioned, simulated a Rogerian psychotherapist. The system used
simple parsing, grammar rules and substitution of keywords to understand phrases. It is
the precursor of current commercial chatbots.

After several approaches of how to represent natural language input, in 1971 T. Wino-
grad presented SHRDLU [61], a system aimed to direct a robotic arm to move objects.
The system could only understand very simple English structures and had a very restricted
vocabulary, but worked quite well, and served as a major influence for research undertaken
at the time.

In the following years, various attempts for commercial NLU systems were made in
from different authors. Some examples of those are Jabberwacky, a friendly and enter-
taining chatbot proposed with the objective of passing the Turing Test [62], and BORIS,
an experimental story understanding and question answering system [63].

Nonetheless, the greatest advancements went hand in hand with the successes achieved
with Machine Learning in the early 2000s. As a result, a new approach was taken, using
Machine Learning for text classification. One of the most renowned examples is IBM’s
Watson, which is a question answering software powered by ML. In 2011, it participated
in the famous American TV show Jeopardy! against the all-time best players, beating
them [64]. In a more serious context, it is also used as a guidance in healthcare decisions,
such as lung cancer treatment in the Memorial Sloan Kettering Cancer Center in New
York City [65].

Lately, the appearance of LSTMs helped to improve language modeling and to refine
the NLU systems. Currently these Deep Learning architectures are the ones that produce
best results for natural-language understanding. There is a very high interest in the area
due to its multiple applications, including automated reasoning, question answering, and
large-scale content analysis. Hu et al. [66] proposed several CNN for the NLU task, and
Narasimhan et al. [67] used Deep Learning for language understanding in videogames.

22

2.2.4. Dialog Management

The dialog manager is the main object of study in this thesis. It corresponds to the third
process in the cycle of conversational interfaces, and it is in charge of analysing the in-
formation given by the NLU module (user intent, sentence keywords) in order to make
a response. Therefore, we will revise the literature on the topic to understand previous
work and current concerns on the field.

One widespread methodology to implement dialog management systems is applying
Reinforcement Learning. The reason for this is that the main issue current learning ap-
proaches to dialog management face is related to the vast space of possible dialog states
and strategies. As we know, Machine Learning algorithms learn from trial and error, so
they need a sufficiently big corpus of data to achieve a valid training. Getting such in-
formation from dialogs between real users and the system is unfeasible, due to the high
volume of resources needed to do so (money and time). To solve this issue, some re-
searchers proposed to train a statistical user model that will simulate real user responses.
This could then be used to learn the dialog strategy between interactions with the sim-
ulated user [68]. As a result, a large number of investigations are being carried out on
user modelling with statistical approaches, and it is a very common technique for the
development of dialog managers.

Fig. 2.12. Learning Dialog Strategies with a Simulated User (Source: [69])

The process will work as illustrated in Figure 2.12. First, the user model is trained with
the real dialog corpus in order to learn what to respond to a given dialog state. During
the second phase, the simulated user is used to interact with the dialog manager so that
it optimizes dialog strategy based on the feedback given. This allows automatic training
with simulated dialogs, and it even enables the exploration of dialog strategies that were
not present in the original dialog corpus.

Early models for dialog strategies learning were implemented with Markov Decision
Processes (MDPs). MDPs allow forward planning and hence were used as statistical
framework for dialog policy optimization by several authors, such Levin et al [70]. How-
ever, MDPs assume that the entire space of states is observable, and it does not work when

23

uncertainty is introduced in the system.

As a result, S. Young et al. proposed a new dialog system based on Partially Observ-
able Markov Decision Processes (POMDPs), which could account for uncertainty [71].
The idea is to retain a full and rich state representation but only maintain probability esti-
mates over the most likely states. Results were really powerful, concluding that POMDPs
build more robust spoken dialog systems.

In recent years, new proposals have appeared using what is called Reinforcement
Deep Learning (RDL). This technology merges Deep Learning with Reinforcement
Learning algorithms in order to create more efficient solutions to current problems. A
small amount of publications have reported good results [72][73], but it is not a standard-
ized technique yet.

In 2013, Microsoft created the Dialog State Tracking Challenge (DSTC) [74]. It
consists of a series of dialog state tracking tasks, designed for the research community
so that they can investigate their new models and methodologies within the dialog man-
agement field. Each year, they publish a corpus of over 15k human-computer labelled
dialogs, which is a dataset very difficult to build individually, in order to enhance research
on the area.

Besides RL techniques, other authors have researched on alternative learning algo-
rithms for dialog management generation. D. Griol et al. evaluated up to six different
classifier: multinomial naive Bayes, n-grams, decision trees, support vector machines,
grammatical inference and artificial neural networks [75][76][77]. Best results were ob-
tained using the MLP, and a highly accurate dialog management system was developed
using this ANN.

There is, however, very little reference in the literature of dialog management systems
based on deep neural networks. For this reason, this thesis aim is to experiment with
different configurations of Deep Learning architectures in the search of improvements
from other ANN approaches. As a result, this work is considered to be a novel research
in the area, and it is meant to serve as a reference for future research.

2.3. Tools Analysis

There exist a wide variety of tools and frameworks to develop Machine Learning al-
gorithms, perform models analysis, and create spoken dialog systems. As a result, an
overview of the most relevant ones has been made, arguing their advantages and draw-
backs so as to conclude which is the best option. Note that not all the available tools are
going to be listed, but only the ones that we have been considered and evaluated.

24

2.3.1. Tools for Machine Learning

Before getting into the Deep Learning analysis, the first part of the project involves per-
forming supervised learning in the corpora, so that valuable comparisons can be made
between traditional models and the proposed ones. Although it is not difficult to manually
implement the basic supervised learning algorithms, we have decided to use a platform in
order to save time in this task, as it is not the main one for the research.

Weka

Weka is a suite of Machine Learning software developed at the University of Waikato,
New Zealand [78]. It contains a collection of visualization tools and algorithms for data
analysis and predictive modeling, together with graphical user interfaces for easy access
to these functions. Weka supports several standard tasks, such as data preprocessing,
clustering, classification, regression, visualization, and feature selection.

The main advantages that found to use this software were:

• Model portability, as you can download any model and export it to any other plat-
form.

• Contains an extensive collection of data preprocessing and modeling techniques.

• No learning curve. You can implement your first models in minutes.

• Simplicity in the analysis, thanks to its graphical user interfaces.

• Contains a broad community of users and documentation to reference to.

• Contains a wide variety of add-on tools that increases empowers the platform.

On the other hand, Weka has two important disadvantages:

• Consumes a large amount of resources, making it unfeasible for large datasets.

• Complex algorithms can take days to execute.

BigML

BigML is a company that provides a selection of robust Machine Learning algorithms
to solve real-world problems [79]. It includes supervised learning algorithms, such as
trees or neural networks, and unsupervised ones, like clustering, anomaly detection or
association discovery.

BigML main advantages include the following:

• It runs on large prepared servers, so it executes very fast.

25

• Contains a wide collection of modeling techniques.

• Very easy to interpret results, several plot-charts and analysis are shown after every
prediction.

However, it has great disadvantages that led to dismiss the platform:

• One does not really control the parameters of the different algorithms to try out. The
platform assumes little knowledge on the area, and does much of the configuration
automatically, so it is hard to understand what you are trying out.

• The platform does not come free of charge. Although there is a trial version, it does
not contain full potential of the Machine Learning software.

• It does not have an extended documentation or a community of users in the internet
to solve your doubts.

RapidMiner

RapidMiner is a commercial data science software platform that provides an integrated
environment for data preparation, Machine Learning, text mining, and predictive analytics
[80]. It has more than 500 operators oriented towards data analysis, including information
preprocessing and visualization. It contains very similar characteristics to Weka software,
so we could put them in the same level. However, RapidMiner offers some upgrades:

• RapidMiner offers the vast majority of Weka algorithms for Machine Learning, and
it provides the necessary tools to integrate Weka models in their platform. As a
result, we could define RapidMiner as an evolution of Weka, with Data Science
methodologies.

• The community of users around the platform is growing faster than their competi-
tors, with all that this implies: larger and better documentation, more add-on tools
are developed for RapidMiner, and more authors include the software in their re-
searches.

On the other hand, it may be a bit more difficult to learn the foundations of the plat-
form. As a result, it requires time to get used to the user interface, and to search for the
necessary operators to achieve the desired results. Besides, interpretation of output is a
bit more complex yet it provides more complete insights.

TensorFlow

TensorFlow is the most popular open-source library for Machine Learning applications
[81]. It was developed by the Google Brain team, and it is actively used for research

26

and production in Google, sign of the tremendous power of the framework. It has stable
APIs for Python and C languages, but it has lately released versions for Java, JavaScript
or Swift.

The main advantages of using TensorFlow are:

• It focuses on the design of neural networks, providing a broad variety of layer types
with many configurable parameters.

• It has a great computational power even for complex networks or large datasets.

• It has a vast community of developers and companies supporting it, with a well
defined documentation and forums to solve any issue concerning the framework.

• It has a very nice network visualization tool integrated.

Nonetheless, this amount of power and control for the developer comes with a series
of drawbacks:

• Greater curve of learning. Indeed, it is hard to first understand what is happening or
how to program the network. Also, such large configuration set is a bit confusing
at the beginning.

• Preprocessing has to be done in an earlier stage by the user. This feature is not
incorporated in the framework, so the scientist must manually treat the data or use
another software before passing it to TensorFlow.

• It does not include advanced analysis tools. To give a very clear example, confusion
matrices are not included, and must be programmed separately. That increases the
level of uncertainty and the development time.

Based on the former analysis, it has been decided to use the following tools: Weka and
TensorFlow. Although RapidMiner is a more complete software than Weka, the extra
functionalities that it provides are related to data science and are not really needed for this
project. As a result, authors’ prior experience in several projects with Weka makes them
feel more comfortable, accounting that results will be very similar, if not the same. As
Weka has difficulty when it comes with large datasets, the power of TensorFlow will be
used in those situations. Regarding TensorFlow, despite its harsh curve of learning, it will
also be used for Deep Learning as it is explained below, so it does not involve an extra
time to use the library for simpler neural networks too.

2.3.2. Tools for Deep Learning

After the first simple models, Deep Neural Networks will be created to evaluate the suit-
ability of such algorithm to dialog manager implementations. As a result, specialized

27

tools are needed to implement Deep Learning models. The main ones scrutinized are the
following:

Keras

Keras is an open-source neural-network library written in Python [82]. It focuses on being
user-friendly, modular, and extensible. This is achieved by offering a more intuitive set
of abstractions that make it easy to develop DL models regardless of the computational
backend used.

As a result, Keras is more of a high-level interface than a proper tool for complex
Deep Learning analysis, where it becomes more limited. Therefore, we will study if any
of the studied frameworks provides support for Keras.

TensorFlow

Besides simple neural networks, TensorFlow is capable of building any Deep Learning
based neural network, thanks to its simple layering system. As a result, once you know
how to use the library, it is very fast to implement more complex networks and test the
results.

The biggest drawback for TensorFlow has to do with programming the exact desired
algorithm, because it can become really complicated to write the code for a specific con-
figuration. For this reason Google incorporated Keras in the library, making it extremely
simple to adjust to the developer necessities while keeping the powerful TensorFlow back-
end.

PyTorch

PyTorch is an open-source Machine Learning library for Python, with a high-level inter-
face for deep neural networks [83]. It is supported by top tech companies like Facebook,
and it is a very popular tool for natural language processing.

PyTorch’s main advantage is that it is a dynamic computational graph, that is, the con-
figuration and architecture of the network can be adjusted in every iteration. This provides
a great flexibility to implement fairly complex designs. Besides, PyTorch merged with the
popular framework Caffe2, hence supporting complex deep neural network architectures
such as CNNs, recurrent CNNs or LSTMs.

When it comes to compare PyTorch with TensorFlow, there are slight differences. On
the one hand, building ML models with PyTorch building more intuitive and straight-
forward. On the other hand, it is a relatively less known framework. it has a smaller
community, not many integrations and less papers referencing PyTorch implementations.
Moreover, with TensorFlow you can visualize your ML models directly, whereas for Py-
Torch you need an external tool.

28

As anticipated before, it has been decided to use the following framework: TensorFlow
+ Keras. Although PyTorch seems to have a less steep curve of learning, we consider
that TensorFlow saves this drawback by incorporating Keras interface. In addition to this,
PyTorch’s dynamic modeling feature is not necessary for this project, and TensorFlow
offers a much powerful backend. Besides, documentation and community is larger for
TensorFlow, fact that was also valued for the decision.

2.3.3. Tools for SDS implementation

Once the dialog management system has been modelled, we will have to integrate it with
the other components to form a spoken dialog system that we can test on real users. There
are some platforms that facilitate this task by providing pre-built components.

Nearly ten leading tools for SDS implementation were evaluated, including: Chatfuel,
the leading chatbot platform for Facebook Messenger; Twilio, a commercial platform that
enables real-time AI SMS text, email, WhatsApp or chat; and Business Chat, Apple’s bot
framework for conversational interfaces in their devices. However, the ones assessed as
more complete were the following:

DialogFlow

DialogFlow is the human-computer interaction technology developed by Google to cre-
ate natural language conversations [84]. It sets the foundation for some of the Google
products, such as Google Assistant or Google Home.

DialogFlow provides a framework to implement conversational interfaces really eas-
ily. Both the speech-to-text and text-to-speech modules are implemented using their tech-
nology. The NLU component can be easily implemented, as the developer only needs to
define the different possible inputs for each user intent, and their pre-trained algorithms
will easily identify the intent. The dialog manager can also be implemented with prede-
fined answers to each of the intents, but it also provides a method to add your own trained
system.

DialogFlow also supports more than 14 languages (including the main spoken ones),
can be integrated in wearables, cars, smart devices, web applications or any other mobile
application, and has a considerable community supporting the product.

Amazon Lex

Amazon Lex is a service for building conversational interfaces into any application using
voice and text, developed by Amazon [85]. It is the system powering Alexa, Amazon’s
VPA.

As with DialogFlow, Amazon Lex has already integrated the ASR and TTS modules,

29

utilizing Amazon’s Deep Learning technologies, and the NLU component uses the same
intent identification idea. This allows us to focus on designing the dialog manager re-
sponse. Besides, it supports easy deployment of the chatbot into mobile applications and
other messaging services such as Facebook Messenger or Slack.

A very nice feature is that responses for the CUI can be defined directly from the
Amazon Web Services (AWS) console, allowing a very simple integration of the dialog
management system into the SDS.

The two downsides found for this technology is that there is no free version (only trial
version), and that the community is not as extended as with DialogFlow.

Microsoft LUIS

Acronym for Language Understanding Intelligent Service, LUIS is Microsoft’s Machine
Learning-based service to build natural language into apps, bots, and IoT devices [86].
It is used by big multinational companies such as UPS or the actual Microsoft team, for
their internal and external interactions.

As well as its competitors, it allows the developer to define user intents in any of
the top 15 spoken languages, and it has a pre-defined Machine Learning algorithm that
predicts very accurately the user response. It also identifies entities, and other context
variables.

There is, however, a huge drawback: LUIS only contains the NLU component of a
Dialog System, so we would need to integrate it with other frameworks to provide the full
spoken conversational experience. For that reason, this alternative was dismissed.

After considering these options, the conclusion was that Amazon Lex and DialogFlow
offered very similar solutions, and both could be used. Finally, it was decided to use
DialogFlow for the following reasons:

• It has a free version of the product for non-commercial solutions.

• It has a greater community and more extended documentation, facilitating the de-
velopment of the CUI.

• We are also using other Google’s solution for the Deep Learning model prototyping,
TensorFlow, so we predict that we will have less issues integrating the model with
DialogFlow. Besides, we will probably use Firebase (another Google product) to
host the model in a server, and there is plenty of documentation on how to work
with DialogFlow and Firebase together.

30

3. DEEP LEARNING ANALYSIS APPLIED TO CUI DIALOG
MANAGER

This section discusses the work done to generate a Deep Learning model for a con-
versational interface dialog manager implementation. As we anticipated before, the main
objective of this part of the thesis is to provide some reference work for future research,
as there is very little reference of Deep Learning applied to dialog management models.

For this reason, traditional Machine Learning models (neural networks, decision trees,
bayesian networks and k-nearest neighbors) will be compared with several Deep Learning
architectures, to study if there is any improvement in the accuracy of the model. Weka
will be used to analyse the traditional Machine Learning results, while TensorFlow is
accounted for the Deep Learning task.

3.1. Analysis for pizza ordering domain

The first corpus that was evaluated is based in the pizza ordering domain, in which users
would ask the conversational interface about their requests and orders, and the system will
process the order. It was extracted from M. McTear et al.’s book [2], and it is an extremely
simple corpus that was used a first contact with the analysis tools and models.

The corpus consists of 968 training examples labelled with each of the actions that the
conversational interface should retrieve to the inputs. Those are the following:

1. Opening.

2. Ask the type of order.

3. Ask the number of pizzas.

4. Ask the types of pizzas.

5. Ask the sizes of pizzas.

6. Ask the types of dough.

7. Ask the drinks.

8. Ask to confirm the type of order.

9. Ask to confirm the number of pizzas.

10. Ask to confirm the types of pizza.

11. Ask to confirm the sizes of pizzas.

12. Ask to confirm the types of dough.

13. Ask to confirm the drinks.

14. Closing.

In order to predict each action, the examples have 10 input attributes:

31

• PREV_SYSTEM_ACTION, which stores the previous action taken by the system,
as a context.

• Six task-dependent attributes, which will be codified with the values 0, 1, 2 accord-
ing to the following criteria: 0, if the value of the slot is unknown; 1, if the value is
known with a high confidence; and 2, if the value is known with a low confidence
and needs confirmation from the user. These attributes are:

1. Type of order.

2. Number of pizzas.

3. Types of pizzas.

4. Sizes of pizzas.

5. Types of pizza dough.

6. Drinks.

• Three task-independent attributes, which will be codified with the same criteria as
before, and will provide important information to build a more complete system.
The slots are:

1. Acceptance: if the user has confirmed some information.

2. Rejection: if the user has denied some information.

3. Not-understood: if the system has not identified the user’s input.

An example of interaction is shown in figure 3.1:

Fig. 3.1. Example of interaction between the user and the CUI within the pizza ordering domain
(Ref: [2])

32

As it can observed, after the welcoming action, the user asks for two Sicilian pizzas.
The number of pizzas is identified with high confidence, so the value is stored and the slot
changes its value to 1. However, the pizza type is not identified with high confidence, so
the corresponding slot gets a value of 2. As no more information is provided, the rest of
the task-dependent attributes keep the value of 0. On the other hand, the task-independent
information does not variate, as the user is not providing either confirmation or denial.
Therefore, the value that will be passed to the model will be:

Opening − 012000 − 000

The corpus given was already cleaned and formatted as a .csv file, so no preprocessing
was needed. This was one of the main reasons why this corpus was chosen, to start the
analysis in Weka and TensorFlow right away. However, one data transformation was
applied:

• Training instances order was shuffled. This is relevant because it avoids biases
during the learning process, especially when the dataset is built with a particular
sequence.

Consequently, let’s describe the different algorithms that have been used for such anal-
ysis.

Machine Learning traditional algorithms

After experimenting with all the Weka algorithm set, the following models have been
chosen for the final analysis:

• M.W1: Bayesian Network, with K2 search algorithm and a simple estimator.

• M.W2: Linear logistic regression.

• M.W3: K-nearest neighbors algorithm, with k=1.

• M.W4: Logistic Model Tree (LMT).

We have also built some multilayer perceptron networks with TensorFlow, each of
them with a increasing number of hidden layers. The main purpose of this is to investigate
the behaviour of the model when increasing the number of hidden layers, to check if the
accuracy improves or downgrades. As a result, five more models are presented:

33

Model M.T1 M.T2 M.T3 M.T4 M.T5
Input Layer dense (256) dense (256) dense (256) dense (256) dense (256)

dense (256) dense (256)
dense (256)

dense (256)
dense (256)

dense (256)
Hidden Layers dense (256)

dense (256)
dense (256) dense (256)

Output Layer dense (13) dense (13) dense (13) dense (13) dense (13)

Table 3.1. PIZZA DOMAIN TENSORFLOW MULTILAYER
PERCEPTRON MODELS

The dense layer is just a regular connected ANN layer, as was represented in figure
2.2. Therefore, its output equation will be described by the dot product between the
weight and input vector adding the bias term, as shown in equation 2.1. The resulting
network is then a MLP.

All these models were trained with the adam optimizer, which proved to be the most
effective option for this domain, and sparse_categorical_crossentropy loss function. This
loss function just indicates that the target labels are represented as integers.

Deep Learning algorithms

The design comprises a total of 6 different convolutional neural network architectures,
with different complexity, so as to have a complete analysis of the capabilities of this al-
gorithm. Some of the architectures were referenced from other that proved to work very
good in well-known datasets, such as Vasudevan’s CIFAR-10 classifier [87]. Other archi-
tectures were chosen for what has worked considerably good in previous CNN research
done by the author.

Table 3.2 shows the different architectures chosen. Please note that, as studied in the
State of the Art chapter, CNNs consist of a series of stacked convolutional and pooling
layers that are finally connected to a MLP. For simplicity purposes, the perceptron part
will be omitted. Dropout layers have also been omitted.

Model M.T6 M.T7 M.T8 M.T9 M.T10 M.T11
Conv (16, kernel=2)
Conv (32, kernel=3)

Conv (32, kernel=3) Conv (32, kernel=3)

Pooling (pool=2)
Conv (40, kernel=5)

Conv (64, kernel=4)

Conv (64, kernel=3) Conv (32, kernel=3)
Pooling (pool=2) Conv (32, kernel=3)

Pooling (pool=2)
Pooling (pool=2)

Conv (128, kernel=4)
Conv (64, kernel=3) Pooling (pool=2)

Pooling (pool=2)
Conv (32, kernel=3) Pooling (pool=2)

Pooling (pool=2) Conv (64, kernel=3)
Conv (70, kernel=3)

MLP MLP MLP MLP MLP MLP MLP

Table 3.2. PIZZA DOMAIN TENSORFLOW CNN MODELS

34

All these models were also trained using the adam optimizer and sparse_categorical_crossentropy
loss function.

As the data corpus is small and we do not want to miss any valuable training examples, we
have decided to evaluate the model using cross validation with 5 folds. This means that
the model is trained with the full data corpus but, in order to provide relevant evaluation
metrics, the corpus is divided in 5 partitions. After this, the corpus is trained during 5
iterations, taking 4 of the partitions as training set, and leaving the other one for testing.
The results after all the iterations are then averaged, giving the final metric. Figure 3.2
displays a representation of how a 5-fold cross validation would work.

Fig. 3.2. Representation of a 5-fold cross validation

Results

After running the algorithms, these are the results obtained for each of the models:

Traditional Models Options Accuracy
M.W1 search=K2; estimator=simple 97.93%
M.W2 heuristicStop=50; maxBoostingIt=500 99.02%
M.W3 k=1, linearNNSearch 98.03%
M.W4 minNumInstances=15; numBoostingIt=-1 99.00%
M.T1 epochs=40; optimizer=adam; α=0.001 98.86%
M.T2 epochs=40; optimizer=adam; α=0.001 98.34%
M.T3 epochs=40; optimizer=adam; α=0.001 98.34%
M.T4 epochs=40; optimizer=adam; α=0.001 98.55%
M.T5 epochs=40; optimizer=adam; α=0.001 97.72%

Table 3.3. PIZZA DOMAIN TRADITIONAL MODELS RESULTS

35

Having a look to the table, it can concluded that the models have very similar results,
ranging from 97.72 to 99.02 percent. Therefore, we could say that all of these models will
deliver a very acceptable outcome for the studied domain.

The best results are obtained by the linear logistic regression model, which achieves
an accuracy of 99.02%. However, as it has been explained, performance is very similar
with other algorithms such as LMT or MLP.

As can be seen, the best MLP result is achieved with the simplest model, M.T1, which
has no hidden layers. And the accuracy tendency when increasing the number of hid-
den layers is downwards. This is insightful discovery because, although theoretically the
larger a network it is the better approximation function it would make, the truth is that
many times simpler is actually better. In the case of the pizza domain, which is not very
complicated, results are favorable to smaller networks.

Coding process included the programming of several representational diagrams in
order to facilitate interpretation of results. As a result, taking as a reference model M.T1,
plots are shown for its accuracy evolution and confusion matrix of some of its folds.

Accuracy evolution per number of epoch is presented in figures 3.3, 3.4 and 3.5.

Fig. 3.3. Pizza Domain model M.T1 accuracy evolution (Fold 1)

36

Fig. 3.4. Pizza Domain model M.T1 accuracy evolution (Fold 2)

Fig. 3.5. Pizza Domain model M.T1 accuracy evolution (Fold 3)

As can be observed, training evolution is gradual and it converges at around epoch
35. Overfitting is not found, as the validation accuracy rises proportionally to the training
accuracy, and it does not decrease at any moment, showing good generalization. An-
other relevant detail is that results between folds behave extremely similar, with very few
variations in the final precision obtained (at most, 0.8 percentage points). Therefore, a
successful learning process can be confirmed.

Tables 3.4 and 3.5 represent the confusion matrices made for folds 2 and 3, respec-
tively. For portrayal reasons, only the numeric value of the class will be plotted. The
numbering ordered is the same as the one specified when previously identifying each of

37

the labels. For instance, number 1 does not appear (Opening state), number 2 will corre-
spond to asking the type of order, and so on.

Accuracies for each of the classes are very well condensed, with no class apparently
being excessively weak in the predictions. Therefore, it can concluded that errors found
are due to small outliers in the data corpus, and there is not an specific class with a high
misclassification rate.

P r e d i c t e d L a b e l
2 3 4 5 6 7 8 9 10 11 12 13 14

2 14 0 0 0 0 0 0 0 0 0 0 0 0
3 0 10 0 0 0 0 0 0 0 0 0 0 0
4 0 0 17 1 0 0 0 0 0 0 0 0 0
5 0 0 0 21 0 0 0 0 0 0 0 0 0
6 0 0 0 0 34 0 0 0 0 0 0 0 0
7 0 0 0 0 0 48 0 0 0 0 0 0 0
8 0 0 0 0 0 0 6 0 0 0 0 0 0
9 0 0 0 0 0 0 0 3 0 0 0 0 0

10 1 0 0 0 0 0 0 0 11 0 0 0 0
11 0 0 0 0 1 0 0 0 0 6 0 0 0
12 0 0 0 0 0 0 0 0 0 0 3 0 0
13 0 0 0 0 0 0 0 0 0 0 0 14 0

T
r
u
e

L
a
b
e
l

14 0 0 0 0 0 0 0 0 0 0 0 1 51

Table 3.4. PIZZA DOMAIN MODEL M.T1 CONFUSION MATRIX
(FOLD 2)

P r e d i c t e d L a b e l
2 3 4 5 6 7 8 9 10 11 12 13 14

2 14 0 0 0 0 0 0 0 0 0 0 0 0
3 0 9 0 0 0 0 0 0 0 0 0 0 0
4 0 0 23 0 0 0 0 0 0 0 0 0 0
5 0 0 0 31 0 0 0 0 0 0 0 0 0
6 0 0 0 0 49 0 0 0 0 0 0 0 0
7 0 0 0 0 0 33 0 0 0 0 0 0 0
8 0 1 0 0 0 0 5 0 0 0 0 0 0
9 0 0 0 0 1 0 0 8 0 0 0 0 0

10 0 0 0 0 0 0 0 1 4 0 0 0 0
11 0 0 0 0 0 0 0 0 0 3 0 0 0
12 0 0 0 0 0 0 0 0 0 0 5 0 1
13 0 0 0 0 0 0 0 0 0 0 0 13 0

T
r
u
e

L
a
b
e
l

14 0 0 0 0 0 0 0 0 0 0 0 0 41

Table 3.5. PIZZA DOMAIN MODEL M.T1 CONFUSION MATRIX
(FOLD 3)

38

Results for the designed CNN models are presented in table 3.6.

CNN Models Options Accuracy
M.T6 epochs=40; optimizer=adam; α=0.001 98.26%
M.T7 epochs=40; optimizer=adam; α=0.001 98.96%
M.T8 epochs=40; optimizer=adam; α=0.001 98.74%
M.T9 epochs=40; optimizer=adam; α=0.001 96.79%

M.T10 epochs=40; optimizer=adam; α=0.001 98.55%
M.T11 epochs=40; optimizer=adam; α=0.001 98.85%

Table 3.6. PIZZA DOMAIN CNN MODELS RESULTS

The results obtained are very acceptable, ranging from 96.79 to 98.96 percent. How-
ever, there is a significant conclusion to make: these models are not improving tradi-
tional architectures results.

The best results are obtained by model M.T7, which achieves an accuracy of 98.96%.
Although we could argue that this model is equivalent to the best traditional model,
M.W2, by no means we can claim that the CNN is offering better results. As a result,
a Deep Learning solution is not suitable for this domain.

An important comment to make is regarding the complexity of the network. As it
was previously anticipated with the MLP results, a more complex network has no cor-
relation with a better approximation of the result. This appreciation appears again when
dealing with CNNs: while the networks (M.T7, M.T8, M.T11) are achieving the highest
performances, architectures with a larger number of convolutional and pooling layers are
decreasing the performance.

Taking as a reference model M.T7, plots are shown for its accuracy evolution and
confusion matrix.

Fig. 3.6. Pizza Domain model M.T7 accuracy evolution (Fold 1)

39

Fig. 3.7. Pizza Domain model M.T7 accuracy evolution (Fold 4)

Training process with convolutional networks is faster than with traditional methods,
achieving a convergence at around epoch 15. Good generalization is also shown, with no
sign of overfitting in the model. Therefore, a satisfactory learning can be affirmed.

Table 3.7 represents the confusion matrix made for fold 1. As with model M.T1,
there is no sign of a high misclassification rate in any specific class. As a result, the Deep
Learning model is completely capable of making accurate predictions in this domain, with
very few error probability for any of the system scenarios.

P r e d i c t e d L a b e l
2 3 4 5 6 7 8 9 10 11 12 13 14

2 18 0 0 0 1 0 0 0 0 0 0 0 0
3 0 10 0 0 0 0 0 0 0 0 0 0 0
4 0 0 22 0 0 0 0 0 0 0 0 0 0
5 0 0 0 21 0 0 0 0 0 0 0 0 0
6 0 0 0 0 44 0 0 0 0 0 0 0 0
7 0 0 0 0 0 39 0 0 0 0 0 0 0
8 0 2 0 0 0 0 9 0 0 0 0 0 0
9 0 0 0 0 1 0 0 7 0 0 0 0 0

10 0 0 0 0 0 0 0 0 9 0 0 0 0
11 0 0 0 0 0 0 0 0 0 6 0 0 0
12 0 0 0 0 0 0 0 0 0 0 3 0 0
13 0 0 0 0 0 0 0 0 0 0 0 17 0

T
r
u
e

L
a
b
e
l

14 0 0 0 0 0 0 0 0 0 0 0 0 33

Table 3.7. PIZZA DOMAIN MODEL M.T7 CONFUSION MATRIX
(FOLD 1)

40

CNNs have not brought any improvement from traditional ML algorithms. It is also
true that a domain that generalizes so well with simple architectures can be hard to refine.
Hence, more complex domains will be tried as they could provide more insights of the
validity of Deep Learning for this type of problems.

As a last resource, one more experiment is going to be performed, building an en-
semble. An ensemble is basically a group of N trained networks, in which results are
combined to produce an overall result. Theoretically, the combination of several net-
works should give better results, as the weaknesses of one network can be compensated
by the others.

In this case, a majority-vote ensemble has been crafted. It takes the output labels for
every network, and it returns the one that has appeared the most, that is, the mode. An
example is shown in the figure 3.8.

Fig. 3.8. Representation of a majority-vote ensemble (Source: [88])

For the pizza domain case, a total of six networks were chosen, combining two MLP
and four CNN architectures: M.T1, M.T5, M.T6, M.T7, M.T10 and M.T11. Results
obtained by the ensemble are shown in table 3.8.

Ensemble Options Accuracy
M.Ensemble epochs=40; optimizer=adam; α=0.001 99.05%

Table 3.8. PIZZA DOMAIN ENSEMBLE MODEL RESULTS

Results show a rise in accuracy when combining all the models than for each model
individually. Therefore, building an ensemble is recommended. However, the improve-
ment is not significant, confined only to few training examples. As a result, it can be

41

confirmed that the percent point that any algorithm is capable of modelling corresponds
to a small number of outliers in the dataset.

Finally, the confusion matrix for ensemble’s fold 3 is shown in table 3.9, which
achieves almost a perfect classification rate.

P r e d i c t e d L a b e l
2 3 4 5 6 7 8 9 10 11 12 13 14

2 9 0 0 0 0 0 0 0 0 0 0 0 0
3 0 6 0 0 0 0 0 0 0 0 0 0 0
4 0 0 22 0 0 0 0 0 0 0 0 0 0
5 0 0 0 23 0 0 0 0 0 0 0 0 0
6 0 0 0 0 31 0 0 0 0 0 0 0 0
7 0 0 0 0 0 49 0 0 0 0 0 0 0
8 0 1 0 0 0 0 4 0 0 0 0 0 0
9 0 0 0 0 0 0 0 6 0 0 0 0 0
10 0 0 0 0 0 0 0 0 8 0 0 0 0
11 0 0 0 0 0 0 0 0 0 3 0 0 0
12 0 0 0 0 0 0 0 0 0 0 5 0 0
13 0 0 0 0 0 0 0 0 0 0 0 14 0

T
r
u
e

L
a
b
e
l

14 0 0 0 0 0 0 0 0 0 0 0 0 61

Table 3.9. PIZZA DOMAIN MODEL M.ENSEMBLE CONFUSION
MATRIX (FOLD 3)

3.2. Analysis for train scheduling domain

The second corpus that was evaluated is based in the train scheduling domain, in which
users would ask the conversational interface about information regarding various train
routes (e.g. origin and destination, departure time, price...), and the system would process
the petition and retrieve the required information. This corpus is a cession from Dr. Griol
Barres that was used as corpus for the development of his PhD. thesis [89]. In such
publication, the author experiments with different ML algorithms, but Deep Learning
proposals are not presented, so this work will try to complete such investigation.

The corpus consists of 4006 training instances, each of the labelled with the possi-
ble actions that the conversational interface could retrieve to each input. Those are the
following:

1. Opening.
2. Ask the destination city of the train.
3. Ask the departure date of the train.
4. Ask to confirm the departure date of the train.

42

5. Retrieve answer for the train schedule.

6. Closing.

7. Ask if the request is for train schedules.

8. Ask to confirm the destination city of the train.

9. Retrieve answer for the train price.

10. Ask to confirm the origin city of the train.

11. Ask to confirm the type of train.

12. Retrieve answer for the train type.

13. Ask to confirm the departure hour of the train.

14. Ask to confirm the destination city and departure hour of the train.

15. Ask to confirm the origin city and price of the train.

16. Ask to confirm the type of ticket class for the train passenger.

17. Ask to confirm the arrival hour of the train.

18. Ask if the request is for train types.

19. Retrieve answer for the train services.

20. Ask if the request is for train prices.

21. Retrieve answer for the train travel time.

22. Ask to confirm the departure date and hour of the train.

23. Ask to confirm the origin city and departure hour of the train.

The codification applied for this corpus is based on the one authors followed in [77],
which is very similar to the one for the pizza domain. In order to keep an active dialog
state, it is not relevant to know the exact piece of information that the user has given, but
only if the type of information that has been mentioned during the dialog. As a result,
attributes will be codified with the values 0, 1, 2 according to the following criteria: 0, if
the concept is unknown or value has not been given yet; 1, if the concept is known with a
confidence higher than a given threshold; and 2, if the concept is known with a confidence
lower than a given threshold.

In order to predict each action, the examples have 19 input attributes:

• prev_response, which stores the previous action taken by the system, as a context.

• Five task-dependent attributes, which will denote the type of request the user is
asking for. These attributes are:

1. Ask for timetable.

2. Ask for price.

3. Ask for train type.

4. Ask for order number.

5. Ask for services list.

43

• Ten task-dependent attributes, which will denote the type of information that has
been mentioned in the dialog. These attributes are:

1. Origin city.

2. Destination city.

3. Departure date.

4. Arrival date.

5. Departure hour.

6. Arrival hour.

7. Ticket class.

8. Train type.

9. Order number.

10. Services list.

• Three task-independent attributes, which will be codified with the same criteria as
before, and will provide important information to build a more complete system.
The slots are:

1. Acceptance: if the user has confirmed some information.

2. Rejection: if the user has denied some information.

3. Not-understood: if the system has not identified the user’s input.

An example of interaction is shown in Figure 3.9:

44

Fig. 3.9. Example of interaction between the user and the CUI within the train scheduling domain
(Source: [77])

As can be observed, after the opening action, the user asks for the trains leaving to-
morrow from Granada to Madrid. Both the origin and destination cities are identified
with a high level of confidence, changing the value in their respective slot to 1. However,
the departure date is identified with a very low level of confidence, so it will be stored
with a value of 2. The type of request is also identified as a train schedule query, so its
corresponding slot gets a value of 1. On the other hand, the task-independent information
does not variate, as the user is not providing either confirmation or denial. Therefore, the
value that will be passed to the model will be:

Opening − 10000 − 1120000000 − 000

The corpus was originally given as a .txt file, consisting of separated dialogs, each of
them containing a list of interaction turns with the following structure:

<prev_response>−<in f _mentioned>−<type_query>−<indep_attr>−<response>,

where:

• prev_response is a string denoting the previous system response,
• inf_mentioned is a string of 10 digits denoting the type of information that has been

mentioned in the dialog,
• type_query is a string of 5 digits indicating the type of request the user is asking for,
• indep_attr is a string of 3 digits representing the acceptance, rejection and misun-

derstandings states, as explained before, and

45

• response is a string denoting the system response.

There were originally 28 types of responses. Some of them were representing the
same dialog state, and others had at most 1 instance representing them. As such, the
corpus was cleaned, merging similar states and omitting underrepresented exceptional
dialog situations. The resulting label set was the one explained above.

After this, all the labels were transformed into integer numbers. The main reason for
this is that TensorFlow does not operate with non-integer entities, such as strings, so the
parsing was necessary. The corpus was also shuffled because, as it has been previously
noted, it prevents any possible biased inferred from the data order. Finally, the file was
formatted as a .csv for its correct parsing in Weka and TensorFlow.

As it can be noticed, this domain has an added difficulty compared to the previously
analyzed problem. The corpus is four times larger, while the input attribute set is twice
as extensive. Therefore, it is expected to be a more difficult corpus to approximate, where
Deep Learning can show its potential.

Let’s now describe the different algorithms used for the analysis in the train scheduling
domain.

Machine Learning traditional algorithms

For the Weka analysis, we experimented with the same algorithms as for the pizza set, as
they proved to be the most flawless ones:

• M.W1: Bayesian Network, with K2 search algorithm and a simple estimator.

• M.W2: Linear logistic regression.

• M.W3: K-nearest neighbor algorithm, with k=1.

• M.W4: Logistic model tree.

TensorFlow MLP modelling was also very similar. A progressive process was fol-
lowed, in which models with an increasing number of layers were designed. The main
objective pursued by this approach is to see the differences when increasing the complex-
ity of the MLP. Hence, five models were built:

46

Model M.T1 M.T2 M.T3 M.T4 M.T5
Input Layer dense (256) dense (256) dense (256) dense (256) dense (256)

dense (256) dense (256)
dense (256)

dense (256)
dense (256)

dense (256)
Hidden Layers dense (256)

dense (256)
dense (256) dense (256)

Output Layer dense (13) dense (13) dense (13) dense (13) dense (13)

Table 3.10. TRAIN DOMAIN TENSORFLOW MULTILAYER
PERCEPTRON MODELS

All these models were trained with the adam optimizer, which proved to be the most
effective option for this domain, and sparse_categorical_crossentropy loss function.

Deep Learning algorithms

We have designed a total of 6 different convolutional neural networks architectures, with
different complexity, so as to have a complete analysis of the capabilities of this algorithm.
Some of them are very similar to the ones built for the pizza ordering domain (thus,
extracted from [87] and previous experimentation), while others have incorporated and
added complexity in the form of extra layers.

Table 3.11 shows the different architectures chosen. For simplicity purposes, Dropout
and MLP layers have been omitted.

Model M.T6 M.T7 M.T8 M.T9 M.T10 M.T11
Conv (16, kernel=2) Conv (32, kernel=3) Conv (32, kernel=3) Conv (40, kernel=5)
Conv (32, kernel=3) Pooling (pool=2) Conv (32, kernel=3) Pooling (pool=2)

Pooling (pool=2) Pooling (pool=2) Conv (70, kernel=3)
Conv (64, kernel=4)

Conv (64, kernel=3) Conv (32, kernel=3)
Conv (64, kernel=3)

Conv (500, kernel=3)
Pooling (pool=2)

Conv (64, kernel=3)
Pooling (pool=2)

Conv (128, kernel=4)
Pooling (pool=2)

Conv (128, kernel=3) Conv (1024, kernel=3)
Pooling (pool=2)

Conv (32, kernel=3) Pooling (pool=2)
Conv (128, kernel=3) Pooling (pool=2) Pooling (pool=2)

MLP MLP MLP MLP MLP MLP MLP

Table 3.11. TRAIN DOMAIN TENSORFLOW CNN MODELS

All these models were also trained using the adam optimizer and sparse_categorical_crossentropy
loss function.

The model evaluation methodology chosen is cross validation with 5 folds. As with the
pizza ordering domain, we do not want to miss any valuable piece of information from
the dataset, so the final model will be built from the complete corpus, but the evaluation
metrics will be obtained from the average of the 5 folds results.

47

Results

After running the algorithms, these are the results obtained for each of the models:

Traditional Models Options Accuracy
M.W1 search=K2; estimator=simple 90.06%
M.W2 heuristicStop=50; maxBoostingIt=500 92.26%
M.W3 k=1, linearNNSearch 89.59%
M.W4 minNumInstances=15; numBoostingIt=-1 91.24%
M.T1 epochs=150; optimizer=adam; α=0.0005 92.34%
M.T2 epochs=150; optimizer=adam; α=0.0005 91.79%
M.T3 epochs=150; optimizer=adam; α=0.0005 91.39%
M.T4 epochs=150; optimizer=adam; α=0.0005 91.46%
M.T5 epochs=150; optimizer=adam; α=0.0005 91.14%

Table 3.12. TRAIN DOMAIN TRADITIONAL MODELS RESULTS

In this domain, results have a greater variance, ranging from 89.59 to 92.44 percent.
While some estimators, such as Bayesian networks or k-nearest networks, are proved to
perform more poorly, neural networks and regression clearly achieve better outcomes.

The best results are obtained by the first Perceptron architecture, which has no hidden
layers. It achieves an accuracy of 92.34%. Following with the pizza domain hypothesis,
we also find that simpler networks are producing better approximation functions than the
more complex architectures. As a result, it could be argued than this domain is also a bit
easy to approximate and that CNNs may not be necessary.

Model M.T1 has been taken as a representative as it has the highest accuracy. Plots
will be shown for its accuracy evolution and confusion matrix of some of its folds.

Accuracy evolution per number of epoch is the following:

48

Fig. 3.10. Train Domain model M.T1 accuracy evolution (Fold 1)

Fig. 3.11. Train Domain model M.T1 accuracy evolution (Fold 2)

49

Fig. 3.12. Train Domain model M.T1 accuracy evolution (Fold 4)

As can be observed, training for this problem is a bit harder, and it takes more epochs
to approximate. However, eventually it still converges at around epoch 75. As we can see,
the training accuracy continues rising while the validation accuracy stays steady. As this
could be the principle of overfitting, it has been decided to stop the learning in epoch 150.
The model shows good generalization, and fold results are quite similar, so a successful
learning process can be confirmed.

Tables 3.13 and 3.14 represent the confusion matrices made for folds 4 and 5, respec-
tively. For portrayal reasons, only the numeric value of the class will be plotted. The
numbering ordered is the same as the one specified when previously identifying each of
the labels. For instance, number 1 does not appear (Opening state), number 2 will corre-
spond to asking the destination city of the train, and so on.

As it can be observed from the predicted versus actual plot, the diagonal is the one
were all the results are, confirming good predictions. We can also observe that the classes
from the lower area of the graph seem to be a bit empty. The reason for this is that
there was a very small number of instances labelled with this classes. However, they
still classify correctly and are relevant in the context of building a more complete spoken
dialog system, so those are the reason why they have been kept.

50

P r e d i c t e d L a b e l
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 48 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 68 0 0 0 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 217 5 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 3 140 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
7 0 1 1 0 0 29 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
8 0 1 1 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
9 0 0 0 1 4 0 0 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 10 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
12 0 1 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0
13 0 0 1 0 1 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
15 0
16 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
19 0
20 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
21 0
22 0 1 0

T
r
u
e

L
a
b
e
l

23 0 2

Table 3.13. TRAIN DOMAIN MODEL M.T1 CONFUSION MATRIX
(FOLD 4)

P r e d i c t e d L a b e l
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 27 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 75 0 1 1 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 45 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 5 0 206 3 1 0 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 3 130 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 0 39 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 1 0 1 0 0 15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 4 1 0 0 110 0 0 1 0 0 0 0 0 0 0 0 0 0 0

10 2 1 2 1 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0 0 0 0 0 0 0
14 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
17 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
18 0
19 0
20 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
22 0

T
r
u
e

L
a
b
e
l

23 0

Table 3.14. TRAIN DOMAIN MODEL M.T1 CONFUSION MATRIX
(FOLD 5)

51

Results for the designed CNN models are presented in table 3.15.

CNN Models Options Accuracy
M.T6 epochs=150; optimizer=adam; α=0.0005 91.94%
M.T7 epochs=150; optimizer=adam; α=0.0005 91.66%
M.T8 epochs=150; optimizer=adam; α=0.0005 91.98%
M.T9 epochs=150; optimizer=adam; α=0.0005 91.69%

M.T10 epochs=150; optimizer=adam; α=0.0005 80.68%
M.T11 epochs=150; optimizer=adam; α=0.0005 91.39%

Table 3.15. TRAIN DOMAIN CNN MODELS RESULTS

Results for the CNN models range from 80.68 to 91.98 percent. As with the pizza
domain case, we arrive to the same conclusion: Deep Learning outcomes are not getting
better than traditional architectures.

Best results are obtained by model M.T8, which achieves an accuracy of 91.98%. It
is relevant to notice that this architecture is the simplest one, with just a convolutional and
a pooling layer. However, other complex architectures achieve the same results, such as
M.T6, which obtains a 91.94%.

Let’s stop to comment the case of M.T10. While all the models tried usually are in the
same accuracy range, this model falls apart by about eleven percent points. Figure 3.13
plots its accuracy evolution, and it can be observed that the model converges at around
80% and keeps the same result for almost 90 epochs. There is no apparent explanation of
it, since other models are even mode complex, like M.T11. For this reason, it has been
dismissed for further analysis.

Fig. 3.13. Train Domain model M.T10 accuracy evolution (Fold 4)

52

Taking as a reference model M.T8, which is the best model, plots are shown for the
accuracy evolution and confusion matrix.

Fig. 3.14. Train Domain model M.T8 accuracy evolution (Fold 1)

Fig. 3.15. Train Domain model M.T8 accuracy evolution (Fold 3)

Training process is harder than for the pizza domain, showing some irregularities in
the learning process. However, we can appreciate convergence at around 92%. Good
generalization is also shown, with no sign of overfitting in the model. Therefore, a satis-
factory learning can be affirmed.

Table 3.16 represents the confusion matrix made for fold 1. As with model M.T1,
there is no sign of a high misclassification rate in any specific class. As a result, the Deep

53

Learning model is completely capable of making accurate predictions in this domain, with
very few error probability for any of the system scenarios.

P r e d i c t e d L a b e l
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 39 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 76 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 47 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
5 0 2 0 204 2 0 0 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 0 2 140 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
7 1 2 0 0 0 46 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0
8 0 5 1 0 0 0 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 2 3 0 0 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 2 5 0 0 0 0 0 0 23 0 3 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0
12 0 1 0 1 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0
13 0 0 1 0 0 0 0 0 1 0 0 9 0 0 0 0 0 0 0 0 0 0
14 0
15 0
16 0
17 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
18 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
22 0 1 0

T
r
u
e

L
a
b
e
l

23 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2

Table 3.16. TRAIN DOMAIN MODEL M.T8 CONFUSION MATRIX
(FOLD 1)

For the train domain, we also decided to merge several trained networks and build
a majority-vote ensemble. In total, six networks were chosen, combining two MLP and
four CNN architectures: M.T1, M.T4, M.T6, M.T8, M.T9 and M.T11. Results obtained
by the ensemble are shown in table 3.17.

Ensemble Options Accuracy
M.Ensemble epochs=150; optimizer=adam; α=0.0005 92.71%

Table 3.17. TRAIN DOMAIN ENSEMBLE MODEL RESULTS

The ensemble classifier shows the best of the results in accuracy for the domain. When
combining all the models, the lack of precision of a model in a specific set of instances can
be counteracted by the rest of the models, which may approximate better in those exam-
ples. However, the improvement is not very significant, indicating that around 7% of the
example set may be hard to classify correctly without incurring in overfitting. However,
building such ensemble is a recommended technique for this domain.

54

3.3. Conclusions

From the analysis being made, we can extract several relevant conclusions.

The main conclusion is that using CNNs for this datasets does not improve other tra-
ditional ML techniques like neural networks or regression trees. As a result, they are not
recommended. After a exhaustive analysis, we have predicted that the data examples may
not have a local correlation. For this reason, CNNs do not provide advantages, because
they stand out of other algorithms when it is important to detect local characteristics, as it
happens with images.

One solution to this problem, where CNNs could really make a difference, is to rep-
resent the examples with another codification. For example, using word2vec codification,
where relations between adjacent words are kept, could be a good scenario for applying
Deep Learning rather than MLPs. As such, alternative codification could be tried in future
research.

Another approach could be to use a much larger dataset, which traditional algorithms
could not handle. However, in the dialog management domain, it is really hard to find
large datasets, so work to build synthetic ones could also be a good strategy.

We have also extracted a valuable lesson regarding network architectures. Although,
theoretically, a more complex architecture could approximate functions more precisely,
in the practice this is not always the case. In both of the studied models, simpler MLP
architectures won the more complex ones, and CNNs with less amount of convolutional
and pooling layers have usually returned better results.

The last relevant conclusion after the analysis has to do with the use of ensembles.
Although the datasets or algorithms used do not provide better outcomes, one can always
trying to combine such things to see if that improves the experiments. In our case, the
use of ensembles has risen the accuracy and has provided valuable information about the
nature of our corpus.

55

4. IMPLEMENTATION OF THE CONVERSATIONAL AGENT

This section explains the process followed to implement a real conversational agent
using one of the dialog manager models built with Deep Learning methodologies. In par-
ticular, the dialog manager implemented will correspond to the train scheduling corpus.

The development process will cover the use of DialogFlow, a framework to construct
chatbots and spoken dialog systems developed by Google, to define the elements needed
for a correct natural language understanding platform. Besides, we will explain how to
integrate the model with DialogFlow to respond according to the neural network output,
and how to save the information with Firebase Functions and Firebase Realtime Database.

4.1. DialogFlow Basic Elements

Although we cannot go through the entire DialogFlow documentation, we will explain the
basic concepts required to understand our CUI implementation. As it was previously de-
veloped, a dialog system requires of five basic elements: the automatic speech recognizer,
the language understanding module, the dialog manager and natural language generator
(which are generally grouped into dialog manager), and the text-to-speech synthesizer.
DialogFlow, as part of Google’s development toolkit, already comes with the ASR and
TTS modules. The dialog manager will be provided by one of the models we crafted
during the experimentation phase. As a result, the only module that is left to build is the
natural language understanding module.

For this purpose, DialogFlow has three basic elements that developers can use to build
their systems: intents, entities and contexts [90].

4.1.1. Intents

Intents are the main element to build conversations. Each intent defines examples of
user utterances that can trigger the intent, what to extract from the utterance, and how
to respond. As a result, depending on the user input, the agent will map to a specific
intent, in order to provide a response. Therefore, it represents one dialog turn within the
conversation.

Intents consists of four main components:

1. Intent name. Used to identified the matched intent.

2. Training phrases. Examples of what users can say to match a particular intent.
From the ones the developer provides, DialogFlow automatically expands the phrases
to match similar user utterances.

56

3. Actions and parameters. Defines the relevant information extracted from user ut-
terances. Examples of this kind of information include dates, times, names, places,
and more.

4. Response. The system output that is displayed to the user. In our case, responses
will not be defined and, instead, user’s input will be send to a webhook that, using
our model, will provide the response back to the user. This process will be explained
in next section (DialogFlow Fulfillment).

For the train scheduling SDS, the conversations gathered in the data corpus were taken
into account in order to build the intent set. Note that, as we would like to simulate
a national railway company (RENFE), intents have been defined in Spanish. Table 4.1
shows the considered intents, along with their translation to English.

Intent Name Training Phrases Parameters

Change-Departure-Date

¿Y a las 4 de la tarde ? (And for 4 pm ?)
¿Y para el 4 de abril de 2019 ? (And for the 4th of April 2019 ?)

¿Puedes decirme para el 3 de mayo a las 5:00 ?
(Could you tell me for May the 3rd at 5:00 ?)

departureDate
departureHour

Confirmation

Claro (Of course)
Es correcto (That is correct)

Correcto (Correct)
Sí (Yes)

-

Say-Destination

Mi destino es Barcelona (My destination is Barcelona)
Quiero ir a Barcelona en un AVE (I want to go to Barcelona by AVE)

A Barcelona (To Barcelona)
Ir a Barcelona (Go to Barcelona)

A Barcelona el día 7 de abril (To Barcelona the 7th of April)
Viajo a Barcelona para mañana (I am travelling to Barcelona tomorrow)

El destino es Barcelona (The destination is Barcelona)
Voy a Barcelona el día 8 de mayo en AVE

(I am going to Barcelona the 8th of May by AVE)
Viajo a Barcelona (I am travelling to Barcelona)

destination
departureDate

trainType

57

Intent Name Training Phrases Parameters

Say-Departure-Date

Para mañana (For tomorrow)
Me gustaría salir el 2 de abril (I would like to depart April the 2nd)

Para mañana a las 3 (For tomorrow at 3)
Salgo el 4 de marzo a las 8 de la tarde (I depart March the 4th at 8 pm)

Me gustaría coger el tren a las 5 y cuarto de hoy
(I would like to take the train today at quarter past 5)

Me gustaría salir el 2 de abril a las 16:00
(I would like to depart April the 2nd at 16:00)

Me gustaría coger el tren el 3 de abril
(I would like to take the train April the 3rd)
Salgo el 4 de marzo (I depart March the 4th)

departureDate
departureHour

Say-Arrival-Hour

Sí, quiero que me digas los que lleguen a las 4:00
(Yes, I would like to know the ones that arrive at 4:00)

Quiero que llegue a las 4:00 (I would like the train to arrive at 4:00
Me gustaría llegar a las 3:00 (I would like to arrive at 3:00)

La hora de llegada debe ser las 3:00 (The arrival hour must be 3:00)
Busca horarios para trenes que lleguen a las 2:00

(Search for trains arriving at 2:00)

arrivalHour

Welcome

Buenas tardes (Good afternoon)
Muy buenas (Hi there)

Buenas noches (Good evening)
Buenas (Hi)
Hey (Hey)

Hola (Hello)
Buenos días (Good morning)

Saludos (Greetings)
Chao (Chao)

-

Denial

Eso no es lo que he dicho (I did not say that)
Está mal (That is incorrect)

Incorrecto (Incorrect)
No (No)

No quiero nada más (I do not want anything else)
No, gracias (No, thank you)

No, muchas gracias (No, thank you so much)
Gracias por tu ayuda. Hasta pronto (Thanks for your help. See you soon)

-

Not_Understood
Fallback Intent, triggered if a user’s input is not

matched by any of the regular intents.
-

58

Intent Name Training Phrases Parameters

Ask-Schedule

Tren desde Madrid (Train from Madrid)
Me gustaría saber los horarios desde Madrid para mañana

(I would like to know the schedule from Madrid for tomorrow)
¿Me puedes decir los trenes que salgan a las 5:00 ?
(Could you tell me the trains that depart at 5:00 ?)

Quiero un tren desde Madrid a Barcelona el día 4 de abril
(I would like a train from Madrid to Barcelona for April the 4th).

Quiero un tren desde Madrid a Barcelona
(I would like a train desde Madrid a Barcelona)

Horarios de tren desde Madrid a las 7:00
(Train schedules from Madrid at 7:00)

Quiero coger un tren desde Madrid a las 8 de la tarde
(I would like to take a train from Madrid at 8 pm)

Me gustaría coger un tren que salga desde Madrid hasta Barcelona
(I would like to take train departing from Madrid to Barcelona)

Me gustaría coger un tren AVE que salga desde Madrid a Barcelona
(I would like to take an AVE train going from Madrid to Barcelona)

Me gustaría coger un tren desde Madrid en clase turista
(I would like to take a train from Madrid in tourist class)

Quiero salir desde Sevilla (I want to depart from Sevilla)
Quiero un tren desde Madrid en clase turista
(I want a train from Madrid in tourist class)

Me gustaría saber los horarios de AVE para la ruta Madrid a Barcelona
(I would like to know the AVE schedule from the Madrid - Barcelona route)

Quiero los horarios de tren desde Madrid a Barcelona de tipo FEVE
(I want the train schedules from Madrid to Barcelona of type FEVE)

Quiero los horarios de AVE desde Madrid para hoy
(I want the AVE schedules from Madrid for today)
¿Qué tren puedo coger que salga a las 8 de la tarde ?

(Which train could I take that departs at 8 pm ?)
Sí, me gustaría saber si alguno sale a las 4:00

(Yes, I would like to know if anyone departs at 4:00)
Sí, quiero que sea AVE (Yes, I would like it to be AVE)

Sí, me gustaría que me dijeras los de tipo AVE
(Yes, I would like to know the ones of type AVE)

Sí, me gustaría saber los horarios (Yes, I would like to know the schedule)

origin
destination
ticketClass

departureDate
departureHour

trainType

59

Intent Name Training Phrases Parameters

Ask-Prices

¿Cuánto vale? (How much does it cost?))
¿Cuánto cuesta viajar en AVE ? (How much does it cost to travel by AVE ?))

Quiero el precio para llegar a las 5:00
(I want the price for trains arriving at 5:00))
¿Y cuál es el precio? (And what is the price?))

¿Y cuál es el precio de un AVE ? (And what is the price for an AVE ?))
Quiero saber el precio de los que lleguen a las 9:00

(I would like to know the price for the ones arriving at 9:00))
¿Me puedes decir el precio? (Could I know the price?))
Quiero el precio de los trenes que lleguen a las 8:00

(I want the prices of the trains arriving at 8:00))
Quiero saber cuánto vale viajar en AVE

(I would like to know how much does it cost to travel by AVE))
Sí, me gustaría saber los precios (Yes, I would like to know the price)

arrivalHour
trainType

Ask-Services

Quiero saber qué servicios se incluyen
(I would like to know the available services)

Sí, me gustaría saber los servicios que tiene el tren
(Yes, I would like to know the services the train includes)

¿Y qué servicios incorpora este tren?
(And what services does this train include?)

Ask-Route-Length

Sí, ¿cuál es la duración del trayecto? (Yes, what is the route length?)
¿Cuál es el tiempo de recorrido? (What is the route length?)

Sí, me gustaría saber el tiempo que se tarda
(Yes, I would like to know how long does it take)

¿Cuánto se tarda? (How long does it take?)
¿Cuánto tarda el tren en llegar? (How long does the train take to arrive?)

Sí, quiero saber el tiempo de recorrido
(Yes, I would like to know the route length)

Ask-Train-Type

¿Y cuál es el tipo de tren? (And which is the train type?)
Me gustaría saber los tipos de trenes disponibles
(I would like to know the available train types)

Sí, quiero saber el tipo de tren (Yes, I would like to know the train type)
¿Y qué tipo de tren es? (And what type of train is it?)

Me gustaría saber el tren que sale a las 5 de la mañana
(I would like to know the train that departs tomorrow at 5 am)

¿Qué tipo de tren sale a las 4 de la tarde ? (What type of train departs at 4 pm ?)
¿Algún tren ofrece wifi ? (Does any train offer wifi ?)

Me gustaría saber qué tipo de tren ofrece servicio de películas
(Yes, I would like to know which train type offers movie service)

services
departureHour

Table 4.1. INTENTS DEFINED FOR THE TRAIN SCHEDULING
SDS, ALONG WITH THEIR CORRESPONDING TRANSLATION TO

ENGLISH

Parameters indicate the type of information that should map in each of the training

60

phrases. For example, although we have trained the intent Say-Destination with the city
Barcelona, this just indicates that it is an object of type destination, and could be substi-
tuted by any other representative of the same type (Madrid, Sevilla, Bilbao...). As a result,
any time the intent Say-Destination is matched, we will have a value for type destination
that will give us relevant information about the user’s query.

An important remark to make is that not all the parameters appear in each intent. That
is because the training phrases have been defined based on the corpus set, and parameters
were not mentioned in every type of utterance. To give an example, services were not
mentioned when asking for an schedule, and for that reason they were not included in
such intent.

4.1.2. Entities

Entities are objects that are used as a mechanism for identifying and extracting useful
data from natural language inputs. That information can be used and treated as an in-
put into other logic, such as looking up information, carrying out a task, or returning a
personalized response.

DialogFlow incorporates a wide variety of predefined system entities, which allow the
extraction of information with any additional configuration. Some of them include dates,
times, cities, colors, units of measure, or names. However, developers can define their
own entities depending on the domain for which the chatbot is being built. In order to do
that, two main components are needed:

1. Entity type. Defines the type of information you want to extract from user input.
For example, a supermarket system may require the entity ’fruit’.

2. Entity entry. These are the elements that belong to the same entity type. For the
fruits example, entries could include banana, strawberry or orange. Each entry may
contain several words, which will be considered to be equivalent or synonyms. For
instance, valid words for entry ’banana’ could be banana, bananas or musa.

For the train scheduling domain, three special entities were defined, all of them related
to common domain vocabulary. Table 4.2 displays these new entities.

61

Entity Name Entity Entries

ticketClass
turista (tourist)

preferente (preference)

trainType

AVE
Alvia
Avant

Cercanías
FEVE

Media distancia

services

cafetería (cafeteria)
cargador (charger)
prensa (newspaper)

servicio de películas (movie service)
wifi (wifi)

Table 4.2. ENTITIES DEFINED FOR THE TRAIN SCHEDULING
SDS, ALONG WITH THEIR CORRESPONDING TRANSLATION TO

ENGLISH

Note that the different train type entries have been extracted from the Spanish railway
company RENFE [91], in order to be as accurate as possible.

Once these entities have been defined, we can point the type of object that each of the
parameters defined belong to. Table 4.3 shows all the parameters used for this domain
together with their corresponding entity type (system or crafted).

Parameter Name Entity Type
origin city (system)

destination city (system)
departureDate date (system)

arrivalDate date (system)
departureHour time (system)

arrivalHour time (system)
ticketClass ticketClass (crafted)
trainType trainType (crafted)
services services (crafted)

Table 4.3. PARAMETERS DEFINED FOR THE TRAIN
SCHEDULING SDS

These parameters correspond to each of the domain-dependent slots that were spec-
ified for the creation of the Deep Learning model. As a result, every time one of the
parameters is mentioned in the intents, that slot will be denoted as mentioned, so as to
predict the system response.

62

4.1.3. Contexts

Contexts represent the current state of a user’s request and allow your agent to carry in-
formation from one intent to another. They can be combined to control the conversational
path that the user will take during the dialog.

For example, if you are doing a Chinese food ordering and you ask the system for the
total cost of the operation, the SDS should have stored in a context variable the type and
number of food items requested, in order to perform such calculation.

However, for the train scheduling SDS, dialog state was not kept using the DialogFlow
context element. In this case, we wanted to keep a huge number of context variables to
make the system work, and using contexts became a very hard task to accomplish. For
that reason, using Firebase Realtime Database arose as a feasible alternative. As a result,
every time a user input is made, the system will look for the last stored state and it will
update it with the new information gathered, hence always having an updated dialog state.

Subsequently, a new database table was created, containing a field for every slot
needed for the prediction with the model, as well as the next state and the real values
of the users’ query parameters. Therefore, the table contains the following attributes:

• prevState. Numeric value of the previous system response.

• origin. Slot value for the origin city (0, 1, 2).

• originValue. Real value that the user mentioned for the origin city.

• destination. Slot value for the destination city (0, 1, 2).

• destinationValue. Real value that the user mentioned for the destination city.

• departureDate. Slot value for the departure date (0, 1, 2).

• departureDateValue. Real value that the user mentioned for the departure date.

• arrivalDate. Slot value for the arrival date (0, 1, 2).

• arrivalDateValue. Real value that the user mentioned for the arrival date.

• departureHour. Slot value for the departure hour (0, 1, 2).

• departureHourValue. Real value that the user mentioned for the departure hour.

• arrivalHour. Slot value for the arrival hour (0, 1, 2).

• arrivalHourValue. Real value that the user mentioned for the arrival hour.

• ticketClass. Slot value for the ticket class (0, 1, 2).

• ticketClassValue. Real value that the user mentioned for the ticket class.

• trainType. Slot value for the train type (0, 1, 2).

• trainTypeValue. Real value that the user mentioned for the train type.

• orderNumber. Slot value for the order number (0, 1, 2).

• orderNumberValue. Real value that the user mentioned for the order number.

63

• services. Slot value for the train services (0, 1, 2).

• servicesValue. Real value that the user mentioned for the train services.

• querySchedule. Slot value for the scheduling type of query (0, 1, 2).

• queryPrice. Slot value for the pricing type of query (0, 1, 2).

• queryTypeTrain. Slot value for the train category type of query (0, 1, 2).

• queryTrainLength. Slot value for the route length type of query (0, 1, 2).

• queryServices. Slot value for the services type of query (0, 1, 2).

• affirm. Slot value for the affirmation user utterance (0, 1, 2).

• deny. Slot value for the denial user utterance (0, 1, 2).

• notUnderstood. Slot value for the not understanding clause (0, 1, 2).

• nextState. Numeric value of the next system response.

4.2. DialogFlow Fulfillment

As we have already seen, intents have a component to provide a system response any
time an intent is matched. However, this system is very limited, because responses do not
include any kind of backend logic, and they can only be associated to a particular intent.
If you want to give different answers depending on the amount of information the system
has provided within the same intent, it is necessary to connect to an external service that
handles that logic. DialogFlow allows this process very easily, by means of fulfillment.
Fulfillment is code that is deployed as a webhook and lets your DialogFlow agent call
business logic on an intent-by-intent basis.

As a result, we created a service using Firebase Cloud Functions that handles the
information extracted by DialogFlow’s natural language processing to generate dynamic
responses based on the Deep Learning model previously created. Figure 4.1 shows a
summary of how all the pieces are assembled, constituting a complete dialog manager for
the spoken dialog system.

64

Fig. 4.1. Dialog Manager Architecture for the proposed SDS implementation

We are now going to explain the interactions with the other Firebase services used
(Hosting and Realtime Database), so that a complete picture of the response assembling
is created.

4.2.1. Model Creation and Integration

The model that has been chosen for the dialog manager is M.T8, as it is the most accurate
Deep Learning architecture that was generated during the experimentation phase. Con-
trary to the process explained during Chapter 3, this time the model was trained with the
whole dataset, as the model validation phase has already been made and we wanted the
model to learn with all the data available. As a result, a new TensorFlow training was
made, this time using the complete corpus.

In order to save the model, Keras offers a basic save format using the Hierarchical
Data Format (HDF) standard. The following code shows an example of how to save the
model in HDF5 format, after compilation and training phases.

CODE 4.1. Saving an HDF5 model

1 ...

2

3 model.compile(optimizer=optimizer ,

4 loss=loss,

5 metrics=metrics)

65

6

7 history = model.fit(train_features , train_labels , epochs=nEpochs,

validation_data=(train_features , train_labels), verbose=2)

8

9 model.save(NAME+’/’+’train_model.h5’)

10

11 ...

However, HDF5 models are not readable by JavaScript objects. Therefore, in order
to perform the predictions, we need to convert the format to JavaScript Object Notation
(JSON). For this, an in-depth tutorial is provided [92] to convert a Keras model to Ten-
sorFlow.js.

The first step is to install the Python package TensorFlowjs. Although the name might
be confusing, this is a Python library to create the .json equivalent of a HDF5 model. To
achieve this, the following command must be executed:

CODE 4.2. Command to conver to JSON format

$ TensorFlowjs_converter --input_format keras \

path/to/train_model.h5 \

path/to/target_dir

Once on the Firebase Cloud Function side, we will need to install @TensorFlow/tfjs
module with NodeJS. After this, the model usage is pretty simple: first, the model is
loaded; later, the input tensor is created; finally, the output is predicted. The following
code shows this process:

CODE 4.3. Using the JSON model with JavaScript

1

2 import * as tf from ’@TensorFlow/tfjs’;

3

4 const model = await tf.loadLayersModel(’path_to_model/train_model.

json’);

5

6 const example = tf.tensor([input_attributes])

7 const prediction = model.predict(example);

8

9 ...

For this project, the model was uploaded to a server using Firebase Hosting services.
Therefore, anytime a request is made to the cloud function, a GET petition is made to the
URL where the model is hosted, and the model is loaded for subsequent use.

66

4.2.2. Handling User Intents

Inside the cloud function, there is a specific handler for each of the different DialogFlow
intents previously defined. Such handlers receive an argument, which is a conversation
object that stores all the variables gathered by DialogFlow during the language under-
standing phase (for example, parameters). To retrieve an answer, method ask within the
conversation object must be called, with the text that the system will retrieve back to the
user.

To give a brief example of how this works, the code for the Not_Understood intent is
shown. This is a fallback handler that is called whenever the system does not understand
what the user is saying, so it does not even interact with the dialog state.

CODE 4.4. Not_Understood fallback handler

1

2 // Not understood

3 app.intent(’No_Entiendo ’, (conv) => {

4 return conv.ask(new SimpleResponse({

5 speech: "No te he entendido. Podrias repetir, porfavor?",

6 text: "No te he entendido. Podrias repetir, porfavor?",

7 }));

8 });

The logic behind every handler is very similar. Firstly, the dialog state that is stored
in the Firebase Realtime Database is retrieved. After this, depending on the intent and
the useful information that the user mentioned, this state will be updated with the new
slots. Once this process has been made, a tensor is created to be passed to the TensorFlow
model, and the prediction is made. With the updated information and the next system
action, the object is stored back to the database, for future intents. Finally, depending on
the next system action, a personalized response is made.

The following code will show an example of the Say-Departure-Date intent, so as to
have a better picture of the process:

CODE 4.5. Say-Departure-Date handler

1

2 // Say Departure Date

3 app.intent(’Decir-Fecha-Salida’, (conv) => {

4 const datos = conv.parameters;

5 return tf.loadLayersModel(’https://trenecitos -1.firebaseapp.com/

train_model.json’).then((model) => {

6 return admin.database().ref(’stateInfo ’).transaction((

stateInfo) => {

7 if (datos.horaSalida){

8 stateInfo.departureHour = 1;

9 stateInfo.departureHourValue = datos.horaSalida;

10 }

67

11 if (datos.fechaSalida){

12 stateInfo.departureDate = 1;

13 stateInfo.departureDateValue = datos.fechaSalida;

14 }

15

16 stateInfo.prevState = stateInfo.nextState;

17 const modelInput = createModelInput(stateInfo);

18 const prediction = model.predict(modelInput);

19 stateInfo.nextState = prediction.argMax(1).dataSync()

[0];

20 return stateInfo;

21 }).then(() => {

22 return admin.database().ref(’stateInfo ’).once("value").

then(snapshot => {

23 const stateInfo = snapshot.val();

24 return sendResponse(stateInfo , conv);

25 });

26 });

27 })

28 });

After loading the model, we perform a query to the database so as to extract the
current state. After this, depending on what users said (if they mentioned departure date,
departure hour, or both), a 1 will be stored in the corresponding slot (note that DialogFlow
does not provide confidence values, so a 1 is always stored in this implementation), and
the real value will also be stored in the database. The previous action is updated with the
prior next action, and the new next action is the result of the prediction being made the
model. After that, the corresponding response is sent back to the user.

There are only two functions left to explain: createModelInput(stateInfo), which gen-
erates the input tensor for the model to make a prediction with, and sendResponse(stateInfo,
conv), that generates the response for the user. The first one does not imply any difficulty:
we are just creating a TensorFlow tensor with the required size so that the model works
properly.

CODE 4.6. createModelInput function

1 function createModelInput (stateInfo) {

2 return tf.tensor([

3 stateInfo.prevState , stateInfo.origin, stateInfo.destination ,

4 stateInfo.departureDate , stateInfo.arrivalDate ,

5 stateInfo.departureHour , stateInfo.arrivalHour ,

6 stateInfo.ticketClass , stateInfo.trainType ,

7 stateInfo.orderNumber , stateInfo.services,

8 stateInfo.querySchedule , stateInfo.queryPrice ,

9 stateInfo.queryTypeTrain , stateInfo.queryTrainLength ,

10 stateInfo.queryServices , stateInfo.affirm, stateInfo.deny,

11 stateInfo.notUnderstood], [1, 19]);

12 }

68

The second function, sendResponse(stateInfo, conv), retrieves an answer based on the
system action that the model has predicted to be the appropiate one for the current dialog
state. For the messages of type ’Response’, a random feedback is simulated, as if we had
the real data available in our servers. If any national railway company, such as RENFE,
gave us access to their database by means of an API, we could provide a real answer to
the user, becoming a really useful commercial application.

An example for some of the system actions is shown. For simplicity, only one response
is retrieve, but we could change the message to provide more variety to the user and
increase the user experience.

CODE 4.7. sendResponse function

1

2 function sendResponse(stateInfo , conv) {

3 const type = stateInfo.nextState;

4 let speechMessage = "";

5 let textMessage = "";

6

7 // Ask-Destination

8 if (type === 0) {

9 speechMessage = "A donde desearias viajar?";

10 textMessage = "A donde desearias viajar?";

11 }

12 // Ask-Departure -Date

13 if (type === 1) {

14 speechMessage = "En que fecha desearias viajar?";

15 textMessage = "En que fecha desearias viajar?";

16 }

17 // Confirm-Departure -Date

18 if (type === 2) {

19 const date=new Date(stateInfo.departureDateValue);

20 speechMessage = " Es correcta la fecha "+date.getDate()

+"/"+(date.getMonth()+1)+"/"+date.getFullYear()+"?";

21 textMessage = " Es correcta la fecha "+date.getDate()+"/"+(

date.getMonth()+1)+"/"+date.getFullYear()+"?";

22 }

23 ...

24 // Closing

25 if (type === 4) {

26 speechMessage = "Espero haber sido de ayuda. Que tenga un

buen d a .";

27 textMessage = "Espero haber sido de ayuda. Que tenga un buen

d a .";

28

29 return conv.close(new SimpleResponse({

30 speech: speechMessage ,

31 text: textMessage ,

32 }));

33 }

69

34 ...

35 // Retrieve -Prices

36 if (type === 7) {

37 const claseBillete = stateInfo.ticketClassValue;

38 speechMessage = "El trayecto seleccionado tiene un coste de

38 euros en clase "+claseBillete+".";

39 textMessage = "El trayecto seleccionado tiene un coste de 38

euros en clase "+claseBillete+".";

40

41 speechMessage += "\n Necesitas algo mas?";

42 textMessage += "\n Necesitas algo mas?";

43 }

44 // Confirm-Origin

45 if (type === 8) {

46 speechMessage = "Es correcto el origen "+stateInfo.

originValue+"?";

47 textMessage = "Es correcto el origen "+stateInfo.originValue

+"?";

48 }

49 // Confirm-TrainType

50 if (type === 9) {

51 speechMessage = "Es correcto el tipo de tren "+stateInfo.

trainTypeValue+"?";

52 textMessage = "Es correcto el tipo de tren "+stateInfo.

trainTypeValue+"?";

53 }

54 // Answer-TrainType

55 if (type === 10) {

56 speechMessage = "El tipo de tren del vehiculo seleccionado

es AVE";

57 textMessage = "El tipo de tren del vehiculo seleccionado es

AVE";

58

59 speechMessage += "\n Tienes alguna otra consulta?";

60 textMessage += "\n Tienes alguna otra consulta?";

61 }

62 ...

63

64 return conv.ask(new SimpleResponse({

65 speech: speechMessage ,

66 text: textMessage ,

67 }));

68 }

That is the algorithm followed to retrieve an answer to user utterances: an intent is
identified, the handler inside Firebase Cloud Functions is triggered, the model is requested
to a Firebase Hosting service, the Firebase Realtime Database object is updated, the state
is send to the model to make a prediction, and an output message is sent back depending
on the prediction made.

70

4.2.3. Conversational Interface Deployment

One of the reasons why DialogFlow was chosen for this project is its easy deployment
into real applications and chatbots. Once the model is built, DialogFlow offers an option
named Integrations, that allows the developer to integrate the app within commercial
chat environments, including:

• Facebook Messenger.

• Twitter.

• Slack.

• Skype.

• Telegram.

• Google Assistant.

• Amazon Alexa.

Each of the environments require a small configuration to connect it to the account
you would like to automatize, but the process is really simple. If you want to deploy your
application in an independent environment, DialogFlow also allows you to deploy your
spoken dialog system as a web service.

Once the configuration is being made, you are ready to go! The conversational inter-
face is deployed and ready to be used. Figures 4.2 and 4.3 show examples of conversations
from a web service and Google Assistant integrations, respectively.

Fig. 4.2. Example of interaction with a web service integration

71

Fig. 4.3. Example of interaction with a Google Assistant integration

It is important to note that some of the options available have some limitations with the
automatic speech recognizer and the text-to-speech module. For example, while Google
Assistant offer the possibility to both speak to the system and receive a spoken response,
Facebook Messenger does not allow the system to speak. It is recommended to have
such restrictions in mind when developing an spoken dialog system, because some of the
functionality may be limited.

72

5. EVALUATION OF THE CONVERSATIONAL AGENT

This chapter reports the evaluation process followed for the validation of the conver-
sational agent in a real setting. As a result, an evaluation methodology will be planned in
order to prepare a complete assessment of the system. After this, real users will test the
CUI, out of which the evaluation will be made.

5.1. Evaluation Methodology

The evaluation process carried out is based on state-of-the-art validation methodologies
which proved to be very thoroughgoing assessment procedures. The measuring in which
this work has focused the most is the one developed by Griol et al. for evaluating and
comparing a wide variety of spoken dialog systems [77]. This methodology is divided
into an objective and a subjective evaluation, made from the outcome of showcasing the
app to a group of real users.

In this thesis, due to time constraints, a total of 20 people were interviewed to evaluate
the train scheduling chatbot. The selection of this people was not random, as we wanted
to gather feedback from a very heterogeneous sector of society that could be interested in
a solution of this nature. As a result, the population set comprises men and women from
an age range between 21 and 60 years old, with the basic knowledge of technology to
make them comfortable using a smartphone, and who take at least one medium distance
train per month.

All of the users were explained the nature of the app, and that it was conceived to
be an interactive conversational interface to solve requests in the train scheduling domain.
However, in order to provide a more varied set of requests, users were told different details
regarding the app:

• Some of the users were not given any more information, and ask them to try the app
to solve their requests. With this, we tried to look for possible outliers and classes
we had not taken into account for the modelling process.

• Other users were only told specific functionalities of the application. For example,
some users were explained that the system could solve requests regarding schedul-
ing, while others were told to ask about prices and services. With this approach we
were testing how the app responded to very specific situations.

• Finally, another set of users were reported about all the system specifications. This
population set allowed to test the dialog system as a whole entity.

With this approach we were looking to exploit every different aspect of the system so
as to have highly comprehensive assessment.

73

5.2. Objective Evaluation

For the objective evaluation, we analyzed nine different metrics extracted from the inter-
actions between the user and the system:

M1. Dialog success rate: percentage of dialogs that were finished successfully, with
users having their requests resolved.

M2. Turn success rate: percentage of turns in which the system responded with a coher-
ent answer to the user’s input. This is not the same as the correct state identification,
but every system answer that is coherent and does not break the flow of the dialog.

M3. Dialog length: average number of turns per dialog. Take into account that a turn
corresponds to a two-side interaction, so a user-system communication will count
as one turn.

M4. Request length: average number of requests made in one dialog. Several requests
of the same type (e.g. price) are counted separately.

M5. Number of turns of the shortest dialog.

M6. Number of turns of the longest dialog.

M7. Percentage of different dialogs.

M8. Repetitions of the most observed dialog.

M9. Number of turns of the most observed dialog.

M10. Number of requests of the most observed dialog.

Table 5.1 shows the results obtained after 20 experiments with real users.

Metric Evaluation Value
M1 80 %
M2 78 %
M3 7
M4 2.89
M5 10
M6 5
M7 55 %
M8 6
M9 5

M10 2

Table 5.1. OBJECTIVE EVALUATION RESULTS AFTER 20
EXPERIMENTS

74

Results show an 80 % of success rate, which is a very acceptable value for a first
prototype of the system. The ratio of coherent answers stands at around the 78 %, where
most of the incoherencies are found in dialogs ending unsuccessfully. However, we can
also find some dialogs scoring a perfect 100 % rate for turn success rate.

We have found a total of 11 different dialogs from the experimentation with users. The
most common one has been a simple request of schedules for a particular route, together
with a enquiry about its price. Figure 5.1 displays an example of such dialog, that has had
5 repetitions.

U1: Hola.
(Hi.)
S1: Bienvenido, ¿en qué puedo ayudarte?
(Welcome, how can I help you?)

U2: ¿Puedes decirme los horarios desde Madrid a Cuenca?
(Could you tell me the schedule from Madrid to Cuenca?)
S2: ¿Cuándo desearías viajar?
(When would you like to travel?)

U3: El 30 de mayo.
(The 30th of May.)
S3: Buscando los trenes disponibles, espere un segundo... Hay un tren disponible de
Madrid a Cuenca el día 30/5/2019 a las 20:00. ¿Necesitas algo más?
(Searching for available trains, please wait... There is an available train from
Madrid to Cuenca on the 30/5/2019 at 20:00. Do you need anything else?)

U4: ¿Qué precio tiene?
(How much does it cost?)
S4: El trayecto seleccionado tiene un coste de 20 euros en clase turista. ¿Puedo
ayudarte en algo más?
(The selected route has a cost of 20 euros in tourist class. Can I help you in anything
else?)

U5: No, gracias.
(No, thank you.)
S5: Espero haber sido de ayuda. Que tenga un buen día.
(I hope I have been helpful. Have a nice day.)

Fig. 5.1. An example of the most common dialog extracted from the evaluation experiments, along
with its translation to English

75

Figure 5.2 shows one of the four failed dialogs that were obtained during the testing
process. As it is the case of this dialog, most of the unsuccessful terminations were due
to second or third requests that were not handle correctly. For the example given, the
user is asking for another train schedule, and the system does not understand the query or
retrieves an answer for other type of enquiry.

The query that has represented a major issue is the services one. For the three users
that asked such question, the system did not know how to retrieve a valid answer. We
think that the reason for this is the low training data containing the query, that has made
the model not to approximate correctly for these intents.

Most of the incoherent answers were due to the wide variety of formulations that dif-
ferent people have for the same utterance. Some of these formulations were not included
as training phrases in DialogFlow, so inputs were not recognized. As a result, a task for a
future version of the product would be to include more combinations of examples for the
training set.

A very interesting comment to make is the differences perceived among the different
age groups. Adult people, maybe accustomed to older and lower quality speech recogniz-
ers, where formulating their phrases omitting pronouns, articles or verbs. For example,
while a younger person would say ’I would like a train from Madrid to Valencia’, and
adult would say ’Tran Madrid Valencia’. Some of these utterances were not understood
by the system, so there is a lot of work to do in there too. No only to include such ex-
amples, but also to make older people feel more comfortable using the system, so they
interact as if they were speaking with a human.

Figure 5.3 shows an example of a successful dialog extracted from one of the tests. As
it can be observed, the user was speaking with a colloquial wording, adding unnecessary
extra information and other tags such as ’more or less’ or ’everything has become clear
to me’. However, the system responded with highly accurate responses, becoming a great
example of the potential of this system for commercial purposes.

76

U1: Buenos días.
(Good morning.)
S1: Bienvenido, ¿en qué puedo ayudarte?
(Welcome, how can I help you?)

U2: Quiero saber los trenes de Madrid a La Coruña.
(I want to know the trains from Madrid to La Coruña.)
S2: ¿En qué fecha desearías viajar?
(In which date would you like to travel?)

U3: 30 de mayo.
(30th of May.)
S3: Buscando los trenes disponibles, espere un segundo... Hay un tren disponible de
Madrid a La Coruña el día 30/5/2019 a las 14:00. ¿Puedo ayudarte en algo más?
(Searching for available trains, please wait... There is an available train from
Madrid to La Coruña on the 30/5/2019 at 14:00. Can I help you in anything else?)

U4: ¿Hay alguno más?
(Is there any other?)
S4: No te he entendido. ¿Podrías repetir, por favor?
(I did not understand you. Could you repeat, please?)

U5: ¿Hay algún tren más ese día?
(Is there any other train for that day?)
S5: El tipo de tren del vehículo seleccionado es AVE. ¿Tienes alguna otra consulta?
(The train type of the selected vehicle is AVE. Do you have any other enquiry?)

U6: Algún otro tren después de las 14 horas.
(Any other train after hour 14.)
S6: Espero haber sido de ayuda. Que tenga un buen día.
(I hope I have been helpful. Have a nice day.)

Fig. 5.2. An example of a failed dialog extracted from the evaluation experiments, along with its
translation to English

77

U1: Muy buenas tardes.
(Good afternoon.)
S1: Bienvenido, ¿en qué puedo ayudarte?
(Welcome, how can I help you?)

U2: ¿Podría decirme los horarios de trenes de Madrid a Zaragoza, por fa-
vor?
(Could you please tell me the train schedule from Madrid to Zaragoza?)
S2: ¿En qué fecha desearías viajar?
(In which date would you like to travel?)

U3: Para mañana, si es posible.
(For tomorrow, if possible.)
S3: Buscando los trenes disponibles, espere un segundo... Hay un tren disponible de
Madrid a Zaragoza el día 26/5/2019 a las 16:00. ¿Puedo ayudarte en algo más?
(Searching for available trains, please wait... There is an available train from
Madrid to Zaragoza on the 26/5/2019 at 16:00. Can I help you in anything else?)

U4: ¿Cuánto me costaría ese billete?
(How much would that ticket cost me?)
S4: El trayecto seleccionado tiene un coste de 31 euros en clase turista. ¿Necesitas
algo más?
(The selected route has a cost of 31 euros in tourist class. Do you need anything else?)

U5: ¿Cuánto tiempo dura el viaje, más o menos?
(How long does the trip take, more or less?)
S5: El tiempo de duración del tren seleccionado es de 90 minutos. ¿Te puedo ayudar
en algo más?
(The selected train duration is 90 minutes. Can I help you in anything else?)

U6: ¿Y qué tipo de trenes hay disponibles en ese billete?
(And what type of trains are available with that ticket?)
S6: El tipo de tren del vehículo seleccionado es AVE. ¿Tienes alguna otra consulta?
(The train type of the selected vehicle is AVE. Do you have any other enquiry?)

U7: No, muchas gracias, me ha quedado todo muy claro. Muy amable.
(No, thank you, everything has become clear to me. Very kind of you.)
S7: Espero haber sido de ayuda. Que tenga un buen día.
(I hope I have been helpful. Have a nice day.)

Fig. 5.3. An example of a successful dialog extracted from the evaluation experiments, along with
its translation to English

78

5.3. Subjective Evaluation

Besides the objective metrics, we also asked the users to assess their subjective opinion
on the system’s performance. A total of six questions were asked:

Q1. How well did the system understand you?

Q2. How well did you understand the system messages?

Q3. Was it easy for you to get the requested information?

Q4. Was the interaction with the system quick enough?

Q5. If there were system errors, was it easy for you to correct them?

Q6. In general, are you satisfied with the performance of the system?

Q7. Would you use this system to schedule your future train rides?

Each of the questions had a set of predefined answers, with an associated scoring from
1 (lowest) to 5 (highest). Those were:

1. Never/Not at all.

2. Rarely/Poorly.

3. Sometimes/In some measure.

4. Usually/Well.

5. Always/Very well.

Table 5.2 shows the results obtained after 20 experiments with real users.

Question Average Response Standard deviation Median Response Mode Response
Q1 3.80 0.83 4 3
Q2 5 0 5 5
Q3 4 1.12 4 5
Q4 4.60 0.71 5 5
Q5 3.30 1.41 4 4
Q6 4.40 0.73 5 5
Q7 4.20 0.68 4 4

Table 5.2. OBJECTIVE EVALUATION RESULTS AFTER 20
EXPERIMENTS

79

As it can be seen, results are generally positive, with most of the answers scoring
between 4 and 5. The weakest points of the application have appeared to be related with
the system understanding in some situations. Users would perceive that the system was
coherent usually but, once an mistake was made, it was sometimes difficult to solve.

All the other points were scored as highly positive for the users. There is a total
agreement for question 2, where users thought system messages were extremely clear.
Also, most of the respondents believed that the interaction was very fast, being a weak
point in many other spoken dialog systems.

In general, users are very satisfied with the performance of the system. Most of them
believe that it was easy to get the information that they were looking for, and a great
percentage of interviewees affirmed that they would use the system to schedule their future
train rides.

For all these reasons, the system has been evaluated as successful, although improve-
ments are needed to be made for future versions.

80

6. REGULATORY FRAMEWORK

This chapter examines the thesis from the legal point of view, reviewing any possible
statute, ordinance or legal regulation that could be applied to this work. Besides, it details
the technical standards of the application developed, as well as commenting any possible
violation of intellectual property.

6.1. Applicable Regulations

The potential legal regulations applicable to this work are related to the use and distri-
bution of data and information. Therefore, the current legislation has been consulted to
check if the thesis is in line with the Spanish legal framework.

The corpora used in the thesis were extracted from two different sources:

1. Cession by Professor Dr. Griol Barres of the data used for his PhD thesis.

2. Open repository from Dra. Callejas, as a complement to the book The Conversa-
tional Interface. [93].

These datasets were given with a free of charge end-user-license. Therefore, according
to the "Ley de Propiedad Intelectual" approved in the "Real Decreto Legislativo 1/1996"
[94], the author remains fully entitled to use these data for research purposes.

Regarding the content of the data, another law article was consulted, in particular
the "Ley Orgánica 3/2018, de Protección de Datos Personales y garantía de los derechos
digitales (LOPD-GDD)" [95]. In the Title One Article Two Point One states where this
law is applicable, and claims:

"...la presente ley orgánica se aplica a cualquier tratamiento total o parcialmente
automatizado de datos personales, así como al tratamiento no automatizado de datos

personales contenidos o destinados a ser incluidos en un fichero."

Corpora used for the thesis was manipulated and cleaned by the intermediary respon-
sibles, and contain no personal data of any kind. For this reason, the Law is not applicable
for this case study.

Based on the previously cited Spanish Law articles, it can be concluded that this work
is within the law standards of the country.

81

6.2. Technical Standards

One of the main parts of this project was the implementation of a real conversational
agent, out of the experimentation we had previously done with Machine Learning and
Deep Learning techniques. The technical standards of such application will now be de-
scribed.

Description of the software implemented

Application that consists of a conversational assistant within the domain of train schedul-
ing. The user can ask the agent for information regarding the timetable, prices and other
services of the train, and will receive spoken answers for the requested questions. As
such, this software will serve as an interactive assistant for solving any doubt of the user
concerning train travels.

Programming Languages

For the development of this software, the following programming languages have been
used:

• Python 3.7. for the creation of the Machine Learning model used for the dialog
management system.

• JavaScript ES5 for the logic and backend of the application.

Frameworks and third party services

For the development of this software we have used the following platforms:

• Google’s TensorFlow version 1.13.1 for the design and training of the Machine
Learning model used for the dialog management system.

• Google’s DialogFlow V2 for the implementation of all the components of the spo-
ken dialog system and the deployment of the conversational interface into a web
application.

• Google’s Firebase Realtime Database to store all the information required to keep
a consistent dialog state throughout the turns.

• Google’s Firebase Hosting to host the Machine Learning model in a server so as
to integrate the algorithm into the dialog manager.

• Google’s Firebase Cloud Functions to create a webhook that connects DialogFlow’s
language processing module with the hosting and database systems, in order to de-
liver the appropiate response back to the user.

82

6.3. Intellectual Property

With the respect to the software used, a justification for all the licenses is now provided:

• Atom: on 6 May 2014, Atom, including the core application, its package manager,
as well as its desktop framework Electron, were released as free and open-source
software under the MIT License [96]. This is one of the most permissive licenses,
and allows almost any kind of usage of the software.

• Weka: it is a free software licensed under the GNU General Public License by the
University of Waikato, New Zealand. This license offers high protection for the
author of the software, but allows free private use. As the application is being used
exclusively for research purposes, we are not entering in conflict with the license
restrictions.

• TensorFlow: on 9 November 2015, it was released under the Apache 2.0 open-
source license [97]. This license allows the free use and distribution under any
license of products made with the software.

• DialogFlow: by using the Standard Edition of DialogFlow, we are agreeing to the
Google APIs Terms of Service, which allow the use and distribution of software
based on Google’s API services as long as no other illegal restrictions are held.

• Firebase: by using Firebase services, we are agreeing to the Google APIs Terms
of Service, which allow the use and distribution of software based on Google’s API
services as long as no other illegal restrictions are held.

• Microsoft Office 365 ProPlus: belonging to the Universidad Carlos III de Madrid
(UC3M) the author has access to a Microsoft Office Education License, which allow
the free exploitation of the Office software.

As a result, we are not incurring in any violation of the intellectual property for the
tools used in this thesis.

83

7. SOCIO-ECONOMIC ENVIRONMENT

This chapter studies the potential socio-economic impact that could be derived from
the realization of this thesis, listing some areas where it could be applied for both eco-
nomic benefit and improvement of living standards. It also provides an overview of the
planning conceived for the project, as well as the budgeting schema.

7.1. Socio-economic impact

The content of this project has a tremendous social and economic impact in the digital
age where we live. While Chapter 3 was more oriented towards a research sight, Chap-
ters 4 and 5 are highly related to an economic element that is dramatically increasing its
popularity in society: chatbots and conversational interfaces.

As it was previously seen in the state of the art, technological advancements have
substantially increased advanced communication capabilities of these devices. On the
other hand, people have always seen and read in science fiction about the potential of AI,
and in recent years it seems that we are coming closer to that reality. As a result, this
conversational interfaces in the form of virtual personal assistants or applications have
become the spearhead of the new intelligent era. Just to give a quick piece of information,
last year Amazon reported tens of millions of Echo devices sold, and its personal VPA
Alexa told more than 100 million jokes [98].

These are pretty impressive numbers, and it is the surface of the exponential growth
that is expected for the incoming years. Such is the interest in this technology that Google
has made a huge investment on improving its assistant, being one of the core announce-
ments made during the Google I/O 2019 conference [99].

In summary, it is an industry that is generating eight-figure revenues to companies all
around the world. But big organizations are not the only ones that are benefiting from this
technology: many small and medium enterprises are incorporating chatbots and assis-
tants to their businesses, in order to automatize their labour and increase user satisfaction.
In fact, many businesses are multiplying revenues thanks to the implementation of chat-
bots. It is for this reason that many AI chatbot expert vacancies are flourishing, which is
extremely good news for the field.

In particular, this thesis presents a methodology that can be applied to any commercial
problem: it is domain-independent. Therefore, it can be applied to any industry in which
an online assistant could be needed, both for the customer or for internal use. Some ex-
amples include: analysing the financial risk of a person, evaluating the nutritional profile
of a person and giving tips for a healthy lifestyle, e-commerce online support or a tool for
advising a choice of university studies based on the student profile. The possible impact

84

on two specific domains will be further developed: the train scheduling domain, which
actually is the CUI developed for this thesis, and the depression treating domain, which
is a side project that the author is building with the help of the university.

Train scheduling solution

This is the system that was implemented in the thesis, and it represents an example of
impact from the economic perspective. The transportation sector in Spain is a really
important one, with thousands of passengers travelling every day from one city to another.

Having a system that helps the user to find information regarding a desired ride can
mean a multiplied revenue stream for the company. This could come from:

• Reduction of the support staff team due to automation of processes.

• Increase in the turnover rate because passengers find their desired travelling option.

• Higher fidelity rate due to raised user satisfaction.

The system could be sold to a railway operator such as RENFE, for a monthly fee. For
training the model one would need to catalog and preprocess real conversations between
the clients and the company, but once that is done it would be really easy to build the
system. Besides, maintenance or upgrading would not entail an extra effort, so there is no
uncertainty in that sense.

The most valuable characteristic of kind type of system is its great scalability. Once
you have a system for train scheduling, it could be easily adapted to other railway com-
panies. Moreover, transition to other means of transport (buses, planes...) could be made
without carrying an added difficulty. Therefore, a strong startup business plan could be
drafted from this idea.

Depression treatment solution

This system represents an example of impact from the social point of view. The idea
has been presented as part of UC3M’s TFG Emprende 2018/2019 program [100]. Such
contest aims students to get involved in the culture of entrepreneurship, innovation and
the adoption or development of new technologies by developing a novel solution to an
existing problem.

It is estimated that around 10% of the population suffers from depression in the world,
and nearly a quarter of the people will present some of the symptoms related to an early
depression. This is a very insightful fact because, according to the statistic, we should
know more cases of people suffering from the illness than we actually do.

The reason for this is that depression is somehow taboo in society. People feel ashamed
of suffering from depression because they think that the rest would never understand the
situation. However, it has been proven that one of the best ways to overcome the illness

85

is to openly expose your situation and talk about it with your close circle of family and
friends.

In here is where our idea comes into play. We believe that patients would feel more
comfortable if they could chat with an entity that would never judge them. For this reason,
our team is designing a conversational interface to help to treat depression cases. The idea
is to have a chatbot which the user can interact with at any time. The device will have
been previously trained in the psychological domain so that it can give an appropriate
response to the users, while proposing activities or games to cheer them up. Our concept
is not meant to substitute real psychological treatment, but to serve as a complement that
is available twenty-four/seven for the patient.

Although the project is still in prototyping phase, the idea has been well received in
the community, so we believe that it could have big potential.

These are just some examples of the huge impact that a conversational interface may
have in our socio-economic environment. For that reason, we consider that this technol-
ogy will be very relevant in the years to come.

7.2. Planning

This project was granted by the Ministerio de Educación y Formación Profesional of
Spain, as part of its Beca de Colaboración 2018/2019 scholarship program [101]. As part
of the conditions of the call, beneficiaries will have to work on their project at least three
hours per business day during eight months, summing a total of 510 hours. As such, the
author started collaborating on this thesis the 1st of November 2018 and finished working
on it the 29th of June 2019, meaning a work of 240 days and approximately 15 hours a
week.

The project was divided in well-defined phases in order to structure the work:

• Phase 1: Planification. This was the preparatory task of the thesis. In here, we
would have to investigate and read other author publications in order to get an over-
all glimpse of the state of art and conceive a novel idea for our project. In particular,
we divided this phase in the following subtasks:

1. Define the objectives of the thesis.

2. Search for references and documentation in the area.

3. Read such papers in order to understand previous work on the area.

4. Analysis of the possible tools to use for the development of the project

The intended amount of time planned for this stage was 200 hours (94 days).

86

• Phase 2: Experimentation. This stage included the analysis made for Deep Learn-
ing applied to the development of the dialog manager. We would have to prepare
the data for its modelling, and evaluate the results. In particular, we divided this
phase in the following subtasks:

1. Preprocessing of the corpus chosen for analysis.

2. Design and programming of the architectures for the model experimentation.

3. Comparison of the different Machine Learning models for several domains.

The intended amount of time planned for this stage was 100 hours (47 days).

• Phase 3: Implementation. In this stage we created our spoken dialog system with
DialogFlow. In particular, we divided this phase in the following subtasks:

1. Creation of the spoken language understanding module with DialogFlow.

2. Creation of the infrastructure needed to support the backend with Firebase.

3. Programming and integration of the dialog manager model with DialogFlow.

4. Deployment of the application.

The intended amount of time planned for this stage was 85 hours (40 days).

• Phase 4: Evaluation. This stage included the validation of the system created by
means of experimentation. In particular, we divided this phase in the following
subtasks:

1. Testing with real users.

2. Analysis and evaluation of the system based on testing.

The intended amount of time planned for this stage was 30 hours (14 days).

• Phase 5: Documentation. This stage included the reporting of all the work done
for the thesis, as well as preparing the presentation for the jury. In particular, we
divided this phase in the following subtasks:

1. Writing-up of the report.

2. Revision of the report.

3. Creation of the slides for the presentation.

4. Revision of the presentation.

The intended amount of time planned for this stage was 95 hours (45 days).

The final timing of the project is represented as a Gantt Diagram using the tool Tom’s
Planner, which is a well-known project planner software [102]. Figure 7.1 contains the
timing details for each of the tasks involved in the thesis.

87

Fig.7.1.G
anttD

iagram
forthe

planning
ofthe

thesis

88

As it can observed, very few variations occurred from the original planning. On the
one hand, the experimentation phase took ten days less than it was first though. On the
other hand, the implementation stage was underestimated, taking one week more than
planned. Finally, the write-up also took a bit longer than estimated, but time was saved
from the preparation of the presentation slides.

7.3. Budgeting

The breakdown of the project costs is now explained. Those have been divided in human
resources, hardware equipment, software equipment and information gathering costs.

Human resources costs

There have been three people implicated in the project: Pablo Cañas Castellanos, author
of the thesis, who is a fourth year Computer Science student at Universidad Carlos III de
Madrid; Dr. David Griol Barres, first supervisor of the thesis, who is a professor of the
Computer Science department at UC3M; and Dr. Juan Manuel Alonso Webber, second
supervisor of the thesis, who is also a professor of the Computer Science department at
UC3M.

Pablo’s labour has been the analysis of Deep Learning methodologies for the dialog
management domain, as well as the implementation and evaluation of a spoken dialog
system. According to the report Infoempleo Adecco 2015 [103], a junior computer sci-
entist with less than a year of experience earns 17,248 euros per year, for a full-time job.
A full-time job accounts for around 2080 hours of work per year, without taking into
account festivities and holidays. As a result, the average hourly salary will be 8.30 e/h.

David and Juan’s labour has been the supervision and guidance of the project done by
Pablo. Therefore, we could agree that they have held a consultancy position. According
to the salaries checked at the website Glassdoor [104], the salary of an expert IT consul-
tant with more than twenty years of experience can be of around 60,000 euros per year,
meaning an average hourly salary of 28.85 e/h.

Table 7.1 displays the resulting human resources costs.

Employee Hours Hourly rate Cost
Cañas Castellanos, Pablo 510 8.30 e/h 4,233.00 e
Griol Barres, David 40 28.85 e/h 1,154.00 e
Alonso Webber, Juan Manuel 10 28.85 e/h 288.50 e
Total 5,675.50 e

Table 7.1. HUMAN RESOURCES COSTS

89

Hardware equipment costs

This includes the costs of all the hardware equipment used for the realization of the thesis.
Table 7.2 details the total hardware costs.

Product Cost
HP Envy Notebook 17 998.00 e
Desktop computer (assembled by components) 1,534.00 e
Xiaomi Pocophone F1 300.00 e
Logitech Wireless Mouse M185 10.99 e
USB cable 4.95 e
Total 2,847.94 e

Table 7.2. HARDWARE EQUIPMENT COSTS

Software equipment costs

This includes the costs of all the software tools used for the realization of the thesis.
Although some of the applications may have a cost to acquire a license, we are going to
present the real cost involved for the project. For example, Microsoft Office 365 license
costs 154.80 e, but the free license for UC3M’s students was used.

Some of the Firebase features used were only available by upgrading the project pay-
ment plan. As a result, the Flame plan, with a cost of 25 US$/month, was used during
three months. That accounts for a total of 75 US$ that, according to current currency
changeover, is equivalent to approximately 67 e.

Table 7.3 details the total software costs.

Product Cost
Windows 10 0 e
Microsoft Office 365 ProPlus 0 e
Atom 1.36.1 0 e
Weka 3.6.9 0 e
TensorFlow 1.13.1 0 e
DialogFlow V2 0 e
Firebase Services 66.93 e
Total 66.93 e

Table 7.3. SOFTWARE EQUIPMENT COSTS

90

Information gathering costs

These costs include all the information and data recompilation that was needed for the
development of the project and the report. Such documents include:

• Books and papers, extracted from the UC3M repository and from divulgation sites.

• Dialog corpus for the creation of the dialog manager module. As explained in the
Regulatory Framework section, those were relinquished from different sources.

• Evaluation interviews made to several people in order to validate the spoken dialog
system. As it was explained in the Evaluation of the Conversational Agent section,
a total of 20 people were interviewed. In this case, there was no economical recom-
pense for participating in the interview, so the process did not carry any expense.

As a result, table 7.4 details the incurred cost for this activity.

Product Cost
Books and papers 0 e
Dialog corpus 0 e
Validation interviews 0 e
Total 0 e

Table 7.4. INFORMATION GATHERING COSTS

Total costs

After taking into account all the different expenditures, table 7.5 shows the total costs of
the project.

Type Cost
Human resources 5,675.50 e
Hardware equipment 2,847.94 e
Software equipment 66.93 e
Information gathering 0 e
Total without IVA 8,590.37 e
Total with IVA (21%) 10,394.35 e

Table 7.5. TOTAL PROJECT COSTS

Therefore, the total expenses incurred for the project add up to TEN THOUSAND
THREE HUNDRED NINETY FOUR WITH THIRTY FIVE EUROS.

91

With the purpose of having a better idea of the distribution of expenses, figure 7.2
shows a pie chart with the percentages for each type of cost.

Fig. 7.2. Total Expenses Distribution

92

8. CONCLUSIONS

This chapter will expose the main ideas and conclusions extracted from the devel-
opment of the thesis. It will analyse how the project was finalized, pointing out any
differences with the objectives established and gathering the most relevant results. It will
also define potential future lines of investigation that could be followed from such work.

8.1. Main conclusions

This Bachelor’s thesis has covered the end-to-end process of developing a personalized
conversational interface for a specific domain, using Deep Learning techniques. In par-
ticular, it has focused on the study of the dialog manager module, which is in charge of
deciding the next system response based on the current dialog state.

In the first part of the project we made an analysis of the potential improvements that
Deep Learning can bring to the development of a dialog manager. Therefore, traditional
Machine Learning algorithms were compared to CNN architectures, to see if there was
any significant rise in accuracy. This is considered to be a relatively novel approach, since
there is not much literature on Deep Learning applied for this type of task.

The main conclusion obtained is that deep neural networks do not improve other tradi-
tional ML approaches, such as MLPs or regression trees. For this reason, as they are more
difficult to implement and trained, they are not recommended for the studied domains.

After an analysis of the datasets, it is believed that the data examples may not have a
significant local correlation, and that may be the main reason why CNNs, which rely on
that characteristic to stand out of other algorithms, do not provide any advantages.

We also extracted a valuable lesson regarding network architectures. Although, the-
oretically, a more complex architecture would approximate functions more precisely, in
the practice this is not always the case. In both of the studied models, simpler MLP archi-
tectures won the more complex ones, and CNNs with less amount of convolutional and
pooling layers usually returned better results.

The last relevant conclusion after the analysis has to do with the use of ensembles.
Although the datasets or algorithms used do not provide better outcomes, one can always
try to combine different models to see if that improves the experiments. In our case, the
use of ensembles rose the accuracy and provided valuable information about the nature of
our corpus.

During the second phase of this work, we did an implementation of a spoken dialog
system based on the Deep Learning dialog manager model built for one of the domains,
the train scheduling one. As a result, an application was built that could be used as a

93

conversational interface in a real commercial context. To create the rest of the mod-
ules needed for the proper functioning of the system, we used a modern chatbot building
framework, DialogFlow. Elements such as intents or entities were defined to create the
language processing module, and this was connected to a Firebase Cloud Function that
handled the request and predicted the next action using the Deep Learning model. After
this, thanks to DialogFlow’s integration tool, we could deploy the system in a wide variety
of applications such as Google Actions, Facebook Messenger, Skype or a website.

Evaluation of the spoken dialog system with real users proved it to be a very efficient
solution for assistance tasks. Results showed an 80 % of dialog success rate and 78 % of
turn coherence rate, where most of the negative results were found in the failing dialogs.

Successful dialogs were found for a wide variety of different situations and education
levels. We saw that even with a very colloquial wording or adding extra information
and tags, the system responded with highly accurate responses. We also saw that most
of the incoherent answers where found for utterances that were not contemplated for
the training set and hence were not recognized, or for states that did not have a sufficient
amount of representation to be considered during the modelling phase. Another important
insight obtained is the difference perceived among age groups: while younger population
is more used to this kind of technology and speaks very naturally, adults already have the
experience of older speech recognizers and are not very confident expressing complete
sentences.

However, users rated the system with a very high score, having an overall satisfaction
of 4.40 over 5. The weakest points of the application appeared to be related with the sys-
tem understanding in some situations. Users would perceive that the system was coherent
usually but, once an mistake was made, it was sometimes difficult to solve.

On the other hand, users thought system messages were extremely clear and that the
interaction was very fast, being a weak point in many other spoken dialog systems. Be-
sides, most respondents agreed that it was easy to get the information that they were look-
ing for, and a great percentage of interviewees affirmed that they would use the system to
schedule their future train rides.

All of these results demonstrate that a Deep Learning based dialog manager is a valid
solution in commercial conversational interfaces.

After finishing the project, let’s review the proposed objectives to see if they were
achieved. As we previously defined, the main objectives were:

• To make an study of the importance Deep Learning has for the development a
modern conversational interface with respect to traditional Machine Learning
techniques, using several domains. Achieved during Chapter 3.

• To learn a reliable approximation of a dialog manager for a specific domain,
using Deep Learning techniques. Achieved during Chapter 3.

94

• To integrate such dialog manager with the rest of the components of a conver-
sational interface. Achieved during Chapter 4.

• To implement a conversational interface as a commercial application that peo-
ple could use from their devices. Achieved during Chapter 4.

• To evaluate and validate such application by executing a test plan with real
users. Achieved during Chapter 5.

As a result, we can affirm that the thesis was executed successfully, meeting all the
important goals.

8.2. Future research lines

Based on the conclusions extracted, we can define several lines of work to perform in the
future and continue the research on the field of Deep Learning applied to dialog managers
and conversational interfaces. We can divide such roadmaps in the investigation and the
industry lines.

On the research side, the following lines of work have been identified:

• Represent the data corpus with another codification where CNNs could make a
difference. For example, using word2vec codification, where relations between
adjacent words are kept, could be a good scenario for applying Deep Learning rather
than MLPs.

• Use a much larger training dataset. While traditional algorithms struggle to handle
greatly sized corpora, a Deep Learning solution would probably approximate it
correctly.

• However, in the dialog management domain, it is really hard to find large datasets.
As a result, work could be done to build synthetic datasets using other Machine
Learning paradigms such as Reinforcement Learning or Genetic Algorithms.

On the application enhancements, one could work in the parts that were identified as
the weakest ones:

• Train the dialog manager to handle better subsequent requests, as they were the
ones where the system had more inconsistencies.

• Add more training phrases to represent all the different formulations that people
may have for the same utterance, so that they are recognized.

• Add intents and training phrases for common enquiries that were not represented in
the current system.

95

• Work to gather more data for the dialog situations that were underrepresented in the
data corpus. An example of this is the service query, which is hard to identify due
to its low appearance while modelling the dialog manager.

• Add a wider variety of responses to each type of system action, so that the system
is perceived as more natural and user experience is enhanced.

• Make the conversational interface more attractive for the adult public, so as to make
them feel more comfortable using the system and interact as if they were speaking
to a human person.

96

BIBLIOGRAPHY

[1] Smashing Magazine. (2016). Conversational Interfaces: Where Are We Today?
Where Are We Heading?, [Online]. Available: https://www.smashingmagazine.
com/2016/07/conversational- interfaces- where- are- we- today-

where-are-we-heading/ (visited on 05/27/2019).

[2] M. McTear, Z. Callejas, and D. Griol, The Conversational Interface: Talking to
Smart Devices. Springer Publishing Company, Inc., 2016.

[3] S. Skanski, Introduction to Deep Learning: From Logical Calculus to Artificial
Intelligence. Springer, 2018.

[4] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers”,
IBM Journal of Research and Development, vol. 3, pp. 210–229, 1959.

[5] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[6] R. Sathya and A. Abraham, “Comparison of Supervised and Unsupervised Learn-
ing Algorithms for Pattern Classification”, International Journal of Advanced Re-
search in Artificial Intelligence, vol. 2, no. 2, 2013.

[7] AWS Documentation. (2019). Machine Learning with Amazon SageMaker, [On-
line]. Available: https://docs.aws.amazon.com/sagemaker/latest/dg/
how-it-works-mlconcepts.html (visited on 05/27/2019).

[8] Synced. (2018). The New Age of Discovery: Space Exploration and Machine
Learning, [Online]. Available: https://medium.com/syncedreview/the-
new-age-of-discovery-space-exploration-and-machine-learning-

64883f7dc7f9 (visited on 05/27/2019).

[9] Daffodil Software. (2017). 9 Applications of Machine Learning from Day-to-
Day Life, [Online]. Available: https : / / medium . com / app - affairs / 9 -
applications-of-machine-learning-from-day-to-day-life-112a47a429d0

(visited on 05/27/2019).

[10] Kaspersky. (2017). Major Celebrity Hacks and How They Can Affect You, [On-
line]. Available: https://www.kaspersky.com/resource-center/threats/
major-celebrity-hacks-and-how-they-can-affect-you (visited on
05/27/2019).

[11] CBS News. (2017). WannaCry ransomware attack losses could reach $4 billion,
[Online]. Available: https://www.cbsnews.com/news/wannacry-ransomware-
attacks-wannacry-virus-losses/ (visited on 05/27/2019).

[12] Overthink group. (2017). 10 Case Studies on Chatbots, [Online]. Available: https:
//overthinkgroup.com/chatbot-case-studies/ (visited on 05/27/2019).

97

https://www.smashingmagazine.com/2016/07/conversational-interfaces-where-are-we-today-where-are-we-heading/
https://www.smashingmagazine.com/2016/07/conversational-interfaces-where-are-we-today-where-are-we-heading/
https://www.smashingmagazine.com/2016/07/conversational-interfaces-where-are-we-today-where-are-we-heading/
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-mlconcepts.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-mlconcepts.html
https://medium.com/syncedreview/the-new-age-of-discovery-space-exploration-and-machine-learning-64883f7dc7f9
https://medium.com/syncedreview/the-new-age-of-discovery-space-exploration-and-machine-learning-64883f7dc7f9
https://medium.com/syncedreview/the-new-age-of-discovery-space-exploration-and-machine-learning-64883f7dc7f9
https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-to-day-life-112a47a429d0
https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-to-day-life-112a47a429d0
https://www.kaspersky.com/resource-center/threats/major-celebrity-hacks-and-how-they-can-affect-you
https://www.kaspersky.com/resource-center/threats/major-celebrity-hacks-and-how-they-can-affect-you
https://www.cbsnews.com/news/wannacry-ransomware-attacks-wannacry-virus-losses/
https://www.cbsnews.com/news/wannacry-ransomware-attacks-wannacry-virus-losses/
https://overthinkgroup.com/chatbot-case-studies/
https://overthinkgroup.com/chatbot-case-studies/

[13] Y. Koren, “The BellKor solution to the Netflix Grand Prize”, in Netflix prize doc-
umentation, vol. 81, 2009.

[14] MIT Technology Review. (2016). How PayPal Boosts Security with Artificial In-
telligence, [Online]. Available: https://www.technologyreview.com/s/
545631/how-paypal-boosts-security-with-artificial-intelligence/

(visited on 05/27/2019).

[15] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.

[16] M. van Gerven and S. Bohte, Artificial Neural Networks as Models of Neural
Information Processing. Frontiers Media SA, 2018.

[17] W. S. McCulloch and W. H. Pitts, “A logical calculus of the ideas immanent in
nervous activity”, The Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133,
1943.

[18] D. O. Hebb, Organization of Behavior. John What & Sons, Inc., 1949.

[19] F. Rosenblatt, “The Perceptron: A probabilistic model for information storage and
organization in the brain”, Psychological Review, vol. 65, pp. 386–408, 1958.

[20] B. Widrow and M. E. Hoff, “Adaptive Switching Circuits”, Stanford University,
Stanford, CA, USA, Tech. Rep. 1553-1, 1960.

[21] M. L. Minsky and S. A. Papert, Perceptrons. An Introduction to Computational
Geometry. Mit Press, 1972.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Representations by
Back Propagating Errors”, Nature, vol. 323, pp. 533–536, 1986.

[23] T. Isokawa, H. Nishimura, and N. Matsui, “Quaternionic Multilayer Perceptron
with Local Analyticity”, Information, vol. 3, no. 4, pp. 756–770, 2012.

[24] Association for Computing Machinery. (2019). A. M. Turing Award, [Online].
Available: https://amturing.acm.org/ (visited on 05/27/2019).

[25] Andrew L. Beam. (2017). Deep Learning 101 - Part 1: History and Background,
[Online]. Available: https : / / beamandrew . github . io / deeplearning /
2017/02/23/deep_learning_101_part1.html (visited on 05/27/2019).

[26] J. Schmidhuber, “Deep learning in Neural Networks: An Overview”, Neural Net-
works, vol. 61, pp. 85–117, 2015.

[27] I. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit Number
Recognition from Street View Imagery using Deep Convolutional Neural Net-
works”, 2013.

[28] Wikimedia Commons. (2015). File: Autoencoderstructure.png, [Online]. Avail-
able: https : / / commons . wikimedia . org / wiki / File : Autoencoder _
structure.png (visited on 05/27/2019).

98

https://www.technologyreview.com/s/545631/how-paypal-boosts-security-with-artificial-intelligence/
https://www.technologyreview.com/s/545631/how-paypal-boosts-security-with-artificial-intelligence/
https://amturing.acm.org/
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
https://commons.wikimedia.org/wiki/File:Autoencoder_structure.png
https://commons.wikimedia.org/wiki/File:Autoencoder_structure.png

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks”, in Advances in Neural Information Pro-
cessing Systems, vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, Jour-
nal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[31] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time-
series”, in The handbook of brain theory and neural networks. MIT Press, 1995.

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning”, Nature, vol. 521, pp. 436–
44, 2015.

[33] Clarifai. (2019). Technology, [Online]. Available: https://www.clarifai.
com/technology (visited on 05/27/2019).

[34] F. Ning et al., “Toward automatic phenotyping of developing embryos from videos”,
IEEE Transactions on Image Processing, vol. 14, pp. 1360–1371, 2005.

[35] TechCrunch. (2019). Toyota doubles down on Nvidia tech for self-driving cars,
[Online]. Available: https :/ / techcrunch. com/ 2019 /03 / 18/ toyota-
doubles-down-on-nvidia-tech-for-self-driving-cars/ (visited on
05/27/2019).

[36] NVidia. (2019). NVIDIA DRIVE: Scalable AI Platform for Autonomous Driving,
[Online]. Available: https://www.nvidia.com/en-us/self-driving-
cars/drive-platform/ (visited on 05/27/2019).

[37] M. Woolf. (2017). Person Blocker, [Online]. Available: https://github.com/
minimaxir/person-blocker (visited on 05/27/2019).

[38] Max Woolf. (2019). minimaxir, [Online]. Available: https://github.com/
minimaxir (visited on 05/27/2019).

[39] B. H. Juang and L. Rabiner, “Automatic speech recognition - a brief history of
the technology development”, 2004.

[40] J. Allen, Natural Language Understanding (2nd Ed.) Benjamin-Cummings Pub-
lishing Co., Inc., 1995.

[41] R. G. Reilly, Ed., Communication Failure in Dialogue and Discourse: Detection
and Repair Processes. Elsevier North-Holland, Inc., 1986.

[42] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The ATIS Spoken Lan-
guage Systems Pilot Corpus”, in Proc. of the Workshop on Speech and Natural
Language (HLT’90), Hidden Valley, PA, USA, 1990, pp. 96–101.

[43] S. McGlashan et al., “Dialogue Management for Telephone Information Sys-
tems”, in Proc. of the Third Conference on Applied Natural Language Processing
(ANLC’92), Trento, Italy, 1992, pp. 245–246.

99

https://www.clarifai.com/technology
https://www.clarifai.com/technology
https://techcrunch.com/2019/03/18/toyota-doubles-down-on-nvidia-tech-for-self-driving-cars/
https://techcrunch.com/2019/03/18/toyota-doubles-down-on-nvidia-tech-for-self-driving-cars/
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/
https://github.com/minimaxir/person-blocker
https://github.com/minimaxir/person-blocker
https://github.com/minimaxir
https://github.com/minimaxir

[44] J. G. Wilpon, L. R. Rabiner, C.-H. Lee, and E. R. Goldman, “Automatic recog-
nition of keywords in unconstrained speech using hidden Markov models”, IEEE
Trans. Acoustics, Speech, and Signal Processing, vol. 38, pp. 1870–1878, 1990.

[45] A. L. Gorin, G. Riccardi, and J. H. Wright, “How May I Help You?”, Speech
Commun., vol. 23, pp. 113–127, 1997.

[46] J. Weizenbaum, “Eliza – Computer Program for the Study of Natural Language
Communication Between Man and Machine”, Commun. ACM, vol. 9, pp. 36–45,
1966.

[47] A. M. Turing, “Computing Machinery and Intelligence”, Mind, vol. 59, pp. 433–
60, 1950.

[48] M. Campbell, A. Hoane, and F.-h. Hsu, “Deep Blue”, Artificial Intelligence, vol. 134,
pp. 57–83, 2002.

[49] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific Amer-
ican, vol. 284, pp. 34–43, 2001.

[50] A. Tsilfidis, I. Mporas, J. Mourjopoulos, and N. Fakotakis, “Automatic speech
recognition performance in different room acoustic environments with and with-
out dereverberation preprocessing”, Computer Speech Language, vol. 27, pp. 380–
395, 2013.

[51] D. O’Shaughnessy, “Invited paper: Automatic speech recognition: History, meth-
ods and challenges”, Pattern Recognition, vol. 41, pp. 2965–2979, 2008.

[52] W.-L. Wu et al., “Spoken language understanding using weakly supervised learn-
ing”, Computer Speech Language, vol. 24, pp. 358–382, 2010.

[53] D. R. Traum and S. Larsson, “The information state approach to dialogue man-
agement”, in Current and New Directions in Discourse and Dialogue. Springer
Netherlands, 2003, pp. 325–353.

[54] O. Lemon, “Learning what to say and how to say it: Joint optimisation of spo-
ken dialogue management and natural language generation”, Computer Speech
Language, vol. 25, pp. 210–221, 2011.

[55] T. Dutoit, An Introduction to Text-to-Speech Synthesis. Kluwer Academic Pub-
lishers, 1996.

[56] K. Davis, R. Biddulph, and S. Balashek, “Automatic recognition of spoken dig-
its”, Journal of the Acoustical Society of America, vol. 24, no. 6, pp. 637–642,
1952.

[57] B. T. Lowerre, “The Harpy Speech Recognition System”, AAI7619331, PhD the-
sis, Carnegie Mellon University, Pittsburgh, PA, USA, 1976.

[58] Y. Mroueh, E. Marcheret, and V. Goel, “Deep multimodal learning for audio-
visual speech recognition”, in 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015, pp. 2130–2134.

100

[59] W. Zhang et al., “Distributed Deep Learning Strategies for Automatic Speech
Recognition”, in ICASSP 2019 - 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2019, pp. 5706–5710.

[60] D. G. Bobrow, “Natural Language Input for a Computer Problem Solving Sys-
tem”, Massachusetts Institute of Technology, Cambridge, MA, USA, Tech. Rep.,
1964.

[61] T. Winograd, “Procedures as a Representation for Data in a Computer Program
for Understanding Natural Language”, 2004.

[62] Rollo Carpenter. (1997). Jabberwacky, [Online]. Available: http://www.jabberwacky.
com/ (visited on 05/27/2019).

[63] W. G. Lehnert, M. G. Dyer, P. N. Johnson, C. Yang, and S. Harley, “BORIS —
An experiment in in-depth understanding of narratives”, Artificial Intelligence,
vol. 20, no. 1, pp. 15–62, 1983.

[64] T. Guardian. (2011). IBM computer Watson wins Jeopardy clash, [Online]. Avail-
able: https://www.theguardian.com/technology/2011/feb/17/ibm-
computer-watson-wins-jeopardy (visited on 05/27/2019).

[65] Forbes. (2013). IBM’s Watson gets its first piece of business in healthcare, [On-
line]. Available: https://www.forbes.com/sites/bruceupbin/2013/02/
08/ibms-watson-gets-its-first-piece-of-business-in-healthcare

(visited on 05/27/2019).

[66] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional Neural Network Architectures
for Matching Natural Language Sentences”, in Advances in Neural Information
Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, Eds., Curran Associates, Inc., 2014, pp. 2042–2050.

[67] K. Narasimhan, T. D. Kulkarni, and R. Barzilay, “Language understanding for
text-based games using deep reinforcement learning”, CoRR, 2015.

[68] E. Levin, R. Pieraccini, and W. Eckert, “A stochastic model of human-machine in-
teraction for learning dialog strategies”, IEEE Transactions on Speech and Audio
Processing, vol. 8, no. 1, pp. 11–23, 2000.

[69] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young, “A Survey of Statis-
tical User Simulation Techniques for Reinforcement-learning of Dialogue Man-
agement Strategies”, Knowl. Eng. Rev., vol. 21, no. 2, pp. 97–126, 2006.

[70] E. Levin, R. Pieraccini, and W. Eckert, “Using Markov decision process for learn-
ing dialogue strategies”, in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’98), vol. 1, Seattle, WA, USA, 1998,
pp. 201–204.

[71] S. Young et al., “The Hidden Information State model: A practical framework
for POMDP-based spoken dialogue management”, Computer Speech Language,
vol. 24, pp. 150–174, 2010.

101

http://www.jabberwacky.com/
http://www.jabberwacky.com/
https://www.theguardian.com/technology/2011/feb/17/ibm-computer-watson-wins-jeopardy
https://www.theguardian.com/technology/2011/feb/17/ibm-computer-watson-wins-jeopardy
https://www.forbes.com/sites/bruceupbin/2013/02/08/ibms-watson-gets-its-first-piece-of-business-in-healthcare
https://www.forbes.com/sites/bruceupbin/2013/02/08/ibms-watson-gets-its-first-piece-of-business-in-healthcare

[72] H. Cuayáhuitl, “SimpleDS: A Simple Deep Reinforcement Learning Dialogue
System”, in Dialogues with Social Robots: Enablements, Analyses, and Evalua-
tion. Springer Singapore, 2017, pp. 109–118.

[73] H. Cuayáhuitl, S. Keizer, and O. Lemon, “Strategic Dialogue Management via
Deep Reinforcement Learning”, CoRR, vol. abs/1511.08099, 2015.

[74] J. Williams, A. Raux, D. Ramachandran, and A. Black, “The Dialog State Track-
ing Challenge”, in Proceedings of the SIGDIAL 2013 Conference, 2013, pp. 404–
413.

[75] D. Griol, L. Hurtado Oliver, E. Segarra, and E. Sanchis, “Managing Unseen Situ-
ations in a Stochastic Dialog Model”, AAAI Workshop - Technical Report, 2006.

[76] D. Griol, L. F. Hurtado, E. Segarra, and E. Sanchis, “A Statistical Approach to
Spoken Dialog Systems Design and Evaluation”, Speech Commun., vol. 50, no. 8-
9, pp. 666–682, 2008.

[77] D. Griol, Z. Callejas, R. López-Cózar, and G. Riccardi, “A domain-independent
statistical methodology for dialog management in spoken dialog systems”, Com-
puter Speech Language, vol. 28, pp. 743–768, 2014.

[78] University of Waikato. (2019). Weka, [Online]. Available: https://www.cs.
waikato.ac.nz/ml/weka/ (visited on 05/27/2019).

[79] BigML. (2019). BigML, [Online]. Available: https://bigml.com/ (visited on
05/27/2019).

[80] RapidMiner. (2019). RapidMiner, [Online]. Available: https://rapidminer.
com/ (visited on 05/27/2019).

[81] Google. (2019). TensorFlow, [Online]. Available: https://www.tensorflow.
org/ (visited on 05/27/2019).

[82] Keras. (2019). Keras, [Online]. Available: https : / / keras . io/ (visited on
05/27/2019).

[83] PyTorch. (2019). PyTorch, [Online]. Available: https://pytorch.org/ (vis-
ited on 05/27/2019).

[84] Google. (2019). DialogFlow, [Online]. Available: https://dialogflow.com/
(visited on 05/27/2019).

[85] Amazon. (2019). Amazon Lex, [Online]. Available: https://aws.amazon.
com/lex/ (visited on 05/27/2019).

[86] Microsoft. (2019). LUIS, [Online]. Available: https://www.luis.ai/home
(visited on 05/27/2019).

[87] R. Vasudevan. (2017). CIFAR-10 Classifier, [Online]. Available: https://github.
com/vrakesh/CIFAR-10-Classifier/blob/master/cifar_classifier.

py (visited on 05/27/2019).

102

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://bigml.com/
https://rapidminer.com/
https://rapidminer.com/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://dialogflow.com/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://www.luis.ai/home
https://github.com/vrakesh/CIFAR-10-Classifier/blob/master/cifar_classifier.py
https://github.com/vrakesh/CIFAR-10-Classifier/blob/master/cifar_classifier.py
https://github.com/vrakesh/CIFAR-10-Classifier/blob/master/cifar_classifier.py

[88] A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2017.

[89] D. Griol Barres, “Desarrollo y evaluación de diferentes metodologías para la
gestión automática del diálogo”, PhD thesis, Universitat Politècnica de València,
2008.

[90] Google. (2019). DialogFlow Documentation, [Online]. Available: https : / /
dialogflow.com/docs (visited on 05/27/2019).

[91] RENFE. (2019). Nuestros Trenes, [Online]. Available: http://www.renfe.
com/viajeros/nuestros_trenes/index.html (visited on 05/27/2019).

[92] TensorFlow. (2019). Importing a Keras model into TensorFlow.js, [Online]. Avail-
able: https://www.TensorFlow.org/js/tutorials/conversion/import_
keras (visited on 05/27/2019).

[93] Z. Callejas. (2016). Pizza Stat, [Online]. Available: https://github.com/
zoraidacallejas/ConversationalInterface/tree/master/chapter11/

PizzaStat (visited on 05/27/2019).

[94] España, Real Decreto Legislativo 1/1996, de 12 de abril, por el que se aprueba
el texto refundido de la Ley de Propiedad Intelectual, regularizando, aclarando y
armonizando las disposiciones legales vigentes sobre la materia, Boletín Oficial
del Estado, 22 de abril de 1996, núm 97. [Online]. Available: https://www.
boe.es/buscar/pdf/1996/BOE-A-1996-8930-consolidado.pdf (visited
on 05/27/2019).

[95] España., Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Person-
ales y garantía de los derechos digitales, Boletín Oficial del Estado, 6 de diciem-
bre de 2018, núm 294. [Online]. Available: https://www.boe.es/boe/dias/
2018/12/06/pdfs/BOE-A-2018-16673.pdf (visited on 05/27/2019).

[96] Atom. (2014). Atom Is Now Open Source, [Online]. Available: https://blog.
atom.io/2014/05/06/atom- is- now- open- source.html (visited on
05/27/2019).

[97] Wired. (2015). Google Just Open Sourced TensorFlow, Its Artificial Intelligence
Engine, [Online]. Available: https://www.wired.com/2015/11/google-
open-sources-its-artificial-intelligence-engine/ (visited on 05/27/2019).

[98] T. A. Blog. (2018). Everything Alexa learned in 2018, [Online]. Available: https:
//blog.aboutamazon.com/devices/everything-alexa-learned-in-

2018 (visited on 05/27/2019).

[99] Google. (2019). Google I/O 2019, [Online]. Available: https://events.google.
com/io/ (visited on 05/27/2019).

[100] U. C. I. de Madrid. (2019). TFG Emprende, [Online]. Available: https://www.
uc3m.es/ss/Satellite/UC3MInstitucional/en/TextoDosColumnas/

1371244096036/Trabajo_Fin_de_Grado_Emprende (visited on 05/27/2019).

103

https://dialogflow.com/docs
https://dialogflow.com/docs
http://www.renfe.com/viajeros/nuestros_trenes/index.html
http://www.renfe.com/viajeros/nuestros_trenes/index.html
https://www.TensorFlow.org/js/tutorials/conversion/import_keras
https://www.TensorFlow.org/js/tutorials/conversion/import_keras
https://github.com/zoraidacallejas/ConversationalInterface/tree/master/chapter11/PizzaStat
https://github.com/zoraidacallejas/ConversationalInterface/tree/master/chapter11/PizzaStat
https://github.com/zoraidacallejas/ConversationalInterface/tree/master/chapter11/PizzaStat
https://www.boe.es/buscar/pdf/1996/BOE-A-1996-8930-consolidado.pdf
https://www.boe.es/buscar/pdf/1996/BOE-A-1996-8930-consolidado.pdf
https://www.boe.es/boe/dias/2018/12/06/pdfs/BOE-A-2018-16673.pdf
https://www.boe.es/boe/dias/2018/12/06/pdfs/BOE-A-2018-16673.pdf
https://blog.atom.io/2014/05/06/atom-is-now-open-source.html
https://blog.atom.io/2014/05/06/atom-is-now-open-source.html
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
https://blog.aboutamazon.com/devices/everything-alexa-learned-in-2018
https://blog.aboutamazon.com/devices/everything-alexa-learned-in-2018
https://blog.aboutamazon.com/devices/everything-alexa-learned-in-2018
https://events.google.com/io/
https://events.google.com/io/
https://www.uc3m.es/ss/Satellite/UC3MInstitucional/en/TextoDosColumnas/1371244096036/Trabajo_Fin_de_Grado_Emprende
https://www.uc3m.es/ss/Satellite/UC3MInstitucional/en/TextoDosColumnas/1371244096036/Trabajo_Fin_de_Grado_Emprende
https://www.uc3m.es/ss/Satellite/UC3MInstitucional/en/TextoDosColumnas/1371244096036/Trabajo_Fin_de_Grado_Emprende

[101] Ministerio de Educación y Formación Profesional. (2018). Becas de colaboración,
[Online]. Available: http://www.educacionyfp.gob.es/servicios-al-
ciudadano-mecd/catalogo/educacion/estudiantes/becas-ayudas/

para-estudiar/universidad/grado/becas-colaboracion.html (visited
on 05/27/2019).

[102] Tom’s Planner. (2019). Gantt Diagram, [Online]. Available: https://plan.
tomsplanner.es/ (visited on 05/27/2019).

[103] Xataka. (2018). La realidad del perfil de informático junior en España según los
informes, [Online]. Available: https://www.xataka.com/tecnologiazen/
la - realidad - del - perfil - de - informatico - junior - en - espana -

segun-los-informes (visited on 05/27/2019).

[104] Glassdoor. (2019). IT Consultant Salaries in Madrid, Spain Area, [Online]. Avail-
able: https://www.glassdoor.com/Salaries/madrid-it-consultant-
salary-SRCH_IL.0,6_IM1030_KO7,20.htm (visited on 05/27/2019).

104

http://www.educacionyfp.gob.es/servicios-al-ciudadano-mecd/catalogo/educacion/estudiantes/becas-ayudas/para-estudiar/universidad/grado/becas-colaboracion.html
http://www.educacionyfp.gob.es/servicios-al-ciudadano-mecd/catalogo/educacion/estudiantes/becas-ayudas/para-estudiar/universidad/grado/becas-colaboracion.html
http://www.educacionyfp.gob.es/servicios-al-ciudadano-mecd/catalogo/educacion/estudiantes/becas-ayudas/para-estudiar/universidad/grado/becas-colaboracion.html
https://plan.tomsplanner.es/
https://plan.tomsplanner.es/
https://www.xataka.com/tecnologiazen/la-realidad-del-perfil-de-informatico-junior-en-espana-segun-los-informes
https://www.xataka.com/tecnologiazen/la-realidad-del-perfil-de-informatico-junior-en-espana-segun-los-informes
https://www.xataka.com/tecnologiazen/la-realidad-del-perfil-de-informatico-junior-en-espana-segun-los-informes
https://www.glassdoor.com/Salaries/madrid-it-consultant-salary-SRCH_IL.0,6_IM1030_KO7,20.htm
https://www.glassdoor.com/Salaries/madrid-it-consultant-salary-SRCH_IL.0,6_IM1030_KO7,20.htm

ANNEX A. GLOSSARY

ACM Association for Computer Machinery
ADALINE ADAptative LINear Element
AI Artificial Intelligence
ANN Artificial Neural Networks
API Application Programming Interface
ASR Automatic Speech Recognition
AWS Amazon Web Services
CS Computer Science
CNN Convolutional Neural Networks
CUI Conversational Interfaces
DBN Deep Belief Network
DL Deep Learning
DM Dialog Management
DSTC Dialog System Technology Challenge
GPU Graphics Processing Unit
HDF Hierarchical Data Format
HMM Hidden Markov Model
IVA Impuesto de Valor Añadido
JSON JavaScript Object Notation
LMT Logistic Model Tree
LOPD-GDD Ley Orgánica de Protección de Datos personales y Garantía de los Derechos Digitales
LSTM Long short-term Memory
LUIS Language Understanding Intelligent Service
MDP Markov Decision Process
MIT Massachusetts Institute of Technology
ML Machine Learning
MLP Multilayer Perceptron
MSE Mean Square Error
NIPS Conference and Workshop on Neural Information Processing Systems
NLG Natural Language Generation
NLU Natural Language Understanding
PC Personal Computer
PhD Doctor of Philosophy
POMDP Partially Observable Markov Decision Process
ReLU Rectified Linear Unit
RENFE Red Nacional de los Ferrocarriles Españoles
RDL Reinforcement Deep Learning
RL Reinforcement Learning

SDS Spoken Dialog System
SEM Stock Exchange Market
SLU Spoken Language Understanding
SMS Short Message Service
SVM Support Vector Machine
TFG Trabajo de Fin de Grado
TFM Trabajo de Fin de Máster
TTS Text-To-Speech Synthesis
UC3M Universidad Carlos III de Madrid
URL Uniform Resource Locator
VPA Virtual Personal Assistants
VUI Voice User Interfaces

	Introduction
	Motivation of Work
	Goals
	Document Structure

	State of the Art
	Prior Background
	Machine Learning
	Artificial Neural Networks
	Deep Learning

	Conversational Interfaces
	Introduction
	Automatic Speech Recognition
	Natural Language Understanding
	Dialog Management

	Tools Analysis
	Tools for Machine Learning
	Tools for Deep Learning
	Tools for SDS implementation

	Deep Learning analysis applied to CUI Dialog Manager
	Analysis for pizza ordering domain
	Analysis for train scheduling domain
	Conclusions

	Implementation of the Conversational Agent
	DialogFlow Basic Elements
	Intents
	Entities
	Contexts

	DialogFlow Fulfillment
	Model Creation and Integration
	Handling User Intents
	Conversational Interface Deployment

	Evaluation of the Conversational Agent
	Evaluation Methodology
	Objective Evaluation
	Subjective Evaluation

	Regulatory framework
	Applicable Regulations
	Technical Standards
	Intellectual Property

	Socio-economic environment
	Socio-economic impact
	Planning
	Budgeting

	Conclusions
	Main conclusions
	Future research lines

	Bibliography

