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HIGHLIGHTS 

• Security and privacy issues must be addressed in the Internet ofThings (loT). 
• We have focused on the use of ElectroCardioGram (ECG) signals for Continuous Authentication (CA). 
• We have explored different ECG-based CA techniques for th ree attacker settings. 
• Our results exhibit promising accu racy figures, which support the use of ECG as identifier in the loT. 

ABSTRACT 

Wearable devices enable retrieving data from their porting user, among other applications. When combining them with the Internet of Things 
(loT) paradigm, a plethora of services can be devised. Thanks to loT, several approaches have been proposed to apply user data, and particu larly 
ElectroCardioGram (ECG) signals, for biometric authentication. One step further is achieving Continuous Authentication (CA), i.e., ensuring that the user 
remains the same during a certain period. The hardness of this task varies with the attacker characterization, that is, the amount of information about 
the attacker that is available to the authentication system. In this vein, we explore different ECG-based CA mechanisms for known, blind-modelled and 
unknown attacker settings. Our results show that, under certain configuration, 99.5 %of true positive rate can be achieved for a blind-modelled attacker, 
93.5 % for a known set of attackers and 91.8 % for unknown ones. 
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1. Introduction 

Terms such as "wearable computing" and "body-area/body-
sensor networks" have been much discussed since around 1995. 
They represent a wireless network of lightweight portable com-
puters, sensors and actuators located in, on, and around the hu-
man body. This idea has traditionally been very well received 
in areas such as healthcare monitoring, where the possibility of 
instrumenting a patient with physiological sensors that provide 
information in almost real time, as well as implantable medical de-
vices that can be remotely managed, is expected to be a significant 
breakthrough I 1 J. 

Internet-of-Things ([oT) devices allow the quick establishment 
and sharing of information through the Internet and it opens the 
door to new opportunities for medical devices with wireless con-
nectivity as they facilitate data monitoring and management (2). 
For this purpose, Pandey et al. have proposed a cloud-based archi-
tecture to remotely monitor and record patients data (3). Beyond 
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the pure medical usage, the emergence of the IoT paradigm enables 
using wearable devices for other purposes [ 4,5 J. One of the fields 
that has received significant research attention is their application 
for authenticating the users - the so called biometric authenti-
cation. The term biometrics refers to the automatic identification 
of subjects using their physiological or behavioural patterns (6). 
Accordingly, previous efforts have shown the effectiveness of body 
signals such as ElectroEncephaloGram (EEG) (7), ElectroCardio-
Gram (ECG) (8) or PhotoPlethysmoGram (PPG) (9) signals for this 
purpose. 

One interesting aspect of IoT-based biometric authentication 
is that smart devices can provide continuous streams of subject 
data. These data streams can be used for security purposes by 
analysing them in real-time. In fact, this feature enables taking 
authentication to the next level - instead of identifying the user 
at a given point in time, it is possible to perform this verification in 
a continuous fashion. This security mechanism is widely referred 
to as Continuous Authentication (CA)! 

2 Although "Continuous Identification"' seems the natural extension of this term, 
we adopt CA in this paper for consistency with existing works. 



Fig. 1. Use case example.

Several motivating use cases can be found for CA. For example,
consider a safety mechanism in trains that requires ensuring that
the train driver has not been impersonated during the whole
journey. In another context, a nuclear power plant may need that
its supervisor is present and not replaced during a time slot. Both
scenarios can be addressed through an IoT-based Biometric CA
(IBCA), in which wearable devices monitor users (e.g., their ECG
signals) and transmit their data to an authenticator, namely a
mobile device with Internet connectivity, which raises an alarm if
unexpected users are detected, see Fig. 1. It must be noted that this
kind of authentication has been enabled by IoT capabilities, as it
would be unfeasible otherwise. Several contributions have already
tackled this issue — [10] and [11] are two good examples.

In order to achieve continuous authentication we need to con-
sider the used biometric trait and how to determine if a given trait
belongs to the authorized user. Concerning the former issue, ECG
signals are a nice alternative for being hard to reproduce [12,13]
specially in comparison with other approaches such as the use of
fingerprints which can be copied [14] or even the use of authen-
tication tokens like smartcards which can be misplaced, lost or
stolen [15]. It is also worth noting that the electrocardiogram is
one of the most used physiological signals for security issues [16].
With respect to determining if the trait belongs to the legitimate
user, the hardness of this task varies with the attacker characteri-
zation, that is, the amount of information about the attacker that is
available to the authentication system. According to the literature,
there are three degrees of attacker, namely known attacker, i.e., it
is one of the registered system users; blind attacker, i.e., partial
knowledge exists about the attacker; unknown attacker, i.e., no
hints are available about how the attacker behaves. Intuitively, the
more knowledge the system has about the attacker, the easier is
to tell both user and attacker apart. Going back to the train driver
example, it is not the same to determine which driver is working
(among those from the company) than detecting if a given driver
has been impersonated by an unknown person. However, to the
best of authors’ knowledge, no previous work has analysed the
effect of attacker characterization in this regard. To overcome this
limitation, in this paper we propose three ECG-based continuous
authentication mechanisms, one for each attacker type. For each
one, we study how accurate, immediate and practical it is.

The remaining of this paper is organized as follows. Section 2
introduces used definitions, attacker models and requirements.
Section 3 describes the proposal. Section 4 shows the system

evaluation. Related work together with a comparison analysis is
presented in Section 5. Finally, Section 6 concludes the work and
points out future research directions.

2. Preliminaries

In this Section, main concepts are defined (Section 2.1). Af-
terwards, attacker models are introduced (Section 2.2) and the
requirements to comply are presented (Section 2.3).

2.1. Definitions

Let RUi an entire ECG record of a user Ui (or an attacker Ai).
In order to prepare this set for our proposed mechanisms, three
relevant groupings (or windows) have to be defined. First, the
record is divided into chunks ofWC seconds. A vector F of features
is extracted for each segment, as explained in Section 3.2.1.

Let WO be the user observation window, representing the min-
imal observation unit (in seconds) of the user at stake. Thus, WO
is formed by a set of the said chunks. For each WO, the average
value (F ) of its belonging vectors {F (i)}Wo/Wc

i=1 is computed. Indeed,
in continuous authentication applications, the identity of a user is
checked each WO seconds. For the sake of simplicity, in the fol-
lowing explanations and illustrations this average vector is called
ECG sample and represented as ECGk

Ui
for the user Ui and the kth

observation window.
The lastwindow is the attacker one, ofWA seconds. It represents

the amount of time that an impostor may remain in the system. In
detail, it is formed by a grouping of observation windows (i.e., N ×

WO, where N ≥ 2).
Regarding the systemstakeholders,U represents the set of users

Ui that are registered in the system, U = {U1, . . .Un}. For each
user Ui, a set of associated ECG samples exists, such that ECGUi =

{ECG1
Ui

, . . . , ECGn
Ui

} is the set of ECG samples for user Ui.
Apart from registered users, a set A of attackers Ai exists, A =

{A1, . . .An}. As it happened with users, ECG samples are obtained
from attackers, such that ECGAi = {ECG1

Ai
, . . . , ECGn

Ai
} is the set of

ECG samples for attacker Ai.
Before moving into the production environment, each of our

authentication mechanisms know one or more registered users.
Thus, it is trained with a subset of ECGUi and ECGAi for every Ui
known andAi modelled, respectively. Such an observation is called
ECG user model.



During the system operation only one user can be active, i.e., a
cardiac signal from a legitimate user or an attacker is verified. The
system is tested with unknown ECG samples. More precisely, in
order to authenticate the user in a continuous way, the systemwill
monitor the user in the interval {p, q}, thus acquiring ECG(obs)

S =

{ECGp
S, . . . , ECGq

S}. The value of q is conditioned by the used time
window, and the value of S depends on the assumed attacker
model:

S ∈

{
Ui Unknown attacker
{Ui,A} Blind-modelled attacker
{Ui,A1 . . .AN} Known attacker

q =

{p for observed windows of WO secs.

p + (
WA

Wc
− 1) for attacker windows of WA secs.

2.2. Attacker models

Our authentication system has to verify the identity of a user
Ui leveraging on a ECG(obs)

S sample, thus avoiding impersonation
attacks [17]. To achieve this goal, the systemmay or may not have
knowledge about the attacker A. In particular, based on common
attacker models for authentication systems [18,19], three settings
are considered:

• Unknown attacker. The system only knows Ui, along with
their associated ECG user model. The system has no knowl-
edge about Ai or their respective ECGAi samples. In this
sort of attacks, a third party attempts to impersonate any
authorized user [20].

• Known attacker. Under this setting, the system knows Ui
and ECGUi for all Ui, as well as ECGAi for all Ai. In this kind
of attacks, the adversary represents an insider who tries to
impersonate any other legitimate user [21].

• Blind-modelled attacker. As in the previous case, the sys-
tem knows Ui and ECGUi for all Ui. Furthermore, the system
models A by a pool of samples (i.e., {ECG1

A1
, ECG2

A1
. . . ,

ECG1
AN

, ECG2
AN

. . .}) belonging to a set of possible attackers
({Ai}

N
i=1). In this model, attackers are in between know and

unknown attackers (e.g., in [22], Riva et al. named this sort
of adversaries as‘‘known non-owners’’).

Itmust be noted that in this paperwe leverage on data retrieved
by wearable devices in order to achieve continuous authentica-
tion of the holder. However, note that these devices are subject
to different threats. Liu and Sun categorize them into integrity,
authenticity and privacy ones [23]. In the remainder, we leave
this particular type of attacker out of the scope — our proposed
strategies are intended to work under the assumption that these
threats have already been countered.

2.3. Identifier requirements and feasibility criteria

Our CA mechanisms have to fulfil the commonly adopted iden-
tifier requirements [24]:

• Universality. In the same way cars have number plates to
be identified, every subject should have an identifier which
facilitates her/his identification.

• Uniqueness. Each subject should only have one identifier to
be identified worldwide regardless the authentication pro-
cedure. Then, two subjects should have different identifiers.

• Permanence. Identifiers should authenticate the subject
throughout her/his life and thus, it should not change, nor
be changeable.

Fig. 2. Overview.

• Collectability. Identifiers could be used in innumerable oc-
casions and times. Then, identifiers should be collectible in
any occasion.

• Acceptability. Despite the variety of identifiers that could
be developed and managed, the use of identifiers should be
in line with contemporary social standards.

In line with the aforementioned requirements, the feasibility of
the proposed mechanisms can be evaluated in terms of:

• Accuracy. The system has to authenticate the user against
any third partywith a high success rate. This implies achiev-
ing high True Positive (TPR) and True Negative (TNR) rates.

• Easy start-up. The systemhas to be ready to operate quickly.
Thus, the amount of time needed to start operating (referred
to as training period) has to be as small as possible.

• Practicality. The system needs to authenticate the user by
retrieving her/his ECG values in a continuous way. Thus,
the amount of time the user has to be observed for this
purpose (and, thus, the attacker window) has to be as small
as possible.

3. Proposal description

This section describes the proposal by firstly presenting an
overview (Section 3.1). Then, it is introduced how data is pre-
processed (Section 3.2). Afterwards, each of the proposedCAmech-
anisms are presented. For ease of presentation, we divide them
into two groups, namely the one intended to work under the
unknown attacker model (Section 3.3) and those to work under
the characterized one, which covers both the blind-modelled and
known attackers (Section 3.4).

3.1. Overview

The proposed approach presents three different CA mecha-
nisms based on ECG data for different types of attackers (known,
blind-modelled and unknown). An overview of all of them is pre-
sented in Fig. 2. The system is composed of three building blocks,
called data pre-processing, model building and user checking.

At the beginning, ECG signal is collected to be subsequently pre-
processed, which includes the extraction of features. This signal
is collected from the legitimate user, and eventually from the
attacker depending on the particular setting. Then, the model per
user (and attacker, if it is the case) is built to be later used.

At the timeusers try to authenticate, the user checking is carried
out. In case of using the known attacker mechanism, attackers



and user models come into play, as well as in the case of blind-
modelled attackers. However, just the user model is considered
when working with the unknown attacker mechanism. Finally,
the system outputs a decision on whether the legitimate user is
authenticated or not.

3.2. Data pre-processing

Our system relies upon ECG values that are periodically ob-
tained from the subject at stake. However, in order to perform
authentication decisions, there are several steps to be carried out.
Such a pre-processing algorithm is depicted in Fig. 3.

Before dealing with the ECG records, the first step is to filter out
all noise (step 1, Fig. 3). For this purpose, firstly the DC component
is eliminated. Then, the ECG signals are passed through a pass-band
filter. Afterwards the ECG records are segmented into chunkswith-
out overlapping (step 2, Fig. 3) to continue with feature extraction.

3.2.1. Feature extraction
In order to extract features from the ECG signal, two main

approaches have been proposed in literature, namely fiducial-
based and non-fiducial methods. In the former, characteristic
points, like amplitude or duration of the QRS complex are ex-
tracted [25,26]. Contrarily, non-fiducial methods compute some
features, like auto-correlation or Fourier transform coefficients,
applying spectral analysis techniques over the signal [27,28]. In
this paper, we opt for this second approach. In particular, we
obtain the features via the Walsh–Hadamard Transform (WT) [29]
(step 3, Fig. 3). This transform is advisable to use for ECG signals,
and biomedical signals in general terms, since it is efficient from
the computing (matrix multiplication) and storage point of view
(signal compression) [30,31].

WT consists on a projection of the signal onto a set of orthogonal
and rectangular waveforms called Walsh functions. The forward
and inverse WT of a data sequence x(n) of length N , where M =

log2N , are given below:

Xw(k) =

N−1∑
n=0

x(n)
M−1∏
i=0

(−1)nikM−1−i , k = 0, 1, . . . ,N − 1 (1)

x(n) =
1
N

N−1∑
k=0

Xw(k)
M−1∏
i=0

(−1)nikM−1−i , n = 0, 1, . . . ,N − 1. (2)

Note that theWT of x can be interpreted as the matrix multipli-
cation between the aforesaid data sequence and the Walsh matrix
(H). That is, Xw = Hx.

Thus, a set of coefficients Xw(k), where k = 0, 1, . . . ,N − 1,
are obtained for each chunk. After that, set a window of lengthWO
(for simplicity WO is restricted to be a multiple of WC seconds), an
average value for each coefficient is computed for this observation
window, (step 4 of Fig. 3):

F (k) =
1

WO/WC

WO/WC∑
i=1

X i
w(k), k = 0, 1, . . . ,N − 1. (3)

Therefore, an average vector F = [F (1) F (2) . . . F (N − 1)] (set
of features of length 1×N) is computed for each observedwindow
of WO seconds. As previously stated in Section 2.1, for the sake of
clarity, this average vector is represented as ECGk

S for S ∈ {Ui,A}

and the kth observation interval. The reasoning behind using an
average value is motivated by the target application. Commonly
ECG sensors sample the cardiac signal in a continuous way taking
many samples per second, however, the term ‘‘continuous’’ in
continuous authentication is less demanding.

3.3. ECG-based CA mechanism with unknown attacker

In this setting, the CAmechanism is intended towork in scenar-
ios in which it is possible to monitorize a given user for a long time
period and the knowledge beforehand about the attacker is zero.
A realistic scenario is a smartphone authentication mechanism —
the device can retrieve ECG values from its legitimate user, but it
does not know anything about a potential impostor.

The system operation follows the architecture described in
Fig. 2. Once data pre-processing has been presented (recall Sec-
tion 3.2), we hereby describe how model building and user check-
ing issues are carried out. The pseudo-code of both phases is
displayed in Algorithm 1.

Data: RUi , an entire ECG record of a user Ui; th, threshold
value; trainSize, percentage of samples used to train
the system; ECG(obs)

Ui
, pre-processed ECG signal

observed from user Ui during a timeframe.
Result: ⊤ if the observed data corresponds to Ui, ⊥

otherwise
1 beginModel building phase
2 TimeTotal = size(RUi );
3 TimeModel = TimeTotal * trainSize ;
4 UserModel = { ECG1

Ui
, · · · ,ECGTimeModel

Ui
} ;

5 Half1Model = { ECG1
Ui
, · · · , ECGTimeModel/2

Ui
} ;

6 Half2Model = { ECG(TimeModel/2)+1
Ui

, · · ·, ECGTimeModel
Ui

} ;
7 RefDist = distanceCalc(Half1Model, Half2Model) ;
8 end
9 begin User checking phase

10 ObsDist = distanceCalc(UserModel, ECG(obs)
Ui

) ;
11 if ObsDist ∈ (RefDist - th , RefDist + th) then
12 return ⊤ ;
13 else
14 return ⊥ ;
15 end
16 end

Algorithm 1: ECG-based CA mechanism with unknown at-
tacker
In the model building phase, features vectors obtained after

data pre-processing are at stake, that is, ECG user model is created.
In particular, this set is divided into two parts. With both subsets,
a distance is computed. Such a distance (called RefDist) is taken as
reference for further comparisons in the next phase. The rationale
behind this is that ECG samples from each user may be distributed
in such a way that the distance between them may serve to tell
users apart.

In the user checking phase, the subject is observed for a period
of WA seconds. During this period, ECG signal is recorded, pre-
processed and features are extracted (i.e., ECG(obs)

Ui
). After this initial

phase, the distance of this set to the ECG user model is computed
(called ObsDist). The user is authenticated if Eq. (4) holds, in which
th is a system variable that represents the tolerance of the authen-
tication system against variations in the distance.

ObsDist ∈ (RefDist − th, RefDist + th). (4)

3.4. ECG-based CA mechanisms with characterized attacker

In the previous section no knowledge about the attacker is
assumed. Nevertheless the attacker can be modelled using ECG
datasets of users non-registered in the system. We have explored
two approaches that restrict the attacker knowledge to a greater
or lesser extent.
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Fig. 3. Data pre-processing procedure. 

In the blind-modelled attacker, the attacker is modelled by a set 
of non- legitimated users. This could be the case of a car-sharing 
company with a great amount of drivers register in the system 
and with a huge amount of potential attackers who will attempt 
to drive for free. Mathematically, 

{
{ECGi , ECGt., .. . } EU; 
{ECG~

1 , ECGt . . . ECG~N, ECG~ . . . } E A. 

On the contrary, in the known attacker model, attackers (A;) are 
not grouped into a single class but each of them is categorized as a 
different attacker class (A; ). Therefore, this can be seen as an iden-
t ification problem in which all the users, legitimated and attackers, 
are registered in the system - this can be the scenario of a company 
in which all the users are registered, however, each of them does 
not have the same privileges. In case of a user attempting to scale 
privileges, s/he would be considered an attacker. Similarly as in the 
previous one, the model can be mathematically expressed as: 

I {ECGi , ECGl ' .. . } EU; 
1

1 2 {ECGA1•ECGA1' .. . } E A1 

{ECG~N. ECG~N' . .. } E AN. 
The pseudocode of instance classification algorithm is shown 

in Algorithm 2. As it happened in the known attacker approach 
(Section 3.3), the process is divided into two steps as was illus-
t rated in Fig. 2. In the training phase, using a subset of samples 
belonging to ECGu; and ECGAi' the ECG user model is generated. 
In our particular case, the training is minimal and all the training 
samples are retained as part of the model. Then the model is 
tested with unseen observed samples Ecc;bsJ. As it can be seen, 
the differences with the mechanism under the unknown attacker 
model reside in the way the model is built and in the adoption of 
a majority voting procedure among several labels for taking the 
authentication decision. 

Data: ECG: matrix of ECG samples in which each row ECC:S , 
where k = { 1, . . . , m }. corresponds to an ECG frame of 
W0 seconds; C: vector of class labels, where each 
element Ck ES (being Sas defined in Section 2.1 ); 
ECC1bsJ: unseen ECG sample. 

Result: class label for Ecc; bsJ 
1 begin 
2 for k +- 1 to m do 
3 I Compute distance d(ECG~, ECc; bs)); 
4 end 
s Compute set I containing indices for the K smallest 

distances d(ECC:S , Ecc<;bsJ) ; 
6 return majority label for {C; where i E /} 
1 end 

Algorithm 2: Classification algorithm for ECG-based CA with 
characterized attacker: Classify(ECG, C. ECc; bsJ) 

4. Evaluation 

This Section discusses the satisfaction of the identifier- related 
requirements (Section 4.1 ). The evaluation of the system accuracy 
for each attacker setting is also described (Section 4.2). A discussion 
on the overall accuracy and workability of the proposed mecha-
nisms is fi nally presented (Section 4.3). 

4.1. Achievement of identifier-related requirements and feasibility 
criteria 

ECG-based continuous authentication complies with the im-
posed identifier-related requirements since ECG signals can be 



Fig. 4. ECG signal and Walsh–Hadamard spectrum.

retrieved for any individual (universality); are not changed if the
person is healthy and there are not significant changes in her/his
physical activity (permanence); can be retrieved at any time (col-
lectability); and are available through wearable devices, which is
a growing trend (acceptability). The discussion on uniqueness is
deferred to Section 4.3, since it is related to the accuracy issues
addressed in the next section.

4.2. Accuracy evaluation

After presenting the experimental settings (Section 4.2.1), the
accuracy of proposed approaches per each attacker model is stud-
ied separately (Sections 4.2.2–4.2.4).

4.2.1. Experimental settings
The considered dataset comes from PhysioBank, and more pre-

cisely, MIT-BIH Normal Sinus Rhythm dataset has been used [32].
The reasoning of using this dataset is twofold. On the one hand, it
includes long-term recordings (around 24 h) of subjects observed
at Boston’s Beth Israel Hospital. On the other hand, the subjects
do not have significant arrhythmias — that is, the population is
homogeneous without any bias between individuals. Ten of the
whole set of individuals have been used for our experimentation.

ECG signals are passed through a pass-band filter to eliminate
noise. Regarding this filter, the lower-cut off frequency is set to
0.67 Hz to avoid the noise due to the respiration and the upper-
cut-off frequency is fixed to 45 Hz as a trade-off between elimi-
nating the power-line noise and preserving as much information
as possible of the original signal. Then, since an individual, without
cardiac ailments, beats between 60 and 100 times per minute, the
chunk length is fixed in 2 s (i.e., WC = 2 s). Therefore, each chunk
includes 2 or 3 heart beats.We have used this value inspired on the
fact that a chunk length of several seconds is a common value used
in ECG identification proposals [16].

For feature extraction, depicted in Fig. 4, we sketch 2 s of an
ECG signal and its corresponding 512 initial coefficients of the
WT. As it can be observed, lower frequency coefficients keep most
of the signal information. In our experimentation only the lower
256 (N = 256) coefficients are used as a commitment to system
efficiency and storage requirements.

Finally, note that for the case of unknown attacker, without loss
of generality, we adopt Mahalanobis [33], although eventually any
distance could be applied. By contrast, for a characterized attacker,
for the classification of the instances we opt for non-parametric
algorithms, since they do not make any assumption about the

data distribution. In particular, we use a K-Nearest Neighbour
(KNN) [34]. KNN is a lazy algorithm, meaning that it avoids to do
generalizations with the training data, which is quite reasonable
for the CA problem. KNN parameters have been tuned in order to
maximize the TP rate and minimize FP rate. After conducting a
battery of experiments, the number of neighbours (K ) is fixed to 5
(an odd number is commonly used whether the number of classes
is 2 to avoid ties in the majority voting [35]) and the euclidean
distance [36,37] has been employed as distance metric.

4.2.2. Unknown attacker model
In the harder settings (unknown attacker model) only a user

Ui is known and observed along different time slots (windows of
attack), from 30min (WA = 18 ·102 s) to 200min (WA = 12 ·103 s).
Once ECG signals are processed, considering 35% of data as training
set, the best results are achieved for observed ECG windows of
1 min (i.e., WO = 60 s) and th 1, thus the study presented herein
considers this setting. True Positive (TPR) and True Negative (TNR)
rates for different WA are presented in Fig. 5. The maximization
of TPR and TNR is the main goal, that is when both parameters
cross each other. In this context, the bestWA is between 70–75min,
such that TPR is 90.63% and 91.85% and TNR is 92.08% and 91.94%
respectively. One important benefit of this approach is that, though
it would be desirable the reduction ofWA, no previous information
about other users is required.

4.2.3. Blind-modelled attacker model
In the blind attacker model the user Ui is known and the un-

known attackerA is modelled by a set of possible non-legitimated
users, nine users in the conducted experiments (recall that the
used dataset is composed of 10 users, Section 4.2.1). For each
individual, we have carried out the KNN classification with two
classes, namely the target individual class Ui and the adversary
class A, as described in Section 3.4.

Table 1 shows the results for each subject. It can be seen that
all of them are quite similar to each other. An overall value has
been computed, resulting a 99.5% of TPR and a 94.1% of TNR.
Furthermore, the ROC Area is 0.993, which is a value very close to
the optimal (ROC= 1.0), and thus the accuracy of the classifier can
be categorized as excellent.

Additionally, we have tested how much the algorithm can be
tight in terms of reducing the size of the training dataset. As shown
in Table 2, the percentage of data used for training can be reduced
drastically without a significant performance deterioration. In par-
ticular if the training set is drastically reduced from 60% to 20% or



Fig. 5. Results for different windows of attack in the known attacker setting.

Table 1
ECG-based continuous authentication: blind-modelled attacker model.

Subject 1 Subject 2
TP Rate 99.2% TP Rate 99.6%
TN Rate 99.2% TN Rate 88.3%
ROC Area 0.996 ROC Area 0.9860

Subject 3 Subject 4
TP Rate 99.6% TP Rate 100%
TN Rate 94.2% TN Rate 92.9%
ROC Area 0.992 ROC Area 0.987

Subject 5 Subject 6
TP Rate 100% TP Rate 100%
TN Rate 92.1% TN Rate 93.73%
ROC Area 0.991 ROC Area 0.996

Subject 7 Subject 8
TP Rate 100% TP Rate 98.8%
TN Rate 93.3% TN Rate 94.2%
ROC Area 0.991 ROC Area 0.996

Subject 9 Subject 10
TP Rate 99.2% TP Rate 98.8%
TN Rate 96.7% TN Rate 96.2%
ROC Area 0.999 ROC Area 0.997

Overall
TP Rate 99.5%
TN Rate 94.1%
ROC Area 0.993

Table 2
Blind-modelled attacker model: training size analysis.

% of training Minutes for training TP Rate TN Rate

1 14 87.7% 62.1%
2 28 100% 66.9%
4 56 100% 75.3%
8 112 100% 84.3%

10 140 99.7% 86.0%
20 280 100% 92.4%
40 560 99.8% 93.9%
60 840 99.6% 97.3%

10% , the TPR remains almost constant and the TNR gets worse in
only a 5% or 12%.

In all the above experiments the ECG observation time window
is set to 1 min (WO = 60 s). The system performs well using this

Fig. 6. Blind-modelled attackermodel: Results for different ECG observedwindows.

window length and this value has been tuned through experimen-
tation. For completeness, we have tested the CA system when the
ECG observed time frame is varied — it would be equivalent to the
window of attack WA studied in Fig. 5. The TPR almost remains
constant and close to the optimal 100% value for all the windows
length — only a slight degradation is observed when WO is bigger
than the 60 min threshold. In Fig. 6 the TNR is displayed. If the
lower allowed threshold for the TNR is set to 90% the observation
window can be increased up to 25, 18 and 5 min for a training set
of 80%, 60% and 40% respectively — the TPR is 100% for these three
points.

4.2.4. Known attacker model
Finally we have assessed the authentication mechanism in

which both the legitimate user Ui and a set of possible attackers
{Ai}

N
i=1 (e.g., legitimate system users with less access privileges)

are registered. Similarly as in the blind attacker model, we have
tested a KNN classification but instead of 2 classes, the user Ui
and nine possible attackers ({A1 . . .A9}) are the existing ones. The
results shown in Table 3 clear point outs the excellent performance
of the system. TPR and TNR are 93.5% and 99.3% respectively.
Additionally, the ROC Area (0.99) is almost the optimal value and,
once again, the classifier can be categorized as excellent.

4.3. Discussion on uniqueness and workability

According to the results shown in the previous section, the
accuracy of the studied approaches for all the proposed attacker
settings is satisfactory, thus also addressing the requirement of
uniqueness. This is because an identifier derived from the ECG
signal in this case is proven to be different and unique per subject,
though with some limitations depending on the attacker setting.

With respect to feasibility of the proposed mechanisms, apart
from the already discussed accuracy, the remaining ones are prac-
ticality and easy set-up. Regarding the first one,when theunknown
attacker model is at stake, the window of attack has to be high
(70 min) to achieve successful results. By contrast, the remaining
models are not limited by this feature. In this sense, the unknown
attacker setting is the least practical, but it may be the only option
if no assumptions can be made about the attacker. With respect
to the set-up easiness, the unknown attacker approach is the
best choice since the training set needed is 35%, quite smaller in
comparisonwith the characterized attacker model in which 80% of
data is required to achieve competitive results. Note that 60% and
80% are common values for classification problems in the training
phase [35,38].
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Table 3 
ECG-based continuous authentication: known attacker model. 

Accuracy - Weighted Average 

TPRate 

TN Rate 

ROCArea 

A1 A2 A3 
9 0 

10 

A2 0 

A3 0 3 

~ 2 0 11 

As 3 2 

AG 0 8 0 0 

A7 0 0 0 2 

A<, 0 8 7 3 

A9 2 3 0 2 

5. Related work 

Biometrics has been extensively used for authentication pur-
poses. For instance, the hand shape is used for this purpose [39]. 
The study of voice, face and gesture for authentication purposes in 
mobile devices is also a research line [40]. Another novel example 
is the use of the accelerometer sensor and touchscreen in smart 
devices (41 ]. Biometric signals are also used for authenticating 
users. i.e., PPG signal (42]. EEG signal [7] or ECG signal (28.43- 45 ]. 
Combination of different biometric features are also applied, such 
as ECG, Galvanic Skin Response (GSR) and airflow signals [46]. 

In addition, biometrics has also been widely used for continuous 
authentication, also by means of assorted features. For instance, 
Niinuma et al. [47] use the facial skin and colour clothes to au-
thenticate users. In the context of mobile devices facial [48.49] 
and touch screen recognition [50- 52] have been applied. Signal 
processing has also been used in this field, particularly PPG and ECG 
signals. Although some proposals work with PPG [53,54]. here we 
focus on those related to ECG signals since electrocardiograms are 
a richer signal from the information point of views - PPG signals 
only provide beats and average heart rate. Indeed, ECG signals have 
the advantage of being robust against the application of falsified 
credentials (12]. In detail, P, Q, R, S and T waves characterize 
the ECG waveform, the amplitude of P wave remains constant 
throughout the life and amplitude of the remaining waves changes 
on small scale [13]. 

In the literature we can find how ECG signals have been sig-
nificantly used for individuals' continuous authentication. In [26], 
the QRS complex, the most stable component of ECG signal, is 
applied in the continuous authentication process. Experiments aim 
to analyse the permanence and stability of the biometric features 
extracted from the QRS complex in ECG signals on a time period of 
a day. Guennoun et al. (55 ] present the use of several features of 
the ECG signal to perform continuous authentication. Mahalanobis 
distance is calculated between a heartbeat and a previously stored 

~ 

0 

2 

0 

0 

0 

2 

93.5% 

99.3% 

0.99 

As A<, A7 As A9 
0 0 1 0 1 

1 19 6 0 

0 0 0 6 0 

0 0 0 9 0 

0 0 0 0 

2 0 0 

0 

8 0 

0 0 

0 0 3 

one such that results depend on a threshold when the process is 
repeated for 35 heartbeats. The negative side is that this model is 
not explained in detail and the experimentation is quite limited 
- ECG signals are short (15 min per user) and each experiment 
lasts for 30 s. In (56] Autocorrelation/Linear Discriminant Analysis 
(AC/LOA) algorithm is applied for the design of the biometric 
features extracted from the ECG signal. In the experiments a set 
of 10 users starts doing different activities during 5 min to be au-
thenticated every 5 s. A different approach is proposed in (57,58], in 
which the ECG signal is converted into strings to be later classified. 
Again, the experimental part is limited in both proposals - data of 
10 and 19 subject is recorded along 10 min. Interestingly, Derawi 
et al. (59] creates an ECG sensor to collect ECG data to later apply 
cycle detection of the pulse/heart rate of users. Though the number 
of subjects involved in the evaluation is higher regarding other 
works, just data during 5 sessions of 1 min is recorded. New ECG 
feature extraction techniques are proposed in [60,61 ]. However, 
while 112 subjects take part in the evaluation of [60], just 30 
subjects along 30 sin [61 ]. Pasero et al. [62] use neural networks 
to classify ECG and discriminate between users of a given system 
and attackers - 40 subjects take part in the experiments and 
they get the maximum possible success rate. By contrast, support 
vector machines are applied in [63,64] for ECG data classification. 
In both works a small set of data is part of the experimental setting. 
However, [63] claims to get an almost perfect recognition rate. A 
quite different approach presents [65], it combines the use of ECG 
and PCG signal for cardiac recognition using decision fusion but, 
again, evaluation data is quite reduced. 

5.1. Comparison analysis 

In this section, we compare a variety of security approaches 
related to authentication with ECG signals. In addition, the most 
representative ECG-based works for continuous authentication are 
also studied herein. More precisely, the following features are 
studied per approach: 



Table 4
Comparison analysis.

Approach Accuracy Fiducial features
(F)/non-fiducial (NF)

Authentication
(A)/Continuous
Authentication (CA)

Number of subjects Size of observations
per subject

Type of attacker

Our Proposal TPR 90.63–91.85% NF CA 185 24 h Unknown
TNR 92.08–91.94%
TPR 99.5% NF CA 10 24 h Blind-Modelled
TNR 94.1%
TPR 93.5% NF CA 10 24 h Known
TNR 99.3%

[58] TPR 99.6% NF CA 19 10 min Known
TNR 99.6%

[26] TPR 85%–95% F CA 185 24 h Known
TNR 85%–95%

[55] TNR 84% F CA 15 15 min Unknown

[56] TPR 99.63% F CA 10 – Known
TNR 67%

[43] TPR 83% – A 81 3 min Known
TNR 83%

[45] TPR 70%–71% F A 10 2 min Unknown
TNR 67%–70%

[60] TPR 100%* F A 112 40 min Known
TNR 99.72%*

[59] TPR 97.5% F A 30 5 min Known
TNR 96.7%

[61] TPR 98%–99% F A 18 Few secs. Known
(12 QRS samples)

[28] TPR 95.5–98.8%* NF A 52 4 min Known
TNR 93.8–98.4%*

[44] TPR 94.8% NF A 28 30 s Known
TNR 98.1%

[62] TPR 95% NF A 40 3 min Known
TNR 90%

[63] TPR 90% NF A 5 5 min Known

[64] TPR 87.28%* NF A 17 4 min Known

[65] TPR 95% NF A 21 3 min Known
TNR 96.5%

Legend: (–) No specified.
* When multiple experiments are carried out the best results are presented.

• Accuracy is studied in regard to TPR and TNR. These metrics
are common performance values for biometrics and also are
the metrics applied in our experiments.

• Fiducial (F)/ Non-fiducial features (NF) are the two general
existing approaches for feature extraction. We distinguish
between approaches that use characteristics points of the
ECG signal in the time domain (e.g., amplitude difference
between S and T peaks or time intervals between two con-
secutive R peaks) and solutions that extract features in a
frequency domain (e.g., Fourier or Hadamard domain).

• Authentication (A)/ Continuous authentication (CA) are
the applied techniques, while the former refers to the iden-
tification of a user at a particular time, the latter refers to
the authentication of a subject along a period of time. That
is, in CA the user credentials are checked at regular time
intervals and the distance between intervals is conditioned
by the intended application.

• Number of subjects and Size of observations per subject
involved in their evaluation. These variables show the over-
all size of their experiments. Furthermore, the larger the
value of these variables is, a greater confidence on the results
and extracted conclusions, can be guaranteed.

• Type of attacker corresponds to the assumption of having a
known, a blind-modelled or an unknown attacker. These are
the three attacker settings considered in our experiments.

The proposed comparison is depicted in Table 4 — a total of
fifteen representativeworks have been studied. For the sake of this
paper, one key remark is that the vast majority of works (87%)
assume a known attacker setting, whereas the remaining ones
(13%) deal with the unknown attacker. Nevertheless, to the best
of the authors knowledge, there is no paper working under the
blind-modelled setting. This latter setting is very interesting in a
business scenario in which a wide amalgam of legitimate users
with different access privileges coexist.

With respect to the achieved accuracy, our results (i.e., TPR =

90.63–91.85% and TNR = 92.08–91.94%) notably outperform
existing oneswhen the attacker is unknown. In the known attacker
setting and considering the CA problem, our proposal (i.e., TPR =

93.5% and TNR = 99.3% ) surpasses the fiducial based approaches
and offers similar results with respect to the non-fiducial based
solutions. Continuing with the known attacker setting, our results
are similar to previous authentication proposals (e.g., [59] or [44]),
regardless of the features used. Lastly, it is worth noting that the
blind-modelled setting cannot be compared with previous works
since this attacker model has not been formerly considered.

In relation to the features extraction, the situation is balanced
between fiducial and non-fiducial based approaches when the
authentication problem is tackle. Nevertheless, the use of fiducial
features is the dominant (75%) existing approach in CA solutions,
although it renders worst results. As in [58], our approach doest



not extracts features in the time domain (non-fiducial based ap-
proach). In particular, our proposal exploits the benefits ofworking
in the Hadamard domain as explained in Section 3.

One key differentiating factor between our proposal and pre-
vious works is the size of the dataset. This size can be computed
by multiplying the overall number of subjects by the time period
during which a subject is observed. Accordingly, our dataset is on
average 30 times larger than the ones used in previous works.
We would like to highly note that in our experiments, 24 h of
continuous ECG data is used for each individual. This ECG record
length is only used in another proposal [26], but results are slightly
worse in comparison with ours.

6. Conclusions

The use of wearable devices to extract biosignals that can be
shared leveraging the Internet of Things (IoT) opens up the door
to promising security applications. In this paper, we have focused
on the use of ElectroCardioGram (ECG) signals for Continuous
Authentication (CA). Such application is possible thanks to IoT,
enabling an authenticator to process ECG data. However, a proper
design of an IoT-enabled CAmechanism needs to take the attacker
into account. Thus, the key difference with existing works is that
we present three different mechanisms for known, unknown and
blind attacker settings. In this way, we study the effect of attacker
characterization. Our results exhibit promising accuracy figures,
which support the use of ECG data as an identifier. Moreover,
balanced practicability and reasonable easiness for the set-up are
achieved in the three settings.

Future work will have three main directions. First, the use of
variable ECG records (e.g., data recorded during physical activities)
will be considered. Second, the use of another vital signals (e.g., EEG
or GSR) will also be explored in the context of CA. Finally, the
adoption of mobile-edge or fog computing schemes in this context
will be assessed, taking into consideration the underlying security
and privacy requirements.
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