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Abstract. Comprehensive Geriatric Assessment is a medical procedure 
to evaluate the physical, social and psychological status of elder patients. 
One of it s phases consists of performing different tests to the pat ient or 
relatives. In this paper we present the challenges to apply Automated 
P lanning to control an autonomous robot helping the clinician to per-
form such tests. On the one hand the paper focuses on the modelling 
decisions taken, from an init ial approach where each test was encoded 
using slightly different domains, to the final unified domain allowing any 
test to be represented. On the other hand, the paper deals with practical 
issues arisen when executing the plans. Preliminary tests performed with 
real users show that the proposed approach is able to seamlessly handle 
the patient-robot interaction in real time, recovering from unexpected 
events and adapt ing to the users' preferred input method, while being 
able to gather all the informat ion needed by the clinician. 

Keywords: Automated Planning · Human-Robot Interact ion 
P lanning and execution · Social Robotics 
Comprehensive Geriat ric Assessment · Health-care robotics 

1 Introduction 

One of the main challenges of the health-care systems is the aging of the popula-
tion. According to the World Health Organization [24] between 2000 and 2050, 
world's population over 60years will increase from 11% to 22%, reaching a total 
of 2 billion people, from which almost 400 million will be 80 years or older. 

Comprehensive Geriatric Assessment (CGA) [6] is a medical procedure to 
evaluate the physical, social, cognitive and psychological status of elder patients. 
CGA is the prerequisite for personalized treatment and follow-up. It is performed 
usually every 6 months and involves three phases: in phase 1, Clinical Interview, 
patients and relatives inform to health-care professionals about the patient status 
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and their perception about her evolution since last evaluation. During phase 2,
Multidimensional Assessments, different measurement tests, performed either by
patients or relatives, evaluate the functional, cognitive, motor and social status
of the patient. Finally, in phase 3, Individualized Care Plan, the results from
the two previous steps are taken into account and the health-care professional
designs a personalized care plan to be followed until next visit.

This paper shows the challenges faced when applying Automated Plan-
ning [11] to control a robot able to assist health-care professionals collecting
information during phase 2. Currently it is able to autonomously conduct tests
without health-care professional intervention. Meanwhile, the clinician can con-
centrate on more added-value tasks like discussing with patient or relatives or
evaluating the evolution since the last visit. The use of an automatic solution
to perform the tests could significantly reduce the total time spent in the CGA
process.

The paper is structured as follows: Next section describes the background
of the work. Section 3 shows the challenges faced and the decisions taken when
developing the deliberative module. Section 4 presents a brief description of the
domain and problems. In Sect. 5, preliminary results are shown. Section 6 shows
the closest related work. Finally the paper conclusions and the future work are
described in Sect. 7.

2 Background

2.1 CGA Tests

Several tests have been proposed in the medical literature for CGA’s phase 2. Our
system is currently able to perform three of the most popular ones: a functional
test, the Barthel’s Index Rating Scale [17]; a cognitive test, the Mini-Mental
State Examination (MMSE) [8]; and a physical test, the Get Up & Go test [18].
In addition to measure different aspects of the patient status, these three tests
are quite different in nature and pose different challenges from the Human-Robot
Interaction (HRI) point of view:

– The Barthel’s test is performed by the patient or a relative and can refer
to present or past patient’s conditions. It consists of ten questions, each one
with three or four possible closed answers. Questions deal with the patient’s
ability to perform daily living activities. From the HRI perspective this is the
simplest test to automatize as answers are closed and the patient just needs
to answer verbally or using a tablet.

– The MMSE test evaluates cognitive impairment and changes in patients suf-
fering from dementia. It must be performed by the patient. In 5 to 15 min
it examines orientation, immediate and short-term memory, attention, calcu-
lation abilities, recall, language understanding, and ability to follow simple
commands. It is more complex to automatize than the previous one as it
does not only include closed-answer questions, but also open-answer ques-
tions (“What day is today?”) and also questions that require monitoring
simple patient movements (“Close your eyes”), painting or hand-writing.
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- The Get Up & Go test is used to measure balance and fall risk, detecting 
deviations from a confident, normal performance. The patient must stand up 
from a chair, walk a short distance, turn around, return to the initial location 
and sit down again. The robot has not only to speak to guide the patient, 
but it needs also to place itself in a position where it can monitor patient 
movements. In addition, the robot needs to perceive the gait and analyze 
balance and t ime. 

2.2 The Robot 

The used robot is shown in Fig. 1. It is a mobile robot, based on the MetraLabs 
SCITOS G3 platform 1 , with capabilities for localization, navigation and obstacle 
avoidance. Interaction with patients is done via speech and speech recognition, 
but also the embedded tablet is used to show the tests' quest ions and can be 
used by the patient to answer. For patient 's convenience she is provided with 
a second tablet mirroring the embedded one. The robot is also endowed with a 
Kinect 3D sensor that detects t he patient and t racks her movements, which is 
needed to check that she has not left the room, but also for some parts of the 
tests. T he software and hardware description of the robot has been performed 
elsewhere [3] and is not part of this paper. 

Toucll~11:tnmon1to1 

fmbc>ddc-d PC With intel,t7CPU ~nd WI fl 
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Fig. 1. T he robot used for CGA, showing sensors (left) and shell (right). 

2.3 Automat ed P lanning 

Automated Planning (AP) consists of finding a plan (sequence of t ransit ions) 
that, when executed, takes the system from its current state (initial state) to a 
final one where the goals are achieved. Most of the research in AP is devoted to 
the automat ic generation of plans using generic problem-solving techniques. 

We use AP techniques to provide the robot with the ability of generating its 
own plans and behave autonomously when conducting the CGA tests. There are 

1 ht tp://www.met ralabs .com/en / (Last visit on July 21st 2018) . 
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two main activities that need to be done so that the application of AP is possible:
First, the Human Robot Interaction (HRI) needs to be modeled; second, once
the model has been created and a plan achieving the goals is found, the plan
must be executed and monitored, given that the real interaction with the patient
is very likely to be quite different from the “ideal” planned one.

Roughly speaking, there are two main approaches to Automated Planning:
action-based and timeline-based. The main difference between them is the way
transitions are modeled: Action-based planning [7] represents transitions by
means of actions. Following this paradigm, the task is modeled in terms of states
and actions; applying an action in a given state produces a new state. The plan
will be the sequence of actions achieving the goal from the initial state. Formally:

Definition 1 (Action-based planning task). An action-based planning task
is a tuple Πab = {F,A, I,G}.
F is a finite set of facts and numerical state variables. A state s ⊆ F is defined
by the set of facts that are true together with the set of values of the numerical
state variables. A are the actions that the robot can perform, being each a ∈ A
described by means of four sets: {prea, adda, dela, numa}. prea are the precon-
ditions, that must hold in a state for the action to be applicable, adda and dela
are respectively the true facts appearing and the facts that become false after a
is applied, and numa accounts for the variations that a produces in the numeric
state variables. I ⊆ F is the initial state and G ⊆ F describes the goals. A plan,
π = {a1, a2, ...an} is sequence of actions that applied to I reaches a state sn such
as G ⊆ sn. Classical action-based planning assumes instantaneous actions and
does not consider time explicitly, even if it has extensions handling time.

On the other hand, timeline-based planning focuses on the internal state of
the system, how it varies due to changes in the world and how it drives the
interaction with the environment. Formally:

Definition 2 (Timeline based-planning task). A timeline-based planning
task is a tuple Πtb = {S,R, I,G}.
S = {sa, sb, ...sk} is set of state variables, where each si ∈ S is defined by
(V, T,D), being V the possible values it can take, T : V → 2v is a transition
function that for each value v ∈ V specifies the values that si can take after it,
and D : V → N × N specifies the minimum and maximum times where si can
take the value v. R is a synchronization rule, a pair of two state variables si and
sj temporarily related by one of the Allen’s temporal relations [2] (equal, before,
meets, overlaps, etc.). I is the initial value of all the state variables and G are the
goals; future desired values for some of the state variables, usually temporarily
tagged and with temporal relations among them. A plan is a sequence of state
variables transitions that respects the synchronization rules.

In both planning paradigms modeling a task consists in creating a representa-
tion of the states and the transitions using a declarative language. Action-based
planning uses mainly the Planning Domain Definition Language (PDDL) [19]
and its variants. Meanwhile there is no standard language in timeline-based
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planning and various alternatives, like the Domain Description Language
(DDL) [5] or the New Domain Definition Language (NDDL) [4], coexist. The
models are usually split into two files: the domain file, which contains the defini-
tion of the predicates and numerical functions for defining states and the tran-
sitions (actions or synchronization rules); and the problem file, which contains
the descriptions of the initial state and the goals. This way, a domain file can be
reused to represent a family of planning tasks just by changing the problem file.

3 Automated Planning for CGA

In this section we analyze the AP challenges CGA poses from both the modelling
and execution perspectives.

3.1 Modeling Challenges and Decisions Taken

There are several ways to model the CGA process using AP. Once a planning
approach is selected, specific features of CGA allow to decide among the different
alternatives that appear when creating the model.

Selection of the Planning Paradigm. In order to choose the paradigm the
following general aspects are usually considered:

– Reasoning about time requirements: Although both paradigms are able to
explicitly take time into account when creating the plans, it has been demon-
strated that timeline-based planning is expressive enough to capture action-
based temporal planning, while the contrary is yet unclear [13]. If complex
temporal reasoning is needed, as in the case of quantitative temporal relations
among goals (for example representing that a goal must be achieved between
10 and 15 s after another goal has been reached), timeline-based planning is
usually a better approach.

– Model complexity: Timeline-based models tend to be more complicated than
their equivalent action-based ones. In addition, changes in action-based mod-
els tend to be quite straightforward and can be performed even by non-
experts, while in the another approach changes in the model usually needed
to be carefully studied.

– Availability of planners: Action-based planning community is quite bigger
than the timeline-based one. That means the number of freely available plan-
ners is higher and contributions in the field appear at a higher pace. Never-
theless, some applications like autonomy in space are mainly dominated by
timeline-based approaches.

Although the concept of time is relevant in CGA interaction (for example
patients have a limited time to answer before the robot repeats the question or
marks it as unanswered), reasoning about time is not required, nor there is any
need for concurrent actions or complex temporal relations between goals. Implic-
itly considering time, as non-temporal action-based planning does, seems a good
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choice, reducing the complexity of the search and producing better quality plans
faster. Non-temporal models are also easier to create and there is a large amount
of planners supporting it, consequently, non-temporal action-based planning has
been selected to model the CGA interaction. As a natural result of this choice,
the PDDL language will be used.

Planning Horizon. Next decision is to determine the planning horizon. We can
plan in a question by question basis: the robot creates a plan to pose the current
question, executes it, and once finished, looks for a new plan for the next one.
Most CGA tests are episodic at the level of questions. This means each question
can be planned in isolation and the result of one question has no effect in the
next ones. In the rare case where some consecutive questions are interrelated
they could be considered as a bigger single question. The main advantage of this
approach is that it is very likely that plans will be found quickly, as they will
comprise a relatively small number of actions. The drawback is that a external
control system is needed to control the global interaction flow.

A second alternative is to plan the whole test, modeling each of the episodes
by introducing intermediate subgoals or landmarks [16] and a mechanism to
impose a total order among them. That way, an external control system is not
needed, but it will take longer to find a plan. We could also think about planning
the whole CGA, creating a plan for all tests to be carried during the session.

After evaluating the three alternatives, we have decided to plan at the level of
a single test. As we will see in Sect. 5 planing times are short enough to guarantee
a seamless interaction even when multiple replanning processes are needed. In
the usual case that several tests are prescribed sequentially, a control system is
needed to concatenate the planning and execution of all of them, but this is way
simpler than the one needed if planning at the question level.

Model Partition. Once decided we will plan at the test level. We need to
state whether the CGA interaction will be modeled using a single domain or if
a domain will be created for each test.

Having a domain for each test allows to tailor them to the specific types of
interactions they need; answering questions in some of them, physical activities
in other ones, etc. Following this approach domains will be simpler as only the
required types of interactions must be encoded. The drawback is having several
similar domains, which makes changes and improvements harder. On the other
hand, most tests have a common structure composed by salutation, introduction,
questions and farewell. Also the order of the questions is usually fixed and most
of them follow a common structure: The robot begins the interaction, usually
with some kind of introduction that precedes the question. Then the question
itself is posed and options, if any, are enumerated. Once this is done, it is the
turn of the patient to answer or to perform some action. Questions finish with
the robot giving some kind of feedback about the user action (“Thanks, we will
proceed to the next question”) or asking the user if the answer is right (“Is this
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your final answer?”). Attending to this common structure it would make sense
to create a single domain to model all tests.

Considering pros and cons of each alternative, we have decided to create a
single domain. This domain is able to model the different types of questions that
appear in CGA. Using this unified domain, a planning problem will encode each
test. Although finding a plan in this common domain is harder than if several
simpler domains were considered, exploiting the sequential nature of CGA makes
planning times suitable for real-time interaction.

Action Modeling: Handling Uncertainty in Actions. An action-based
planning model comprises a description of the states and of the actions the sys-
tem can perform. Actions modify the state either by changing the truth value
of facts or by altering the value of numerical ones. When modeling a task using
planning it is necessary to make some assumptions or predictions about the
effects of the actions [12]. As we are planning the full test we need to guess
which will be the patient’s behavior for each question. Probabilistic planning,
which extends the model of action-based planning assigning probabilities to each
of the outcomes of an action, seems a natural approach to handle uncertainty
in action execution, as for example the patient asking for the robot to repeat
a question. But in practice probabilistic planning has some drawbacks: proba-
bilities for each outcome are usually unknown and finding a plan taking them
into account becomes much harder. In fact, in domains where there are no dead-
ends (states from which we cannot escape, or that once reached prevent us from
achieving the goals), a common procedure to handle uncertainty is to assume
that the action execution will result in its most likely effect, and replan in any
other case [25].

That is the approach followed in our work: A nominal behavior, referring to
the desired flow of interaction, has been defined. It corresponds to a seamless
interaction between the robot and the patient, where the first one poses the
questions and the second one answers them with no errors or external events
modifying the expected flow. If the interaction diverges from the predicted flow
a replanning episode is launched and a new plan is created.

Action Modeling: Handling Unpredictable Events. Many things can
go wrong while performing the CGA, but the ultimate goal of the robot is
to find a new plan to come back to the nominal behavior in order to finish
the test gathering the required information. The new plan must contain some
actions to correct the unexpected issue and to return to the normal flow of
the nominal behavior. These are corrective actions, which are never included
in the initial plan. For instance, if the patient leaves the room, the robot must
interrupt the test execution. The new plan should start calling the patient and
searching for her before continuing with the test. After the execution of these
corrective actions, the nominal behavior can continue. Modeling these correc-
tive actions is important as it endows the system with much more responsive-
ness to the environment and a more coherent interaction. Dividing actions into
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nominal-flow ones and corrective ones simplifies both types of actions, which
results in reduced planning times. Nominal behavior plus corrective actions are
a good alternative to probabilistic planning approaches. They allow to easily
recover from undesirable situations, scale better and do not need a probabilistic
model of each action outcome to be created.

One peculiarity of CGA interaction is that often after an interruption the
interaction should not come back to the point where it was when stopped, but
to a previous point. For example if the robot is interrupted while reading the
options of a question, it is required to start the question again. If the unexpected
event occurs when waiting for the answer, it makes sense that a summary of the
question is performed again when the nominal flow is resumed.

Modeling these restart from here states and the way to come back to them in
case of interruption is somewhat special because the corrective plan must reset
the values of some fluents to repeat one or more previously executed actions
to achieve a coherent interaction. To solve it, from a conceptual point of view
the execution has been divided in interaction episodes of different number of
actions. An interaction episode must be completely executed or it has to be
repeated again from its beginning. As a consequence, the number of actions to
execute again after a replanning depends on the interruption but also on the
moment in which it occurs.

State Modeling: Handling Numerical Information. While performing a
CGA test the state must contain some numerical information, like the number
of the question being currently asked, the number of times it has been repeated
or how many questions the patient answered incorrectly, among others. This is
represented by means of numerical functions or numerical fluents. Despite being
part of the language specification since a long time ago and their obvious utility
in many real applications, modern planners still have problems to integrate them
in their heuristics, and indeed many state-of-the-art planners do not fully support
them. A common trick, widely used when the range of numeric values is limited,
is to codify them by using logical predicates. That way, the heuristic can consider
them while looking for the solution. But this increases the number of possible
states, which in turn increases the search space and the pre-processing time.
In our case, where plans must be found in real time modeling numbers or order
relations with predicates could increase pre-processing time to unbearable values,
not suitable for a fluid interaction.

State Modeling: Types of State Variables. Two states will be different if
they contain different facts or different values for the numerical state variables.
Both will change as an effect of an applied action or due to external events.
Taking that into account, we can conceptually divide the state variables (both
logical and numerical) into three different categories:

– Internal variables: They are used to control the execution of the test, organize
the flow of actions and specify properties of the questions of a test. Their value
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at any moment of the plan execution can be fully determined as they will only
change after an action has been applied.

– Predicted variables: Although in the general case the patient can behave non-
deterministically and unpredictably, we can have some expectations about
her behavior while performing the test, what we called nominal behavior.
Predicted variables represent the expected behavior of the patient during
the interaction, their true value does not depend on the system, but on the
patient, but planning is done assuming certain outcomes as a result of the
patient’s actions.

– Unpredictable variables: They are used to represent the effects of actions of
the user that do not directly respond to an ideal interaction flow. They are not
considered in the planning process as their occurrence cannot be predicted
in advance. They appear as consequence of unexpected events that break the
nominal flow and trigger corrective actions, whose aim is indeed to make them
disappear.

This differentiation allows us to conceptually divide a state of the world
into two parts: one made of variables whose values will be (almost) always as
expected (internal ones), and another one comprising the variables that can
change unexpectedly, invalidating the current plan in the middle of its execution
(predicted and unpredictable ones).

3.2 Execution

Once the plan has been created it must be executed in the real and dynamic
environment. In fact, the mechanism to join planning and execution is usually
up to each developer and depends usually on the chosen architecture. In our case
we are using the Pelea architecture [1]. This section describes the generic items
that must be considered in executing the generated plans of actions for CGA.

Continuous Monitoring. While planning we assume actions are instantaneous
since we do not need to reason about time and there are not concurrent or
parallel actions. But of course actions do have duration while executing. This
implies that for some preconditions it is not enough to monitor whether they
hold when the action starts. It must be ensured they are kept during the whole
execution. Then, we have adopted a solution similar to that of temporal action-
based planning [9], specifying for each precondition whether it must be true at
the beginning, end or during all the action execution. To simplify the search
process this information is not taken into account when planning, it is only
used while monitoring: the system is continuously monitoring the real state and
comparing it to the expected one. This ensures the robot can react properly
when something unexpected occurs.

Triggering Replanning. Different options exist in order to decide when to
replan. Always replanning after a single change in the state can lead to unnec-
essary replanning as this change may not affect the plan, but allows also to
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take advantage of opportunities. Replanning only if the current plan is not valid
requires a more complex monitoring mechanism, but reduces the need for replan.
Finally is it also possible to replan only if the change invalidates the next action;
this reduces even more the number of replanning episodes, but can lead to dead
ends. In our domain there are no opportunities as the nominal behavior plan
needs always to be followed, being the shorter path to reach the goals. Nor there
are dead ends as it is always possible to find a plan that finishes the test, either
successfully or not. Taking that into account we opted for the last approach,
replanning only if the next action cannot be applied or if the preconditions of
the current action are invalidated during its execution.

Interrupting Actions. A true interactive system must be responsive in any
moment of its execution. This is especially important while it is executing an
action but it has not finished yet. For example, if the robot is executing a Say
action, which involves a 20 s speech and the patient leaves the room in the fifth
second, the robot must be able to interrupt the speech in the middle of its
execution. If not, it would continue speaking to nobody during the next 15 s
before realizing that it has to call the patient to return to the test area.

Planning Time Restrictions. After an unexpected event, the robot stops
in the middle of the current interaction while replanning, as it does not know
the next action until the new plan is created. This imposes strict planning time
restrictions: planning must be performed so there is no detectable delay in the
interaction. It is very important to keep replanning times as low as possible
to achieve a fluid interaction. Replanning times higher than 3 s are considered
non-assumable for a proper and seamless interaction.

4 Example of Domain and Problems

In a first version of the work, a different domain was created for each of the
tests. Actually, a first domain was designed to conduct the Barthel’s test, which
was later updated to be able to cope with MMSE and Get Up & Go tests. As a
result three similar but slightly different domains were created, which resulted in
a kind of spaghetti code. Although preliminary tests with real patients have been
conducted using those domains, updates and maintenance became a problem.
For that reason, taking into account the learned lessons, we designed a second
unique domain, able to represent the three tests. Each test will be instantiated
using a different problem.

The domain contains two types of actions, those that conform the nominal
flow and the corrective ones that return to it in case of unexpected events.

Figure 2 shows the PDDL description of the Say action, the parameters are
the current question and the specific label inside the question that identifies
what will be said. In the preconditions, (1) accounts for all the external events,
if any appears, this fact will be false preventing the action from being executed.
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(:action say

:parameters (?q - question ?l - label)

:precondition (and (can_continue) (1)

)2()derugifnoc_tset(

(= (question_position ?q) (current_question)) (3)

)4()q?l?sgnoleb(

(= (label_order ?l) (current_label)) (5)

(< (repetitions ?l) (max_repetitions ?l)) (6)

)7())q?deviecer_rewsna(ton(

(not (waiting_for_behavior ?l)) (8)

)9())dedeen_rewsna(ton(

(not (pending_confirmation))) (10)

:effect (and (increase (repetitions ?l) 1)

(when (needs_feedback ?l) (answer_needed))

(when (not (needs_feedback ?l)) (increase (current_label) 1))))

Fig. 2. Example of an action: the Say action.

Next preconditions are used to check the current question and the current label
to be said (3–5), while controlling the maximum number of repetitions for this
question has not been achieved yet, nor the answer has been already received (6–
7). Finally we check too we are not waiting for the robot to perform any action
(8), or for the patient to answer (9) or to confirm a previously entered answer
(10). In the effects, the number of repetitions is increased. If after this action

(= (question order q1) 3) ← the position of the question in the test
(behavior of event q1 question failed ignore) ← what to do if an answer is not
provided (ignore means the question is marked for later answer)
(behavior of event q1 doctor needed call doctor) ← what to do if doctor needed
(behavior of event q1 patient absent call patient) ← what to do if the patient
is not visible
(behavior of event q1 max q failed call doctor) ← what to do if after failing this
question the max number of failed questions is reached
(behavior of event q1 max a failed ignore) ← what to do if the patient fails
max failed answers in this question (notice that the system can try max repetitions
to get an answer before marking it as missing)
(= (answers q1) 0) ← the number of answers received for this question
(= (answers required q1) 1) ← the number of answers this question requires
(= (number failed answers q1) 0) ← the number of non-provided answers
(= (max failed answers q1) 1) ← the maximum number of non-provided answers
for this question before the max a failed event is triggered
(belongs q1 s1 q1) ← the label
(= (label order q1 s1) 0) ← this is the first label
(= (max repetitions q1 s1) 1) ← this label will be repeated at most once
(= (repetitions q1 s1) 0) ← the number of times this label has been repeated

Fig. 3. A partial example of the definition of a question of the Barthel’s test.
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the patient has to answer, a fact is inserted to account for it, if not, we continue
with the question. Figure 3 shows how a question is encoded in a problem.

5 Preliminary Results

A preliminary evaluation was conducted in a retirement home in Seville, Spain,
on November 2017 involving 8 patients. It was shown the robot is able to seam-
lessly conduct the CGA for the three selected tests, although many suggestions
were made by the clinicians. Among many other improvements and changes,
this resulted in a modification of the planning domains and problems. Practical
reasons forced us to do those modifications while creating in parallel the unified
domain. Prior to it inclusion in the real robot, severe testing in simulation has
been performed to verify both domains are equivalent and the unified domain
can be used in real practice with no changes in the rest of the system.

In this section we compare in simulation the planning and replanning times
of both the original domain and the unified domain for the Barthel’s and Get Up
& Go tests. In the simulations, there is a 10% chance that the robot loses track
of the patient. Additionally, in Barthel test, we have included an interaction
error for each question (i.e., the robot does not receive the answer from the
patient, or the patient does not respond) with a probability of 30%. Finally, in
Get up & Go test, we have included different detection errors: the robot does
not detect the patient near the chair (10%), it does not detect the patient seated
(20%), and it detects the patient has walked more than the required distance
(10%). Experiments were conducted on a 64 bits Intel Xeon 2.93 GHZ Quad
Core processor with 2 GB RAM, using Linux and the Metric-FF planner [15].

Table 1 provides the results for each domain and test, analyzed across five
dimensions: the accumulated time (seconds) used to perform the test , the num-
ber of actions in the executed plan, the number of times it is necessary to replan,
the average time (seconds) needed to build a plan, and the average time needed
to start executing each action (milliseconds). Means and standard deviations
computed after ten different executions for each domain and test are shown.

Table 1. Results in Barthel and Get up & Go tests for the unified and specific domains.

Test Domain Time (s) # Actions # Replans Planning (s.) Response (ms)

Barthel Unified 723.2± 42.9 123.5± 8.4 6.3± 2.8 0.08± 0.01 281.5± 5.3

Specific 716.5± 64.5 102.0± 5.3 5.8± 3.3 0.33± 0.01 277.7± 6.8

GetUpGo Unified 167.9± 8.9 33.0± 2.7 3.0± 0.9 0.01± 0.00 232.5± 4.9

Specific 166.7± 9.2 20.0± 1.8 2.2± 0.7 0.05± 0.03 236.1± 5.6

The unified domain requires a higher number of actions to solve the tests,
however, the accumulated time needed to perform each test is just slightly
affected by this increment in the number of actions. Most of these additional
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actions control the internal flow of the planning process and they do not have
associated low-level actions to be performed on the robot. The planner finds
plans much faster using the unified domain than the specific one. The unified
domain simplifies the previous ones, containing just the information needed to
reason and to drive the interaction between the patient and the robot (e.g.,
pauses between speech segments are not planned). The number of replanning
episodes is not affected by the use of one or other domain and less than 250 ms.
are needed to start executing each action.

6 Related Work

The use of Automated Planning for language and dialog generation, which is an
important part of social interaction, goes back to the early 80s [20], but these
efforts suffered from the poor performance of planners available that time. More
recently, AP has been used for situated natural language generation, by encoding
a PDDL problem that can be solved by any planner [10]. Instead of generating
the language, our phrases are prerecorded and is the interaction flow what is
generated using planning. In [22] domain-independent planning is used to gener-
ate conversations. They use a planner able to handle incomplete information and
sensing actions by means of a non-standard representation language, which can
be compiled to PDDL. The planner divides the information into five different
databases and reasons to generate new knowledge that is stored into them. A
similar approach, using the same planner, is used to perform action selection in
a robot bartender scenario [21]. In particular, the task of interacting with human
customers is mixed with the physical task of ensuring that the correct drinks
are delivered to the correct customers. Conditional plans are generated if the
needed information is not available yet. In the case of unexpected situations a
new plan is generated. This application is quite similar to ours as both interac-
tion and robot behavior must be planned, but we use standard PDDL, with no
conditional plans, being able to use any planner released by the community.

The STRANDS project [14] aims to provide long-term autonomy to indoor
robots, using also the MetraLabs SCITOS platform. One of the scenarios where
their solutions has been deployed has been a large elder-care facility, where
it acted as an information point, guided visitors and helped in walking-based
therapies. Unlike in our case tasks are considered to be atomic so they are
scheduled, not planned. An interesting feature, which we would like to explore in
the future, is the robot ability to learn from experience. It is able to predict future
states (for example if a door will we open at certain times), update traverse times
and success ratio (using a Markov Decision Process), or learn user interaction
patterns (probability of users wanting to interact at given times and locations).

Action-base Planning, Timeline-based Planning and Constrain-based
Scheduling have been compared to control multiple robots deployed to assist
elderly residents in a retirement home [23]. For that specific scenario, Constraint-
based scheduling seems to be the most appropriate technique: PDDL-based plan-
ning finds always low quality plans, while Timeline-based planning is unable to
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model the problem unless the solver is modified accordingly. Their approach
involves multiple robots in a temporal problem that lies in the intersection of
planning and scheduling. Our problem only involves a single robot, thus tempo-
ral aspects and concurrency are not imperative, and given the sequential nature
of tests, plans are always optimal or near optimal. Scheduling of tests is currently
done by the healthcare professionals, and although we plan to provide automatic
mixed-initiative scheduling capacities to our system, scheduling a test and run-
ning it are to some extent independent and different techniques can be used for
each of them.

7 Conclusions and Future Work

In this paper we have presented the decisions taken while modeling CGA inter-
action and showed that using the created domain and problems we can find
plans able to control the robot while performing the Barthel’s and Get Up & Go
tests. Plans are found in less than a tenth of second, which fully meets the real
time requirements for CGA interaction. The domain has been created to follow
a nominal behavior of the patient. In the likely case that the patient does not
stick to it, we use replanning to come back to the expected flow, and again this
takes less than 0.1 s.

In a future we want to use the unified domain to encode also the MMSE test
and any other test required by the clinical experimentation. A large scale pilot
with real patients will be carried out in fall 2018 in retirement homes at Seville,
Spain and Troyes, France.
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1. Alcázar, V., Guzmán, C., Prior, D., Borrajo, D., Castillo, L., Onaindia, E.: PELEA:
planning, learning and execution architecture. In: Proceedings of the 28th Work-
shop of the UK Planning and Scheduling Special Interest Group (PlanSIG), Bres-
cia, Italy (2010)

2. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11),
832–843 (1983)

3. Bandera, A., et al.: CLARC: a robotic architecture for comprehensive geriatric
assessment. In: Workshop on Physical Agents, pp. 1–8 (2016). ISBN 978-84-608-
8176-6

4. Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris,
P., Ong, J., Remolina, E., Smith, T., et al.: EUROPA: a platform for AI plan-
ning, scheduling, constraint programming, and optimization. Technical report, 4th
International Competition on Knowledge Engineering for Planning and Scheduling
(ICKEPS) (2012)

14



Automated Planning for CGA Using an Autonomous Social Robot

5. Cesta, A., Oddi, A.: DDL.1: a formal description of a constraint representation
language for physical domains. In: Ghallab, M., Milani, A. (eds.) New Directions
in AI Planning. IOS Press, Amsterdam (1996)

6. Ellis, G., Langhorne, P.: Comprehensive geriatric assessment for older hospital
patients. Br. Med. Bull. 71(1), 45–59 (2005). https://doi.org/10.1093/bmb/ldh033

7. Fikes, R., Nilsson, N.J.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3/4), 189–208 (1971)

8. Folstein, M., Folstein, S., McHugh, P.: Mini-mental state: a practical method for
grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12,
189–198 (1975)

9. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. (JAIR) 20(1), 61–124 (2003)

10. Garoufi, K., Koller, A.: Automated planning for situated natural language gener-
ation. In: Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 1573–1582 (2010)

11. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Elsevier, Amsterdam (2004)

12. Ghallab, M., Nau, D., Traverso, P.: The actor’s view of automated planning and
acting: a position paper. Artif. Intell. 208, 1–17 (2014)

13. Gigante, N., Montanari, A., Mayer, M.C., Orlandini, A.: Timelines are expressive
enough to capture action-based temporal planning. In: 23rd International Sym-
posium on Temporal Representation and Reasoning (TIME), pp. 100–109. IEEE
(2016). https://doi.org/10.1109/TIME.2016.18

14. Hawes, N., Burbridge, C., et al.: The STRANDS project: long-term autonomy in
everyday environments. IEEE Robot. Autom. Mag. 24(3), 146–156 (2017). https://
doi.org/10.1109/MRA.2016.2636359

15. Hoffmann, J.: The metric-FF planning system: translating ”ignoring delete lists”
to numeric state variables. J. Artif. Intell. Res. (JAIR) 20(1), 291–341 (2003)

16. Hoffmann, J., Porteous, J., Sebastia, L.: Ordered landmarks in planning. J. Artif.
Intell. Res. (JAIR) 22, 215–278 (2004)

17. Mahoney, F., Barthel, D.: Functional evaluation: the barthel index. Maryland State
Med. J. 14, 56–61 (1965)

18. Mathias, S., Nayak, U., Isaacs, B.: Balance in elderly patients: the get-up and go
test. Arch. Phys. Med. Rehabil. 67, 387–389 (1986)

19. McDermott, D.: PDDL - the planning domain definition language. Technical
report. CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and
Control (1998)

20. Perrault, C.R., Allen, J.F.: A plan-based analysis of indirect speech acts. Comput.
Linguist. 6(3–4), 167–182 (1980)

21. Petrick, R.P.A., Foster, M.E.: Planning for social interaction in a robot bartender
domain. In: Proceedings of the Twenty-Third International Conference on Auto-
mated Planning and Scheduling, pp. 389–397 (2013)

22. Steedman, M., Petrick, R.P.A.: Planning dialog actions. In: Proceedings of the 8th
Workshop on Discourse and Dialogue (SIGDIAL), pp. 265–272 (2007)

23. Tran, T.T., Vaquero, T., Nejat, G., Beck, J.C.: Robots in retirement homes: apply-
ing off-the-shelf planning and scheduling to a team of assistive robots. J. Artif.
Intell. Res. 58, 523–590 (2017)

15
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