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ABSTRACT 

 

As of April 2019, Android was the most popular mobile operating system amongst smartphone 

users[1]. Its high popularity, combined with the extended use of smartphones for everyday tasks 

as well as storing or accessing sensitive and personal data, has made Android applications the 

target of numerous malware attacks over the last few years and in the present. 

 

The malware attacks have been perfected to target specific vulnerabilities in the operating 

system or the user; thus specializing in types of malware and families within each type. The 

malware is usually distributed in infected applications (or APKs), which contain malicious 

behaviours that can be found looking into their code (known as static analysis) or analysing the 

behaviour of the application while running (known as dynamic analysis).  

 

This document describes the implementation of an intelligent system that aims to classify a 

series of malicious APK samples obtained from the free repository ContagioDump. These 

samples are classified inside the type and family they belong to. 

 

To create the classifier system, a Support Vector Machine (SVM) is implemented using 

Python’s library Scikit Learn. A series of attributes are extracted from the samples of malicious 

APK by analysing the code of the APKs via static analysis, using Python’s library Androguard, 

which contains a parser that allows to interact with all the relevant parts of the APK file.  

The attributes obtained are very high in number, and for that reason a Genetic Algorithm is 

used to optimize the attributes that the SVM uses in the learning process. The algorithm 

codifies a subset of attributes from all the attributes extracted in the static analysis, and is 

evaluated using the accuracy score obtained when training the SVM with said subset. 

 

As a result, a subset of attributes and a trained model for the classification are obtained. This 

model is then tested with a new set of malware samples, belonging to all the families classified 

in the learning.  

 

The present document contains the explanation of the process of designing, creating and testing 

the system. It is developed as bachelor’s thesis for computer science and engineering degree in 

Universidad Carlos III de Madrid. 

 

Keywords 
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RESUMEN 

 
En abril de 2019, Android era el sistema operativo móvil más popular entre los usuarios de 

smartphones[1]. Debido a su popularidad, y el uso extendido para tareas diarias entre los 

usuarios, que además usan sus teléfonos móviles para guardar y acceder datos sensibles y 

privados, Android ha sufrido un gran número de ciber ataques en los últimos años, y sigue 

recibiendo ataques constantemente. 

 

Estos ataques maliciosos se han ido especializando para atacar a vulnerabilidades específicas 

del dispositivo o de los usuarios, diferenciándose en tipos y familias de malware. Este malware 

se distribuye habitualmente en aplicaciones (o APKs) infectadas. Es posible analizar el 

comportamiento malicioso de estas aplicaciones infectadas, bien analizando el código de la 

aplicación (conocido como análisis estático) o estudiando el comportamiento de la aplicación 

mientras es ejecutada (análisis dinámico).  

 

El presente documento describe la implementación de un sistema inteligente de clasificación 

de muestras de malware en tipos y familias de malware. Las muestras utilizadas son una serie 

de APKs infectadas obtenidas del repositorio gratis ContagioDump.  

 

La creación del sistema clasificador se ha llevado a cabo desarrollando un programa que usa 

una Máquina de Soporte Vectorial (SVM, por sus siglas en inglés), haciendo uso de la librería 

de Python Scikit Learn. Las muestras de APKs maliciosas se analizan de forma estática para 

obtener una serie de atributos, usando la librería de Python Androguard, que proporciona un 

parser y una interfaz para interactuar y utilizar todas los elementos relevantes del código de las 

APKs. 

El número de atributos obtenidos en dicho análisis es muy alto, por lo que se utiliza un 

algoritmo genético para optimizar el proceso de aprendizaje de la SVM, seleccionando un 

subgrupo de atributos que se usan en el aprendizaje. El algoritmo genético codifica el subgrupo 

de atributos a usar, y es evaluado según el porcentaje de acierto obtenido al entrenar la SVM 

con el subgrupo codificado. 

 

Como resultado del trabajo, se obtienen un subgrupo de atributos óptimos en los que basar el 

análisis de una APK, y un modelo clasificador entrenado. Este modelo se pone a prueba con 

una nueva serie de muestras de aplicaciones maliciosas, representativas de todos los tipos y 

familias analizados anteriormente. 

 

Este documento incluye la explicación del proceso de diseño, creación y evaluación del sistema 

implementado. El sistema ha sido desarrollado como Trabajo de Fin de Grado de la carrera de 

Ingeniería Informática en la Universidad Carlos III de Madrid. 

 

Palabras clave 

 

Algoritmos genéticos, Redes de neuronas, SVM, Android, APK, malware, Inteligencia 

Artificial. 
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1. INTRODUCTION 

This document describes the implementation of an intelligent Android malware classification 

system. The objective of the developed system is to classify a series of malicious Android 

applications (or APKs) samples in the types and families of malware which they belong to.  

In order to develop this system, the code from the APK samples is analysed to obtain 

information about its behaviour and characteristics, and a Support Vector Machine is used to 

classify the samples analysed. A genetic algorithm is implemented to optimize the learning of 

the Support Vector Machine, by selecting a subset of characteristics or features from the 

samples which the SVM uses to train.  

1.1. Motivation 

As of April 2019, Android operating system was the most popular operating system amongst 

smartphone uses with 70.22% of the market share[1]. The everyday use of smartphones has 

been growing unsteadily for the past few years, and more and more users are now using their 

smartphones to store and access personal and sensitive data, such as banking information. It 

has also become an essential asset for users, who rely on their smartphones for many of their 

daily tasks. 

For these reasons, Android OS is often targeted by malicious applications that aim to steal data 

or damage the device. New families of malware are discovered daily, and cyber security experts  

often struggle trying to keep up with all the new malicious applications, evaluating their risks 

and which users they might affect. 

Although there are many effective extended methods to detect whether an application is 

malicious, even available in the market (most mobile antivirus services perform this task), there 

haven’t been so many attempts at trying to identify the family of malware an application 

belongs to, which could eventually help cyber security experts determine the threat it poses 

more efficiently, and therefore act on it sooner. 

One of the reasons why this last task is not so commonly found in antivirus or other similar 

services is the continuously changing nature of malware families. There are new versions 

coming out almost on a daily basis, and trying to find a deterministic way to decide which 

family a malicious APK belongs to seems almost impossible and not scalable. 

Artificial Intelligence methods present an alternative way to perform this classification. Due to 

the ability of AI algorithms to learn, adapt and generalize, an AI based system could bring an 

scalable and adaptable solution to this problem.   

1.2. Objectives 

The objective of the work describe here is implement an intelligent classifier that provides an 

efficient and scalable solution to the problem described before, with the final purpose of 

classifying Android malware samples in their right type and family of malware.  
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In this document, an intelligent classification using AI algorithms (artificial neural networks, 

more precisely a Support Vector Machine) is proposed. Furthermore, to obtain a more efficient 

system, a Genetic Algorithm is used as an optimizer for the features used in the learning. 

By using these two methods in combination, an adaptable solution is found, which performs a 

classification of the malicious apps in an effective and adept way. This solution can be used in 

further research and help cyber security analysts in the early detection of threats. 

The project will be developed entirely using open source means, to allow easier further 

implementations, investigation and improvements. For the development of the project, a series 

of malicious APK samples are obtained from the free online repository ContagioDump, and 

the implementation of the system is done in Python programming language using the libraries 

Scikit Learn and Androguard. 

1.3. Document Structure 

The present document is structured as it follows: 

First, a STATE OF THE ART is detailed. This section gives an explanation of all the 

techniques and theory relevant for the work explained in this document, along with some 

similar work developed in the area.  

then, an exhaustive definition of the developed system is given. this definition is divided in 

three sections, ordered from more high level detail to low level detailed functioning of the 

system: first section is SYSTEM ANALYSIS, where the most important components and 

requirements for the system are identified. in the second place, the SYSTEM DESIGN is 

shown, including the technologies, detailed components and classes of the system. lastly, the 

IMPLEMENTATION of the system is included, with low level detail of all the components 

of the system. 

Later, the tests used to measure the performance of the system are detailed in the 

EVALUATION section, followed by an analysis of the MANAGEMENT (budget and 

planning) and LEGAL AND SOCIO-ECONOMIC ENVIRONMENT related to the work 

described in this document. This last section aims to understand the legal and socio economic 

implications this work has, related to topics such as intellectual property or data protection.  

Finally, a series of personal and technical CONCLUSIONS are presented. 
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2. STATE OF THE ART 

2.1. Android 

Android is a mobile operating system (OS) is based in the Linux operating system, developed 

by Android Inc., first meant to improve the operating system of digital cameras. In 2004, 

Android Inc. decided to use the OS in mobile phones. The company was later acquired by 

Google in 2005. 

The first public version of Android OS was launched in 2007. Earlier that same year, Apple 

had launched the first iPhone. Unlike iPhone’s operating system iOs, Android could power 

many different phone models. It quickly gained popularity amongst smartphone users. 

Android was ranked as the most popular mobile operating system in April 2019 by Net 

MarketShare[1]. Due to its high popularity, it has quickly become an interesting target for 

numerous malware attacks. 

2.1.1. APK 

An Android Package Kit (APK) is the file format used for distributing and installing mobile 

apps in the Android operating system. 

APKs can be installed from a computer or from the mobile device. The most common 

installation method is using the device’s official store application Google Play Store, although 

the installation can be done manually. 

There are other alternative Android app stores, but some of these are not reliable as they contain 

malicious software (malware) apps. 

An APK file contains all the source code for a certain application. When an android app 

contains malicious behaviours, it is possible to analyse the source code found in the APK file 

to find these behaviours.  

DEX 

DEX (Dalvic Executable) is the compiled code of an Android program. An Android application 

is defined by the .dex files which are then zipped to a single .apk file, along with other elements 

that are not relevant for the work described in this document. 

 

Figure 1: Structure of an APK 
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2.1.2. Android Malware 

Malicious software (or malware) applications are applications that seek to find vulnerabilities 

in the system or the user and exploit them to either cause damage to the system or the device, 

or obtain sensitive information.  

With the growth of popularity and usage of personal mobile devices, malware targeted at 

mobile operating systems has become increasingly popular over the last few years. Mobile 

phone users store vast amounts of personal information (contacts, pictures, credentials) in their 

devices, and use their mobile phones for many daily activities (such as business, social, 

information search). 

By infecting a personal mobile device with malware, the attacker can gain access to user’s most 

sensitive and personal information. Furthermore, if the device is damaged or the user loses 

access to it, it can cost the user a high timely or economical investment to recover. 

Android operating system has become a preferred target to attackers for two main reasons: first, 

because it is the most popular mobile operating system amongst smartphone users. Second, 

because an Android allows to view the user’s activity in real time; thus an attacker can intercept 

a safe application’s launch and display the malicious app instead, without the user noticing. 

This vulnerability becomes particularly interesting for some types of malware as it will be 

explained later on. 

For these reasons, Android attackers have developed different specialized malware 

applications aimed to attack different vulnerabilities.  

Android malware types 

Malware applications can be grouped in types attending to which vulnerability is attacked. For 

each type, there are certain “families” of malware applications that behave similarly. There are 

also “versions” of the families previously mentioned. The scope of this work is limited to 

identifying types and families of malicious APKs. 

Some of the most popular malware types are listed and explained below. 

Bankers 

These malicious apps are aimed at stealing the user’s banking related information that is on the 

user’s device.  

The target of these malware apps are mobile banking apps. Mobile banking apps are 

applications that allow a user to access their bank accounts comfortably from their 

smartphones, and perform any transactions with them.  

Banker malware typically impersonates the user’s mobile banking app, by using similar 

interface and logo, and then captures the user’s credentials (account number, log in details) as 

they attempt to log in. This allows an attacker to directly steal from the user’s bank account. 

Overlay of banker malware on top of official baking app is shown on Figure 1.  
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Figure 2: Overlay on banking Apps 

Ransomware 

Ransomware apps encrypt all or some of the data stored in the user’s device, preventing the 

user from accessing it until they agree to pay a ransom, usually via an anonymous internet 

payment.  

Spyware 

Spyware is a type of malware that infiltrates in the user’s device, then collects and stores 

information from the user, including internet usage data and personal or sensitive information,. 

Its usual purpose is to then sell the user’s internet usage data, capture credit card or bank 

information, or steal the user’s personal identity.  

Adware 

Adware hides in the user’s device and serves the user advertisements. It sometimes also stores 

information about the user’s behaviour and preferences to later use this information to target 

the user with certain ads. This software generates revenue either by getting paid by the 

advertisers to display a certain advertisement, or via “pay-by-click” if the user clicks on the 

advertisement. 

Exploit 

Exploit malware takes advantage of  vulnerabilities in the software or security flaws to gain 

access to private networks and scale privileges. This can allow a remote intruder to access a 

device or a network remotely. Sometimes it is used to infiltrate other malware like Trojans or 

Spyware. Exploit malware is sometimes sent to the user via email or other web sites, or the 

user is lured into executing the exploit via social engineering. 

Trojan 

A Trojan is a type of malware that is usually hidden or disguised as legitimate software. Once 

the user has installed the Trojan in the system, it gains access to the user’s data and can delete, 

block, modify, copy or disrupt the normal functioning of the device. There are several types of 

Trojans, such as Backdoors, which provide remote access to the device to the attacker, or 

Exploits, as explained above. Any of the malware types described before can be installed in 

the device via a Trojan. 
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Android malware families 

Figure 2 shows some of the families that can be found in each of the malware types described 

above. Due to the amount of android malware apps, there is a gross number of families of each 

type; thus there are many other families that aren’t shown in this figure. 

 

Figure 3: Malware types and families 

 

Android malware analysis: static and dynamic 

An Android APK can be analysed to detect malicious behaviours using two methods: Static 

and dynamic analysis. 

Static analysis uses the code of the application to extract attributes that can determine the way 

the application performs. The code can be found in the .dex component of an apk, which 

contains the compiled code of the whole application (as seen in 2.1.1). The attributes are 

extracted without running the application. Some examples of these attributes are: system calls, 

permissions the application requests, calls to the Android library, all methods inside an APK, 

and how they interact within each other, flow diagrams (which illustrate all the function in the 

APK’s code, taking the main( ) function as start point, trying to represent the whole 

functionality of an APK in a graph). There are other attributes that can be extracted without 

running the application which are not found in the compiled code, such as the size of the APK. 

Dynamic analysis, on the other hand, extracts attributes from the application while it’s 

running. These can be network traffic, battery usage, sent SMS and phone calls, information 

leaks, etc. Dynamic analysis is costly in time and memory when performed. However, it is 

unaffected by techniques that aim to make static analysis more difficult, such as code 

obfuscation, which consists in transforming the code into a semantically equivalent version 

(with identical functionality) but much harder to understand by an analyst. Obfuscation can 

also be used for other purposes, such as protecting intellectual property. Some obfuscation 

methods can be found in Different obfuscation Techniques for Code protection[2] 
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Static analysis provides a quick, low cost way to analyse APKs, and has been used in multiple 

occasions for malware analysis (as shown on 2.3.1). However, dynamic analysis can be more 

reliable, as it is unaffected by code obfuscation techniques. 

Some authors use hybrid approaches, where static and dynamic analysis are combined to 

extract a richer set of attributes compared to either analysis performed separately. 
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2.2. Artificial Intelligence 

Artificial Intelligence is an area of computer science that aims to simulate the intelligent 

behaviours of humans in machines. It includes a wide range of techniques that can mimic some 

human abilities (such as: computer vision, speech recognition, natural language processing); 

exploit the machine’s high computational power to improve efficient solving of problems, such 

as optimization or decision models; and can implement learning. 

2.2.1. History 

The origin of Artificial Intelligence (AI) is unclear, as it is based on the work of many 

mathematicians and scientists who started theorizing about machines that could solve complex 

problems inspired by human-like reasoning since the 17th century[3]. However, most 

authors[3][4][5] place the work of English mathematician Alan Turing during the 1940s and 1950s 

as the starting point of AI. 

In 1936, Alan Turing published “On Computable Numbers, with an Application to the 

Entscheidungsproblem”[6], a paper where he proposed a “universal machine”; a computer 

capable of solving any computable function, nowadays known as Turing machines, which 

provided the basis for the theory of computation.  

During the Second World War, he worked on breaking the machine the Germans were using 

to encrypt all their messages, Enigma. Turing and his team designed and built the Bombe, a 

machine that could decipher Enigma’s code, based on his previous work. 

 

Figure 4: The Bombe 
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After his work during WWII, he became more interested in the concept of being sentient. This 

thought was the foundation for his later research regarding machine intelligence. In 1950, he 

published “Computer Machinery and Intelligence”[7], a research paper where he theorized 

about the creation of machines capable of “thinking”. On the same paper, he proposed what is 

known as the Turing Test to test the machine’s intelligence. The fundamental idea of this test, 

which he called “The Imitation Game”, was to test the machine’s intelligence based on its 

ability to make a human believe that it (the machine) is human, when engaging in conversation. 

The first reference to the term “Artificial Intelligence” was made during the Dartmouth 

Conference, organized by computer scientist John McCarthy in 1956. Since then, numerous 

computer scientists and researchers have worked on the field of AI, trying to solve different 

problems. One of the most famous AI problems was creating a machine that was capable of 

playing Chess. The first paper about developing a chess playing program was written by Claude 

Shannon in 1950[8].  It wasn’t until 1997 that IBM’s Deep Blue defeated the then world Chess 

Champion. 

The interest on the field of Artificial Intelligence has experienced progressions and regressions 

over time[9]. It was popular until the 1960s, but the little progress in the learning capabilities of 

the existing models resulted in a decrease in interest until the 1980s, when some successful 

applications were achieved, as well as more funding was provided.  

From its origins in the 1950s, there are two approaches that can be differentiated within 

Artificial Intelligence: the first one based on logic, using formal rules to manipulate symbols; 

and the second one based on biology, such as artificial neural networks, which are inspired by 

the functioning of biological brains.  

For the first 20 years after 1950, research was focused on the logic based approach mentioned 

above. Although the first mathematical model of neurons dates back to 1943, the biology based 

approach didn’t receive much attention during that period. In the 1980s, a new algorithm for 

learning in neural networks was reinvented[10] (it had already been proposed in 1963[11]), 

resulting in an increased interest in this type of algorithms. 

However, as researchers became more interested in Artificial Intelligence, the field grew and 

new algorithms and techniques appeared, creating new more complex divisions within the field 

as the logic based as opposed to biology inspired division mentioned above. 

In the next section of this document, a detailed explanation of the different techniques and 

algorithms known in AI is presented. 
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2.2.2. Techniques 

The objective of this section is to explain the different techniques or algorithms known in the 

field of Artificial Intelligence in depth. Since it’s such a broad field of study, it is often hard to 

find a clear way of organizing and presenting all techniques. In this document, a division 

proposed by Francesco Corea[12] will be used as reference.  

First, each sub division and some of the most relevant elements of such sub division are 

explained. The full “map of AI” with the techniques classified on each division is shown after 

the explanations. Finally, a more detailed explanation for the two algorithms used in the work 

proposed in this thesis is given. 

As proposed by Corea, the field of AI can be divided attending to two dimensions: AI 

paradigms (approaches to solve problems) and AI problem domains (types of problems).  

AI Problem domains 

When looking at the types of problems an AI approach can solve, Corea defines five main 

domains: Perception, Reasoning, Knowledge, Planning and Communication. 

To better understand each domain, it is interesting to compare it with the human cognitive 

ability it aims to mimic. 

Perception includes the problems that in humans “solve” using their senses. It includes the 

techniques capable of operating with sensorial inputs (sounds, images, etc) by converting them 

to a usable format; for example Natural Language Processing and Computer Vision. Natural 

Language Processing allows a machine to understand, process and even create information in 

the form of human speech (that is, not structured data expressed in a human language). 

Computer Vision includes all techniques that allow a machine to process and understand 

images captured with a camera,  similarly to human vision. 

Reasoning refers to the capability to solve problems. This includes the capability of, given a 

problem definition, being able to offer a solution to said problem, in a similar way to how 

humans solve mathematical problems. An example of reasoning can be found in tagging 

pictures: deciding if a picture given has a cat or a dog in it. Here, the definition of the problem 

is the description of the image and the question “does this picture have a cat or a dog in it?”; 

and the solution would be saying “it has a cat” or rather “it has a dog”.  

Knowledge is the capability to represent and understand the world. The world is the reality 

that affects the machine, and can be narrowed down in some cases. For example, some 

automations executed by robots only take into account the actions and elements the robot can 

interact with; if the robot is tasked with loading boxes to a truck, “the world” is limited to the 

actions it can perform (up, down, grab, release, for example) and the elements it can interact 

with (box, truck). 

Planning is the capability of setting and achieving goals. An example for a planning problem 

would be deciding a plan to get from point A to point B, as when planning a road trip. 
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Communication is the capability of understand language and communicate. It differs from 

Natural Language Processing(NLP) in the communication between the machine and the 

human; NLP problems aim to process the language input, not necessarily trying to 

communicate.  

AI Paradigms 

AI Paradigms refer to the different approaches or types of algorithms that exist in the field. 

Corea divides this dimension in three main types: Symbolic, Statistical and Subsymbolic. 

Symbolic approaches use logic based and knowledge based algorithms to solve problems. It 

manipulates symbols, with inference and search algorithms, to build rules, ontologies, plans or 

goals. Sometimes referred to as “GOFAI” (Good Old Fashioned AI), as author John Haugeland 

named it in his book “Artificial Intelligence: The Very Idea”[13].  

Subsymbolic AI (also known as “connectionist AI”) was originally inspired by the biological 

brain. It creates connections between nodes, creating a network, and performs calculations in 

the connections of said network that provide a solution. The outcome model could be compared 

to a connection map, opposed to the rule tree or plan that is obtained with symbolic AI. To 

compare it with the biological brain, it assigns conductivity properties (or weight) to the 

connections between neurons (or nodes) and then modifies this conductivity for each 

connection until, when a problem is passed through the network, the outcome is a solution to 

the problem. 

Compared to symbolic AI, Subsymbolic AI provides less knowledge and understanding 

upfront and is more difficult to explain, but performs better for perceptual problems. It is also 

more scalable, and more robust against noise. The opacity of this paradigm is a problem known 

by researchers[14], but that doesn’t deny its many applications in AI problems. 

Figure 4 illustrates the different understanding of the solution provided by the models obtained 

with symbolic and subsymbolic AI. 

 

Figure 5: Symbolic VS Sub symbolic AI 

Finally, Statistical AI uses probabilistic methods and mathematical tools to build models that 

reflect information about data. Machine learning algorithms, which have become increasingly 

relevant over the years[15], are a subdivision of this approach.  
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Machine Learning 

Machine Learning algorithms are broadly used due to their ability to provide general solution 

to a problem using specific samples as reference (or “learn”) and their applications in many 

different kinds of problems. 

The functioning of machine learning algorithms can be summarized as the creation of 

mathematical models using sample data (“training” data), that describe patterns found in said 

data. Once the model has been created, it can be shown similar data that wasn’t used to train it, 

and find a similar patterns in it, which allows the model to recognize this new data. This 

capacity of being able to create general solutions from specific examples is known as learning. 

A metaphor to understand the process of machine learning can be created with the learning 

process of a human. When a human is learning to read and write, he or she is shown a series of 

“perfect” letters of words – usually generated in a computer, and asked to write them down. By 

seeing these symbols repeatedly, the human is eventually able to recognize them even when 

they’re not perfect, such as in handwriting. 

In a similar way, a machine learning algorithm can be shown a series of letters, or numbers, 

and it will find patterns in the symbols. After the learning, if the algorithm is shown a new type 

of handwriting containing the same symbols the training data provided, it will be able to 

generalize the pattern learned and recognize said symbols. 

In order to learn from the training data, a series of “features” or characteristics must be 

extracted from it. These features describe the data point and are usually expressed as a vector 

of values 𝑥𝑖 which define the data point. For example, in the example given, the features 

extracted from a picture of a handwritten symbol could be: RGB value for each pixel in the 

image, dimensions of image, etc. These features must be defining of all possible images in the 

training data and it is required that they can be extracted from all data points. 

 

Figure 6: Example of automated handwriting recognition using Machine Learning 

Within machine learning, are three types of learning: Supervised, unsupervised and 

reinforcement learning. 
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SUPERVISED LEARNING 

Supervised learning uses solved examples to train from. The training data provided contains 

not only examples of the problem, but a tag or value with the solution that would be valid for 

said example. 

In the handwriting example explained before, supervised learning would need a series of 

example handwritten numbers of letters, along with a tag for the value they represent. The set 

shown in Figure 5 would be a valid training set for supervised training. 

UNSUPERVISED LEARNING 

Unsupervised learning lacks a value or tag for each example or sample in the training data. It 

is given a series of data points or samples, and finds patterns in them according to the distance 

between the points. For this learning to work it is needed to define the calculation of distance 

between points. 

An example of an unsupervised learning would be trying to sort a drawer with pens and pencils. 

One can sort them by color, shape, size… since there is no prior definition to which sorting is 

correct, the groups which will be formed are unpredictable. 

 

Figure 7: Unsupervised Learning 

REINFORCEMENT LEARNING 

Reinforcement learning assigns a value of “reward” or “punish” for each action possible. The 

algorithm will tend to maximize reward (or minimize punishment). It can be compared to the 

process of training a pet to learn certain tricks; giving treats when the pet does the trick 

correctly, so the pet learns to perform the trick more often in order to get the reward. 

 

Figure 8: Reinforcement learning 
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Map of AI 

The divisions explained above can be better understood when presented in the “Map of AI” 

proposed in the article by Corea[12] (Figure 8). As seen on this map, some fields are not entirely 

belonging to one of the divisions inside a dimension, and many of them can be used for a wide 

range of problem domains. The two techniques used in the development of the model are 

further explained down below.  
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Figure 9: Map of AI (Corea, 2018) 
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Genetic algorithms 

Genetic algorithms are a subset of evolutionary algorithms, used to solve optimization 

problems.  

Evolutionary algorithms are inspired by biological evolution, where individuals compete for 

resources, randomly combine their features to create new individuals and suffer random 

alterations (mutations) in time. Each individual can be defined as more or less fit (fitness score) 

to adapt to the environment, and therefore more or less likely to survive and pass on its features 

to the next generation. 

Similarly, a genetic algorithm contains a population of individuals and a series of operators 

that can be applied to each individual. Each individual codifies a possible solution to the 

optimization problem at hand (called “genome”), and the possible operators are mutating the 

individual, calculating the fitness value for each individual and selecting the best individual 

who will contribute to the creation of new individuals, combining the individual’s codification 

with other individual (crossover), and finally replacing or adding new individuals to the 

population. 

As well as in biological evolution, any possible way of selecting which individuals combine 

their features, mutating, or even competing (or collaborating) can be implemented. The 

population will tend to “evolve” towards the optimal solution, which would be the “perfect” 

individual. 

Artificial Neural Networks: SVM 

Artificial neural networks are a family of algorithms loosely based on the architecture and 

functioning of the biological brain.  

An artificial neural network (ANN) is formed by several layers of nodes or neurons. The 

neurons on each layer are connected to the neurons on the next layer, with a “connectivity 

strength” (called “weight) associated to each connection. 

One of the first neural networks proposed was the simple perceptron. This model has only one 

layer and one neuron in said layer. The input data is a vector of values 𝑥𝑖 which are connected 

to the neuron with a corresponding vector of weights 𝑤𝑖 for each connection. 

The neuron then combines both vectors as follows: 

𝑓(𝑥) = ∑( 𝑥𝑖𝑤𝑖) +  𝜃

𝑁

𝑖=1

 

𝑓(𝑥) = 𝑥1𝑤1 +  𝑥2𝑤2 + ⋯ + 𝑥𝑁𝑤𝑁 +  𝜃 

Where 𝜃 , or “bias”, is independent from all input values.  

After that combination is performed, the output value is used in the activation function, a 

function that defines the solution or output given by the model. For example, this function can 

be a simple threshold function such as: 
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𝑓(𝑥) =  {
1 𝑖𝑓 ∑( 𝑥𝑖𝑤𝑖) +  𝜃 > 0 

−1                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 1 and -1 are different classes. For example, if trying to classify a handwritten symbol 

as a number or a letter, 1 could mean it is a number and -1, a letter. 

 

Figure 10: Simple perceptron 

A neural network connects several neurons which can behave like the model explained above, 

in several successive layers. The fist layer is called input layer, the last layer is called output 

layer, and the layers in between are known as hidden layers. It receives a vector of values 𝑥𝑖 

with a series of weights 𝑤𝑖 and combines them in successive layers by applying a function to 

the values and weight in each neuron. The output of each layer is then processed by the next 

layer in a similar way. 

 

 

Figure 11: Artificial Neural Network 
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Support Vector Machine (SVM) 

A support vector machine is a type of Artificial Neural Network which is widely used in 

classification problems.  

The goal of the SVM is to find a hyperplane in an n dimension space (n being the number of 

features) that separates the data points of different classes.  

It can be imagined as a wall (in a 3 dimension space) that separates two species of animals in 

a room; the goal of the learning is to move the wall along the room until there are no two 

animals from different species together. There are many hyperplanes that give a solution, the 

goal is to find the one that maximizes the distance between all data points of each class: this is 

done so future data points can be classified with more confidence. 

 

Figure 12: Support Vector Machine 

Support vectors are data points close to the hyperplane and influence the latter’s position. They 

help maximizing the distance between data points of different classes. 

The process of learning in a SVM can be seen as changing the position of the hyperplane and 

support vectors until the maximum distance between data points is achieved.  
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2.3. Similar work 

Due to the popularity of Android amongst users, Android devices face constant threats as new 

malware appears. For this reason, many researchers have attempted to develop an automated, 

smart solution to identify malicious APKs efficiently, providing models that can adapt to such 

growing and changing environment. 

2.3.1. Static and dynamic Android malware analysis 

As explained in section 2.1.2, based on the attributes used to analyse the APK sample, analysis 

can be divided in static and dynamic. Static analysis extracts features from the application 

without running it; these can include system calls, size of application, permissions, etc. It is 

less time and resource consuming than dynamic analysis, but in some cases, such as 

obfuscation of the code of the application (a technique often used by attackers to make malware 

APKs harder to detect), it doesn’t perform as well. Some examples of static malware analysis 

are the work from Sahs and Khan[16], who used a SVM to classify whether a sample was 

malicious using permissions and API calls; Shabtai[17] used permissions as well, but also 

framework methods and classes to classify if a sample was malicious or not; Yerima et al. [18] 

used a Bayesian classifier and extracted features such as permissions, API calls and Linux 

commands to determine if an application was malicious; and finally,  Xiaoyan et al.[19] 

extracted permissions from the APK code, and used a linear SVM in comparison to other 

classifiers such as RandomForest, Bayes or J48 decision tree to determine if the application 

was malicious. SVM gave the best results. 

Dynamic analysis extracts attributes from the running application, such as network traffic, 

battery usage, etc. This method needs more resources and time that the static approach, but it 

is not affected by obfuscation in the code. Some authors like Wei et al.[20], who used the tool 

DroidBox to extract features from the behaviour of the application while running in a sandbox 

environment, focused on the network behaviour of the malware. They achieved about 93% 

accuracy comparing different algorithms using data mining open source libraries WEKA and 

FastICA. Ham and Choi[20] extracted features divided in categories: network, SMS, CPU power 

usage, process, memory Native and Virtual Memory. They then compared different techniques 

such as SVM, Naïve Bayes, RandomForest, to determine if an application was malicious,  and 

concluded that SVM gave the best results, obtaining almost 100% accuracy in some cases, 

although it gave some false positives in benign applications. 

There are also hybrid approaches, which use both static and dynamic attributes to determine if 

an application is malicious. For example, the work of Patel and Buddhadev[22], who extracted 

features such as API calls and permissions from static analysis and used them in combination 

with network traffic which was captured with dynamic analysis. They then used a Genetic 

Algorithm based machine learning technique to create a rule based system. They finally 

obtained a 96.43% detection rate to detect malicious applications. 

2.3.2. AI applied to Android malware analysis 

There are several works that apply AI to malware analysis in Android. Due to the adapting 

ability of AI algorithms, these techniques offer very valuable results for malware analysis. 
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Most of the tools developed are aimed at being able to differentiate malicious from legit APKs. 

Pektas et al.[23] use online machine learning in an attempt to detect new Android malware, by 

extracting a series of attributes using Cuckoo Sandbox environment, which performs a hybrid 

analysis. They obtained an 89% accuracy using this method. 

Sharma and Sahay[24] propose an approach to identify metamorphic malware comparing the 

performance of different classification algorithms using the tool WEKA. They extracted 

features using static analysis, and tested their model with unknown malware. The highest 

accuracy obtained was 97.95%, using RandomForest. 

Altyeb[25] extracted the permissions from the Android app, and then performed feature selection 

with information gain algorithm, and finally compared NaiveBayes, RandomForest and J48  to 

classify Android applications as malware or goodware. The algorithm achieved the highest 

precision of 89,8% accuracy with lowest false positive rate of 11%. 

2.3.3. Evolutionary algorithms in Android malware analysis 

Some authors use evolutionary algorithms in the analysis of malware applications in Android. 

Since evolutionary algorithms are mainly used for optimization, in most cases they are used in 

combination with some classification technique.  

Zubair et al.[26] developed a family malware classification framework based on the network 

behaviours of the malware samples, and then propose a classification framework based on 

network behaviour in which they analysed the applicability of various evolutionary (as well as 

non-evolutionary) algorithms. Their work was focused on malware family classification. They 

concluded that evolutionary algorithms such as supervised classifier system provided an 

effective solution for malware family classification. 

Firdaus et al.[27] used static analysis to extract features from a series of applications, to then 

apply statistical and genetic search to select optimal features for various classifiers to detect 

Android malware. They tested the following classification algorithms: NaiveBayes, Functional 

Trees, J48, RandomForest and Multilayer Perceptron, obtaining the best results with Functional 

Trees. Their work is restricted to identifying malicious apps. 

2.3.4. Android malware family classification 

Although most studies are focused on determining whether an application is malicious or not, 

some work has been done in classifying the malware samples in their corresponding families, 

such as the previously mentioned by Zubair et al.[26]. 

Li et al.[28] created a machine learning based system called DroidADDMiner, which used API 

data dependence paths to detect, classify (types) and characterize (families) Android malware. 

The system gave a 98% detection rate, and 96% accuracy when classifying the samples in their 

families. 

Yusoff and Jantan[29] developed a malware classification framework based on malware target 

and operation behaviour, and used a genetic algorithm to optimize the classification system as 

well as help in malware prediction. They experimented with a series of classification 

algorithms; Naïve Bayes, SVM, Decision Tree and KNN.  
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3. SYSTEM ANALYSIS 

In this section, the system is analysed in order to determine all the requirements and conditions 

that will need to be met in the development. Throughout this section, the problem presented in 

this document is examined and a series of high level definitions of the system are given, aiming 

to outline the solution for the problem. The design of the solution will be explained in the next 

section, SYSTEM DESIGN. 

The section will first describe the approach taken for the implementation of the system, 

referring to the choices made regarding analysis and learning possibilities. Later, a series of 

user requirements that the system shall be compliant with are proposed. The operating 

environment of the system is then presented. Finally, use cases and traceability matrix are 

explained. 

3.1. Approach 

Before designing the system, the developer must take into account that there are several 

approaches that can be used for analysing Android malware. As explained in STATE OF THE 

ART, the extraction of attributes can be static, dynamic or hybrid. Also, the learning process 

can be supervised, unsupervised or reinforced. 

For the implementation of the work described in this document, a series of malicious APKs 

were obtained from the malware repository ContagioDump. This APKs are already classified 

inside of their types and families, and are available for free in said repository. More details 

about these APKs will be given in the section 5. 

The extraction of attributes was performed via static analysis. The reason to choose this 

analysis was the benefits it provides regarding time and resource consumption, as well as the 

results that it has proven to give as seen in similar work in section 2. 

For the learning, since the APKs had already been classified in their types and families, a 

supervised learning approach was used. The learning was performed by a Support Vector 

Machine, and a Genetic Algorithm was used to optimize the attributes for the learning. The 

SVM was chosen as algorithm for the classification based on the work examined in section 2.3, 

where it became clear that many authors concluded this algorithm gave the best results when 

analysing Android malware. This process is explained in depth in section 5. 

3.2. Requirements 

Based on the objectives of the work presented here, a series of user requirements will now be 

defined. These requirements will define the functionalities of the system to implement, with 

the following format: 

• ID: Used to identify each requirement. This ID will use the format UR-XXX, where 

UR stands for “User Requirement”, and is followed by a three digit number starting on 

001 and increasing in one for each requirement. 

• Description: Detailed description of the requirement’s objective. 

• Justification: Why should the requirement be met; why is it included in the system. 
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• Priority: Each requirement will have either low, medium or high priority, to help to 

plan the development process.  

 

❖ UR-001 

• Description: design an intelligent system that can classify malware APK 

samples in types and families of malware. 

• Justification: The goal of the project is to develop and Android malware 

classification system 

• Priority: High 

 

❖ UR-002 

• Description: The whole project will only use open source tools. 

• Justification: The project should not require software license. Open source code 

allows for easy future work improvements and later research. 

• Priority: High 

 

❖ UR-003 

• Description: Use a genetic algorithm to optimize the parameters for the learning. 

• Justification: The project aims to explore the performance of genetic algorithms 

in malware classification, and how they can improve the learning process. 

• Priority: High 

 

❖ UR-004 

• Description: Use an AI classification technique for the learning. 

• Justification: The project’s objective is to provide an intelligent scalable 

solution for Android malware analysis. 

• Priority: High 

 

❖ UR-005 

• Description: The genetic algorithm will have a limit of 1000 learning cycles.  

• Justification: The genetic algorithm needs stopping criteria. In the work 

proposed, this criterion can only be time or evaluation dependant. 

• Priority: Medium 

 

❖ UR-006 

• Description: Once trained, maximum running time for the system will be limited 

to 1 minute. 
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• Justification: Although the training and refining process can take a long time, 

once a final model is found the system needs to provide a solution given a 

sample within reasonable time. 

• Priority: Medium 

 

❖ UR-007 

• Description: The output of the system is a subset of attributes and the trained 

model.  

• Justification: The system will provide an optimal subset of attributes and a 

trained SVM as a result of training and testing. 

• Priority: High 

❖ UR-008 

• Description: The system will use a total of 1175 malicious APK samples for 

training and testing. 

• Justification: raining data needs to be sufficient. 

• Priority: High 

 

❖ UR-009 

• Description: The malicious APK samples will belong to the malware types: 

banker, ransomware, spyware, adware, trojan, exploit. 

• Justification: Training data needs to be diverse and representative of the 

problem. 

• Priority: Medium 

 

❖ UR-010 

• Description: For each malicious APK belonging to a malware type as described 

in UR-008, there will be representative samples of at least one family within the 

malware type. 

• Justification: Training data needs to be diverse and representative of the 

problem. 

• Priority: High 

 

❖ UR-011 

• Description: All malware samples will be obtained from the free repository 

ContagioDump. 

• Justification: UR-002 

• Priority: High 
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❖ UR-012 

• Description: The system will be developed entirely in Python programming 

language and open source libraries. 

• Justification: UR-002 

• Priority: High 

 

❖ UR-013 

• Description: The attributes extracted from the APKs will be obtained via static 

analysis. 

• Justification: Static analysis is less time and resource consuming than dynamic 

analysis. 

• Priority: High 

 

❖ UR-014 

• Description: The attributes extracted from the APKs will be: for each call to an 

Android library present in the APK, number of times said call is implemented 

in the code; permissions asked by the APK; size of the APK. 

• Justification: The attributes proposed are representative of the behaviour of the 

APK and can be obtained via static analysis. 

• Priority: Medium 

 

❖ UR-015 

• Description: The training dataset will have a common attribute format for all 

APKs. 

• Justification: The attributes must exist on all samples in order to learn from 

them. Since not all APKs have the same usage of Android libraries nor 

permissions, the chosen format must represent all possibilities. 

• Priority: High 

 

❖ UR-016 

• Description: Format of training dataset. Dataset will contain a series of rows 

representing each APK, where each row will be a list of values for: 

▪ All possible calls to an Android library: value equals number of times 

the APK makes a certain call 

▪ All possible permissions: Boolean, True if the APK asks the permission 

and False if it doesn’t  

▪ size of the APK: numeric value 

▪ Class: type and family of the APK)  

• Justification: UR-015 
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• Priority: High 

 

❖ UR-017 

• Description: Codification of the genetic algorithm 

▪ The genome of the genetic algorithm will describe a subset of the 

attributes obtained with the static analysis 

• Justification: The genetic algorithm must codify a solution for the problem. 

• Priority: High 

 

❖ UR-018 

• Description: Implementation of the classifier 

▪ The classifier will be implemented using Python’s opensource library 

Scikit Learn 

• Justification:  UR-002 

• Priority: Medium 

 

❖ UR-019 

• Description: Integration genetic algorithm and classifier model 

▪ Fitness score for the genetic algorithm corresponds to the accuracy score 

obtained by the classifier when training with the subset of attributes 

codified in the genome 

• Justification: The genetic algorithm is used to optimize the learning process. 

• Priority: High 

 

❖ UR-020 

• Description: Test dataset 

▪ A sub dataset with enough samples representative of each family and 

type of malware will be extracted from the original training dataset and 

will not be used for training. 

▪ Said dataset will be used to test the system 

• Justification: The system must prove to be compliant with a representative 

sample of malicious APKs. 

• Priority: High 

 

 

❖ UR-021 

• Description: Testing the system 
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▪ The results obtained with the SVM and GA will be tested using the test 

dataset described in UR-020. 

▪ A series of tests [\ref evaluation] will be performed to ensure the quality 

of the system 

• Justification: UR-020. 

• Priority: High 
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3.3. Operating Environment 

The system has two main modules: static analysis of APKs and intelligent malware 

classification.  

The first one provides the data that is used to train the second. Before the data can be used by 

the second, it is pre-processed and two datasets are created: training and test. In the second 

module, a genetic algorithm (GA) selects a series of attributes from the training dataset that are 

then used by a Support Vector Machine (SVM) to obtain a classification model. The accuracy 

obtained with the SVM is then fed back to the GA, which uses it as fitness score to evolve. The 

test dataset will later be used in the evaluation of the system (see EVALUATION). 

A visual schematic overview of the system design is shown in Figure 12. The symbols used 

in this schematic are explained in Table 1. 

 

 

Figure 13: Operating Environment 

 

Symbol Meaning 

 Process 

 File 

 Direction of data flow 

Table 1: Operating  Environment notation 
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3.4. Use cases 

Use cases define the possible interactions that a user can have with the system. This section is 

usually included in reports about software engineering projects. However, the work described 

in this document allows no possible interactions with a user. Therefore, there are no user cases 

that can be defined. 

3.5. Traceability Matrix 

Traceability matrix provides an overview of the relationship between user requirements and 

use cases. Since there are no use cases possible for this project, there will be no traceability 

matrix shown. 

 

 

  



39 

 

4. SYSTEM DESIGN 

This section will explain the design of the system implemented. Firstly, an overview of the 

design of the system is shown, followed by an explanation of the technologies used in the 

project is given, followed by a general schematic overview of the architecture of the system 

using a component diagram. An explanation about the classes in the system, along with a class 

diagram, are given in the next section. Lastly, this section includes a flowchart showing the 

behaviour of the system. 

4.1. Design overview 

The system to implement must be a classifier for malicious APKs, that given a sample classifies 

it inside its type and family of malware. The attributes will be extracted from each sample via 

static analysis (see 2.3.1), which consists on analysing the APK’s code without running it. 

Since the number of attributes obtained is too big, once the attributes have been extracted, a 

genetic algorithm will be used to optimize the attributes used in the classifier. 

This optimization will be done by using each individual from the genetic algorithm to codify a 

subset of attributes, train the classifier with said attributes, and then measure the accuracy of 

the trained model. The accuracy obtained will be then fed back to the genetic algorithm as 

fitness score for each individual. 

4.2. Technologies 

The whole project was developed using open source technologies, and the data was obtained 

from free samples available on the site ContagioDump. All the code was implemented in 

Python programming language. 

4.2.1. Python 

Python is a general purpose programming language which has gained popularity for data 

science and machine learning implementations over recent years. It was used for all the 

different modules of the project. The APK analysis was implemented using Python’s library 

Androguard, and the classification algorithm was implemented using Python’s library Scikit 

Learn. 

Androguard 

Androguard is a  Python tool that allows to interact and work with Android files. It can be used 

through a CLI or graphical frontend, or as a library inside of own code. For this system, it was 

used as a library inside the code for APK analysis. 

Scikit Learn 

Scikit Learn is an open source machine learning library for Python. It integrates several 

algorithms and tools for different purposes such as classification, regression, clustering, 

dimensionality reduction, model selection pre-processing. It was used to implement the 

classifier model (Support Vector Machine). 
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4.3. System Architecture 

In this section, the architecture of the system will be explained using a component diagram. 

According to UML[30], a component diagram shows components of the system, along with their 

relationships, interfaces, or ports between them.  

4.3.1. Introduction to component diagram 

A component is a logical or physical unit that represents a functionality within the system. The 

idea behind component based design is that if needed, the components can be deployed and re 

deployed independently. A component is represented as shown on Figure 13: 

 

 

Figure 14: Component notation 

Components that work together to achieve the same functionality can be grouped in 

subsystems. The definition of these subsystems was outlined in section 3. When two 

components are in the same subsystem, they will be represented as shown on Figure 14: 

 

 

Figure 15: Subsystem notation 

Moreover, components can have dependencies between them. This dependency occurs when a 

component uses a functionality that other component performs. Dependencies are represented 

as shown on figure 15 below: 
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Figure 16: Dependency between components 

 

4.3.2. Component diagram 

 

 

Figure 17: Component diagram 
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4.4. Classes 

This section contains a detailed specification of the classes within the system. These classes are first 

identified and then, a class diagram with all the classes in the system and relationships between them is 

provided. 

4.4.1. Identification of classes 

As explained before, the system has two main functionality units: APK analyser and 

classification of malware, which uses a genetic algorithm and SVM. Between the two 

functionalities, a third is added to prepare the data for training. 

The classes in the system correspond to these functionalities: 

Analyse: Extracts the attributes for the learning from the APK code with static analysis. 

PrepareData: Used to format and pre-process the attributes extracted with Analyse and create 

data for training and testing. 

Classifier: Contains the functionality of the SVM used for classifying the samples. It 

communicates with the Individuals in the population as they define the attributes to use for the 

learning (therefore the format of the training and test dataset), and calculates the fitness for 

each individual. It also needs the data created in PrepareData to select the relevant rows of 

information in the file created by said class. 

Individual: Each individual is defined by a genome and a fitness value. 

Population: It’s a list of Individuals.  

4.4.2. Class diagram 

This section illustrates all the classes in the system, their methods, attributes and the 

relationships between them. The notation used to describe a class is shown in figure 17: 

 

 

Figure 18: Notation of classes 

Where fields refer to the attributes of the class, and a method will be described with the data 

type it receives as parameters and the return value. Type is a data type. 

The relationship between two classes is shown with an arrow that points from the class using 

a value or data from another class, to the class that provides said data or value. The arrow is 

tagged with the method from the former class that requests data from the latter. 
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Figure 19: Relationship between clases 

 

Find below an schematic view of all classes in the system and the relationships between them: 

 

 

Figure 20: Class diagram 
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4.5. Flowchart 

In this section, a flowchart is used to explain the activities in the system.  The symbols used in 

this chart are explained in table 2: 

Symbol Meaning 

 Start 

 Process 

 Decision 

 Finish 

 Direction of data flow 

Table 2: Flowchart notation 

 

 

Figure 21: Flowchart 
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5. IMPLEMENTATION 
The system was implemented in three phases: extraction of training data from sample APKs, 

pre-processing of data to prepare it for learning, and development of the intelligent 

classification system: Genetic Algorithm and integration with the SVM. For the 

implementation of the latter, python’s library Scikit Learn was used. The two first phases and 

the genetic algorithm were implemented entirely in Python programming language. 

In this section, the implementation of the system will be explained in five sections. First, a 

process overview is given, explaining the steps followed in the implementation and the 

functioning of the system. 

In the three next sections, the implementation of each of the modules in the system is explained 

in depth. This includes the static analysis of the APKs, where attributes are extracted; pre-

processing of the data obtained in the previous step, in which the data is prepared for learning; 

and finally, the detailed implementation of the intelligent malware classification system. A 

detailed explanation of the classes and algorithms implemented will be given for each one of 

them. Finally, an improvement added to the original implementation is explained. 

5.1. Process overview 

Find below an overview of steps implemented. This process is explained in detail in the 

following sections. 

1. First, a series of APKs are analysed in order to extract attributes from them. A static 

analysis is performed, where the following attributes are extracted from the code of the 

APK: calls to Android libraries (number of times the application executes a certain call, 

for all the calls in the code), permissions, and size of the APK. This attributes are written 

to a file specific for each APK. The type and family of the APK is also included in the 

attribute file.  

2. After the attributes for each APK have been extracted, they are combined in one format 

and pre-processed for the learning. This pre-processing includes randomizing the data 

to avoid bias in the learning, and splitting the data in two datasets: training (with 70% 

of the data) and test (with the remaining 30%). 

3. The training dataset is used to train the classifier, which is formed by a genetic 

algorithm (GA) and a Support Vector Machine (SVM). The genetic algorithm selects a 

subset of attributes that are used for the classification. The SVM is then trained with 

the training dataset with selected attributes, and the accuracy score from the SVM 

(obtained with the test dataset with selected attributes) is used to evaluate the GA. The 

parameters for the SVM are fixed in this step. 

4. Step 3 is repeated until the GA meets the stop criterion, which is a set number of cycles 

(also called generations). 

5. When the GA stops, the best subset of attributes is chosen, and a series of experiments 

are carried out using different parameters for the SVM. 

6. Once the best subset of attributes and the trained SVM have been created, a series of 

tests are performed using a new set of APK samples that weren’t used in the process 

explained before, to prove the efficacy of the system.  
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5.2. Attribute extraction: APK Static analysis 

The first step in the process is analysing the APK files to extract the attributes for learning via 

static analysis; as explained in the STATE OF THE ART, static analysis is performed by 

extracting attributes from the code of the APK, instead of capturing features from APK while 

it’s running. The attributes are written to a CSV output file for each of the APKs. As stated 

before, the attributes extracted are: calls to Android libraries, permissions, size of APK. 

The analysis was performed by looking at the DEX attribute of the APK (see 2.1.1), which 

contains the assembly code of the application. The assembly code is then read and every time 

there is a call to the Android library, a specific counter for the call is created. This counter is 

incremented each time the call is found in the code. The permissions can be obtained directly 

using Androguard library, which provides an interface with the permissions of the application. 

Lastly, the size of the application can be obtained by using a library from the OS. 

These attributes were chosen because, as seen on similar work (Static and dynamic Android 

malware analysis) many researchers have obtained good results using static analysis. 

Furthermore, static analysis provides a less resource consuming attribute extraction technique 

compared to dynamic analysis. Calls, permissions and size of the application were attributes 

used by other researchers in similar work and could be extracted via static analysis. 

5.2.1. Constructor 

This method initialises the object Analyse with the information from the APK it receives as 

parameter. It uses the library Androguard to parse the application’s code in order to initialise 

the attributes a and d, which contain the information about the APK and DEX objects. As 

explained in the STATE OF THE ART, APK is the format of Android application, and Dex 

is the compiled code of the apk, which contains all its functionality. 

After these two attributes have been initialised, they are used by get_calls( ) and 

get_manifest_info( ), as explained below, to define the other attributes of the object Analyse. 

This method also obtains the size of the application, which is directly accessible using libraries 

from the OS. 

 

5.2.2. Get_calls 

This method returns the number of times the Android library is called by the application. It 

does not take into account the calls to methods within the application, only those to methods 

from the Android library. 

The DEX (d) attribute contains the assembly code (in Android, called “smali”) for the 

application. Get_calls iterates through this code and counts the number of times a call to the 

Android library appears in the code, and then returns the call and the number of times it appears. 
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5.2.3. Get_manifest_info 

This method obtains the permissions, which are stored in the attribute APK (a). Androguard 

provides an interface that can be used to access the list of permissions directly: 

permissions = a.get_permissions() 

It then returns the permissions list. 

After executing this program, there will be a CSV file per APK sample with the attributes 

that define said sample, with the following format: 

 

name of call, number of times the call is made 

name of call, number of times the call is made 

… 

permission 

permission 

… 

size 

Figure 22: Format of file with attributes extracted from APK 
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5.3. Data pre-processing 

The data obtained in the previous step is processed and converted to a common format that can 

be used for learning; all APKs must be defined by a common set of attributes (which is defined 

in the header) and a class. Each APK is defined with a list with all the values for each attribute 

and the value for the class. The output of the class is a CSV file that contains the name of each 

attribute and the word “class” in the first row, and the corresponding values for each APK in 

the following rows. It is also randomized to avoid bias in the learning and split in training and 

test datasets, as explained later. It is interesting to point out that more than 44000 attributes that 

describe each APK were obtained, as this will affect the results obtained in the tests (as 

explained in section 6). 

The training and test datasets are used to train the classifier model and measure its accuracy to 

be used as the GA’s fitness, respectively. As explained in section EVALUATION, once the 

GA and SVM have been trained, and both a subset of attributes and a trained SVM are 

available, another set of tests is performed to measure the efficacy of the system, with a new 

set of APK samples that had not been used until then. 

5.3.1. Create_header 

The header must contain all possible Android library calls and permissions a sample can have. 

There are two options to achieve this: either create a header with every possible call to an 

Android library and permission in the Android operating system, or extract all calls and 

permissions present in the attributes for each APK analysed. 

The first option has two main problems: first, the number of possible calls in Android will 

probably be very high,  and as a consequence a header with an elevate amount of attributes 

would be created, although most of them aren’t found in the samples presented. Second, it 

would mean incrementing the size of the training dataset file, which might slow down the 

learning significantly.  

The second option only takes into account the calls and permissions found in the APKs 

previously analysed. This means that if the system is used to analyse a new application that has 

a call or permission that wasn’t present in the APKs used to create the dataset, it will be ignored.  

Although this might seem like a problem, the Genetic Algorithm will be used to filter attributes, 

so not all attributes will be present in the final model in any case. Also, if there is a call that is 

not present in any of the previously analysed APKs, it is highly unlikely that it will be relevant 

for the learning and therefore will probably not be present in the final subset of attributes 

selected for the classifier either way.  

In summary, when creating the header, there is no good reason to include calls or permissions 

that aren’t present in the APK set used in this project, thus the second option was chosen. 

As explained before, the files created as the result of analysing APKs are a series of CSV files 

with the following format: 

[Attribute (call || permission || size), value] 
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The create_header( ) method works as explained in the pseudo code below: 

 

The list of attributes is returned as a list object, with all the calls, permissions, size and the 

word “class”. More than 44000 attributes were obtained. 

5.3.2. Create_data 

Once the header has been created, the program loops through all the result files again to write 

the values that each APK has for all attributes.  

The value for all the Android library calls is an integer value representing the number of times 

that the application includes said call in its code. The value for permissions is 0 or 1, depending 

on whether the application asks for the specific permission or not. The value for size is an 

integer value. Finally, the class is a string that contains the name of the type and family of 

malware the APK belongs to.  

The class includes both type and family information to allow different experiments in later 

evaluation: classification as a type of malware and in more detail, as a family. 

The data is stored as a list of lists, where the first sub-list contains all attributes; and the 

following sub-lists contain the values for each attribute for all APKs and their class. Once 

added, the sub-lists are shuffled randomly to avoid bias in the learning. This list will later be 

written to a CSV file, where the first row will be the attributes and following rows will be the 

values for all APKs.  

Note that Scikit Learn will later need the data in form of a Python dictionary, which might lead 

to question why is the data stored in the form of a list and then written as plain rows on a CSV 

file. This decision is based on future scalability of the solution; CSV format allows for easy 

integration with other tools such as WEKA, an open source data mining tool which can operate 

directly on CSV files.  

The method works as follows: 

1 loop: read all files with results of analysing apks 

2       loop: read all rows in file 

3              if element in row is not present in attribute list:        

4                  add element to attribute list 

5 add “class” to attribute list 

6 return attribute list 

Figure 23: Pseudo code for create_header 

1 add header to data[] # will store all values for all APKs 

2 loop: read all files with results of analysing apks 
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The data list will then look as follows: 

 

data = [ 

[attribute1, attribute2, attribute3,...,attributeN, class], 

[value1, value2, value3,…valueN, class],..., [...] 

] 

Figure 25: Format of training data 

 

Where there would be one list for the header and a list of values for each APK. A simplified 

example is given below: 

data = [ 

[init(), pow(), random(), ConcurrentMap.->putIfAbsent(), 
ConcurrentLinkedQueue.-> <init>(), class ], 

[423,1,1,2,29, spyware_tizi], 

[3,1,1,3,1,1, banker_sberbank] ] 

Figure 26: Example of training data 

  

3       create list[] with size = header # will store values for each APK 

4       set all values of list[] to 0 

5       loop: read all rows in file  

      # each row is a list: [attribute name, value] 

6              loop: read all elements in header and their index     

7                  if element in row == element in header 

8                      list[index] = row[1] #value 

9       append class name to list 

10       append list[] to data[] 

11 random.shuffle lists in data[] #to avoid bias in the data 

12 training_dataset = data[:0.70*len(data)] #70% for training 

13 test_dataset = data[0.70*len(data):] #30% remaining for test 

14 write training_dataset, test_dataset to csv Figure 24: Pseudo code for create_data 



51 

 

5.4. Intelligent malware classification 

Once the dataset is ready for the learning, the process to attempt to create an intelligent 

classifier begins.  

Since the classifier model needs to be reading the training dataset for each individual of the 

population that it evaluates (using only the attributes selected by the genome of the individual), 

and the data for learning is stored in a CSV file created in the previous step, a copy of the file 

is created and stored in a temporary buffer at the beginning of the process to avoid multiple OS 

calls to open the CSV file. 

In this section, the genetic algorithm is explained in the first place, followed by the classifier 

model (including the SVM, which was implemented using Scikit Learn), and finally the 

integration between the two models on implementation level.  

5.4.1. Genetic Algorithm 

The genetic algorithm is the most complex component of the system. To allow a better 

understanding of the implementation, first the general definition of the algorithm (codification, 

fitness and operators) is given, followed by a definition of the specific implementation 

(including pseudo code) of all the functions of the two classes that make up the genetic 

algorithm: Individual and Population (which is a set of Individual objects). Since the 

functionalities of the genetic algorithm are divided in these two classes, each class implements 

the functionalities of the algorithm that concern either each individual or the whole population. 

Definition of algorithm 

A genetic algorithm codifies a population of individuals that represent solutions to a certain 

problem. The individual is defined by the following characteristics: first, the codification of 

the genome. The genome must be a binary array that codifies a solution to the problem, and it 

must be possible to codify all solutions in this binary array. Secondly, a fitness function; an 

defined evaluation function that can measure if the solution codified in the genome is good or 

bad. 

Apart from its definition, the algorithm needs a series of genetic operators that allow a 

population to evolve, so that new better solutions can be found. These operators are selection, 

where a subset of the most fit individuals are selected; these individuals’ genomes are then 

combined to create new individuals. This is known as crossover. Lastly, individuals can suffer 

mutations, which are random changes to their genomes. The mutation has a probability of 

happening on each generation, which is defined as part of the algorithm. Several mutation rates 

can be tested to ensure the best performance of the system. 

 

Codification 

Each individual is codified as a binary array with N positions where N is equal to the number 

of attributes obtained in the static analysis of each sample (see Attribute extraction: APK 

Static analysis). Each position in the array corresponds to a feature (which will be either a 

calls to an Android library, permission, or size of the APK). If the position is set to 1, the feature 
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will be used for the learning. If, however, the position is set to 0, the feature is ignored in the 

learning. 

An example of this codification is given below. Given the following training set with only 5 

features as shown before: 

data = [ 

[init(), pow(), random(), putIfAbsent(), ConcurrentLinkedQueue.-> 
<init>(), class ], 

[423,1,1,2,29, spyware_tizi], 

[3,1,1,3,1,1, banker_sberbank] ] 

 

Suppose a population with two individuals as it follows: 

[0,0,0,1,1]    [0,1,1,0,1] 

The first individual defines the attributes ConcurrentMap.->putIfAbsent(), 

ConcurrentLinkedQueue.-> <init>() to be used for learning, whereas the second codifies 

the attributes: pow(), random(), ConcurrentLinkedQueue.-> <init>(). 

 

Fitness 

The fitness of each individual is defined as the accuracy percentage obtained when training the 

SVM with the attributes codified in the individual’s genome. This is calculated using Scikit 

Learn’s function model.preditc( ), in the codification of the classifier model, and will be 

detailed later in section  Classifier: Support Vector Machine. 

 

Genetic operators 

Each genetic operator can be implemented in many different ways, which affect the evolution 

process. In this section, the implementation chosen for each operator is explained in depth. 

SELECTION 

20% of the population is selected to be in the mating pool. The mating pool is a list where the 

selected individuals are stored. The selection is done via tournaments:  individuals are chosen 

two by two and their fitness are compared. The ones with highest fitness are selected.  

CROSSOVER AND REPLACEMENT 

The crossover is the process of combining two or more individuals’ genomes to create new 

individuals. The crossover implemented is uniform crossover with a 50% chance: it takes two 

parent individuals and uses one gene from each to create two new individuals. For each gene 

in the child’s genome, the parent gene is chosen randomly between the two parents. The 

replacement is made based on age of individuals: an old individual is removed each time a new 

individual is added. This is implemented by treating the population as a queue. 
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MUTATION 

The mutation operator switches the value of one gene chosen randomly to the opposite value 

(0 if the gene was 1 and vice versa). 

Individual 

The functionalities that belong specifically to the individual are: its codification (or genome), 

fitness, and the mutation applied to its genome. 

Create_genome 

The genome of an individual is created as an array with size equal to the number of attributes 

and all its positions equal to 0. The size is obtained using Python’s len( ) function on the first 

row of the training dataset. After creating it, the method iterates through its positions and 

randomly changes some of them to 1: 

 

Fitness_score 

The fitness score is calculated in the classifier model. The individual class calls the getter for 

the classifier class: 

 

Mutate 

The mutation operator is applied with a certain probability - which is specified as a parameter 

of the program - on each individual in the population. When the probability is met, a random 

gene is switched: 

 

 

1 size = len(training_data[0]) 

2 self.genome = [0 for x in range (size)] #all genes initially 0 

3 loop through the genome in range (size): 

4       set random position to 1 

6       generate new random position     

Figure 27: Pseudo code for create_genome 

1 self.fitness_score = classifier.accuracy_score(individual) 

Figure 28: Pseudo code for fitness_score 

1 for individual in population: 

2      if random.random( ) < probability 

3      index = randint(0, size-1) #random gene 

4        swap the value of genome[index] 

Figure 29: Pseudo code for mutate 



54 

 

Population 

The population class implements the select and crossover functions, since they affect a set of 

individuals.  

Create_population 

The size of the population is specified as a parameter of the program. The method creates as 

many random individuals as the size specified: 

 

Select 

As explained before, the top 20% of the population is selected to be in the mating pool for later 

combination of genomes. The selection is done via tournaments: two individuals are selected 

and their fitness and compared. The one with the best fitness is added to the mating pool, unless 

it is already present in the mating pool; in that case, two new individuals are selected and 

compared. 

 

Crossover and replacement 

Crossover function implements a uniform crossover with 50% chance: Two new individuals 

are created randomly combining the genes from two parents. The parents are chosen from the 

mating pool created in the previous step. For each gene on each child, one of the parent’s genes 

in the same position is chosen randomly. 

1 self.individuals = [] 

2 for i in range (population_size): 

3      new_ind = Individual() 

4      new_ind.create_genome() 

5      new_ind.fitness_score() 

6      self.individuals.append(new_ind) 

Figure 30: Pseudo code for create_population 

1 mating_pool = [] 

2 for i in range(population_size*0.2*2): #top 20%, compared 2 by 2 

3      select two random distinct individuals  

4      compare their fitness 

5      if the one with best fitness is not already in mating pool: 

6       append the one with best fitness to mating pool 

10 return mating_pool 

Figure 31: pseudo code for selection 
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The replacement of old individuals is then made by removing two individuals from the top of 

the population, and appending the two newly created individuals. 

  

1 while mating_pool: 

2     first_parent = mating_pool.pop() 

3     second_parent = mating_pool.pop() 

4     first_child, second_child = Individual() 

5     for i in range len(first_parent.get_genome()): 

6         if randint(0,1) == 0 

7           first_child.genome[i] = first_parent.genome[i] 

8           second_child.genome[i] = second_parent.genome[i] 

9         else: 

10           first_child.genome[i] = second_parent.genome[i] 

11           second_child.genome[i] = first_parent.genome[i] 

Figure 32: Pseudo code for crossover 
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5.4.2. Classifier: Support Vector Machine 

The classifier model was implemented using Scikit Learn library for Python. It uses the 

training_dataset and test_dataset created in the data pre-processing step to train and measure 

the accuracy of the model. It is called by the genetic algorithm step, which provides the genome 

of the Individual to calculate its fitness. For more information about the implementation using 

Scikit Learn, it is recommended to refer to the official documentation. The SVM model used 

is a C-SVM, which uses a parameter C to penalize the error in classification. The parameters 

this model receives are: 

• Gamma value: this is related to the function used to calculate the distance between 

samples, which is a Gaussian function. In simple terms, a small gamma value will 

classify two points as belonging to the same class even if they are far apart. 

• C: this value is used to penalize the error in classification. With higher values of C, 

space between classes is reduced (the margin between classes is smaller, therefore the 

division of classes is less clear). On the contrary, smaller values of C give priority to 

creating a bigger gap between different classes. If C is too small, there will probably be 

some misclassified samples. 

The parameters of the SVM are fixed to Gamma = 0.001, and C=100 during the attribute 

optimization process (evolution of the algorithm). There was some later experimentation done 

with the SVM, as explained in section 6.3. 

Create_datasets 

This method filters the data in the datasets that is codified in the Individual’s genome. The 

training and test data are obtained from the CSVs obtained before, as explained in section Data 

pre-processing. For each individual, it filters the training and test datasets with the attributes 

codified in the individual. 

This method works as explained in the pseudocode below: 

 

1 store data in CSVs in buffer #aux list 

3 dataset, test_dataset = {‘data’:[], ‘target’:[]} 

4 for row in training_data_aux[:-1]: #last elem is target 

5     for elem,i in enumerate(row): 

6         if individual[i]==1 

7           dataset[‘data’].append(training_data_aux[i]) 

8 dataset[‘target’].append(training_data_aux[-1]) #last elem is 
target 

9 repeat same process for test data 

10 return dataset, test_dataset 

Figure 33: Pseudo code for create_datasets 
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Fit 

 

This function trains an SVM with the training dataset created in create_datasets( ). To do this, 

it uses Scikit Learn SVM model: 

 

 

Predict 

 

Once the model has been trained, the model is fed the test_dataset to measure its performance: 

 

 

Accuracy_score 

 

It’s the first call that the class receives. The class Individual calls this method to set the fitness 

of an individual. This method then calls the other three in the class:  

 

 

1 create SVM 

2 model = fit SVM to training dataset 

3 return model 

Figure 34: Pseudo code for fit 

1 prediction = model.predict(test_dataset[‘data’]) 

2 accuracy = accuracy_score(predictions, test_dataset[‘target’]) 

3 return accuracy 

Figure 35: Pseudo code for predict 

1 training, test = create_datasets(individual) 

2 model = fit(training) 

3 return predict(model, test) 

Figure 36: Pseudo code for accuracy_score 
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5.4.3. Integration of GA and SVM 

The genetic algorithm and Support Vector Machine communicate through the fitness of 

individuals. The genetic algorithm requests the calculation of the fitness by the SVM, which 

needs the codification of the GA to create the model and measure its accuracy. The two models 

use each other’s interface to access the desired values: 

 

The SVM trains with the training dataset, filtering the attributes that are codified in the 

individual’s genome. The accuracy is then measured by using the trained model to predict the 

test dataset, and is fed back to the genetic algorithm as fitness. 
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5.5. Improvements made to original implementation 

After implementing the system explained above and testing its performance, the results were 

suboptimal. Each cycle of the genetic algorithm took around 1,5 minutes to run. The main 

cause identified was the size of training data elements; each sample was defined by more than 

44000 attributes, and since each individual had a random number of attributes, evaluating each 

one of them implied training the model with an average of 20000 attributes per individual.  

Note that this means the algorithm is searching for a solution amongst  approximately 244000 

possible solutions. The elevated size of the search space can affect the learning significantly, 

and, as shown in section 6.5, it prevents the correct evolution of the algorithm. 

An option that was considered was performing some kind of attribute filtering prior to the 

genetic algorithm. The first option that was proposed was removing strongly tied attributes, by 

calculating a covariance matrix and removing those attributes that had a significant statistical 

similarity. However, this solution wouldn’t affect the size of the attribute pool, leaving it with 

very similar number of attributes, still around 44000. 

Another option was then using Scikit Learn’s feature selection libraries. These implement a 

series of machine learning algorithms, such as decision trees, that can determine the most 

significant attributes for the learning. This solution was not considered for two reasons: first, it 

is unclear whether it could significantly reduce the number of attributes. Second, it would be 

performing the task that has been made for the genetic algorithm in this work, hence defeating 

the original purpose of the GA. Future implementations (see 9.2) could consider using these 

techniques alone or in combination with others to reduce the attribute pool. 

For these reasons, an improvement was made to the original definition of the genetic algorithm: 

• The codification of the genome of an individual is changed. The new genome has a 

restricted number of 1’s in its codification: there can be no more than 2000 1’s in the 

binary array (which corresponds to a maximum of 2000 attributes used for learning). 

 

This improvement could imply a bias on the learning of the algorithm, since the first 2000 

positions are more likely to be in the codification of the algorithm. Moreover, this bias could 

be strengthen in the crossover, by combining similar individuals whose codifications 

concentrate the majority of 1’s in the early positions of the genome. Nonetheless, it was 

introduced and tested. Note that 2000 attributes still implies a search space of 22000 elements, 

which is still large, and can still present the same problems in the evolution of the algorithm. 

The performance of this new implementation was proven with a series of tests that are 

described in section EVALUATION. The tests made on the original implementation are also 

explained in said section. 
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6. EVALUATION 

In this section, the evaluations done to evaluate the best model are explained first, and a real-

life simulation test is explained second. The real life simulation was made using new samples 

as explained below: 

Once the final model was chosen (attributes to use in the learning and trained Support Vector 

Machine), a series of samples were downloaded from ContagioDump repository. 10 samples 

from each family used in the implementation were downloaded (a total of 120 samples), and 

the model obtained before was applied to test its performance.  

6.1. Description of the experimental environment 

This section explains the environment in which the tests were performed. To ensure the quality 

of the tests, the test set has to be sufficient and representative of the problem. 

1175 samples were used for the learning of the system. These were samples evenly distributed 

between the following types and families of malware: Banker (Sberbank, Overlay, 

Overlaylocker), Ransomware (Xbot), Spyware (BeaverGangCounter, redDrop, Tizi) , Adware 

(Judy, Hummingbad), Exploit (Godless), Trojan (Marcher, Triada). 

 

Figure 37: Malware samples used in the system 

There are two test sets to take into account: first, the test set used to evaluate the performance 

of the genetic algorithm and SVM in different models, to choose the best subset of training 

attributes. This test was obtained as the 30% of the training data. The data was randomly 

shuffled to avoid any bias, and then 30% was saved to evaluate the model. 

After these evaluations have been made, the model needs to be tested in a simulation of a real 

life situation. For that purpose, a new set of malicious APKs were downloaded. 10 samples for 

each type and family used for the learning were downloaded (a total of 120 samples). These 

samples were then tested with the final model (codification of best individual and best 

parameters of SVM). 
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6.2. Evaluation of the genetic algorithm 

The tests performed to choose the best model were performed using the test dataset created in 

the data pre-processing step of the implementation (see 5.3). Each test was performed with 

different mutation rates and fixed values for the SVM parameters. The reason why the tests 

were performed this way was to obtain the best combination of attributes (best individual), to 

later test different values for the SVM parameters with the best individual. The size of the 

population (number of individuals) was set to 20.  

The graph below illustrates the evolution of the population for each test in 20-30 cycles of 

learning (generations). The tests done to the algorithm included  between 200 and 300 cycles 

of learning, however in most cases it converged to a value in about 15 generations, thus only 

20 or 30 generations are shown in the figures below. The average running time per cycle (or 

generation) was 90s.  

The objective of this section was to find the best combination of attributes for the classification 

of malicious APKs. A minimum accuracy score of 90% is required in order to consider the 

subset of attributes fit enough to be chosen as best subset.  

• Mutation rate = 10% 

The algorithm took about 27-28 generations to stabilize, and did so in an average accuracy of 

79 %. The best individual had an 80.4% fitness score. 

 

Figure 38: Evolution of genetic algorithm, 10% mutation rate 
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• Mutation rate = 20% 

Increasing the mutation rate, the algorithm converges to an approximate 81% accuracy in 12 

generations. The best individual had a total of 84.4% accuracy score. 

 

Figure 39: Evolution of genetic algorithm, 20% mutation rate 

• Mutation rate = 50% 

The algorithm evolves rapidly, stabilizing around 84% fitness score in about 10 generations. 

The best individual had an 84.4% fitness score. 

 

Figure 40: Evolution of genetic algorithm, 50% mutation rate 
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6.2.1. Tests done with improved version of original implementation 

After performing the tests described before, an improvement was added to the genetic to reduce 

the running time of the model (described in section 5.5). This new model was tested following 

a similar structure to the test performed in the previous model; different mutation rates, fixed 

parameters for the SVM. The accuracy scores obtained were very similar, but the running time 

was reduced significantly, more than half of the original running time. The average time per 

cycle with the improved version was 42s.  

• Mutation rate = 10% 

The evolution of the population in this experiment was slow and hardly noticeable, since the 

first population had an initial average fitness of 91.3%. The algorithm converged to an 

approximate 93% average fitness, and the best individual had a fitness score of 93.75%. 

 

Figure 41: Evolution of improved genetic algorithm, 10% mutation rate 

 

• Mutation rate = 20% 

The algorithm converged to an approximate 77.5% in 10 generations. The first generation had 

an average fitness of 65%, and the best individual had a fitness score of 78.2%. 
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Figure 42: Evolution of improved genetic algorithm, 20% mutation rate 

• Mutation rate = 50% 

The best individual had a total of 94.37% fitness score. Similarly to the first experiment with 

this version of the genetic algorithm, the initial population had a high average fitness score 

(92.1%), therefore the evolution is less pronounced compared to other experiments. 

 

Figure 43: Evolution of improved genetic algorithm, 50% mutation rate 
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6.3. Evaluation of SVM 

After performing the tests described above, the final model subset of attributes was chosen. 

This subset was obtained as the best individual from the tests performed before, which had a 

94.37% accuracy.  

A series of values were tested for the SVM parameters. The possible parameters for an SVM 

are (as explained in section 5):  

• Gamma value: A small gamma value will classify two points as belonging to the same 

class even if they are far apart. 

• C: With higher values of C, the gap between classes is smaller.  

The values for these parameters in the tests performed to obtain the best combination of 

attributes (tests done on the genetic algorithm) were: C=100, Gamma =0.001. The experiment 

was repeated 5 times to obtain reliable results. The tables below illustrates the accuracy 

percentage obtained for each combination of values on each experiment: 

 Gamma 

C 

 0.001 0.002 0.003 0.005 0.008 0.01 

100 94.37% 96.67% 96.67% 93.3% 93.3% 93.3% 

200 96.67% 96.67% 96.67% 93.3% 93.3% 93.3% 

500 96.67% 96.67% 96.67% 93.3% 93.3% 93.3% 

800 96.67% 96.67% 96.67% 93.3% 93.3% 93.3% 

50 100% 100% 100% 93.3% 93.3% 93.3% 

25 100% 100% 100% 96.67% 96.67% 96.67% 

 15 100% 100% 100% 96.67% 96.67% 96.67% 

 10 100% 100% 100% 96.67% 96.67% 96.67% 

C 

 0.02 0.03 0.05 0.1 0.2 0.3 0.5 

100 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 

200 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 

500 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 

800 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 

50 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 

25 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 

15 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 

10 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 

Table 3: Evaluation of SVM, experiment 1 
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 Gamma 

C 

 0.001 0.002 0.003 0.005 0.008 0.01 

100 91.5% 90.84% 90.84% 89.54% 88.23% 88.23% 

200 91.5% 90.84% 90.84% 89.54% 88.23% 88.23% 

500 91.5% 90.84% 90.19% 89.54% 88.23% 88.23% 

800 91.5% 90.19% 90.19% 89.54% 88.23% 88.23% 

50 91.5% 90.84% 90.84% 89.54% 88.23% 88.23% 

25 91.5% 90.84% 90.84% 89.54% 88.23% 88.23% 

 15 91.5% 90.84% 90.84% 89.54% 88.23% 88.23% 

 10 91.5% 90.84% 90.84% 89.54% 88.23% 88.23% 

C 

 0.02 0.03 0.05 0.1 0.2 0.3 0.5 

100 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 

200 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 

500 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 

800 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 

50 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 

25 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 

15 88.23% 88.23% 88.23% 88.23% 88.23% 89.54% 88.23% 

10 88.23% 88.23% 88.23% 88.23% 88.23% 89.54% 88.23% 

Table 4: Evaluation of SVM, experiment 2 

 

 Gamma 

C 

 0.001 0.002 0.003 0.005 0.008 0.01 

100 95.86% 95.86% 95.86% 95.86% 94.48% 94.48% 

200 95.86% 95.86% 95.86% 95.86% 94.48% 94.48% 

500 95.86% 95.86% 95.86% 95.86% 94.48% 94.48% 

800 95.86% 95.86% 95.86% 95.86% 94.48% 94.48% 

50 95.86% 95.86% 95.86% 95.86% 94.48% 94.48% 

25 95.86% 95.86% 95.86% 95.86% 94.48% 94.48% 

 15 95.86% 95.86% 95.86% 95.86% 94.48% 94.48% 
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 10 95.86% 95.86% 95.86% 95.86% 94.48% 94.48% 

C 

 0.02 0.03 0.05 0.1 0.2 0.3 0.5 

100 94.48% 94.48% 94.48% 94.48% 94.48% 93.55% 93.55% 

200 94.48% 94.48% 94.48% 94.48% 94.48% 93.55% 93.55% 

500 94.48% 94.48% 94.48% 94.48% 94.48% 93.55% 93.55% 

800 94.48% 94.48% 94.48% 94.48% 94.48% 93.55% 93.55% 

50 94.48% 94.48% 94.48% 93.55% 93.55% 93.55% 93.55% 

25 94.48% 94.48% 94.48% 93.55% 93.55% 93.55% 93.55% 

15 94.48% 94.48% 94.48% 93.55% 93.55% 93.55% 93.55% 

10 94.48% 94.48% 94.48% 93.55% 93.55% 93.55% 93.55% 

Table 5: Evaluation of SVM, experiment 3 

 

 Gamma 

C 

 0.001 0.002 0.003 0.005 0.008 0.01 

100 97.72% 97.72% 97.72% 97.94% 97.94% 97.94% 

200 97.72% 97.72% 97.94% 97.94% 97.94% 97.94% 

500 97.72% 97.94% 97.94% 97.94% 97.94% 97.94% 

800 97.72% 97.94% 97.94% 97.94% 97.94% 97.94% 

50 97.72% 97.72% 97.72% 97.72% 97.94% 97.94% 

25 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

 15 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

 10 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

C 

 0.02 0.03 0.05 0.1 0.2 0.3 0.5 

100 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

200 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

500 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

800 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

50 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

25 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

15 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 
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10 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 

Table 6: Evaluation of SVM, experiment 4 

 

 Gamma 

C 

 0.001 0.002 0.003 0.005 0.008 0.01 

100 97.86% 97.53% 97.53% 97.69% 97.69% 97.69% 

200 97.86% 97.53% 97.86% 97.69% 97.69% 97.69% 

500 97.86% 97.86% 97.86% 97.69% 97.69% 97.69% 

800 98.18% 97.86% 97.86% 97.69% 97.69% 97.69% 

50 97.86% 97.53% 97.53% 97.36% 97.69% 97.69% 

25 97.86% 97.53% 97.53% 97.36% 97.36% 97.36% 

 15 97.86% 97.53% 97.53% 97.36% 97.36% 97.36% 

 10 97.53% 97.53% 97.53% 97.36% 97.36% 97.36% 

C 

 0.02 0.03 0.05 0.1 0.2 0.3 0.5 

100 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36% 

200 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36% 

500 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36% 

800 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36% 

50 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36% 

25 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 

15 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 

10 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 

Table 7: Evaluation of SVM, experiment 5 
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Table 8 illustrates the average accuracy score for all values of C and gamma, calculated as the 

geometric mean of the results obtained in the 5 experiments performed before. To provide a 

better understanding of the table, a heat map was used to visually locate the best results. Darker 

blue indicates higher accuracy, whereas lower accuracy is indicated with a lighter shade of 

blue. 

 Gamma 

C 

 0.001 0.002 0.003 0.005 0.008 0.01 

100 95,43% 95,69% 95,69% 94,81% 94,26% 94,26% 

200 95,89% 95,69% 95,80% 94,81% 94,26% 94,26% 

500 95,89% 95,80% 95,66% 94,81% 94,26% 94,26% 

800 95,96% 95,66% 95,66% 94,81% 94,26% 94,26% 

50 96,54% 96,34% 96,34% 94,71% 94,26% 94,26% 

25 96,54% 96,34% 96,34% 95,38% 94,82% 94,82% 

 15 96,54% 96,34% 96,34% 95,38% 94,82% 94,82% 

 10 96,48% 96,34% 96,34% 95,38% 94,82% 94,82% 

C 

 0.02 0.03 0.05 0.1 0.2 0.3 0.5 

100 94,93% 94,89% 94,82% 94,82% 94,82% 94,64% 94,64% 

200 94,93% 94,89% 94,82% 94,82% 94,82% 94,64% 94,64% 

500 94,93% 94,89% 94,82% 94,82% 94,82% 94,64% 94,64% 

800 94,93% 94,89% 94,82% 94,82% 94,82% 94,64% 94,64% 

50 94,93% 94,89% 94,82% 94,64% 94,64% 94,64% 94,64% 

25 94,82% 94,82% 94,82% 94,64% 94,64% 94,64% 94,64% 

15 94,82% 94,82% 94,82% 94,64% 94,64% 94,92% 94,64% 

10 94,82% 94,82% 94,82% 94,64% 94,64% 94,92% 94,64% 

Table 8: Evaluation of SVM, average accuracy 
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6.4. Evaluation of final model 

After choosing the genetic algorithm and parameters for the SVM, the final model was tested 

with a new set of malware samples with 10 samples belonging to each type and family used 

for the learning. 

As seen on Table 8, there were 12 combinations for SVM parameters which gave very similar 

score on experimental results. From them, 3 gave slightly better results, however the difference 

is so small it’s not significant. To choose one of them, the definition of gamma and C were 

taken into account. Given a sample that has been classified wrongly, it is preferred that said 

sample is classified in its correct type, even if the family is wrong. For that reason, the gap 

between classes should be higher (smaller value of C), so families which belong to the same 

type are brought together, but different types are far apart. On the other hand, the results for 

higher values of Gamma in the experiments were worse than those with smaller values, thus 

the smallest Gamma from within the best 3 was chosen. 

The chosen final values for Gamma and C would then be: Gamma = 0.001, C = 15. However, 

to obtain more significant results about the performance of the model, the tests were performed 

with all 12 best combinations of Gamma and C shown on Table 8. 

Table 9 shows the accuracy obtained for each combination of parameters on the new set of 

samples. Table 11 shows the incorrectly classified instances, and the class where they were 

placed, to allow for a better understanding of the performance of the system.  

 Gamma 

C 

 0.001 0.002 0.003 

50 92,81% 92,81% 92,81% 

25 92,81% 92,81% 92,81% 

15 92,81% 92,81% 92,81% 

10 92,81% 92,81% 92,81% 

Table 9: Evaluation of final model 

The model obtained was the same in all cases, thus the accuracy remains unchanged for all 

experiments. 

Table 11 illustrates the confusion matrix, which shows the incorrectly classified instances of 

each class. To allow a better understanding of the table, the classes are represented with 

numbers as shown on Table 10: 

 

Type Family Number in table 

Adware Hummingbad 1 
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Judy 2 

Banker 

Overlay 3 

OverlayLocker 4 

Sberbank 5 

Exploit Godless 6 

Ransomware Xbot 7 

Spyware 

BeaverGangCounter 8 

RedDrop 9 

Tizi 10 

Trojan 
Marcher 11 

Triada 12 

Table 10: Naming of classes in confusion matrix 

 

 Classified as 

Class 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 10 0 0 0 0 0 0 0 0 0 0 0 

2 3 7 0 0 0 0 0 0 0 0 0 0 

3 1 0 9 0 0 0 0 0 0 0 0 0 

4 0 0 0 9 1 0 0 0 0 0 0 0 

5 0 0 0 0 10 0 0 0 0 0 0 0 

6 2 0 0 0 0 8 0 0 0 0 0 0 

7 2 0 0 0 0 0 8 0 0 0 0 0 

8 0 0 0 0 0 0 0 10 0 0 0 0 

9 0 0 0 0 0 0 0 0 10 0 0 0 

10 0 0 0 0 0 0 0 0 0 10 0 0 

11 0 0 2 0 0 0 0 0 0 0 8 0 

12 0 0 0 0 0 0 0 0 0 0 0 10 

Table 11: Confusion matrix  
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6.5. Analysis of experimental results  

After performing the experiments described in the previous sections, the results obtained are 

analysed to understand the performance of the system implemented. 

The first element to analyse is the genetic algorithm. When looking at the results obtained from 

the experiments (on section 6.2), it becomes clear that the algorithm never evolves to a solution 

over 90% accuracy unless it has individuals with high accuracy in the initial population. 

Although it does evolve slightly, this means that it’s preferable to choose a random combination 

of attributes for the training until one good individual is found than use the algorithm to filter 

the attributes.  

This result is not surprising, as the search space of the algorithm is huge. With about 44000 

attributes, there are approximately 244000 possible combination of attributes to be explored by 

the algorithm. By changing the algorithm’s codification, the search space is reduced but still 

too broad for the algorithm to evolve properly. Since the objective of this section was to find 

the best combination of attributes, and the best individual had an accuracy of 94.4%, it was 

considered fit enough to use as solution; however, the genetic algorithm is not enough for this 

attribute selection. A new codification, different attribute selection methods, or combination of 

genetic algorithm with other methods should be explored to obtain a better model for future 

research and that can be suitable for malware analysis. This question will be explored in depth  

in Future work. 

The attributes obtained, however, prove to be significant for the learning. The high accuracy 

obtained in all experiments shows that the static analysis of the APKs is a good method to 

analyse Android malware, with the only downside of the high number of attributes obtained. 

Different methods could also be tested in future implementations, as will be discussed in  

Future work. 

The SVM gives a very reliable model. Looking at the confusion matrix on the real-life test 

(with 120 samples equally distributed between the 12 possible families), 6 out of 12 classes 

have incorrectly classified instances. Out of the 6, 5 are incorrectly classified as Adware, family 

Hummingbad. The model seems to lean towards that class. Since the model was trained using 

70% randomized data from 1175 samples, it’s likely that more samples from this particular 

family were included in the training set, therefore slightly biasing the model. This bias is not 

consider significant, since the tests performed prior to the real-life experiment obtained very 

high accuracy with a test set that contained the remaining 30% of the randomized data from 

1175 samples. Furthermore, in all cases there are no more than 2 samples classified incorrectly 

in this class, with the exception of the samples belonging to Adware Judy. This last exception 

belongs to the same type as Hummingbad, incorrectly classified instances within types are to 

be expected. 

All in all, the model can be improved in future implementations, but it proves to give a suitable 

adaptive solution to the problem presented at the beginning of the project. 
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7. MANAGEMENT 

This section explains the details about the management process related to the project, including 

the planning of the project in time and the costs involved in the development. 

7.1. Planning 

The project was planned considering two major aspects: development of the source code, 

including design, implementation and evaluation; and the creation of this report, including the 

previous research and analysis of the legal and socio-economic environment of the project, and 

the drafting of the document. 

The project was started in December 2018, and finished in the first week of June 2019. The 

implementation of the code and creation of the report were planned jointly, considering that 

some aspects related to the report are essential prior to the development process. For this 

reason, the first step was an initial research on the topic and related work (STATE OF THE 

ART), and also the socio economic and legal aspects that could affect the project, to make sure 

the project is compliant with all regulations and consider the effects it could have from a socio 

economic perspective (LEGAL AND SOCIO-ECONOMIC ENVIRONMENT). Once this 

research was finished, the implementation was planned analysing and designing the system (as 

seen on SYSTEM ANALYSIS and SYSTEM DESIGN). After these tasks had been 

completed, the samples needed for the project were obtained. These samples were downloaded 

from the free repository ContagioDump. The code was then implemented (explained in section 

IMPLEMENTATION) . 

The implementation of the source code is divided in three parts: genetic algorithm, SVM and 

integration of both. Since the SVM was developed using Scikit Learn, the majority of the 

implementation time was invested in designing and implementing the genetic algorithm. 

After the code was implemented, a series of experiments to test the performance of the system 

were designed (EVALUATION). These tests were executed over three weeks, due to the high 

computational time needed for each execution (see 6). The tests were then analysed and a series 

of conclusions were extracted. 

The process described above was documented in parallel to the implementation, and all the 

results and conclusions are shown in this document (see 6.5 and 9). 

The development of the whole project is illustrated below using a Gantt chart[32]. 
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Table 12: Planning of the project 

 

 December January February March April May June 

Tasks 
week 

1 
week 

2 
week 

3 
week 

4 
week 

1 
week 

2 
week 

3 
week 

4 
week 

1 
week 

2 
week 

3 
week 

4 
week 

1 
week 

2 
week 

3 
week 

4 
week 

1 
week 

2 
week 

3 
week 

4 
week 

1 
week 

2 
week 

3 
week 

4 
week 

1 

Total time                                                   

State of the 
Art                             
Socio 
Economic 
Environment                             
Analysis and 
Design                             
Development                                  
Obtain samples                           
Genetic 
Algorithm                              
SVM                            
Integration                           
Tests                                     

Design of 
experiments                            
Genetic 
Algorithm                             
SVM                            
Final model                            
Analysis of 
Results                            

Project 
documentation                                                   
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7.2. Budget 

The budget of the project is divided in two main sections: direct and indirect costs. Direct costs 

refer to all the resources needed in form of specific cost objects, such as materials, labour, 

licenses, etc. Indirect costs, however, can’t be traced to specific cost objects: these include 

items such as rent, power, utilities, insurance, fees, etc.  

7.2.1. Direct costs  

The direct costs of the project correspond to the resources needed for the implementation. Since 

all the code was developed using open-source means, no software license was acquired, and 

there was no need for any specific hardware device, the direct costs relate to the computer used 

in the implementation and the labour of the developer.  

Human resources 

There was only one person involved in the development of the project. The project had a 

duration of 6 months, which equal a total of 480 hours. The salary of the developer is taken as 

the average salary for an entry level Python developer in North Holland (where the developer 

of the project was based at the time of the creation of the project) according to Payscale[31], 

which equals a total of €14,83/hour. 

Estimated 

hours 

Cost per hour Total cost 

480 €14,83 €7188,4 

Table 13: Estimated personnel costs 

 

Material resources 

The costs for the resources and materials needed needs to be calculated including the 

amortization of the materials, which considers the lifespan of each device. This cost is 

calculated as the depreciated cost multiplied by the duration of the project. 

𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 =
(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑠𝑠𝑒𝑡 𝑐𝑜𝑠𝑡 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)

𝑢𝑠𝑒𝑓𝑢𝑙 𝑙𝑖𝑓𝑒 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡(𝑚𝑜𝑛𝑡ℎ𝑠)
 

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =  𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑚𝑜𝑛𝑡ℎ𝑠) ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝑚𝑜𝑛𝑡ℎ𝑠) 

Where residual value is the estimated value of the asset at the end of its useful life. For this 

project, the only material asset needed was a laptop. Find below the estimated cost for this 

asset:  

Asset Initial cost Residual 

value 

Useful life 

(months) 

Duration of 

project(months) 

Total cost 

HP 

EliteBook 

840  

€ 1.293,49 €600 48 6 €86,63 

Table 14: Estimated material costs 
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7.2.2. Indirect costs 

Indirect costs are calculated as a 20% of the total direct costs. These cover costs such as power 

used to run the application, and can’t be traced to human resources or material. 

The total indirect costs are  €1455 

7.2.3. Risk 

The risk costs refer to the costs that the risks involved in the project add to the total cost. The 

risks can affect the developer, for example in case of injury or illness; they can also affect the 

material assets, as it’s the case of loss or breakage of the computer where the project is being 

developed. There are no security risks affecting this project since there is no sensitive or private 

data being used.  

The risk costs are calculated as a 10% of the cost of the project, including direct and indirect 

costs. 

The total risk costs are €873. 

7.2.4. Total costs 

The total cost of the project adds the expected benefit to the total amount. The expected benefit 

for this project equals a 20% of the total budget: €1920,6. The VAT is added to the total costs. 

The VAT is taken from the VAT general tariff in the Netherlands (where the project was 

developed), 21%. 

Find below the total costs of the project: 

Cost description Value 

Direct Costs €7275,03 

Indirect Costs €1455 

Risk Costs €873 

TOTAL  €9603,03 

Expected Benefit €1920,6 

TOTAL COSTS 

(without VAT) 
€11523,64 

VAT €2419,96 

TOTAL COSTS  

(with VAT) 
€13943,6 

 

- 
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8. LEGAL AND SOCIO-ECONOMIC ENVIRONMENT 

This section explores all the socio-economic and legal factors related to the developed project. 

Before the implementation of a software tool, there are certain aspects that must be taken into 

account relating this environment; these can affect usage of personal or sensitive data, 

intellectual property, possible social impact of the system, etc. 

8.1. Legal  

The project does not use any kind of private or sensitive data; it does also not modify any data 

that belongs to a user or particular privately. All samples are APKs obtained from a public 

repository, furthermore, the samples correspond to malicious APKs which had been published 

before being uploaded to the repository (since the intention of the developers of the malware 

was to infect users by infiltrating the apps in their devices). Python is an open source 

programming language, and all its libraries are available free of license. All the code used was 

entirely developed during the project, and no third-party code or resources were needed (except 

for the previously mentioned samples and Python’s libraries). 

For these reasons, there are no laws or regulations regarding data protection that affect this 

project. However, any creative work, even if available publicly, is subject to copyright by 

default. Thus, it is needed to analyse the intellectual property of the project and whether it is 

going to be made open source or not. 

8.1.1. Intellectual property and open source projects 

All creative work is exclusive by copyright by default when created, according to open source 

guide[33]. Even if the project is published,  for example in a public Github repository, it’s still 

subject to copyright of the author. This means that although anybody can access and see the 

content of the project, nobody can use, copy, distribute or modify the content of the work. 

To make the project open source, there are several licenses available online. The intention of 

this project is to be of help in future research and provide an scalable approach to the growing 

problem of cyberattacks on Android devices. For these reasons, the project is made open 

source. 

The license chosen for this project is provided by MIT[34]:  

MIT License 

 

Copyright (c) 2019 Sara Yuste Fernandez Alonso 

 

Permission is hereby granted, free of charge, to any person obtaining 

a copy of this software and associated documentation files (the 

"Software"), to deal in the Software without restriction, including 

without limitation the rights to use, copy, modify, merge, publish, 

distribute, sublicense, and/or sell copies of the Software, and to 

permit persons to whom the Software is furnished to do so, subject 

to the following conditions: 

 

The above copyright notice and this permission notice shall be 

included in all copies or substantial portions of the Software. 
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THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 

SOFTWARE. 
Figure 44: MIT License for open source projects 

 

8.2. Socio-Economic impact 

Due to the popular use of smartphones and specifically Android, the project has a high social 

impact. The widely extended different versions of malware affect many users, and in some 

cases can imply a high economic loss, not only for one user,  but can sometimes affect a whole 

enterprise or sector. The general public is sometimes not well informed about the cyberattacks 

and risks they face when using their smartphones. Projects like the one developed are have a 

big impact in future protection against cybercrime, and help reduce the impact of cyberattacks 

in a growing and changing landscape such as personal mobile applications. 

8.2.1. Smartphones: private and sensitive information 

According to Statista[35], there were 4.57 billion mobile phone users in 2018. In 2019, this 

number is forecast to reach 4.68 billion. As reported by a research made by Techjury[36],  47% 

of US smartphone users say they couldn’t live without their devices , 62% of smartphone users 

have made a purchase on the device and there are 194 billion apps downloads in 2018 

worldwide.  

 

These statistics show the close relationship between users and mobile phones, which are an 

essential asset in the users’ everyday lives. Users store, access or modify personal and sensitive 

data using their phones. An example of this are the banking apps that most banks offer, from 

which a user can operate on their bank accounts, transfer money, check their balance, etc. Not 

only banking data, but other sensitive data such as personal pictures or confidential information 

(for example, data about clients on a work phone) is often stored and accessed in mobile 

phones. Successful attacks to a mobile device allow the attacker to potentially gain access to 

this data, trade with the information obtained, blackmail the user, or ruin the user’s o their 

enterprise’s reputations.  

 

8.2.2. Cybercrime 

Cybercrime refers to a crime where a computer is the victim of a crime, or is used as a tool to 

commit a crime[37]. Cybercrime can target multiple computational devices, but due to the high 

popularity of smartphones, these have become an interesting target for cybercriminals over the 

last few years. As shown by G Data, mobile malware rose about 40% in 2018, with around 3.2 

million malicious apps located by the end of the third quarter of 2018[38].  
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Figure 45: New Android malware samples per year 2012-2018. (GData, 2018) 

The increasing number of threats to Android has been addressed by the industry, with measures 

such as the one taken by Google since summer 2018 (as seen on technological portal The 

Verge[39]), which stated a mandatory security update for at least two years for popular Android 

manufacturers. 

Most Android users, however, are unaware of these numbers. Since most of the malicious apps 

use social engineering, or simply rely on the user’s ignorance about these threats, they can be 

found in the PlayStore or any legit source the user might believe trustworthy and reliable, and 

can infect the device easily, being installed by the user. 

The number of malicious apps grows so rapidly, it is difficult to find adaptable and fast 

countermeasures to keep users safe from these attacks. It becomes more clear for Android 

manufacturers and cyber security experts that there is a need to find a solution which provides 

a fast way to find the malicious apps efficiently, so they can be removed from the PlayStore or 

other sources before they reach the users. 
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9. CONCLUSIONS 

After implementing the system, this section explains a series of personal and technical 

conclusions to summarize the content of the project. 

9.1. Personal and technical conclusions 

The development of this project has been a challenging task. From the research about a topic 

such as Android malware, from which the student had no prior formation, the understanding 

of malware and Android APKs, its behaviour… to the implementation of the genetic algorithm, 

SVM and integration of both, the development process has tested the experience of the author 

in programming, as well as improved the knowledge on both computational science and 

cybersecurity.  

Looking at the objectives set at the beginning of the project, the challenge at hand was to 

develop a scalable, efficient way to analyse malicious Android app samples and determine the 

type and family they belong to. The solution developed obtained a very high accuracy in all 

cases, included the real-life testing, and has proven to work with 6 different malware types and 

12 different malware families. Although there are many improvements that can be made to the 

implementation, especially regarding the recurrent problem of the number of attributes 

extracted from the APKs, the objectives of the project can be considered as met after the 

development of the system. The model obtained can be scaled to other malware applications, 

and adapted if necessary with new samples, and provides a reliable guide for Android cyber 

security experts to speed up their work when analysing malicious APKs.  

Furthermore, another goal which was set at the beginning of the project was to make it available 

for future research, and to be accessible by other developers. The whole project has been 

developed with open source means, and has been open sourced to be obtainable for free, to 

contribute to a further development of the project.  

9.2. Future work 

As mentioned before, the main challenge of the system developed was to operate on such a 

high number of attributes extracted from the APKs. The first measure to take when working 

further on this project would be to look for a solution regarding this problem. The author 

suggests the following: 

• Apply decision models prior to the genetic algorithm to decide which attributes are 

more relevant. For example, creating a series of decision trees and selecting the most 

significant attributes used to create the branches; prune the tree at a certain height and 

use a genetic algorithm to explore the remaining attributes. 

• Combine statistical feature reduction methods with AI feature reduction. For example, 

the already mentioned covariance matrix combined with a decision tree; the tree would 

work as described before, but a genetic algorithm would not be used to explore the 

remaining attributes. 

• Use the three methods proposed above in combination; first selection with a statistical 

model to remove strongly related attributes, a series of search trees to obtain the most 



81 

 

recurrent significant attributes, and a genetic algorithm to explore through the 

remaining attribute space. 

• Extract attributes by different means. For example, use a dynamic analysis and extract 

less attributes about the behaviour of the application. Try dynamic and hybrid 

approaches. 

• Extract different attributes. Instead of using the calls to the Android library, analyse the 

structure of the code inside each APK, similarly to a flow diagram. Create graphs that 

represent the interaction of methods within the APK, and use the graphs as attributes 

for the learning. 

Another possible future line of work is exploring different learning algorithms in the classifier 

model. This project focused on the use of SVM for the classification, but further research could 

be done using different algorithms or techniques. 
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GLOSSARY OF TERMS 

 

Ad (advertisement): A notice or announcement in a public medium promoting a product, 

service, or event. In the context of this works, it refers to the announcements displayed on 

mobile phones’ apps. 

Algorithm: A process or set of rules to be followed in calculations or other problem-solving 

operations, especially by a computer. 

App: In computing, An application, especially as downloaded by a user to a mobile device. 

Assembly code: In computing, The conversion of instructions in low-level code to machine 

code. 

Binary array: A collection of numbers which can have the value 1 or 0. 

Buffer: A temporary memory area in which data is stored while it is being processed or 

transferred. 

CLI (Command Line Interface): A text based user interface used to view and manage computer 

files. 

Computer vision: A field of science which aims to make computers gain understanding from 

images or videos. 

CSV file (comma separated value file): A file format which contains values separated by 

commas. 

Cyberattack: An attempt by hackers to damage or destroy a computer network or system. 

Cybercrime: Criminal activities carried out by means of computers or the Internet. 

Decipher: Convert (a text written in code, or a coded signal) into normal language. 

Decision models (AI): A subdivision of AI algorithms which interpret the knowledge using a 

series of decisions, such as decision trees. 

DEX (Dalvic Executable): A component of an APK (Android Application Package) which 

contains the compiled source code. 

Encryption: The process of converting information or data into a code, especially to prevent 

unauthorized access. 

Family (malware): A set of malware applications or programs which belong to the same 

malware type and present common features. 

Feature: In AI, a piece of data that can be used to analyse a sample. 
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General purpose (programming language): An programming language that doesn’t operate 

only in a specific field or environment, but can be used to implement several different 

applications. 

Git: An open source distributed version control system designed for code sharing. 

Github: An online code repository which implements Git control system. 

Hyperplane(geometry): A subspace with one dimension less to the ambient space. In a 3D 

dimensional space, a hyperplane is a 2D plane. 

Infection (software): The action of a software application or program being infiltrated by a 

malicious software. 

Interface (program): A point where two systems, meet and interact. Can refer to the interaction 

between two software components or a subject with a software component. 

Malicious: Intending or intended to do harm.  

Malware: Software that is specifically designed to disrupt, damage, or gain unauthorized 

access to a computer system. 

Metamorphic malware: Malware that is rewritten with each iteration so each version of the 

code is different from the previous one. 

Natural Language Processing: The application of computational techniques to the analysis 

and synthesis of natural language and speech. 

Open source software: Software that can be used, copied, distributed or modified freely. 

Operating system (OS): The low-level software that supports a computer's basic functions, 

such as scheduling tasks and controlling peripherals. 

Optimization problem: The problem of finding the best solution of all possible solutions. 

Parser: A program for analysing (a string or text) into logical syntactic components. 

Pay-by-click: A form of paid digital marketing where advertisers pay a fee each time their ad 

is clicked. 

Privilege (software): The authority to perform security relevant functions on a computer. 

Sandbox: A virtual space in which new or untested software or coding can be run securely. 

Smartphone: A mobile phone that performs many of the functions of a computer, typically 

having a touchscreen interface, Internet access, and an operating system capable of running 

downloaded apps. 

Social engineering: The use of deception to manipulate individuals into divulging confidential 

or personal information that may be used for fraudulent purposes. 
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Speech recognition: The process of enabling a computer to identify and respond to the sounds 

produced in human speech. 

Vulnerability (cybersecurity): Flaw in a computer system that can leave it open to attacks. 

 

All definitions hereby provided according to Oxford English Dictionary[40] 
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