

Bachelor’s Degree in Computer Science and Engineering.

2018-2019

Bachelor’s Thesis

 “Intelligent Android Malware Family

Classification using Genetic Algorithms

and SVM”

Sara Yuste Fernández Alonso

Pedro Isasi Viñuela

Yago Sáez Achaerandio

Leganés, July 2019

This work is licensed under Creative Commons Attribution – Non Commercial – Non

Derivatives

2

ABSTRACT

As of April 2019, Android was the most popular mobile operating system amongst smartphone

users[1]. Its high popularity, combined with the extended use of smartphones for everyday tasks

as well as storing or accessing sensitive and personal data, has made Android applications the

target of numerous malware attacks over the last few years and in the present.

The malware attacks have been perfected to target specific vulnerabilities in the operating

system or the user; thus specializing in types of malware and families within each type. The

malware is usually distributed in infected applications (or APKs), which contain malicious

behaviours that can be found looking into their code (known as static analysis) or analysing the

behaviour of the application while running (known as dynamic analysis).

This document describes the implementation of an intelligent system that aims to classify a

series of malicious APK samples obtained from the free repository ContagioDump. These

samples are classified inside the type and family they belong to.

To create the classifier system, a Support Vector Machine (SVM) is implemented using

Python’s library Scikit Learn. A series of attributes are extracted from the samples of malicious

APK by analysing the code of the APKs via static analysis, using Python’s library Androguard,

which contains a parser that allows to interact with all the relevant parts of the APK file.

The attributes obtained are very high in number, and for that reason a Genetic Algorithm is

used to optimize the attributes that the SVM uses in the learning process. The algorithm

codifies a subset of attributes from all the attributes extracted in the static analysis, and is

evaluated using the accuracy score obtained when training the SVM with said subset.

As a result, a subset of attributes and a trained model for the classification are obtained. This

model is then tested with a new set of malware samples, belonging to all the families classified

in the learning.

The present document contains the explanation of the process of designing, creating and testing

the system. It is developed as bachelor’s thesis for computer science and engineering degree in

Universidad Carlos III de Madrid.

Keywords

Genetic algorithms, Neural networks, SVM, Android, APK, malware, Artificial Intelligence.

3

RESUMEN

En abril de 2019, Android era el sistema operativo móvil más popular entre los usuarios de

smartphones[1]. Debido a su popularidad, y el uso extendido para tareas diarias entre los

usuarios, que además usan sus teléfonos móviles para guardar y acceder datos sensibles y

privados, Android ha sufrido un gran número de ciber ataques en los últimos años, y sigue

recibiendo ataques constantemente.

Estos ataques maliciosos se han ido especializando para atacar a vulnerabilidades específicas

del dispositivo o de los usuarios, diferenciándose en tipos y familias de malware. Este malware

se distribuye habitualmente en aplicaciones (o APKs) infectadas. Es posible analizar el

comportamiento malicioso de estas aplicaciones infectadas, bien analizando el código de la

aplicación (conocido como análisis estático) o estudiando el comportamiento de la aplicación

mientras es ejecutada (análisis dinámico).

El presente documento describe la implementación de un sistema inteligente de clasificación

de muestras de malware en tipos y familias de malware. Las muestras utilizadas son una serie

de APKs infectadas obtenidas del repositorio gratis ContagioDump.

La creación del sistema clasificador se ha llevado a cabo desarrollando un programa que usa

una Máquina de Soporte Vectorial (SVM, por sus siglas en inglés), haciendo uso de la librería

de Python Scikit Learn. Las muestras de APKs maliciosas se analizan de forma estática para

obtener una serie de atributos, usando la librería de Python Androguard, que proporciona un

parser y una interfaz para interactuar y utilizar todas los elementos relevantes del código de las

APKs.

El número de atributos obtenidos en dicho análisis es muy alto, por lo que se utiliza un

algoritmo genético para optimizar el proceso de aprendizaje de la SVM, seleccionando un

subgrupo de atributos que se usan en el aprendizaje. El algoritmo genético codifica el subgrupo

de atributos a usar, y es evaluado según el porcentaje de acierto obtenido al entrenar la SVM

con el subgrupo codificado.

Como resultado del trabajo, se obtienen un subgrupo de atributos óptimos en los que basar el

análisis de una APK, y un modelo clasificador entrenado. Este modelo se pone a prueba con

una nueva serie de muestras de aplicaciones maliciosas, representativas de todos los tipos y

familias analizados anteriormente.

Este documento incluye la explicación del proceso de diseño, creación y evaluación del sistema

implementado. El sistema ha sido desarrollado como Trabajo de Fin de Grado de la carrera de

Ingeniería Informática en la Universidad Carlos III de Madrid.

Palabras clave

Algoritmos genéticos, Redes de neuronas, SVM, Android, APK, malware, Inteligencia

Artificial.

4

AKNOWLEDGMENTS

I’d like to thank all the people who have helped and supported me during the creation of this

work, without whom this thesis could have never been possible.

To my supervisors, Pedro Isasi and Yago Sáez, for all their corrections, advice and support

during all the development of this thesis.

To my boyfriend Santi, and friends, who have been supportive and lifted me up through the

most stressful moments.

I would also like to thank all the professors and staff from the university that have contributed

to making my university experience valuable and positive. To the cleaning and maintenance

staff that keeps the campus a pleasant space, the staff from dining and café areas, and all my

professors, both lecturers and lab professors.

5

TABLE OF CONTENTS

1. INTRODUCTION ... 11

1.1. Motivation .. 11

1.2. Objectives ... 11

1.3. Document Structure .. 12

2. STATE OF THE ART .. 13

2.1. Android .. 13

2.1.1. APK .. 13

2.1.2. Android Malware .. 14

2.2. Artificial Intelligence .. 18

2.2.1. History .. 18

2.2.2. Techniques ... 20

2.3. Similar work .. 29

2.3.1. Static and dynamic Android malware analysis .. 29

2.3.2. AI applied to Android malware analysis .. 29

2.3.3. Evolutionary algorithms in Android malware analysis ... 30

2.3.4. Android malware family classification.. 30

3. SYSTEM ANALYSIS ... 31

3.1. Approach ... 31

3.2. Requirements ... 31

3.3. Operating Environment ... 37

3.4. Use cases ... 38

3.5. Traceability Matrix ... 38

4. SYSTEM DESIGN .. 39

4.1. Design overview ... 39

4.2. Technologies .. 39

4.2.1. Python .. 39

4.3. System Architecture .. 40

4.3.1. Introduction to component diagram ... 40

4.3.2. Component diagram ... 41

4.4. Classes .. 42

4.4.1. Identification of classes ... 42

4.4.2. Class diagram .. 42

4.5. Flowchart ... 44

5. IMPLEMENTATION .. 45

6

5.1. Process overview ... 45

5.2. Attribute extraction: APK Static analysis .. 46

5.2.1. Constructor .. 46

5.2.2. Get_calls ... 46

5.2.3. Get_manifest_info ... 47

5.3. Data pre-processing .. 48

5.3.1. Create_header ... 48

5.3.2. Create_data ... 49

5.4. Intelligent malware classification .. 51

5.4.1. Genetic Algorithm ... 51

5.4.2. Classifier: Support Vector Machine .. 56

5.4.3. Integration of GA and SVM ... 58

5.5. Improvements made to original implementation ... 59

6. EVALUATION ... 60

6.1. Description of the experimental environment .. 60

6.2. Evaluation of the genetic algorithm .. 61

6.2.1. Tests done with improved version of original implementation 63

6.3. Evaluation of SVM .. 65

6.4. Evaluation of final model ... 70

6.5. Analysis of experimental results .. 72

7. MANAGEMENT .. 73

7.1. Planning ... 73

7.2. Budget .. 75

7.2.1. Direct costs ... 75

7.2.2. Indirect costs .. 76

7.2.3. Risk ... 76

7.2.4. Total costs .. 76

8. LEGAL AND SOCIO-ECONOMIC ENVIRONMENT ... 77

8.1. Legal ... 77

8.1.1. Intellectual property and open source projects .. 77

8.2. Socio-Economic impact... 78

8.2.1. Smartphones: private and sensitive information ... 78

8.2.2. Cybercrime .. 78

9. CONCLUSIONS ... 80

9.1. Personal and technical conclusions ... 80

9.2. Future work ... 80

7

GLOSSARY OF TERMS ... 82

BIBLIOGRAPHY ... 85

8

TABLE OF FIGURES

Figure 1: Structure of an APK .. 13

Figure 2: Overlay on banking Apps .. 15

Figure 3: Malware types and families ... 16

Figure 4: The Bombe .. 18

Figure 5: Symbolic VS Sub symbolic AI.. 21

Figure 6: Example of automated handwriting recognition using Machine Learning............................ 22

Figure 7: Unsupervised Learning .. 23

Figure 8: Reinforcement learning ... 23

Figure 9: Map of AI (Corea, 2018) ... 25

Figure 10: Simple perceptron .. 27

Figure 11: Artificial Neural Network.. 27

Figure 12: Support Vector Machine.. 28

Figure 13: Operating Environment ... 37

Figure 14: Component notation .. 40

Figure 15: Subsystem notation .. 40

Figure 16: Dependency between components... 41

Figure 17: Component diagram .. 41

Figure 18: Notation of classes ... 42

Figure 19: Relationship between clases .. 43

Figure 20: Class diagram .. 43

Figure 21: Flowchart ... 44

Figure 22: Format of file with attributes extracted from APK .. 47

Figure 23: Pseudo code for create_header .. 49

Figure 24: Pseudo code for create_data .. 50

Figure 25: Format of training data .. 50

Figure 26: Example of training data ... 50

Figure 27: Pseudo code for create_genome .. 53

Figure 28: Pseudo code for fitness_score ... 53

Figure 29: Pseudo code for mutate ... 53

Figure 30: Pseudo code for create_population .. 54

Figure 31: pseudo code for selection .. 54

Figure 32: Pseudo code for crossover ... 55

Figure 33: Pseudo code for create_datasets .. 56

Figure 34: Pseudo code for fit ... 57

Figure 35: Pseudo code for predict ... 57

Figure 36: Pseudo code for accuracy_score .. 57

Figure 37: Malware samples used in the system ... 60

Figure 38: Evolution of genetic algorithm, 10% mutation rate .. 61

Figure 39: Evolution of genetic algorithm, 20% mutation rate .. 62

Figure 40: Evolution of genetic algorithm, 50% mutation rate .. 62

Figure 41: Evolution of improved genetic algorithm, 10% mutation rate .. 63

Figure 42: Evolution of improved genetic algorithm, 20% mutation rate .. 64

Figure 43: Evolution of improved genetic algorithm, 50% mutation rate .. 64

9

Figure 44: MIT License for open source projects ... 78

Figure 45: New Android malware samples per year 2012-2018. (GData, 2018) 79

10

INDEX OF TABLES

Table 1: Operating Environment notation ... 37

Table 2: Flowchart notation .. 44

Table 3: Evaluation of SVM, experiment 1 .. 65

Table 4: Evaluation of SVM, experiment 2 .. 66

Table 5: Evaluation of SVM, experiment 3 .. 67

Table 6: Evaluation of SVM, experiment 4 .. 68

Table 7: Evaluation of SVM, experiment 5 .. 68

Table 8: Evaluation of SVM, average accuracy.. 69

Table 9: Evaluation of final model ... 70

Table 10: Naming of classes in confusion matrix ... 71

Table 11: Confusion matrix .. 71

Table 12: Planning of the project .. 74

Table 13: Estimated personnel costs ... 75

Table 14: Estimated material costs ... 75

11

1. INTRODUCTION

This document describes the implementation of an intelligent Android malware classification

system. The objective of the developed system is to classify a series of malicious Android

applications (or APKs) samples in the types and families of malware which they belong to.

In order to develop this system, the code from the APK samples is analysed to obtain

information about its behaviour and characteristics, and a Support Vector Machine is used to

classify the samples analysed. A genetic algorithm is implemented to optimize the learning of

the Support Vector Machine, by selecting a subset of characteristics or features from the

samples which the SVM uses to train.

1.1. Motivation

As of April 2019, Android operating system was the most popular operating system amongst

smartphone uses with 70.22% of the market share[1]. The everyday use of smartphones has

been growing unsteadily for the past few years, and more and more users are now using their

smartphones to store and access personal and sensitive data, such as banking information. It

has also become an essential asset for users, who rely on their smartphones for many of their

daily tasks.

For these reasons, Android OS is often targeted by malicious applications that aim to steal data

or damage the device. New families of malware are discovered daily, and cyber security experts

often struggle trying to keep up with all the new malicious applications, evaluating their risks

and which users they might affect.

Although there are many effective extended methods to detect whether an application is

malicious, even available in the market (most mobile antivirus services perform this task), there

haven’t been so many attempts at trying to identify the family of malware an application

belongs to, which could eventually help cyber security experts determine the threat it poses

more efficiently, and therefore act on it sooner.

One of the reasons why this last task is not so commonly found in antivirus or other similar

services is the continuously changing nature of malware families. There are new versions

coming out almost on a daily basis, and trying to find a deterministic way to decide which

family a malicious APK belongs to seems almost impossible and not scalable.

Artificial Intelligence methods present an alternative way to perform this classification. Due to

the ability of AI algorithms to learn, adapt and generalize, an AI based system could bring an

scalable and adaptable solution to this problem.

1.2. Objectives

The objective of the work describe here is implement an intelligent classifier that provides an

efficient and scalable solution to the problem described before, with the final purpose of

classifying Android malware samples in their right type and family of malware.

12

In this document, an intelligent classification using AI algorithms (artificial neural networks,

more precisely a Support Vector Machine) is proposed. Furthermore, to obtain a more efficient

system, a Genetic Algorithm is used as an optimizer for the features used in the learning.

By using these two methods in combination, an adaptable solution is found, which performs a

classification of the malicious apps in an effective and adept way. This solution can be used in

further research and help cyber security analysts in the early detection of threats.

The project will be developed entirely using open source means, to allow easier further

implementations, investigation and improvements. For the development of the project, a series

of malicious APK samples are obtained from the free online repository ContagioDump, and

the implementation of the system is done in Python programming language using the libraries

Scikit Learn and Androguard.

1.3. Document Structure

The present document is structured as it follows:

First, a STATE OF THE ART is detailed. This section gives an explanation of all the

techniques and theory relevant for the work explained in this document, along with some

similar work developed in the area.

then, an exhaustive definition of the developed system is given. this definition is divided in

three sections, ordered from more high level detail to low level detailed functioning of the

system: first section is SYSTEM ANALYSIS, where the most important components and

requirements for the system are identified. in the second place, the SYSTEM DESIGN is

shown, including the technologies, detailed components and classes of the system. lastly, the

IMPLEMENTATION of the system is included, with low level detail of all the components

of the system.

Later, the tests used to measure the performance of the system are detailed in the

EVALUATION section, followed by an analysis of the MANAGEMENT (budget and

planning) and LEGAL AND SOCIO-ECONOMIC ENVIRONMENT related to the work

described in this document. This last section aims to understand the legal and socio economic

implications this work has, related to topics such as intellectual property or data protection.

Finally, a series of personal and technical CONCLUSIONS are presented.

13

2. STATE OF THE ART

2.1. Android

Android is a mobile operating system (OS) is based in the Linux operating system, developed

by Android Inc., first meant to improve the operating system of digital cameras. In 2004,

Android Inc. decided to use the OS in mobile phones. The company was later acquired by

Google in 2005.

The first public version of Android OS was launched in 2007. Earlier that same year, Apple

had launched the first iPhone. Unlike iPhone’s operating system iOs, Android could power

many different phone models. It quickly gained popularity amongst smartphone users.

Android was ranked as the most popular mobile operating system in April 2019 by Net

MarketShare[1]. Due to its high popularity, it has quickly become an interesting target for

numerous malware attacks.

2.1.1. APK

An Android Package Kit (APK) is the file format used for distributing and installing mobile

apps in the Android operating system.

APKs can be installed from a computer or from the mobile device. The most common

installation method is using the device’s official store application Google Play Store, although

the installation can be done manually.

There are other alternative Android app stores, but some of these are not reliable as they contain

malicious software (malware) apps.

An APK file contains all the source code for a certain application. When an android app

contains malicious behaviours, it is possible to analyse the source code found in the APK file

to find these behaviours.

DEX

DEX (Dalvic Executable) is the compiled code of an Android program. An Android application

is defined by the .dex files which are then zipped to a single .apk file, along with other elements

that are not relevant for the work described in this document.

Figure 1: Structure of an APK

14

2.1.2. Android Malware

Malicious software (or malware) applications are applications that seek to find vulnerabilities

in the system or the user and exploit them to either cause damage to the system or the device,

or obtain sensitive information.

With the growth of popularity and usage of personal mobile devices, malware targeted at

mobile operating systems has become increasingly popular over the last few years. Mobile

phone users store vast amounts of personal information (contacts, pictures, credentials) in their

devices, and use their mobile phones for many daily activities (such as business, social,

information search).

By infecting a personal mobile device with malware, the attacker can gain access to user’s most

sensitive and personal information. Furthermore, if the device is damaged or the user loses

access to it, it can cost the user a high timely or economical investment to recover.

Android operating system has become a preferred target to attackers for two main reasons: first,

because it is the most popular mobile operating system amongst smartphone users. Second,

because an Android allows to view the user’s activity in real time; thus an attacker can intercept

a safe application’s launch and display the malicious app instead, without the user noticing.

This vulnerability becomes particularly interesting for some types of malware as it will be

explained later on.

For these reasons, Android attackers have developed different specialized malware

applications aimed to attack different vulnerabilities.

Android malware types

Malware applications can be grouped in types attending to which vulnerability is attacked. For

each type, there are certain “families” of malware applications that behave similarly. There are

also “versions” of the families previously mentioned. The scope of this work is limited to

identifying types and families of malicious APKs.

Some of the most popular malware types are listed and explained below.

Bankers

These malicious apps are aimed at stealing the user’s banking related information that is on the

user’s device.

The target of these malware apps are mobile banking apps. Mobile banking apps are

applications that allow a user to access their bank accounts comfortably from their

smartphones, and perform any transactions with them.

Banker malware typically impersonates the user’s mobile banking app, by using similar

interface and logo, and then captures the user’s credentials (account number, log in details) as

they attempt to log in. This allows an attacker to directly steal from the user’s bank account.

Overlay of banker malware on top of official baking app is shown on Figure 1.

15

Figure 2: Overlay on banking Apps

Ransomware

Ransomware apps encrypt all or some of the data stored in the user’s device, preventing the

user from accessing it until they agree to pay a ransom, usually via an anonymous internet

payment.

Spyware

Spyware is a type of malware that infiltrates in the user’s device, then collects and stores

information from the user, including internet usage data and personal or sensitive information,.

Its usual purpose is to then sell the user’s internet usage data, capture credit card or bank

information, or steal the user’s personal identity.

Adware

Adware hides in the user’s device and serves the user advertisements. It sometimes also stores

information about the user’s behaviour and preferences to later use this information to target

the user with certain ads. This software generates revenue either by getting paid by the

advertisers to display a certain advertisement, or via “pay-by-click” if the user clicks on the

advertisement.

Exploit

Exploit malware takes advantage of vulnerabilities in the software or security flaws to gain

access to private networks and scale privileges. This can allow a remote intruder to access a

device or a network remotely. Sometimes it is used to infiltrate other malware like Trojans or

Spyware. Exploit malware is sometimes sent to the user via email or other web sites, or the

user is lured into executing the exploit via social engineering.

Trojan

A Trojan is a type of malware that is usually hidden or disguised as legitimate software. Once

the user has installed the Trojan in the system, it gains access to the user’s data and can delete,

block, modify, copy or disrupt the normal functioning of the device. There are several types of

Trojans, such as Backdoors, which provide remote access to the device to the attacker, or

Exploits, as explained above. Any of the malware types described before can be installed in

the device via a Trojan.

16

Android malware families

Figure 2 shows some of the families that can be found in each of the malware types described

above. Due to the amount of android malware apps, there is a gross number of families of each

type; thus there are many other families that aren’t shown in this figure.

Figure 3: Malware types and families

Android malware analysis: static and dynamic

An Android APK can be analysed to detect malicious behaviours using two methods: Static

and dynamic analysis.

Static analysis uses the code of the application to extract attributes that can determine the way

the application performs. The code can be found in the .dex component of an apk, which

contains the compiled code of the whole application (as seen in 2.1.1). The attributes are

extracted without running the application. Some examples of these attributes are: system calls,

permissions the application requests, calls to the Android library, all methods inside an APK,

and how they interact within each other, flow diagrams (which illustrate all the function in the

APK’s code, taking the main() function as start point, trying to represent the whole

functionality of an APK in a graph). There are other attributes that can be extracted without

running the application which are not found in the compiled code, such as the size of the APK.

Dynamic analysis, on the other hand, extracts attributes from the application while it’s

running. These can be network traffic, battery usage, sent SMS and phone calls, information

leaks, etc. Dynamic analysis is costly in time and memory when performed. However, it is

unaffected by techniques that aim to make static analysis more difficult, such as code

obfuscation, which consists in transforming the code into a semantically equivalent version

(with identical functionality) but much harder to understand by an analyst. Obfuscation can

also be used for other purposes, such as protecting intellectual property. Some obfuscation

methods can be found in Different obfuscation Techniques for Code protection[2]

17

Static analysis provides a quick, low cost way to analyse APKs, and has been used in multiple

occasions for malware analysis (as shown on 2.3.1). However, dynamic analysis can be more

reliable, as it is unaffected by code obfuscation techniques.

Some authors use hybrid approaches, where static and dynamic analysis are combined to

extract a richer set of attributes compared to either analysis performed separately.

18

2.2. Artificial Intelligence

Artificial Intelligence is an area of computer science that aims to simulate the intelligent

behaviours of humans in machines. It includes a wide range of techniques that can mimic some

human abilities (such as: computer vision, speech recognition, natural language processing);

exploit the machine’s high computational power to improve efficient solving of problems, such

as optimization or decision models; and can implement learning.

2.2.1. History

The origin of Artificial Intelligence (AI) is unclear, as it is based on the work of many

mathematicians and scientists who started theorizing about machines that could solve complex

problems inspired by human-like reasoning since the 17th century[3]. However, most

authors[3][4][5] place the work of English mathematician Alan Turing during the 1940s and 1950s

as the starting point of AI.

In 1936, Alan Turing published “On Computable Numbers, with an Application to the

Entscheidungsproblem”[6], a paper where he proposed a “universal machine”; a computer

capable of solving any computable function, nowadays known as Turing machines, which

provided the basis for the theory of computation.

During the Second World War, he worked on breaking the machine the Germans were using

to encrypt all their messages, Enigma. Turing and his team designed and built the Bombe, a

machine that could decipher Enigma’s code, based on his previous work.

Figure 4: The Bombe

19

After his work during WWII, he became more interested in the concept of being sentient. This

thought was the foundation for his later research regarding machine intelligence. In 1950, he

published “Computer Machinery and Intelligence”[7], a research paper where he theorized

about the creation of machines capable of “thinking”. On the same paper, he proposed what is

known as the Turing Test to test the machine’s intelligence. The fundamental idea of this test,

which he called “The Imitation Game”, was to test the machine’s intelligence based on its

ability to make a human believe that it (the machine) is human, when engaging in conversation.

The first reference to the term “Artificial Intelligence” was made during the Dartmouth

Conference, organized by computer scientist John McCarthy in 1956. Since then, numerous

computer scientists and researchers have worked on the field of AI, trying to solve different

problems. One of the most famous AI problems was creating a machine that was capable of

playing Chess. The first paper about developing a chess playing program was written by Claude

Shannon in 1950[8]. It wasn’t until 1997 that IBM’s Deep Blue defeated the then world Chess

Champion.

The interest on the field of Artificial Intelligence has experienced progressions and regressions

over time[9]. It was popular until the 1960s, but the little progress in the learning capabilities of

the existing models resulted in a decrease in interest until the 1980s, when some successful

applications were achieved, as well as more funding was provided.

From its origins in the 1950s, there are two approaches that can be differentiated within

Artificial Intelligence: the first one based on logic, using formal rules to manipulate symbols;

and the second one based on biology, such as artificial neural networks, which are inspired by

the functioning of biological brains.

For the first 20 years after 1950, research was focused on the logic based approach mentioned

above. Although the first mathematical model of neurons dates back to 1943, the biology based

approach didn’t receive much attention during that period. In the 1980s, a new algorithm for

learning in neural networks was reinvented[10] (it had already been proposed in 1963[11]),

resulting in an increased interest in this type of algorithms.

However, as researchers became more interested in Artificial Intelligence, the field grew and

new algorithms and techniques appeared, creating new more complex divisions within the field

as the logic based as opposed to biology inspired division mentioned above.

In the next section of this document, a detailed explanation of the different techniques and

algorithms known in AI is presented.

20

2.2.2. Techniques

The objective of this section is to explain the different techniques or algorithms known in the

field of Artificial Intelligence in depth. Since it’s such a broad field of study, it is often hard to

find a clear way of organizing and presenting all techniques. In this document, a division

proposed by Francesco Corea[12] will be used as reference.

First, each sub division and some of the most relevant elements of such sub division are

explained. The full “map of AI” with the techniques classified on each division is shown after

the explanations. Finally, a more detailed explanation for the two algorithms used in the work

proposed in this thesis is given.

As proposed by Corea, the field of AI can be divided attending to two dimensions: AI

paradigms (approaches to solve problems) and AI problem domains (types of problems).

AI Problem domains

When looking at the types of problems an AI approach can solve, Corea defines five main

domains: Perception, Reasoning, Knowledge, Planning and Communication.

To better understand each domain, it is interesting to compare it with the human cognitive

ability it aims to mimic.

Perception includes the problems that in humans “solve” using their senses. It includes the

techniques capable of operating with sensorial inputs (sounds, images, etc) by converting them

to a usable format; for example Natural Language Processing and Computer Vision. Natural

Language Processing allows a machine to understand, process and even create information in

the form of human speech (that is, not structured data expressed in a human language).

Computer Vision includes all techniques that allow a machine to process and understand

images captured with a camera, similarly to human vision.

Reasoning refers to the capability to solve problems. This includes the capability of, given a

problem definition, being able to offer a solution to said problem, in a similar way to how

humans solve mathematical problems. An example of reasoning can be found in tagging

pictures: deciding if a picture given has a cat or a dog in it. Here, the definition of the problem

is the description of the image and the question “does this picture have a cat or a dog in it?”;

and the solution would be saying “it has a cat” or rather “it has a dog”.

Knowledge is the capability to represent and understand the world. The world is the reality

that affects the machine, and can be narrowed down in some cases. For example, some

automations executed by robots only take into account the actions and elements the robot can

interact with; if the robot is tasked with loading boxes to a truck, “the world” is limited to the

actions it can perform (up, down, grab, release, for example) and the elements it can interact

with (box, truck).

Planning is the capability of setting and achieving goals. An example for a planning problem

would be deciding a plan to get from point A to point B, as when planning a road trip.

21

Communication is the capability of understand language and communicate. It differs from

Natural Language Processing(NLP) in the communication between the machine and the

human; NLP problems aim to process the language input, not necessarily trying to

communicate.

AI Paradigms

AI Paradigms refer to the different approaches or types of algorithms that exist in the field.

Corea divides this dimension in three main types: Symbolic, Statistical and Subsymbolic.

Symbolic approaches use logic based and knowledge based algorithms to solve problems. It

manipulates symbols, with inference and search algorithms, to build rules, ontologies, plans or

goals. Sometimes referred to as “GOFAI” (Good Old Fashioned AI), as author John Haugeland

named it in his book “Artificial Intelligence: The Very Idea”[13].

Subsymbolic AI (also known as “connectionist AI”) was originally inspired by the biological

brain. It creates connections between nodes, creating a network, and performs calculations in

the connections of said network that provide a solution. The outcome model could be compared

to a connection map, opposed to the rule tree or plan that is obtained with symbolic AI. To

compare it with the biological brain, it assigns conductivity properties (or weight) to the

connections between neurons (or nodes) and then modifies this conductivity for each

connection until, when a problem is passed through the network, the outcome is a solution to

the problem.

Compared to symbolic AI, Subsymbolic AI provides less knowledge and understanding

upfront and is more difficult to explain, but performs better for perceptual problems. It is also

more scalable, and more robust against noise. The opacity of this paradigm is a problem known

by researchers[14], but that doesn’t deny its many applications in AI problems.

Figure 4 illustrates the different understanding of the solution provided by the models obtained

with symbolic and subsymbolic AI.

Figure 5: Symbolic VS Sub symbolic AI

Finally, Statistical AI uses probabilistic methods and mathematical tools to build models that

reflect information about data. Machine learning algorithms, which have become increasingly

relevant over the years[15], are a subdivision of this approach.

22

Machine Learning

Machine Learning algorithms are broadly used due to their ability to provide general solution

to a problem using specific samples as reference (or “learn”) and their applications in many

different kinds of problems.

The functioning of machine learning algorithms can be summarized as the creation of

mathematical models using sample data (“training” data), that describe patterns found in said

data. Once the model has been created, it can be shown similar data that wasn’t used to train it,

and find a similar patterns in it, which allows the model to recognize this new data. This

capacity of being able to create general solutions from specific examples is known as learning.

A metaphor to understand the process of machine learning can be created with the learning

process of a human. When a human is learning to read and write, he or she is shown a series of

“perfect” letters of words – usually generated in a computer, and asked to write them down. By

seeing these symbols repeatedly, the human is eventually able to recognize them even when

they’re not perfect, such as in handwriting.

In a similar way, a machine learning algorithm can be shown a series of letters, or numbers,

and it will find patterns in the symbols. After the learning, if the algorithm is shown a new type

of handwriting containing the same symbols the training data provided, it will be able to

generalize the pattern learned and recognize said symbols.

In order to learn from the training data, a series of “features” or characteristics must be

extracted from it. These features describe the data point and are usually expressed as a vector

of values 𝑥𝑖 which define the data point. For example, in the example given, the features

extracted from a picture of a handwritten symbol could be: RGB value for each pixel in the

image, dimensions of image, etc. These features must be defining of all possible images in the

training data and it is required that they can be extracted from all data points.

Figure 6: Example of automated handwriting recognition using Machine Learning

Within machine learning, are three types of learning: Supervised, unsupervised and

reinforcement learning.

23

SUPERVISED LEARNING

Supervised learning uses solved examples to train from. The training data provided contains

not only examples of the problem, but a tag or value with the solution that would be valid for

said example.

In the handwriting example explained before, supervised learning would need a series of

example handwritten numbers of letters, along with a tag for the value they represent. The set

shown in Figure 5 would be a valid training set for supervised training.

UNSUPERVISED LEARNING

Unsupervised learning lacks a value or tag for each example or sample in the training data. It

is given a series of data points or samples, and finds patterns in them according to the distance

between the points. For this learning to work it is needed to define the calculation of distance

between points.

An example of an unsupervised learning would be trying to sort a drawer with pens and pencils.

One can sort them by color, shape, size… since there is no prior definition to which sorting is

correct, the groups which will be formed are unpredictable.

Figure 7: Unsupervised Learning

REINFORCEMENT LEARNING

Reinforcement learning assigns a value of “reward” or “punish” for each action possible. The

algorithm will tend to maximize reward (or minimize punishment). It can be compared to the

process of training a pet to learn certain tricks; giving treats when the pet does the trick

correctly, so the pet learns to perform the trick more often in order to get the reward.

Figure 8: Reinforcement learning

24

Map of AI

The divisions explained above can be better understood when presented in the “Map of AI”

proposed in the article by Corea[12] (Figure 8). As seen on this map, some fields are not entirely

belonging to one of the divisions inside a dimension, and many of them can be used for a wide

range of problem domains. The two techniques used in the development of the model are

further explained down below.

25

Figure 9: Map of AI (Corea, 2018)

26

Genetic algorithms

Genetic algorithms are a subset of evolutionary algorithms, used to solve optimization

problems.

Evolutionary algorithms are inspired by biological evolution, where individuals compete for

resources, randomly combine their features to create new individuals and suffer random

alterations (mutations) in time. Each individual can be defined as more or less fit (fitness score)

to adapt to the environment, and therefore more or less likely to survive and pass on its features

to the next generation.

Similarly, a genetic algorithm contains a population of individuals and a series of operators

that can be applied to each individual. Each individual codifies a possible solution to the

optimization problem at hand (called “genome”), and the possible operators are mutating the

individual, calculating the fitness value for each individual and selecting the best individual

who will contribute to the creation of new individuals, combining the individual’s codification

with other individual (crossover), and finally replacing or adding new individuals to the

population.

As well as in biological evolution, any possible way of selecting which individuals combine

their features, mutating, or even competing (or collaborating) can be implemented. The

population will tend to “evolve” towards the optimal solution, which would be the “perfect”

individual.

Artificial Neural Networks: SVM

Artificial neural networks are a family of algorithms loosely based on the architecture and

functioning of the biological brain.

An artificial neural network (ANN) is formed by several layers of nodes or neurons. The

neurons on each layer are connected to the neurons on the next layer, with a “connectivity

strength” (called “weight) associated to each connection.

One of the first neural networks proposed was the simple perceptron. This model has only one

layer and one neuron in said layer. The input data is a vector of values 𝑥𝑖 which are connected

to the neuron with a corresponding vector of weights 𝑤𝑖 for each connection.

The neuron then combines both vectors as follows:

𝑓(𝑥) = ∑(𝑥𝑖𝑤𝑖) + 𝜃

𝑁

𝑖=1

𝑓(𝑥) = 𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ + 𝑥𝑁𝑤𝑁 + 𝜃

Where 𝜃 , or “bias”, is independent from all input values.

After that combination is performed, the output value is used in the activation function, a

function that defines the solution or output given by the model. For example, this function can

be a simple threshold function such as:

27

𝑓(𝑥) = {
1 𝑖𝑓 ∑(𝑥𝑖𝑤𝑖) + 𝜃 > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 1 and -1 are different classes. For example, if trying to classify a handwritten symbol

as a number or a letter, 1 could mean it is a number and -1, a letter.

Figure 10: Simple perceptron

A neural network connects several neurons which can behave like the model explained above,

in several successive layers. The fist layer is called input layer, the last layer is called output

layer, and the layers in between are known as hidden layers. It receives a vector of values 𝑥𝑖

with a series of weights 𝑤𝑖 and combines them in successive layers by applying a function to

the values and weight in each neuron. The output of each layer is then processed by the next

layer in a similar way.

Figure 11: Artificial Neural Network

28

Support Vector Machine (SVM)

A support vector machine is a type of Artificial Neural Network which is widely used in

classification problems.

The goal of the SVM is to find a hyperplane in an n dimension space (n being the number of

features) that separates the data points of different classes.

It can be imagined as a wall (in a 3 dimension space) that separates two species of animals in

a room; the goal of the learning is to move the wall along the room until there are no two

animals from different species together. There are many hyperplanes that give a solution, the

goal is to find the one that maximizes the distance between all data points of each class: this is

done so future data points can be classified with more confidence.

Figure 12: Support Vector Machine

Support vectors are data points close to the hyperplane and influence the latter’s position. They

help maximizing the distance between data points of different classes.

The process of learning in a SVM can be seen as changing the position of the hyperplane and

support vectors until the maximum distance between data points is achieved.

29

2.3. Similar work

Due to the popularity of Android amongst users, Android devices face constant threats as new

malware appears. For this reason, many researchers have attempted to develop an automated,

smart solution to identify malicious APKs efficiently, providing models that can adapt to such

growing and changing environment.

2.3.1. Static and dynamic Android malware analysis

As explained in section 2.1.2, based on the attributes used to analyse the APK sample, analysis

can be divided in static and dynamic. Static analysis extracts features from the application

without running it; these can include system calls, size of application, permissions, etc. It is

less time and resource consuming than dynamic analysis, but in some cases, such as

obfuscation of the code of the application (a technique often used by attackers to make malware

APKs harder to detect), it doesn’t perform as well. Some examples of static malware analysis

are the work from Sahs and Khan[16], who used a SVM to classify whether a sample was

malicious using permissions and API calls; Shabtai[17] used permissions as well, but also

framework methods and classes to classify if a sample was malicious or not; Yerima et al. [18]

used a Bayesian classifier and extracted features such as permissions, API calls and Linux

commands to determine if an application was malicious; and finally, Xiaoyan et al.[19]

extracted permissions from the APK code, and used a linear SVM in comparison to other

classifiers such as RandomForest, Bayes or J48 decision tree to determine if the application

was malicious. SVM gave the best results.

Dynamic analysis extracts attributes from the running application, such as network traffic,

battery usage, etc. This method needs more resources and time that the static approach, but it

is not affected by obfuscation in the code. Some authors like Wei et al.[20], who used the tool

DroidBox to extract features from the behaviour of the application while running in a sandbox

environment, focused on the network behaviour of the malware. They achieved about 93%

accuracy comparing different algorithms using data mining open source libraries WEKA and

FastICA. Ham and Choi[20] extracted features divided in categories: network, SMS, CPU power

usage, process, memory Native and Virtual Memory. They then compared different techniques

such as SVM, Naïve Bayes, RandomForest, to determine if an application was malicious, and

concluded that SVM gave the best results, obtaining almost 100% accuracy in some cases,

although it gave some false positives in benign applications.

There are also hybrid approaches, which use both static and dynamic attributes to determine if

an application is malicious. For example, the work of Patel and Buddhadev[22], who extracted

features such as API calls and permissions from static analysis and used them in combination

with network traffic which was captured with dynamic analysis. They then used a Genetic

Algorithm based machine learning technique to create a rule based system. They finally

obtained a 96.43% detection rate to detect malicious applications.

2.3.2. AI applied to Android malware analysis

There are several works that apply AI to malware analysis in Android. Due to the adapting

ability of AI algorithms, these techniques offer very valuable results for malware analysis.

30

Most of the tools developed are aimed at being able to differentiate malicious from legit APKs.

Pektas et al.[23] use online machine learning in an attempt to detect new Android malware, by

extracting a series of attributes using Cuckoo Sandbox environment, which performs a hybrid

analysis. They obtained an 89% accuracy using this method.

Sharma and Sahay[24] propose an approach to identify metamorphic malware comparing the

performance of different classification algorithms using the tool WEKA. They extracted

features using static analysis, and tested their model with unknown malware. The highest

accuracy obtained was 97.95%, using RandomForest.

Altyeb[25] extracted the permissions from the Android app, and then performed feature selection

with information gain algorithm, and finally compared NaiveBayes, RandomForest and J48 to

classify Android applications as malware or goodware. The algorithm achieved the highest

precision of 89,8% accuracy with lowest false positive rate of 11%.

2.3.3. Evolutionary algorithms in Android malware analysis

Some authors use evolutionary algorithms in the analysis of malware applications in Android.

Since evolutionary algorithms are mainly used for optimization, in most cases they are used in

combination with some classification technique.

Zubair et al.[26] developed a family malware classification framework based on the network

behaviours of the malware samples, and then propose a classification framework based on

network behaviour in which they analysed the applicability of various evolutionary (as well as

non-evolutionary) algorithms. Their work was focused on malware family classification. They

concluded that evolutionary algorithms such as supervised classifier system provided an

effective solution for malware family classification.

Firdaus et al.[27] used static analysis to extract features from a series of applications, to then

apply statistical and genetic search to select optimal features for various classifiers to detect

Android malware. They tested the following classification algorithms: NaiveBayes, Functional

Trees, J48, RandomForest and Multilayer Perceptron, obtaining the best results with Functional

Trees. Their work is restricted to identifying malicious apps.

2.3.4. Android malware family classification

Although most studies are focused on determining whether an application is malicious or not,

some work has been done in classifying the malware samples in their corresponding families,

such as the previously mentioned by Zubair et al.[26].

Li et al.[28] created a machine learning based system called DroidADDMiner, which used API

data dependence paths to detect, classify (types) and characterize (families) Android malware.

The system gave a 98% detection rate, and 96% accuracy when classifying the samples in their

families.

Yusoff and Jantan[29] developed a malware classification framework based on malware target

and operation behaviour, and used a genetic algorithm to optimize the classification system as

well as help in malware prediction. They experimented with a series of classification

algorithms; Naïve Bayes, SVM, Decision Tree and KNN.

31

3. SYSTEM ANALYSIS

In this section, the system is analysed in order to determine all the requirements and conditions

that will need to be met in the development. Throughout this section, the problem presented in

this document is examined and a series of high level definitions of the system are given, aiming

to outline the solution for the problem. The design of the solution will be explained in the next

section, SYSTEM DESIGN.

The section will first describe the approach taken for the implementation of the system,

referring to the choices made regarding analysis and learning possibilities. Later, a series of

user requirements that the system shall be compliant with are proposed. The operating

environment of the system is then presented. Finally, use cases and traceability matrix are

explained.

3.1. Approach

Before designing the system, the developer must take into account that there are several

approaches that can be used for analysing Android malware. As explained in STATE OF THE

ART, the extraction of attributes can be static, dynamic or hybrid. Also, the learning process

can be supervised, unsupervised or reinforced.

For the implementation of the work described in this document, a series of malicious APKs

were obtained from the malware repository ContagioDump. This APKs are already classified

inside of their types and families, and are available for free in said repository. More details

about these APKs will be given in the section 5.

The extraction of attributes was performed via static analysis. The reason to choose this

analysis was the benefits it provides regarding time and resource consumption, as well as the

results that it has proven to give as seen in similar work in section 2.

For the learning, since the APKs had already been classified in their types and families, a

supervised learning approach was used. The learning was performed by a Support Vector

Machine, and a Genetic Algorithm was used to optimize the attributes for the learning. The

SVM was chosen as algorithm for the classification based on the work examined in section 2.3,

where it became clear that many authors concluded this algorithm gave the best results when

analysing Android malware. This process is explained in depth in section 5.

3.2. Requirements

Based on the objectives of the work presented here, a series of user requirements will now be

defined. These requirements will define the functionalities of the system to implement, with

the following format:

• ID: Used to identify each requirement. This ID will use the format UR-XXX, where

UR stands for “User Requirement”, and is followed by a three digit number starting on

001 and increasing in one for each requirement.

• Description: Detailed description of the requirement’s objective.

• Justification: Why should the requirement be met; why is it included in the system.

32

• Priority: Each requirement will have either low, medium or high priority, to help to

plan the development process.

❖ UR-001

• Description: design an intelligent system that can classify malware APK

samples in types and families of malware.

• Justification: The goal of the project is to develop and Android malware

classification system

• Priority: High

❖ UR-002

• Description: The whole project will only use open source tools.

• Justification: The project should not require software license. Open source code

allows for easy future work improvements and later research.

• Priority: High

❖ UR-003

• Description: Use a genetic algorithm to optimize the parameters for the learning.

• Justification: The project aims to explore the performance of genetic algorithms

in malware classification, and how they can improve the learning process.

• Priority: High

❖ UR-004

• Description: Use an AI classification technique for the learning.

• Justification: The project’s objective is to provide an intelligent scalable

solution for Android malware analysis.

• Priority: High

❖ UR-005

• Description: The genetic algorithm will have a limit of 1000 learning cycles.

• Justification: The genetic algorithm needs stopping criteria. In the work

proposed, this criterion can only be time or evaluation dependant.

• Priority: Medium

❖ UR-006

• Description: Once trained, maximum running time for the system will be limited

to 1 minute.

33

• Justification: Although the training and refining process can take a long time,

once a final model is found the system needs to provide a solution given a

sample within reasonable time.

• Priority: Medium

❖ UR-007

• Description: The output of the system is a subset of attributes and the trained

model.

• Justification: The system will provide an optimal subset of attributes and a

trained SVM as a result of training and testing.

• Priority: High

❖ UR-008

• Description: The system will use a total of 1175 malicious APK samples for

training and testing.

• Justification: raining data needs to be sufficient.

• Priority: High

❖ UR-009

• Description: The malicious APK samples will belong to the malware types:

banker, ransomware, spyware, adware, trojan, exploit.

• Justification: Training data needs to be diverse and representative of the

problem.

• Priority: Medium

❖ UR-010

• Description: For each malicious APK belonging to a malware type as described

in UR-008, there will be representative samples of at least one family within the

malware type.

• Justification: Training data needs to be diverse and representative of the

problem.

• Priority: High

❖ UR-011

• Description: All malware samples will be obtained from the free repository

ContagioDump.

• Justification: UR-002

• Priority: High

34

❖ UR-012

• Description: The system will be developed entirely in Python programming

language and open source libraries.

• Justification: UR-002

• Priority: High

❖ UR-013

• Description: The attributes extracted from the APKs will be obtained via static

analysis.

• Justification: Static analysis is less time and resource consuming than dynamic

analysis.

• Priority: High

❖ UR-014

• Description: The attributes extracted from the APKs will be: for each call to an

Android library present in the APK, number of times said call is implemented

in the code; permissions asked by the APK; size of the APK.

• Justification: The attributes proposed are representative of the behaviour of the

APK and can be obtained via static analysis.

• Priority: Medium

❖ UR-015

• Description: The training dataset will have a common attribute format for all

APKs.

• Justification: The attributes must exist on all samples in order to learn from

them. Since not all APKs have the same usage of Android libraries nor

permissions, the chosen format must represent all possibilities.

• Priority: High

❖ UR-016

• Description: Format of training dataset. Dataset will contain a series of rows

representing each APK, where each row will be a list of values for:

▪ All possible calls to an Android library: value equals number of times

the APK makes a certain call

▪ All possible permissions: Boolean, True if the APK asks the permission

and False if it doesn’t

▪ size of the APK: numeric value

▪ Class: type and family of the APK)

• Justification: UR-015

35

• Priority: High

❖ UR-017

• Description: Codification of the genetic algorithm

▪ The genome of the genetic algorithm will describe a subset of the

attributes obtained with the static analysis

• Justification: The genetic algorithm must codify a solution for the problem.

• Priority: High

❖ UR-018

• Description: Implementation of the classifier

▪ The classifier will be implemented using Python’s opensource library

Scikit Learn

• Justification: UR-002

• Priority: Medium

❖ UR-019

• Description: Integration genetic algorithm and classifier model

▪ Fitness score for the genetic algorithm corresponds to the accuracy score

obtained by the classifier when training with the subset of attributes

codified in the genome

• Justification: The genetic algorithm is used to optimize the learning process.

• Priority: High

❖ UR-020

• Description: Test dataset

▪ A sub dataset with enough samples representative of each family and

type of malware will be extracted from the original training dataset and

will not be used for training.

▪ Said dataset will be used to test the system

• Justification: The system must prove to be compliant with a representative

sample of malicious APKs.

• Priority: High

❖ UR-021

• Description: Testing the system

36

▪ The results obtained with the SVM and GA will be tested using the test

dataset described in UR-020.

▪ A series of tests [\ref evaluation] will be performed to ensure the quality

of the system

• Justification: UR-020.

• Priority: High

37

3.3. Operating Environment

The system has two main modules: static analysis of APKs and intelligent malware

classification.

The first one provides the data that is used to train the second. Before the data can be used by

the second, it is pre-processed and two datasets are created: training and test. In the second

module, a genetic algorithm (GA) selects a series of attributes from the training dataset that are

then used by a Support Vector Machine (SVM) to obtain a classification model. The accuracy

obtained with the SVM is then fed back to the GA, which uses it as fitness score to evolve. The

test dataset will later be used in the evaluation of the system (see EVALUATION).

A visual schematic overview of the system design is shown in Figure 12. The symbols used

in this schematic are explained in Table 1.

Figure 13: Operating Environment

Symbol Meaning

 Process

 File

 Direction of data flow

Table 1: Operating Environment notation

38

3.4. Use cases

Use cases define the possible interactions that a user can have with the system. This section is

usually included in reports about software engineering projects. However, the work described

in this document allows no possible interactions with a user. Therefore, there are no user cases

that can be defined.

3.5. Traceability Matrix

Traceability matrix provides an overview of the relationship between user requirements and

use cases. Since there are no use cases possible for this project, there will be no traceability

matrix shown.

39

4. SYSTEM DESIGN

This section will explain the design of the system implemented. Firstly, an overview of the

design of the system is shown, followed by an explanation of the technologies used in the

project is given, followed by a general schematic overview of the architecture of the system

using a component diagram. An explanation about the classes in the system, along with a class

diagram, are given in the next section. Lastly, this section includes a flowchart showing the

behaviour of the system.

4.1. Design overview

The system to implement must be a classifier for malicious APKs, that given a sample classifies

it inside its type and family of malware. The attributes will be extracted from each sample via

static analysis (see 2.3.1), which consists on analysing the APK’s code without running it.

Since the number of attributes obtained is too big, once the attributes have been extracted, a

genetic algorithm will be used to optimize the attributes used in the classifier.

This optimization will be done by using each individual from the genetic algorithm to codify a

subset of attributes, train the classifier with said attributes, and then measure the accuracy of

the trained model. The accuracy obtained will be then fed back to the genetic algorithm as

fitness score for each individual.

4.2. Technologies

The whole project was developed using open source technologies, and the data was obtained

from free samples available on the site ContagioDump. All the code was implemented in

Python programming language.

4.2.1. Python

Python is a general purpose programming language which has gained popularity for data

science and machine learning implementations over recent years. It was used for all the

different modules of the project. The APK analysis was implemented using Python’s library

Androguard, and the classification algorithm was implemented using Python’s library Scikit

Learn.

Androguard

Androguard is a Python tool that allows to interact and work with Android files. It can be used

through a CLI or graphical frontend, or as a library inside of own code. For this system, it was

used as a library inside the code for APK analysis.

Scikit Learn

Scikit Learn is an open source machine learning library for Python. It integrates several

algorithms and tools for different purposes such as classification, regression, clustering,

dimensionality reduction, model selection pre-processing. It was used to implement the

classifier model (Support Vector Machine).

40

4.3. System Architecture

In this section, the architecture of the system will be explained using a component diagram.

According to UML[30], a component diagram shows components of the system, along with their

relationships, interfaces, or ports between them.

4.3.1. Introduction to component diagram

A component is a logical or physical unit that represents a functionality within the system. The

idea behind component based design is that if needed, the components can be deployed and re

deployed independently. A component is represented as shown on Figure 13:

Figure 14: Component notation

Components that work together to achieve the same functionality can be grouped in

subsystems. The definition of these subsystems was outlined in section 3. When two

components are in the same subsystem, they will be represented as shown on Figure 14:

Figure 15: Subsystem notation

Moreover, components can have dependencies between them. This dependency occurs when a

component uses a functionality that other component performs. Dependencies are represented

as shown on figure 15 below:

41

Figure 16: Dependency between components

4.3.2. Component diagram

Figure 17: Component diagram

42

4.4. Classes

This section contains a detailed specification of the classes within the system. These classes are first

identified and then, a class diagram with all the classes in the system and relationships between them is

provided.

4.4.1. Identification of classes

As explained before, the system has two main functionality units: APK analyser and

classification of malware, which uses a genetic algorithm and SVM. Between the two

functionalities, a third is added to prepare the data for training.

The classes in the system correspond to these functionalities:

Analyse: Extracts the attributes for the learning from the APK code with static analysis.

PrepareData: Used to format and pre-process the attributes extracted with Analyse and create

data for training and testing.

Classifier: Contains the functionality of the SVM used for classifying the samples. It

communicates with the Individuals in the population as they define the attributes to use for the

learning (therefore the format of the training and test dataset), and calculates the fitness for

each individual. It also needs the data created in PrepareData to select the relevant rows of

information in the file created by said class.

Individual: Each individual is defined by a genome and a fitness value.

Population: It’s a list of Individuals.

4.4.2. Class diagram

This section illustrates all the classes in the system, their methods, attributes and the

relationships between them. The notation used to describe a class is shown in figure 17:

Figure 18: Notation of classes

Where fields refer to the attributes of the class, and a method will be described with the data

type it receives as parameters and the return value. Type is a data type.

The relationship between two classes is shown with an arrow that points from the class using

a value or data from another class, to the class that provides said data or value. The arrow is

tagged with the method from the former class that requests data from the latter.

43

Figure 19: Relationship between clases

Find below an schematic view of all classes in the system and the relationships between them:

Figure 20: Class diagram

44

4.5. Flowchart

In this section, a flowchart is used to explain the activities in the system. The symbols used in

this chart are explained in table 2:

Symbol Meaning

 Start

 Process

 Decision

 Finish

 Direction of data flow

Table 2: Flowchart notation

Figure 21: Flowchart

45

5. IMPLEMENTATION
The system was implemented in three phases: extraction of training data from sample APKs,

pre-processing of data to prepare it for learning, and development of the intelligent

classification system: Genetic Algorithm and integration with the SVM. For the

implementation of the latter, python’s library Scikit Learn was used. The two first phases and

the genetic algorithm were implemented entirely in Python programming language.

In this section, the implementation of the system will be explained in five sections. First, a

process overview is given, explaining the steps followed in the implementation and the

functioning of the system.

In the three next sections, the implementation of each of the modules in the system is explained

in depth. This includes the static analysis of the APKs, where attributes are extracted; pre-

processing of the data obtained in the previous step, in which the data is prepared for learning;

and finally, the detailed implementation of the intelligent malware classification system. A

detailed explanation of the classes and algorithms implemented will be given for each one of

them. Finally, an improvement added to the original implementation is explained.

5.1. Process overview

Find below an overview of steps implemented. This process is explained in detail in the

following sections.

1. First, a series of APKs are analysed in order to extract attributes from them. A static

analysis is performed, where the following attributes are extracted from the code of the

APK: calls to Android libraries (number of times the application executes a certain call,

for all the calls in the code), permissions, and size of the APK. This attributes are written

to a file specific for each APK. The type and family of the APK is also included in the

attribute file.

2. After the attributes for each APK have been extracted, they are combined in one format

and pre-processed for the learning. This pre-processing includes randomizing the data

to avoid bias in the learning, and splitting the data in two datasets: training (with 70%

of the data) and test (with the remaining 30%).

3. The training dataset is used to train the classifier, which is formed by a genetic

algorithm (GA) and a Support Vector Machine (SVM). The genetic algorithm selects a

subset of attributes that are used for the classification. The SVM is then trained with

the training dataset with selected attributes, and the accuracy score from the SVM

(obtained with the test dataset with selected attributes) is used to evaluate the GA. The

parameters for the SVM are fixed in this step.

4. Step 3 is repeated until the GA meets the stop criterion, which is a set number of cycles

(also called generations).

5. When the GA stops, the best subset of attributes is chosen, and a series of experiments

are carried out using different parameters for the SVM.

6. Once the best subset of attributes and the trained SVM have been created, a series of

tests are performed using a new set of APK samples that weren’t used in the process

explained before, to prove the efficacy of the system.

46

5.2. Attribute extraction: APK Static analysis

The first step in the process is analysing the APK files to extract the attributes for learning via

static analysis; as explained in the STATE OF THE ART, static analysis is performed by

extracting attributes from the code of the APK, instead of capturing features from APK while

it’s running. The attributes are written to a CSV output file for each of the APKs. As stated

before, the attributes extracted are: calls to Android libraries, permissions, size of APK.

The analysis was performed by looking at the DEX attribute of the APK (see 2.1.1), which

contains the assembly code of the application. The assembly code is then read and every time

there is a call to the Android library, a specific counter for the call is created. This counter is

incremented each time the call is found in the code. The permissions can be obtained directly

using Androguard library, which provides an interface with the permissions of the application.

Lastly, the size of the application can be obtained by using a library from the OS.

These attributes were chosen because, as seen on similar work (Static and dynamic Android

malware analysis) many researchers have obtained good results using static analysis.

Furthermore, static analysis provides a less resource consuming attribute extraction technique

compared to dynamic analysis. Calls, permissions and size of the application were attributes

used by other researchers in similar work and could be extracted via static analysis.

5.2.1. Constructor

This method initialises the object Analyse with the information from the APK it receives as

parameter. It uses the library Androguard to parse the application’s code in order to initialise

the attributes a and d, which contain the information about the APK and DEX objects. As

explained in the STATE OF THE ART, APK is the format of Android application, and Dex

is the compiled code of the apk, which contains all its functionality.

After these two attributes have been initialised, they are used by get_calls() and

get_manifest_info(), as explained below, to define the other attributes of the object Analyse.

This method also obtains the size of the application, which is directly accessible using libraries

from the OS.

5.2.2. Get_calls

This method returns the number of times the Android library is called by the application. It

does not take into account the calls to methods within the application, only those to methods

from the Android library.

The DEX (d) attribute contains the assembly code (in Android, called “smali”) for the

application. Get_calls iterates through this code and counts the number of times a call to the

Android library appears in the code, and then returns the call and the number of times it appears.

47

5.2.3. Get_manifest_info

This method obtains the permissions, which are stored in the attribute APK (a). Androguard

provides an interface that can be used to access the list of permissions directly:

permissions = a.get_permissions()

It then returns the permissions list.

After executing this program, there will be a CSV file per APK sample with the attributes

that define said sample, with the following format:

name of call, number of times the call is made

name of call, number of times the call is made

…

permission

permission

…

size

Figure 22: Format of file with attributes extracted from APK

48

5.3. Data pre-processing

The data obtained in the previous step is processed and converted to a common format that can

be used for learning; all APKs must be defined by a common set of attributes (which is defined

in the header) and a class. Each APK is defined with a list with all the values for each attribute

and the value for the class. The output of the class is a CSV file that contains the name of each

attribute and the word “class” in the first row, and the corresponding values for each APK in

the following rows. It is also randomized to avoid bias in the learning and split in training and

test datasets, as explained later. It is interesting to point out that more than 44000 attributes that

describe each APK were obtained, as this will affect the results obtained in the tests (as

explained in section 6).

The training and test datasets are used to train the classifier model and measure its accuracy to

be used as the GA’s fitness, respectively. As explained in section EVALUATION, once the

GA and SVM have been trained, and both a subset of attributes and a trained SVM are

available, another set of tests is performed to measure the efficacy of the system, with a new

set of APK samples that had not been used until then.

5.3.1. Create_header

The header must contain all possible Android library calls and permissions a sample can have.

There are two options to achieve this: either create a header with every possible call to an

Android library and permission in the Android operating system, or extract all calls and

permissions present in the attributes for each APK analysed.

The first option has two main problems: first, the number of possible calls in Android will

probably be very high, and as a consequence a header with an elevate amount of attributes

would be created, although most of them aren’t found in the samples presented. Second, it

would mean incrementing the size of the training dataset file, which might slow down the

learning significantly.

The second option only takes into account the calls and permissions found in the APKs

previously analysed. This means that if the system is used to analyse a new application that has

a call or permission that wasn’t present in the APKs used to create the dataset, it will be ignored.

Although this might seem like a problem, the Genetic Algorithm will be used to filter attributes,

so not all attributes will be present in the final model in any case. Also, if there is a call that is

not present in any of the previously analysed APKs, it is highly unlikely that it will be relevant

for the learning and therefore will probably not be present in the final subset of attributes

selected for the classifier either way.

In summary, when creating the header, there is no good reason to include calls or permissions

that aren’t present in the APK set used in this project, thus the second option was chosen.

As explained before, the files created as the result of analysing APKs are a series of CSV files

with the following format:

[Attribute (call || permission || size), value]

49

The create_header() method works as explained in the pseudo code below:

The list of attributes is returned as a list object, with all the calls, permissions, size and the

word “class”. More than 44000 attributes were obtained.

5.3.2. Create_data

Once the header has been created, the program loops through all the result files again to write

the values that each APK has for all attributes.

The value for all the Android library calls is an integer value representing the number of times

that the application includes said call in its code. The value for permissions is 0 or 1, depending

on whether the application asks for the specific permission or not. The value for size is an

integer value. Finally, the class is a string that contains the name of the type and family of

malware the APK belongs to.

The class includes both type and family information to allow different experiments in later

evaluation: classification as a type of malware and in more detail, as a family.

The data is stored as a list of lists, where the first sub-list contains all attributes; and the

following sub-lists contain the values for each attribute for all APKs and their class. Once

added, the sub-lists are shuffled randomly to avoid bias in the learning. This list will later be

written to a CSV file, where the first row will be the attributes and following rows will be the

values for all APKs.

Note that Scikit Learn will later need the data in form of a Python dictionary, which might lead

to question why is the data stored in the form of a list and then written as plain rows on a CSV

file. This decision is based on future scalability of the solution; CSV format allows for easy

integration with other tools such as WEKA, an open source data mining tool which can operate

directly on CSV files.

The method works as follows:

1 loop: read all files with results of analysing apks

2 loop: read all rows in file

3 if element in row is not present in attribute list:

4 add element to attribute list

5 add “class” to attribute list

6 return attribute list

Figure 23: Pseudo code for create_header

1 add header to data[] # will store all values for all APKs

2 loop: read all files with results of analysing apks

50

The data list will then look as follows:

data = [

[attribute1, attribute2, attribute3,...,attributeN, class],

[value1, value2, value3,…valueN, class],..., [...]

]

Figure 25: Format of training data

Where there would be one list for the header and a list of values for each APK. A simplified

example is given below:

data = [

[init(), pow(), random(), ConcurrentMap.->putIfAbsent(),
ConcurrentLinkedQueue.-> <init>(), class],

[423,1,1,2,29, spyware_tizi],

[3,1,1,3,1,1, banker_sberbank]]

Figure 26: Example of training data

3 create list[] with size = header # will store values for each APK

4 set all values of list[] to 0

5 loop: read all rows in file

 # each row is a list: [attribute name, value]

6 loop: read all elements in header and their index

7 if element in row == element in header

8 list[index] = row[1] #value

9 append class name to list

10 append list[] to data[]

11 random.shuffle lists in data[] #to avoid bias in the data

12 training_dataset = data[:0.70*len(data)] #70% for training

13 test_dataset = data[0.70*len(data):] #30% remaining for test

14 write training_dataset, test_dataset to csv Figure 24: Pseudo code for create_data

51

5.4. Intelligent malware classification

Once the dataset is ready for the learning, the process to attempt to create an intelligent

classifier begins.

Since the classifier model needs to be reading the training dataset for each individual of the

population that it evaluates (using only the attributes selected by the genome of the individual),

and the data for learning is stored in a CSV file created in the previous step, a copy of the file

is created and stored in a temporary buffer at the beginning of the process to avoid multiple OS

calls to open the CSV file.

In this section, the genetic algorithm is explained in the first place, followed by the classifier

model (including the SVM, which was implemented using Scikit Learn), and finally the

integration between the two models on implementation level.

5.4.1. Genetic Algorithm

The genetic algorithm is the most complex component of the system. To allow a better

understanding of the implementation, first the general definition of the algorithm (codification,

fitness and operators) is given, followed by a definition of the specific implementation

(including pseudo code) of all the functions of the two classes that make up the genetic

algorithm: Individual and Population (which is a set of Individual objects). Since the

functionalities of the genetic algorithm are divided in these two classes, each class implements

the functionalities of the algorithm that concern either each individual or the whole population.

Definition of algorithm

A genetic algorithm codifies a population of individuals that represent solutions to a certain

problem. The individual is defined by the following characteristics: first, the codification of

the genome. The genome must be a binary array that codifies a solution to the problem, and it

must be possible to codify all solutions in this binary array. Secondly, a fitness function; an

defined evaluation function that can measure if the solution codified in the genome is good or

bad.

Apart from its definition, the algorithm needs a series of genetic operators that allow a

population to evolve, so that new better solutions can be found. These operators are selection,

where a subset of the most fit individuals are selected; these individuals’ genomes are then

combined to create new individuals. This is known as crossover. Lastly, individuals can suffer

mutations, which are random changes to their genomes. The mutation has a probability of

happening on each generation, which is defined as part of the algorithm. Several mutation rates

can be tested to ensure the best performance of the system.

Codification

Each individual is codified as a binary array with N positions where N is equal to the number

of attributes obtained in the static analysis of each sample (see Attribute extraction: APK

Static analysis). Each position in the array corresponds to a feature (which will be either a

calls to an Android library, permission, or size of the APK). If the position is set to 1, the feature

52

will be used for the learning. If, however, the position is set to 0, the feature is ignored in the

learning.

An example of this codification is given below. Given the following training set with only 5

features as shown before:

data = [

[init(), pow(), random(), putIfAbsent(), ConcurrentLinkedQueue.->
<init>(), class],

[423,1,1,2,29, spyware_tizi],

[3,1,1,3,1,1, banker_sberbank]]

Suppose a population with two individuals as it follows:

[0,0,0,1,1] [0,1,1,0,1]

The first individual defines the attributes ConcurrentMap.->putIfAbsent(),

ConcurrentLinkedQueue.-> <init>() to be used for learning, whereas the second codifies

the attributes: pow(), random(), ConcurrentLinkedQueue.-> <init>().

Fitness

The fitness of each individual is defined as the accuracy percentage obtained when training the

SVM with the attributes codified in the individual’s genome. This is calculated using Scikit

Learn’s function model.preditc(), in the codification of the classifier model, and will be

detailed later in section Classifier: Support Vector Machine.

Genetic operators

Each genetic operator can be implemented in many different ways, which affect the evolution

process. In this section, the implementation chosen for each operator is explained in depth.

SELECTION

20% of the population is selected to be in the mating pool. The mating pool is a list where the

selected individuals are stored. The selection is done via tournaments: individuals are chosen

two by two and their fitness are compared. The ones with highest fitness are selected.

CROSSOVER AND REPLACEMENT

The crossover is the process of combining two or more individuals’ genomes to create new

individuals. The crossover implemented is uniform crossover with a 50% chance: it takes two

parent individuals and uses one gene from each to create two new individuals. For each gene

in the child’s genome, the parent gene is chosen randomly between the two parents. The

replacement is made based on age of individuals: an old individual is removed each time a new

individual is added. This is implemented by treating the population as a queue.

53

MUTATION

The mutation operator switches the value of one gene chosen randomly to the opposite value

(0 if the gene was 1 and vice versa).

Individual

The functionalities that belong specifically to the individual are: its codification (or genome),

fitness, and the mutation applied to its genome.

Create_genome

The genome of an individual is created as an array with size equal to the number of attributes

and all its positions equal to 0. The size is obtained using Python’s len() function on the first

row of the training dataset. After creating it, the method iterates through its positions and

randomly changes some of them to 1:

Fitness_score

The fitness score is calculated in the classifier model. The individual class calls the getter for

the classifier class:

Mutate

The mutation operator is applied with a certain probability - which is specified as a parameter

of the program - on each individual in the population. When the probability is met, a random

gene is switched:

1 size = len(training_data[0])

2 self.genome = [0 for x in range (size)] #all genes initially 0

3 loop through the genome in range (size):

4 set random position to 1

6 generate new random position

Figure 27: Pseudo code for create_genome

1 self.fitness_score = classifier.accuracy_score(individual)

Figure 28: Pseudo code for fitness_score

1 for individual in population:

2 if random.random() < probability

3 index = randint(0, size-1) #random gene

4 swap the value of genome[index]

Figure 29: Pseudo code for mutate

54

Population

The population class implements the select and crossover functions, since they affect a set of

individuals.

Create_population

The size of the population is specified as a parameter of the program. The method creates as

many random individuals as the size specified:

Select

As explained before, the top 20% of the population is selected to be in the mating pool for later

combination of genomes. The selection is done via tournaments: two individuals are selected

and their fitness and compared. The one with the best fitness is added to the mating pool, unless

it is already present in the mating pool; in that case, two new individuals are selected and

compared.

Crossover and replacement

Crossover function implements a uniform crossover with 50% chance: Two new individuals

are created randomly combining the genes from two parents. The parents are chosen from the

mating pool created in the previous step. For each gene on each child, one of the parent’s genes

in the same position is chosen randomly.

1 self.individuals = []

2 for i in range (population_size):

3 new_ind = Individual()

4 new_ind.create_genome()

5 new_ind.fitness_score()

6 self.individuals.append(new_ind)

Figure 30: Pseudo code for create_population

1 mating_pool = []

2 for i in range(population_size*0.2*2): #top 20%, compared 2 by 2

3 select two random distinct individuals

4 compare their fitness

5 if the one with best fitness is not already in mating pool:

6 append the one with best fitness to mating pool

10 return mating_pool

Figure 31: pseudo code for selection

55

The replacement of old individuals is then made by removing two individuals from the top of

the population, and appending the two newly created individuals.

1 while mating_pool:

2 first_parent = mating_pool.pop()

3 second_parent = mating_pool.pop()

4 first_child, second_child = Individual()

5 for i in range len(first_parent.get_genome()):

6 if randint(0,1) == 0

7 first_child.genome[i] = first_parent.genome[i]

8 second_child.genome[i] = second_parent.genome[i]

9 else:

10 first_child.genome[i] = second_parent.genome[i]

11 second_child.genome[i] = first_parent.genome[i]

Figure 32: Pseudo code for crossover

56

5.4.2. Classifier: Support Vector Machine

The classifier model was implemented using Scikit Learn library for Python. It uses the

training_dataset and test_dataset created in the data pre-processing step to train and measure

the accuracy of the model. It is called by the genetic algorithm step, which provides the genome

of the Individual to calculate its fitness. For more information about the implementation using

Scikit Learn, it is recommended to refer to the official documentation. The SVM model used

is a C-SVM, which uses a parameter C to penalize the error in classification. The parameters

this model receives are:

• Gamma value: this is related to the function used to calculate the distance between

samples, which is a Gaussian function. In simple terms, a small gamma value will

classify two points as belonging to the same class even if they are far apart.

• C: this value is used to penalize the error in classification. With higher values of C,

space between classes is reduced (the margin between classes is smaller, therefore the

division of classes is less clear). On the contrary, smaller values of C give priority to

creating a bigger gap between different classes. If C is too small, there will probably be

some misclassified samples.

The parameters of the SVM are fixed to Gamma = 0.001, and C=100 during the attribute

optimization process (evolution of the algorithm). There was some later experimentation done

with the SVM, as explained in section 6.3.

Create_datasets

This method filters the data in the datasets that is codified in the Individual’s genome. The

training and test data are obtained from the CSVs obtained before, as explained in section Data

pre-processing. For each individual, it filters the training and test datasets with the attributes

codified in the individual.

This method works as explained in the pseudocode below:

1 store data in CSVs in buffer #aux list

3 dataset, test_dataset = {‘data’:[], ‘target’:[]}

4 for row in training_data_aux[:-1]: #last elem is target

5 for elem,i in enumerate(row):

6 if individual[i]==1

7 dataset[‘data’].append(training_data_aux[i])

8 dataset[‘target’].append(training_data_aux[-1]) #last elem is
target

9 repeat same process for test data

10 return dataset, test_dataset

Figure 33: Pseudo code for create_datasets

57

Fit

This function trains an SVM with the training dataset created in create_datasets(). To do this,

it uses Scikit Learn SVM model:

Predict

Once the model has been trained, the model is fed the test_dataset to measure its performance:

Accuracy_score

It’s the first call that the class receives. The class Individual calls this method to set the fitness

of an individual. This method then calls the other three in the class:

1 create SVM

2 model = fit SVM to training dataset

3 return model

Figure 34: Pseudo code for fit

1 prediction = model.predict(test_dataset[‘data’])

2 accuracy = accuracy_score(predictions, test_dataset[‘target’])

3 return accuracy

Figure 35: Pseudo code for predict

1 training, test = create_datasets(individual)

2 model = fit(training)

3 return predict(model, test)

Figure 36: Pseudo code for accuracy_score

58

5.4.3. Integration of GA and SVM

The genetic algorithm and Support Vector Machine communicate through the fitness of

individuals. The genetic algorithm requests the calculation of the fitness by the SVM, which

needs the codification of the GA to create the model and measure its accuracy. The two models

use each other’s interface to access the desired values:

The SVM trains with the training dataset, filtering the attributes that are codified in the

individual’s genome. The accuracy is then measured by using the trained model to predict the

test dataset, and is fed back to the genetic algorithm as fitness.

59

5.5. Improvements made to original implementation

After implementing the system explained above and testing its performance, the results were

suboptimal. Each cycle of the genetic algorithm took around 1,5 minutes to run. The main

cause identified was the size of training data elements; each sample was defined by more than

44000 attributes, and since each individual had a random number of attributes, evaluating each

one of them implied training the model with an average of 20000 attributes per individual.

Note that this means the algorithm is searching for a solution amongst approximately 244000

possible solutions. The elevated size of the search space can affect the learning significantly,

and, as shown in section 6.5, it prevents the correct evolution of the algorithm.

An option that was considered was performing some kind of attribute filtering prior to the

genetic algorithm. The first option that was proposed was removing strongly tied attributes, by

calculating a covariance matrix and removing those attributes that had a significant statistical

similarity. However, this solution wouldn’t affect the size of the attribute pool, leaving it with

very similar number of attributes, still around 44000.

Another option was then using Scikit Learn’s feature selection libraries. These implement a

series of machine learning algorithms, such as decision trees, that can determine the most

significant attributes for the learning. This solution was not considered for two reasons: first, it

is unclear whether it could significantly reduce the number of attributes. Second, it would be

performing the task that has been made for the genetic algorithm in this work, hence defeating

the original purpose of the GA. Future implementations (see 9.2) could consider using these

techniques alone or in combination with others to reduce the attribute pool.

For these reasons, an improvement was made to the original definition of the genetic algorithm:

• The codification of the genome of an individual is changed. The new genome has a

restricted number of 1’s in its codification: there can be no more than 2000 1’s in the

binary array (which corresponds to a maximum of 2000 attributes used for learning).

This improvement could imply a bias on the learning of the algorithm, since the first 2000

positions are more likely to be in the codification of the algorithm. Moreover, this bias could

be strengthen in the crossover, by combining similar individuals whose codifications

concentrate the majority of 1’s in the early positions of the genome. Nonetheless, it was

introduced and tested. Note that 2000 attributes still implies a search space of 22000 elements,

which is still large, and can still present the same problems in the evolution of the algorithm.

The performance of this new implementation was proven with a series of tests that are

described in section EVALUATION. The tests made on the original implementation are also

explained in said section.

60

6. EVALUATION

In this section, the evaluations done to evaluate the best model are explained first, and a real-

life simulation test is explained second. The real life simulation was made using new samples

as explained below:

Once the final model was chosen (attributes to use in the learning and trained Support Vector

Machine), a series of samples were downloaded from ContagioDump repository. 10 samples

from each family used in the implementation were downloaded (a total of 120 samples), and

the model obtained before was applied to test its performance.

6.1. Description of the experimental environment

This section explains the environment in which the tests were performed. To ensure the quality

of the tests, the test set has to be sufficient and representative of the problem.

1175 samples were used for the learning of the system. These were samples evenly distributed

between the following types and families of malware: Banker (Sberbank, Overlay,

Overlaylocker), Ransomware (Xbot), Spyware (BeaverGangCounter, redDrop, Tizi) , Adware

(Judy, Hummingbad), Exploit (Godless), Trojan (Marcher, Triada).

Figure 37: Malware samples used in the system

There are two test sets to take into account: first, the test set used to evaluate the performance

of the genetic algorithm and SVM in different models, to choose the best subset of training

attributes. This test was obtained as the 30% of the training data. The data was randomly

shuffled to avoid any bias, and then 30% was saved to evaluate the model.

After these evaluations have been made, the model needs to be tested in a simulation of a real

life situation. For that purpose, a new set of malicious APKs were downloaded. 10 samples for

each type and family used for the learning were downloaded (a total of 120 samples). These

samples were then tested with the final model (codification of best individual and best

parameters of SVM).

61

6.2. Evaluation of the genetic algorithm

The tests performed to choose the best model were performed using the test dataset created in

the data pre-processing step of the implementation (see 5.3). Each test was performed with

different mutation rates and fixed values for the SVM parameters. The reason why the tests

were performed this way was to obtain the best combination of attributes (best individual), to

later test different values for the SVM parameters with the best individual. The size of the

population (number of individuals) was set to 20.

The graph below illustrates the evolution of the population for each test in 20-30 cycles of

learning (generations). The tests done to the algorithm included between 200 and 300 cycles

of learning, however in most cases it converged to a value in about 15 generations, thus only

20 or 30 generations are shown in the figures below. The average running time per cycle (or

generation) was 90s.

The objective of this section was to find the best combination of attributes for the classification

of malicious APKs. A minimum accuracy score of 90% is required in order to consider the

subset of attributes fit enough to be chosen as best subset.

• Mutation rate = 10%

The algorithm took about 27-28 generations to stabilize, and did so in an average accuracy of

79 %. The best individual had an 80.4% fitness score.

Figure 38: Evolution of genetic algorithm, 10% mutation rate

62

• Mutation rate = 20%

Increasing the mutation rate, the algorithm converges to an approximate 81% accuracy in 12

generations. The best individual had a total of 84.4% accuracy score.

Figure 39: Evolution of genetic algorithm, 20% mutation rate

• Mutation rate = 50%

The algorithm evolves rapidly, stabilizing around 84% fitness score in about 10 generations.

The best individual had an 84.4% fitness score.

Figure 40: Evolution of genetic algorithm, 50% mutation rate

63

6.2.1. Tests done with improved version of original implementation

After performing the tests described before, an improvement was added to the genetic to reduce

the running time of the model (described in section 5.5). This new model was tested following

a similar structure to the test performed in the previous model; different mutation rates, fixed

parameters for the SVM. The accuracy scores obtained were very similar, but the running time

was reduced significantly, more than half of the original running time. The average time per

cycle with the improved version was 42s.

• Mutation rate = 10%

The evolution of the population in this experiment was slow and hardly noticeable, since the

first population had an initial average fitness of 91.3%. The algorithm converged to an

approximate 93% average fitness, and the best individual had a fitness score of 93.75%.

Figure 41: Evolution of improved genetic algorithm, 10% mutation rate

• Mutation rate = 20%

The algorithm converged to an approximate 77.5% in 10 generations. The first generation had

an average fitness of 65%, and the best individual had a fitness score of 78.2%.

64

Figure 42: Evolution of improved genetic algorithm, 20% mutation rate

• Mutation rate = 50%

The best individual had a total of 94.37% fitness score. Similarly to the first experiment with

this version of the genetic algorithm, the initial population had a high average fitness score

(92.1%), therefore the evolution is less pronounced compared to other experiments.

Figure 43: Evolution of improved genetic algorithm, 50% mutation rate

65

6.3. Evaluation of SVM

After performing the tests described above, the final model subset of attributes was chosen.

This subset was obtained as the best individual from the tests performed before, which had a

94.37% accuracy.

A series of values were tested for the SVM parameters. The possible parameters for an SVM

are (as explained in section 5):

• Gamma value: A small gamma value will classify two points as belonging to the same

class even if they are far apart.

• C: With higher values of C, the gap between classes is smaller.

The values for these parameters in the tests performed to obtain the best combination of

attributes (tests done on the genetic algorithm) were: C=100, Gamma =0.001. The experiment

was repeated 5 times to obtain reliable results. The tables below illustrates the accuracy

percentage obtained for each combination of values on each experiment:

 Gamma

C

 0.001 0.002 0.003 0.005 0.008 0.01

100 94.37% 96.67% 96.67% 93.3% 93.3% 93.3%

200 96.67% 96.67% 96.67% 93.3% 93.3% 93.3%

500 96.67% 96.67% 96.67% 93.3% 93.3% 93.3%

800 96.67% 96.67% 96.67% 93.3% 93.3% 93.3%

50 100% 100% 100% 93.3% 93.3% 93.3%

25 100% 100% 100% 96.67% 96.67% 96.67%

 15 100% 100% 100% 96.67% 96.67% 96.67%

 10 100% 100% 100% 96.67% 96.67% 96.67%

C

 0.02 0.03 0.05 0.1 0.2 0.3 0.5

100 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67%

200 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67%

500 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67%

800 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67%

50 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67%

25 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67%

15 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67%

10 96.67% 96.67% 96.67% 96.67% 96.67% 96.67% 96.67%

Table 3: Evaluation of SVM, experiment 1

66

 Gamma

C

 0.001 0.002 0.003 0.005 0.008 0.01

100 91.5% 90.84% 90.84% 89.54% 88.23% 88.23%

200 91.5% 90.84% 90.84% 89.54% 88.23% 88.23%

500 91.5% 90.84% 90.19% 89.54% 88.23% 88.23%

800 91.5% 90.19% 90.19% 89.54% 88.23% 88.23%

50 91.5% 90.84% 90.84% 89.54% 88.23% 88.23%

25 91.5% 90.84% 90.84% 89.54% 88.23% 88.23%

 15 91.5% 90.84% 90.84% 89.54% 88.23% 88.23%

 10 91.5% 90.84% 90.84% 89.54% 88.23% 88.23%

C

 0.02 0.03 0.05 0.1 0.2 0.3 0.5

100 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23%

200 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23%

500 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23%

800 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23%

50 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23%

25 88.23% 88.23% 88.23% 88.23% 88.23% 88.23% 88.23%

15 88.23% 88.23% 88.23% 88.23% 88.23% 89.54% 88.23%

10 88.23% 88.23% 88.23% 88.23% 88.23% 89.54% 88.23%

Table 4: Evaluation of SVM, experiment 2

 Gamma

C

 0.001 0.002 0.003 0.005 0.008 0.01

100 95.86% 95.86% 95.86% 95.86% 94.48% 94.48%

200 95.86% 95.86% 95.86% 95.86% 94.48% 94.48%

500 95.86% 95.86% 95.86% 95.86% 94.48% 94.48%

800 95.86% 95.86% 95.86% 95.86% 94.48% 94.48%

50 95.86% 95.86% 95.86% 95.86% 94.48% 94.48%

25 95.86% 95.86% 95.86% 95.86% 94.48% 94.48%

 15 95.86% 95.86% 95.86% 95.86% 94.48% 94.48%

67

 10 95.86% 95.86% 95.86% 95.86% 94.48% 94.48%

C

 0.02 0.03 0.05 0.1 0.2 0.3 0.5

100 94.48% 94.48% 94.48% 94.48% 94.48% 93.55% 93.55%

200 94.48% 94.48% 94.48% 94.48% 94.48% 93.55% 93.55%

500 94.48% 94.48% 94.48% 94.48% 94.48% 93.55% 93.55%

800 94.48% 94.48% 94.48% 94.48% 94.48% 93.55% 93.55%

50 94.48% 94.48% 94.48% 93.55% 93.55% 93.55% 93.55%

25 94.48% 94.48% 94.48% 93.55% 93.55% 93.55% 93.55%

15 94.48% 94.48% 94.48% 93.55% 93.55% 93.55% 93.55%

10 94.48% 94.48% 94.48% 93.55% 93.55% 93.55% 93.55%

Table 5: Evaluation of SVM, experiment 3

 Gamma

C

 0.001 0.002 0.003 0.005 0.008 0.01

100 97.72% 97.72% 97.72% 97.94% 97.94% 97.94%

200 97.72% 97.72% 97.94% 97.94% 97.94% 97.94%

500 97.72% 97.94% 97.94% 97.94% 97.94% 97.94%

800 97.72% 97.94% 97.94% 97.94% 97.94% 97.94%

50 97.72% 97.72% 97.72% 97.72% 97.94% 97.94%

25 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

 15 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

 10 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

C

 0.02 0.03 0.05 0.1 0.2 0.3 0.5

100 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

200 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

500 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

800 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

50 97.94% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

25 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

15 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

68

10 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 97.72%

Table 6: Evaluation of SVM, experiment 4

 Gamma

C

 0.001 0.002 0.003 0.005 0.008 0.01

100 97.86% 97.53% 97.53% 97.69% 97.69% 97.69%

200 97.86% 97.53% 97.86% 97.69% 97.69% 97.69%

500 97.86% 97.86% 97.86% 97.69% 97.69% 97.69%

800 98.18% 97.86% 97.86% 97.69% 97.69% 97.69%

50 97.86% 97.53% 97.53% 97.36% 97.69% 97.69%

25 97.86% 97.53% 97.53% 97.36% 97.36% 97.36%

 15 97.86% 97.53% 97.53% 97.36% 97.36% 97.36%

 10 97.53% 97.53% 97.53% 97.36% 97.36% 97.36%

C

 0.02 0.03 0.05 0.1 0.2 0.3 0.5

100 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36%

200 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36%

500 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36%

800 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36%

50 97.69% 97.69% 97.36% 97.36% 97.36% 97.36% 97.36%

25 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 97.36%

15 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 97.36%

10 97.36% 97.36% 97.36% 97.36% 97.36% 97.36% 97.36%

Table 7: Evaluation of SVM, experiment 5

69

Table 8 illustrates the average accuracy score for all values of C and gamma, calculated as the

geometric mean of the results obtained in the 5 experiments performed before. To provide a

better understanding of the table, a heat map was used to visually locate the best results. Darker

blue indicates higher accuracy, whereas lower accuracy is indicated with a lighter shade of

blue.

 Gamma

C

 0.001 0.002 0.003 0.005 0.008 0.01

100 95,43% 95,69% 95,69% 94,81% 94,26% 94,26%

200 95,89% 95,69% 95,80% 94,81% 94,26% 94,26%

500 95,89% 95,80% 95,66% 94,81% 94,26% 94,26%

800 95,96% 95,66% 95,66% 94,81% 94,26% 94,26%

50 96,54% 96,34% 96,34% 94,71% 94,26% 94,26%

25 96,54% 96,34% 96,34% 95,38% 94,82% 94,82%

 15 96,54% 96,34% 96,34% 95,38% 94,82% 94,82%

 10 96,48% 96,34% 96,34% 95,38% 94,82% 94,82%

C

 0.02 0.03 0.05 0.1 0.2 0.3 0.5

100 94,93% 94,89% 94,82% 94,82% 94,82% 94,64% 94,64%

200 94,93% 94,89% 94,82% 94,82% 94,82% 94,64% 94,64%

500 94,93% 94,89% 94,82% 94,82% 94,82% 94,64% 94,64%

800 94,93% 94,89% 94,82% 94,82% 94,82% 94,64% 94,64%

50 94,93% 94,89% 94,82% 94,64% 94,64% 94,64% 94,64%

25 94,82% 94,82% 94,82% 94,64% 94,64% 94,64% 94,64%

15 94,82% 94,82% 94,82% 94,64% 94,64% 94,92% 94,64%

10 94,82% 94,82% 94,82% 94,64% 94,64% 94,92% 94,64%

Table 8: Evaluation of SVM, average accuracy

70

6.4. Evaluation of final model

After choosing the genetic algorithm and parameters for the SVM, the final model was tested

with a new set of malware samples with 10 samples belonging to each type and family used

for the learning.

As seen on Table 8, there were 12 combinations for SVM parameters which gave very similar

score on experimental results. From them, 3 gave slightly better results, however the difference

is so small it’s not significant. To choose one of them, the definition of gamma and C were

taken into account. Given a sample that has been classified wrongly, it is preferred that said

sample is classified in its correct type, even if the family is wrong. For that reason, the gap

between classes should be higher (smaller value of C), so families which belong to the same

type are brought together, but different types are far apart. On the other hand, the results for

higher values of Gamma in the experiments were worse than those with smaller values, thus

the smallest Gamma from within the best 3 was chosen.

The chosen final values for Gamma and C would then be: Gamma = 0.001, C = 15. However,

to obtain more significant results about the performance of the model, the tests were performed

with all 12 best combinations of Gamma and C shown on Table 8.

Table 9 shows the accuracy obtained for each combination of parameters on the new set of

samples. Table 11 shows the incorrectly classified instances, and the class where they were

placed, to allow for a better understanding of the performance of the system.

 Gamma

C

 0.001 0.002 0.003

50 92,81% 92,81% 92,81%

25 92,81% 92,81% 92,81%

15 92,81% 92,81% 92,81%

10 92,81% 92,81% 92,81%

Table 9: Evaluation of final model

The model obtained was the same in all cases, thus the accuracy remains unchanged for all

experiments.

Table 11 illustrates the confusion matrix, which shows the incorrectly classified instances of

each class. To allow a better understanding of the table, the classes are represented with

numbers as shown on Table 10:

Type Family Number in table

Adware Hummingbad 1

71

Judy 2

Banker

Overlay 3

OverlayLocker 4

Sberbank 5

Exploit Godless 6

Ransomware Xbot 7

Spyware

BeaverGangCounter 8

RedDrop 9

Tizi 10

Trojan
Marcher 11

Triada 12

Table 10: Naming of classes in confusion matrix

 Classified as

Class

 1 2 3 4 5 6 7 8 9 10 11 12

1 10 0 0 0 0 0 0 0 0 0 0 0

2 3 7 0 0 0 0 0 0 0 0 0 0

3 1 0 9 0 0 0 0 0 0 0 0 0

4 0 0 0 9 1 0 0 0 0 0 0 0

5 0 0 0 0 10 0 0 0 0 0 0 0

6 2 0 0 0 0 8 0 0 0 0 0 0

7 2 0 0 0 0 0 8 0 0 0 0 0

8 0 0 0 0 0 0 0 10 0 0 0 0

9 0 0 0 0 0 0 0 0 10 0 0 0

10 0 0 0 0 0 0 0 0 0 10 0 0

11 0 0 2 0 0 0 0 0 0 0 8 0

12 0 0 0 0 0 0 0 0 0 0 0 10

Table 11: Confusion matrix

72

6.5. Analysis of experimental results

After performing the experiments described in the previous sections, the results obtained are

analysed to understand the performance of the system implemented.

The first element to analyse is the genetic algorithm. When looking at the results obtained from

the experiments (on section 6.2), it becomes clear that the algorithm never evolves to a solution

over 90% accuracy unless it has individuals with high accuracy in the initial population.

Although it does evolve slightly, this means that it’s preferable to choose a random combination

of attributes for the training until one good individual is found than use the algorithm to filter

the attributes.

This result is not surprising, as the search space of the algorithm is huge. With about 44000

attributes, there are approximately 244000 possible combination of attributes to be explored by

the algorithm. By changing the algorithm’s codification, the search space is reduced but still

too broad for the algorithm to evolve properly. Since the objective of this section was to find

the best combination of attributes, and the best individual had an accuracy of 94.4%, it was

considered fit enough to use as solution; however, the genetic algorithm is not enough for this

attribute selection. A new codification, different attribute selection methods, or combination of

genetic algorithm with other methods should be explored to obtain a better model for future

research and that can be suitable for malware analysis. This question will be explored in depth

in Future work.

The attributes obtained, however, prove to be significant for the learning. The high accuracy

obtained in all experiments shows that the static analysis of the APKs is a good method to

analyse Android malware, with the only downside of the high number of attributes obtained.

Different methods could also be tested in future implementations, as will be discussed in

Future work.

The SVM gives a very reliable model. Looking at the confusion matrix on the real-life test

(with 120 samples equally distributed between the 12 possible families), 6 out of 12 classes

have incorrectly classified instances. Out of the 6, 5 are incorrectly classified as Adware, family

Hummingbad. The model seems to lean towards that class. Since the model was trained using

70% randomized data from 1175 samples, it’s likely that more samples from this particular

family were included in the training set, therefore slightly biasing the model. This bias is not

consider significant, since the tests performed prior to the real-life experiment obtained very

high accuracy with a test set that contained the remaining 30% of the randomized data from

1175 samples. Furthermore, in all cases there are no more than 2 samples classified incorrectly

in this class, with the exception of the samples belonging to Adware Judy. This last exception

belongs to the same type as Hummingbad, incorrectly classified instances within types are to

be expected.

All in all, the model can be improved in future implementations, but it proves to give a suitable

adaptive solution to the problem presented at the beginning of the project.

73

7. MANAGEMENT

This section explains the details about the management process related to the project, including

the planning of the project in time and the costs involved in the development.

7.1. Planning

The project was planned considering two major aspects: development of the source code,

including design, implementation and evaluation; and the creation of this report, including the

previous research and analysis of the legal and socio-economic environment of the project, and

the drafting of the document.

The project was started in December 2018, and finished in the first week of June 2019. The

implementation of the code and creation of the report were planned jointly, considering that

some aspects related to the report are essential prior to the development process. For this

reason, the first step was an initial research on the topic and related work (STATE OF THE

ART), and also the socio economic and legal aspects that could affect the project, to make sure

the project is compliant with all regulations and consider the effects it could have from a socio

economic perspective (LEGAL AND SOCIO-ECONOMIC ENVIRONMENT). Once this

research was finished, the implementation was planned analysing and designing the system (as

seen on SYSTEM ANALYSIS and SYSTEM DESIGN). After these tasks had been

completed, the samples needed for the project were obtained. These samples were downloaded

from the free repository ContagioDump. The code was then implemented (explained in section

IMPLEMENTATION) .

The implementation of the source code is divided in three parts: genetic algorithm, SVM and

integration of both. Since the SVM was developed using Scikit Learn, the majority of the

implementation time was invested in designing and implementing the genetic algorithm.

After the code was implemented, a series of experiments to test the performance of the system

were designed (EVALUATION). These tests were executed over three weeks, due to the high

computational time needed for each execution (see 6). The tests were then analysed and a series

of conclusions were extracted.

The process described above was documented in parallel to the implementation, and all the

results and conclusions are shown in this document (see 6.5 and 9).

The development of the whole project is illustrated below using a Gantt chart[32].

74

Table 12: Planning of the project

 December January February March April May June

Tasks
week

1
week

2
week

3
week

4
week

1
week

2
week

3
week

4
week

1
week

2
week

3
week

4
week

1
week

2
week

3
week

4
week

1
week

2
week

3
week

4
week

1
week

2
week

3
week

4
week

1

Total time

State of the
Art
Socio
Economic
Environment
Analysis and
Design
Development
Obtain samples
Genetic
Algorithm
SVM
Integration
Tests

Design of
experiments
Genetic
Algorithm
SVM
Final model
Analysis of
Results

Project
documentation

75

7.2. Budget

The budget of the project is divided in two main sections: direct and indirect costs. Direct costs

refer to all the resources needed in form of specific cost objects, such as materials, labour,

licenses, etc. Indirect costs, however, can’t be traced to specific cost objects: these include

items such as rent, power, utilities, insurance, fees, etc.

7.2.1. Direct costs

The direct costs of the project correspond to the resources needed for the implementation. Since

all the code was developed using open-source means, no software license was acquired, and

there was no need for any specific hardware device, the direct costs relate to the computer used

in the implementation and the labour of the developer.

Human resources

There was only one person involved in the development of the project. The project had a

duration of 6 months, which equal a total of 480 hours. The salary of the developer is taken as

the average salary for an entry level Python developer in North Holland (where the developer

of the project was based at the time of the creation of the project) according to Payscale[31],

which equals a total of €14,83/hour.

Estimated

hours

Cost per hour Total cost

480 €14,83 €7188,4

Table 13: Estimated personnel costs

Material resources

The costs for the resources and materials needed needs to be calculated including the

amortization of the materials, which considers the lifespan of each device. This cost is

calculated as the depreciated cost multiplied by the duration of the project.

𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 =
(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑠𝑠𝑒𝑡 𝑐𝑜𝑠𝑡 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)

𝑢𝑠𝑒𝑓𝑢𝑙 𝑙𝑖𝑓𝑒 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡(𝑚𝑜𝑛𝑡ℎ𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑚𝑜𝑛𝑡ℎ𝑠) ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝑚𝑜𝑛𝑡ℎ𝑠)

Where residual value is the estimated value of the asset at the end of its useful life. For this

project, the only material asset needed was a laptop. Find below the estimated cost for this

asset:

Asset Initial cost Residual

value

Useful life

(months)

Duration of

project(months)

Total cost

HP

EliteBook

840

€ 1.293,49 €600 48 6 €86,63

Table 14: Estimated material costs

76

7.2.2. Indirect costs

Indirect costs are calculated as a 20% of the total direct costs. These cover costs such as power

used to run the application, and can’t be traced to human resources or material.

The total indirect costs are €1455

7.2.3. Risk

The risk costs refer to the costs that the risks involved in the project add to the total cost. The

risks can affect the developer, for example in case of injury or illness; they can also affect the

material assets, as it’s the case of loss or breakage of the computer where the project is being

developed. There are no security risks affecting this project since there is no sensitive or private

data being used.

The risk costs are calculated as a 10% of the cost of the project, including direct and indirect

costs.

The total risk costs are €873.

7.2.4. Total costs

The total cost of the project adds the expected benefit to the total amount. The expected benefit

for this project equals a 20% of the total budget: €1920,6. The VAT is added to the total costs.

The VAT is taken from the VAT general tariff in the Netherlands (where the project was

developed), 21%.

Find below the total costs of the project:

Cost description Value

Direct Costs €7275,03

Indirect Costs €1455

Risk Costs €873

TOTAL €9603,03

Expected Benefit €1920,6

TOTAL COSTS

(without VAT)
€11523,64

VAT €2419,96

TOTAL COSTS

(with VAT)
€13943,6

-

77

8. LEGAL AND SOCIO-ECONOMIC ENVIRONMENT

This section explores all the socio-economic and legal factors related to the developed project.

Before the implementation of a software tool, there are certain aspects that must be taken into

account relating this environment; these can affect usage of personal or sensitive data,

intellectual property, possible social impact of the system, etc.

8.1. Legal

The project does not use any kind of private or sensitive data; it does also not modify any data

that belongs to a user or particular privately. All samples are APKs obtained from a public

repository, furthermore, the samples correspond to malicious APKs which had been published

before being uploaded to the repository (since the intention of the developers of the malware

was to infect users by infiltrating the apps in their devices). Python is an open source

programming language, and all its libraries are available free of license. All the code used was

entirely developed during the project, and no third-party code or resources were needed (except

for the previously mentioned samples and Python’s libraries).

For these reasons, there are no laws or regulations regarding data protection that affect this

project. However, any creative work, even if available publicly, is subject to copyright by

default. Thus, it is needed to analyse the intellectual property of the project and whether it is

going to be made open source or not.

8.1.1. Intellectual property and open source projects

All creative work is exclusive by copyright by default when created, according to open source

guide[33]. Even if the project is published, for example in a public Github repository, it’s still

subject to copyright of the author. This means that although anybody can access and see the

content of the project, nobody can use, copy, distribute or modify the content of the work.

To make the project open source, there are several licenses available online. The intention of

this project is to be of help in future research and provide an scalable approach to the growing

problem of cyberattacks on Android devices. For these reasons, the project is made open

source.

The license chosen for this project is provided by MIT[34]:

MIT License

Copyright (c) 2019 Sara Yuste Fernandez Alonso

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject

to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

78

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.
Figure 44: MIT License for open source projects

8.2. Socio-Economic impact

Due to the popular use of smartphones and specifically Android, the project has a high social

impact. The widely extended different versions of malware affect many users, and in some

cases can imply a high economic loss, not only for one user, but can sometimes affect a whole

enterprise or sector. The general public is sometimes not well informed about the cyberattacks

and risks they face when using their smartphones. Projects like the one developed are have a

big impact in future protection against cybercrime, and help reduce the impact of cyberattacks

in a growing and changing landscape such as personal mobile applications.

8.2.1. Smartphones: private and sensitive information

According to Statista[35], there were 4.57 billion mobile phone users in 2018. In 2019, this

number is forecast to reach 4.68 billion. As reported by a research made by Techjury[36], 47%

of US smartphone users say they couldn’t live without their devices , 62% of smartphone users

have made a purchase on the device and there are 194 billion apps downloads in 2018

worldwide.

These statistics show the close relationship between users and mobile phones, which are an

essential asset in the users’ everyday lives. Users store, access or modify personal and sensitive

data using their phones. An example of this are the banking apps that most banks offer, from

which a user can operate on their bank accounts, transfer money, check their balance, etc. Not

only banking data, but other sensitive data such as personal pictures or confidential information

(for example, data about clients on a work phone) is often stored and accessed in mobile

phones. Successful attacks to a mobile device allow the attacker to potentially gain access to

this data, trade with the information obtained, blackmail the user, or ruin the user’s o their

enterprise’s reputations.

8.2.2. Cybercrime

Cybercrime refers to a crime where a computer is the victim of a crime, or is used as a tool to

commit a crime[37]. Cybercrime can target multiple computational devices, but due to the high

popularity of smartphones, these have become an interesting target for cybercriminals over the

last few years. As shown by G Data, mobile malware rose about 40% in 2018, with around 3.2

million malicious apps located by the end of the third quarter of 2018[38].

79

Figure 45: New Android malware samples per year 2012-2018. (GData, 2018)

The increasing number of threats to Android has been addressed by the industry, with measures

such as the one taken by Google since summer 2018 (as seen on technological portal The

Verge[39]), which stated a mandatory security update for at least two years for popular Android

manufacturers.

Most Android users, however, are unaware of these numbers. Since most of the malicious apps

use social engineering, or simply rely on the user’s ignorance about these threats, they can be

found in the PlayStore or any legit source the user might believe trustworthy and reliable, and

can infect the device easily, being installed by the user.

The number of malicious apps grows so rapidly, it is difficult to find adaptable and fast

countermeasures to keep users safe from these attacks. It becomes more clear for Android

manufacturers and cyber security experts that there is a need to find a solution which provides

a fast way to find the malicious apps efficiently, so they can be removed from the PlayStore or

other sources before they reach the users.

80

9. CONCLUSIONS

After implementing the system, this section explains a series of personal and technical

conclusions to summarize the content of the project.

9.1. Personal and technical conclusions

The development of this project has been a challenging task. From the research about a topic

such as Android malware, from which the student had no prior formation, the understanding

of malware and Android APKs, its behaviour… to the implementation of the genetic algorithm,

SVM and integration of both, the development process has tested the experience of the author

in programming, as well as improved the knowledge on both computational science and

cybersecurity.

Looking at the objectives set at the beginning of the project, the challenge at hand was to

develop a scalable, efficient way to analyse malicious Android app samples and determine the

type and family they belong to. The solution developed obtained a very high accuracy in all

cases, included the real-life testing, and has proven to work with 6 different malware types and

12 different malware families. Although there are many improvements that can be made to the

implementation, especially regarding the recurrent problem of the number of attributes

extracted from the APKs, the objectives of the project can be considered as met after the

development of the system. The model obtained can be scaled to other malware applications,

and adapted if necessary with new samples, and provides a reliable guide for Android cyber

security experts to speed up their work when analysing malicious APKs.

Furthermore, another goal which was set at the beginning of the project was to make it available

for future research, and to be accessible by other developers. The whole project has been

developed with open source means, and has been open sourced to be obtainable for free, to

contribute to a further development of the project.

9.2. Future work

As mentioned before, the main challenge of the system developed was to operate on such a

high number of attributes extracted from the APKs. The first measure to take when working

further on this project would be to look for a solution regarding this problem. The author

suggests the following:

• Apply decision models prior to the genetic algorithm to decide which attributes are

more relevant. For example, creating a series of decision trees and selecting the most

significant attributes used to create the branches; prune the tree at a certain height and

use a genetic algorithm to explore the remaining attributes.

• Combine statistical feature reduction methods with AI feature reduction. For example,

the already mentioned covariance matrix combined with a decision tree; the tree would

work as described before, but a genetic algorithm would not be used to explore the

remaining attributes.

• Use the three methods proposed above in combination; first selection with a statistical

model to remove strongly related attributes, a series of search trees to obtain the most

81

recurrent significant attributes, and a genetic algorithm to explore through the

remaining attribute space.

• Extract attributes by different means. For example, use a dynamic analysis and extract

less attributes about the behaviour of the application. Try dynamic and hybrid

approaches.

• Extract different attributes. Instead of using the calls to the Android library, analyse the

structure of the code inside each APK, similarly to a flow diagram. Create graphs that

represent the interaction of methods within the APK, and use the graphs as attributes

for the learning.

Another possible future line of work is exploring different learning algorithms in the classifier

model. This project focused on the use of SVM for the classification, but further research could

be done using different algorithms or techniques.

82

GLOSSARY OF TERMS

Ad (advertisement): A notice or announcement in a public medium promoting a product,

service, or event. In the context of this works, it refers to the announcements displayed on

mobile phones’ apps.

Algorithm: A process or set of rules to be followed in calculations or other problem-solving

operations, especially by a computer.

App: In computing, An application, especially as downloaded by a user to a mobile device.

Assembly code: In computing, The conversion of instructions in low-level code to machine

code.

Binary array: A collection of numbers which can have the value 1 or 0.

Buffer: A temporary memory area in which data is stored while it is being processed or

transferred.

CLI (Command Line Interface): A text based user interface used to view and manage computer

files.

Computer vision: A field of science which aims to make computers gain understanding from

images or videos.

CSV file (comma separated value file): A file format which contains values separated by

commas.

Cyberattack: An attempt by hackers to damage or destroy a computer network or system.

Cybercrime: Criminal activities carried out by means of computers or the Internet.

Decipher: Convert (a text written in code, or a coded signal) into normal language.

Decision models (AI): A subdivision of AI algorithms which interpret the knowledge using a

series of decisions, such as decision trees.

DEX (Dalvic Executable): A component of an APK (Android Application Package) which

contains the compiled source code.

Encryption: The process of converting information or data into a code, especially to prevent

unauthorized access.

Family (malware): A set of malware applications or programs which belong to the same

malware type and present common features.

Feature: In AI, a piece of data that can be used to analyse a sample.

83

General purpose (programming language): An programming language that doesn’t operate

only in a specific field or environment, but can be used to implement several different

applications.

Git: An open source distributed version control system designed for code sharing.

Github: An online code repository which implements Git control system.

Hyperplane(geometry): A subspace with one dimension less to the ambient space. In a 3D

dimensional space, a hyperplane is a 2D plane.

Infection (software): The action of a software application or program being infiltrated by a

malicious software.

Interface (program): A point where two systems, meet and interact. Can refer to the interaction

between two software components or a subject with a software component.

Malicious: Intending or intended to do harm.

Malware: Software that is specifically designed to disrupt, damage, or gain unauthorized

access to a computer system.

Metamorphic malware: Malware that is rewritten with each iteration so each version of the

code is different from the previous one.

Natural Language Processing: The application of computational techniques to the analysis

and synthesis of natural language and speech.

Open source software: Software that can be used, copied, distributed or modified freely.

Operating system (OS): The low-level software that supports a computer's basic functions,

such as scheduling tasks and controlling peripherals.

Optimization problem: The problem of finding the best solution of all possible solutions.

Parser: A program for analysing (a string or text) into logical syntactic components.

Pay-by-click: A form of paid digital marketing where advertisers pay a fee each time their ad

is clicked.

Privilege (software): The authority to perform security relevant functions on a computer.

Sandbox: A virtual space in which new or untested software or coding can be run securely.

Smartphone: A mobile phone that performs many of the functions of a computer, typically

having a touchscreen interface, Internet access, and an operating system capable of running

downloaded apps.

Social engineering: The use of deception to manipulate individuals into divulging confidential

or personal information that may be used for fraudulent purposes.

84

Speech recognition: The process of enabling a computer to identify and respond to the sounds

produced in human speech.

Vulnerability (cybersecurity): Flaw in a computer system that can leave it open to attacks.

All definitions hereby provided according to Oxford English Dictionary[40]

85

BIBLIOGRAPHY

[1] Net Market Share for Mobile Operating Systems. [Online] available at:

https://netmarketshare.com/operating-system-market-share (access: December 2018)

[2] C. Kumar Behera, D. Lalitha Bhaskari, “Different Obfuscation Techniques for Code

Protection”, Procedia Computer Science, Volume 70, Pages 757-763

[3] “History of Artificial Intelligence”. Queensland Brain Institute.

https://qbi.uq.edu.au/brain/intelligent-machines/history-artificial-intelligence (access:

December 2018)

[4] C. Smith, “The History of Artificial Intelligence” , History of Computing, University of

Washington, Washington, December 2006

[5] S. Ray, “History of AI”, Towards Data Science,

https://towardsdatascience.com/history-of-ai-484a86fc16ef, (access: December 2018)

[6] A.M.Turing, “On computable numbers, with and application to the

Entscheidungsproblem”, November 1936. [Online] available at:

https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

[7] A.M.Turing, “Computing machinery and Intelligence”, Mind, Volume 42, Pages 433-460,

1950. [Online]

Available at: https://www.csee.umbc.edu/courses/471/papers/turing.pdf (access:

December 2018)

[8] C.E. Shannon, “Programming a Computer for Playing Chess”, Philosophical Magazine,

Volume 41, No.314, March 1950.

[9] B. Poczos, “Introduction to Machine Learning”, Carnegie Mellon University

[10] Rumilhart et al., “Learning representations by back-propagation errors” , Nature, 1986

[11] Bryson et al., “Backpropagation”, 1963

[12] F.Corea, “AI Knowledge Map: How To Classify AI Technologies”, Forbes, August

2018. [Online] Available at: https://www.forbes.com/sites/cognitiveworld/2018/08/22/ai-

knowledge-map-how-to-classify-ai-technologies/#40b4f6f47773 (access: December

2018)

[13] J. Haugeland, “Artificial Intelligence The Very Idea”, MIT Press, Cambridge, MA,

1985

[14] P.H. Winston, “Artificial Intelligence at MIT, Expanding Frontiers, MIT Press, Volume

1, 1990. [Online] Available at:

https://web.media.mit.edu/~minsky/papers/SymbolicVs.Connectionist.html (access:

December 2018)

[15] “Brief History of Machine Learning”, Erogol, [Online] Available at:

http://www.erogol.com/brief-history-machine-learning/ (access: December 2018)

[16] J. Sahs and L. Khan. “A machine learning approach to android malware detection.”

Intelligence and Security Informatics Conference (EISIC), 2012 European, pages 141–147,

August 2012.

[17] A. Shabtai. “Malware detection on mobile devices”. Mobile Data Management (MDM),

2010 Eleventh International Conference, pages 289–290, May 2010.

https://netmarketshare.com/operating-system-market-share
https://qbi.uq.edu.au/brain/intelligent-machines/history-artificial-intelligence
https://towardsdatascience.com/history-of-ai-484a86fc16ef
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://www.csee.umbc.edu/courses/471/papers/turing.pdf
https://www.forbes.com/sites/cognitiveworld/2018/08/22/ai-knowledge-map-how-to-classify-ai-technologies/#40b4f6f47773
https://www.forbes.com/sites/cognitiveworld/2018/08/22/ai-knowledge-map-how-to-classify-ai-technologies/#40b4f6f47773
https://web.media.mit.edu/~minsky/papers/SymbolicVs.Connectionist.html
http://www.erogol.com/brief-history-machine-learning/

86

[18] S.Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik. “A new android malware

detection approach using bayesian classification” Advanced Information Networking and

Applications (AINA), 27th International Conference, pages 121–128, March 2013.

[19] Z. Xiaoyan, F. Juan, and W. Xiujuan. “Android malware detection based on

permissions.” Information and Communications Technologies, International Conference,

pages 1–5, May 2014.

[20] Te-En Wei, Ching-Hao Mao, A.B. Jeng, Hahn-Ming Lee, Horng-Tzer Wang, and

Dong-Jie Wu. “Android malware detection via a latent network behavior analysis.” Trust,

Security and Privacy in Computing and Communications (Trust- Com), 11th International

Conference on, pages 1251–1258, June 2012.

[21] Hyo-Sik Ham and Mi-Jung Choi. “Analysis of android malware detection performance

using machine learning classifiers.” ICT Convergence (ICTC), 2013 International

Conference on, pages 490–495, October 2013.

[22] K. Patel and B. Buddhadev, “Detection and Mitigation of Android Malware Through

Hybrid Approach”, 2015.

[23] A. Pektaş, M.Çavdar and T.Acarman,. “Android Malware Classification by Applying

Online Machine Learning.” 2016

[24] A. Sharma and S. K. Sahay, “An effective approach for classification of advanced

malware with high accuracy”, Department of Computer Science and Information System,

Birla Institute of Technology and Science, K. K. Birla Goa Campus, NH-17B, ByPass

Road, Zuarinagar-403726, Goa, India

[25] T. Altyeb. “Classification of Android Malware Applications using Feature Selection

and Classification Algorithms.” VAWKUM Transactions on Computer Sciences. 2016

[26] M. Zubair Rafique, Ping Chen, Christophe Huygens, Wouter Joosen. “Evolutionary

Algorithms for Classification of Malware Families through Different Network Behaviors”

KU Leuven, Leuven, Belgium, 2014

[27] A. Firdaus, Nor Badrul Anuar, Ahmad Karim, Mohd Faizal Ab Razak . “Discovering

optimal features using static analysis and a genetic search based method for Android

malware detection” Department of Computer System and Technology, University of

Malaya, Kuala Lumpur, Malaysia

[28] Yongfeng Li, Tong Shen, Xin Sun, Xuerui Pan, and Bing Mao , “Detection,

Classification and Characterization of Android Malware Using API Data Dependency”.

State Key Laboratory for Novel Software Technology, Department of Computer Science

and Technology, Nanjing University, Nanjing, China

[29] M.N. Yusoff and A. Jantan. “A Framework for Optimizing Malware Classification by

Using Genetic Algorithm.” Communications in Computer and Information Science. 2011.

[30] [Online] UML diagrams

[31] [Online] Payscale, Available at:

https://www.payscale.com/research/NL/Job=Data_Scientist/Salary/66c296ce/Entry-Level

[32] [Online] Gantt Diagrams

[33] “The Legal Side of Open Source”, Open Source Guides, [Online] , available at:

https://opensource.guide/legal/ (access: June 2019)

[34] MIT License for open source projects. [Online] Available at:

https://choosealicense.com/licenses/mit/ (access: June 2019)

https://www.uml-diagrams.org/component-diagrams.html’
https://www.payscale.com/research/NL/Job=Data_Scientist/Salary/66c296ce/Entry-Level
https://www.gantt.com/
https://opensource.guide/legal/
https://choosealicense.com/licenses/mit/

87

[35] “Forecast of Mobile phone users in 2020”, Statista. [Online] Available at:

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/

(access: June 2019)

[36] “Smartphone usage”, Techjury. [Online] Available at: https://techjury.net/stats-

about/smartphone-usage/ (access: June 2019)

[37] “Cybercrime”, Techopedia. [Online] Available at:

https://www.techopedia.com/definition/2387/cybercrime (access: June 2019)

[38] “Cyber attacks on Android devices on the rise”, G Data, [Online] Available at:

https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-

on-the-rise (access: June 2019)

[39] J.Kastrenakes and R.Brandom, “Google mandates two years of security updates for

popular phones in new Android contract”, The Verge, October 2018, [Online] Available at:

https://www.theverge.com/2018/10/24/18019356/android-security-update-mandate-

google-contract (access: June 2019)

[40] Oxford dictionary, [Online] Available at: https://languages.oup.com/ (access: June

2019)

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://techjury.net/stats-about/smartphone-usage/
https://techjury.net/stats-about/smartphone-usage/
https://www.techopedia.com/definition/2387/cybercrime
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.theverge.com/2018/10/24/18019356/android-security-update-mandate-google-contract
https://www.theverge.com/2018/10/24/18019356/android-security-update-mandate-google-contract
https://languages.oup.com/

